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Abstract 
 

Software developers face a steep learning curve when trying to work with complex object-

oriented frameworks. This reduces productivity since it takes a long time for a developer to learn 

how to effectively use the complex frameworks. Combinatory Logic Synthesis (CLS) can be 

used to generate code for arbitrarily complicated object-oriented frameworks given a simple 

domain model. This automation can vastly improve the productivity of development in a new 

framework by generating code that involves arbitrarily complicated boilerplate code necessary to 

use the framework. This project looks to upgrade and complete a solitaire domain modeling 

effort in an ongoing research project, Next-Gen Solitaire. A successful completion of this effort 

will allow us to model a wide range of solitaire families, from which hundreds of variations can 

be generated. We evaluate the project by the number of variations that are generated, ease of 

usability, and making it possible to generate unit test cases directly from the domain models. 
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1 Introduction 
 

 Software frameworks are created and implemented to simplify the development 

environment for programmers. While a developer that is experienced in the framework will be 

able to use this simplicity to their advantage, inexperienced developers have to learn the 

framework from the ground up. It can be time-consuming to grasp a new framework with all of 

its intricacies. During this learning process, newcomers may have a challenging time working 

with the unfamiliar framework that results in suboptimal code.  

Of course, the goal of a framework is to improve the efficiency of coding rather than 

hinder it, but the learning curve can certainly be a burden. As time working with the framework 

increases, so does the efficiency and eventually, a developer can master and implement with 

ease. One of the significant goals of this project was to create a framework that could be learned 

much faster, allowing any user to design and create without the challenge of understanding a 

foreign schema. A key component in the creation of this new framework is code generation. 

Code generation is a process in which the compiler will use a code generator to transform 

a representation of source code into a machine-readable form that then can be run on its own. 

This process is an extremely useful tool for alleviating difficulty in learning a new framework 

because the programmer will not need to learn certain concepts within the framework if the 

program is generating that code on its own. When used properly, code generation can remove a 

lot of the heavy lifting for the programmer, which will drastically increase the efficiency of the 

process and cut down on the time it takes to learn the framework. 

A further expansion of code generation is the automatic generation of test cases. Testing 

is an important part of the development of any software as it ensures the user that their code is 

completing tasks properly and in full. It is essential for any project to be tested, but sometimes 

this may be a time-consuming task for the user. Testing all the edge cases for each action may 

result in more complete and secure code, but it comes at the cost of time and efficiency. 

Generating these test cases is a way to limit that time since the program will be able to test the 

code for the user. Assuming the test generation method is accurate and thorough, the program 

will be able to test all edge cases in a smaller amount of time. Depending on the program, the 

method of generating test cases will vary, as the test generation framework will need to know 

how to test each method. Test case generation can be an extremely useful feature to improve 

efficiency when implemented properly. 

As described in Drew Ciccarelli, Ian MacGregor, and Simon Redding’s Generating 

Solitaire Games Major Qualifying Project: “Next-Gen Solitaire is a code generation framework 

designed by George Heineman, Jan Bessais, and Boris Düdder. Given a Scala model 

representing the rules and design of a solitaire game, it uses Combinatory Logic Synthesis (CLS) 

(Bessai et al., 2014) to generate Java or Python code for that game. The framework has been 

under development for several years and includes a wide variety of pre-built solitaire elements. 

Using the existing domain logic, developers can quickly create their own specialized logic to 

deal with game rules or elements that are outside the scope of the base framework.” (Ciccarelli) 

The newest iteration of this project continues upon the development of the Next-Gen 

Solitaire framework. The first steps of this iteration were to learn the Next-Gen Solitaire 

framework and how it uses code generation by creating new variations. This also included 

testing all of the current variations as to whether or not they can be compiled and run. Once the 

team learned the framework, the next step was to implement automatic test case generation for 

Solitaire variations. Once the new variations and test case generation were completed, the last 
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undertaking was to polish the project so that it could be accessed by any user who had an 

interest. This includes playing any of the generated Solitaire variations or creating their own. 

Several tutorials were also created to allow users to follow along and learn how to create a 

variation, which will decrease the learning curve of the Next-Gen Solitaire framework.  

The changes in this newest iteration of the project were made with two objectives in 

mind. The first was to improve the efficiency of working with the framework. While many 

strides had been made previously in this regard, test case generation was a brand-new feature that 

was implemented to improve efficiency. Users can test their code in a quick manner that also 

ensures the code is working properly and that the variations are following the proper rulesets. 

The second was to make the project more user-friendly. The intent of the framework was to 

allow users to make their own Solitaire variations by creating their own models. However, before 

this iteration, there was no simplistic way for the user to get access to the code or to add to it. 

With the addition of the new tutorials, the ability for anyone to push variations to Git, as well as 

the interface, users have a much more streamlined process to make and play variations. 
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2 Background 
 

2.1 Solitaire 

 

The game of Patience (Solitaire) dates back to the mid-18th century. The game was 

spread all across Europe and while it was not the most popular game at the time, many historical 

figures enjoyed the game, such as Napoleon, Prince Albert, and Charles Dickens (Tung, 2015). 

