Check-In Testing Framework for iOS

Victor Andreoni, Alex Chen, Jason Whitehouse

December 19, 2014

A Major Qualifying Project Report:

submitted to the
Faculty of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Victor Andreoni

Alex Chen

Jason Whitehouse
Date: December 2014

Approved:

Professor David Finkel, Advisor

This report represents the work of one or more WPI undergraduate students.
Submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review

Abstract

This project was conducted with Microsoft in Cambridge, Massachusetts. The purpose
was to design and implement a system for check-in testing of i0OS applications. We
implemented a framework for managing and creating tests that are portable across i0S
devices and versions. It also provides an interface for quickly running all tests locally and
reporting results in an easy-to-read format. Running these tests allows developers to
ensure that they are not introducing defects into the project before they integrate their

changes.

Acknowledgements

We would like to thank Microsoft for sponsoring this project and supporting us
through its completion. We would especially like to thank Aseem Kohli, Kris Reierson, and
Sandy Gotlib for working closely with us and making this project possible. We would also
like to thank Avery Yen for his help in defining our project’s requirements, and Hugh
Hallawell for finding all of the defects that we missed. Finally, we would like to thank

Professor David Finkel for his guidance throughout the project.

Table of Contents

8 I 4100 o7 1 (o o) 6
2 2 7 ol €3 00011 4 8
/288 S o o) = 0 - U 8
2.2 Regression TesSting ... s s e sssssssssssssssessnssnssnsses 9
2.3 Continuous INteGrationccuccimsmsmsemsemsemssmsssssssssssssssss s s s s sssassassassassesses 10
2 T D 111 1 L 11
2.5 MiCroSOft Strate@Yccvccssmsmimsmssmsmssssnsssssssnsssssssssnssssssssssssssssassssnsssssssnsssssssssnssssnssssnssssnsassnssnsesansesanse 12
2 T Y0) (A 13
2.6.1 Py HNOMN ettt s R R s 13
ST ol Yo PSP 13
2.6.3 INSEIUIMENTS ..ot 14
2.6.4 10S-AEPI0Y couiurirriireurirssisesserss s ssssssss s s sses s s s R AR AR R s 15
2.6.5 INtUNE BUIlA SYSTEIMS ..crvvrirrererriisesissesssesesss s s s sssnes 16
2.6.6 SOUICE CONTIOL.ccuiiieieeereee st ees s s s s bR s 16
T8 A =) 4 U« b o 3T 17
3 Fundamental APProaches ... 18
B 00 S5 410 1T ol o) 18
3,11 DeSI@N DELAILS .t ssssss s s s e e 18
3.1.2 FINAl TROUZRNLES .ot ssssss s ssssssssss s ssssss st sss s ssss s ssssssssssssssssssssssnsanes 19

3.2 BUild LANGUAGE ...cccoriurirrursmssmsnsssnssssnssssnsassnssssssassssanss
3.2.1 DeSI@N DELAILS .ot s s R
3.2.2 DeSi@N DIAaWDACKS ..ot issses sttt sssnsanes
3.2.3 FINAl TROUZRNLES .ot sessi s sssses s s ssss st s ssssss s s s s ssss s sssssssssssssssssssnssnes

B T S 1 1) 1 2) o .
3.3.1 Object-Oriented DeSIZN ... sssassssssssanes
3.3.2 Flat DESIZN ettt st sse bbb st s s s ssss s sanssssssnsnnes

T S 0 0N 170 o L0) o

4.1 Testing Framework Implementation ...

4.2 TeSt OrganiZation ... s smssmssns e e s s s e s e e R R R R R R R R RS

4.3 Implementing Continuous INtegration ... ——————————————

4.4 Onboarding and Documentation.......mmmmmss s —————————————————

D COMCIUSION tiiueerirersresrssssrssssssmsssssssssssasassssssasnssasssasnssassssssssssssssessanssasnssasssasassssasssansssassannsssnssnsnensannss

6 Bibliography ... sssssssssssassssssssssassssssassnss

1 Introduction

Testing is one of the most important concepts in modern software development
since it is one of the best ways to ensure that a functional product has been produced from
the collective efforts of a development team. Equally as important is the method of
integrating testing into the development process, which requires balancing the overhead of
evaluating the correctness of code with the speed and agility needed to implement features
in an acceptable timeframe. These concepts are especially significant large teams such as
those at Microsoft, as the potential for error or inefficiency rises quickly with the expansion
of product scope and team size. This translates into a need for testing tools that are

specifically tailored to the functional needs and development practices of a team.

In the case of i0S development, there is no integrated process for thorough testing
of an application. Although there exist a number of tools that are valuable for testing, such
as Xcode, Instruments, and the i0S Simulator, there is no common interface to use all of
these tools easily in tandem. Each of these resources has its own workflow for usage, set of
input parameters, and method of test output, making the process for running all of them
time-consuming and difficult. The closed nature of the iOS platform also limits what can be
automated through iOS tools, making it necessary to implement a custom approach to

orchestrating some kinds of tests.

This paper will describe our efforts to create an efficient local test system for the
Intune i0S team designed to abstract the complexities of i0S testing into something that
seamlessly integrates with their development process. We will first introduce the ideas and

tools that were essential to developing this project. Then, we will discuss the various

approaches we took to accomplishing our goal, as well as the drawbacks each of them had
and what we learned from them. Finally, we will describe the steps we took to fully

integrate our system with our sponsor team.

2 Background

Before discussing the specifics of our project, it is essential to introduce the concepts,
tools, and context upon which it is based. We will discuss this background information in

the following sections.

2.1 Project Goal

The goal of this project was to create a check-in tester for the Microsoft Intune team
that would allow developers to easily validate and test their code before submitting their
changes. The tester needed to be able to run from the command line, and have minimal or
no configuration needed. The core functionality of this system needed to include
capabilities for unit testing and component testing, as well as support anything else needed
to accomplish these tasks. Additionally, the tester needed to sync and build the Intune
projects prior to running any tests to ensure that the codebase was up-to-date and still able

to be compiled.

We were also given a stretch goal of setting up and implementing a continuous
integration server. This server had to run our tester on a pre-defined schedule, and would
run more in-depth tests that developers would not necessarily need to run every time they
made changes to the code. In addition, it was required to have the server be able to report
the individuals that made changes to the project since the last run, archive each run, and

send out email reports whenever a run failed.

2.2 Regression Testing

One issue in testing software is that, once a feature has been verified as complete or a
bug has been fixed, it is entirely possible for that functionality to cease working at any point
in the future. This is because of the unavoidable fact that a change to one part of a system
may unintentionally change another part, even if there is no apparent connection between
them (Savenkov). Regression Testing is an approach to solve this issue by uncovering new

issues, or “regressions”, introduced into existing functionality by new changes (Myers).

