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Abstract

Bayesian hierarchical models are effective tools for small area estimation by pooling

small datasets together. The pooling procedures allow individual areas to “borrow

strength” from each other to desirably improve the estimation. This work is an

extension of Nandram and Choi (2002), NC, to perform inference on finite population

proportions when there exists non-identifiability of the missing pattern for nonresponse

in binary survey data. We review the small-area selection model (SSM) in NC which

is able to incorporate the non-identifiability. Moreover, the proposed SSM, together

with the individual-area selection model (ISM), and the small-area pattern-mixture

model (SPM) are evaluated by real crime data in Stasny (1991). Furthermore, the

methodology is compared to ISM and SPM using simulated small area datasets.

Computational issues related to the MCMC are also discussed.
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Chapter 1

Introduction

The Bureau of Justice Statistics’ National Crime Survey (NCS) is the nation’s

primary source of information on criminal victimization. It is collecting data every

year on nonfatal personal crimes (rape or sexual assault, robbery, aggravated and

simple assault, and personal larceny) and household property crimes (burglary,

motor vehicle theft) both reported and not reported to police. One common problem

about the data is the increasing nonresponse rate in recent years, which makes the

inference on finite population extremely hard, especially when we don’t know how

different the observed data and the nonresponse missing data are.

1.1 Nonresponse Missing Mechanisms

We consider an analysis of binary survey data from NCS with uncertainty about

ignorability. After the survey, the data are poststratified into various small areas.

Due to the limited size of datasets from some of the small areas, individual-area

(direct) estimation is regularly misleading and untrustworthy. However, some small-area

models, such as hierarchical Bayesian models, are excellent choices for small area

estimation of this sort. Since they help to pool small datasets from different areas
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together, hierarchical Bayesian models can supply each small dataset with additional

information by sharing same priors and exchangeability stuctures. Stasny (1991)

proposed a empirical Bayes method for a two stage model to solve this problem.

Nandram and Choi (2000) refined the model by introducing one more stage and

hyperparameters. Also, they explained the corresponding Markov chain Monte

Carlo approach to dealing with the computational issues. Here, we are using a

multistage hierarchical Bayesian nonresponse model to tackle the problem of small

datasets as NC did and making inference on the finite population proportions.

It is often necessary to identify the data missing mechanism before implementing

inference. The crucial role of the mechanism of missing data in the analysis was

largely ignored until the concept was formalized into three types of missing mechanisms

(Rubin 1976a), MCAR, MAR, and MNAR. Missing completely at random (MCAR)

happens when the missingness does not depend on the values of the data, missing

or observed. Missing at random (MAR) occurs when the missingness depends only

on the observed data, and not on the unobserved missing components. Both MCAR

and MAR are defined as ignorable missing mechanisms, where the missing data are

not different from the observed data. When the missing mechanism depends on the

unobserved missing data, it is missing not at random (MNAR), which is classified

into nonignorable missing mechanism.

Without prespecifying ignorable or nonignorable missing mechanism, NC’s multistage

Bayesian hierarchical selection nonresponse model can incorporate the uncertainty

about ignorability of missing mechanism. By introducing uncertainty parameters γi

for ith area, it is able to monitor ignorability or nonignorability of the nonresponse

and make more general and accurate inference regardless of the missing mechanism.

Analysis of ignorability can also be carried out throughout all the areas, after a

sample of γi has been drawn from the posterior distribution.
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1.2 Empirical Bayes versus Full Bayes

There are two distinct approaches to specifying priors for Bayesian hierarchical

models, empirical Bayes (EB) and full Bayes (FB), which have been leading hot

debate about Bayesianism and Frequentism for a long time (Berger 2006). EB is to

specify the parameters of priors by MLEs based on the data, which unfortunately,

cannot avoid the procedure of double using the data. FB is to update all the

parameters without specifying anyone of them. FB is essentially subjective to

prior beliefs, though not so much by selecting objective-type priors like Jeffrey’s

priors (Efron 2013) but it will introduce more hyperparameters, which will certainly

give rise to higher model complexitiy. In NC, they applied EB to specify the

hyperparameters in priors by MLEs. Though, in practice, EB can help shift the

workload to computers, it inevitably results in overfitting problems. Also, under

Markov Chain Monte Carlo, finding MLEs for the hyperparameters can be computationally

troublesome, especially when dealing with high dimensional problems. In my point

of view, full Bayesian approach is more neat and philosophically beautiful. The

simplicity of the full Bayesian approach makes it smooth both in form and computation.