All across the world, different countries and cultures put their own twist on the game with 

different names and rules. This was the start of the creation of new solitaire variations which 

paved the way for the countless number of solitaire variations that we see today. Over time, the 

game continued to grow but in the 1980s Solitaire took off at a rapid rate due to the rise in 

personal computers. Since these new computers could shuffle cards and moderate rules, this 

made the process of playing a game of solitaire much simpler and more effortless. The release of 

portable computers also led to a tremendous increase in the popularity of Solitaire, due to the 

convenience and accessibility of being able to run Solitaire programs in any location. 

Many people have taken the base solitaire game and modified it by adding their own 

rules, moves, and structure. These modifications create entirely new adaptations of solitaire 

called “variations”. The possibilities of variations of solitaire are seemingly endless. Due to this, 

variations can be quite different from one another, which allows the player to get a new and 

interesting experience with every game. However, not all variations are completely unique as 

many tend to be slight changes of another variation. These similar variations are organized 

together in groups called “families”. Families are named after the variation that is the origin of 

that family. Each variation in a family usually has its own name, but also falls under the name of 

a family as well. For example, a commonly known solitaire variation is Scorpion Solitaire. 

Scorpion falls under the Spider Solitaire family since Scorpion originated from the Spider 

Solitaire variation. The number of families and variations is large and continually growing. 

 Solitaire was a natural fit for programmers during the period of the first personal 

computers. Patience was simple and could be represented easily via text-mode (SolitaireCentral, 

2012). It also allowed for a great deal of creativity as programmers could implement whichever 

variations they enjoyed and could even create their own. The earliest programs allowed for only 

one of these text-based games, but as computers continued to advance in graphics and memory 

capacity, Solitaire programs progressed to include multiple variations with better graphics that 

are still improving to this day. In 1987, the first commercial Solitaire collection, “Solitaire 

Royale” was released. This collection contained eight playable variations. Five years later a new 

collection, “Solitaire’s Journey” was released. This collection featured 105 different variations 

and also included comprehensive user statistics which allowed players to work toward improving 

their scores and earning rewards. The release of Microsoft’s Windows Solitaire contributed to a 

major spike in the increase in the popularity of Solitaire. Microsoft offered a wide variety of 

Solitaire variations, which led to the popularity of games such as Klondike, FreeCell 

(https://en.wikipedia.org/wiki/FreeCell), and Spider. Within the past 20 years, the number of 

Solitaire programs has exploded, allowing users to play any Solitaire variation they want on 

almost any computing device. 

An example of a popular open-source collection of Solitaire games is PySol. PySol was a 

cross-platform collection of over 1,000 different solitaire variations. A feature within PySol 

allowed users to include their own variations by adding a file with python code with the new 

variation on it. The original framework came to a halt in 2004 but was continued as the Fan Club 

https://en.wikipedia.org/wiki/FreeCell
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edition and is still running today. PySol was the inspiration for many code generation projects 

including the Next-Gen Solitaire framework, which utilizes its combinators to generate Solitaire 

games in Python code.  

 In 2003, Professor George Heineman developed KombatSolitaire for an undergraduate 

software engineering course. Developed in Java, this project allowed students individually to 

write solitaire variations that conformed to the framework. In 2014, Professor Heineman 

collaborated with Jan Bessai and Boris Düdder to create LaunchPad v0.6 

[https://github.com/combinators/nextgen-solitaire/wiki/V-0.6-solitaire], the first working version 

of a code generation framework using CLS that could be extended to create new Solitaire 

variations by combining existing game features. This tool was included as part of Boris Düdder’s 

Ph.D. entitled “Automatic Synthesis of Component & Connector-Software Architectures with 

Bounded Combinatory Logic” 

The first major release, V1.0 [https://github.com/combinators/nextgen-solitaire/wiki/V-

1.0-solitaire] was described in a research publication that demonstrated how to automatically 

synthesize five solitaire variations as part of a product line of solitaire variations (Heineman et 

al., 2015). 

The project later evolved in 2017 to the current project seen today, which utilizes 

combinators in Scala [https://github.com/combinators/nextgen-solitaire/wiki/V-2.0-solitaire]. 

Developers model solitaire variations in Scala, which are provided as input to the code generator 

which generates the resulting Java code. This new variation allowed for a significant increase in 

scalability and since this process was language-independent, the combinators could also be used 

to generate code in other languages such as Python. The current iteration of the project included 

the generation of working test cases as well as the combination of the Next-Gen solitaire 

framework with the UI which allows users to run all of the working variations of the project. 

