
Masters Thesis: Constraint-Aware
Meta-Learning, with Applications to Traffic

Flow Prediction

Vincent Filardi
Data Science

Worcester Polytechnic Institute
vfilardi@wpi.edu

Advisor: Oren Mangoubi
Mathematical Sciences

Data Science
Worcester Polytechnic Institute

omangoubi@wpi.edu

Data Science
Worcester Polytechnic Institute

5/6/2022

APPROVED:

Abstract

We consider the general problem of training a machine learning model via a meta-learning
approach, on a set of tasks T1, . . . , Tn where the data D1, . . . , Dn in each task satisfies a different
set of inequality constraints C1, . . . , Cn. For each task Ti, we are given a dataset Di and a set
of inequality constraints Ci, which the data is known to satisfy. The goal is to train the meta-
learning model in such a way that it has a high prediction accuracy on each task without
over-fitting the data.

In the traditional meta-learning framework, task-specific constraint information Ci is not
taken into account, and the learner must adapt the model to each task Ti using only the data
Di. In contrast, we propose a “constraint-aware” meta-learning framework, where we empower
the meta-learner and adaptive learner to take into account both the data Di as well as the
constraints Ci which the data satisfies for any given task. This approach can potentially allow
the trained model to achieve a much higher accuracy without over-fitting on tasks Ti where the
dataset Di is very small (or in the zero-shot learning scenario where there is no task-specific
data available for the task Ti), provided the task-specific constraints Ci are known.

We apply our general framework to the problem of predicting the traffic flow of vehicles on
different road networks. Changes to a road network present challenges to urban space and its
mobility patterns. Here, the task Ti corresponds to the problem of predicting traffic flow on
a given road network Gi, and the topology Gi of the road network imposes constraints Ci on
the vehicle drivers. Our model learns how drivers respond to the constraints Ci imposed by the
topology of the road network, by comparing traffic flow data from different road networks with
different topologies Gi. We apply our model to a synthetic dataset generated by a traffic model
with drivers that use shortest-path decision rules. When applied to this dataset, we observe
that our model achieves a lower prediction error when compared to baseline models which do
not take into account the constraints on the given tasks.

1 Introduction

As humans, when we need to learn something new quickly, we do not learn from scratch. If we are
lucky, we may have a similar previously solved task and transfer that knowledge to the new task.
When we are not as lucky, we consult our vast body of prior experience and knowledge of all prior
tasks to solve the new task quickly. This strategy for learning the new task is under the assumption
that our past experiences somehow relate to the new task we wish to learn. Still, when presented
with many tasks, we want to take all tasks into account and learn quickly or more proficiently than
solely on a new task. We can cover this task structure effectively by aggregating the past data
across tasks to prime a learning agent to adapt to a new task.

Many popular machine learning frameworks, such as meta-learning [1] and transfer learning [2],
aim to solve such multi-task learning problems. One popular meta-learning framework is model-
agnostic meta learning (MAML) [3]. In the model-agnostic meta-learning algorithm, information
is stored in trainable parameters updated by two agents: the meta-learning agent and adaptive
learning agents. Starting from an initial set of trainable parameters θ, the adaptive learning agent
chooses a set of task-specific adaptive parameters θ + ϕi, minimizing a loss function over the
task-specific dataset Di associated with each individual training task Ti. The meta-learning agent
chooses the parameters θ to minimize the average loss over the entire collection of tasks Ti after
the adaptive learner makes its update θ + ϕi.

Within the few-shot setting of the meta-learning framework, we sometimes do not have a suf-
ficient amount of data to generalize to a new task. Often different task data satisfies a different
set of constraints. If we know which constraint is associated with each task, we can incorporate
this information during training to aid in generalizing to new tasks. This is especially useful for
supplementing the training data when data is either expensive or unavailable. For instance, if we

1

wish to predict traffic for some town, cars must travel along a road network. The topology of
the road network determines the constraints. Using this additional information about the network
topology, we could potentially more quickly adapt new predictions to a new road network with a
small amount of data.

In this paper, we consider the general problem of training a machine learning model via a meta-
learning approach on a set of tasks T1, . . . , Tn where the data D1, . . . , Dn in each task satisfies a
different set of inequality constraints C1, . . . , Cn. For each task Ti, we are given a dataset Di and
a set of inequality constraints Ci, which the data is known to satisfy. The goal is to train the
meta-learning model in such a way that it has a high prediction accuracy on each task without
over-fitting the data.

To the best of our knowledge, in previous meta-learning frameworks, task-specific constraint
information Ci is not explicitly considered when training the model, and the learner must adapt
the model to each task Ti using only the data Di. In contrast, we propose a “constraint-aware”
meta-learning framework, where we empower the meta-learner and adaptive learner to consider
both the data Di and the constraints Ci which the data satisfies for any given task. This can
potentially allow the trained model to achieve a much higher accuracy without over-fitting on tasks
Ti where the dataset Di is very small (or no task-specific data available for the task Ti), provided
the task-specific constraints Ci are known.

We apply our general framework to the problem of predicting the traffic flow of vehicles on
different road networks. Here, the task Ti corresponds to the problem of predicting traffic flow on
a given road network Gi, and the topology Gi of the road network imposes constraints Ci on the
vehicle drivers. The constraints Ci arise from the fact that drivers must follow the laws of the road
but also the rules resulting from the topology Gi of a road network. Providing Ci as input to a
model frees up parameters from having to learn this innate feature from the data, and the model
can use the data to learn other valuable features without over-fitting instead. More specifically, the
constraints in the traffic flow model are given by a set of flow equations, which require that the net
flow on each vertex of the network be equal to zero.

