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Abstract 

Phytoestrogen supplements are commonly utilized by women for relief from menopausal 

symptoms. Some research suggests that certain phytoestrogens may cause cellular apoptosis, 

indicating significance as an anti-cancer treatment in addition to menopause treatment. T47D 

cells, a cell line acquired from cancerous breast ductal cells, were cultured and then treated with 

biochanin A and resveratrol. Results suggest these phytoestrogens cause apoptosis of T47D cells. 
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1. Introduction 

Hormone replacement therapy (HRT) is an evolving science, and has particular 

significance in the treatment of menopausal women.  Traditional HRT for these women includes 

the prescription of estrogen and/or progestin supplements (Feigelson 1996); however due to the 

potential health risks surrounding the use of estrogen, such as cancer and stroke (Minelli 2004), 

there is a high demand for finding a safer option. One promising alternative may be the use of 

phytoestrogens, plant-derived compounds that are similar in structure to estrogen, which may 

thereby have similar effects in humans. Phytoestrogens are a popular treatment method, but their 

reliability and effectiveness is questionable, as minimal research has been conducted to date. 

Research indicates that the use of phytoestrogens by menopausal women may result in fewer 

incidences of HRT-related cancers. Furthermore, some research has suggested that 

phytoestrogens may decrease growth of cancerous cells. In a study by Sakamoto (2008), the 

phytoestrogens genestein, glycitein, and resveratrol were shown to cause apoptosis in MCF7 

cells. Likewise, in a study by Caron (2007), the over-the-counter phytoestrogen supplement 

Promensil was shown to reduce proliferation of MCF7 cells. 

Based on these findings, this project was initiated with the purpose of determining the 

apoptotic effect of resveratrol and biochanin A, two phytoestrogens, on the breast cell line T47D. 

Cells were cultured and treated with either phytoestrogen or estrogen, and tested for apoptosis. 

Specifically, the analysis of caspase 3 and mitochondrial transmembrane potential was used to 

determine apoptosis. Results suggest that high concentrations of resveratrol are toxic to cells, 

while lower concentrations seem to induce apoptosis in cells. Likewise, high and low 

concentrations of biochanin A have a noticeable apoptotic effect on T47D cells relative to 

controls.  

1.1 Hormone Replacement Therapy 

HRT is a general term for the use of externally provided hormones for medicinal or other 

beneficial purposes. Treatment of hypothyroidism, growth hormone deficiency (Frasier 1983), 

and Androgen Deficiency Syndrome in men (Bhasin 2006), are common applications for HRT. 

However, the prescription of external hormones is a complex science with a high potential for 
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health risks, and the use of HRT is still being studied extensively. A safe method of HRT for 

treating the irregular hormone levels in menopausal women has yet to be discovered since the 

traditional application of estrogen as a supplement has shown a high incidence of associated 

health problems. While benefits of using estrogen HRT include reduced coronary heart disease, 

osteoporotic fractures, and colorectal cancer, in addition to reduction of menopausal symptoms, 

strong evidence points to a heightened incidence of breast cancer and stroke. Stevenson (2002) 

described the following HRT trial, which was halted after 5 years of its intended 8.5-year course 

due to a significant occurrence of breast cancer in individuals participating. A quote from the 

author describes the astonishing prevalence of health risks in the study: 

“For 10, 000 women taking hormone replacement therapy each year, compared 

with those not taking it, there would be an additional eight cases of invasive 

breast cancer, seven heart attacks, eight strokes, and eight pulmonary embolisms. 

However, there would also be six fewer bowel cancers and five fewer hip 

fractures.” (Stevenson 2002) 

 Historically, two approaches to HRT were used for menopause treatment. The first 

involves the use of only estrogen, also known as estrogen replacement therapy (ERT) (Feigelson 

1996). In this approach, a minimal daily dose of estrogen is prescribed to relieve menopause 

symptoms and aid in the prevention of osteoporosis. The use of ERT peaked in the 1970s 

(Benderly 1997); however, an increase in endometrial cancer was observed and attributed to 

ERT. In a 1993 study by Levi on hospitalized patients (158 cancerous and 468 non-cancerous), 

38% of the total patients who had used ERT were diagnosed with endometrial cancer. 

Furthermore, 95% of individuals who reported using ERT for more than five years had 

confirmed cases of endometrial cancer. This indicated that in general, the use of ERT increased 

the risk of cancer to around 40%, while the use of ERT for an extended period of time (greater 

than five years) caused a drastic increase in the risk of cancer. These results, among many similar 

findings, encouraged researchers to find another form of HRT.  

This initiated the second approach to HRT, known as “combined therapy”, which uses 

both progestin and estrogen. It was initially believed that the addition of progestin would combat 

the formation of cancer; however, research indicates that combination HRT may actually 

increase the risk of cancer. In a study by Ross (2000), analysis of patient history with ERT and 

CHRT (combined hormone replacement therapy) indicated a 6% increased risk of breast cancer 

for every five years of using ERT, and a striking 24% increase in risk after using CHRT for five 
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years. In general, results show the increased risk of cancer occurring only after prolonged HRT; 

thus, in an attempt to minimize this risk, the current approach for HRT involves careful 

prescription of small dosages for short periods of time (Benderly 1997). 

In an attempt to reduce menopause symptoms while avoiding the dangerous side effects 

associated with ERT, research focus has shifted to the use of phytoestrogens. Phytoestrogens are 

estrogens found in plants such as soy, red clover, and flax seed oil (Sakamoto 2008). While little 

conclusive data has been presented to confirm an anticancer effect, some studies have suggested 

that certain phytoestrogens, such as genestein, resveratrol, and glycitein may cause apoptosis of 

cancerous cells (Sakamoto 2009). 

1.2 Phytoestrogens 

Resveratrol and biochanin A are two phytoestrogen compounds that are common 

components of many over the counter supplements. Resveratrol is most acknowledged for its 

presence in grapes and other fruit. It is thought to be a phytoalexin with significance in 

preventing pathogen infection, and is present in grape skin at about 50-100µg per gram of skin 

(Jang 1997). Research has suggested that resveratrol has activity in the inhibition of 

cyclooxygenases. These enzymes are known to cause cancer by catalyzing the synthesis of pro-

inflammatory substances, which may inhibit immune surveillance and induce tumor cell growth 

(Jang 1997). Furthermore, resveratrol is known to be preventative in the formation of free-

radicals, an event that is associated with the initiation of cancerous cells (Jang 1997).  