The most common approach to regression testing is to run all existing tests against
the entire system whenever a change is made, usually with an automated testing system
(daViega). If new tests are introduced along with functionality and bug fixes, running the
existing body of tests will be able to verify their continuing correctness. Since it may not
always be practical to run every test whenever a change is made, some systems will instead
automatically re-run tests nightly or weekly and report failures (daViega). This may be
combined with less complete regression testing along with individual changes to catch

likely errors more quickly (Dustin, Rashka and Paul).

While existing methods for regression testing may not be able to catch every issue
introduced with a change in the codebase, it is still an effective way to maintain the
reliability of a system over the course of development. This is a cornerstone of our project,
which will provide a system that our sponsors can use to more completely regression test
their work. We will discuss the specific needs of Microsoft with respect to testing in Section

2.5.

10

2.3 Continuous Integration

As a final stretch goal, part of our project involves the implementation of continuous
integration with our sponsor’s build system. Continuous integration is a practice that
involves building and applying quality assurance processes on a project in order to detect
defects as quickly as possible (Meyer). Defects not only refer to flaws in the code logic, but
also include errors in naming conventions, documentation, and software design (Berg).
Catching and recognizing these defects early on in a project gives developers rapid
feedback on the state of their project, improves code quality, and eliminates many of the

risks of trying to integrate large portions of code at the end of a project.

One of the core practices of continuous integration is for developers to commit and
integrate their code changes regularly (Meyer). This allows for the changes that a
developer makes to more easily combine with the rest of the code base. Regular commits
create a more continuous development process that will ultimately result in improved code
quality. In addition, integrating code in small batches makes it easier to debug sudden
failures in the code. Developers can easily pinpoint exactly which change or added lines of
code could have caused a failure, as opposed to trying to track down a defect in the large

overall project.

The key tool to continuous integration, and an important tool in software
development in general, is the continuous integration server. The purpose of a continuous
integration server is to check out all the changed committed code and run commands to
build the project. In addition, tests might be run on the new build to ensure that the code

still works as expected. There are a number of different continuous integration servers

11

available, but a common one for large-scale deployment is Jenkins (Duvall, Matyas and

Glover), which we will discuss more in Section 2.6.7.

2.4 Intune

Our sponsor team in Cambridge is part of Microsoft Intune, which, according to its
web site, “helps organizations provide their employees with access to corporate
applications, data, and resources from virtually anywhere on almost any device, while
helping to keep corporate information secure.” (Microsoft Corporation). Intune exists
across several platforms and services, but our sponsors specifically work on application
restrictions for i0S; the ability for apps to control user activity and data protection based
on IT policies. An example of this is that a “managed” application might require a passcode
to open, or it might prevent users from copying sensitive text from it into another, non-

managed application.

At the time of our project, the most important task of our sponsors was creating an
App Restrictions SDK that allowed application developers to integrate Intune policy
handling into their own work. In addition, they were working on an ‘AppWrapper’ that
took an existing i0S application and added policy handling into it (Kohli). The complex,
enterprise nature of this project would be a driving force for many of our design decisions
since it meant that we needed to provide the capability for testing scenarios involving

multiple applications and device states.

12

2.5 Microsoft Strategy

Until recently, there were two primary kinds of software engineers in Microsoft,
composing a ‘Distributed Engineering’ model: Software Development Engineer (SDE) and
Software Development Engineer in Test (SDET). It was the responsibility of the SDE to
write software that fit the requirements of the product, and the responsibility of the SDET
to ensure that the software was fully functional and up to the standards of release. Testing
for an SDET meant understanding how to fully evaluate a system, and writing automated

test cases and testing frameworks to do so (Eliot).

Some parts of Microsoft have recently begun shifting towards a more agile approach
to software development, where requirements are iterated on throughout the development
process and releases are made more frequently. As part of this shift, testing was to be made
a more integral part of the development process. This proved to be somewhat incompatible
with distributed engineering since every agile shift meant that both the SDE and SDET
would need to adjust and the separation of the two made testing a parallel process to

development rather than an integral part of it (Kohli).

In order to address this several teams, including the Intune team, have moved to a
“Unified Engineering” strategy in which the SDET role was removed entirely. In their
absence, it would be the responsibility of every SDE to test their own code as it was written,
both for its own functionality and how it contributed to the stability of the product as a
whole (Kohli). This meant that SDEs would need a framework allowing them to easily write
tests for their features, as well as run all tests to ensure the integrity of the product - a

solution that our project would provide for our sponsors.

13

2.6 Tools

In this section, we describe the tools that we used in developing our testing
framework. Most of the tools were used from the command line, since our system was

primarily able to trigger them with shell commands.

2.6.1 Python

Python is the language that we used to write our framework, and that developers
would use to write tests for it. It was chosen because our framework needed to easily run
on Mac computers, and Python comes pre-installed with Mac OS X (Using Python on a
Macintosh). Python also supports different programming paradigms, including object-
oriented programming, which allowed us to explore a number of different approaches to
our design. Additionally, Python was picked over other options such as Bash and Perl
because it includes extensive libraries (About Python) that we would otherwise have to

recreate ourselves.

2.6.2 Xcode

Xcode is an integrated development environment (IDE) created by Apple for OS X
and i0OS development. It contains a number of software development tools that were useful
and necessary for the successful implementation of our framework. Among these tools is
the i0S Simulator, which allows developers to perform multiple tasks such as running,

debugging, and testing applications without the need to have a physical iOS device present.

Another part of Xcode, and perhaps more important than the Xcode IDE, is the

Xcode Command Line Tools Package. This package allows for command line development

14

in OS X using the “xcodebuild” command. Using xcodebuild allows developers to compile,
build, and unit test Xcode projects and workspaces from the command line. It also allows
users to specify a specific device or target to operate on, as well as a specific scheme in the
project to build (Building from the Command Line with Xcode FAQ). It also allows
developers to unit test their project from the command line by specifying a build action of
“test” when calling xcodebuild. Unit testing this way requires a project scheme to build and
test, as well as a destination for the tests. Figure 1 below demonstrates the signature of the

xcodebuild command when running unit tests.

xcodebuild test -scheme <your_scheme_name> -destination destinationSpecifier

Figure 1: Running Unit Tests using xcodebuild

2.6.3 Instruments

Another developer tool included with Xcode is Instruments, which provides ways to
track various types of information such as file access and memory usage from OS X and i0S
code (Instruments Quick Start). For our project, the Automation tool within Instruments
was key in being able to write component tests. The Automation instrument allows
developers to automate user interface tests that simulate interaction by calling a JavaScript
Ul Automation API (Automating Ul Testing). This tool also provides a mechanism for easing
the process of creating JavaScript files for the automation by allowing developers to record
actions on a targeted device, and having the Ul Automation calls be auto-generated into a

script that capture the performed actions.