We propose two methods of incorporating Ci as a task descriptor when training our model.
In the first method, we provide a low-dimensional representation of Ci as one of the inputs to a
machine learning model and the data Di and train this machine learning model on the collection
of tasks Ti using the model-agnostic meta-learning algorithm. One approach we consider to obtain
the low-dimensional representation of Ci is to represent Ci by a (much smaller) set of features Bi

obtained via feature engineering provided by a domain expert. Another approach we consider is
to train an auto-encoder to learn a low-dimensional representation of the different constraint sets
Ci. As an alternative method of incorporating the information about the constraint set Ci when
training our model, we generate ”fake” data which satisfies the constraint information Ci and use
this data to augment our model’s training data. In both methods, we also require the model’s
output to satisfy the constraints Ci by projecting the model’s prediction onto the constraint set Ci.

We apply our general framework to the problem of predicting the traffic flow of vehicles on
different road networks. Changes to a road network present challenges to urban space and its
mobility patterns. Here, the task Ti corresponds to the problem of predicting traffic flow on a given
road network Gi, and the topology Gi of the road network imposes constraints Ci on the vehicle
drivers. When drivers plan a route, the topology of the road network implicitly constrains the
space of possible destination paths. Viewing our road network as a graph, we can explicitly use
a representation for our constraint set, the incidence matrix of Gi. The flow on the intersections
of the roadway must also sum to zero, assuming every car which enters an intersection must also
exit. To provide data to train our models, we generate synthetic data using a graph and rule 184
of cellular automata [4].

2

The graph cellular automata models the road network as a discrete dynamical system where
the edges of the road network correspond to streets and vertices correspond to intersections. At
each timestep, we update the states of the automata by keeping track of which roads the cars
are currently traveling on. Cars in our simulation interact with the cars around them and follow
the shortest path to a destination node. We alter the road network based on weather conditions
when generating the data. In addition, the destination of each is determined by sampling from a
probability distribution parameterized by the date and time.

In our experiments, the network Gi is comprised of two sub-networks connected by a set of edges
representing “bridges” Bi. The edges Bi vary depending on the task Ti while the vertices and other
edges in the network are kept fixed across the set of tasks Ti. Each task Ti is parametrized by the
constraint set Ci determined by the network Gi, with a set of predictor variables specifying the
weather, date, and time. In our first proposed method, we make our model constraint-aware by
using Bi as input and constraining our solutions to the null space of the incidence matrix. Our
experiments for this method successfully converged to higher test accuracy on fewer data points than
our baseline models. In addition, this method showed better performance in the zero-shot setting
when compared to a baseline trained in a traditional non-zero-shot training scenario. The model
overcame negative transfer and overfitting challenges in both experiments by explicitly enriching
the model with constraint information. Adding Bi as input strengthened the relationship between
the tasks, minimizing the cross-task interference, allowing the model to leverage the task structure
and train more effectively. The same can be said for the projection of the model’s output which
effectively limited the feasible solution space and simplified the model.

To handle situations where the set of edges Bi which vary across tasks is not explicitly provided
by a domain expert, we explored instead providing the edge betweenness centrality of the networks
Gi as input to our model. The edge betweenness centrality of a network is defined as the number of
shortest paths of the graph which go through an edge for each edge of the graph [5]. Unfortunately,
the edge betweenness centrality of Ci increased the input dimension of our model considerably. This
increase in input size led to an increase in model parameters and impacted the model’s generalization
ability. The models using the edge betweenness centrality did not perform as well as the models
feature engineered with Bi, likely because the high dimension of the input caused our model to over-
fit the data. We trained an autoencoder to lower the input dimension while still leveraging the edge
betweenness centrality of Ci to learn a latent representation of the edge betweenness centrality. This
was unsuccessful in learning a meaningful latent representation and requires further work. Another
method we tried is to augment the training data set with synthetically generated ”fake” data,
generated from a distribution parameterized only by the constraint set Ci, to train our model;
however, this did not lead to an improvement in the model’s performance.

2 Related Work

2.1 Meta Learning and Transfer Learning

Many deep learning approaches rely on large-scale properly-labeled datasets. This sheer amount
of data may not be available and may not be practical to clean. Problems with limited data
require different frameworks to alleviate data-hungry methods, including few-shot learning. Few-
shot learning has shown success in learning quickly from a small number of samples [3,6–9]. Having
the perspective of ”learning to learn,” the adaptive learner learns from specific data belonging to a
labeled task, Ti, while an meta learner learns across a collection of tasks. Each task is split up into
a support and query set, used by the meta and adaptive learners. With a small number of samples,
each task follows an N-way K-shot format, N is the number of classes, and K is the number of

3

examples. Tasks must share the same structure and have some degree of similarity.
Metric learning approaches allow for improved model training on multi-task datasets by exploit-

ing the similarity between tasks. Metric learning learns an embedding that minimizes intra-class
differences while encouraging divergence among different classes. Several contributions in this area
have been made in work such as Matching Networks [6], Prototypical Networks [7] and AM3 [10].
Due to optimization challenges, few-shot learning methods may also suffer from negative transfer
between tasks.

Another approach to the few-shot problem settings is to use transfer learning. In transfer
learning, the number of tasks is not at the scale of meta-learning but still shares the same structure.
With a new task Tb, a transfer learning model can leverage the insight from a solved task Ta to
fine-tune the new task. Transferable Meta-Learning (TML) leverages sufficiently labeled source
domain data and tasks to generalize well to a shifted target domain with insufficient labels [11].

In contrast to image classification, task structure is not apparent in many applications, such
as urban traffic prediction. The sequential time series data of urban traffic prediction settings
makes it challenging to segment the data into separate tasks, and previous works have addressed
this challenging problem. For instance, the recent work Domain Adaptable Continuous Meta-
Learning takes a Bayesian meta-learning approach to successfully capture the spatial and temporal
correlations of urban traffic data without requiring explicit spatial or temporal task segmentation
of the dataset [12].