Biochanin A is a primary component of the popular over-the-counter phytoestrogen 

supplement, Promensil, which is derived from red clover. Biochanin A has been the focus of a 

number of studies on prostate cancer (Sun 1998), and has been shown to be a potent antioxidant, 

a quality that enables it to scavenge free-radicals, thereby preventing tumor growth (Ruiz-Larrea 

1997).  

Because of their potential for anti-cancer effects, studies have been conducted on 

phytoestrogens, some of which support the hypothesis that certain phytoestrogens induce cancer 

cell apoptosis. In a study by Sakamoto (2008), the phytoestrogens daidzein, genestein, 

coumestrol, resveratrol, and glycitein were analyzed for various effects on MCF7 breast cells. 

Observations indicated estrogenic effects as well as significant anti-tumor activity. Genestein, 

glycitein, and resveratrol were all shown to have caused apoptosis, and resveratrol greatly 
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increased the activity of p53, a tumor-suppressing gene. In an additional study by Caron (2007), 

the effect of genestein, a component of Promensil, on MCF7 cells was analyzed. Results showed 

equivalent growth curves for both genestein and cells given 17β estradiol, but significantly 

reduced proliferation in cells given 100% Promensil. This data was complemented by results 

indicating that Promensil, but not genestein, induced significant upregulation of procaspase-3, a 

cellular precursor for apoptosis. This suggests that some component of the supplement, other 

than genestein, may have an apoptotic effect on breast cancer cells. Taken together, these data 

provide convincing arguments for the potential of phytoestrogens as a safe form of HRT that not 

only may reduce the risk of breast cancer, but may also terminate the initiation of cancer cell 

growth. 

1.3 Apoptosis 

Apoptosis, in its most simple definition, is the process of programmed cell death, also 

known as “cellular suicide”. It is a naturally occurring event in all cells that is induced by a 

variety of stimuli, and is necessary for maintaining cellular homeostasis, as well as preventing 

the spread of viral infection. In addition, it has significance in the prevention of cancer 

progression by inhibiting the continued proliferation of cells with damaged DNA, thereby halting 

potentially cancerous cell growth (Mooney 2002). Because it is a highly regulated process, 

apoptosis does not evoke the inflammatory responses that typically accompany necrotic cell 

death (Dash). 

A variety of cellular events occur that are characteristic to apoptosis.  These include 

“blebbing” or bulging of the cell membrane, cell shrinkage due to cytoskeletal cleavage, and 

degradation and condensation of chromatin (Dash 2005). Of principle significance to this process 

are the cysteine proteases known as caspases, which contribute to the majority of the 

morphological changes to the cell. Additionally, the regulation of mitochondrial transmembrane 

potential is highly significant in the process of apoptosis. During apoptosis, it is believed that the 

mitochondrial permeability transition pore opens, allowing for a reduction in membrane potential 

and the release of cytochrome c. Cytochrome c is known to activate caspases, and thereby may 

initiate the apoptotic pathway (Mooney 2002). A general outline for the events occurring in 

apoptosis can be seen below in figure 1. 
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Figure 1. Process of apoptosis (Kalmakoff, 2007). 

1.4 Caspases 

Caspases are a family of cysteinyl aspartate-specific proteases that mediate inflammation 

and apoptosis through cascade processes. There are an estimated 11 human caspases (Los 2002), 

although the exact number is still debated. Caspase structure consists of a prodomain whose 

length varies between specific caspases, and a large p20 subunit and a smaller p10 subunit which 

are identical in all caspases (Los 2002). Caspases are activated by cytochrome c (Waterhouse 

2001), and activation occurs by proteolysis at aspartate residues between the prodomain, p20 

subunit and p10 subunit. This cleavage forms tetrameric caspases containing two p20/p10 

heterodimers in a head-to-tail configuration, leaving the active sites at opposite ends of the 

molecule. The availability of active sites then gives rise to the initiation of caspase cascades 

(Duncan 2010), and ultimately, the cellular events of apoptosis.  

Caspase cascades are either intrinsic or extrinsic pathways composed of initiator and 

effector caspases. Initiator caspases are located upstream of effector caspases which they 

activate, allowing for the cleavage of other proteins in the cell to initiate apoptosis. Loss of 

function of caspase pathways can lead to tumorigenesis (Duncan 2010). 

 In this project, caspase 3 was used as a marker for apoptosis in T47D cells. Caspase 3 is 

an effector caspase which, when activated, may induce a number of apoptotic effects, such as 

fragmentation of DNA and membrane blebbing, both of which will ultimately lead to 
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programmed cell death (Porter 1999). Caspase 3 is activated by the initiator caspase 9, which is 

activated by cytochrome c. The various actions induced by caspase 3 can be observed in the 

figure below, taken from an article by Porter (1999). 

 

Figure 2. The role of caspase 3 in apoptosis (Porter, 1999, Figure 1). 

1.5 Mitochondrial Transmembrane Potential 

 One of the first occurrences characteristic to apoptosis is a reduction in transmembrane 

potential of cellular mitochondria. This event is catastrophic to cells because, in addition to 

ceasing mitochondrial protein production and gene transcription, it halts oxidative 

phosphorylation, thereby preventing further energy-dependent cellular processes from continuing 

(Zamzami 1996). In a functional mitochondrion, the inner membrane is impermeable to charged 

molecules and thus accumulates transmembrane potential, a characteristic that is essential for the 

establishment of a proton gradient and the electron transport chain. Research suggests that, when 

signaled to initiate apoptosis, permeability transition pores emerge in the mitochondria, allowing 

for a dissipation of transmembrane potential (Zamzami 1996).  In addition to the reduction of 

this charge gradient, increased permeability of the mitochondrial membrane allows the release of 

cytochrome c into the cytoplasm, thereby initiating caspase activation (Waterhouse 2001). This 
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series of events surrounding the change in transmembrane potential of mitochondria at the start 

of apoptosis leads to the striking characteristics that define apoptotic cells (Porter 1999). 

