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Abstract

Muscular dystrophy is a condition that affects approximately 1 out of every three and a half to six
thousand men [1]. This condition severely limits an individual’s movement as they age, meaning
tasks and hobbies that they once were capable of doing, become more difficult as time passes.
As such, there is a need to provide musicians with muscular dystrophy a solution to restore their
ability to interact with their instruments. Our group sought to provide one potential solution to
this problem by working with an individual who has muscular dystrophy, and designing a way to
allow them to play the drums given their limited mobility. To do this, we designed a EMF touch
circuit which sends MIDI information to a computer to be able to play the drums or any other
electronic instrument the user wants. This circuit was then printed onto a PCB and put in a
portable enclosure so that the user could easily setup and use the final product. Upon delivering
this project to the user, they shared it was fully functional and easy to use. They wanted there to
be some more comfort, but overall they found it was able to do what they wanted of being able to
play music.

i



Executive Summary

Muscular dystrophy is a genetic disease that leads to loss of muscle strength over the course of

time. Due to this, those with the disease often have to give up activities that they once enjoyed

as they lose the muscle control required to do them. Playing instruments is a way that millions

of people across the globe express creativity, mitigate stress, and challenge themselves. Similar to

other physical activities, musicians with muscular dystrophy often have to give up their passion as

their condition worsens.

In order to give back this ability to some of these musicians, our group worked with a family

friend of our project advisor who has muscular dystrophy. Given that building a mechanism to

interact with a physical circuit would give limited access to the user and be difficult to troubleshoot

if it stops working, so we decided for a more accessible approach: MIDI. MIDI is the universal

communication standard for electronic music instruments to interact with music software, such as

GarageBand, FL Studio, Abelton Live, and more. Thus, the goal of our project was to design a

way for our target user to play the drums again through a MIDI interface. In order to accomplish

this goal, our group devised a set of objectives:

1. Determine Project Goals with Target User

2. Determine the User Interface Design

3. Construct a Prototype

4. Bring the Prototype to the Target User and Determine its Ability to Accomplish Goal

5. Construct a Final Prototype

We accomplished these objectives through an extensive research process, iterative design, and direct

communication with our target user. Prior to beginning this project, we explored ways that those

with limited mobility are capable of playing instruments. This involved viewing previous projects

that were similar in nature to ours, interviews with industry experts, and physical experimentation

with different approaches to the problem. When physically testing ideas, we came up with three

different solutions: sEMG, some form of analog gloves, and vision. sEMG would involve reading

the electrical signals from the users muscles (which are still present in someone with muscular

dystrophy) to create the MIDI notes. We determined this was not a great solution due to the
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irregular nature of nerve signals in the body. Vision also proved too difficult due to the fact it

requires large amounts of movement, such as in a VR setup, which would not be possible for our

target user. The final solution, some form of analog inputs from gloves slowly turned into the idea

of electromagnetic field (EMF) touch sensors.

Although our target user’s movement was limited, they were capable of moving their

thumb, index, and middle fingers with relative ease. To take advantage of this we designed a circuit

that took inputs from three EMF touch sensors and used them as inputs into an Arduino. The

signals were obtained using copper tape, which ran through coaxial cables into a circuit design

roughly to filter, amplify, and rectify the signal so that it could be output as either a DC on or

off that the Arduino could monitor as an input. The Arduino then converted the signals to MIDI

inputs for a digital audio workstation (DAW). Once we determined that our solution was functional

for our user, we designed a PCB for our circuit and a 3D printed hand rest/circuit mount for ease

of use.

When we finally felt confident in our final product, we traveled to our target user to

determine if it is intuitive and fun to use. When our user interacted with the pads, it was perfectly

responsive, which was a great sign. Additionally, our target user noted that the delay compared

to our original capacitive touch sensor approach was much better. However, the target user still

noticed some delay when doing successive inputs which we determined was due to a 20ms delay that

we implemented via code and forgot to change. Regarding the input interaction being comfortable

for our target user, they noted that the 3D printed hand mount was much less comfortable that

just the flat board. After playing for a while though, the target user noted that in the future they

would prefer a more comfortable way to interact with the project that makes sure their fingers

stay in the same spot. There are obviously things that we can and should improve over time, but

fundamentally it worked for their use-case.

While we have completed our original sought after goal, there are still some aspects of

the design we would have liked to improve on if we had more time. The first of which would be

addressing the issues with the circuit’s performance. We believe that adding some automatic gain

control could help with this issue. Additionally, we could make a much larger PCB with surface

mount parts, better tolerances, less sensitive component sizes, and cut up the board with identical

placement so it is almost like multiple separate boards in one. In making this bigger board, we could

also add 7 more sensors so there is one for every finger, and print another hand mount. Overall,
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we accomplished the primary objective of enabling the target user to be able to play the drums

through our EMF MIDI controller. Each iteration of the prototype improved upon the previous

version and our final prototype accomplished good sensitivity, relative low latency, and easy to use.
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1 Introduction

Muscular dystrophy is caused by a mutated gene which slowly interrupts the production of proteins

for muscular growth, which causes a progressive weakness and loss of muscle mass [3]. The mutation

in the dystrophin gene is either a deletion, specific mutation, or duplication. It is 8,300 to 14,300

times more likely to be present in boys, with 1:3500-6000 men having the mutation [1]. However,

women can still be carriers of the mutation while being asymptomatic, meaning they can give the

gene to their children. Some common symptoms are falling frequently, walking on toes, and delayed

growth in childhood. Around mid twenties is when symptoms can get more severe [3].

It starts when children are younger, often making it difficult to get up or sit down as well

as them falling over frequently [3]. Soon they are restricted to a wheel chair and basic tasks like

sitting up straight and sleeping become difficult. Even breathing becomes difficult and eventually

their heart will give out. It is truly a terrible condition.

Music is an important feature in many people’s lives but the loss of motor skills over time,

as seen in people with muscular dystrophy, can prevent a person from creating their own music

through playing instruments. The scope of our project is to create a MIDI interface that can be

easily interacted with by people with muscular dystrophy. In this section, we look to research

possible ways for people with muscular dystrophy to interact with a MIDI interface accurately to

allow for a consistent and precise music playing experience. The three areas we chose to explore

further are as follows: Radar/Vision, Gloves, and sEMG.

1.1 Background

1.1.1 Vision

Machine vision and radar could act as alternatives to traditional mouse and keyboard based com-

puter inputs. Human movement can be detected and mapped in 3D space using Ultra-Wide Band

(UWB)/mmWave radars or computer vision technologies. Then, these mappings can be processed

and classified into computer key presses. For the scope of our project, these mappings can be

processed into MIDI outputs.

Radars and machine vision sensors require zero force to actuate. Compared to traditional
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buttons, this is beneficial when the user has limited mobility and strength. They can also act as

analog inputs by measuring the direction and velocity of the user’s movement.

We looked into two studies on the radar. In both studies, a transmitter and a receiver

is needed. In one study, Yuzhang Zang used UWB radar to provide input for a video game. A

handheld radar transmitter and a fixed radar receiver provided time of arrival, power, and RMS

delay information. The UWB radar can detect hand movements in both the XYZ and rotation

axes. They achieved a median spatial accuracy of 4cm [4]. The second study by Santhalingam et

al. used mmWave radar to classify American Sign Language (ASL) for interacting with smart home

devices. They used two fixed mmWave radars to record spectrograms from the signals reflected

by the user’s hand when the user performs ASL words. These spectrograms and words were then

used to train a neural network. They achieved a maximum classification accuracy of 80% without

additional signal processing and 95% with additional signal processing. The disadvantage of this

method is the delay caused by the necessity to capture spectrograms for a fixed length of time

(4 seconds) before feeding it into the neural network and the processing overhead caused by the

neural network itself [5]. We tested the accuracy of this method by passing their data through our

own neural network and achieved around 70% classification accuracy. However, we noticed that

the data variation is large between individual users so the neural network needs to be trained with

large amounts of individualized data to suit a specific user.