  

 

2.2 Combinatory Logic Synthesis 

 

 Combinatory logic synthesis (CLS) utilizes combinators to synthesize code using 

combinators. Combinatory logic synthesis (Bessai et al., 2014) [ETAPS2014] is a type-based 

approach to component-oriented synthesis using types as interface specifications (Rehof & 

Vardi, 2014). CLS automates the composition of components from a repository using 

combinatory logic. CLS repository is modeled as a finite combinatory type environment Γ with 

type assumptions x : τ , where x is a combinator symbol and τ is its implementation type. The 

logical foundation of this idea is to consider the inhabitation relation in combinatory logic: Given 

an environment Γ and a type τ , does there exist a combinatory expression M such that Γ ⊢ M : τ 

? An algorithm that solves inhabitation problems can compute (or enumerate) expressions M, 

referred to as inhabitants of the type τ. The basic process of CLS is to construct a repository of 

combinators and then request the inhabitants for a given collection of types τ1, τ2, … τn. 

 

To increase the flexibility of CLS, staged composition synthesis (SCS) (Düdder et al., 2014) 

introduces a functional meta-language (referred to as L2) in which component implementation 

language-code (referred to as L1) can be manipulated. The metalanguage is a restricted form of 

the λ□-calculus of Davies and Pfenning. In λ□, a modal type operator □ ("box") is used to inject 

L1-types into the type-language of L2. Type □int can be read as code of a program (L2) when 

compiled and executed yielding a value of type int (L1). In SCS, inhabitation treats L1/L2 

https://github.com/combinators/nextgen-solitaire/wiki/V-0.6-solitaire
https://github.com/combinators/nextgen-solitaire/wiki/V-1.0-solitaire
https://github.com/combinators/nextgen-solitaire/wiki/V-1.0-solitaire
https://github.com/combinators/nextgen-solitaire/wiki/V-2.0-solitaire
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combinators as atomic building blocks additionally described by a stratified layer of semantic 

types, attached by the intersection type operator "∩". Semantic specifications are used to guide 

program synthesis 

 

The best way to explain how CLS works is to use a small example. The current toolset uses 

Scala as the L2 language and -- for the Solitaire example -- Java is the L1 language. 

 

 
Figure 1: Simple Java Expression Combinators 

These two combinators, respectfully, represent Java expressions. Combinator Earth 

represents the Java string "Earth" while Mars represents "Mars". These two atomic building 

blocks can be used to assemble larger programs. The @combinator annotation tells the Scala 

system to treat this object as a combinator for CLS. Each combinator has a type specification as 

shown by the semanticType val associated with the object. Each semanticType is a Type, 

which here is a simple terminal symbol 'Planet. The application of a combinator (the apply 

method) results in code artifacts in Java, in this case an Expression. Java is a convenient 

language to use as L1 because of the extensive Abstract Syntax Tree (AST) tools available. In 

our case, we use the powerful opensource javaparser [https://github.com/javaparser/javaparser]. 

Ultimately, each combinator results in a node in an AST. 

 

https://github.com/javaparser/javaparser
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Figure 2: CompilationUnit Combinator Example 

 

The PlanetExploration combinator combines all elements and shows the power of CLS. First, 

observe the semanticType which is of the form A → B. This is a standard abstraction which can 

be viewed as a function f(A) which results in an object of type B. Note that  A → B → C can be 

interpreted as f(A, B) which results in an object of type C. In the case of PlanetExploration, 

the result will be a CompilationUnit, (that is an entire Java class) after it consumes an input of 

type 'Planet. From the earlier example, there are two combinators of this type. 

PlanetExploration will consume either one (which produces an Expression) and use that 

Expression inside the Java class as the argument to System.out.println. Observe how this 

combinator definition makes extensive use of the String interpolation capability of Scala to 

construct arbitrary strings, which are then parsed for syntax correctness to produce a Java class. 

 

The inhabitation request of 'Complete would result in two inhabitants found, one would be a 

Java class that prints out “Earth” – let’s call this PlanetExploration(Earth) – and the other 

PlanetExploration(Mars) would print out “Mars.” 

 

To make it easier to develop complicated combinators, we take advantage of a template 

mechanism to simplify their definition.  

 

 
Figure 3: Expression Template Loader 
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The above combinator has the same overall type as PlanetExploration, but TemplateLoad 

instead loads up the definition of the Java class file from a separate template file whose contents 

appear in Figure 4. This stand-alone file is defined using Play 

[https://www.playframework.com/documentation/2.8.x/ScalaTemplates] and supports passing in 

arguments -- in this case, the consumed Expression object: 

 

 
Figure 4: Generated Expression from Template 

This template specifies in its first line that it takes a single argument, planet, of type 

Expression. Similarly, the Expression value of planet is injected into the template. 

 

Now assume there is a Γ repository consisting of { Earth, Mars, PlanetExploration, 

TemplateLoad }. From this repository, the inhabitation request Γ ⊢ M : 'Complete? will 

produce four inhabitants: 
• PlanetExploration(Earth) 
• PlanetExploration(Mars) 
• TemplateLoad(Earth) 
• TemplateLoad(Mars) 

 

The existing toolset is supported by the Play framework to generate each inhabitant upon request 

using a web server. From within the sbt framework, execute the command 

 
nextgen-solitaire/run 

 

and a web server is launched to process HTTP inhabitation requests. This populates the Gamma 

repository with its included combinators.  