Similar to Xcode, Instruments also supports running through the command line

using the “instruments” command. When using this command, it is necessary to provide a

15

unique device identifier, a template file, and the target application name. Figure 2 shows

how this information should be passed into the instruments command in order to utilize it.

instruments -w deviceID -t templateFilePath targetAppName

Figure 2: Running the Instruments Command

If we wanted to run the Automation instrument using this command, the templateFilePath
parameter would be the path to an automation instrument template that is generated using
the Instruments UI tool. Other tools within Instruments can also be run using the above

command by simply passing in their appropriate template as well.

2.6.4 iOS-deploy

i0S-deploy is an open-source project hosted on GitHub that allows for the installing,
debugging, and uninstalling of i0OS applications to a physical i0S device through the
command line without the use of Xcode (Abdullah). Unfortunately, neither Xcode nor its
command line tools provide a convenient mechanism for just installing an application to a
physical device. There were possible ways of accomplishing this task by just using Xcode,
but they did not provide the functionality that we desired. For example, when running unit
tests with the command “xcodebuild test” as described in the Xcode section, the application
being tested would be installed onto the targeted device if it was not previously there.
However, it would then also run all included unit tests, which could end up being a lengthy
process for just the desired effect of installing the application. Using i0S-deploy, we would
be able to just install or uninstall applications to a device without the side effect of also
running all of the unit tests associated with a project. The downside to using this tool is that

it is a third party application that it is not maintained by Apple, and therefore is susceptible

16

to becoming incompatible with future i0S versions. However, developers at Microsoft seem
to have realized the need for i0S-deploy despite the possible downside, and maintain their

own version of i0S-deploy.

2.6.5 Intune Build Systems

The Microsoft Intune projects have their own build script that compiles the source
code and produces binaries. This script first sets up the developer’s environment by
running another script called “razzle” to set a number of environment variables that the
Intune project is dependent on. The next step of the build script is to sync project files using
the appropriate source control discussed in Section 2.6.6. If all of these steps succeed, it will
then proceed with building the projects and then code signing the applications it created.

All of these files are placed into a binaries folder in a standard location.

2.6.6 Source Control

There were two different source control systems that were used: SourceDepot and
Team Foundation Server (TFS). SourceDepot is an internal Microsoft system that works on
the command line, and was used by the Intune team for the first half of the term. Thus, any
script that wanted to sync project files had to use SourceDepot commands. We used Git for
our own development, and depended on our mentor to update the code in SourceDepot

when we wanted to make it available to our sponsors.

In the second half of the project, the Intune project migrated to TFS, which uses Git
as its source control system. This simplified the process of making updated versions of our

system available to our sponsors, and changed our approach to continuous integration.

17

Since TFS is now the standard version control system for the Intune team, any future work

on this system should not be dependent on SourceDepot.

2.6.7 Jenkins

Jenkins is a Java-based continuous integration server that automates a project’s
building process and provides feedback on broken builds or failed test cases. It has a simple
web interface that is easy to learn, but is also flexible and adaptable with over 1000 plugins
available to be installed (Kawaguchi). At the heart of the Jenkins build process are build
jobs. In its essence, build jobs are thought of as a particular step in the build process,
typically involving compiling source code and running unit tests. These Jenkins jobs can be
configured to run on a customizable schedule, such as daily, monthly, or weekly, and can
also be configured with source control to always sync the latest changes before building.
Additionally, products from building can be archived and build results can be published for
developers to see and generate trend reports with. Overall, Jenkins is able to assist with
making sure that a project still properly functions after changes are made, without the need

for developers to manually start a large project’s build sequence and await the results.

18
3 Fundamental Approaches

The framework we designed needed to be flexible enough for developers to create
tests of varying steps and complexity. However, since some of the developers using this
framework were not accustomed to writing tests, we also did not want our design to be
overly complicated in order to achieve the flexibility we wanted. To achieve this balance of
flexibility and ease-of-use, we tried and discussed a number of different designs. In the
following sections, we describe the designs that we considered and discuss what we

learned from them, which led us to our final flat design of the Python API.
3.1 Single-Script

To introduce ourselves to the tools and commands we would be using, we began by
creating a check-in script for a simple To-Do application we implemented while preparing
for our project. This Python script was divided into three separate modules that
encompassed what we believed to be the core functionality of our framework: syncing with
source control, unit testing, and component testing. Although each module could be run
individually, a Python wrapper was also created to easily combine the modules into a single
script. Finally, for ease of use, a simple bash script was created to wrap the Python script,

which allowed users to call the script from a terminal without having to invoke Python.

3.1.1 Design Details

Each of the modules contained a function to perform the corresponding action it
represented. The functions took in different parameters based on the information it

required in order execute. Since our To-Do application used Git for its source control, our

19

syncing module required the name of the master branch to get the most recent code
changes from, as well as the name of the branch the developer was working on in order to
know where to merge the changes into. In order to run unit tests, the function needed a
project scheme to build and test, the unique device identifier (UDID) of the device the tests
should be run on, and the configuration of the project to build. These parameters, along
with their associated option flags, were then passed into the “xcodebuild” command with
the build option of “test”. Finally, the component-testing module required the Xcode
project name, the UDID of the device to test on, and the location of the JavaScript file that
contained the automation instructions. These were then passed to the “instruments”
command to run the test. All three modules also error-checked the output that resulted
from running their commands. This was done simply by parsing any text in the standard
error stream, and finding if any fatal errors occurred that prevented the command from

executing successfully.

The Python wrapper combined the three modules into a single script, and also
provided functions for selecting devices, schemes, and configurations to use for testing.
This was convenient because if the user did not know the UDID of the device they wanted
to test on, the wrapper would prompt with a list of available devices, and they could easily

choose the one they wanted.

3.1.2 Final Thoughts

This check-in script was only designed to work with our To-Do application and not
the Intune projects, but it provided a lot of insight into the commands that we would be

using in later scripts. We were able to learn what commands and what information were

20

necessary in order to unit test and component test. We were also able to discover how to
list the available devices, as well as the available schemes and configurations associated
with a project. By knowing all of this information and gaining experience in writing these
commands in Python, we were able to focus more on the design of our subsequent

approaches, rather than trying to figure out what commands we needed.

3.2 Build Language

It became clear from discussions with our sponsors that our project would not be
limited to component and unit tests, but instead focus on tests involving multiple actions
and applications. One example was a test that would install an application to reset all
device security settings, and then install a second application that contained a component

test to ensure that a passcode was prompted for.