As a consequence, we are using full Bayesian approach through the entire work.

1.3 Pattern-Mixture versus Selection

One discussion about the selection of Bayesian hierarchical nonresponse models

is whether to use pattern-mixture model or selection model. Rubin (1987) and

Little (1993) figured out these two distinct models for incomplete data analysis.

Pattern-mixture models specify the conditional distribution of random variables

given that it is observed or missing respectively and the marginal distribution of the

binary indicator for whether or not a random variable is missing. Selection models
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specify the distribution of random variables over respondents and nonrespondents,

and also the conditional distribution that a random variable is missing given the

true answer of it. There are some papers based on the application and comparison

of selection models and pattern-mixture models (Ekholm and Skinner 1998, Baker

1995). As for univariate data with a routine pattern of incomplete values, the

literature prefered the selection models. NC also mentioned the selection models

are more natural and more convenient for our inference. In this work, we will

compare the performance of pattern-mixture model and selection models.

1.4 Small-Area versus Individual-Area

As we have stated previously, when the datasets are too small, individual-area

(direct) estimation is regularly misleading and untrustworthy. However, a small-area

model can help to borrow information among different datasets to reach an overall

estimation. Later, we will show the comparison between small-area model and

individual-area model.

In the thesis, we wish to go further to mainly address two issues. First, in

order to understand the characteristics of the finite population, we hope to make

inference on the finite population proportions based on the data from NCS using

the proposed small-area selection model (SSM). Second, the key idea of this work

is to show that SSM out-performs the individual-area selection model (ISM) and

the small-area pattern-mixture model (SPM) on the inference of finite population

proportions.

This thesis is organized as follows. In Chapter 2, we give a brief review of

the data from NCS in Stasny (1991) and NC. In Chapter 3, we present a finite

population inference using SSM, ISM and SPM to show the advantages of the
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proposed SSM over other two models in small area estimation. We also discuss

the prior distributions that may be used in this case and the assessment of the

convergence of the Markov Chain Monte Carlo methods by applying formal and

informal convergence criteria. In Chapter 4, we perform a multiple comparison of

three models by simulation studies based on various criteria. In Chapter 5, we

present conclusions and the future outlook.
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Chapter 2

National Crime Survey Data and

Small-Area Selection Model

We give a brief review of National Crime Survey data in Stasny (1991) to conduct a

real data experiment, and small-area selection model (SSM) in Nandram and Choi

(2002) which is the proposed model to compare with the other two models in the

following sections.

2.1 National Crime Survey Data

The Bureau of Justice Statistics’ National Crime Survey (NCS) is the nation’s

main source of information on criminal victimization. The data from NCS are

used in order to calculate quarterly and yearly estimates of the prevalence of crime.

Individuals interviewed are questionaired for the crimes (e.g., rape or sexual assault,

robbery, aggravated and simple assault, and personal larceny) committed against

them in the previous six months. Stasny (1991) summarized a subset of the regular

NCS interview data collected from January 1975 to June 1979 in a table and
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discussed the design of the NCS. Sampling design features are not showing up in the

proposed model, except that we are assuming the data are collected by probability

sampling.

We used the data summarized by Stasny (1991), who took a random start at

the record for the eighth household in the full NCS data from January 1975 to June

1979 and then systematically every fifteenth record after the start. The selected

data are poststratified into 10 areas based on three neighborhood characteristics:

(a) urban (U) and rural (R); (b) central city (C), other incorporated place (I), and

unincorporated or not a place (N); and (c) low poverty level (L) (9% or fewer of

families below the poverty level) and high poverty level (H) (10% or more of families

below the poverty level). Because some combination of neighborhood characteristics

are impossible, for example a rural area cannot be a central city as observed in Stasny

(1991), this poststratification classifies the full data into 10 different areas.

We reproduce the Table 1 in NC as Table 2.1 below to present the selected data

conveniently. Throughout, yi is the number of households committed against crimes

in the ith area, ri is the number of respondents in the ith area, ni is the total number

of households sampled in the ith area, i = 1, . . . , `, where ` = 10 in this problem.