2.2 MAML

Model-Agnostic Meta-Learning (MAML) is another meta-learning framework that tackles the few-
shot framework [3]. MAML creates an optimization scheme to facilitate learning and adapting to
new tasks, although this may require computing the second derivative of an objective function when
training the model. Recent works have proposed other methods to solve computational bottlenecks
arising when training MAML models, such as Reptile [13], a first-order optimization algorithm
for training MAML models, and CAVIA, which partitions parameters to facilitate fast context
adaption [14]. As one application of MAML, [15] uses MAML for weight initializations combined
with feature extraction with GNN, followed by a metric learning module for meta fine-tuning of
labeled support and unlabeled query sets [15].

2.3 Cellular Automata and Traffic

Cellular Automata is a collection of cells with a finite number of states for each cell. An individual
cell has a neighborhood of cells around it interacting with its states. At the start of a simulation
t = 0, each cell’s initial state is assigned. Any initial state configuration may lead to complex
behavior with the addition of randomness. Moving to the next timestep, t + 1, cells interact with
their neighborhood of cells, and their states change according to a programmed set of fixed rules.
These fixed rules are static and applied to the entire grid of cells in parallel. This simple set of
programmed rules can result in complex patterns resulting in areas such as physics, theoretical bi-
ology, complexity theory, and traffic simulation. One famous example of cellular automata includes
Conway’s Game of Life [16].

The parallelization and low computational cost make cellular automata excellent candidates
for modeling vehicular traffic data. We can think of streets as a linear array of cells whose states
depend on each cell’s two neighboring cells. Nagel and Schreckenberg popularized the application
of cellular automata to traffic in their theoretical model for freeway traffic jams [17]. The Nagel-
Schreckenberg freeway traffic model follows five rules. The first rule of acceleration: all cars not

4

traveling at max velocity increase by one velocity unit until the max is reached. The second rule
controls how cars slow down: If a car is within fewer cell units than the velocity units of the car
in front, the car slows down the number of velocity units needed to avoid a collision. The model
also incorporates stochastic behavior: cars have a small probability of reducing their velocity by 1
unit. The final rule moves all cars forward with the number of cells equal to their velocity. The
Nagel-Schreckenberg model has been further expanded and improved to model traffic phenomena
such as traffic lights, multiple intersections, and highway travel [18, 19], The Nagel-Schreckenberg
model has also inspired work on analyzing best driving practices, city traffic forecasting, and cellular
automata on graphs [20–22]. We use a graph cellular automata to model traffic flow between 2
cities connected by a set of bridges.

3 Meta-Learning Frameworks

We consider the general problem of training a machine learning model on a set of tasks T1, . . . , Tn

where the data D1, . . . , Dn ∈ D in each task satisfies a different set of inequality constraints
C1, . . . , Cn. For each task Ti, we are given a dataset Di and a set of inequality constraints Ci,
which the data is known to satisfy. The goal is to train the meta-learning model so that it has a
high prediction accuracy on each task without over-fitting the data.
Training in the supervised learning framework: In many supervised learning problems, one
is given a training dataset D = {(xi, yi)}mi=1, with predictor variables xi and labels yi, sampled
from some “population” distribution D [23]. To train the parameters θ of the model f(θ, x), one
can solve the minimization problem

min
θ

∑
j∈D

ℓ(f(θ;xj), yj) (1)

where the loss function ℓ gives the error of the model’s prediction.
Training in the traditional Meta-learning framework: In meta-learning problems, one is
instead given a collection of datasets D1, . . . , Dn [24]. Each dataset Di is assumed to be sampled
from some population distribution Di. The distributions D1, . . . , Dn are parameterized by different
tasks T1, . . . , Tn. Here, the tasks Ti represents the setting in which the dataset Di was collected;
for instance, in the application to traffic flow prediction, the tasks Ti may encode the day of the
week or year in which the data was collected as well as the road network on which the data was
collected. The tasks T1, . . . , Tn are assumed to be sampled independently from some distribution
T . The goal is to train a machine learning model in such a way as to minimize the prediction
error of the model on a test dataset Dτ corresponding to a given ”test” task Tτ sampled from the
distribution T .

Towards this end, one can consider a multi-agent optimization problem, which is the approach
taken, e.g., by the MAML algorithm [3]. Here one considers models f(θ, ϕ;x) with two sets of
parameters θ and ϕ chosen by different agents. The first agent–the meta-learning agent–selects a
single set of parameters θ, and the model uses this same set of parameters when making predictions
on every task Ti. And, for each task Ti, a second agent– the adaptive agent– chooses “task-specific”
parameters ϕi, which are only used by the model when making predictions on the task Ti. To train

5

the model, one finds parameters θ which solve the following multi-agent optimization problem:

min
θ

n∑
i=1

min
ϕi

∑
(x,y)∈Di

ℓ(f(θ, ϕi;x), y) (2)

min
ϕi

∑
(x,y)∈Di

ℓ(f(θ, ϕi;x), y) (3)

for some loss function ℓ. Here, we note that the adaptive parameters ϕi are chosen separately for
each task Ti the model trains on. When applying the model to a new “test” task Tτ , one uses
the meta-learning parameters θ obtained by solving (2) on the training Tasks T1, . . . Tn, and finds
task-specific parameters Tτ by solving (3).