 

 
Figure 5: Gamma Repository Combinators 

 

https://www.playframework.com/documentation/2.8.x/ScalaTemplates
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Based on the following request: 

 

 
Figure 6: Gamma Repository Request 

There are four inhabitants found. The web site produces four variations that can be generated and 

the user can choose which one to produce. After selecting a variation, a git repository is created 

which contains the generated code, and the user can simply check it out using git. There is no 

need to show the actual generated code since the above examples are so small. 

 

Solutions: 

 

Variation 0: 

• Compute 

Variation 1: 

• Compute 

Variation 2: 

• Compute 

Variation 3: 

• Compute 

Figure 7: Generated Variations 

 

2.3 Code Generation  

 

 Code generation is a process in which the compiler will use a code generator to transform 

a representation of source code into a machine-readable form that then can be run on its own. 

Since the early stages of code generation, programmers have been attempting to generate code 

for many various uses. The most prominent use is to generate repetitive and boilerplate code that 

can be written once and utilized repeatedly throughout a program. Other uses include generating 

code from information gathered from documents during runtime and generating a skeleton from 

defined models (utilized within Next-Gen Solitaire). The code that is generated by a program can 

be as small as a simple function or as large as an entire application.  

 The four main reasons why programmers choose to generate code are to increase 

productivity, consistency, portability, and simplicity (Tomassetti, 2018). When the user 

generates code, they do not have to continue to rewrite duplicate code snippets within the same 

program. When the program is generating repeated code on its own, the user can save time and 
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be more productive. Since the same code is being generated every time it is needed, it removes 

the chance for variability within the code. Each variable, method name, and all other facets of the 

code will be exactly the same. This will make it easier as everything remains consistent and 

compatible when different developers with different styles may be working on the same project. 

The portability of a project is increased with code generation because of the ability to generate 

that code into different languages or frameworks. In Next-Gen Solitaire, the project has utilized 

generated Python and Java code, which demonstrates the significance of code generation’s 

portability. The last useful reason for code generation is simplicity. When code is being 

generated from some abstract description, that description defines what will be generated and run 

in the final product. All the user needs to work with is that description. In Next-Gen Solitaire, 

this description is a model, which defines all the concepts for each variation of solitaire 

 While code generation has many advantages, there are also reasons why it is not always 

the best option for every program. When you create a code generator, the code that is generated 

will always be the same, so while the rest of the program is developed and advances, the 

generator needs to be maintained to stay up to date. This can become a major problem if the right 

knowledge or resources become unavailable to continue maintaining the generator. Another 

complication with code generation is that creating the code generator can sometimes be a 

complex process. While working with a complex generator to improve simplicity in the future 

can be extremely useful, sometimes the risk of overcomplicating the process does not outweigh 

the reward. Finding a productive and worthwhile code generation process can drastically 

improve a project, but an overly intricate process may make it harder for the developers in the 

long run.  

 

2.4 Test Case Generation  

 

 While base code can be generated for an application, test cases can be automatically 

generated as well. One of the biggest issues with generating test cases is creating meaningful 

tests that are checking for accuracy instead of just for the ability to run without failure (Hicken, 

2018). Generating assertions to check for success will ensure that the accuracy is being tested as 

well as the program's ability to run. It can be simple at first to increase code coverage by testing 

commonly used methods, but generating code for edge cases can be more difficult. Due to the 

intricacies of some programs, it may be hard to create a generator that tests each program in its 

entirety. Also, as the code changes, the tests will need to be regenerated, so any good test suite 

generator needs to be able to be regenerated. While it may be difficult to produce complete 

coverage with meaningful tests, when implemented properly, test case generation can be an 

efficient tool for ensuring that a program works properly. A major advantage of generating tests 

over writing them by hand is the increase in productivity. The developers do not need to spend 

time writing test cases by hand when they can simply have the test cases generated for them. 
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3 Design 
 

3.1 Scala Solitaire Generation Framework 

 

The Scala solitaire generation framework is the result of refactoring the first initial 

release of LaunchPad (Heineman et al., 2015). The inherent technical challenge with solitaire as 

a feature-based product line is that the variation points do not align well with the composition 

tools provided by FeatureIDE , the technology on which LaunchPad was built. Consider the 

feature model from this paper: 

 

 
Figure 8: LaunchPad Feature Model 

 

This feature model contains the elements one would typically find in a feature diagram. 

However, the coarse-grained nature of feature modeling means that the subdivisions do not align 

well with the numerous variation points one typically finds in solitaire games. For example, in 

the game of Klondike, one can either deal one card at a time from the stock to the waste pile or 

three cards at a time. In the feature diagram above, DeckMove is the only feature one can select. 

Under the hood, that is, invisible to the feature diagram, the Klondike feature has code artifacts 

that determine the number of cards to deal.  

Essentially, there is an impedance mismatch of sorts, where the feature units that are 

visible in the diagram are much too coarse-grained to be of use when modeling dozens or even 

hundreds of solitaire variations. In many ways, this is akin to the challenge of using straight 

object-oriented programming to model all the various solitaire variations using subclasses. The 
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composition tools available to object-oriented programmers or feature-oriented software 

engineers are not well suited to this application domain. 