In order to allow for such complex, multi-stage tests, we came to the idea of creating
a build language that would allow developers to define any test that was required. This
would be made up of several actions, which developers would be able to chain together
into test cases. Doing this meant that our system did not have to be programmed to include
every potential test, an impossible task for a project as large and involved as Intune, but
instead simply provide the basic tools for developers to write their own tests. These tests
would still be collected together and run by our command-line interface, preserving its

value as a check-in gate.

3.2.1 Design Details

The actions that we originally intended to include are described in Figure 3. These

actions build on the functionality of the single-script approach while also providing new

21

features such as launching an application and wrapping an executable with the Intune App

Restrictions SDK.

BUILD <PROJECT- <SCHEME- <TARGET

DEPLOY < PROJECT TARGET

LAUNCH <PROJECT- <TARGET

UNINSTALL <PROJECT> <TARGET

COMPONENTTEST < PROJECT TARGET~ <TEST_DIRECTORY

UNITTEST < PROJECT SCHEME~ <TARGET

WRAP < PROJECT

Figure 3: Build Language Actions

Our system would crawl over a collection of these tests stored in some shared
location in the Intune file system. Each test would be read in line-by-line, and their
commands would be interpreted and executed in order. For example, the test described in

the introduction to this section would be encoded as shown in Figure 4.

22

BUILD ResetApp SomeScheme iPad
DEPLOY ResetApp iPad

LAUNCH ResetApp iPad

UNINSTALL ResetApp iPad

BUILD PinApp SomeScheme iPad
DEPLOY PinApp iPad
COMPONENTTEST PinApp iPad Tests/PinTest

Figure 4: Pin Test (Build Language)

This test would first build, deploy, and launch the ResetApp to an iPad to reset the
device’s settings. It would then uninstall the ResetApp, build and deploy the PinApp, and
run a component test on the PinApp to check whether a passcode was requested. This case
would not have been supported by our single-script design, which demonstrated that our

increased flexibility was a step in the right direction.

3.2.2 Design Drawbacks

Before we had made much progress towards implementing this solution, more
discussion among ourselves and with our sponsors uncovered a fundamental drawback in
this design. Because we expected tests to be encoded solely with our predefined actions, we
were providing a language with a very weak syntax. It only executed sequential commands,
with no support for non-action logic, assignment, or any control flow. We were providing
more flexibility than the single-script approach, but we were still too restrictive to be
confident that our system could handle all of Intune’s testing needs. Some of this would
have been possible to implement, but it would not have made sense to spend significant
time implementing basic properties of a strong language when many such languages

already exist. It would also make our code base much less maintainable since it would

23

include not only the logic of the actions, but also the interpretation of our language’s

syntax.

3.2.3 Final Thoughts

This design was valuable because it led us to think about more flexible approaches
that would enable our sponsors to define arbitrary test scenarios. It also forced us to define
the actions that we needed to provide from our system, which would still be used in future
iterations. Therefore, we consider this design to be an important stepping-stone. While it
was too restrictive to be valuable on its own, it led to our decision to have test cases written

in Python as described in the following section.

3.3 Python API

As discussed throughout this chapter, we considered several approaches for the
implementation of our testing framework. Based on design meetings and discussions with
members of the Microsoft team, we decided that implementing a testing framework API
would allow us to meet the functionality requirements while achieving our goals of
providing a flexible and maintainable structure. In the following sections we will discuss

the two approaches that we considered for the API implementation.

3.3.1 Object-Oriented Design

The first approach that we considered for the implementation of the Python API was
an object-oriented design. One of our main project goals was to implement a framework
that was both easy to maintain and easy to extend, and we saw several advantages to

achieve these goals in an object-oriented framework. However, after implementing the

24

framework and discussing our design with our mentor, we determined that the lack of
support for a strict object-oriented structure in Python made this approach unnecessary.
Therefore, we decided to abandon this design in favor of a more linear one, described in
Section 3.3.2. In this section, we will describe the object-oriented design that we initially
implemented, its advantages and disadvantages, and the reasons that we had for discarding

it.

3.3.1.1 Design Details

The object-oriented structure that we designed included the implementation of
several design patterns and object-oriented practices. As shown in the UML class diagram
in Figure 5, we divided our framework into actions that encapsulated the different features
that our framework offered. This separation of the functionality of the framework lent itself
to structuring the code of each action in a separate class, as shown in Figure 5. Each action
was in charge of parsing and validating its arguments. In addition, each action was
responsible for executing the expected behavior and reporting its success or failure. By
taking this approach, actions were independent of each other, which made maintaining the

framework an easier task.

BuildGates API

Action Factory

V

Base Action

JAN JaN

Build Action

Deploy Action

Unit Test
Action

Output
Utilities

BuildGates

_________________ > Exception

Component
Test Action

Figure 5: UML Class Diagram of Object-Oriented API Framework

25

As we continued to implement actions, it quickly became apparent that most actions

shared some commonalities that could result in unnecessary code duplication. As a result,

as shown in Figure 5, we implemented an abstract class, named “base action”, to hold all

the common methods and fields. For example, most actions depended on the unique device

identifier (UDID) of a device in order to execute. By implementing a method in the base

action class to get the UDID of connected devices, every action could reference this function

without having to implement it itself. Aside from preventing code duplication, centralizing

common functions also increased maintainability since bugs could be tracked and

improvements could be implemented in a single place. The base action class also benefited

26

from the implementation of template methods, where the base action would provide basic
functionality to common functions that could then be overridden by specific actions. For
example, the base action had a basic argument parsing function that would only parse for
the most common arguments, shown in Figure 6. By overriding this method, specific
actions could parse for additional arguments or prevent the parsing of other arguments

that were not needed.

def parse_arguments(self, args):

Method for parsing the arguments given as input

arg args:
arg 'project':
args[arg] None:
self.project = args[arg].rstrip('/\\"')
self.project = os.path.expanduser(self.project)
arg 'target':
self.target = args[arg]
arg 'scheme':
self.scheme = args(arg]

- O)

BuildGatesException('Unknown option arg given to action self.name)

Figure 6: Basic Argument Parsing Function in Base Action Class

In order to connect the different actions of our framework, we implemented an
action factory at the center of the design. This factory, as the name suggests, follows the
factory pattern, which provided us with a centralized class in which to initialize the
different actions that the framework supported. The action factory also provided a level of
abstraction between each specific action and the public API interface. As a result, the public
API could simply call the factory and ask for an instance of the desired action by specifying
the action name with a string, as seen in Figure 7. In addition, the API provided a list of
arguments to the factory when invoking the “get instance” method so that the factory could

pass them to each action for parsing. In case of an error, the factory would catch an

27

exception from the action constructor and raise it to the public API. In this design, the
action factory acted as the principal entry point to the whole framework. This satisfied our
original goal of abstraction since the public API could simply ask for an action and pass in
an arbitrary list of arguments to the factory. The factory, in conjunction with the action

constructors, would take care of input validation and object instantiation.