Compared to the basic supervised learning training framework (1), the meta-learning training
framework of Equations (2), (3) can oftentimes lead to a lower prediction error when the data
Di is sampled from a probability distribution Di which is different for each task Ti since each
set of parameters ϕi can be chosen separately to minimize the prediction error on the given task
Ti. However, as each task-specific dataset Di may contain a very small number of data points,
which can be a much smaller amount of data than the entire training dataset ∪ni=1Di, one must be
careful to avoid over-fitting the task-specific parameters ϕi. To avoid over-fitting, some restriction
is imposed on the adaptive learner when choosing the adaptive parameters ϕi; for instance, ϕi may
be chosen from a space of dimension much smaller than the dimension of the parameters θ, or there
may be a computational restriction on the adaptive learner when it computes the parameters ϕi.

The meta-learning framework of Equations (2), (3) includes many existing approaches to meta-
learning. In particular, one recovers the model-agnostic meta-learning method of [3] if f(θ, ϕi;x) =
g(θ + ϕi;x) for some function g, and the adaptive learner is computationally restricted to finding
the parameters ϕi by taking a small number of gradient descent steps.
Constraint-aware meta-learning Framework, with constraints as model inputs:

While placing restrictions on the parameters ϕi may be necessary to avoid over-fitting the task-
specific dataset Di, placing too many restrictions on the choice of parameters ϕi can lead to a
larger training error. In the setting where we know that the labels in the dataset Di come from
a distribution with support on some known constraint set Ci, we can incorporate this additional
task-specific information when training the model’s parameters. This may, in principle, allow us
to train the model with fewer restrictions on the task-specific parameters ϕi without over-fitting.
However, we still need a way to incorporate the information about the constraints Ci into the model
training.

As a first approach, we design the machine learning model f to take as input some representation
g(Ci) of the constraints Ci. For instance, in the traffic flow application, the constraints Ci on the
traffic flow can be represented by the Laplacian matrix of the road network Gi. And we can project
the output of the model onto the constraint set via a projection map PCi . To train the model, one
would therefore like to find parameters θ and ϕi, which solve the following multi-agent optimization
problem:

min
θ

n∑
i=1

min
ϕi

∑
(x,y)∈Di

ℓ(PCif(θ, ϕi; x, g(Ci)), y) (4)

min
ϕi

∑
(x,y)∈Di

ℓ(PCif(θ, ϕi; x, g(Ci)), y) (5)

Unfortunately, if the number of constraints is large, the input g(Ci) to the model may have a
large dimension. Thus, if, e.g., the model is a neural network with weights θ, ϕi, this may cause

6

the number of trainable parameters in the neural network to be large as well, which can lead to
over-fitting. One way around this problem is to choose a low-dimensional representation g(Ci) of
the parameters, where the map g is not invertible. For instance, if Ci are the flow constraints for
a given network Gi, we can choose g(Ci) to be a function only of the edges connecting the most
important vertices in the network Gi. Alternatively, we also consider training an auto-encoder to
learn a low-dimensional representation g(Ci) of the constraints Ci of any given task Ti.

In particular, if we remove the parameters ϕi from the model f , then one can apply the trained
model to new tasks Tτ where no data is available for training, and only the constraints Cτ associated
with the task are known. When applied to the traffic flow prediction problem, a model trained with
this optimization framework would allow for predictions on a road network where no real data is
yet available. This would allow an urban planner to predict the traffic flow patterns of a proposed
road network before it is constructed.
Constraint-aware meta-learning via data augmentation:

As an alternative way to incorporate information about the constraints Ci into the model
training without introducing additional inputs into the model f , we can use the constraints Ci

to generate synthetic data D̂i specific to the task Ti in order to augment the ”real” task-specific
dataset Di. The synthetic data D̂i should lie inside the constraint set Ci, For instance, in the traffic
flow prediction problem, the synthetic dataset D̂i might be obtained by running a random walk on
the road network or by computing the edge betweenness centrality [25] of the road network. We
can train this model by solving the following minimization problem

min
θ

n∑
i=1

∑
(x,y)∈Di∪D̂i

ℓ(PCif(θ, ϕi(θ); x), y) (6)

ϕi(θ) ∈ argminz

∑
(x,y)∈D̂i

ℓ(PCif(θ, z; x, y) (7)

Here the adaptive learning agent is only allowed to use the synthetic dataset D̂i when training the
task-specific model parameters ϕi (Equation (7)). On the other hand, the Meta-learning agent can
use both the real data as well as the synthetic data to train the global parameters θ (Equation (6))
and chooses its parameters θ in such a way that the adaptive learner’s choice of parameters ϕi(θ)
causes the model to have a low prediction error on both the real and the synthetic data. Thus, once
the model parameters θ are found by solving the optimization problem in (6) and (7), the adaptive
learning agent can adapt the model to any test task Tτ by solving the optimization problem in (7),
using only synthetic data generated using the constraints Cτ associated with the task τ . Thus, the
learning framework in (6) and (7) also allows one to adapt the model to new test tasks where no
data is yet available.

4 Data Generation and ML Methodologies

This section will detail how we generated the data and the task structure. In all experiments,
we consider a road network G = (E, V), where Gs = (Es, Vs) and Gw = (Ew, Vw) are the
road networks of two disconnected graphs of Stamford, CT and Worcester, MA respectively.
Next, we normalize the physical latitude and longitude of the vertices of each graph to lie in
[0,1]. We enclose both graphs into a bounding circle centered at (.5, .5) and divide the cir-
cle into ten equal sectors. Letting {vs1, ..., vs10} be 30 vertices of Gs corresponding to 30 par-
titioned sectors of the circle and similarly {vw1, ..., vw30} of Gw to the same partition, we connect
each of the disconnected graphs by edges between {(vw1, vs1), ..., (vw30, , vs30)} to form the graph

7

Figure 1: A visualization of a sample road network Gi used to generate an example of our synthetic
dataset. We can visually see the ”bridges” Bi connecting the two sub-networks on the bottom left
and top right. The color of each edge represents the total edge flow on that edge in our simulation.

