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Abstract

This thesis uses the Immersed Boundary Method (IBM) to simulate the movement of a
human heart. The IBM was developed by Charles Peskin in the 70’s to solve Fluid-Structure
Interaction models (FSI). The heart is embedded inside a fluid (blood) which moves according
to the Navier-Stokes equation. The Navier-Stokes equation is solved by the Spectral Method.
Forces on the heart muscle can be divided into two kinds: Active Force and Passive Force.
Passive includes the effect of curvature (Peskin’s model), spring model, and the torsional
spring (or beam) model. Active force is modeled by the 3-element Hill model, which was used
in the 30’s to model skeletal muscle. We performed simulations with different combinations
of these four forces. Numerical simulations are performed using MATLAB. We downloaded
Peskin’s code from the Internet and modified the Force.m file to include the above four
forces. This thesis only considers heart muscle movement in the organ (macroscopic) scale.
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Chapter 1

Introduction

1.1 The Left Ventricle

The heart chambers are separated by a wall of tissue called the septum. Each side has a
small heart chamber called the atrium, which leads into a large pumping chamber called a
ventricle. The heart has four heart chambers. The atria are the upper two chambers, and
the ventricles are the lower two chambers.

The heart is about the size of the clenched fist. It lies in the front and middle of the
chest, behind and slightly to the left of the breastbone. It is an organ that pumps blood to
all parts of your body to provide it with the oxygen and nutrients in needs to function.

The left ventricle is one of the four chambers of the heart. It is located in the left portion
of the heart below the left atrium, separated by the mitral valve. The wall of the chamber
is about 9 to 12 mm thick, and it is 2 to 3 times size larger than right ventricle. In order to
adapt to the function of the left ventricle, the chamber has a conical shape with a bottom
upward and a sharp left to the front. The left ventricular cavity is divided into two parts, the
inflow channel and the outflow channel, by the anterior flap of the mitral valve. As the heart
contracts, blood eventually flows back into the left atrium, and then through the mitral valve,
whereupon it next enters the left ventricle. Blood is pumped through the chambers, aided by
four heart valves. The valves open and close to let the blood flow in only one direction. The
physiological load on the ventricles requiring pumping of blood throughout the body and
lungs is much greater than the pressure generated by the atria to fill the ventricles. Further,
the left ventricle has thicker walls than the right because it needs to pump blood to most of
the body while the right ventricle fills only the lungs. The normal blood flow is a cycle that
flows like this; body-heart-lungs-heart-body.
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1.2 Navier-Stokes Equations

Navier–Stokes equations are useful because they describe the physics of many phenomena
of scientific and engineering interest. They may be used to model the weather, ocean currents,
water flow in a pipe and air flow around a wing. The Navier–Stokes equations, in their full
and simplified forms, help with the design of aircraft and cars, the study of blood flow, the
design of power stations, the analysis of pollution, and many other things. Coupled with
Maxwell’s equations, they can be used to model and study magnetohydrodynamics.

Navier-Stokes equations is one of the most important explanation to calculate fluid spread
and velocity influenced by the force.

In physics, the Navier–Stokes equations, named after Claude-Louis Navier and George
Gabriel Stokes, describe the motion of viscous fluid substances.

These balance equations arise from applying Isaac Newton’s second law to fluid motion,
together with the assumption that the stress in the fluid is the sum of a diffusing viscous
term (proportional to the gradient of velocity) and a pressure term.

The Navier–Stokes equations are also of great interest in a purely mathematical sense.
Despite their wide range of practical uses, it has not yet been proven whether solutions
always exist in three dimensions and, if they do exist, whether they are smooth

The Navier–Stokes equations are strictly a statement of the balance of momentum. To
fully describe fluid flow, more information is needed, how much depending on the assumptions
made. This additional information may include boundary data, conservation of mass, balance
of energy, and/or an equation of state.The Naiver-Stokes equations are given as following:

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + f(x, t)

For this case, in order to keep the fluid incompressible, we assume

∇ · u(x, t) = 0

The Navier–Stokes equations, even when written explicitly for specific fluids, are rather
generic in nature and their proper application to specific problems can be very diverse. This
is partly because there is an enormous variety of problems that may be modeled, ranging
from as simple as the distribution of static pressure to as complicated as multiphase flow
driven by surface tension.

In this thesis, the Navier-Stokes equation will be needed to model blood flow in the heart.
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1.3 Immersed Boundary Methods

Immersed boundary methods were first introduced by Peskin (1972) [2] to simulate
cardiac mechanics and associated blood flow. For this topic, the following materials we
cited the knowledge from Jiyuan Tu’s book directly [10, 11]. One distinguishing feature of
this approach is the ability to perform the entire simulation on a fixed Cartesian grid. A
novel procedure was developed by directly imposing the effect of the immersed boundary
on the flow; the requirement for the grids to conform to the complex geometrical structure
of the heart was thus avoided. Since its inception, numerous modifications and refinements
have been proposed, and a number of variants of this approach currently exist.

When applying an immersed boundary method to solve for fluid flow in a complex geom-
etry, we select a (usually) rectangular domain that contains both the fluid region and also
the bounding solid. The resulting rectangular domain now contains fluid regions where the
fluid velocity is governed by the Navier-Stokes equations and solid regions where the velocity
is zero, or given. The domain is resolved by a regular structured grid and some grid points
(or control volumes) are in the fluid region and some are in the solid region.

In the 1970s, Peskin developed the immersed-boundary method to simulate flexible mem-
branes in fluid flows. The membrane-fluid interaction is accomplished by distributing mem-
brane forces as local fluid forces and updating membrane configuration according to local
flow velocity. Since then, the immersed-boundary method has been widely employed to study
various situations, including cell deformation in micropipettes, leukocyte adhesion and move-
ment, multiphase flows, red blood cells deformation and aggregation in shear flows and the
behavior of biofilms.

In immersed-boundary method, the key idea is that the membrane force f(xm)at a mem-
brane marker xm induced by membrane deformation is distributed to the nearby fluid grid
points xf by [3]:

f(xf ) =
∑
xm

D(xf − xm)F (xm) (1.1)

through a discrete delta function D(x), which is chosen to approximate the properties of the
Dirac delta function.
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Chapter 2

Immersed Boundary Method

The material in this section comes from Peskin’s paper 2002 [3]. In this chapter, we
will describe some numerical methods which is essential to help us understand and solve the
Navier-Stokes equation in 2D.

In the study, we apply the immersed boundary method developed by Charles Peskin. The
fluid is represented on the Eulerian grid, and the structure is represented on the Lagrangian
coordinate.