21 def Build(project, target = None, scheme = None):

Public method for executing the build action

—+ _» _, arguments inspect.getargvalues(inspect.currentframe())
__build_and_execute('Build', arguments)

Figure 7: Public API Method Calling Internal Function to Build and Execute the Specified Action

The public API itself consisted of a series of methods that allowed developers to
execute the different actions that our framework supported. When calling a method, a list
of arguments for a specific action was provided. The API would then construct a dictionary
from this list of arguments and pass it along to a private method for internal execution. As
shown in Figure 8, this method took care of any required pre-operations, such as checking
for the proper setup of environment variables, called the factory to get an instance of the
specified action object, and told the object to execute the action. These calls were
surrounded in a try-catch block in order to catch any exceptions that might be thrown

along the stack of internal calls.

28

def _ _build_and_execute(action, arguments):
Method that takes care of the actual instantiation of the specified action_object
and its execution.
util.printSeparator(LINE_WIDTH)
util.startAnimation('Performing required pre-run operations')
__perform_pre_operations()
util.stopAnimation()

action_object = ActionFactory.get_action(action, arguments)
action_object.execute()
Exception, e:
util.printSeparator(LINE_WIDTH)
BuildGatesException(str(e))
util.printSeparator(LINE_WIDTH)

Figure 8: Public API Method to Invoke the Action Factory and Instantiate an Action of the Specified Type

3.3.1.2 Design Drawbacks

Overall, the object-oriented design satisfied many or our initial goals, especially
those of maintainability and extensibility. However, there were some flaws to this design
that, after discussion between the members of our group and members of the Microsoft

team, resulted in us abandoning this idea and taking a different approach.

One of the main arguments against this design arose from the fact that the language
we chose to use, Python, does not fit the object-oriented patterns as well as other
languages. Our object-oriented design was, although not explicitly, based on the premise of
programming against an interface. In our design, there was an inherit action interface that
was implemented by the base action and extended by each individual action. Still, since
Python does not enforce strong typing, many of the restrictions that justified the patterns
we implemented in other languages were not there. For instance, since the factory could
return an object of any type, there was no restriction that prevented us from having
considerably different constructors. While some actions took in two parameters, others

took in three or four. This resulted in the aforementioned obfuscation of parameters where

29

we created a dictionary of arguments that each action had to parse, as shown in Figure 9.
Although the public functions of the API did not need to concern with this, the process

made the internal code hard to follow.

def Deploy(project, target None, scheme None):

Public method for executing the deploy action

_»+ _s _s arguments inspect.getargvalues(inspect.currentframe())
__build_and_execute('Deploy', arguments)

Figure 9: Example of Parameter Obfuscation on the Deploy Action

This drawback was further emphasized by the implementation of a super
constructor in the base action class. In strongly typed languages, such as Java, it is a good
practice to have a super constructor perform basic common operations concerning
initialization. However, due to the different arguments for each action, we found ourselves
in a situation where some actions would have access to some fields that it never referenced
during execution. Although we had implemented template methods that could be
overridden to prevent this situation, we kept going back to trying to determine which fields
were common enough to leave on the base class and which fields should be taken out. This
situation continued to arise as we added more actions to the framework and realized that

some fields became more relevant and others became less relevant.

In addition to these downfalls, discussions with our mentor and a testing engineer
led to the conclusion that the very nature of a loosely typed language made most of the
abstraction of our design unnecessary. Even though we were abstracting the public API

from handling each individual action, there were no restrictions imposed by Python that

30

would prevent developers from simply initializing a specific action from its class while
circumventing the action factory and the other layers we had established. This issue
became a more pressing one when we were adding new actions to the framework. Every
new action had to implement a new method in the public API and a new class that extended
the base action abstract class, and each API method needed to be aware of the signature of
its corresponding action. This meant that the “base action” abstract class did not
completely uncouple the API from the actions implementation. In addition, the action

factory had to be modified in order to add the new action to the list of available actions.

Although these tradeoffs are common in object-oriented design and are usually
worth the effort due to the abstraction benefits that they provide, the fact that developers
could simply circumvent all of this due to the language that we were using made us
question whether the effort was truly worth it. Based on these and other considerations,
we decided to abandon the object-oriented design and opt for a more simple, single-layer

structure, which will be described in Section 3.3.2.

3.3.1.3 Final Thoughts

The object-oriented framework design was a move in the right direction for our
project. First, we addressed most of the issues described in the build language section by
allowing developers to write their tests using a full-featured language such as Python. In
addition, we started to pay more attention to maintainability and expandability, and set
basic requirements that we would carry on to our final design. Finally, we concluded that
this API approach would be suitable for our testing framework, and decided that we would

stay focused on this approach throughout the rest of our project.

31

3.3.2 Flat Design

As discussed in Section 3.3.1, we determined that taking an API approach was
suitable for the implementation of our testing framework. Therefore, in order to improve
upon the drawbacks of our object-oriented design and maintain the API structure, we
implemented a flat design that is easier to extend and maintain. In this section, we will
describe the details of this design, its advantages and disadvantages, and our reasons for

selecting it as the final design for our testing framework.

3.3.2.1 Design Details

The flat design is mostly a simplification of the object-oriented design discussed in
Section 3.3.1. As shown in the UML class diagram in Figure 10, we maintained the division
of the functionality of our framework into different classes representing actions. However,
we removed the layers of abstraction that were the cause of most of the drawbacks of the

object-oriented design.

Output BuildGates API
A NN AN BuildGates
| [Exceptions
| | | |
| | | |
Utilities D AN S N U NN N A
| 1
DoLCIIIIIIIIIi T ! A
| | | | | \ X :
1
N /:\ NN === Build Action Deploy Action Unit Test Component : : |
[: | Action e o @ Test Action ! \ :
[T H [|
| | | L === ! | |
| | | ! | |
L N T, L_J [B - _2
| b e e e e e —— ———— L-d b e e e e e e — - ——— A e e —— _a
! | | |
e e e e e e e e e e mm———— - - - T === i

Figure 10: UML Class Diagram of Flat API Framework Design

One of the main changes in this version of the framework was the removal of the

base action class. By removing this abstract class, each action became responsible for the

32

parsing and instantiation of every field needed for execution. This shift of responsibility
served as a solution to the issue of actions having unused fields, and simplified the addition
of new fields. The common methods that were implemented in the abstract class were
moved to the utilities class in order to avoid having to implement common functionality in

each action and prevent code duplication.

Refactoring the utilities class made us realize that we were combining functional
utilities and output utilities in the same file. For example, the utilities class had a method
for printing the loading spinner and a method for getting a device UDID. Having functions
with such distinct purposes in the same file made it hard to read and debug the utilities
class. In addition, we were not achieving the encapsulation that we were aiming to provide
in our framework. In order to avoid this discrepancy, we decided to refactor output
methods into a new class, which we named output. This way, as shown in Figure 11, all
methods concerning output were encapsulated in the output class, and all common

methods related to actual framework functionality were encapsulated in the utilities class.