The nonresponse rate in these areas ranges from 9.4% to 16.9%; There are a lot

of reasons for nonresponse, for example a woman may be shy to report a sexual

assault committed against her. The areas UNH, RIL, and RIH have relatively few

households, thus can be considered as small areas. To be noticed, areas UNH and

RIL have relatively high observed nonresponse rates.
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Table 2.1: National Crime Survey Data

Area y r − y n− r p̂ δ̂

UCL 156 555 104 .219 .872
UCH 95 364 73 .207 .862
UIL 162 557 101 .225 .877
UIH 72 262 36 .216 .903
UNL 92 297 79 .237 .831
UNH 15 40 9 .273 .859
RIL 11 36 7 .234 .870
RIH 10 105 20 .087 .852
RNL 35 274 32 .113 .906
RNH 79 413 64 .161 .885

Note: The response is binary: 0 for no crimes and 1 for at least one
crime; p̂ is the observed proportion of house holds with at least one
crime; and δ̂ is the observed proportion of respondents.

2.2 Small-Area Selection Model

If one hopes to incorporate uncertainty about missing mechanism of nonresponse,

intuitively, the first choice would be mixing the ignorable model and the nonignorable

model together probabilistically. However, the mixture model of this sort has been

proved useless in NC. They showed that if we assume the weights of both models

to be 0.5, the posterior probability that the ignorable model holds is only 0.03.

Therefore, it is pertinent to review the different uncertainty model in NC.

Let yij and rij be the characteristic and response variables for the jth individual

in the ith area. To be more specific, yij = 1 if the jth individual in the ith area

has the characteristic and yij = 0 otherwise; and rij = 1 if jth individual in the

ith area is a respondent and rij = 0 otherwise, for i = 1, . . . , `, j = 1, . . . , ni. The

nonignorable nonresponse model in NC is given as follows:

yij|pi
ind∼ Bernoulli(pi),

rij|yij = s− 2, πis−1
ind∼ Bernoulli(πis−1) , s = 2, 3,

pi|µ21, τ21
iid∼ Beta(µ21τ21, (1− µ21)τ21),

πis−1|µ2sτ2s
ind∼ Beta(µ2sτ2s, (1− µ2s)τ2s).
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Different from the pattern-mixture model, the nonignorable selection model

identifies the parameters πi1 and πi2, which are the responding mechanisms of

samples without and with the characteristic respectively. We can get the ignorable

model by simply letting πi1 = πi2. By the specification of pi, we can understand the

proportion of the characteristic of samples in the ith area.

Here, one problem is that we have to make the same assumption for the missing

mechanism of all the areas before we fit the model. However, while the assumption

works fine for some of the areas, it may not be appropriate for the rest, especially

when the number of areas increase as we introduce more neighborhood characteristics.

The assumption of this kind would possibly make the estimation of finite population

far from accurate, as it sometimes goes to the wrong assumption, making the

ignorable area nonignorable or the opposite. Therefore, the small-area selection

model (SSM) is necessary to be introduced to incorporate uncertainty about ignorability

by using a centering parameter γi for the ith area. The key point is to let πi2 = γiπi1

for πi2 in the nonignorable model. Similar to the nonignorable model, SSM for

i = 1, . . . , `, j = 1, . . . , ni is given as follows:

yij|pi
iid∼ Bernoulli(pi),

rij|πi, yij = 0
iid∼ Bernoulli(πi),

rij|πi, yij = 1, γi
iid∼ Bernoulli(γiπi), 0 < γiπi < 1,

pi|µi, τi
iid∼ Beta(µ1τ1, (1− µ1)τ1),

πi|µ2τ2
iid∼ Beta(µ2τ2, (1− µ2)τ2),

γi
iid∼ Truncated Gamma(ν, ν), 0 < γi < π−1i .

Here γi is the ratio of the probability of respondents among success to the

probability of respondents among non-success for the ith area. If γi = 1, then

the ith area has ignorable missing mechanism, otherwise nonignorable.