Figure 1: Training Result of Testing mmWave Data.

Compared to radar, motion tracking technologies using cameras are a more proven method
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of human-computer interaction. Traditionally, motion tracking systems use markers that attach to

the user’s body. Software can analyze the spatial relationship between the markers in camera

footage. However, many devices now use infrared dot projectors to project “virtual markers” onto

the user. Devices such as Microsoft Kinect use this technology. In recent years, IR projectors are

also used in smartphones and laptops to map the user’s facial features for authentication purposes.

We looked into Leap Motion Controller as a potential solution to track finger movements using

machine vision [6]. The Leap Motion Controller projects a matrix of infrared dots onto the user’s

hand and then maps the dots in 3D using stereo cameras. It is designed to be used to track hand

movements for Virtual Reality gaming. A study by Ganguly et al. have looked into the accuracy

of the Leap Motion Controller in comparison to the marker based tracking system when measuring

finger movements of a real human user. They concluded that while the Leap Motion Controller

produced very good accuracy when measuring finger movements while the hand is fixed (0.5mm),

its accuracy decreased by 5mm on average when the hand was moving constantly [7].

In conclusion, the Leap Motion Controller can potentially provide more consistent results

due to its low latency and relatively high accuracy. It could also be less sensitive to interference

since its sensing distance and Field of View is less than that of the radars. However, the Leap

Motion Controller relies on proprietary hardware and software and requires line of sight to the

objects being tracked. As an alternative, we could also explore a combination of the two radar

methods by processing the mmWave radar data spatially to achieve lower latency compared to the

machine learning method and higher accuracy than the UWB radar.

1.1.2 Gloves

While the previous examples relied on some form of vision to see the movement of a hand, this

third solution involves using physical sensors to measure movement such as accelerometers, resistors,

capacitors, and more. This solution has many different approaches and there is significant research

that has already been done. We will discuss various solutions that have been made in the order of

how close to a final product they are.

The first is a study that was published Jul 25 of 2021. This study looked to see the

effectiveness of placing strain gauges in gloves to measure movement [8]. Strain gauges change their

resistance depending on how much they have been either stretched or compressed, which can then
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be used to create a corresponding voltage and as such a signal. There has been work into creating

soft strain gauges that can be put into a glove in recent years vs. a stiff metal gauge. This study

was able to find that after placing these gauges in a glove they were able to measure resistance

changes, however with a latency of around 0.5s, which is significant [8]. Thus while this was a

decent study, it needs much more work.

This leads to the second solution that two different types of gloves have used. They

attached strings to the fingers of a glove and used a spring loaded potentiometer connected to

it. There was one made by an independent designer named Hunter Scott and one on AliExpress.

While the one on AliExpress looks promising, it lacks serious code backing it and details for its

operation, so we decided not to pursue it as a viable option [9]. The design by Scott is much more

rudimentary but clearer in its creation and operation. He chose to use joystick potentiometers due

to their ability to be spring loaded and retract, allowing for measurements to be taken forwards

and backwards, as well as the string being able to reset its position. He then used these to create

a voltage divider and fed the input into an Arduino to read the value [10]. While it was rough in

execution, the higher level operation of the gloves was effective at being able to read motion, and

should be a consideration for how to create gloves.

The third most complete implementation is the one by CyberGlove. The intent of this

glove is to be used with motion capture to operate things such as robot hands. They have their

own patented technology as well as wireless functionality [11]. Unlike the previous examples, this

was a finished commercial product. Their newest model, the CyberGlove III, has up to 22 sensors

to measure the palm arch, finger movement, and an external camera for motion tracking [11]. The

problem is that their product does not have extensive details for its operation. Our team reached

out to them for further details but we have yet to hear back.

The most complete solution that we have found are the Mi.Mu gloves. These gloves have a

fully integrated hardware and software that allows a user to play music by just moving their hands.

The gloves have buttons for changing modes, an IMU to measure the motion and rotation of a hand,

stretch sensors in the fingers to be able to get button pressing. The gloves have a microcontroller

that communicates over wifi with their software (or plugin) to make music [12]. Thus these gloves

are fully capable of doing what is desired for our project, but we are not sure of their sensitivity

and if they are able to be operated using the small amounts of motion that are available to someone

with muscular dystrophy. Additionally, they are not yet a released product and are on preorder,
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so the real world effectiveness is to be seen. We reached out to their company and are currently

waiting for a reply.

Thus for analog gloves there have been four different attempted solutions: metal based

strain gauges, fabric based strain gauges, spring loaded potentiometers and strings, and IMUs/accelerometers.

Each of these has their own pros and cons but learning or using the Mi.Mu glove seems to be the

most viable option for the analog glove path.

1.1.3 sEMG

Electromyography (EMG) is a medical procedure used most commonly to determine the condition

of muscles in the human body and the response those muscles have to impulses from nerve cells or

motor neurons [13]. Nerve cells cause muscles to contract via small electrical signals (myoelectric

signals) which allow the human body to move as expected. In order to perform an EMG, small

needles called electrodes are inserted into the muscles through the skin and then these myoelectric

signals are displayed onto an oscilloscope [14]. The signals that are gathered from this procedure can

help medical professionals diagnose conditions such as: amyotrophic lateral sclerosis (ALS), carpal

tunnel syndrome, cervical spondylosis, and muscular dystrophy [15]. Although EMG is an accurate

way to diagnose these conditions, it is extremely invasive due to the fact that electrodes are placed

inside of the body. A similar method of extracting myoelectric data is surface electromyography

or sEMG which uses an area electrode that is placed on top of the skin. Surface electromyography

is used most commonly in areas such as prosthesis (artificial body part) control, “...ergonomics,

movement and gait analysis, and sports medicine.” [16].

For the scope of our project, we determined one of the areas of our research should be

directed towards the use of sEMG to control a MIDI interface. We were interested in this area

of research due to the fact that in people with muscular dystrophy, nerve impulses still reach the

muscles but don’t cause the same contraction within the muscle when compared to someone without

the condition [17]. This fact inspired us to research the use of sEMG further as we expect a normal

electric output on an oscilloscope via a sEMG from a person with muscular dystrophy.

In our initial research, we found projects online that carried similar goals to that of our

project. For example, an electrical and computer engineering project at Cornell University saw

a student make a simple game using a microcontroller and a TFT display [18]. The inputs are
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two signals (on the left and right arm) from an sEMG that control a sprite’s movement in a one-

dimension plane. From the project website, this process was accomplished by filtering the sEMG

from each arm through a bandpass filter with a low pass cutoff of 500Hz and a high pass cutoff of

10Hz. Then, the signal is amplified with a gain of 100 before being sent into a microcontroller and

then the game data being outputted onto the TFT display . This project shows off the potential

use of sEMG signals for game/entertainment uses but does raise some concerns. The project page

provides a few videos of gameplay and signal outputs. When analyzing the gameplay video, there

are a few moments when the user provides a nerve impulse by contracting the muscle in one of

the arms and the game either doesn’t register the movement or double counts the movement. It is

difficult to determine if these discrepancies are due to poor signal quality or issues with the game

code, but it provides insight into issues that may arise when using a sEMG for MIDI applications.

The next project that we researched related directly to the scope of our project. A project

posted by user johnwmillr to the DIY website intructables.com saw a sEMG signal be used to

control a MIDI interface. The project overall consists of two halves. The first half involves the

construction of a nerve impulse amplifier circuit proposed by Linear Technology on the datasheet

for their LT1167 instrumentation amplifier chip. The second half uses an Arduino to convert the

signals from the first circuit to MIDI notes and send them to an interface. The final project results

in musical note volume and pitch output corresponding to nerve impulse caused by the contraction

of either the right or left arm respectively [19]. Our group found a very similar project to this on

the website backyardbrains.com which uses a custom made PCB called the Muscle SpikerShield

Pro to measure up to six sEMG signals and send them directly to an Arduino to be converted to

a MIDI output [20]. These two projects are very similar and thus yielded similar results. Both

project pages provided videos of their final results and it can be seen in both videos that although

an output sound is recorded corresponding to muscle contraction, accuracy seems to be an issue.