33

output.py

print_information_message(message):

Print a message with default color
QUIET:
message

print_separator(line_width):

Prints a horizontal line to separate different sections of the screen

QUIET:
sys.stdout.write("%s" (- line_width))
sys.stdout.write("\n")
sys.stdout. flush()

loading_animation(text u):

Function to be run by the UI animation thread. It prints a loading animation
on the screen

nun
counter 0

util.py

def get_test_case_dump_location():

Method to calculate the location of the dump folder for a single test case run.

location - get_path(DUMP_FOLDER_LOCATION)

IS_ORCHESTRATOR_RUN:
location 'current/'

os.path.exists(location):
os.makedirs(location)

location

get_output_directory():

Method to retrieve the output directory. Acts a wrapper to get_path using the dump folder global.

get_path(DUMP_FOLDER_LOCATION)

def set_test_case_running(value):

Figure 11: Output Methods Encapsulated in Output File (top) and Common Framework Methods Encapsulated in
Utilities File (bottom).

Another major change in the flat design implementation was the removal of the
action factory. As discussed in Section 3.3.1, the action factory caused parameter
obfuscation between the public API and the framework actions. By removing the factory
and linking the API to each individual action, we were able to remove the aforementioned
obfuscation, which rendered our code structure easier to follow and understand. In
addition, the code of the API functions became much simpler after the removal of the action
factory. As show in Figure 12, the public API now initializes each action object by calling its

constructor directly, without having to first inspect its arguments. Furthermore, the flat

34

design does not require each API method to call a centralized method and check for

exceptions, which improves performance by reducing runtime.

def Build(project, target, scheme):

Builds an Xcode project.

'project' is the path of the project folder to build.

'target' is the udid of the build target, either a connected device or a

simulator. Use 'pdoc.GetDevice' to find the udid in code.

'scheme' is the name of the project scheme to build with.

__perform_pre_operations()
build_object = BuildConstructor(project, target, scheme)
build_object.execute()

Figure 12: Public API Method for Building a Project Calling Object Constructor Directly

3.3.2.2 Design Drawbacks

Through the implementation of the flat design, we were able to address the issues
that we identified in Section 3.3.1. Still, there were some aspects that we had to sacrifice in

order to address these issues.

One of the major drawbacks from the flat design is the existence of some code
duplication in the constructor of the framework actions. Since we removed the base action
class, we no longer have a super constructor that takes care of argument parsing and
variable initialization. As a result, as shown in Figure 13, every action must parse the
arguments passed in. In addition, each action must also evaluate every variable that it
needs for execution. Some of these variables, such as the “caller” variable shown in line 52
of Figure 13, are common to all actions, and could have been abstracted to the base action

class.

35

class Build():
def __init__ (self, project, target, scheme):

Initialize the Build action object and parse the arguments.
'project' is the path of the project folder to build.

'target' is the udid of the build target, either a connected
device or a simulator. Use 'pdoc.GetDevice' to find the udid
lin code.

'scheme' is the name of the project scheme to build with.

project None:
BuildGatesException(output.format_fail_message(
'Project option must be given to action Build'))

self.project util.get_path(project)

target None:
BuildGatesException(output.format_fail_message(
'Target option must be given to action Build'))

self.target target

self.project_file_path, self.project_name
util.set_project_file_path(self.project, 'Build')

scheme None:
BuildGatesException(
output.format_fail_message(
'Scheme option must be given to action Build'))

;elf.scheme scheme

self.caller = inspect.stack()[2][3]
IndexError:
self.caller None

Figure 13: Constructor of Build Action Parsing Arguments and Initializing Variables

Another drawback of the flat design implementation is also related to the removal of
the base action class. In the object-oriented design, the base action included all the required
modules, and each action inherited the functions from it. Since the base class was removed,
every action must now include the modules that it needs, as shown in Figure 14. This

increases the number of individual dependencies, as shown in Figure 10, and makes the

36

code harder to refactor since a change in one of the modules would require modifying

every file that includes it.

re
inspect

Utilities util

Utilities output
Utilities.buildgates_exception BuildGatesException

class Build():

Figure 14: Build Class Including all Required Modules Manually

3.3.2.3 Final Thoughts

Despite the drawbacks, the flat design framework fulfilled all of our original
requirements. Itis flexible and reliable, which makes it easy to maintain and extend. It also
improves upon the drawbacks of the previous designs, which we discussed in previous
sections. Based on these reasons and discussions with our sponsor, we decided to keep the
flat design as our final implementation. In the next section, we will discuss how we

incorporated this design to the rest of our project.

37

4 Integration

Once the framework had been designed, the more significant task of implementing it
and integrating with the Intune team began. While we knew what the architecture of the
system would look like, we still had to make it easy for developers to learn, use, and add
tests to the system. In the following sections, we will explore the work that we undertook

to make our testing framework into a valuable part of our sponsor’s development process.

4.1 Testing Framework Implementation

One of the goals of creating the Python API was to implement an interface for
developers to interact with the testing framework. Among the requirements for this
interface was the ability to run all the tests in the codebase, run a subset of these tests, run
only the tests that failed in the previous run, and trigger a source code build using the
existing Intune build scripts. In order to encompass all of these features and allow for easy
expandability, we decided to implement a Python script, called “BuildGatesOrchestrator”,
and a shell wrapper, called “BuildGates”. By using this interface, developers can access the
features of our testing framework and run test cases, which will be described in detail in

Section 5.2.

The BuildGatesOrchestrator controls the selection and running of tests, as well as
reporting their results. By using the Orchestrator, developers can specify which tests to run
based on a series of filters. For example, they can select to run only component tests or only
unit tests by passing in the “-c” or “-u” flags, as shown in Figure 15. In addition to filtering
by the type of test, the orchestrator also supports filtering which test files or folders to run,

as also shown in Figure 15. This allows for an increased level of filtering granularity.

38

Finally, developers can select to run only those tests that failed in the previous run, making

it easier to debug and prevent regression in the codebase.

BuildGates — bash — 68x10 N
bash L
Victors-Mac-mini:BuilldGates wictor$ python BuildGatesO
-t /FolderWithTests/ -c -u

Figure 15: Running the BuildGatesOrchestrator and Specifying Which Folder to Run and What Type of Tests to
Execute

The BuildGates shell wrapper serves as the entry point to the BuildGatesOrchestrator.
It allows developers to invoke the orchestrator without having to explicitly use the Python
interpreter. In addition, the BuildGates script checks for proper environment variable
initialization, basic argument parsing, and, if required, running the Intune build scripts.