The hyperparameters are in turn assigned to be independent with proper priors:
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ν ∼ Gamma(η
(0)
3 , ν

(0)
3 ), µ1, µ2

iid∼ Uniform(0, 1),

τ1 ∼ Gamma(η
(0)
1 , ν

(0)
1 ), τ2 ∼ Gamma(η

(0)
2 , ν

(0)
2 ),

(η
(0)
s , ν

(0)
s ) are to be specified by maximum likelihood estimates.

In small area estimation, it is a standard practice to assume that the area effects

are exchangeable. This assumption is incorporated by setting the area effects to

have a common distribution, which is one of the key ideas of NC. By this step,

the “borrowing strength” of the small dataset from larger areas can be realized.

However, the procedure to specify priors cannot avoid the charge of double using

the data. Moreover, it requires unknown additional computational effort to find

the maximum likelihood estimates for these hyperparameters when the dimension

of data becomes higher.
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Chapter 3

Inference on Finite Population

Proportions

By data augmentation approach, we introduce a latent variable z= (z1, . . . , zl),

where zi =
∑ni

j=1 yij, which represents the total number of people who have the

characteristic in the sample within ith area. Similar to the multivariate form of

z, we get p,π,γ, z,n,y, r, for example p= (p1, . . . , pl). Unlike the specification of

priors in NC, we choose non-data dependent non-informative priors for µs and τs:

π(µs)
ind
= 1√

µs(1− µs)
, π(τs)

ind
= 1

(1 + τs)
2 , where s = 1, 2 and 0 < µs < 1, τs > 0.

3.1 Model Fitting

By incorporating independent priors, we can obtain the joint posterior density of

[p,π,γ, z,n,y, r], containing all the quantities in the model:
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π(µ1)π(µ2)π(τ1)π(τ2)×
l∏

i=1

{ ni!
yi!(zi − yi)!(ri − yi)!(ni − zi − ri + yi)!

×

(piγiπi)
yi(pi(1− γiπi))zi−yi × ((1− pi)πi)ri−yi((1− pi)(1− πi))ni−zi−ri+zi×

pµ1τ1−1i (1− pi)(1−µ1)τ1−1
B(µ1τ1, (1− µ1)τ1)

πµ2τ2−1i (1− πi)(1−µ2)τ2−1
B(µ2τ2, (1− µ2)τ2)

}.

However, the joint posterior density does not have a closed form, so the analysis

of posterior cannot be conducted thoroughly. Typical way to do it, we need apply

MCMC to draw samples from posterior. Here, we implement the Metropolis-within-Gibbs

algorithm to generate samples from the marginal distributions of parameters. Note

that [n, r,y] are already known, it is not necessary to keep them in the posterior

density. The steps in the Metropolis-within-Gibbs sampler which we implement to

fit the model are:

0) Integrate out [p,π,γ] to get the marginal density of [z, µ1, µ2, τ1, τ2].

1) Specify the initial values for µ1, µ2, τ1, τ2 and latent variable z.

2) Generate µ1, µ2, τ1, τ2 from the conditional distribution of [µ1, τ1, µ2, τ2 | z].

3) Generate z from the conditional distribution of [z | µ1, µ2, τ1, τ2].

4) Set [p,π,γ] as a block, and generate them simultaneous from three independent

conditional distribution of [p,π,γ | µ1, µ2, τ1, τ2, z] = [p | µ1, µ2, τ1, τ2, z] × [π |

µ1, µ2, τ1, τ2, z]× [γ | µ1, µ2, τ1, τ2, z].

5) Iterate from 2).
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3.1.1 Generating µ1, µ2, τ1, τ2

The marginally conditional distribution of µ1, µ2, τ1, τ2 given z,n, r,y is formed from

all of the terms in the marginal distribution with µ1, µ2, τ1, τ2. Therefore, we can

update µ1, µ2, τ1, τ2 by the following conditional densities:

[µ1 | τ1, z] ∝ 1√
µ1(1− µ1)

×
l∏

i=1

{Γ(zi + µ1τ1)Γ(ni − zi + (1− µ1)τ1)
Γ(µ1τ1)Γ((1− µ1)τ1)

},

[τ1 | µ1, z] ∝ 1

(1 + τ1)
2 ×

l∏
i=1

{Γ(zi + µ1τ1)Γ(ni − zi + (1− µ1)τ1)Γ(τ1)
Γ(ni + τi)Γ(µ1τ1)Γ((1− µ1)τ1)