For example, in the instructables project, johnwmillr states in his video that although he can

somewhat control the volume with his right arm to a degree of accuracy, the pitch doesn’t stay

constant because the voltage output of the sEMG is constantly changing. The output of this project

does provide sound but this sound is not directly musical and is rather just a collection of random

noise that begins and ends corresponding to the output of a nerve impulse. Similarly, in the video

provided by backyardbrains, they choose to represent their project in the form of a MIDI drum

kit. Although some beats do line up with the nerve impulse/muscle contraction, there are audible
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“phantom beats” that are played even though no visible contraction was provided. Similar to the

Cornell project, these two projects provide insight into potential accuracy issues when using sEMG.

This can be a cause for concern regarding our project as our goal is to provide an accurate musical

interface for people with muscular dystrophy and if there are accuracy issues in this process, the

user could lose some of the authenticity and precision of playing a real instrument.

The projects we chose to research inspired us to do some physical research of our own. For

our research, we chose to build the nerve impulse amplifier circuit provided by Linear Technology

and utilized by johnwmillr. The goal of building this circuit was to determine the quality of the

output signal to see if we could improve its accuracy for potential use in our project. For this

circuit, we used the list of materials seen in 1.

Component Quantity

LM358 1

LT1167 1

15nF Capacitor 1

0.01uF cap 1

0.47uF cap 1

100 resistor 1

6k resistor 1

10k resistor 1

12k resistor 1

30k resistor 2

1M resistor 2

Audio Jack 1

sEMG Nodes 1

Table 1: Components used for first sEMG experiment

After constructing this circuit seen in Figure 2, we hooked it up to an oscilloscope and

viewed the output seen in Figure 3 after continuous muscle contraction in Luke’s right arm.
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Figure 2: The sEMG circuit.

Figure 3: Output of the sEMG Visualized on an Oscilloscope.

The output of this circuit provides a clear indication when a muscle is being contracted/nerve
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impulse is being sent, but that signal is by no means “clean”. It could be possible that the messiness

of this signal has to do with some of the inaccuracy seen in the above projects but it is hard to tell.

If we were to use the sEMG for our project, we would want to “clean up” the signal by possibly

using a schmitt trigger or digital signal processing so that we see either a low or high value which

we can then use as a definitive input to our system.

Overall, the use of sEMG as an input to our project is an exemplary candidate. As seen in

the example projects, its use for a MIDI interface is possible and has been done before. Although

it can be done, before we decide to use it in our project, we need to determine if the inaccuracies

can be eradicated so as to provide our users a precise and enjoyable music making experience.

1.1.4 Takeaways

After researching these three potential solutions for designing a MIDI input device, we gained

some useful insight. First is that the machine vision method is more repeatable and produces

less latency than the mmWave radar approach. Analog gloves possess less complexity and less

latency than the machine vision approach; however they are application specific. We could adapt

the machine vision software to different instruments, but the analog glove is limited to a single type

of instrument. sEMG is invasive due to the amount of sensors needed to be attached to the user’s

body. It is also difficult to acquire accurate and consistent signals using sEMG. In the next section,

we conducted preliminary tests on the three approaches to determine a single or a combination of

possible solutions.
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2 Preliminary Test Results

2.1 Vision

As found in the background research section, we determined that the Leap Motion controller was

the best option due to its complete hardware and software implementation. To use it, a few pieces

of software and drivers were needed. First was installing Ultraleap Tracking, which is both a tool

and the driver used for controlling the Leap Motion when it is connected to a computer over USB.

It is able to take the readings from the Leap Motion and feed it into other pieces of software and

is able to provide accurate motion tracking. It also has some customization such as choosing how

the Leap Motion is being mounted (tabletop vs. head mounted vs. above display). Now that the

computer can grab readings from the Leap Motion, it needs in some way to be able to convert this

into MIDI information. Two pieces of software have been developed for this reason: MIDI Paw

and Glover. We first tried using MIDI Paw and while it functionally can do many different things,

it is not as refined and polished as Glover, and as such we decided to use Glover instead. In this

software you can select various inputs, which include other devices like their own Mi.Mu gloves,

select your movement type from the device, then select a MIDI control to go with that movement.

You can then use its output to go into any DAW (digital audio workspace) that you desire.

Figure 4: The Leap Motion on a Desk Being Used.

The Leap Motion was placed on a desktop and selected in this software. We began by

doing simple tests, such as moving the hands up and down to adjust volume, and side to side for
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a filter. All of these things worked which was great. Proceeding this, we wanted to move to more

nuanced hand movements, which are more realistic for someone with muscular dystrophy, to control

singular note actions. This unfortunately did not work out as well as expected. First, it is unable

to do sustain and release, and second it is extremely hard to tune. You can have to manually set

values for where your fingers need to be to trigger a note on and this changes based on the height of

your hand above the controller. Additionally its reading accuracy is not as good as it needs to be,

and leads to a lot of mishit notes because of both the controller and the fact that when trying to

move individual fingers you often move other fingers as well, which adds more to the error. There

is another mode in the Glover software that allows for the controller to play set chords or scales

and assign these to different movements. This, while usable, leads to all the middle notes being

played, sort of like a slide whistle.

The main results from this part of the research is that the Leap Motion is good for doing

analog movements for filters, volume, and more, and may work in combination with the hall effect

sensor solution. However, as a standalone musical instrument, it is not adequate for what this

project demands.

2.2 Analog Gloves

The analog gloves we researched all depend on some form of mechanical sensors that measure joint

movements of the user’s hands. The disadvantage of mechanical sensors is that they require some

actuation force in order to produce an output. Because the analog gloves mentioned in the previous

section are difficult to obtain, we could not verify the feasibility of using mechanical sensors with

muscular dystrophy. Therefore, we decided to test a hybrid approach of the radar and the analog

gloves. We constructed a prototype that uses magnets that are attached to gloves and a keyboard

shaped hall effect sensor array. When using the device, the user wears the glove and places each

finger above one hall effect sensor. And an input is registered when the magnet is at a certain

proximity to the hall effect sensor. The input is then converted to MIDI notes using an Arduino

microcontroller and sent to a computer running a Digital Audio Workstation (DAW).
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Figure 5: Hall effect sensor keyboard prototype.

Compared to radars, the hall effect sensor is more accurate and consistent because the

distance detection doesn’t depend on complex algorithms. Rather, hall effect sensors produce an

analog voltage output directly correlated to the distance of the magnet from the sensor. Compared

to mechanical sensors, the hall effect sensor does not require any actuation force and its sensing

distance can be adjusted in firmware.

During testing, we found out that the hall effect sensor keyboard requires very little finger

movement and the note it produced is repeatable. However, because the short actuation distance is

required, it is difficult to produce a velocity output using the method commonly found in traditional

MIDI keyboards, where the velocity is determined by the time difference of the keypress passes

through two thresholds. We also found out that the hall effect sensor approach is not customizable

and is best used for designing instruments that mimics a traditional and signal purpose instrument.