We assessed that LaunchPad was successful in generating a small number of variations 

but that it would not be able to scale to support families of solitaire variations, where rather small 

changes separate two different variations. Professor Heineman conducted an extensive 

refactoring process that resulted in the Scala code generation framework, currently available in 

the nextgen-solitaire GitHub repository on https://combinators.org. 

The essence of the generation framework is that a solitaire variation is composed using 

CLS from a repository of combinators, thus the problem reduces to determining how to create 

the necessary combinators.  The examples so far use static combinators as tagged with the 

@combinator annotation. What is needed is a more flexible arrangement, which allows for the 

programmatic construction of combinators. To give a specific example, consider the following 

Scala class definition: 

 

 
Figure 9: Parameterized Combinator 

 

This looks very similar to the combinators we have seen thus far. The primary difference 

is that it is parameterizable. Since we need to generate a number of Java classes, methods, and 

fields, each one needs to have a proper name, which is the value parameter above which is 

converted to a Java SimpleName. The semantic type is determined by the cons parameter. Thus 

instead of hard-coding all information in a static combinator, from this basic template, many 

specialized subclasses can be defined: 

 

 
Figure 10: Specialized Subclasses 

Each of these is specialized to name elements that are properly typed. To see these 

combinators in action, consider how moves are represented in the Java solitaire framework. As 

you may recall, each move has its own class, and in a move class, there must be logic to execute 

a move, check if it is valid, and undo the impact of a move. Since each of these capabilities is 

generated from a constructor, we need to populate the gamma repository with the relevant 

combinators. The following fragment shows how move logic, stored in the solitaire variation s as 

a collection of moves, causes several different combinators to be added to the gamma repository, 

using the addCombinator method. 

 

https://combinators.org/
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Figure 11: Adding Combinators to the Gamma Repository 

 

The solitaire generation framework makes it possible to provide boilerplate strategies for 

constructing the repository. Here is the initial specification from the Klondike variation which 

takes a solitaire object (whose specification is described in Chapter 3 of this report). 
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Figure 12: Initial Klondike Variation Specification 

While this appears complicated, it streamlines the construction of the 𝚪 repository. Once 

the repository is constructed, then a given set of targets is requested for inhabitation. The 

standard set is: 

 

 
Figure 13: Inhabitation Target Set 

In plain English, this requests that the complete game be generated, together with the 

complete set of constraints. Then all mouse controllers are generated, followed by special 

classes, move classes for the solitaire domain, and finally all JUnit test cases. 

 

3.2 Code Registries 

 

Professor Heineman developed several code recipes to improve the extensibility of the 

Scala code generation framework. In particular, the code infrastructure supports the principle that 

solitaire variations should be able to define their own custom move logic separate from the 

common code provided by the infrastructure. This most commonly presents itself with the ability 

to specify additional constraints that are relevant only for the individual variation. For example, 

in the solitaire game Narcotic one of the moves is to remove all four cards from the tableau if 

they all have the same rank. Because this move is so unique to the Narcotic variation, the 

framework does not provide a built-in constraint which could allow this type of behavior. As 
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such, it must be defined explicitly. Describing how Nextgen-Solitaire supports this capability 

will demonstrate its flexibility and extensibility. 

The first challenge is to describe the constraint. 

 
case class AllSameRank(src:MoveInformation) extends Constraint 

 

This Scala construct represents a new kind of constraint for the solitaire domain which 

needs to be integrated into the existing framework. This is done at run-time using the following 

structure: 

 

 
Figure 14: Narcotic Code Generator 

Briefly, this object takes the existing constraintCodeGenerators.generators 

supported by the code generation framework and merges in a new case to be handled, namely 

AllSameRank. The merged generator is integrated using the following combinator, which 

ensures this object is used whenever the inhabitation algorithm requests 

constraints(constraints.generator). 

 

 
Figure 15: Narcotic Combinator 

While this represents some of the combinatory logic, it does not provide the definition for 

any individual constraints. The actual logic that implements this constraint is defined inside an 

allSameRank method provided by the following ExtraMethods combinator. 
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Figure 16: Extra Methods Combinator 

This combinator will return a collection of new methods to be injected into the solitaire 

game variation. The allSameRank method ensures the array of stack objects all have the same 

rank on top. The end result of these combinators is that existing infrastructure capabilities (in this 

case, the mapping of a Constraint to a Java Expression that implements that Constraint) can 

be easily extended to support additional user-specified extensions. In addition, if a solitaire 

variation wishes to “override” an existing mapping, then this same approach can be used to 

replace a mapping with a new version. 

With this new constraint integrated into the solitaire generation framework, existing logic 

that generates valid Move classes will simply inject the constraint logic as necessary without 

requiring any further modifications to the framework; this is the very definition of extensibility. 

 

This specific recipe is repeated a number of times: 

1. constraintCodeGenerators.generators handles the mapping of Constraint to 

Expression. 