},

[µ2 | τ2, z] ∝ 1√
µ2(1− µ2)

×
l∏

i=1

{Γ(ri − yi + µ2τ2 − 1)Γ(ni − zi − ri + yi + (1− µ2)τ2)
Γ(µ2τ2)Γ((1− µ2)τ2)

},

[τ2 | µ2, z] ∝ 1

(1 + τ2)
2 ×

l∏
i=1

{Γ(ri − yi + µ2τ2 − 1)Γ(ni − zi − ri + yi + (1− µ2)τ2)Γ(τ2)
Γ(ni − zi + τ2 − 1)Γ(µ2τ2)Γ((1− µ2)τ2)

}.

Since these conditional densities are not known distributions which we can easily

draw samples from, a Metropolis-Hastings accept-reject step is needed. Respectively,

we take Beta(10,30), Beta(27,3), Uniform(10,200) and Uniform(10,200) as the proposal

distributions for generating µ1, µ2, τ1 and τ2, and the jumping rates are about

0.375, 0.312, 0.501 and 0.399. Note that increasing the width of the bounds of

τ1 and τ2 will not change the inference results much. However, it will increase the

sample autocorrelation by some degree. The upper bound of τ should be around∑̀
i=1

√
ri = 177.7 (Nandram and Sedransk 1993).

3.1.2 Generating z

The marginally conditional distribution of zi given µ1, µ2, τ1 and τ2 can be obtained

in the similar way:

[zi | µ1, µ2, τ1, τ2] ∝
Γ(zi + µ1τ1)Γ(ni − zi + (1− µ1)τ1)Γ(ni − zi − ri + yi + (1− µ2)τ2)

Γ(zi + 2)Γ(ni − ri − zi + yi + 1)Γ(ni − zi + τ2 − 1)
.

As the domain of zi is {yi, yi+1, . . . , ni−ri+yi}, which contains finite number of

values, we can calculate the probability of zi at each possible value, and draw samples
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of z
′
is based on these probabilities. Note that we update all the z′is simultaneously.

3.1.3 Generating p, π, γ

By reparameterization φi = γiπi or φ = γ ◦ π1, we can easily see that p, π and

φ are independent conditional on z, µ1, µ2, τ1 and τ2. Therefore, we can obtain the

corresponding densities:

φi
ind∼ Beta(yi + 1, zi − yi + 1)

pi
ind∼ Beta(zi + µ1τ1, ni − zi + (1− µ1)τ1)

πi
ind∼ Beta(ri − yi + µ2τ2 − 1, ni − zi − ri + yi + (1− µ2)τ2)

Since p, π and φ are independent, we can draw them simultaneously in one

block. Note that γi and πi are not independent. If we implement Gibbs sampler

here for γi and πi, we will get highly autocorrelated samples for both γi and πi due

to the shared bound of γi and πi, 0 < γiπi < 1. However, φi and πi are independent

random variables after the reparameterization. In each run, γ′is can be obtained by

γi = φi
πi

. Therefore, we would like to apply reparameterization to reduce tremendous

autocorrelation among the posterior samples of γ and π.

3.2 Inference on Finite Population

Quantity of interest is the finite population proportion of crime rates in these

ten areas. We hope to estimate the finite population proportions in spite of the

uncertainty of nonresponse missing mechanism. Let 0 < ω < 1 be the sampled

proportion of the finite population, so 1 − ω is the nonsampled proportion of the

finite population. The finite population can be a census of the population in the

area. Thus, the sampled proportion is generally known in real studies. The SSM

1◦ is the Hadamard product.
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estimator of ith area is defined as:

p̂S,i = ω zini + (1− ω)
z
′

i

(1/ω − 1)ni
, where z

′
i
ind∼ Binomial((1/ω − 1)ni, pi).

To examine the performance of the SSM estimator, we perform a real-data

experiment based on previously reviewed NCS data in comparison to the performance

of the ISM estimator, which is same with SSM in almost all the stages except that

it does not have the shared priors µ1, µ2, τ1, τ2. The prior distributions of p, π, γ

are uniforms with the same bounds respectively as they are in SSM. Similarly, the

posterior distribution of ISM is

[pi, πi, γi, zi | yi, ri] ∝
pzii (1− pi)ni−zi(γiπi)

yi(1− γiπi)zi−yiπri−yii (1− πi)ni−zi−ri+yi

(zi − yi)!(ni − zi − ri + yi)!
.