2.3 sEMG

Although sEMG was an exciting idea that has been used to interact with MIDI in the past, our

group decided to not pursue this solution any further. Initially, the group had hoped that although

the sEMG signal was inconsistent and complex in both amplitude and frequency when visualized

on an oscilloscope, it could be cleaned up. The plan was to use a half wave rectifying circuit to
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get rid of the negative component of the signal, then use an envelope detector to focus on the

amplitude of the peak of the signal, and then finally to use a schmitt trigger to produce a clean

square wave. Unfortunately, before constructing this the group realized that even with all of this

signal processing, the signal would not be of use in a MIDI interface. When interfacing into MIDI,

notes are produced with two different variables —- a pitch and a velocity. When processing the

signal as planned, a schmitt trigger would allow for an analog on or off at a predetermined voltage

level which isn’t complex enough to provide either pitch or velocity data. The group realized that

an sEMG would only be able to be used as an on or off input to the system, which when trying to

play an instrument besides a drum is not complete enough. For this reason, the group determined

that this method of interfacing with MIDI should not be pursued any further as there are better

solutions.
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3 Methodology

The goal of our project is to successfully design and produce a device which will allow musicians

with muscular dystrophy to practice their music. The device will interface into a MIDI environment

which will allow for various instruments to be played. Additionally, this device will need to be

accurate and comfortable enough to adequately provide an enjoyable experience for the user. In

order to achieve our project goal, our group developed five objectives. Figure 6 is a graphical

representation of our objectives.

Figure 6: Objective flow chart.

3.1 Objective 1: Determine Project Goals with Target User

In order to successfully complete this project, we first need to identify a specific target user. Al-

though our project is targeted towards all musicians with muscular dystrophy, we need to identify

a specific target person to design our device around. Through our research process, our group met

with Tim Yates, the Head of Research and Innovation at Drake Music which is an organization

that pioneers the use of accessible music technology for people with disabilities [21]. Tim, who

has worked on numerous design projects similar to ours, informed our group that it is pivotal to

work closely with a specific target user from the start of the design process. He mentioned that it

is extremely easy to design something that is technologically advanced but has no benefit to the

target user and that our group should avoid this by practicing co-design. From this advice, our

group plans on centering our project design around a specific individual with muscular dystrophy

in order to work with them throughout the entire process. Our project advisor, Professor Steven

Bitar, invited us to participate in this MQP project as he has a family member with muscular

dystrophy who happens to enjoy making music. Because of this, we plan on designing our project
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around the music making preferences of this individual. Before we begin the design process of our

device, our group plans on meeting with this individual to determine their physical limitations as

well as their musical preferences. Their musical preferences are important in the design process as

our group needs to determine what instruments the user wants to play, the precision at which the

user wants to play them, as well as how they want to interact with the instrument (ie. pressing

keys on a keyboard, strumming a guitar, etc). In this meeting, our group will bring a very basic

MIDI interface designed from the preliminary test results of our research. The purpose of this is to

provide the individual with a sense of direction when understanding what a MIDI interface is and

modified to fit the constraints of their condition. By meeting with this individual at the beginning

of our project, our group will be able to design a project that more directly serves the needs of a

specific user which could be applied to other users in the future.

3.2 Objective 2: Determine the User Interface Design

Once the group has determined the specific goals of our project by communicating with the target

individual, we can begin designing. In this stage of the project, the group will use the information

gathered in both our initial research and objective 1 and use it to determine a potential solution.

The group will perform both literature and physical research in order to determine the best input

into the MIDI interface that will accomplish the project goals set with the target individual.

3.3 Objective 3: Construct a Prototype

Once the group has determined the user interface for the design, the fabrication process can begin.

The goal of this objective is for the group to build a functioning prototype that incorporates the

design features set by the individual in objective 1 through the interface design determined in

objective 2.

3.4 Objective 4: Bring the Prototype to the Target User

Upon the completion of the prototype, the group needs to test its actual function compared to

the desired function set by the target individual. For this part of the project, the group will

meet in person with the target individual and have them use the prototype. From this, the target
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individual will be able to inform the group on how the prototype works for them and how it compares

to the project goals set in objective 1. If the target individual determines that the prototype

accomplishes all of the project goals and desired aspects, the group can move on to building a final

product. However, if the target individual doesn’t feel that the prototype successfully accomplishes

the project goals, then the group will begin an iterative process. In this iterative process, the

group will go back through objectives 2, 3, and 4 in order to determine a new user interface,

construct a prototype, and have the target individual test the prototype until the proposed solution

accomplishes all of the project goals.

3.5 Objective 5: Construct a Final Product

Finally, once the target individual approves the prototype, the group can begin constructing a

final product. In this part of the project, the group will use the same project characteristics that

were approved by the user, but this time will construct something more presentable for the target

individual. This will be a completed product that is user friendly, compact, and durable. Through

the completion of these objectives, the group hopes to accomplish the project goals set by Bitar

and our target individual.
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4 Initial Project Preparation

When beginning this project, we determined a set of objectives that we wanted to complete

in order to successfully accomplish our project goal. We initially planned on meeting with our target

user straight off the bat in order to determine the goals they wanted us to accomplish in order to

accommodate their needs. Upon discussing this plan further with Professor Bitar, he agreed that

this meeting was important but proposed to us a different way of approaching it. Unfortunately,

there was going to be some delay in when we would be able to meet with our target user and

additionally, the wide variety of methods of approaching this project might be overwhelming to

learn about all at once. Because of this, Professor Bitar tasked us to spend a few weeks constructing

the best prototypes of the best methods of interfacing into MIDI that we could in order to arrive at

our meeting with our target user with some ideas that they could base their project goals around

something they have already seen and interacted with before. We agreed with this idea and for the

next few weeks, began developing three interfacing methods. We did so first by speaking to people

who have done research and work in similar topics and then after using the principles we learned

to create our first prototypes.

4.1 Interviews

4.1.1 Meeting with Drake Music

Our first interview was with Tim Yates, a member of Drake Music. Drake music works to help

people with disabilities play music using technology [21]. During our meeting with Yates he gave

lots of insight into the actual process of designing one of these instruments. He believes that to

properly make the instrument, the target user should essentially be a co-designer. With them

making suggestions and constant feedback as you are creating the product. It is often easy to

design something technically impressive and cool to use, but when it is actually in the hands of

the target user it can be completely unusable. He believes that creating an instrument that is not

intrusive and has feedback from someone with muscular dystrophy would be a great way to continue

to create our project. As such, we made sure that we could show our design concepts to someone

with muscular dystrophy (see later section on the target user’s interview).
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4.1.2 Meeting with Professor Barton

With our further insight into how to work with a target user, we also wanted to speak with a music

professor at the school who deals with music technology, which is how we came in contact with

Scott Barton. When we spoke with him, he spoke of the importance of how you interact with an

instrument. When someone traditionally plays a piano or a guitar, for example, hitting one string

creates a single note. But in the modern era, technology allows for a more abstract and generative

approach to music, where say you may only want control over a melody and let a computer create

a chord progression. He also showed us some of his work he has done, and one of which was a self

playing drum set that can be controlled with MIDI.

4.1.3 Meeting with Mimu

One possible solution in our initial research is the Mimu gloves. Mimu gloves use resistive sensors

made of conductive fibers for measuring bends in fingers and IMUs to measure the movements of

the hands and wrists. It also provides haptic and visual feedback. The sensor data is sent over wifi

to a computer and processed into MIDI inputs using the Glover software.

In order to determine the feasibility and design of the Mimu gloves, we met with Adam

Stark who works at Mimu’s software team. We explained to Adam the scope of our project and

our progress so far. Then we asked him about the capabilities of the Mimu gloves.

From the interview, we learned that the Mimu gloves are sensitive to small finger move-

ments for all fingers except the thumbs, and the IMUs are sensitive for determining the hand

orientations. However The Mimu gloves are not suitable for our target user because wrist move-

ments will be very difficult to measure if the hands are placed on a desk and the Mimu gloves are

currently not in production due to supply chain issues.

Adam also suggested we look further into the Leap motion controller for detecting finger

movements. To solve the low sensitivity when using the leap motion from above, he proposed either

to place the Leap motion controller under an acrylic surface or building a sling system to support

the hands. He also mentioned TouchKeys and Genki wave rings [22]. TouchKeys are capacitive

sensors that can be placed on top of piano keys which measure the player’s hand location on the

keys. Genki wave rings are bluetooth MIDI controller rings containing IMUs that can be worn on
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fingers.