Figure 16 shows the different options available through the BuildGates shell script.

39

BuildGates — bash — 100x37
bash =

Victors-Mac-mini:BuildGate ./BuildGates -h

BuildGates [-u] [-c] [-t <test_path>] [-n | --no-build]

Display this help message and exit
Runs only unit tests
Ru only component tests
Runs in quiet mode. Only exceptions will be printed to the console
s Disables the loading spinner
-f, ——last-failures Re-runs the tests that failed in the prewvious run
-d, —-—-debug Print detailed output from all pro 5. A disables the loading spinner
Selects a single test file, or director: est files to run
no Does not build the source tree
-r, ——run-file <path> Ru he python file at given path without the test framework
-—hide-report vents the script from opening the HTML report upon completion. The repor
t will still be created.
-—playground Launches the BuildGates playground.
¥ictors-Mac-mini:BuildGates victor$

Figure 16: Help Output of the BuildGates Script Showing the Different Options Available

4.2 Test Organization

For our system to be valuable, it was critical for us to provide an easy and intuitive
way for developers to add and maintain tests. In order to do so, we organized each test case
into a separate file, and stored all related files under a common folder, as shown in Figure
17. By having this structure, developers can add new tests by creating a file inside of the
folder assigned to the project they are working on. If there is no folder for their project,
they can create a new one and add their tests to it. Due to the implementation of the
BuildGatesOrchestrator, developers do not have to specify that new tests were added; the
orchestrator will detect and run them automatically. In the example shown in Figure 17,

there are two project folders, AppWrapper and PQPTasks. All tests related to PQPTasks are

40

placed inside the PQPTasks folder. If new tests were to be added to the PQPTasks project,
the Python files would also be placed in the same location. If new tests for a new project
were to be added, a new folder would be created at the same level as the AppWrapper and
PQPTasks folders. In addition, all component tests related to the same project are placed in
subfolders inside the project’s folder. This is also shown in Figure 17, where there are three

component test folders under the PQPTasks directory.

| AppWrapper >)] init__.py & Create_Not...scription.js
| PQPTasks » B ENIIEIMCSCHOSTAE & Create_Simple_Note.js

| Component...iI0OS7_Suite » & Create_Sim...nd_Note.s
| Component_Tests_iOS8 » 2| Invalid_Test.jar

| Project >

SamplePolicies.plist

test_pqgp_t...0s7_suite.py

test_pqgp_tasks_ios7.py

test_pqgp_tasks_ios8.py

test_reset.py

test_wrap_application.py

| | |

Figure 17: File System Organization of Tests

Inside each test case file, developers have access to four main functions: BG_Setup,
test_unit, test_component, and BG_Teardown, as shown in Figure 18. The BG_Setup
function allows developers to specify which actions must be executed before the test starts.
These actions will be executed only once, and will affect all the tests within the same file.
For example, this function can be used to build any required projects, select a device for
testing, and deploy applications to the device. The BG_Teardown function, which serves as
a complement to the BG_Setup function, is executed only once after all tests have run. This
is intended to allow developers to clean up after their tests. For example, the BG_Teardown

function can be used to uninstall applications that were installed during the test. Finally, as

41

the names imply, the test_component and test_unit functions are used for running unit and
component tests. Although developers can add any test functions that they want to their
test files, test_unit and test_component are unique in that special flags can be passed to the
orchestrator to run only these methods. For example, if developers want to run only the
component tests of a file, they can pass the “-c” flag to the orchestrator. In this example, the
orchestrator would look for the test_component function in the specified file(s) and execute

them.

class PQPTasksTestsi0S7(BuildGatesTestCase):
project '$BUILDGATES/Sample_Tests_Directory/PQPTasks/Project/'
component_tests '$BUILDGATES/Sample_Tests_Directory/PQPTasks/Component_Tests_i0S7/'

def BG_Setup(self):
self.device = GetDevice(sdk=7)
self.scheme = GetScheme(self.project)

Build(self.project, self.device, self.scheme)
Deploy(self.project, self.device)

Launch(self.project, self.device)

test_unit(self):
UnitTest(self.project, self.device, self.scheme)

test_component(self):
ComponentTest(self.project, self.component_tests, self.device)

BG_Teardown(self):
Uninstall(self.project, self.device)

Figure 18: Test File Implementing BG_Setup, test_unit, test_component, and BG_Teardown

4.3 Implementing Continuous Integration

An additional step in integrating BuildGates with the Intune team was to set up a
continuous integration server that would periodically run every test in the system. This
server needed to pull all the code changes since the last run, build and test the new code
using BuildGates, and automatically send out emails reporting the results of the tests and
the names of the developers who made changes to the code since the last build. To
accomplish this, we set up a Jenkins server that included a number of plugins to assist with

the tasks that were required for every run.

42

This first involved setting up Jenkins on a Mac machine. The operating system of the
machine running Jenkins was important because the majority of the actions in BuildGates
utilize Xcode or other tools that are Mac dependent. When setting up a job on Jenkins, we
wanted it to automatically pull the most recent code from the Intune Git repository.
Although using Git as source control is not native to Jenkins, there is a Git plugin that was
easily installable and offered the ability to report all of the commits made to the repository
since the last build, as well as the individual who made each commit. Once the Jenkins job
was properly set up with source control, actually running BuildGates was done by
providing shell commands for the Jenkins server to execute. This script would essentially
call BuildGates after some initial setup. However, one of the issues we faced when trying to
use Jenkins to run BuildGates was that the process running the job did not seem to have the
ability to access the keychain, which is where the Mac operating system stores passwords
and identity information. Therefore, any time a project was built, it would fail because the
code signing identity located in the keychain was unavailable and the project would not be
properly code signed. To solve this, we needed to unlock the keychain by calling the

command shown in Figure 19 before calling BuildGates.

security unlock-keychain -p "password" ${HOME}/Library/Keychains/login.keychain

Figure 19: Test File Implementing BG_Setup, test_unit, test_component, and BG_Teardown
The security command itself is a command line interface to the keychain. The actual
command we wanted to run here was unlock-keychain, which needed the user password

and the location of the keychain to unlock.

43

The final steps we took with Jenkins were reporting the output of BuildGates and
emailing developers the status of each run. Since our framework already creates an HTML
file containing the results of all the tests executed in a run, we found that the easiest way to
report the output would be to make this HTML file viewable through Jenkins. This involved
installing an HTML publisher plugin that would take the file we generated, link it to its
associated build and give a URL that we could use to link to the HTML page. For emailing
developers after each build, the default mailer plugin that comes with Jenkins did not give
us enough functionality as it only sent email for every failed run instead of every run. In
addition, the email’s content was not customizable, which was a feature we were looking
for. Therefore, an email extension plugin was also installed that allowed us to trigger email
notifications for a variety of situations, not just failed runs. The new plugin also gave us the
ability to control the content of the email that was sent out. With all of these steps taken,
Jenkins turned out to be a very valuable way of automating periodic testing of the Intune

system using BuildGates.