Recall the Navier-Stokes equations to solve our fluid motion in two dimensions is

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + f(x, t)

∇ · u(x, t) = 0

where u(x, t) = (u(x, t), v(x, t)) is the fluid velocity, p(x, t) is the pressure, and f(x, t) is the
force per unit volume (area in 2D) applied to the fluid by the immersed boundary.

2.1 Notation

Let u =

(
u
v

)
The nonlinear term in the Navier-Stokes equation in 2D is,

u · ∇u =

u
∂u

∂x
+ v

∂u

∂y

u
∂v

∂x
+ v

∂v

∂y


We use the notation that D0

h is the vector difference operator. Thus, D0
hφ is the central dif-

ference approximation to the gradient of φ, and D0
h ·u is the central difference approximation
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to the divergence of u.
Let,

Dα =

∂α∂x∂α
∂y


Therefore, we have

S(u)α =
1

2
u ·Dα +

1

2
D · (uα)

=
1

2

(
u
∂α

∂x
+ v

∂α

∂y

)
+

1

2
D ·
(
uα
vα

)
=

1

2

(
u
∂α

∂x
+ v

∂α

∂y

)
+

1

2

(
(uα)x + (vα)y

)
=

1

2

(
u
∂α

∂x
+ v

∂α

∂y

)
+

1

2

(
uxα + uαx + vyα + vαy

)
= u

∂α

∂x
+ v

∂α

∂y
+

1

2

(
ux + vy

)
α

= u
∂α

∂x
+ v

∂α

∂y
(2.1)

because ux + vy = 0, which follows from the incoompressibility condition ∇ · u = 0

2.2 Numerical Method

The temporal discretization that we currently use (Lai and Peskin 2000, McQueen and Peskin
2001) [8, 9] is a second-order Runge–Kutta method, based primarily on the midpoint rule.
For a system of ordinary differential equations of the for

dy

dt
= f(y)

such a scheme looks like this:

yn+ 1
2 − yn

∆t/2
= f(yn) (2.2)

yn+1 − yn

∆t
= f(yn+ 1

2 ) (2.3)

where the superscript is the time-step index. The salient feature of this scheme is that
each time-step involves a ‘preliminary substep’ to the halftime level followed by a ‘final
sub-step’ from time level n to n + 1, in which the results of the preliminary substep are
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used. The preliminary sub-step involves a first-order accurate scheme (forward Euler in the
above example), and the final substep is done by a second-order accurate scheme (here, the
midpoint rule). One would think that the accuracy would be limited by the least accurate
sub-step, but the magic of Runge–Kutta is that the overall scheme is second-order accurate.

2.3 First-Half Step

The following formula are taken from page 507 of Peskin (2002) [3]. Consider the half step
and integrate the Navier–Stokes equations on the Eulerian grid gh from time level n to time
level n+ 1

2
.

ρn+ 1
2

(
un+ 1

2 − un

∆t/2
+ Sh(u

n)un
)

+ D0
h p̃

n+ 1
2 = µLhu

n+ 1
2 + fn+ 1

2 (2.4)

D0
h · un+ 1

2 = 0

From the above definition, since un =

(
un

vn

)
From (2.1),

Sh(u
n)un =

(
ununx + vnuny
unvnx + vnvny

)
From the first component of (2.4), we have

un+ 1
2 = un +

∆t/2

ρn+ 1
2

(
fn+ 1

2 − ρn+ 1
2 (ununx + vnuny )

)
(2.5)

Similarity, we have vn+ 1
2

vn+ 1
2 = vn +

∆t/2

ρn+ 1
2

(
fn+ 1

2 − ρn+ 1
2 (unvnx + vnvny )

)
(2.6)

Note that this is the formula without pressure and Laplacian terms.

2.4 Spectral Method

The spectral method comes from Trefethen’s book [7]. The Fast Fourier Transform of the
function p evaluated at the grid-point (mhx, nhy) is

p̂ =
∑
j,k

pj,k e
imhx2πj+inhy2πk
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Using central difference, the second partial derivative of p at the same grid-point is given by

p̂xx =
∑
j,k

1

h2
x

(
eihx2πj + e−ihx2πj − 2

)
eimhx2πj+inhy2πk pj,k

Let θ = hx 2πj, then above becomes

p̂xx =
∑
j,k

1

h2
x

(eiθ + e−iθ − 2)eimhx2πj+inhy2πk pj,k

Since,

eiθ + e−iθ = cos θ + i sin θ + cos(−θ) + i sin(−θ)
= 2 cos θ

2 cos θ − 2 = 2

(
1− 2 sin2

(θ
2

))
− 2

= −4 sin2
(θ

2

)
Then,

p̂xx =
∑
j,k

1

h2
x

(
− 4 sin2

(hx2πj
2

))
eimhx2πj+inhy2πkpj,k (2.7)

= −
∑
j,k

eimhx2πj+inhy2πk pj,k
sin2

(
hx2πj

2

)
(hx

2
)2

= −
∑
j,k

eimhx2πj+inhy2πk pj,k

(
sin(dx 2πj)

dx

)2

(2.8)

where dx =
hx
2

.

For the first derivative,

p̂x =
∑
j,k

1

2hx

(
eihx2πj − e−ihx2πj

)
eimhx2πj+inhy2πk pj,k

=
∑
j,k

1

2hx
2i sin(hx2πj)e

imhx2πj+inhy2πk pj,k

= i
∑
j,k

sin(hx2πj)

hx
eimhx2πj+inhy2πk pj,k (2.9)

In Fourier space, (2.4) becomes

ρn+ 1
2

(
ûn+ 1

2 − ûn

∆t/2
+ Sh(u

n)un
∧)

= −∇p̂n+ 1
2 + f̂n+ 1

2 + µLhû
n+ 1

2

∇ · ûn+ 1
2 = 0

7



Rearranging,(
ρn+ 1

2

∆t/2
− µLh

)
ûn+ 1

2 = −∇p̂n+ 1
2 +

ρn+ 1
2

∆t/2

(
ûn +

∆t/2

ρn+ 1
2

f̂n+ 1
2 − ∆t

2
Sh(u

n)un
∧)

∇ ·
(
ρn+ 1

2

∆t/2
− µLh

)
ûn+ 1

2 = −∆p̂n+ 1
2 +∇ · ρ

n+ 1
2

∆t/2

(
ûn +

∆t/2

ρn+ 1
2

f̂n+ 1
2 − ∆t

2
Sh(u

n)un
∧)

∆p̂n+ 1
2 =

ρn+ 1
2

∆t/2

(
(rhsu
∧

)x + (rhsv
∧

)y

)
(2.10)

The left hand side is zero because of the incompressibility condition. The right side becomes,

∆p̂n+ 1
2 =

ρn+ 1
2

∆t/2

(
(rhs
∧

u)x + (rhs
∧

u)y

)
(2.11)

where, (
rhsu
rhsv

)
= −∆t

2
Sh(u)un +

∆t/2

ρn+ 1
2

fn+ 1
2 (2.12)