1.6 T47D Cell Line 

The cell model system on which experiments were performed is the T47D cell line from 

the American Type Culture Collection (ATCC.org). These cells are from the ductal carcinoma of 

the mammary gland from a pleural effusion of a 54 year-old adult female Homo sapiens 

(ATCC.org).  This cell line was selected for use in this project because of its origination in 

female breast tissue, which is of specific interest in the study of anti-cancer effects of 

phytoestrogens on post-menopausal women. T47D cells are reported to be positive for the 

estrogen receptor α (Strom 2003), a necessity for the comparison of the effects of estrogen and 

phytoestrogens. Furthermore, studies have verified that the cell line is highly responsive to 

minimal quantities of estrogen (concentrations greater than 1.0 pM) (Faber 2001), which is an 

important factor in facilitating experimental observations by providing measurable output. The 

use of this cell line for this project to study the effects of phytoestrogens on breast tissue is 

advantageous because it is reported to be estrogen responsive (Strom 2003), and thus provides a 

hopeful substitute for the widely used MCF-7 cell line. Traditionally, MCF7 cells were used for 

estrogen studies; however, recent research indicates that the certain strains of the cell line are 

becoming non-responsive to estrogen, such as the MCF-7S strain analyzed by Hamelers (2003).   
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2. Methodology 

2.1 Cell Culture 

T47D cells were cultured for use in these experiments using sterile cell-culture 

techniques. Cells were grown in vented cell culture flasks stored horizontally to enable cell 

adhesion, and incubated at 37°C and 5.0% C02, and humidified. Media in which cells were 

grown consisted of RPMI containing L-glutamine and sodium bicarbonate, with 10% Fetal 

Bovine Serum (FBS), 1% PenStrep, and 0.2 units/mL insulin. The ATCC reports T47D cells to 

require insulin for proper growth (ATCC.org), and PenStrep was used with the purpose of 

preventing bacterial contamination of cultures. All cell counts were made using a 

hemocytometer. During certain procedures discussed below, in which cells were grown in the 

presence of hormones, they were provided with specific media components in order to optimize 

results. When given estradiol, resveratrol, or biochanin A, cells were grown in phenol red 

(PHRED) – free DMEM, a Phenol red has been shown to bind to the estrogen receptor of MCF-7 

cells due to structural similarities in the molecules, and has even led to “estrogen” induced 

proliferation of these cells (Berthois 1986). Additionally, FBS was reduced from 10% to 1% in 

order to minimize exogenous hormone effects.  

2.2 MTT Cell Proliferation Assay 

The MTT Cell Proliferation Assay was used according to the manufacturer’s (Promega) 

instructions for determination of estrogen responsiveness. This assay measures proliferation of 

cells via colorimetric quantitation of metabolic activity. The chief component of the assay is a 

tetrazolium dye, which is converted to formazan by metabolically active cells. The formazan 

product is easily detected by absorbance in a plate reader (Promega Technical Bulletin 2009).  

Cells were grown in a 24-well plate at varying densities, and were provided with 0.1μM of of 17-

β estradiol (E2), as shown below in Table 1. The estradiol concentration was derived from 

similar experimental studies, including the methods employed by the previous group working on 

this project (DeVault 2009). 
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200K cells 

0.1 μM E2 

200K cells 

0.1 μM E2 

200K cells 

0.1 μM E2 

200K cells 

No E2 

200K cells 

No E2 
Culture media 

150K cells 

0.1 μM E2 

150K cells 

0.1 μM E2 

150K cells 

0.1 μM E2 

150K cells 

No E2 

150K cells 

No E2 
Culture media 

100K cells 

0.1 μM E2 

100K cells 

0.1 μM E2 

100K cells 

0.1 μM E2 

100K cells 

No E2 

100K cells 

No E2 
Culture media 

50K cells 

0.1 μM E2 

50K cells 

0.1 μM E2 

50K cells 

0.1 μM E2 

50 K cells 

No E2 

50 K cells 

No E2 
Culture media 

Table 1. Layout and cell density of a 24-well plate used for the MTT proliferation assay . 

 This was a time course experiment that lasted a total of 100 hours. Cells were plated at 

time 0 hours in the original growth media of RPMI, 10% FBS, 1% PenStrep, and insulin; cells 

were suspended in 1000µL of combined cell stock solution and growing media. At 48 hours, the 

media was replaced with PHRED-free, DMEM media containing 1% FBS, 0.2 units/mL insulin, 

and 1% PenStrep. At 72 hours the following reagents were added to the designated wells in the 

following concentrations: 0.1 μM of estradiol, 0.65% ethanol to dissolve estradiol, 0.2 units/mL 

insulin, and 1% FBS by volume. At time 96 hours, the MTT assay was run according to the 

Promega protocol. At time 100 hours, plate absorbance was read at 450nm in a BioTek EL800 

plate reader. 

2.3 Caspase Immunoblot 

 In order to detect the presence of caspase 3 as a measure of apoptosis, immunoblotting 

was performed. In this technique, proteins from a cell lysate were first separated by size using 

the Laemmli method for one-dimensional discontinuous denaturing gel electrophoresis, and 

subsequently transferred to a membrane for identification. Mini-gels, with final dimensions of 8 

x 10 x 0.1 cm, were created with 12% acrylamide. 