4.2 Initial Designs

4.2.1 Hall Effect/Arduino Capacitive Touch

The Hall effect sensor keyboard prototype shown in Figure 5 was attached to a computer mouse

shaped palm rest for ergonomics. Hall effect sensors were placed under where the user’s fingers

would naturally rest. The nitrile glove was replaced with a fabric glove with circular magnets

attached on each finger tips for re-usability.

Figure 7: Hall effect sensor and glove prototype.

The same Arduino code from the first prototype was used. The code first checks the

voltage output from each Hall effect sensor and converts them to an 8 bit value. It then sends the

corresponding MIDI note for the sensors with readings above a set threshold through USB to a

computer running a DAW. The pentatonic scale was used since there are only five hall effect sensors

on this prototype.
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Figure 8: Hall effect sensor and arduino schematics.

We tested the device by playing a melody. Although the Hall effect sensors performed well

in terms of latency. We found it to be difficult to place fingers above the sensors precisely due to

the narrow field of view of the sensors. This may be especially difficult for our target users. The

magnets also caused the fingers on the glove to attract to each other which causes difficulties when

storing and putting on the glove.

To improve on these drawbacks, we tested capacitive touch sensors. Compared to Hall

effect sensors and gloves, capacitive touch sensors provide direct tactile feedback to the user, thus

making positioning the fingers easier. Without the bulky glove, it is also easier for the target user

to see the placement of their finger in relation to the capacitive touch pads. It also retains the user

interface advantages of the Hall effect sensors since it also requires no actuation force and very little

movements.
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Figure 9: Capacitive touch sensor pads and velcro base plate.

The touch sensors were constructed using copper foil tapes on top of velcros as seen in

Figure 9 . The sensors were then placed based on the target user’s hand size on a 3D printed plate

covered with velcro. An additional pad for grounding the user’s palm was added because through

testing we noticed the capacitive touch sensor produced less latency when the hand was capacitively

coupled to the Arduino ground.
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Figure 10: Capacitive touch sensor and arduino schematics.

Figure 10 shows the connection between the Arduino and the capacitive touch sensor pads.

Each capacitive sensor and series resistor forms an RC lowpass filter with the input voltage being

the send pins and the output being the receive pins. Each pad pin represents one of the two plates

of a capacitor. The user’s hand forms the other plate and is capacitively coupled to ground through

C1.

We modified the Arduino code with the “CapacitiveSensor” library which replaces the hall

effect sensor detection section [23]. The library detects touch by sending a 5V step from the send

pins and measures the rise time on the receive pins. The two pins are always at the same voltage

when the pads are not touched, therefore the rise time is zero. When the user touches the pad,

the rise time can be calculated with tr=2.2RC. The library takes multiple rise time samples for

accuracy and converts the rise time measurements to a 8 bit integer. This enabled us to use the

same threshold detection and MIDI code.

Depending on what instrument is chosen within the DAW, the capacitive touch MIDI

controller can be operated in two ways. If an instrument with sustain, such as a pipe organ, is

chosen, the user can hover their finger above the touch pads and play the notes by touching the

pads. If an instrument without sustain, such as drums, is chosen, the user can either play using

the same method or the user can place their fingers on the pads first and play by lifting fingers and

hitting the touch sensors again.

Through testing, we found capacitive touch sensors to be more user friendly than Hall

effect sensors. It was very easy to play a melody or a drum beat with the first method. However,
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we noticed a significant delay when testing the second method of playing. This is caused by the

Arduino having to measure the rise time of all sensors when all fingers were placed down. In order

to decrease rise time, we initially tried to decrease the resistance from the initial 680K to 300K.

This resulted in less delay but also reduced sensitivity. We noticed that the sensitivity improved

when the other hand was placed on the laptop, thus we added a pad to ground the palm of the

hand through a 47nF capacitor to mimic the capacitance between the Arduino’s ground and the

laptop chassis.

Since an Arduino can only run programs sequentially, another way to solve the latency

problem is to use less sensors per Arduino. This would enable multiple rise time measurements

being taken simultaneously. Through testing we concluded that three or less sensors per Arduino

produced acceptable delay.

4.2.2 Analog EMF Touch Sensor

Due to the issues we were having regarding latency when using the Arduino directly for the capac-

itive touch sensors, we met with Professor Bitar who proposed to us that we use an analog circuit

that outputs into the input of an Arduino. In order to complete this task, we wanted to re-use

our copper tape strips that we had setup initially for the Arduino touch sensors. In order to do

this, we first put a probe on the end of a wire attached to one of these copper strips and viewed an

oscilloscope when a finger touched down on the pad. When contact with the pad was made, a 60Hz

1V peak sine wave was seen on the oscilloscope. From this, we knew we wanted an approximately

3.3V or 5V DC output as these are nominal voltage values used at inputs into an Arduino. In order

to do this, we first would send our input signal from the copper strip into a unity gain buffer in

order to isolate the signal into a new stage of the circuit with a low impedance, then we would use

an envelope detector to half wave rectify the signal and then charge/discharge a capacitor in order

to receive a closer to DC threshold that the signal would fall between. Then, using a comparator

circuit, we would set a threshold below the lowest value our capacitor discharged to and then have

that comparator output a DC voltage. In order to test if this circuit worked, we first constructed

it in Multisim as seen in Figures 11 and 12.
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Figure 11: The schematic of our circuit seen in Multisim.

Figure 12: Output of our simulated circuit as seen on an oscilloscope.

When simulating this circuit, it performed how we expected it to. Looking at Figures 11

and 12, the blue signal is the input into the whole circuit, seen at the output of S2. We simulated

this with a 60Hz 2V peak source that would pass through a 1M ohm resistor, simulating the human

body, and then traveling in parallel to either the input of an LM358 Op-Amp or a diode with its

anode attached to ground in order to somewhat half wave rectify the signal even before the unity

gain buffer. Then, after passing through the unity gain buffer (seen as the green signal on the

oscilloscope), the signal would pass through the envelope detector (seen as the orange signal on the

oscilloscope). The output of the envelope detector was then sent into another LM358 setup as a

comparator with a threshold set (using a voltage divider) on the inverting input to be a little less

than the minimum value of the envelope detector. Then, using another voltage divider, the output

voltage of approximately 3.3V was achieved. Although this circuit simulated perfectly with our
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chosen component values and the LM358 chips, when we went to build this circuit and simulate it

in real life, we ran into an issue. When using this circuit, our envelope detector would not charge

an discharge the capacitor around the peaks of the input signal, instead it was sitting around 0V

and then charging to a few millivolts before discharging negatively. We were extremely confused

as to how this was happening and reached out to Professor Bitar for some insight. Professor Bitar

suggested that the LM358 may not have a high enough input impedance (around 10M ohms) for

our circuit to work as desired so in order to mitigate this, he proposed that we use a MCP6002

chip which has an input impedance of 101̂3 ohms. When we substituted this op-amp chip into our

initial circuit, it began to function as desired and we decided to then hook it up to the Arduino to

test it further. Upon doing this we found that when touching the copper pads to input into the

circuit, it functioned well, however, if the user were to touch areas like ground or the laptop that

the Arduino was plugged in to, the circuit would trigger. This was extremely problematic as not

only was the circuit not functioning as we desired, but this would not provide a satisfying music

making experience for the user. We were once again in a situation where we were unsure with how

to solve this issue but luckily, in our next scheduled meeting with Professor Bitar, he proposed

a new circuit to us. Professor Bitar had modified our initial circuit to produce the schematic in

Figure 13.

Figure 13: Schematic of the modified circuit.

When testing this circuit with the Arduino, it performed how we wanted and most im-

portantly, didn’t have the issue of triggering when ground was touched. Although this circuit

accomplished what we wanted, we didn’t have time to replicate and build more for other fingers

in order to use it for testing with our target user, but we were confident that testing with just the

Arduino touch sensors would provide us with enough feed back before we decided on continuing
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down this path.