To simplified, we use p̂ substituting p̂n+ 1
2 Since, from (2.8), we have

∆p̂ = p̂xx + p̂yy

∆p̂ = −
∑
j,k

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)
eimhx2πj+inhy2πk pj,k

From above,

∆p̂
n+ 1

2
j,k = −

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)
pj,k (2.13)

And from (2.9), we have

(rhsu
∧

)x = i
∑
j,k

(
sin(2πk dx)

dx

)
eimhx2πj+inhy2πk rhsu

(rhsv
∧

)y = i
∑
j,k

(
sin(2πj dy)

dx

)
eimhx2πj+inhy2πk rhsv

Equating (2.11) and (2.13), for each distinct pj,k we have

−

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)
p
n+ 1

2
j,k

=
ρn+ 1

2

∆t/2

(
i

(
sin(2πj dx)

dx

)
rhsu + i

(
sin(2πk dy)

dy

)
rhsv

)

This formula uses to find p̂n+ 1
2
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2.5 Back to the First-Half Step

From the above section, we find the pressure term p̂j,k. We now solve for the fluid velocity

term un+1
2 . From (2.4),

ρn+ 1
2

(
ûn+ 1

2 − ûn

∆t/2
+ Sh(u

n)un
∧)

= −∇p̂n+ 1
2 + f̂n+ 1

2 + µLh û
n+ 1

2(
ρn+ 1

2

∆t/2
− µLh

)
ûn+ 1

2 = −∇p̂n+ 1
2 +

ρn+ 1
2

∆t/2

(
ûn +

∆t/2

ρn+ 1
2

f̂n+ 1
2 − ∆t

2
Sh(u

n)un
∧)

= −∇p̂n+ 1
2 +

ρn+ 1
2

∆t/2

(
ûn +

(
rhsu
∧

rhsv
∧

))
We know that

ûn+ 1
2 =

(
ûn+ 1

2

v̂n+ 1
2

)
(2.14)

Thus, from (2.9) and (2.4), we have

ûn+ 1
2 =

−∇p̂+
ρn+ 1

2

∆t/2
rhsu
∧

(
ρn+ 1

2

∆t/2
− µLh

)

=

rhsu
∧

− i
(

∆t/2

ρn+ 1
2

)(
sin(2πj dx)

dx

)
p̂n+ 1

2

1− ∆t/2

ρn+ 1
2

µLh

(2.15)

Similarly, to the second component of un+1
2 , we have

v̂n+ 1
2 =

−∇p̂+
ρn+ 1

2

∆t/2
rhsv
∧

(
ρn+ 1

2

∆t/2
− µLh

)

=

rhsv
∧

− i
(

∆t/2

ρn+ 1
2

)(
sin(2πk dy)

dy

)
p̂n+ 1

2

1− ∆t/2

ρn+ 1
2

µLh

(2.16)

We now find Lh in (2.15) and (2.16)

9



From (2.7), we have

û
n+ 1

2
xx =

∑
j,k

1

h2
x

(
− 4 sin2

(hx2πj
2

))
eimhx2πj+inhy2πku

n+ 1
2

j,k

= −
∑
j,k

eimhx2πj+inhy2πk
sin2

(
hx2πj

2

)
(
hx
2

)2 u
n+ 1

2
j,k

Let dx = hx
2

and dy = hy
2

, then

Lh = −
(

sin(2πj dx)

dx

)2

−
(

sin(2πk dy)

dy

)2

The denominator of (2.15) and (2.16) is equal to

1− ∆t/2

ρn+ 1
2

µLh = 1 +
∆t/2

ρn+ 1
2

µ

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)

Equations (2.15) and (2.16) allow us to find ûn+ 1
2 and v̂n+ 1

2 , then apply the inverse Fourier

series to obtain

(
un+ 1

2

vn+ 1
2

)
.

2.6 Second-Half Step

Now we proceed directly to the Navier–Stokes equations. We are going to integrate the
Navier-Stokes equations from time level n to the time level n + 1 using (2.3). We use a
similar method in above section.

ρn+ 1
2

(
un+1 − un

∆t
+ Sh(u

n+ 1
2 )un+ 1

2

)
+ D0

h p
n+ 1

2 = µLh

(
un + un+1

2

)
+ fn+ 1

2 (2.17)

D0
h · un+1 = 0

Thus, we could find our Sh(u
n+ 1

2 )un+ 1
2 , using the notation in section 2.1,

Sh(u
n+ 1

2 )un+ 1
2 =

1

2
un+ 1

2 · (D0
hu

n+ 1
2 ) +

1

2
D0
h · (un+ 1

2un+ 1
2 )

= un+ 1
2u

n+ 1
2

x + vn+ 1
2u

n+ 1
2

y (2.18)

Sh(u
n+ 1

2 ) vn+ 1
2 =

1

2
un+ 1

2 · (D0
hv

n+ 1
2 ) +

1

2
D0
h · (un+ 1

2vn+ 1
2 )

= un+ 1
2v

n+ 1
2

x + vn+ 1
2v

n+ 1
2

y (2.19)
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Therefore, we have Sh(u
n+ 1

2 )un+ 1
2 ,

Sh(u
n+ 1

2 )un+ 1
2 =

(
un+ 1

2u
n+ 1

2
x + vn+ 1

2u
n+ 1

2
y

un+ 1
2v

n+ 1
2

x + vn+ 1
2v

n+ 1
2

y

)
(2.20)

From (2.17), we have:(
1− ∆t

ρn+ 1
2

µLh
2

)
un+1 = un +

∆t

ρn+ 1
2

(
fn+ 1

2 − µLh
un

2
− ρn+ 1

2un+ 1
2u

n+ 1
2

x − ρn+ 1
2vn+ 1

2u
n+ 1

2
y

)
Note that this is the formula without pressure term.
Apply for the fast Fourier Transform again.