Table 2 below shows the plate layout for cell preparation prior to electrophoresis. Cells 

were plated at a density of 300,000 cells per well in a 24 well plate in RPMI with 10% fetal 

bovine serum, 1% PenStrep, and insulin for 48 hours. Media were removed by aspiration and 

PHRED-free DMEM media containing 1% FBS, 1% PenStrep, and insulin was added biochanin 

A, resveratrol, or estradiol. Biochanin A and resveratrol were added at either a high 

concentration (10uM), or a low concentration (0.1uM). Estradiol was added at 0.1uM, based on 

the data shown in figure 5 of the results section, which suggests T47D cells are proliferative at 

this concentration. Cells were grown for 24 hours in this new media, and after removing the 

media, were then flash frozen in liquid nitrogen to induce cell lysis, and stored at -80°C. 
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300K Cells 

10uM 

Biochanin A 

300K Cells 

0.1uM 

Biochanin A 

300K Cells 

10uM 

Resveratrol 

300K Cells 

0.1uM 

Resveratrol 

300K Cells 

0.1uM  

Estradiol 

300K Cells 

No hormone 

300K Cells 

10uM 

Biochanin A 

300K Cells 

0.1uM 

Biochanin A 

300K Cells 

10uM 

Resveratrol 

300K Cells 

0.1uM 

Resveratrol 

300K Cells 

0.1uM  

Estradiol 

300K Cells 

No hormone 

300K Cells 

10uM 

Biochanin A 

300K Cells 

0.1uM 

Biochanin A 

300K Cells 

10uM 

Resveratrol 

300K Cells 

0.1uM 

Resveratrol 

300K Cells 

0.1uM  

Estradiol 

300K Cells 

No hormone 

300K Cells 

10uM 

Biochanin A 

300K Cells 

0.1uM 

Biochanin A 

300K Cells 

10uM 

Resveratrol 

300K Cells 

0.1uM 

Resveratrol 

300K Cells 

0.1uM  

Estradiol 

300K Cells 

No hormone 

Table 2. Layout of the 24-well plate used for immunoblot analysis for detection of caspase 3. 

Protein samples were resuspended in a minimal volume of 1X SDS-PAGE non-reducing 

sample buffer, taken from a pool of two duplicate wells, and 30μLof each sample was loaded 

onto the gel. SDS, or sodium dodecyl sulfate, binds to and denatures proteins while providing 

them with a negative charge proportional to their mass (Schagger 1987). A constant voltage of 

150 V was applied to the gel in order to separate the proteins present in the samples.  

 After the gel was run, proteins were transferred to a hydrophobic, polyvinylidene fluoride 

(PVDF) membrane using a semi-dry transfer unit for 90 minutes at a constant current density of 

60 mA, for an 8 x 10 x 0.1cm membrane. Before transfer, the hydrophobic membrane was 

wetted briefly in methanol, and then it, as well filter paper, was equilibrated in transfer buffer. 

The gel was sandwiched between two sheets of whatman 3mm filter paper and the membrane, 

and placed on top of the cathode of the transfer unit. The gel and membrane were placed in the 

proper orientation to ensure that the negatively charged proteins would travel from the gel up to 

the membrane toward the positive anode (Gallagher, 2001). 

After being transferred, the membrane underwent a series of room temperature 

incubations with gentle shaking to detect the presence of caspase 3 in the cell lysates. The 

membrane was first incubated for 60 minutes with blocking buffer consisting of 0.1% tween-80 

and 1% non-fat dry milk (NFDM), in order to prevent non-specific binding of antibodies in 

subsequent steps. Next, the membrane was incubated overnight with a mouse monoclonal 

primary antibody for caspase 3, catalog number sc-56052 from Santa Cruz Biotechnology Inc. 

This antibody recognizes full-length procaspase 3, and was diluted 1:200 in 1X PBS with 0.1% 

Tween-80 (PBS-T). After this incubation step, the membrane was washed with PBS-T three 

times for five minutes, and then incubated with secondary antibody for 90 minutes. The 
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secondary antibody was a goat-anti-mouse antibody conjugated to alkaline phosphatase, catalog 

number sc-2008 from Santa Cruz Biotechnology, Inc., and diluted 1:2000 in PBS-T. After one 

hour, the membrane was washed three times with PBS and incubated for 30 minutes with the 

alkaline phosphatase substrate, SIGMA FAST
™

 BCIP/NBT from Sigma-Aldrich, which was 

dissolved in 10μLof distilled water as directed by the manufacturer (Gallagher, 2001).  

The caspase signal was normalized using two methods. The first included performing a 

second blotting of the same membrane for the housekeeper protein, β-Tubulin, following the 

general outline described above. First, the membrane was washed with TBS-T to remove any 

excess precipitate. After incubation with blocking buffer, the membrane was placed overnight in 

a solution of rabbit monoclonal anti-β-Tubulin antibody from Imgenex Corp. catalog number 

IMG-5810A, diluted 1:500 in PBS-T. The secondary antibody used was a horse radish 

peroxidase (HRP) conjugated goat-anti-rabbit antibody from Pierce, catalog number 31480, 

diluted 1:1000 in PBS-T. TMB peroxidase substrate was used to react with the HRP. Due to 

operator error, after incubation with secondary antibody, the membrane was initially incubated 

with NBT/BCIP, the incorrect substrate, for 20 minutes, at which point the error was realized, 

the membrane was washed three times with 1X PBS, and the correct substrate was added. After 

immunoblotting, the membrane was photographed and analyzed by densitometry using ImageJ, a 

Java-based image processing and analysis program downloaded from the National Institute of 

Health (NIH) website.   

 The second method for normalization included performing a Bradford protein assay using 

Coomassie Plus Dye from Pierce on pooled duplicate wells from the original plate. However, 

these pools were taken from different wells than were run through the gel, as the SDS in those 

samples would have interfered with protein absorbencies. Therefore, these results may not have 

provided conclusive data on their own, but were used to support the housekeeping blot data. The 

Bradford protein assay works by an interaction between the anionic Coomassie Blue dye and 

arginine and lysine residues of proteins (Kruger 2002). The dye has an absorbance at 595nm, 

allowing for measurement based on optical density of protein samples. 

 The caspase signals were normalized to protein absorbencies and β-tubulin signals by the 

following equations: 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑇𝑢𝑏𝑢𝑙𝑖𝑛 =  
𝐴𝑟𝑒𝑎 𝑐𝑎𝑠𝑝𝑎𝑠𝑒

𝐴𝑟𝑒𝑎 𝛽 𝑇𝑢𝑏𝑢𝑙𝑖𝑛
  × 𝐴𝑟𝑒𝑎 𝛽 𝑇𝑢𝑏𝑢𝑙𝑖𝑛𝑚𝑖𝑛   

Equation 1. β-tubulin normalization. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑟𝑎𝑑𝑓𝑜𝑟𝑑 =  
𝐴𝑟𝑒𝑎 𝑐𝑎𝑠𝑝𝑎𝑠𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒
  × 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑚𝑖𝑛  

Equation 2. Bradford Normalization. 