G = (Gs, Gw) = (Es ∪ Ew ∪ {(vw1, vs1), ..., (vw30, , vs30)}, Vs ∪ Vw) (Figure 1). For convenience, we
denote these connecting edges as “bridges”. In a particular graph Gi we sometimes may not use
all of the edges in {(vw1, vs1), ..., (vw30, , vs30)} to connect Gs and Gw. To denote which bridges are
included in a particular graph Gi we use a bit-wise vector Bi ∈ {0, 1}30.

4.1 Datasets

There are various ways to capture real-life traffic patterns. Often these datasets do not include real-
time GPS data due to privacy concerns. The real-time GPS data can also be highly inaccurate due
to noise and poor sampling at small scales. All data in our work was synthetically generated using
cellular automata on a graph structure similar to the traffic model of Nagel and Schreckenberg [17] to
avoid the pitfalls of real GPS data and provide a controlled testing environment for new algorithms.

Our simulation is a function of a graph Gi with bridge configuation vector Bi and our input
variables x. Each simulation is associated with a specific bridge configuration Bi and, therefore, a
specific set of inequality constraints, Ci, which the traffic flow y generated by the simulation must
satisfy. In addition to the bridge configuration Bi, the input to are simulation includes the variable
x = (time, day, month, weather, temperature) where each input variable has the following integer
ranges:

• time ∈ {0, . . . , 23}

• day ∈ {0, . . . , 6}

• month ∈ { 0, . . . , 11}

• weather ∈ {0, , 3}

• temperature ∈ {0, . . . , 4}

The output of a simulation, y, represents the total edge flow of automaton vehicles for each edge on
the input graph Gi after 4000 time steps. Our simulation function, S, simulates 3000 cars moving
along the road network of the input graph. The destination of each driver is sampled at random

8

from a probability distribution represented by a vector d ∈ [0, 1]|V |. The temporal variables, time of
day, the month of the year, and day of the week influence the driver destination probability vector
d. The temporal input features partition the vertices of Gi. This partition receives an increase in
probability in d to capture different temporal demands of a road network. To facilitate cars moving
between Gw and Gs, each graph component of Gi receives an equal increase in probabilities. The
weather influences the capacity of each edge on the road network; this is to capture the additional
space needed between vehicles to drive safely in inclement weather. The temperature variable
influences the max speed limit on the edges of Gi.

To start a simulation, all cars are initialized and given destinations randomly according to d.
Every car travels to its assigned destination vertex on G following the shortest path. The shortest
path for each car is weighed by edge weights proportional to the length of a road and assigned
speed limit. Cars may also only travel on roads at less than full capacity. If a car arrives at a
full capacity road, it calculates a new shortest path to its destination. In addition, cars have a
small probability of giving up on their current destination and being assigned a new destination.
To capture the randomness of an actual driver and enforce travel times along edges, once each car
reaches a new edge, the car must wait on this edge according to a Poisson process as a function of
the travel time along said edge.

4.2 Task Structure

In each simulation, drivers must adhere to the constraints Ci imposed by the topology of the road
network Gi. We use this relationship to design our tasks Ti. For every task Ti, we generate an associ-
ated dataset Di. Each dataset for a task is comprised of 45 datapoints Di = (((x1, y1), ..., (x45, y45))
with x the input feature and y the vector of flows on the edges of the graph. When training our
models, each task Ti is sampled i.i.d. from a distribution p(T).

4.3 Enforcing constraints

Each graph G = (E, V) has a natural matrix representation as its incidence matrix M [26]. G can
be represented as M ∈ R|E| × R|V |, with 1 at (i, j) ∈ M if an edge i is connected to vertex j and
0 otherwise. If we are trying to enforce the constraint of the net flow on each edge to be 0, then
we should look for solutions y satisfying My = 0. Another way to think of this constraint is that
y must be in the null space of M , null(M). We can obtain the null space of M via many matrix
decomposition methods on M such as Graham-Schmidt, QR decomposition, and SVD [27]. By
projecting the output of our model into the null space of the incidence matrix of Gi for each task
Ti, we can enforce the constraint of a net flow of zero on each vertex.

5 Methodologies

This section provides details of the machine learning models we consider in our experiments, includ-
ing the baseline models provided for comparison, and the “constraint-aware” models we introduce.
In all experiments, we use root mean square error (RMSE) to evaluate our edge flow predictions.

5.1 Baseline models

The following sections describe the baseline machine learning models we consider.

9

5.1.1 Sample Mean Model

The simplest model we consider uses the sample mean of the training data to predict the network
flows, denoted as “MEAN.” If a model could not beat the “MEAN” model’s performance, we do
not include the result in Section 6 and accompanying plots. By taking an average of the y’s of the
training set, the “MEAN” model does not capture the modes of the data associated with the input
variables such as time, day, month, weather, and temperature.

5.1.2 Decision Tree

The second baseline model we consider is a basic decision tree model. With relatively few parame-
ters compared to other models we tried, the decision tree was able to pick up on the non-linearity
of the data and generalized well. We tuned the decision tree’s parameters to have the lowest RMSE
on a validation set. A more detailed explanation of the results can be seen in Section 6.

5.1.3 MAML

Another baseline model we considered was a neural network trained using MAML. We use a fully
connected neural network trained using MAML for the optimization scheme in our experiments.
The tasks for MAML are the same as discussed in Section 4.2. When training the model we used
a first-order approximation for MAML, with one way, five shots, and five updates of the adaptive
learner. In each experiment, we predict the flow y over each edge of the graph Gi as a function
of the predictor variables x. The MAML baseline was less successful than the decision tree. We
believe this was due to the model over-fitting to the small amount of task data. The baseline
MAML model was was not able to beat the baseline decision tree with an RMSE of 251.22 after
ample hyper-parameter tuning. For this reason, we did not include its results in Section 6.