2. constraintCodeGenerators.doGenerators handles the mapping of MoveTypes 

into Seq[Statement] that describe the logic for carrying out a move in Solitaire. 

3. constraintCodeGenerators.helperGenerators handles the mapping of Move 

Types into Strings that contain class fields and/or additional method declarations to 

be inserted into a Move class. 

4. constraintCodeGenerators.undoGenerators handles the mapping of MoveTypes 

into Seq[Statement] that describe the logic for undoing a Solitaire move. 

5. constraintCodeGenerators.mapGenerators handles the mapping of MapTypes 

into Seq[Statement] that describes how cards can be dealt to existing Tableau 

elements based on specific criteria (i.e., by Rank or by Suit). 

 

In all of these cases, individual variations can extend the capabilities of the Solitaire code 

generation framework. 
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3.3 Technical Solitaire Terminology 

 

Before analyzing the structure of a given variation’s domain within the framework, it is 

important to understand basic solitaire terminology. The following terms are used throughout all 

variations and are used to describe both physical and constraint elements.  

 

Card A regular playing card has a suit and a rank. It may be face up (in which case 

this information is visible) or face down (which hides this information). 

Column A stack of cards that are offset to allow the user to see all cards within the stack 

Deal Adding cards to a layout by taking them from the stock at the start of the 

game. Dealing is different in every solitaire variation. In some games, there is 

no stock and therefore no dealing at all. In other variations, cards may even 

return to the stock.  

Foundation A designation pile for the cards. The goal of many solitaire games is to 

eventually move all of the cards to foundation piles. Often, the foundations are 

empty at the start of a game, but in some games, they may begin with a starter 

card that determines which initial cards can be placed.  

Layout The pattern of cards on the table. The initial layout is the set of cards created at 

the start of the game. 

Pile A stack of cards of which only the topmost card is visible. 

Rank The number value of a card. In solitaire, the Ace can count as either the lowest 

value card (one) or the highest value card (fourteen). The Jack, Queen, and 

King count as eleven, twelve, and thirteen respectively. 

Stock A kind of locational pile. Usually a single pile of cards that can be drawn upon, 

one card at a time, during the game. In many variations, this is typically the 

deck of remaining cards.  

Suit The suits are Hearts , Spades  , Diamonds , and Clubs . Hearts and 

Diamonds are colored red, while Spades and Clubs are colored black. 

Tableau These columns and piles are typically the "workspace" on the board. The 

player can typically move individual (or stacks of cards) between tableau 

elements during game play. 

Figure 17: Technical Solitaire Terminology 

3.4 Scala Domain Modeling 

 

 With the framework in place, working code for Solitaire variations can be generated 

without users having to write out all of the code themselves. However, a model still must be 

defined so that the framework knows what structure and rules the generated game will follow. 

These models appear in each variation’s respective Scala package object.  

 Each model contains a set of concepts defined by the user when creating a variation, and 

used by the framework for various purposes to generate the proper solitaire game. For example, 

one of the defined concepts is the set of viable moves called moves. This set contains every move 

within the variation that could be completed within the rules of the specific variation. These 

moves are defined within the variationPoints.scala file for each family and can also be 

made variation specific within the package object for that variation.  
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Figure 18:  Simplesimon Scala Domain 

 The above code snippet is an example of a Scala model from the Simplesimon variation 

(derived from the Simple Simon Solitaire variation). This model is defined within the package 

object for each variation within a family. The concepts of a particular game are derived from the 

Solitaire class, which consists of multiple optional and non-optional concepts.   

 

3.4.1 name (name = "Simplesimon") 

Within any given solitaire variation model are concepts defined to create the components of a 

game. The first concept shown is name which is simply the name of the variation and is defined 

as a String variable. This String should be unique among all produced variations, as it is used as 

a unique identifier.  

 

3.4.2 structure (structure = structureMap) 

The concept structure defines the type and quantity of card containers that will be used within 

the variation. The structureMap is defined within the variationPoints.scala file that is 

shared by all variations within the family (or placed in the base package if there is no 

variationPoints.scala defined). This allows for other variations within a given family to 

override or replace the base map. The variable type for this component is a Map of 

ContainerTypes (such as Foundation, Stock, or Tableau) and element sequences (such as a 

sequence of 10 Columns).  

Below is the collection of generic ContainerType: 

 

 
Figure 19: Generic ContainerTypes 
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A structureMap example is shown below, creating 10 Column tableaus, 4 Pile foundations, and 

a single stock. 

  

 
Figure 20: Example StructureMap 

 

3.4.3 layout (layout = Layout(map)) 

 The layout map (usually called layoutMap or map in variationPoints.scala) defines 

the location and size of the containers defined in the structure map. The container types are 

arranged based on a placement function. Because the variable type of a layout is a map of 

ContainerTypes (similar to those used in the structureMap), and sequence of widgets, the 

horizontalPlacement function returns a collection of produced widgets. In the below example, 

the layout map uses the horizontalPlacement function to define the x and y position of the 

container, how many of that container will be placed (for example, 10 Tableaus), and the size of 

the container (which can utilize the global card_height variable which represents the size of 

one card). The number of container elements should match the amount defined in the 

structureMap. As a result, it is recommended that variables be used in place of definitive 

integers.  