 In order to conserve sample, each was diluted 1:5 in dH2O by mixing 10μLprotein with 

40μLwater. This was then added to 1.5mL of the Coomassie Blue dye and incubated for five 

minutes at room temperature at which point the absorbance at 595nm was taken. 

2.4 MitoCapture Apoptosis Detection Kit 

 As a further measure of apoptosis in T47D cells, the MitoCapture Apoptosis Detection kit 

was used according to manufacturer’s instructions (CalBiochem 2006). This assay works by 

performing fluorescence microscopy on cells after being incubated with the MitoCapture 

reagent. In healthy cells, the reagent is able to aggregate in the mitochondria and fluoresces red, 

while in apoptotic cells, characterized by decreased mitochondrial transmembrane potential, the 

reagent remains monomeric in the cytoplasm of cells and fluoresces green.  

 Cells were plated at a density of 500,000 cells per well in a twelve-well culture plate in 

the standard culture media used in previous experiments, and grown at 37°C for 24 hours. Next, 

the media was aspirated, and cells were provided with phenol red free DMEM, 1% FBS, 1% 

PenStrep, 0.2 units/mL insulin, and varying hormones to match the experimental plan used for 

the immunoblotting procedure, as described in table 3 below. However, deviations from the 

immunoblot setup include using biochanin A in a different solvent. After originally storing this 

hormone dissolved in acetone, the solution had evaporated, making it necessary to use biochanin 

A from another group, which was solubized in DMSO.  

500K Cells 

10uM Resveratrol 

500K Cells 

0.1uM Resveratrol 

500K Cells 

10uM Biochanin A 

500K Cells 

0.1uM Biochanin A 

500K Cells 

10uM Resveratrol 

500K Cells 

0.1uM Resveratrol 

500K Cells 

10uM Biochanin A 

500K Cells 

0.1uM Biochanin A 

500K Cells 

0.1uM Estradiol 

500K Cells 

0.1uM Estradiol 

500K Cells 

No Hormone 

500K Cells 

No Hormone 
Table 3. 12-well plate layout for growth of T47D cells for MitoCapture assay. 
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 Cells were grown in hormones for a 24-hour period, and then analyzed for change in 

transmembrane mitochondrial potential using the dye provided in the MitoCapture assay kit. 

Cells were first visualized at 400X magnification under a fluorescent microscope using a 

fluorescin and rhodamine filter to view green and red fluorescences, respectively. Sections of the 

well plate bottom on which cells had been grown were then physically removed from the plate 

using a dremel, and one field of view of each sample was counted for normal and apoptotic cells. 

Photography was accomplished by observing cells under the 40X objective and using a Canon 

camera at 4X zoom giving a total magnification of 160X for photographs. A random field of 

view for each sample was counted for total and non-apoptotic cells based on fluorescence.  
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3. Results 

3.1 MTT Cell Proliferation Assay 

T47D cells were successfully cultured for use in the MTT proliferation assay and tested 

for estrogen responsiveness. Standard morphology of the cells can be observed in figure 3 below. 

Cells are in culture media composed of RPMI, 10% FBS, 1% PenStrep, and insulin. Cells were 

viewed on an inverted microscope at 200X magnification and photographed using a digital 

camera at 4X magnification. 

 

Figure 3. T47D cells at a density of 200,000 cells per well in a standard 24-well plate. 

Table 4 below shows the absorbance of the MTT reagent provided to cells at a 

wavelength of 450nm. Cells were plated ranging from 50,000 to 200,000 cells per well in a 24-

well plate. The right-most column was kept free of cells to determine the baseline absorbance of 

assay media which served as a negative control. Cells were either grown in 1uM estradiol or no 

additional hormone, and all wells were given the MTT assay reagent to quantitatively determine 

metabolic activity in each well via optical density of the metabolized product.   
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Cells/well 1uM estradiol No hormone Media 

200K 0.365 0.351 0.376 0.398 0.411 0.208 

150K 0.331 0.327 0.350 0.338 0.355 0.213 

100K 0.270 0.290 0.295 0.302 0.320 0.210 

50K 0.210 0.241 0.195 0.259 0.259 0.219 

Table 4. Optical density at 450nm. 

Figure 4 shows a plot of absorbance at 450nm versus cell density based on the values 

seen in table 4. The green line labeled “No Cells” represents the baseline absorbance of the cell 

culture media. The blue line labeled “E2” represents cells grown in 17-β estradiol, and the red 

line labeled “No E2” represents cells grown without the added hormone. Linear fits of these data 

were performed, and the best-fit equation can be seen underneath the respective labels in the 

legend.  

 

Figure 4. Plot of absorbance vs. cell density of T47D cells grown with and without estradiol. 

 Figure 5 below shows cell proliferation in the presence of estradiol, taken from another 

group working on the same project (Gergel et. O’Connell 2010). Cells were grown to 80% 

confluence in growing media consisting of RPMI with 10% FBS, 1% PenStrep and 0.2 units/mL 

insulin. Media was then removed by aspiration and replaced with PHRED-free DMEM media 

containing 1% dextran coated charcoal (DCC) –stripped serum, 1% PenStrep, and 0.2 units/mL 

insulin. Cells were grown for 24 hours and provided with the reagent from the MTS proliferation 

kit and measured for absorbance. In the figure below provided by Gergel and O’Connell, 
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proliferation is plotted as a percent difference from control cells grown in the absence of 

estradiol. 

 

Figure 5. Estrogen responsiveness curve (Gergel and O’Connell, 2010). 

3.2 Caspase Immunoblot 

Figure 6 below shows the immunoblot for caspase 3 and β-tubulin for T47D cells grown 

in different hormone conditions. Cells were grown in a high and low concentration (10uM and 

0.1uM, respectively) of either resveratrol or biochanin A, in 0.1uM 17-β estradiol, or without any 

additional hormones. The large bands seen at the bottom of the blot indicate the presence of 

caspase 3 in the cell lysate of the respective sample, while the small double bands at the top of 

the blot represent β-tubulin.    
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Figure 6. Immunoblot with caspase 3 and β-tubulin bands. 