Equation (2.17) in Fourier space is

ρn+ 1
2

(
ûn+1 − ûn

∆t
+ Sh(u

n+ 1
2 )un+ 1

2

∧)
= −∇p̂n+ 1

2 + µLh

(
ûn + ûn+1

2

)
+ f̂n+ 1

2

D0
h · ûn+1 = 0

Thus, the (j,k) term in the Fourier series is(
ρn+ 1

2

∆t
− µLh

2

)
ûn+1 = −∇p̂n+ 1

2

+
ρn+ 1

2

∆t

(
ûn +

∆t

ρn+ 1
2

µ
Lh
2
ûn +

∆t

ρn+ 1
2

f̂n+ 1
2 −∆t Sh(u

n+ 1
2 )un+ 1

2

∧)
(2.21)

From ∇ · u = 0, we have

∇ ·
(
ρn+ 1

2

∆t
− µLh

2

)
ûn+1 = −∆p̂n+ 1

2 +∇ · ρ
n+ 1

2

∆t

( ∆t

ρn+ 1
2

f̂n+ 1
2 −∆tSh(u

n+ 1
2 )un+ 1

2

∧)
∆p̂n+ 1

2 =
ρn+ 1

2

∆t

(
(rhsu
∧

)x + (rhsv
∧

)y

)
(2.22)

Since, from (2.8), we have

∆p̂ = p̂xx + p̂yy

∆p̂ = −
∑
j,k

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)
eimhx2πj+inhy2πk pj,k

Then

∆p̂
n+ 1

2
j,k = −

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)
pj,k
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And from (2.9), we have

(rhsu
∧

)x = i
∑
j,k

(
sin(2πj dx)

dx

)
eimhx2πj+inhy2πk rhsu

(rhsv
∧

)y = i
∑
j,k

(
sin(2πk dy)

dy

)
eimhx2πj+inhy2πk rhsv

Thus, from (2.22) we have that

−

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)
pj,k

=
ρn+ 1

2

∆t

(
i

(
sin(2πj dx)

dx

)
rhsu + i

(
sin(2πk dy)

dy

)
rhsv

)

We know that

ûn+1 =

(
ûn+1

v̂n+1

)
(2.23)

Thus, from (2.21), we have ûn+1 as following

ûn+1 =
−∇p̂+

ρn+ 1
2

∆t
rhsu
∧

(
ρn+ 1

2

∆t
− µLh

2

)

=

rhsu
∧

− i
(

∆t

ρn+ 1
2

)(
sin(2πj dx)

dx

)
p̂n+ 1

2

1− µ ∆t

ρn+ 1
2

Lh
2

(2.24)

Similarly, for the second component un+1, we have

v̂n+1 =
−∇p̂+

ρn+ 1
2

∆t
rhsv
∧

(
ρn+ 1

2

∆t
− µLh

2

)

=

rhsv
∧

− i
(

∆t

ρn+ 1
2

)(
sin(2πk dy)

dy

)
p̂n+ 1

2

1− µ ∆t

ρn+ 1
2

Lh
2

(2.25)

12



We now find
Lh
2

in (2.24) and (2.25)

From (2.7), we have

ûn+1
xx =

∑
j,k

1

h2
x

(
− 4 sin2

(hx2πj
2

))
eimhx2πj+inhy2πkun+1

j,k

= −
∑
j,k

eimhx2πj+inhy2πk
sin2

(
hx2πj

2

)
(
hx
2

)2 un+1
j,k

Assume dx = hx
2

and dy = hy
2

, then

Lh
2

= −1

2

(
sin(2πj dx)

dx

)2

− 1

2

(
sin(2πk dy)

dy

)2

The denominator of (2.24) and (2.25) is equal to

1− µ ∆t

ρn+ 1
2

Lh
2

= 1 + 2µ
∆t

ρn+ 1
2

((
sin(2πj dx)

dx

)2

+

(
sin(2πk dy)

dy

)2
)

According to equations (2.24) and (2.25), we can find ûn+1 and v̂n+1. Then applying the
inverse Fast Fourier Transform, we could obtain the updated velocity un+1, which means
moving the immersed structure at the local fluid velocities thereby enforcing no slip boundary
conditions. As for the inverse Fast Fourier Transform, it could be found in Trefethen’s
textbook [7]. Using the updated velocity to replace the old version. Then we could calculate
the next position.

2.7 Modeling the Structure Part

Let θ (0 ≤ θ ≤ 2π) be the parametrization of the structure, which we assume to be a closed
non-self intersecting closed loop immersed in the fluid. Let F(θ, t) be the force acting on the
filament. Then f , the force acting on the fluid in the Navier-Stokes equation, is given by

f(x, t) =

∫ 2π

0

F(θ, t)δ
(
x−X(θ, t)

)
dθ (2.26)

and the movement of the filament is governed by the equation

∂X

∂t
= u

(
X(θ, t), t

)
(2.27)

=

∫
Ω

u(x, t) δ
(
x−X(θ, t)

)
dx (2.28)
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where Ω = [0, L]×[0, L] is the domain of the fluid and δ(x) = φ(x1)φ(x2), where x = (x1, x2).
In the above, φ(r) is continuous for all r and φ(r) = 0 for |r| ≥ 2. Define

φ(r) = 0, r ≤ 2

=
1

8

(
5 + 2r −

√
−7− 12r − 4r2

)
, −2 ≤ r ≤ −1

=
1

8

(
3 + 2r +

√
1− 4r − 4r2

)
, −1 ≤ r ≤ 0

=
1

8

(
3− 2r +

√
1 + 4r − 4r2

)
, 0 ≤ r ≤ 1

=
1

8

(
5− 2r −

√
−7 + 12r − 4r2

)
, 1 ≤ r ≤ 2

= 0, r ≥ 2
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Chapter 3

Active and Passive Forces

In the section, we would like to describe the fiber models implemented in this thesis. As
for the Navier-Stokes Equation, it is affected by two kinds of forces. One of the force is the
internal force which includes pressure and viscosity. The other is external forces. In this
chapter, all kind of forces are the external force in the fluid-structure interaction. Various
fiber models give the immersed boundary certain desirable material properties relevant to
many scientific applications. We should composite the total fiber model to obtain the entirely
force in Navier-Stokes Equations.

In this thesis the following types of fiber models are implemented:

1. Peskin’s Model

2. Spring Model

3. Torsional Spring(Beam) Model

4. Muscle-Fluid-Structure Model

5. 3-Element-Hill Model

Once the deformation energy has been calculated in the algorithm, we get

E(X(r, t), t) =
m∑
k=0

Ek(Xk,1, Xk,2, ..., Xk,Nk
) (3.1)

the corresponding elastic forces can be computed via derivatives of the elastic energy, where
the elastic deformation force at point c of fiber model k is calculated as

Fk,c(X(r, t), t) = −∂E(X(r, t), t)

∂Xk,c

(3.2)
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Note that X contains the coordinates of all immersed boundary points, M means the number
of fiber structures in the system, Nk means the number of immersed boundary points in
fiber structure M , and the negative sign is chosen to drive the system towards a minimal
energy state. In addition, (3.1) described the compositing of the deformation energy from
all respective fiber models. [12]

3.1 Peskin’s Model

According to Peskin’s Model[3], the force applied by arc dθ if immersed boundary to
fluid. Generally, Force balance in interval (a, b) yields.
Let

T (θ, t) = tension in immersed boundary (3.3)

τ =
∂X/∂θ

|∂X/∂θ|
= unit tangent to immersed boundary (3.4)

F(θ, t)dθ = force applied by arc dθ if immersed boundary to fluid (3.5)

−
∫ b

a

Fdθ = force of fluid on boundary (3.6)

0 = Tτ |ba −
∫ b

a

Fdθ (3.7)

=

∫ b

a

( ∂
∂θ

(Tτ)− F
)
dθ (3.8)

(3.9)

Since a, b are arbitrary

F =
∂

∂θ
(Tτ) (3.10)

=
∂T

∂θ
τ + T

∂τ

∂θ
(3.11)

=
∂T

∂θ
τ + T Cn (3.12)

where C = curvature, and n = unit normal to boundary.