 

 
Figure 21: Variation Layout 

3.4.4 deal (deal = getDeal) 

 

After the layout is set, the cards must be dealt into the proper containers at the start of the 

game. This is defined within the deal concept. The deal is also defined within 

variationPoints.scala and is shared among all variations within a family. The deal concept 

consists of a sequence of DealSteps, as defined below: 

 
case class DealStep(target:Target, payload:Payload = Payload()) extends Step 

 

The DealStep class consists of a target and a payload. In the context of the deal concept, tableau 

elements associated with the given column number (colNum in the example below via the 

ElementTarget association method) are the target or receiver of the deal. The Payload is 

simply a collection of cards to be moved, with parameters determining if they should be face-up, 
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as well as the quantity of the cards dealt. These should all be compounded into a single sequence 

to be returned. In the example below, the 0th to 3rd tableaus are dealt 6 cards, while the remaining 

tableau columns are dealt 5 cards. Any cards not dealt at the start of the game remain in the 

stock.  

 

 
Figure 22: Deal Concept Definition 

 

3.4.5 specializedElements (specializedElements = Seq.empty) 

specializedElements is a part of the model that is used to set special elements on the 

board display. Elements that are “specialized” are any elements that are not contained within the 

standard board components of decks, tableaus, and foundations. For example, the bigforty 

variation involves the usage of a waste pile, which is added to when the stock is clicked. Only 

the top card of this waste pile can be viewed and moved as well, adding an additional interaction 

that sets it apart from a standard foundation or tableau element. An example of the waste pile 

from the bigforty variation package is shown below: 

 

 

Figure 23: Specialized Waste Element 

 The interactions which are involved with the Waste Pile are defined in the variation’s 

controller definition, as the pile is added to, and removed from via the usage of the stock, or the 

waste pile itself. If there are no special elements to be defined, the concept can be set to an empty 

sequence.  
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3.4.6 moves (moves = Seq(tableauToTableauMove, tableauToFoundationMove)) 

 

Next, the set of moves that a user can attempt to make in a given game needs to be 

defined. The moves concept is set as a sequence of moves, where each move is defined within 

variationPoints.scala (or in the variation package file if no variationPoints.scala is 

defined). Move types are arguably the most complex element of a variation definition, as they 

consist of multiple characteristics and constraints. Below is the class definition for the move 

type: 

 

 
Figure 24: Move Class Definition 

The name is a String that uniquely identifies the move itself.  

The moveType  is the type of movement for which a given move corresponds to. The generic 

moveTypes are listed below: 

 

 

Figure 25: MoveType Variations 
 

DealDeck(numCards:Int): Deals a specified number of cards to the specified source of the 

overall move.  

ResetDeck: Resets the deck via the given move. 

MultipleCards: Movement involving multiple cards. 

FlipCard: Flips the selected card over (either face up or down). 

SingleCard: Movement involving a single card. 

RemoveSingleCard: Removes the single selected card. 

RemoveMultipleCards: Removes the stack of selected cards.  
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In addition to having container elements respond appropriately after performing a given 

action, these types are also parsed in the variation’s controller class, causing the visual 

components to be performed with the given MoveType.  

 

A move’s gestureType is even more closely related to the controller’s front-end display 

of the move, with visuals appearing in concordance with the action of the move. The base 

gesture types are defined below: 

 

 
Figure 26: Interaction GestureTypes 

All of the GestureTypes correspond to the user’s mouse actions, with Click being a 

Press and Release of the mouse. Most actions that correspond to physically moving cards are 

considered Drag gestures, whereas interacting with an element like the stock would be Press or 

Click gestures.  

 

The moveableElement of a move is the type of element that is actually being moved 

when the user performs a given action. This could range from single cards (such as when 

clicking the stock) to whole columns (such as moving a stack of cards from tableau to tableau). 

The definition and types of Elements are shown below: 

 

 
Figure 27: Element and Card Definitions 

Column and Pile elements are effectively the same, aside from Piles of cards only 

showing the top of the stack. BuildablePile elements are considered Pile elements, yet show 
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cards similarly to Column elements, and are typically meant for building sequences of cards in a 

particular order.  

Row elements are similar to Column elements, besides vertical orientation.  

Stock elements represent the game’s stock container, with only the top card being shown.  