Densitometry analysis of the above bands was completed using ImageJ, which calculated 

the area of each peak representing the intensity of the signal. Furthermore, the Bradford protein 

assay was used to determine absorbance of duplicates of the samples used in the blot seen above. 

Values for densitometry and protein absorbance can be seen below in table 5. Densitometry for 

the caspase bands was normalized by comparison to the β-tubulin and absorbance values. This 

was conducted using the equations below. Normalized values following the below equations can 

be seen in table 5. 

Lane Marker 
10μM 

Resveratrol 

0.1μM 

Resveratrol 

10μM 

Biochanin A 

0.1μM 

Biochanin A 
Estradiol 

No 

Hormone 

Area 

Caspase 
- 408 7474 6738 8789 2996 3657 

Area β-

Tubulin 
- 686 2499 2212 4320 1118 1995 

Normalized 

to Tubulin 
- 408 2052 2090 1396 1838 1257 

Bradford 

Absorbance 
- 0.202 0.307 0.328 0.304 0.279 0.250 

Normalized 

to Bradford 
- 408 4918 4150 5840 2169 2955 

Table 5. Normalization results. 

 These values were then plotted for analysis of changes in caspase 3 quantities between 

samples. The histogram can be seen below in figure 7, which shows normalized values versus 

cell conditions. The blue columns represent the normalized values with respect to the Bradford 

absorbance, while the red columns indicate values normalized to the area of β-tubulin bands. 

β-Tubulin ~50kDa 

Caspase 3 ~32kDa 
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Figure 7. Normalization of caspase signal from immunoblot. 

3.3 MitoCapture Apoptosis Detection Kit 

Figure 8 below shows cell morphologies at densities of 500,000 cells per well 24 hours 

after being exposed to varying hormone conditions and prior to being subjected to the 

MitoCapture dye. Cells were viewed at 200X magnification and photographed 100X using a 

Canon camera at 4X magnification in AV mode. Picture descriptions are as follows: A. 10uM 

resveratrol; B. 0.1uM resveratrol; C. 10uM biochanin A; D. 0.1uM biochanin A; E. 0.1uM 

estradiol; F. No hormone. 
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Figure 8. Cell morphologies 24 hours post-hormone exposure. 

Figure 9 below shows an enlarged version of photograph F seen in figure 8 above, 

containing cells with no additional hormone. Cells appeared healthy in morphology, large, and 

were clearly adhered to the plate bottom. 

 

Figure 9. Cells with no added hormone. 

As a comparison with figure 9 above, figure 10 below shows an enlarged version of 

photograph A taken from figure 8. In this picture, cells have been grown in 10uM resveratrol. 

Cells appeared small, rounded, granular, and very few were still plated down, while many were 

floating in solution. 

A B C 

D E F 



20 

 

 

Figure 10. Cells with 10μM resveratrol. 

Figure 8 shows that cells grown in 0.1μM resveratrol, 0.1μM biochanin A, and 0.1μM 

estradiol appear to be healthy in morphology and adherence. Cells grown in 10μM biochanin A 

appear to be small and granular and generally less healthy than control cells. 

Figure 11 below shows photographs taken of cells using fluorescent microscopy. Cells 

were viewed at 400X magnification and photographed at a total of 160X magnification with a 

Canon camera at 4X magnification in AV mode. The column on the left, showing panels A, B, 

and C represents cells grown in 10uM resveratrol. The column on the right, showing panels D, E, 

and F, represents cells grown in 0.1uM resveratrol. Panels A and D show the cells viewed under 

normal light (Note that photo D has a reddish appearance due to accidentally leaving the 

rhodamine filter on while viewing under normal light). Panels B and E show the cells viewed 

under just the fluorescein filter. Panels C and F show the cells viewed under just the rhodamine 

filter. Spots that appear to fluoresce red in both fluorescein and rhodamine panels should be 

discounted, as they are simply dye particulates resulting from poor solubility in aqueous 

solutions (Calbiochem 2006). Cells grown in 10μM resveratrol do not appear to fluoresce green 

or red. Cells grown in 0.1μM resveratrol appear to fluoresce faintly green, but not red. 
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Figure 11. 10uM and 0.1uM resveratrol cell fluorescences. 

Figure 12 below shows photographs taken of cells under a fluorescent microscope, 

viewed and photographed in the same conditions as above. The column on the left, showing 

panels A, B, and C represents cells grown in 10uM biochanin A. The column on the right, 

showing panels D, E, and F, represents cells grown in 0.1uM biochanin A. Panels A and D show 

the cells viewed under normal light, panels B and E show the cells viewed under just the 

fluorescein filter, and panels C and F show the cells viewed under just the rhodamine filter. Cells 

grown in 10μM biochanin A do not appear to fluoresce green or red. Cells grown in 0.1μM 

biochanin A appear to fluoresce green, but not red.  

 

Figure 12. 10uM and 0.1uM biochanin A cell fluorescences. 
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Figure 13 below shows photographs taken of cells under a fluorescent microscope with 

the same conditions as used above. The column on the left, showing panels A, B, and C 

represents cells grown in 0.1uM 17β-estradiol in the absence of phytoestrogens. The column on 

the right, showing panels D, E, and F represents cells grown with no additional hormone. Panels 

A and D show the cells viewed under normal light, panels B and E show the cells viewed under 

just the fluorescein filter, and panels C and F show the cells viewed under just the rhodamine 

filter. Cells grown in 0.1μM estradiol appear to fluoresce green with just a few cells fluorescing 

red. Cells grown with no additional hormone fluoresce brightly green as well as red. 

 

Figure 13. 0.1uM estradiol and no hormone cell fluorescences. 