5.2 Constraint-aware Meta-Learning, via Feature Engineered Constraint Rep-
resentation

To improve the performance of both the baseline decision tree and the baseline MAML model,
we designed versions of these models which take as input a representation of the constraints Ci

obtained via feature engineering. Specifically, we provided the neural network model with the
additional information of the bridges Bi which were included in each network Gi, as well as the
values of the predictor variables x. Unfortunately, the decision tree’s performance did not improve
with the additional information of Bi as input.

We then introduced a constraint-aware version of MAML, which takes into account the con-
straints of a given task Ci (Algorithm 1). Specifically, the neural network model f in Algorithm
1 takes as input a representation g(Ci) of the constraints Ci (in addition to the predictor vari-
ables x from the data). To ensure that the traffic flow predicted by the trained model satisfies the
constraints Ci, Algorithm 1 projects the output of the neural network model onto the constraints
Ci. To represent the constraints Ci, we first used the indicators Bi for the bridges, that is, we
set g(Ci) = Bi. In the next section we consider an alternative choice of representation g for the
constraint set, which bypasses the need for feature engineering by instead using the network edge
betweenness centrality measure to encode each constraint set Ci.

To ensure that the output of our model satisfies the constraints Ci, we projected the output
onto the null space of the incidence matrix for the network where all 30 bridges connecting Gs and
Gw are included. This method of using all 30 bridges avoided output sizing issues. This projection
enforced the net flow on each vertex to sum to zero. This is a reasonable assumption since every

10

car which moves onto an edge must eventually leave this edge, resulting in a net flow of 0 on each
vertex. By adding the constraint information to the input and output of the model, we aimed to
test if the model could learn efficiently with lower root mean squared error (RMSE) on a validation
set.

We evaluated all models on unseen data from tasks used in training. In addition, we explored a
zero-shot setting where we trained on graphs with two bridge configurations and tested on configu-
rations of graphs with three bridges. The performance of MAML and decision tree with additional
feature engineering and constrained output can be seen in Figure 2.

Algorithm 1 Constraint-aware MAML via constraint representation

Require: Distribution over tasks P (T)
Require: Learning rates α0, α1, batch size b, number of adaptive steps k
Require: A function g : C → Rm which gives a representation g(Ct) of each constraint set Ct ∈ C.
Require: Projection PCt onto each constraint set Ct ∈ C
1: Initialize θ1, ϕt

2: while not done do
3: Sample tasks t = 0, . . . , T from P (T)
4: for t = 0, . . . , T do
5: ϕt ← 0
6: for j = 0, . . . , k do
7: Sample a batch Dt from the dataset for task t.
8: ϕt ← ϕt − α0

b

∑
(x,y)∈Dt

∇ℓ(PCtf(θ + ϕt;x, g(Ct)), y) (Update adaptive-learner’s pa-
rameters.)

9: end for
10: end for
11: for t = 0, . . . , T do
12: Sample a batch Dt from the dataset for task t.
13: end for
14: θ ← θ− α1

bT

∑T
t=0

∑
(x,y)∈Dt

∇ℓ(PCtf(θ+ϕt;x, g(Ct)), y) (Update meta-learner’s parameters.)
15: end while

5.3 Constraint-aware meta-learning, via constraint representation

The domain expertise required to engineer features such as Bi is often lacking in many real-world
applications. Thus, in many cases, we may need to learn a low-dimensional representation of Ci

using only the constraint sets C1, . . . , CT . To obtain a representation of the constraints, we first
computed the edge betweenness centrality of the network, which gives the number of shortest paths
of the network which go through each edge of the network [5]. Using the edge betweenness centrality
as our function g(Ci), we modified the decision tree and CA-MAML models to take input x and
g(Ci) for each task. We see the results of this model in Table 1 with “CA-MAML BC.”

With the CA-MAML model on the “30 bridge” dataset, we saw performance beat that of the
“MEAN” model marginally, yet not to the same degree as the increase in performance of CA-
MAML with Bi on the “10 bridge” dataset. We believe the change in performance of CA-MAML
with this choice of g(Ci) is likely due to the increase in input dimensionality. By including edge
betweenness centrality as input, we increased the size of the input of the neural network by 1764,
or the number of edges on the undirected graph Gi. These new parameters may have caused the
model to overfit the trained data and suffer in performance on the holdout test set. The loss curve

11

of the experiment can be seen in Figure 3. To find a lower dimensional representation of g(Ci), we
attempted to use an autoencoder trained on g(Ci) for all tasks. We did not find success in training
the autoencoder; we saw the same performance with a latent space of rank two and a latent space
of rank 32. We plan to investigate the autoencoder method further and look towards other ways
of learning meaningful features the models can use in predicting traffic flows.

5.4 Constraint-aware meta-learning via data augmentation and multi-agent op-
timization

To implement the framework of constraint-aware meta-learning via data augmentation we introduce
Algorithm 2. Here, we have three agents working in together to solve equations 6 and 7. Line 8 of
Algorithm 2 updates the parameters ϕt of an adaptive learner using “fake” data D̂t generated using
only the constraints Ct. To capture equation 6 we present 2 meta-learners 1 and 2 in Algorithm 2
in lines 13 and 14 which update parameters θ1 and θ2.