4.4 Onboarding and Documentation

With the system itself in a deliverable state and having established the process for
running and writing tests, we were left with the question of how to help a new developer
learn to use our testing framework. This onboarding process would have to include
familiarizing developers with running the check-in tests, adding unit and component tests
to a project, and creating multi-app tests with the BuildGates API. While not all members of

the Intune team would need to know everything about the framework, it was still

44

necessary to adequately explain all aspects of the system in order for it to be used

effectively going forward.

The first step for us was to write comprehensive documentation, which covered
every user-facing aspect of the system. This involved providing information on getting
started with BuildGates, running tests, adding tests, and how to use Instruments for Ul
automation. This information was compiled in an OneNote notebook that was shared with
the team, and as developers began to try the system, we worked with them to address gaps

in the documentation.

Along with documenting the system, we also introduced some additional features
meant to help developers become familiar with the system. The first was a simple
execution mode, which allows users to execute a single Python file without using the test
framework. These files had none of the structural requirements of an actual framework
test, so they were well suited for experimenting with the BuildGates API. An example of a

simple script can be seen in Figure 20 below, showing the lack of syntactical overhead.

project '$BUILDGATES/Sample_Tests_Directory/PQPTasks/Project/'
device - GetDevice(sdk-8)
scheme - GetScheme(project)

Build(project, device, scheme)
Deploy(project, device)
Launch(project, device)
Uninstall(project, device)

Figure 20 Example of a simple test script

45

The second feature, based on a suggestion by a member of the Intune team and

shown in Figure 21, was a BuildGates Playground GUI that allowed users to try out API

actions without writing any code. It also allows users to export a basic test case with the

actions that they have run, bridging the gap between experimenting with the Ul and

writing a test. This GUI was not meant to be the primary approach for writing tests. Instead,

the goal was to provide a way to let people become familiar with the system before getting

caught up in the structural and syntax requirements of the testing framework.

8 00

BuildGCates Playground

Build

Deploy

Wrap

Launch

Unit Test
IComponent Test
Clear Keychain
Set User
Uninstall

Project

Output Name

App Name

Device

Scheme

Component Tests

Project is Wrapped

Provisioning Profile

Certificate Hash

Policies List

Username

Choose

Refresh

Load

Choose

Choose

Choose

Browse

Execute

Action Tips

Action History

| Reset

Select an action to get started!

Class Name

Test Case Name

Edit | Re-run |

Figure 21 The BuildGates Playground GUI

Export

46

The final, and most important, parts of our onboarding process were the Intune
team members with whom we worked over the term. By the end of our project, there were
several people who had become very familiar with the framework, each having written a
number of tests that fully exercised the provided capability. These people will be an
important resource for the team going forward since their hands-on knowledge will help
the rest of the team learn how to best use the BuildGates system. Between these
developers, our documentation, and the onboarding features included in BuildGates, we

can be confident that our system will be used correctly after our project has ended.

47

5 Conclusion

This report outlines the background information, fundamental approaches, and
integration steps that we used to create a check-in testing framework for the Microsoft
Intune team. This framework provides developers with a fairly simple interface to interact
with in order to test their code. It also plays a part in easing the transition to having all

Intune developers begin testing their own code.

Our system, although written entirely in Python, utilizes a number of different tools
to accomplish its goals. These tools include Xcode, Instruments, and i0S-deploy. The
amount of flexibility our system required in order to support the numerous types of tests
included caused us to explore several possible designs before settling on an API approach.
Once our system was built, we needed to provide means for easily integrating it with the
Intune team. This involved providing a simple to understand testing framework that
developers could use to run our API, organizing test files in an understandable structure,
and producing thorough documentation of how to use the system. Finally, we implemented
a continuous integration server to run our system periodically on a larger test set. This
allowed the system to detect if any bugs or failures were mistakenly added to the codebase,

and quickly report them to the developers if required.

The need for having a simple to use testing framework showcases the importance of
testing in software development, especially with large development teams that maintain
even larger codebases. Catching failures and correcting them as quickly as possible allows a

smoother development cycle and an easier to maintain codebase. We are confident that our

BuildGates system will provide all of these benefits to the Intune team and any other i0S

development teams at Microsoft in the future.

48

49
6 Bibliography

Abdullah, Shazron. ios-deploy. 2014. 23 November 2014
<https://github.com/phonegap/ios-deploy>.

About Python. 23 Novemeber 2014 <http://legacy.python.org/about/>.

Automating Ul Testing. 20 October 2014. 23 November 2014

<https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual /I
nstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.ht

ml#//apple_ref/doc/uid/TP40004652-CH20-SW1 >.

Berg, Allan. Jenkins Continuous Integration Cookbook. Packt Publishing, 2012.

Building from the Command Line with Xcode FAQ. 21 May 2014. 23 November 2014

<https://developer.apple.com/library/ios/technotes/tn2339/_index.html >.

daViega, Nada. "Change Code WIthout Fear: Utilize a Regression Safety Net." Dr. Dobb's
Journal (2008).

Dustin, Elfriede, Jeff Rashka and John Paul. Automated Software Testing -Introduction,

Management, and Performance. Addison-Wesley, 1999.

Duvall, Paul M., Steve Matyas and Andrew Glover. Continuous Integration: Improving

Software Quality and Reducing Risk. Addison-Wesley Professional, 2007.

Eliot, Seth. What is an SDET? 18 April 2010. Microsoft. 26 November 2014
<http://blogs.msdn.com/b/seliot/archive/2010/04 /18 /what-is-an-sdet.aspx>.

Instruments Quick Start. 20 October 2014. 24 November 2014

<https://developer.apple.com/library/mac/documentation/developertools/conceptual /in

strumentsuserguide/InstrumentsQuickStart/InstrumentsQuickStart.html >.

Kawaguchi, Kohsuke. Plugins. 24 October 2014. 24 November 2014 <https://wiki.jenkins-
ci.org/display/JENKINS/Plugins >.

Kohli, Aseem. Interview. 2 December 2014.

Meyer, M. "Continuous Integration and Its Tools." Software, IEEE (2014): 14,16.

50

Microsoft Corporation. Microsoft Intune. 26 November 2014

<http://www.microsoft.com/en-us/server-cloud/products/microsoft-intune/>.

Myers, Glenford. The Art of Software Testing. Wiley, 2004.

Savenkov, Roman. How to Become a Software Tester. Roman Savenkov Consulting, 2008.

Using Python on a Macintosh. 23 November 2014

<https://docs.python.org/2 /using/mac.html>.