Table 6 shows the cell count of a random field of view at 400X magnification, taken from 

each of the sample conditions. Total cells were determined by the number of cells fluorescing 

green under the fluorescein filter. Non-apoptotic cells were those which also fluoresced red 

under the rhodamine filter. The percentage of total cells that were non-apoptotic was calculated 

from these counts. Due to difficulties in performing cell counts, only one field of view was 

counted for each sample; therefore these counts cannot be counted as statistically significant, but 

instead provide a rough representation of cell condition that was visually verified. Figure 14 

shows a histogram representing percent non-apoptotic cells for each sample condition. 
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Treatment Total cells Non-apoptotic % Non-apoptotic 

10uM Resveratrol 18 0 0 

0.1uM Resveratrol 68 36 53 

10uM Biochanin A 11 1 9 

0.1uM Biochanin A 40 16 40 

0.1uM Estradiol 17 6 35 

No Hormone 5 5 100 
Table 6. Number and percentage of non-apoptotic cells. 

 

Figure 14. Percentage of non-apoptotic cells based on fluorescence. 
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4. Discussion 

4.1 MTT Cell Proliferation Assay 

 Figure 4 shows the plot of absorbance versus cell density derived from the MTT 

proliferation assay results. The control line, containing no cells, shows a baseline absorbance at 

around 0.2 absorbance units (AU) which stays constant in all control wells. This value is clearly 

below the absorbencies of samples containing high densities of cells, with or without hormones, 

which increase linearly with respect to cell density. Cells at a density of 50,000 cells per well 

grown with estradiol gave the same absorbance as assay media. As can be seen in the figure, 

however, cells grown for 24 hours in 17-β estradiol did not demonstrate a difference in 

proliferation when compared to cells cultured without added hormone. Nonetheless, another 

group working on the same project was able to observe an increase in proliferation of T47D cells 

in 17-β estradiol, as can be seen in figure 5. This figure suggests proliferative effects of estradiol 

on cells in concentrations between 0.01uM and 10uM (Gergel et O’Connell 2010). This data 

provided the necessary conclusion that cells were estrogen responsive, permitting the initiation 

of tests on the effects of phytoestrogens on apoptosis. 

4.2 Caspase Immunoblot 

 Figure 6 shows an immunoblot containing bands for the housekeeping protein β-tubulin 

and caspase 3. In addition to serving as a size marker, lane 1, containing the His-tagged marker, 

acts as a negative control for the blot, as it is not expected to contain either β-tubulin or caspase 

3. Any bands appearing in this lane would then be the result of non-specific binding by either the 

primary or secondary antibodies. This absence of such binding is confirmed by the lack of bands 

in lane 1.  

Lane 2, representing cells grown in 10uM resveratrol, was expected to contain both 

caspase 3 and β-tubulin. However, only very minimal quantities of protein were detected, as can 

be observed by the faintness of the bands. The samples used for this blot were used on additional 

gels and blots, and all results (data not shown), support that very little, if any, protein was present 

in this particular sample.  
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 These results, in conjunction with the observations of cell morphology immediately prior 

to the MitoCapture assay, seen in figures 8, 9, and 10, suggest that 10uM resveratrol is either 

highly toxic to cells, and causes them to lose their adherent properties, or is highly proliferative 

to cells. It is well known that adhesive cells commonly lose the ability to attach to the surface on 

which they are grown, during proliferation (Hunter, 1995). As can be seen by figure 10, cells 

grown in 10uM resveratrol were small and granular in appearance, and seemed to be 

unsuccessful in adhering to the plate. During the procedures required to run a gel electrophoresis 

for subsequent Western blotting, it is necessary at many steps to aspirate the media off of the 

cells, a step which assumes that cells will be properly adhered to the plate. If cell adhesion is 

disrupted, however, cells will be aspirated off the plate. This is supported by the absence of a 

band in the respective lanes of the gel and membrane, as well as the low protein absorbance seen 

by the Bradford assay.  

 Besides the lack of bands in the 10uM resveratrol lane, all other lanes contain 

pronounced bands at ~ 32kDa, consistent with the presence of caspase 3. Comparison of the 

normalized intensities of these bands to the β-tubulin bands can be seen in table 5, and is plotted 

in figure 7, as can be seen by the red bars. This figure suggests that 0.1uM resveratrol and 10uM 

biochanin A may induce production of slightly more caspase 3 than 0.1uM estradiol, which 

induces more caspase 3 than control cells. However, 0.1uM biochanin A causes production of 

less caspase 3 than estradiol, but slightly more than control cells. Assuming that 10uM 

resveratrol is highly apoptotic to cells, these data suggest that resveratrol at low and high 

concentrations, as well as a high concentration of biochanin A, may induce a slight increase in 

apoptosis in T47D cells relative to control cells. However, because the values are not largely 

different from one another, one might also conclude that there is no significant increase in 

apoptosis. Due to time limitations, only one successful membrane was obtained, and statistical 

analysis was therefore omitted for these data.  

 It is notable to point out that the bands seen in figure 6 show large lower bands which 

appeared after probing with anti-caspase antibodies, and small upper double bands appearing 

only after probing with anti-β-tubulin antibodies. By these observations, it is evident that the 

upper bands correspond to β-tubulin; however, the reason behind the presence of a double band 

as opposed to a single band is still unknown. It is possible that the anti-β-tubulin antibody may 

be picking up signal from the slightly smaller α-tubulin protein; it may also be possible that some 
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of the β-tubulin in the samples is physically altered, which might account for the presence of 

double bands. 

 In an attempt to validate these results, the Bradford assay was used as another method of 

normalization. Protein absorbances were taken from duplicate samples to those used for the 

electrophoresis and immunoblot, values of which can be seen in table 5. The intensities of the 

caspase bands were normalized to these values, producing the blue bars seen in figure 7. Unlike 

normalization by β-tubulin, these produced much more striking results when compared to control 

cells. These data suggest that 0.1uM biochanin A causes the most apoptosis of T47D cells, 

closely followed by 0.1uM resveratrol and 10uM biochanin A. These values are clearly much 

higher than those represented by control cells, which are slightly higher than cells grown in 

estradiol. This observation is supported by the data in figure 5 suggesting 0.1uM estradiol is 

proliferative to cells. No statistical analysis of these data can be performed because the data are 

from a single experiment. However, the results support repeating this study in the future. 

4.3 MitoCapture Apoptosis Detection Kit 

Figures 11, 12, and 13 show photographs of cells viewed using fluorescence microscopy. 