In generally, T is some function of
∣∣∣∂X
∂θ

∣∣∣
The special case is

T = K
∣∣∣∂X
∂θ

∣∣∣ (3.13)
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Therefore,

Tτ = K
∣∣∣∂X
∂θ

∣∣∣ ∂X/∂θ|∂X/∂θ|
= K

∂X

∂θ
= K

∂X

∂θ
(3.14)

So

F =
∂

∂θ
(Tτ) = K

∂2X

∂θ2
(3.15)

3.2 Spring Model

The following model is cited the Battista’s paper directly [12]. Springs is a kind of
force that resistance to stretching between each consecutive Lagrangian points(nodes) can
be achieved by modeling the connections with Hookean springs of resting length RL and
spring constant ks. Thus, referring to the Hookean springs, it related to Hooke’s law which
is a law of physics that states that that the force needed to extend or compress a spring
by some distance x cales linearly with respect to that distance. That is: Fs = kx, where
k is a constant factor characteristic of springs: its stiffness, and x is small compared to the
total possible deformation of the spring. Since we need to consider the resting the length of
springs, then we obtain the energy formula as following:

Espring =
1

2
(||XL −XR|| −RL)2 (3.16)

where XL and XR are left and right node coordinates respectively. Applying for (3.2), we
have the deformation force is given by a derivative on the elastic energy:

Fspring = kx

(
1− RL

||XL −XR||

)
·
(
xL − xR
yL − yR

)
(3.17)

As you can see in the Figure 3.1, when the resting length is exactly equal to RL, there is no
force between two consecutive nodes. While the length greater or less than RL, the spring
provides forces for two consecutive nodes.

3.3 Torsional Spring Model

The following model is cited the Battista’s paper directly [12]. Torsional springs is also
called as beams, which means resistance to bending three consecutive Lagrangian points
(nodes). The model assumes a desired angle θ, a prescribed ’curavture’ between the three
Lagrangian poins, with corresponding bending stiffness kB. Then the bending energy is given
as

Ebend =
1

2
kB(ẑ · (XR −XM)× (XM −XL)− C)2 (3.18)
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Figure 3.1: Spring Force

where XR, XM and XL are right, middle and left nodes, and C = dLMdMR sin θ. Note that
C is not the standard definition of curvature, but a curvature defined at the desired angle θ
and distances between links, dLM and dMR.

The penalty force is designed to drive any deviations in the angle between these links
back towards a lower energy state. The corresponding bending force is given by

Fbend = kB

(
(xR − xM)(yM − yL)− (yR − yM)(xM − xL)−C

)
·

(
(yM − yL) + (yR − yM)
−(xR − xM)− (xM − xL)

)
(3.19)

As you can see in the Figure 3.2, there is no force when the angle of the three consecutive
nodes is θ. Otherwise, the torsional spring provides the force for middle point of the three
consecutive nodes.

3.4 Muscle-Fluid-Structure Model

The following model is cited the Battista’s paper directly [12]. According to the Model
by N.A Battista [12]. For his model, it described the muscle model combined with a force-
velocity and length-tension relationship in muscle without coupling in the underlying cellular
processes like calcium signaling, myosin cross-bridge attachment and detachment, or filament
compliance.

The muscle force is influenced by the speed of muscle contraction. Traditionally, a Hill
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Figure 3.2: Torsional Spring Force

model is used to describe this relationship and takes the following form [1, 14].

VF =
b(Fmax − F )

F + a
(3.20)

where VF is the muscle fiber’s shortening velocity, F is the force generated by the fiber, and
Fmax is the maximum load at zero contractile velocity. a and b are the parameters which are
related to the internal thermodynamics of muscle.

The muscle force is also related to a function of its length. Initially when the thick
filaments begin to bind to the thin filaments, the resulting force increases as the muscle
shortens. However, if the muscle is contracted too far, there are fewer myosin heads to attach
to the actin filaments, and the resulting force exerted is smaller. Therefore, the maximal
muscle tension is located between the two extremes. A simple model of a length-tension
relationship as following [4],

Fl = Fl0 exp

[
−
(Q− 1

SK

)2
]

(3.21)

where Q = LF

LF0
is the ratio of the length of the muscle fibers to the length when they reach

the maximum tension, Fl is the maximum isometric tension at a given fiber length LF , Fl0
is the maximum isometric force when they reach the optimum length of the muscle fibers,
and SK is a parameter specific for each muscle.

Follow by Battista’s model, combining (3.20) and (3.21) is to take product of their nor-
malized versions, as in [12, 5]. The model as following

Fmuscle(LF , VF ) = afFmaxF1(LF )F2(VF ) (3.22)
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where af is the activation strength of the muscle related to the Calcium and Fmax is the
normalized maximum isometric force at the full activation of the muscle fibers at their
optimum lengths, and F1(LF ) and F2(VF ) are normalized versions of (3.20) and (3.21),
given by

F1(LF ) = exp

[
−
(LF/LF0 − 1

SK

)2
]

(3.23)

F2(VF ) =
1

Fmax

[bFmax − aVF
b+ VF

]
(3.24)

Since af is the activation strength of the muscle related to the Calcium Dynamics, we
used the Shannon Model as the activation strength and re-scale the range from 0 to 1 [13].

Figure 3.3: Force-velocity and length-tension curves illustrating the respectively

As you can see in the Figure 3.3, the F2 decreases with the increasing of velocity and Fmuscle
related to the actin and myosin cross-bridges at the sarcomere level.

3.5 3-Element-Hill Model

The following model is cited the Battista’s paper directly [12]. The 3-Element Hill model
activation describes sustained muscle contraction by modeling the actin and myosin cross-
bridges, muscle tendon, and connective tissues for a muscle. The model has a contractile
element which models the force generated by the actin and myosin cross-bridges at the
sarcomere level, and two non-linear spring elements, and one of them is parellel element
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and the other one is the series element with contractile element. The series element models
related to the muscle tendon, and has a soft tissue response and provides energy storing
mechanism. The parallel element is responsible for the passive behavior when the muscle
is stretched. For the contractile element, it is the same model we described in the above
section 3.4.