Based on the similar MCMC steps, we can obtain the compared results of these

two models in the inference on finite population crime proportions. Besides, we

introduce the SPM and its estimator:

rij | πi
ind∼ Bernoulli (πi),

yij | rij = 1, pi
ind∼ Bernoulli (pi),

yij | rij = 0, pi, γi
ind∼ Bernoulli (γipi),

pi|µ1, τ1
iid∼ Beta(µ1τ1, (1− µ1)τ1),

πi|µ2, τ2
iid∼ Beta(µ2τ2, (1− µ2)τ2).

Let yi =
∑
rij=1

yij and zi =
∑
rij=0

yij. Pattern-mixture estimator is p̂P,i = ω
yi + zi
ni +

(1− ω)
z
′′

i

(1/ω − 1)ni
, where z

′′
i
ind∼ Binomial((1/ω − 1)ni, πipi + (1− πi)γipi).
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Table 3.1: Comparison of the Inference on Finite Population Proportions under
Three Models

Area
Small-Area Selection Model Individual-Area Selection Model Small-Area Pattern-Mixture Model

ω=1/5 ω=1/10 ω=1/50 ω=1/5 ω=1/10 ω=1/50 ω=1/5 ω=1/10 ω=1/50

UCL .251(.032) .250(.034) .249(.034) .248(.040) .252(.040) .251(.040) .254(.039) .253(.039) .253(.039)
UCH .247(.037) .249(.037) .243(.036) .242(.045) .241(.044) .243(.045) .244(.042) .244(.042) .245(.043)
UIL .255(.033) .253(.033) .252(.033) .254(.040) .256(.040) .254(.039) .256(.037) .257(.038) .259(.038)
UIH .237(.031) .237(.031) .236(.031) .242(.036) .241(.037) .240(.036) .241(.035) .241(.035) .240(.035)
UNL .278(.043) .280(.042) .274(.042) .273(.053) .275(.053) .272(.052) .272(.049) .276(.050) .276(.051)
UNH .279(.050) .277(.050) .272(.052) .302(.066) .308(.069) .305(.071) .277(.057) .270(.056) .271(.055)
RIL .256(.050) .253(.048) .251(.051) .273(.070) .267(.068) .269(.074) .247(.055) .248(.056) .248(.055)
RIH .184(.041) .184(.041) .185(.043) .139(.052) .136(.052) .136(.055) .158(.049) .164(.050) .166(.047)
RNL .161(.030) .164(.031) .164(.032) .147(.034) .147(.035) .146(.035) .160(.034) .160(.035) .160(.034)
RNH .204(.033) .205(.032) .203(.032) .196(.039) .197(.037) .194(.039) .202(.037) .201(.036) .201(.037)

Note: Here, in the notation a(b), a is the posterior finite population mean (i.e. the estimate of the
finite population crime proportion) and b is the standard deviation of a.

To fit the SSM and the SPM, we assign the same prior distributions described

in subsection 3.1. In order to obtain Table 3.1, we generate three chains of 16000

iterations each for both SSM and SPM with ω = 1/5, 1/10, 1/50, respectively,

“burn in” the first 1000 and then thinned the chain by taking every 15th sample

value to obtain 1000 samples. As for the ISM, we can get 1000 independent iterations

directly.

Table 3.1 presents the estimates of the three models and the standard deviations

of posterior finite population proportions as well as a sensitive analysis of ω. Apparently

in the table, SSM can increase the estimates from ISM by as much as 30%, which is

much more significant compared with pattern-mixture model. Also, the efficiency of

the SSM estimator relative to other 2 models is always greater than 1. Furthermore,

all three estimators are not sensitive to the choice of ω. With nothing to lose, we

can fix ω = 1/5 in the following studies.