4.2.3 Leap Motion

Another path our team explored was the use of the leap motion controller. The previous section

in Vision delves into our initial experimentation with it, but we wanted to further explore its

capabilities with it. Our first step was to purchase the more advanced leap motion 2, which offers

better sensing, a wider viewing angle, and a smaller size (and from now on I will just say leap

motion but am referring to the 2nd version).

Figure 14: Comparison of the leap motion (rear) and the leap motion 2 (front) [2].

To further improve the testing, we wanted to make sure that the leap motion was positioned

in a way for optimal sensing. Our two design ideas for this were to place the leap motion on a tripod

facing the user’s hands so that it gets a stable, wide angle aerial view and to create a head mount to

allow for a VR style view for the camera. The first option had difficulty recognizing the hands due

to the distance of the camera to the hands, so that idea was scrapped fairly quickly. The second

option was more promising, since it was close to the user’s hands and has a symmetrical view of the

hands. The initial testing for this was promising, but it seemed to be having accuracy issues. What

we discovered was that it did not like having hands flat on a surface, it in fact preferred facing

inwards (as if you were about to clap). The more serious issue was that the readings from the

headset are with reference to the headset and not the hands relative to their environment. What

this means is that if the user turns their head slightly or forwards/backwards, it sees the hands as
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“moving.” What this translates too is getting changing inputs from just simple head movements.

Figure 15: Leap Motion 2 mounted to a helmet for a VR view of hand movement.

Additionally, the sensitivity of the leap motion is variable and it is not consistent, which is

the opposite of what you would want out of a controller. What all of these observations had led us

to believe was that the leap motion has potential, but would not be a right fit for this application.

This was confirmed with our meeting with the target user.
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5 Determine Project Goals with Target User – Objective 1

In order to successfully complete our first objective, we needed to meet with our target user to

determine the goals of our project. In preparation for this meeting, we made sure that the leap

motion and the Arduino capacitive touch sensors were presentable and ready to be used with our

MIDI interface. Upon meeting with our target user, we first introduced ourselves and our overall

goal for the project. We then went through a series of questions to determine what they wanted

from this project. We first determined that their most accessible form of interfacing into MIDI was

through Apple’s Garageband as they own a Macbook. From this, we also determined they were

comfortable with interacting with their laptop on their own as they are able to use the trackpad

easily. Next, we asked about the type of instruments they would want to play. We determined

that playing the drums was a priority, but they also would be interested in playing the piano and

other instruments as well. We then determined with the user that if using their fingers, the thumbs,

pointer, and middle fingers would be the easiest for them to use consistently. Using this information,

we set up the capacitive touch sensors set up on our 3D printed pad with the Arduino and had them

try playing the drums. From this set up, we determined that our current approach had a few issues.

First, the fact that the touch sensors were laid out on a flat surface was uncomfortable for our user.

Because of this, our user suggested a sort of support like a ball or mouse shaped object could be

used for them to rest their hand on for more comfort. Second, when playing the drums, our user

was attempting to maintain a fast tempo and because of the latency issues we knew about on the

Arduino only capacitive touch sensor circuit, some beats would be missed which was problematic

for our user’s music making experience. From this, we determined with our user that using our

analog EMF touch sensors would be a better approach as they would not have the latency issue.

Next, we introduced our user to the leap motion and our desired use for it being filter selection and

user when playing instruments. We then set up the device and asked our user to attempt using it

but we found that because of how their hands naturally sit, the leap motion was unable to identify

their hands and use them properly. From this information, we made the decision with our user to

abandon the Leap Motion totally. At the end of our meeting with our user, we determined the

following project specifications. Our target user wanted us to design something with touch sensors

that allowed their hand to sit comfortably over the sensors and then be able to set up and play

their desired instrument with ease and no latency. Upon the completion of this interview, we had
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accomplished our first objective and were ready to move onto the design phase of our project.

6 Determine the User Interface Design – Objective 2 & 3

This section documents how we took the knowledge obtained from our meeting with the target user

to create a usable prototype to fit his needs. This was the beginning of an iterative process that

began after we accomplished objective 1.

6.1 Revision 1

After speaking with the target user, we knew that we needed to make the device into a form factor

that could fit under the palm of his hand and give him access to the EMF touch sensors. We

decided on a small ball design which had a large area to place the sensors. We decided to do three

because he had explained that his mobility of his thumb, pointer finger, and middle finger were

the best. Inside of this enclosure we placed the Arduino Pro Micro and our circuitry for the EMF

touch sensors, which we built into a PCB. The schematic for this PCB can be seen in Figure 16.

Figure 16: Schematic for the first revision of the PCB.

Here we used the circuit seen in Figure 13 and created 3 copies, one for each sensor. We
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also created a connector which can plug into the Arduino’s header pins. Finally, we added some

various decoupling capacitors for the ICs and the board as a whole. This schematic was then

converted into two different PCBs. One, a miniaturized version, and one a hand soldered version.

This was done because the lead time of the smaller board was around a month and we wanted a

PCB to perfect the code and tuning with software. The miniaturized PCB can be seen in Figure

17 and Figure 18.

Figure 17: Miniaturized PCB for the first prototype design.
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Figure 18: Large PCB for the first prototype design.

We created enclosures with two different palm rest sizes for the next meeting with our

target user. From the target user’s feedback we learned that he perfer a raised surface for his palm

and sensors placed on a flat surface in front. The CAD models of the enclosures were created in

Fusion 360 as shown in Figure 19. The palm rest is a hemisphere with a diameter of 7 cm for the

small size and 9 cm for the large size. Velcro was applied to the front square area of the palm rest

for placing sensor pads. The bottom of the palm rest houses the PCB. The enclosures were 3D

printed in PLA plastic seen in Figure 20 and Figure 21.
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Figure 19: A 3D model of the small size palm rest for the miniaturized PCB

Figure 20: Palm rests for the miniaturized PCB view from the top.

Figure 21: Palm rests for the miniaturized PCB view from the bottom.
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After some waiting, we were able to receive the first variation of the PCB. When we

initially hooked it up to our computer we noticed that the LEDs (which indicate MIDI clicks) were

flashing when pads they weren’t being connected too were being touched. After looking through

the schematic, we realized we used capacitors that were too small by 3 orders of magnitude: C2,

C3, C16, C17, C19, C20 in Figure 16. Additionally, we realized that we did not need the series

connected R1, R11, R21, C1, C15, and C18. We made these modifications to the PCB and noticed

better results, but we still noticed that the sensors are extremely sensitive. Just holding your hand

near the pads or the cables going to the pads would trigger them. This also mean that if the wires

were near each other they would trigger each other (for example if you touched pad 1 it would

trigger pad 2). To fix the sensitivity issue we could that placing a ground plane below the pads

(just a piece of metal we tie to the ground of the PCB) we have much more consistent sensitivity

so that it only triggers when we touch the pads. However, we knew that if we wanted to make sure

the wires for each pad don’t trigger each other we need zero coupling between the two different

wires. This requires essentially shielding the pad inputs all the way from the pad to the input of

the op-amps. As such, we were forced into redesigning the PCB and making some small changes to

the schematic.

6.2 Revision 2

6.2.1 Circuit

Since the first design needed some improvements, we made a new schematic and PCB with

the changes discussed in the previous section. The new schematic can be seen in Figure 22.

33



Figure 22: Modified schematic for the second revision of the PCB.

Looking at Figure 22 we can see the changes mentioned above as well as now connectors

which are SMA to allow for coaxial connections to the pads. This will allow for better isolation.

Including these schematic changes, we needed to make changes to the PCB to allow for

better signal isolation. The second revision of the PCB can be seen in Figure 23.
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Figure 23: Second revision of the PCB.