Let FCE, FSE and FPE be contractile, series, and parallel elements respectively. In
mechanics, two or more springs share the same force in series if they are connected end-to-
end. If two or more springs in parallel which means they are connected side-by-side, the force
of this case is summation of the force of each side. Thus, we have the formula as following

Ftot = FSE + FPE (3.25)

FCE = FSE (3.26)

where Ftot is the total force produced by muscle contraction. For the muscle shortening, we
have

Ltot = LCE + LSE = LPE (3.27)

where Ltot is the total length of the muscle.

The contractile element is similar with the above section. Thus, we can assume it related
to the length-tension and force-velocity relationship of muscle. By equation (3.22), we have

FCE = afFmaxF1(LCE)F2(VCE) (3.28)

where LCE is the length of the muscle fibers and VCE is the contraction speed of the muscle
fibers.
From Figure 3.4, this is the picture of the three-element Hill model.
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Figure 3.4: 3-Element Hill Model

22



Chapter 4

Numerical Simulation

In this chapter, we modified the model which comes from Charles S. Peskin [2]. This
thesis shows some numerical simulations with tables and results of three cases of different
combinations of the following 4 models.

1. Original Peskin’s Model

2. Spring Model

3. Torsional Spring Model

4. 3-Element-Hills Model

The combination of the 4 models is based on

F = ω0 Fpeskin + ω1 Fspring + ω2 Ftorsionalspring + ω3 Fmuscle (4.1)

where ωi is the weight of each force. The initial velocity u is set to zero. The initial geometry
of the strucutre is a circle centered at (L

2
, L

2
) with radius L

4
. [0, L] × [0, L] is the size of the

domain.

Firstly, we provide the proper parameters in the following table.
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4.1 Parameters

Parameter Values and Their Units
Measurement Symbol Magnitude Unit
Length L 1.0 mm
Number of Grid N 64 Each

Length of each Grid h
1

64
mm

Number of Points Nb 202 Each
Density ρ 1.06 kg/m2

Dynamic Viscosity µ 0.04 N ∗ s/m2

Time-step dt 0.01 second
Degree α 1 No unit
x-Direction Length Lx 1.0 mm
y-Direction Length Ly 1.0 mm
Rest of Length Lr 0.015 mm
Stiffness Kspring 300 N/mm
Degree α 1 No unit
x-Direction Length Lx 1.0 mm
y-Direction Length Ly 1.0 mm
Rest of Length C 0 mm
Stiffness Kbeam 150 N/mm
Degree α 1 No Unit
x-Direction Length Lx 1.0 mm
y-Direction Length Ly 1.0 mm
Stiffness Kbeam 5 N/m
Maximum Tension Fmax 212 KPa
Hill parameter a a 0.25 No Unit
Hill parameter b b 4 No Unit
Muscle constant Sk 0.3 No Unit
Length for max muscle ten-
sion

LF0 0.018 mm
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4.2 Case 1

In the first case, we show the simulation which only contains Original Peskin’s model and
3-Element Hill model. Thus, suppose ω0 = 1 and ω3 = 1, and set ω1 and ω2 to 0,

Figure 4.1: Case 1: ω0 = 1, ω1 = 0, ω2 = 0 and ω3 = 1.

The above Figure (4.1) show the simulation at t = 1.25, 2.25, 2.75, and 4 respectively. Since
this case does not contain the spring and torsional spring model. The nodes apparently
converges to the diagonal at t = 4. We will add spring and torsional spring model into the
second case, and observe the changes.
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4.3 Case 2

In this case, we keep the Original Peskin’s model and 3-Element Hill model, and add spring
and torsional spring model into the case. Thus, let ωi = 1, for i = 0, 1, 2, 3.

Figure 4.2: Case 2: ω0 = 1, ω1 = 1, ω2 = 1 and ω3 = 1.

The above Figure (4.2) show the simulation at t = 1.25, 2.25, 3.25, and 4 respectively. A
comparison of Figure (4.2) and Figure (4.1), it is obvious that the force is more evenly spread
between the nodes in Case 2. However, the shape of the structure is not convex enough.
Since the original Peskin’s model provides the curvature force to the shape, we enlarge the
weight of the original Peskin’s model in the next case.
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4.4 Case 3

In this case, we keep the same weight of spring, torsional spring and 3-Element Hill model
as Case 2, and increase the weight of the Original Peskin’s model. Let ω0 = 1.5

Figure 4.3: Case 3: ω0 = 1.5, ω1 = 1, ω2 = 1 and ω3 = 1.

The above Figure (4.3) show the simulation at t = 1.25, 2.25, 3.5, and 4 respectively. Accord-
ing to Figure (4.1),Figure (4.2) and Figure (4.3), after increasing of weight of the original
Peskin’s model, the structure begins doing the periodic movement and the shape and force
magnitude of each time step is stable.
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Chapter 5

Conclusion

In this thesis, we modified the numerical results of Charles Peskin in [2] to simulate the
active and passive forces in the Fluid-Structure Interaction problem of the human heart. In
addition to Peskin model, we implemented three other models including the spring model,
the torsional spring (or beam) model, and the 3-element Hill model into our simulations.
Using Fast Fourier Transform (FFT), we solved the Navier-Stokes equation. FFT allows
computational time to be O(n log n) instead of O(n2). For numerical implementations, the
domain is taken to be [0, 1]× [0, 1] and we used the parameter values from Battista’s paper
[12]. In Chapter 1, we introduced the left ventricle and provided background of the Navier-
Stokes equations. In Chapter 2, we described the half-step method to solve the Navier-Stokes
equation, and explained the Fast Fourier Transform method [7]. At the end of Chapter 2,
we illustrated how to update the velocity u(x, t) in the Fluid-Structure Interaction Problem.
In Chapter 3, we explained details of the above mentioned four models which come from
Peskin’s Note and Battista’s paper [2, 12]. Chapter 4 is numerical results. We implemented
three combinations of the model mentioned in Chapter 3. Since to simulate the movement of
the left ventricle, we added the Calcium Dynamics from the Shannon model [13]. The best
result was obtained if we weighted Peskin model 1.5 times the other three models. Because
of the lack of time, we did not find the optimal combination of these four forces to produce
simulation that best resembles a beating heart.
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Appendix A

Matlab Code

Code for all Matlab functions used in simulations is listed below.