Algorithm 2 Constraint-aware meta-learning via data augmentation

Require: Distribution over tasks P (T)
Require: Learning rates α0, α1, α2, batch size b, number of adaptive steps k
Require: A distribution h(·;Ct) for the fake data, parameterized by the constraint set Ct, and an

oracle for sampling from this distribution.
1: Initialize θ, ϕt

2: while not done do
3: Sample tasks t = 0, . . . , T from P (T)
4: for t = 0, . . . , T do
5: ϕt ← 0
6: for j = 0, . . . , k do
7: Sample a batch D̂t of fake data from the distribution h(·, Ct).
8: ϕt ← ϕt − α0

b

∑
(x,y)∈D̂t

∇ℓ(f(θ1 + ϕt;x), y) (Update adaptive-learner using fake data

for task t.)
9: end for

10: end for
11: for t = 0, . . . , T do
12: Sample a batch of real data Dt from the dataset for task t.
13: Sample a batch D̂t of fake data from the distribution h(·, Ct).
14: end for
15: θ1 ← θ1 − α1

bT

∑T
t=0

∑
(x,y)∈D̂t

∇ℓ(f(θ1 + ϕt;x), y) (Update meta-learner #1 using fake data

for all tasks.)
16: θ2 ← θ2 − α2

bT

∑T
t=0

∑
(x,y)∈Dt

∇ℓ(f(θ2 + ϕt;x), y) (Update meta-learner #2 using real data
for all tasks.)

17: end while

In practice, we found that Algorithm 2 performed poorly in comparison to the other models
we investigated. We suspect the poor performance may be due to a lack of regularization on the
updates to θ1 resulting in the overfitting on the fake data.

12

Dataset Learning Scenario Model Test RMSE

10
bridges

MEAN 268
Decision Tree 239.5

Basic Meta-Learning CA-MAML Bi 226
MEAN 275.2

Zero-shot Learning Decision Tree Bi 250
CA-MAML Bi 246

30
bridges

MEAN 556
Basic Meta-Learning Decision Tree BC 529.6

CA-MAML BC 549

Table 1: The above table gives a summary of the results of our experiments. In our experiments we
trained different machine learning models on synthetic multi-task datasets: The baseline sample
mean model (MEAN), a baseline decision tree model, our “constraint-aware” decision tree model
(which takes a representation of the task-specific constraints as input), and our Constraint-Aware
Model Agnostic Meta Learning model (CA-MAML) (which also takes a representation of the task-
specific constraints as input). The “Dataset” column denotes the dataset used in each experiment.
We considered two different meta-learning scenarios: In the first scenario, “Basic Meta-Learning,”
datapoints from each task were split between a test and train set. In the second scenario, “Zero-shot
learning”, the models were trained using a training set consisting only of a subset of the tasks in
the dataset, and models were then tested on data from different tasks which were not included in
the training dataset. To denote the representation of the constraints used as input to our models,
we used Bi denotes the bridge indicator representation, and “BC” to denote the edge betweenness
centrality representation. We observed that our CA-MAML model with the Bi representation as
input had the lowest RMSE on the “10 bridges” dataset, while our decision tree model with BC
representation as input had the lowest RMSE on the “30 bridge” dataset.

5.5 Neural Network Architecture and Hyperparameters

For all of the models above using a neural network, we used a general architecture for our deep
learning methods. We use a fully connected neural network in both Sections 5.2 and 5.3. Our
model architecture used a shallow, fully connected neural network consisting of 4 layers. The first
input layer of the model is a linear layer with variable input depending on the experiment has an
output of 128. We then apply a ReLU function to the output of the first layer. The second linear
layer with an output of 2670. The output of the second layer is followed again by a ReLU function
and a dropout layer with p = 0.33. The final layer is a linear layer with a varying output size
depending on the experiment. We used SGD for the meta learners and ADAM with default bias
parameters for the adaptive step when optimizing the neural networks.

6 Experiments

A summary of the results of our numerical experiments is shown in Table 1. For each of our
experiments, we used RMSE to measure performance. The best performing model for each learning
scenario can be seen in bold in Table 1. The RMSE of our models at different stages of training
are shown in Figures 2 and 3.

13

Figure 2: RMSE loss curves for constraint-aware MAML (CA-MAML) on the training “Query” set
(red) and test “Validation” set (green). The RMSE for the baseline decision tree model is plotted
as a constant line in cyan for comparison. CA-MAML was trained using the“feature engineered”
representation Bi of the constraints Ci as model input. The plots on the left were obtained in
the “Basic Meta Learning” scenario, while the plots on the right were obtained in the “Zero-shot
learning” scenario. All loss curves were averaged over 30 trials on the“10 bridges” dataset. The top
plots show the RMSE curves over all epochs of training, while the bottom plots show a close-up of
the RMSE over the last 30 epochs.

6.1 Baseline Model

For a baseline model, we use the“MEAN” model of Table 1. The ’MEAN” model corresponds to
using the sample mean to predict the testing labels. The RMSE score of each “MEAN” model can
be seen in the last column of Table 1.

6.2 Decision Tree

We trained a decision tree as our second baseline model to capture the non-linearities present in
our dataset in a small number of parameters. We tuned each decision tree for the best performance
in each experiment. Each of the decision tree results of Table 1 are an average of 30 trial runs. We
performed a T-test on n = 30 on the results of each decision tree experiment. We found statistical
significance in each test with a p-value of 1.2× 10−9, 1.1× 10−7, 5.4× 10−9 in order of appearance
from top to bottom of Table 1. The decision tree with the additional edge betweenness centrality
input for each task was the best performing model in the experiments using the “30 bridges” dataset
in the “Basic Meta-Learning” scenario.

6.3 Constraint-Aware Model Agnostic Meta Learning via constraint represen-
tation

The results of Algorithm 1 can be seen in the Results Table 1 with models titled ”CA-MAML”.
We performed a T-test on n = 30 on the results of each CA-MAML experiment noting statistical
significance in each with a p-value of 1.6 × 10−11 and 0.0061 for the “Basic Meta Learning” and
“zero-shot” learning scenarios, respectively. The loss curve for CA-MAML on the “10 bridges”
dataset and “Basic Meta-Learning” scenario can be seen on the left of Figure 2. Similarly, The
loss curve for CA-MAML on the “10 bridges” dataset and “zero-shot” scenario can be seen on the
right of Figure 2.