The first main change is that we opted for a 4 layer design that is GND — Signal — GND

— Power. This allows for us to have essentially a ground should around our signals. The additional

layers also helped with some of the routing and to minimize traces on the top layer. Also, the board

was separated circuit by circuit this time and the inputs from the pads were separated to allow for

better isolation. Everything else is pretty similar to r1.

Once the parts arrived, we constructed the circuit seen in Figure 24. When we went to test

this circuit, the issues caused by the miss-sizing of the capacitors had been resolved. However, we
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still noticed significant issues when attempted to operated the circuit without a properly established

ground plane. Additionally, we noticed that since our EMF touch sensors operate based on AC

noise present in the environment, if the environment wasn’t inherently ”noisy” then the input to

the circuit wouldn’t have a high enough voltage level to trigger the output signal. We were sure

of this because when the user would put their hand close to a noisy AC source, the circuit would

work perfectly. The next challenge we had to face in this design process, is how to make the

user/environment consistently ”noisy”.

Figure 24: Constructed revision 2 circuit with touch sensors hooked up.
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6.2.2 Arduino Code

The output signals are sent to three of the digital pins on the Arduino Pro Micro. We

chose this Arduino because of its small form factor and its native USB support enabled by the

Atmel Atmega32u4 microcontroller. We need this capability for MIDI communication between the

Arduino and the computer.

Figure 25: Arduino code flowchart

The flowchart of our Arduino code listed in Appendix A is shown in Figure 25. The

Arduino code is depended on the MIDIUSB library and PitchToNote.h lookup table for sending

MIDI packets. Main.ino (Appendix 2.A) first sets up all input pins and dependencies. Then it

reads each with a for loop using the ”readButtons” function. When a input is digital high, the code

invokes the ”playNotes” function which looks up the corresponding note for the input and sends

the pre-defined MIDI packets through USB using the ”noteOn” and ”noteOff” helper functions.
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7 Results and User Experience – Objective 4 & 5

7.1 Prototype Hardware Testing Performance

The sensitivity of the EMF touch sensors is influenced by the intensity of 60Hz AC noise in the

surroundings. To evaluate this, we conducted tests across three distinct environments: Professor

Barton’s lab, which had a low level of AC noise; a residential building with a moderate AC noise

level; and an ECE lab with high AC noise levels. In the residential building, the final version of

our prototype showcased good performance. However, in areas with low AC noise levels, such as

Professor Barton’s lab, the circuit struggled to achieve sufficient sensitivity unless the user was in

contact with a substantial metal object or an AC source such as the insulation of an extension cord.

On the other hand, in the high-noise ECE lab environment, Channel 1 of the circuit became overly

sensitive. Despite these variations in sensitivity, under optimal AC noise conditions, the circuit

operated smoothly, showing no significant latency.

The palmrest feels comfortable to use and the positions of the pads can be adjusted to fit

the users hand size and mobility levels. Additionally, for those who prefer a different setup, a flat

velcro pad can be utilized as an alternative to the palm rest.

The complexity of the circuit is low for our prototype, which includes three EMF sensor

pads. Each circuit utilizes only one dual-opamp IC and passive components. The final prototype

PCB comprises 52 components, and the surface mount version of the circuit fits onto a PCB with

the same dimensions as an Arduino Pro Micro. However, the complexity would increase if we were

to add more sensors for future versions.

7.2 Meeting with Professor Barton

After we felt satisfied with the function of our circuit, we reached back out to Professor Barton

in order to test our circuit using his self play drum set. Professor Barton’s drum set is played

through MIDI notes in Ableton Live being sent to servos that control drum sticks on a real drum

kit. From the beginning of this project, our group had hoped to be able to allow Sam to fully enjoy

the experience of playing the drums again by collaborating with Professor Barton and using our

project as an input into his MIDI interface. In order to allow Sam to do this, we first needed to test
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if our circuit could successfully control the drum kit. To do this, Professor Barton used program

called Max8 to extract the MIDI information from our project and convert it to information that

Ableton was able to use. Once this was completed, we were able to confirm that our project was

able to fully control three elements of the drum kit as our project only has 3 inputs. We saw very

little latency between the touch from the user and the response of the servos on the drum kit. As

well as playing the drums with single inputs (ie. touching a sensor once equates to hitting the drum

element once), Professor Barton showed us the potential of using the arpeggiator feature in Ableton.

This feature allows for one input to be set equal to a design sequence of notes. For example, if our

target user wanted to play something faster than they could tap the EMF touch sensors then they

could implement the arpeggiator to play a pre-built fast sequence. Separately, we also discussed

the potential to isolate songs so that the percussion portion of the songs were muted in order to

allow our target user to play along with songs they like. Professor Barton said that implementing

both the arpeggiator and percussion isolation was available to our group in his lab, if our target

user was able to visit WPI’s campus.
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Figure 26: Josh interacting with Professor Barton’s drum kit using our project as an input.
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7.3 Meeting with Target User

When we finally felt confident in our final product, we traveled to our target user to determine how

well our project accomplished the project goal we had established. Our target user’s home was

luckily perfectly noisy in terms of AC. Because of this, when our user interacted with our project,

it was perfectly responsive from the perspective of the PCB circuit. Additionally, our target user

noted that the delay compared to our original capacitive touch sensor approach was much better.

However, the target user still noticed some delay when doing successive inputs which we determined

was due to a 20ms delay that we implemented via code and forgot to change. Regarding the input

interaction being comfortable for our target user, they noted that the 3D printed hand mount was

much less comfortable that just the flat board. After playing for a while though, the target user

noted that in the future they would prefer a more comfortable way to interact with the project that

makes sure their fingers stay in the same spot. One solution to this is that we noticed our target

user was able to interact with single hand gaming controllers. We could possibly 3D print a similar

shape so that the touch sensors resided in the spots where his fingers would normally press the

buttons on the actual controller. Overall, our target user said they thoroughly enjoyed interacting

with our project and said that our project was a ”game changer” for people with disabilities similar

to them. There are obviously things that we can and should improve over time, but for the scope of

this project, we believe we did a great job at accomplishing the overall goal. A image of our target

user interacting with our project can be seen in Figure 27.
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Figure 27: The target user interacting with the final prototype.
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8 Conclusion and Future Work

8.1 Issues with the Design

Upon concluding our project, our group identified a central issue with the overall performance of

our circuit for our target user. The main issue stems from the inputs to our circuit being dependent

on AC noise in the environment. Because of this, the AC noise can’t be too high or low, it must

be just right for optimal user experience. For example, when testing in our campus lab which is

inherently flooded with AC noise, two of the three outputs were constantly high making the circuit

unusable. Similarly, when testing in a different room on campus that has little AC noise, it was

extremely difficult to get the outputs to switch high. The only way to get the circuit to perform in

low AC noise environment was to find something that was plugged into a wall outlet, and touch it

with one hand while interacting with the circuit using the other hand. This is obviously problematic

for our target used as we want our project to be usable to them in all environments. As mentioned

earlier, our target user also noticed some latency when interacting with our final prototype. This

is an issue but thankfully this is due to an error in our code in which we manually set a 20ms delay

between each input. This can easily be changed or deleted. The final issue we noticed was that

the means of interacting with the EMF touch sensors could be improved. From our target user’s

experience, it was clear the current means of interacting wasn’t comfortable enough to use for long

periods of time.

8.2 Potential Future Solutions and Improvements

While we have completed our original sought after goal, there are still some aspects of the design

we would have liked to improve on if we had more time. The first of which would be addressing the

issues with the circuit’s performance. We believe that adding some automatic gain control could

help with this issue either through potentiometers or via a micro-controller. Additionally, we could

make a much larger PCB with surface mount parts, better tolerances, and less sensitive component

sizes. Additionally, we could split up the board into three electrically and electromagnetically

isolated sections with identical placement so it is almost like multiple separate boards in one. In

making this bigger board, we could also add 7 more sensors so there is one for every finger. The user

can choose which ones they do and don’t want to use depending on their capabilities. Our target
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user complained about issues regarding the lack of comfort when interacting with the sensors. If

we were to continue the project, this would be the main focus as we want to make our project as

easy to use for our user as possible. Additionally, for ease of use we could also add a track pad or

similar interface to the hand mounts so they can control the DAW more easily.