1 % ib2D.m
2 % This script is the main program.
3 clear all
4 close all
5

6 global dt Nb N h rho mu ip im a;
7 global kp km dtheta K LF0 dt RL;
8 initialize
9 init a

10

11 x master = X(kp,1);
12 x slave = X(km,1);
13 y master = X(kp,2);
14 y slave = X(km,2);
15

16 for i = 1:202
17 dx = x master(i) - x slave(i);
18 dy = y master(i) - y slave(i);
19 RL(i) = sqrt( dxˆ2 + dyˆ2 );
20 end
21

22 for i = 1:202
23 dx = x master(i) - x slave(i);
24 dy = y master(i) - y slave(i);
25 LF0(i) = 0.018;
26 end
27

28 tmp = load('shannonresult');
29 ti = tmp(:,1); % time
30 Cai = tmp(:,2); % calcium
31 X P = X;
32
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33

34 for clock=1:clockmax
35 XX=X+(dt/2)*interp(u,X);
36 af = Cai(clock*10);
37 ff=spread(Force(XX,X P, af),XX);
38 [u,uu]=fluid(u,ff);
39 X PP = X P;
40 X P = X;
41 X=X+dt*interp(uu,XX);
42

43 %animation:
44 vorticity=(u(ip,:,2)-u(im,:,2)-u(:,ip,1)+u(:,im,1))/(2*h);
45 contour(xgrid,ygrid,vorticity,values)
46 hold on
47 plot(X(:,1),X(:,2),'ko')
48 axis([0,L,0,L])
49 caxis(valminmax)
50

51 axis equal
52 axis manual
53 drawnow
54 hold off
55 end

32



1 %initialize.m
2 L=1.0
3 N=64
4 h=L/N
5 ip=[(2:N),1]
6 im=[N,(1:(N-1))]
7 Nb=ceil(pi*(L/2)/(h/2))
8 dtheta=2*pi/Nb
9 kp=[(2:Nb),1]

10 km=[Nb,(1:(Nb-1))]
11 K=1
12 rho=1.06
13 mu=0.04
14 tmax=4;
15 dt=0.01
16 clockmax=ceil(tmax/dt)
17

18 for k=0:(Nb-1)
19 theta=k*dtheta;
20 X(k+1,1)=(L/2)+(L/4)*cos(theta);
21 X(k+1,2)=(L/2)+(L/4)*sin(theta);
22 end
23

24 u=zeros(N,N,2);
25 for j1=0:(N-1)
26 x=j1*h;
27 u(j1+1,:,2)=eps*cos(2*pi*x/L);
28 end
29

30 vorticity=(u(ip,:,2)-u(im,:,2)-u(:,ip,1)+u(:,im,1))/(2*h);
31 dvorticity=(max(max(vorticity))-min(min(vorticity)))/5;
32 values= (-10*dvorticity):dvorticity:(10*dvorticity);
33 valminmax=[min(values),max(values)];
34 xgrid=zeros(N,N);
35 ygrid=zeros(N,N);
36 for j=0:(N-1)
37 xgrid(j+1,:)=j*h;
38 ygrid(:,j+1)=j*h;
39 end
40

41 set(gcf,'double','on')
42 contour(xgrid,ygrid,vorticity,values)
43 hold on
44 plot(X(:,1),X(:,2),'ko')
45 axis([0,L,0,L])
46 caxis(valminmax)
47 axis equal
48 axis manual
49 drawnow
50 hold off
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1 function F=Force(X,X P,af)
2 global kp km dtheta K LF0 dt Nb RL;
3

4

5

6 F=K*(X(kp,:)+X(km,:)-2*X)/(dtheta*dtheta);
7

8 %F peskin = mean(F) % ? 20191201-WL;
9

10 k Spring = 300; % 300;
11 % F spring1 = 1/2*k Spring*(1 - (X(kp,:)+X(km,:))/norm(X(kp,:)-X(km,:)));
12 % F spring2 = X(kp,:)-X(km,:);
13 % F spring = F spring1.*F spring2;
14 %
15 % F = F + F spring;
16

17 kk=1:Nb;
18 x master = X(kp,1);
19 x slave = X(kk,1);
20 y master = X(kp,2);
21 y slave = X(kk,2);
22 % Lx = 1; % 20191201-WL;
23 % Ly = 1;
24 % L r = 2*pi*Lx/4/202;
25 alpha = 1;
26

27 fx = zeros(Nb,1); % Initialize storage for x-forces
28 fy = fx; % Initialize storage for y-forces
29

30 for i = 1:Nb
31 dx = x master(i) - x slave(i);
32 dy = y master(i) - y slave(i);
33

34 % if abs(dx) > Lx/2 % 20191201-WL;
35 % dx = sign(dx)*( Lx - sign(dx)*dx );
36 % end
37 %
38 % if abs(dy) > Ly/2
39 % dy = sign(dy)*( Ly - sign(dy)*dy );
40 % end
41

42 sF x = 0.5*(alpha+1) * k Spring * ( sqrt( dxˆ2 + dyˆ2 ) - RL(i) )ˆ(alpha) * (
dx / sqrt(dxˆ2+dyˆ2) );

43 sF y = 0.5*(alpha+1) * k Spring * ( sqrt( dxˆ2 + dyˆ2 ) - RL(i) )ˆ(alpha) * (
dy / sqrt(dxˆ2+dyˆ2) );

44

45 % THE FORCE IS THE ONE APPLIED ON SPRING TO HAVE THIS DEFORMATION; 20191201-WL
;

46 fx(kp(i),1) = fx(kp(i),1) + sF x; % Sum total forces for node, i in x-
direction (this is MASTER node for this spring)

47 fy(kp(i),1) = fy(kp(i),1) + sF y; % Sum total forces for node, i in y-
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direction (this is MASTER node for this spring)
48

49 fx(kk(i),1) = fx(kk(i),1) - sF x; % Sum total forces for node, i in x-
direction (this is SLAVE node for this spring)

50 fy(kk(i),1) = fy(kk(i),1) - sF y; % Sum total forces for node, i in y-
direction (this is SLAVE node for this spring)

51

52 end
53

54 F spring = [fx fy];
55

56 % F spring force = mean(F spring)
57

58

59 %new, beam
60 kk=1:Nb;
61 k Beam = 150;
62 % C = 0;
63 % C=LF0(1)*LF0(2)*sin(dtheta);
64

65 fx = zeros(Nb,1); % Initialize storage for x-forces
66 fy = fx; % Initialize storage for y-forces
67

68

69 x left = X(km,1);
70 x middle = X(kk,1);
71 x right = X(kp,1);
72

73 y left = X(km,2);
74 y middle = X(kk,2);
75 y right = X(kp,2);
76

77 for i=1:Nb
78 X L = x left(i); % xPt of 1ST Node Pt. in beam
79 X M = x middle(i); % xPt of 2ND (MIDDLE) Node Pt. in beam
80 X R = x right(i); % xPt of 3RD Node Pt. in beam
81

82 Y L = y left(i); % yPt of 1ST Node Pt. in beam
83 Y M = y middle(i); % yPt of 2ND (MIDDLE) Node Pt. in beam
84 Y R = y right(i); % yPt of 3RD Node Pt. in beam
85