14

Figure 3: Above we present the loss curves of constraint-aware MAML with the edge betweenness
centrality as our constraint representation, on the“30 bridge” dataset in the “Basic Meta Learning”
scenario. RMSE for all epochs of training are shown in the top plot, the bottom plot provides a
closer look at the last 30 epochs. The RMSE on the query set can be seen in red, and the RMSE
on the holdout validation set is green. For comparison, we also plot the RMSE for the decision tree
(cyan) and sample mean model (blue) on the validation set. All loss curves are averaged over 30
trials.

We observed that our CA-MAML model with the Bi representation as input had the lowest
RMSE, while our decision tree model with BC representation as input had the lowest RMSE on
the “30 bridge” dataset. We believe that that the decision tree model performend better under
the much higher-dimensional BC representation since it was less likely to over-fit the data due to
having fewer trainable parameters than the neural network in the CA-MAML model. On the other
hand, we believe that the CA-MAML model had the best performance when the Bi representation
was used, since the Bi representation had very low dimension (dimension = 10), preventing the
model from over-fitting.

6.4 Constraint-Aware Meta-Learning via Data Augmentation

We observed in our experiments that the Constraint-aware meta-learning via data augmentation
model produced an RMSE higher than even the sample mean baseline model. We therefore omit
the experimental results for this method.

7 Conclusion

This work introduces various methods to incorporate information about the constraints associated
with different tasks in a meta-learning framework. In our experiments, we observed that some
of these methods were successful in the basic meta-learning and zero-shot learning setting when
provided with a low-dimensional representation of the constraints associated with each task. In
future work, we hope to extend our constraint-aware machine learning models to scenarios where
domain expertise is not available, by using methods such as autoencoder neural networks to provide
a low-dimensional representation of the constraint set as input to our model.

15

Acknowledgment

Vincent Filardi was supported in part by NSF grant CCF-2104528. He would like to thank Pro-
fessor Oren Mangoubi, Professor Yanhua Li, and Xin Zhang for their guidance and stimulating
conversations on this work.

16

References

[1] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural networks:
A survey,” arXiv preprint arXiv:2004.05439, 2020.

[2] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive
survey on transfer learning. arxiv e-prints,” arXiv preprint arXiv:1911.02685, 2019.

[3] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep
networks,” in International conference on machine learning, pp. 1126–1135, PMLR, 2017.

[4] K. Nagel, “Particle hopping models and traffic flow theory,” Physical review E, vol. 53, no. 5,
p. 4655, 1996.

[5] M. Girvan and M. E. Newman, “Community structure in social and biological networks,”
Proceedings of the national academy of sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[6] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for one shot
learning,” Advances in neural information processing systems, vol. 29, 2016.

[7] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” Advances
in neural information processing systems, vol. 30, 2017.

[8] Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and
R. Feris, “A broader study of cross-domain few-shot learning,” in European Conference on
Computer Vision, pp. 124–141, Springer, 2020.

[9] M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn, “Meta-learning without memorization,”
arXiv preprint arXiv:1912.03820, 2019.

[10] C. Xing, N. Rostamzadeh, B. Oreshkin, and P. O. O Pinheiro, “Adaptive cross-modal few-shot
learning,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[11] B. Kang and J. Feng, “Transferable meta learning across domains.,” in UAI, pp. 177–187,
2018.

[12] X. Zhang, Y. Li, X. Zhou, O. Mangoubi, Z. Zhang, V. Filardi, and J. Luo, “Dac-ml: Domain
adaptable continuous meta-learning for urban dynamics prediction,” in 2021 IEEE Interna-
tional Conference on Data Mining (ICDM), pp. 906–915, IEEE, 2021.

[13] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv
preprint arXiv:1803.02999, 2018.

[14] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson, “Fast context adaptation
via meta-learning,” in International Conference on Machine Learning, pp. 7693–7702, PMLR,
2019.

[15] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz,
K. Shpanskaya, et al., “Chexnet: Radiologist-level pneumonia detection on chest x-rays with
deep learning,” arXiv preprint arXiv:1711.05225, 2017.

[16] M. Gardner, “Mathematical games,” Scientific american, vol. 222, no. 6, pp. 132–140, 1970.

17

[17] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de
physique I, vol. 2, no. 12, pp. 2221–2229, 1992.

[18] K. Ma lecki and S. Iwan, “Modeling traffic flow on two-lane roads with traffic lights and count-
down timer,” Transportation Research Procedia, vol. 39, pp. 300–308, 2019.

[19] W. Ning and W. Brilon, “Cellular automata for highway traffic flow simulation,”

[20] G. Abramson, V. Semeshenko, and J. R. Iglesias, “Cooperation and defection at the cross-
roads,” Plos one, vol. 8, no. 4, p. e61876, 2013.

[21] K. Ma lecki, “Graph cellular automata with relation-based neighbourhoods of cells for complex
systems modelling: A case of traffic simulation,” Symmetry, vol. 9, no. 12, p. 322, 2017.

[22] Y. Hu, M. Li, H. Liu, X. Guo, X. Wang, and T. Li, “City traffic forecasting using taxi gps
data: A coarse-grained cellular automata model,” arXiv preprint arXiv:1612.02540, 2016.

[23] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning,
vol. 112. Springer, 2013.

[24] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning,” Artificial intelli-
gence review, vol. 18, no. 2, pp. 77–95, 2002.

[25] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, pp. 35–41,
1977.

[26] D. Spielman, “Spectral graph theory,” Combinatorial scientific computing, vol. 18, 2012.

[27] L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50. Siam, 1997.

18