8.3 Final Discussion

Overall, we accomplished the primary objective of mimicking the experience of traditional drum-

ming while ensuring it is accessible for the target user with muscular dystrophy. We accomplished

this goal through a custom designed MIDI controller with EMF sensors that detect the AC noises

in the environment upon user contact. We improved the prototype in aspects such as latency, sen-

sitivity and user interface design through a iterative design process and meetings with the target

user. We concluded our project by testing our final prototype and meeting with the target user.

Looking forward to the future, we have outlined aspects of the designed that could be improved.

These improvements include better comfort, lower latency, more inputs, and more robust operations

regardless of the amount AC noise in the room.
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Appendices

A Code

A.1 Main.ino

// This program reads digital inputs from the front

// end circuits and converts them to note using a

// look up table "pitchToNote.h", and sends the nodes through MIDI

// Modified from examples for the MIDIUSB library:

// https://github.com/arduino-libraries/MIDIUSB

// Arduino code for A Major Qualifying Project (MQP)

// Music for Muscular Dystrophy

// Submitted to the Faculty of

// WORCESTER POLYTECHNIC INSTITUTE

// in partial fulfillment of the requirements

// for the Degree of Bachelor of Science in

// Electrical and Computer Engineering

// Authors: Joshua Hollyer, Dexuan Tang, Luke Harrington

// Project Advisor: Stephen Bitar

// Requires MIDIUSB lib

#include "MIDIUSB.h"

#include "pitchToNote.h"

#define NUM_BUTTONS 3

// Sensor pin defination

const uint8_t pad1 = A2;
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const uint8_t pad2 = 5;

const uint8_t pad3 = 14;

// Notes are standard MIDI drum notes

const uint8_t pads[NUM_BUTTONS] = {pad1, pad2, pad3};

const byte notePitches[NUM_BUTTONS] = {pitchC2, pitchD2, pitchG2b};

uint8_t notesTime[NUM_BUTTONS];

uint8_t pressedButtons = 0x00;

uint8_t previousButtons = 0x00;

uint8_t intensity;

void setup() {

for (int i = 0; i < NUM_BUTTONS; i++)

pinMode(pads[i], INPUT);

}

void loop() {

readButtons();

playNotes();

feedback();

}

// Go through buttons every 20msec and read their digital levels

void readButtons()

{

for (int i = 0; i < NUM_BUTTONS; i++)

{

int VelTh1 = 0;

int VelTh2 = 0;

int timediff = 0;
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if ((digitalRead(pads[i]) == HIGH))

{

bitWrite(pressedButtons, i, 1);

intensity = 127;

delay(20);

}

// }

else{

bitWrite(pressedButtons, i, 0);

}

}}

// determine which note should be played based on button readings

void playNotes()

{

for (int i = 0; i < NUM_BUTTONS; i++)

{

if (bitRead(pressedButtons, i) != bitRead(previousButtons, i))

{

if (bitRead(pressedButtons, i))

{

bitWrite(previousButtons, i , 1);

noteOn(0, notePitches[i], intensity);

MIDIUSB.flush();

}

else

{

bitWrite(previousButtons, i , 0);

noteOff(0, notePitches[i], 0);

MIDIUSB.flush();

}
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}

}

}

// functions that sends MIDI packets

void noteOn(byte channel, byte pitch, byte velocity) {

MIDIEventPacket_t noteOn = {0x09, 0x90 | channel, pitch, velocity};

MIDIUSB.sendMIDI(noteOn);

}

void noteOff(byte channel, byte pitch, byte velocity) {

MIDIEventPacket_t noteOff = {0x08, 0x80 | channel, pitch, velocity};

MIDIUSB.sendMIDI(noteOff);

}

A.2 pitchToNote.h

#define pitchC8 108

#define pitchB7 107

#define pitchB7b 106

#define pitchA7 105

#define pitchA7b 104

#define pitchG7 103

#define pitchG7b 102

#define pitchF7 101

#define pitchE7 100

#define pitchE7b 99

#define pitchD7 98

#define pitchD7b 97

#define pitchC7 96
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#define pitchB6 95

#define pitchB6b 94

#define pitchA6 93

#define pitchA6b 92

#define pitchG6 91

#define pitchG6b 90

#define pitchF6 89

#define pitchE6 88

#define pitchE6b 87

#define pitchD6 86

#define pitchD6b 85

#define pitchC6 84

#define pitchB5 83

#define pitchB5b 82

#define pitchA5 81

#define pitchA5b 80

#define pitchG5 79

#define pitchG5b 78

#define pitchF5 77

#define pitchE5 76

#define pitchE5b 75

#define pitchD5 74

#define pitchD5b 73

#define pitchC5 72

#define pitchB4 71

#define pitchB4b 70

#define pitchA4 69

#define pitchA4b 68
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#define pitchG4 67

#define pitchG4b 66

#define pitchF4 65

#define pitchE4 64

#define pitchE4b 63

#define pitchD4 62

#define pitchD4b 61

#define pitchC4 60

#define pitchB3 59

#define pitchB3b 58

#define pitchA3 57

#define pitchA3b 56

#define pitchG3 55

#define pitchG3b 54

#define pitchF3 53

#define pitchE3 52

#define pitchE3b 51

#define pitchD3 50

#define pitchD3b 49

#define pitchC3 48

#define pitchB2 47

#define pitchB2b 46

#define pitchA2 45

#define pitchA2b 44

#define pitchG2 43

#define pitchG2b 42

#define pitchF2 41

#define pitchE2 40

#define pitchE2b 39
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#define pitchD2 38

#define pitchD2b 37

#define pitchC2 36

#define pitchB1 35

#define pitchB1b 34

#define pitchA1 33

#define pitchA1b 32

#define pitchG1 31

#define pitchG1b 30

#define pitchF1 29

#define pitchE1 28

#define pitchE1b 27

#define pitchD1 26

#define pitchD1b 25

#define pitchC1 24

#define pitchB0 23

#define pitchB0b 22

#define pitchA0 21

/// Full 88 key range note pitch high to low MIDI byte value mapping array

const int notePitch[] = {pitchC8,

pitchB7, pitchB7b, pitchA7, pitchA7b, pitchG7, pitchG7b,

pitchF7, pitchE7, pitchE7b, pitchD7, pitchD7b, pitchC7,

pitchB6, pitchB6b, pitchA6, pitchA6b, pitchG6, pitchG6b,

pitchF6, pitchE6, pitchE6b, pitchD6, pitchD6b, pitchC6,

pitchB5, pitchB5b, pitchA5, pitchA5b, pitchG5, pitchG5b,

pitchF5, pitchE5, pitchE5b, pitchD5, pitchD5b, pitchC5,

pitchB4, pitchB4b, pitchA4, pitchA4b, pitchG4, pitchG4b,

pitchF4, pitchE4, pitchE4b, pitchD4, pitchD4b, pitchC4,

pitchB3, pitchB3b, pitchA3, pitchA3b, pitchG3, pitchG3b,
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pitchF3, pitchE3, pitchE3b, pitchD3, pitchD3b, pitchC3,

pitchB2, pitchB2b, pitchA2, pitchA2b, pitchG2, pitchG2b,

pitchF2, pitchE2, pitchE2b, pitchD2, pitchD2b, pitchC2,

pitchB1, pitchB1b, pitchA1, pitchA1b, pitchG1, pitchG1b,

pitchF1, pitchE1, pitchE1b, pitchD1, pitchD1b, pitchC1,

pitchB0, pitchB0b, pitchA0};

Input materials for Appendix B
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