The top picture in each column shows cells viewed under normal light, the middle shows cells 

viewed using a fluorescein filter, and the bottom shows cells viewed using a rhodamine filter. 

Healthy cells are represented by the control cells seen in figure 13, panels D, E, and F. The three 

panels clearly show the same cells, as is indicated by the identical arrangement of cells. The 

middle panel shows cells which fluoresce green, and the bottom panel shows the same cells 

clearly fluorescing red, except in more condensed locations. The green fluorescence seen in the 

middle panel indicates a cell with an intact outer membrane, through which the MitoCapture dye 

was able to penetrate to accumulate in the cytoplasm. However, because of the large size of the 

cytoplasm, the dye is too dilute to dimerize and fluoresce red, and thus stays green. Likewise, the 

red fluorescence in the bottom panel indicates that the mitochondrial membrane is intact as well, 

since the dye was able to enter and aggregate, causing dense spots of red fluorescence throughout 

the cell. This is in contrast to cells grown in 0.1uM estradiol, seen in panels A, B, and C of the 

same figure, which show cells fluorescing faintly green, only a few of which appear to fluoresce 

red in the bottom panel. These observations suggest that few cells contain intact mitochondria, 

and thus that they may be apoptotic. Furthermore, because the intensity of the green fluorescence 
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is not comparable to that which is seen in the control cells, it might be suggested that the outer 

cell membrane is compromised in these cells, preventing the dye from properly accumulating 

even in the cytoplasm.  

Using these observations, figure 12 suggests that 10uM biochanin A causes cells to 

become apoptotic, with possible damage to the outer membrane, resulting in no green or red 

fluorescence; and that 0.1uM biochanin A may induce apoptosis but is less damaging to cells 

than 10uM biochanin A, since no red fluorescence is observed but they are able to fluoresce 

green. Likewise, figure 11 suggests the same trends for 10uM resveratrol and 0.1uM resveratrol, 

as no green or red fluorescence is seen in 10uM resveratrol cells, but some green and no red is 

seen in 0.1uM resveratrol cells.  

After photographic observation, random fields of view were counted for green and red 

fluorescence. These values can be seen in table 6. Cells that fluoresce green were marked in the 

category “total cells”, while cells that fluoresced red from the same field of view were marked in 

the category “non-apoptotic cells”. These percentages were plotted in the histogram seen in 

figure 14. These results suggest that 10uM resveratrol yields the smallest percentage of non-

apoptotic cells, reporting no healthy cells out of the 18 total that were counted. The next highest 

inducer of apoptosis was 10uM biochanin A, which only yielded 9% of the total cells being 

healthy. Estradiol and 0.1uM biochanin A yielded the next two smallest percentages of healthy 

cells, respectively, while 0.1uM resveratrol indicated approximately 50% of cells counted being 

healthy. 100% of control cells counted were reported to be healthy. The result for estradiol is 

somewhat unexpected, although it is possible that it is a result of the vehicle, ethanol, having an 

adverse effect on the cells. Repetition of this assay with a vehicle only control should be 

performed to confirm this. 

4.4 Conclusions 

 Taken in conjunction, these data suggest slightly conflicting, but in general consistent, 

results. Immunoblotting results suggest that 10uM resveratrol may be highly toxic, and possibly 

apoptotic, to cells, or highly proliferative to cells. Results also suggest that low concentrations 

(0.1uM) of resveratrol and biochanin A are more apoptotic than high concentrations of biochanin 

A. Furthermore, immunoblot results suggests that cells grown in estradiol experience less 
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apoptosis than control cells, supporting the data suggesting that estradiol at a concentration of 

0.1uM may be proliferative to cells.  

 MitoCapture results also suggest that 10uM resveratrol is highly toxic and possibly 

apoptotic to cells. However, these results suggest that 10uM biochanin A is highly apoptotic to 

cells, whereas 0.1uM biochanin A and estradiol are less apoptotic to cells, and 0.1uM resveratrol 

yields about 50% apoptosis. Thus, there are discrepancies in the apparent apoptotic effect of 

estradiol and 10uM biochanin A. Immunoblot results suggest that estradiol is non-apoptotic to 

cells with comparison to control, while MitoCapture results suggest that it does cause some 

apoptosis, slightly more than low concentrations of resveratrol and biochanin A. Immunoblot 

results suggest that 0.1uM biochanin A is more apoptotic to cells, while MitoCapture results 

suggest that 10uM biochanin A is more apoptotic. In general, these results suggest apoptosis of 

T47D cells is induced by addition of resveratrol and biochanin A compared to control cells; 

however, the relative amounts of apoptosis between different concentrations of hormones are 

debatable.  

Future experiments include conducting the above tests in many more replicates and 

variations in order to give statistical significance to the results. Furthermore, it would be 

beneficial to test medial concentrations of resveratrol between 0.1 and 10μM to see at which 

concentration cells begin to lose their adherent properties. To determine whether these cells are 

apoptotic or proliferative they could be stained with DAPI to identify the presence of mitotic 

nuclei. Additionally, future use of the MitoCapture assay may call for a more effective method of 

observing cells under a fluorescent microscope, perhaps by using an inverted scope, as well as a 

better method of counting cells than by physically removing sections of the plate using a dremel. 

This might be accomplished by growing cells directly on a microscope slide or coverslip. A 

suggestion for a more detailed method of observing apoptosis was visualization of various cell 

structures using electron microscopy. It has also been suggested that non-immortalized breast 

cells be cultured as a negative control for these assays to determine the effect of phytoestrogens 

on non-cancerous cells. 

It is possible that the current use of phytoestrogens by menopausal women may provide 

more beneficial effects than have been recognized. However, due to the inconsistent amounts of 

specific phytoestogens in over-the-counter supplements, it is difficult to determine whether 

women are receiving the necessary concentrations of those phytoestrogens which may have the 
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most potent effects. Overall, these results provide promise for the future study of the 

phytoestrogens resveratrol and biochanin A as a safe form of treatment for menopausal women, 

which, in addition to providing symptomatic relief, may also potentially induce apoptosis of 

neoplastic or developing cancer cells. 
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