The SPM estimator, which also has the “pooling” effect, obviously out-performs

the original ISM estimator which merely takes advantage of the data from the

individual area itself. However, it pales by comparison to the SSM estimator in

terms of both “pooling” effect and efficiency.
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Table 3.2: Comparison of two sets of priors

Area Previous Priors Flat Priors ISM with Flat Priors

UCL .251(.032) .245(.029) .248(.040)
UCH .247(.037) .240(.031) .242(.045)
UIL .255(.033) .246(.030) .254(.040)
UIH .237(.031) .230(.028) .242(.036)
UNL .278(.043) .275(.036) .273(.053)
UNH .279(.050) .263(.046) .302(.066)
RIL .256(.050) .246(.045) .273(.070)
RIH .184(.041) .184(.035) .139(.052)
RNL .161(.030) .162(.027) .147(.034)
RNH .204(.033) .198(.029) .196(.039)

Note: Here, we fix ω = 1/5. In the notation a(b), a is the posterior
finite population mean (i.e. the estimate of the finite population crime
proportion) and b is the standard deviation of a.

3.3 Prior Distribution Choices and Convergence

Tests

As we have stated in the Introduction, as long as we have several small area datasets,

we can see the “pooling” effect between the datasets by the application of small-area

models. However, it is generally a tough question to pick suitable priors for SSM

to get the best “pooling” effect based on the information of the finite population.

The prior choice in Bayesian statistics has produced much discussion and is different

based on the settings. In this section, we compare the performance of SSM estimator

based on two different sets of non-informative priors: the priors discussed in section

3.1 and the flat priors.

Table 3.2 shows that flat priors seem better than the previous priors in terms

of the “pooling data” effect and efficiency. The good choices of priors always

incorporate the underlying information of the finite population crime characteristic,

responding characteristic and the sample size. One perspective on varying the priors

for µ1, µ2, τ1, τ2 is that it allows us to know how much additional information we
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Figure 3.1: Trace plots of the finite population proportions of 10 different areas

need to make the analysis accurate.

Throughout this work, the convergence of MCMC in the proposed model was

assessed by trace plots as this approach can be run using the sampling outputs,

reducing the additional calculation.

Figure 3.1 shows the trace plots of the finite population proportions of 10 different

areas. The plots indicate the convergence of the Markov chains. Moreover, the

trace plots of other parameters are all graphed in the same way, which give no

indication against the convergence. Since too many trace plots should be tested, we

will not show the rest of them here. Furthermore, all of the samples of parameters

have been tested by Geweke’s diagnostics. All shows that the convergence was

achieved. We will only show the results of the predicted finite population proportions
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Table 3.3: Geweke’s Test P-values

Area Small-Area Selection Individual-Area Selection Small-Area Pattern-mixture
UCL .814 .760 .593
UCH .197 .818 .795
UIL .695 .805 .125
UIH .348 .423 .958
UNL .973 .238 .564
UNH .415 .629 .839
RIL .964 .244 .328
RIH .886 .889 .991
RNL .124 .083 .268
RNH .097 .639 .911

based on these three models in Table 3.3. In addition, except that area UNH and

RNL has a effective sample size 892 and 823 respectively, the posterior samples

of finite population proportions obtained in each of the other eight areas has no

autocorrelation.
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Chapter 4

Simulation Studies

We run a simulation study to compare the performance of the previously discussed

three models. We want to investigate the difference between the direct estimation

and pooled estimation based on the simulated data. More intuitively, we hope to

show that the SSM estimator is more accurate and provides higher precision than

other two estimators.

The simulation step is as follows. First, in each area, we fix ni unchanged

and generate zi by zi | pi, ni ∼ Binomial(ni, pi), where p=(.25,.25,.25,.24,.28,.27,

.25,.19,.16,.20), which is the posterior mean of p by the SSM. Next, we generate yi by

yi | γi, πi, zi ∼ Binomial(zi, γiπi), where π = (.91, .91, .91, .93, .89, .90, .91, .93, .95, .93)

and γ = (.84, .81, .86, .89, .79, .85, .81, .50, .72, .77), which are respectively the posterior

mean of π and γ by the SSM as well. Also, we generate ri−yi by ri−yi | πi, zi, ni ∼

Binomial(ni − zi, πi). In this way. we have performed 1000 simulated runs, which

gives us 1000 simulated samples in the same structure as the NCS data discussed

previously in section 2.