86 % Compute Cross-Product
87 cross prod = (X R-X M)*(Y M-Y L) - (Y R-Y M)*(X M-X L);
88

89 C= sqrt( (X M - X L)ˆ2 + (Y M - Y L)ˆ2 )* sqrt( (X M - X R)ˆ2 + (Y M - Y R
)ˆ2 )*sin(dtheta);

90

91 % FORCES FOR LEFT NODE
92 bF x L = -k Beam * ( cross prod - C ) * ( Y R-Y M );
93 bF y L = k Beam * ( cross prod - C ) * ( X R-X M );
94
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95 % FORCES FOR MIDDLE NODE
96 bF x M = k Beam * ( cross prod - C ) * ( (Y M-Y L) + (Y R-Y M) );
97 bF y M = -k Beam * ( cross prod - C ) * ( (X R-X M) + (X M-X L) );
98

99 % FORCES FOR RIGHT NODE
100 bF x R = -k Beam * ( cross prod - C ) * ( Y M-Y L );
101 bF y R = k Beam * ( cross prod - C ) * ( X M-X L );
102

103 fx(km(i),1) = fx(km(i),1,1) - bF x L; % Sum total forces for left node,
in x-direction (this is LEFT node for this beam)

104 fy(km(i),1) = fy(km(i),1,1) - bF y L; % Sum total forces for left node,
in y-direction (this is LEFT node for this beam)

105

106 fx(kk(i),1) = fx(kk(i),1,1) + bF x M; % Sum total forces for middle node,
in x-direction (this is MIDDLE node for this beam)

107 fy(kk(i),1) = fy(kk(i),1,1) + bF y M; % Sum total forces for middle node,
in y-direction (this is MIDDLE node for this beam)

108

109 fx(kp(i),1) = fx(kp(i),1,1) - bF x R; % Sum total forces for right node,
in x-direction (this is RIGHT node for this beam)

110 fy(kp(i),1) = fy(kp(i),1,1) - bF y R; % Sum total forces for right node,
in y-direction (this is RIGHT node for this beam)

111

112 end
113

114 F beam = [fx fy];
115

116 % F beam force = mean(F beam)
117

118

119 %Muscle Mode
120 FMax = 212;
121 SK=0.3;
122 a=0.25;
123 b=4;
124 x master P = X P(kp,1); % x master P = X P(kp,1);
125 x slave P = X P(kk,1); % x slave P = X P(km,1);
126 y master P = X P(kp,2); % y master P = X P(kp,2);
127 y slave P = X P(kk,2); % y slave P = X P(km,2);
128 kSpr = 5;
129

130 fx = zeros(Nb,1); % Initialize storage for x-forces
131 fy = fx; % Initialize storage for y-forces
132

133 for i= 1:Nb
134 dx = x master(i) - x slave(i);
135 dy = y master(i) - y slave(i);
136 LF = sqrt( dxˆ2 + dyˆ2 );
137 Q=LF/LF0(i);
138 F1 = exp( -( (Q-1)/SK )ˆ2 );
139 P0 = FMax*F1;
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140 dx P = x master P(i) - x slave P(i);
141 dy P = y master P(i) - y slave P(i);
142 LF P = sqrt( dx Pˆ2 + dy Pˆ2 );
143 v = abs(LF-LF P)/(dt/2);
144 F2 = (1/P0)*(b*P0-a*v)/(v+b);
145 Fm = af*FMax*abs(F1*F2);
146 mF x = Fm*(dx/LF);
147 mF y = Fm*(dy/LF);
148

149

150 % PE force
151 sF PE x = kSpr * ( sqrt( dxˆ2 + dyˆ2 ) - LF0(i) ) * ( dx / sqrt(dxˆ2+dyˆ2)

);
152 sF PE y = kSpr * ( sqrt( dxˆ2 + dyˆ2 ) - LF0(i) ) * ( dy / sqrt(dxˆ2+dyˆ2)

);
153

154

155 fx(kp(i),1) = fx(kp(i),1) + mF x+sF PE x;
156 fy(kp(i),1) = fy(kp(i),1) + mF y+sF PE y;
157

158 fx(kk(i),1) = fx(kk(i),1) - mF x - sF PE x;
159 fy(kk(i),1) = fy(kk(i),1) - mF y - sF PE y;
160

161 end
162

163

164 F Muscle = [fx fy];
165

166 % F Muscle force = mean(F Muscle)
167

168

169 % %Curvature Force, LX is wrong;
170 % k curve = 1e-08;
171 % x deri = (X(kp,1) - X(kk,1))/(dtheta); %first deri for x-

direction
172 % y deri = (X(kp,2) - X(kk,2))/(dtheta); %first deri for y-

direction
173 % % x deri = (X(kk,1) - X P(kk,1))/(dtheta); %first deri for x-

direction
174 % % y deri = (X(kk,2) - X P(kk,2))/(dtheta); %first deri for y-

direction
175 %
176 % x second deri = (X(kp,1) - 2*X(kk,1) + X(km,1))/(dthetaˆ2);

%second deri for x-direction
177 % y second deri = (X(kp,2) - 2*X(kk,2) + X(km,2))/(dthetaˆ2);

%second deri for y-direction
178 % % x second deri = (X(kk,1) - 2*X P(kk,1) + X PP(kk,1))/((dtheta)ˆ2);

%second deri for x-direction
179 % % y second deri = (X(kk,2) - 2*X P(kk,2) + X PP(kk,2))/((dtheta)ˆ2);

%second deri for y-direction
180 %
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181 % fx = zeros(Nb,1); % Initialize storage for x-forces
182 % fy = fx; % Initialize storage for y-forces
183 %
184 % for i = 1:Nb
185 % k curvature = (x deri(i)*y second deri(i) - x second deri(i)*y deri(i))

/((x deri(i)ˆ2 + y deri(i)ˆ2)ˆ(3/2));
186 % N x = -y deri(i)/(x deri(i)ˆ2 + y deri(i)ˆ2)ˆ0.5;
187 % N y = x deri(i)/(x deri(i)ˆ2 + y deri(i)ˆ2)ˆ0.5;
188 % fx(kk(i),1) = k curve*k curvature*N x;
189 % fy(kk(i),1) = k curve*k curvature*N y;
190 % if isnan(fx(kk(i),1))
191 % fx(kk(i),1) = 0;
192 % end
193 % if isnan(fy(kk(i),1))
194 % fy(kk(i),1) = 0;
195 % end
196 % end
197 %
198 % F curvature = [fx fy];
199

200 % F cur force = mean(F curvature)
201

202

203 F = F + F Muscle; % F + F spring + F beam + + F curvature;
204 %F = 1.5*F + F spring + F beam + F Muscle;
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