We fit each of the 1000 simulated runs using these 3 models in the exact same

manner as described above in section 3 and use the flat priors for µ1, µ2, τ1, τ2. For
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Table 4.1: Compared Results of Simulation Studies

Area
RB PRMSE WID COV

SSM ISM SPM SSM ISM SPM SSM ISM SPM SSM ISM SPM

UCL -.0048 -.0191 -.0698 .0436 .0485 .0475 .1229 .1334 .1317 .969 .981 .979
UCH .0007 -.0298 -.0159 .0472 .0535 .0518 .1334 .1475 .1444 .956 .964 .965
UIL .0011 -.0400 .0053 .0433 .0474 .0467 .1201 .1298 .1287 .952 .968 .970
UIH .0091 .0160 .0164 .0417 .0454 .0447 .1169 .1275 .1263 .947 .956 .964
UNL -.0084 -.0398 -.0314 .0548 .0629 .0603 .1551 .1734 .1668 .958 .973 .966
UNH .0701 .1374 .0352 .0779 .0931 .0801 .2003 .2488 .2093 .875 .912 .893
RIL .0779 .1034 .0255 .0718 .0933 .0811 .1985 .2516 .2086 .852 .913 .888
RIH .0108 -.2264 -.1168 .0581 .0788 .0672 .1580 .1786 .1719 .905 .836 .882
RNL -.0031 -.1070 -.0449 .0412 .0463 .0437 .1137 .1172 .1192 .935 .878 .934
RNH .0047 -.0463 -.0188 .0416 .0466 .0451 .1178 .1271 .1261 .960 .956 .972

Note: SSM, ISM, SPM denotes small-area selection model, individual-area selection model,
small-area pattern-mixture model respectively.

each of the 1000 simulated runs, we performed the Geweke test of stationarity,

calculated the autocorrelations and the effective sample sizes. The performance of

the Gibbs sampler was satisfactory in most cases. This computation procedures

take less than 10 hours running in a personal computer.

We calculated the posterior means (PM), posterior standard deviations (PSD),

the 95% HPD intervals and its width. Moreover, we computed the relative bias,

RB = (PM − T )/T , where T denotes the true finite population proportion and

T = z./n. Also, we computed the posterior root mean squared error, PRMSE =√
(PM − T )2 + PSD2. Regarding intervals, we calculated their average width

(WID) and the coverage of the true proportion (COV).

Table 4.1 and Appendix A present the compared results of the simulation.

Apparently, SSM estimator out-performs both ISM and SPM estimators in almost

all the areas in terms of RB, PRMSE and WID, which means SSM estimator is more

accurate and more precise. However, the SSM estimator does not overwhelm the

other two estimators in terms of 95% HPD interval coverage of the true proportions.

The other two estimators exhibit better performance in COV possibly due to the
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less WID of SSM estimator.

In all, from these results, we conclude that the performance of the proposed

small-area selection model is obviously better than the individual-area selection

model and the small-area pattern-mixture model. The “pooling” effect of the

proposed model helps small areas to “borrow strength” from other areas, which

makes the proposed estimator more accurate and precise.

22



Chapter 5

Conclusion and Future Outlook

We have considered the problem on estimating the proportion of people victimized

by crimes based on the data with nonresponse from NCS survey. Our approach is an

application of the Bayesian hierarchical nonresponse model in Nandram and Choi

(2002). Based on the real-data experiment and the simulated results, we can show

that, apparently, there is an improvement in precision and accuracy of the proposed

estimator. Also, we have smaller relative bias, smaller posterior root mean squared

error and better width for the 95% HPD intervals in simulation study. Therefore,

we conclude the proposed model is significantly better than the other two models,

i.e. the individual-area selection model and the small-area pattern-mixture model.

Note that in section 3.3 we showed the completely non-informative priors are

better than the Jeffrey’s priors, which are still non-informative, in estimation of

finite population proportions. An interesting extention is how to accommodate the

underlying population characteristic structure assumption by the choice of the prior

distribution. Possibly we can incorporate the prior information of p, π and the

survey sample sizes to find some satisfying informative priors.
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Appendix A

Simulation Results
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Figure A.1: Relative Bias

Figure A.2: Posterior Root Mean Squared Error
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Figure A.3: Average Width of 95% HPD Interval

Figure A.4: Coverage of the True Proportion
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