 

The final main elements of a move, the Source and Target concepts, have two 

components: ContainerType and Constraint. ContainerType corresponds to the type of 

container element involved in either the source or destination of the move. Constraint 

components are the main facet of the validity of a given move. A move will only succeed if the 

constraints for the Source and Target destinations are met. The amount of basic constraints is 

large, and listed below: 

 

 

 
Figure 28: Basic Constraint Types 

While going into depth about the specifics of each constraint is outside the immediate 

scope of this paper, additional examples of their usage and explanation are within the source 

code. Many constraints are fairly self-explanatory, however. For example, the AllSameSuit 

constraint returns true if a set of cards is all the same suit. Because constraints can be placed on 

both the source (the cards being moved) and the target (the location they are being moved to), 

both are checked when observing whether an action should succeed. To allow for multiple 
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constraints to be applied, they can be chained together using the AndConstraints or 

OrConstraints, which are constraints themselves. These OrConstraints and AndConstraints 

simply determine the Boolean logic of all input constraints, returning the “Or” or “And” results 

respectively. An example of multiple constraints being compounded is shown below (from the 

Simplesimon variation): 

 

 
Figure 29: buildOnFoundation Constraint Definition 

This buildOnFoundation constraint is the logic for determining whether a given stack of cards 

can be moved to the foundation. Only a set of cards that are descending, all the same suit, and 

range from King to Ace can be placed onto the foundation. If no constraints are required for 

making a given move, this can be determined by the Truth constraint.  

 

The last component for a move, isSingleDestination, is a simple Boolean flag that 

determines whether the destination for the moving components is a single source or multiple 

sources. This flag is set to true by default, however, if a move distributes cards to multiple 

tableaus (such as dealing from the stock deck), then this flag should be set appropriately. 

There are many components to a single move action, however many of these actions are similar 

across variations. Usually, it is the number and constraints of the moves that determine the 

variability of the rules between variations, even those within the same family. An example Move 

that could be added to the sequence of possible actions is shown below (using the 

buildOnTableu constraint from the previous subsection: 

 

 
Figure 30: Tableau to Foundation Move Definition 

To summarize, this tableuToFoundationMove determines the action of moving a 

number of cards from the tableau to the foundation. This move allows for multiple cards to be 

dragged as a column. When coming from the tableau, there are no constraints, however when 

placing them into the foundation, the constraints IsEmpty and buildOnFoundation need to be 

met. Only when these constraints are satisfied, will the move be valid and proceed.  
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3.4.7 logic (logic = BoardState(Map(Foundation -> 52))) 

Once the moves of a given variation have been determined, the final board state logic 

needs to be determined. This refers to how the user can win the game of solitaire. In the 

Simplesimon variation example, the user wins when the game is in a board state where all 52 

cards are all in the foundation (shown below):  

 
logic = BoardState(Map(Foundation -> 52)) 

 

All forms of the logic are in the form of a BoardState object, with an input Map applying 

the conditions to the listed elements. Another example is the Narcotic variation, wherein the user 

wins by emptying the stock and all tableaus: 

 
logic = BoardState(Map(Tableau -> 0, StockContainer -> 0)) 

 

3.4.8 solvable (solvable = false) 

The next concept in the model is solvable. This is an optional value as when it is set to 

false then it will not be utilized in the variation. If the value is set to true, then an additional 

button is available to the user upon launching a variation: solve. This button then iterates through 

all possible potential moves for a given board state, effectively brute-forcing all available options 

until the most progress is made. The iteration of these moves is variation-specific and is defined 

within the ExtraMethods combinator in the variation family’s domain. Even with a method of 

iterating through possible moves defined, this does not guarantee that any given board state is 

solvable. Many board states, depending on the variation and constraints for card movements, are 

not actually solvable: an intended facet of many types of real-life solitaire games. 

 

3.4.9 testSetup (testSetup = Seq()) 

The final concept defined within the model is the optional testSetup of the variation. 

When set to an empty sequence, testSetup does nothing. However, testSetup can be set as a 

board state (in the form of a Java sequence) that defines a situation in which all possible moves 

defined by the moves trait can be tested. This is discussed further in the following section on 

testing, but below is how it looks within the model (this example comes from the Simplevar 

variation within the Simplesimon variation).  
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Figure 31: TestSetup Java Board State 

The intention of this design component was to create a simpler and more efficient way 

for users to create their own Solitaire variation with the framework. Instead of having to write 

out long sections of code to define various concepts for a variation, all a user needs to do is 

define a model with already built-in constraints and methods. Of course, anyone looking to pick 

up this framework to create a variation would still meet a learning curve and would need to take 

time to learn how to create a model and which constraints/methods are available to be used. The 

simplistic nature of the modeling should allow users to define all of the concepts that will 

generate a working variation faster than it would be to write out the entire variation by hand. 

Each concept within the model can be defined easily and picked up quickly by new users 

following through the tutorial discussing each concept. Even if users finds themselves confused 

when learning how to utilize a concept, the likeness between each variation within the entire 

Next-Gen Solitaire program allows users to look at how other variations define each concept and 

copy or modify similar concepts across the variations.  

 

3.5 Testing 

 

 Originally, the unit testing capabilities of the framework only consisted of production 

element accountability. The tests mostly consisted of checking whether a certain element or 

constraint was generated properly within the Java code, confirming that the combinator 

components were produced correctly. This did leave an absence in logic testing however. 

Although it could be checked whether a certain Java component was produced, there was no way 

of ensuring that the intended logic of card movements, winning and move validity was correct. 

To remedy this missing component within the project and to improve scalability, a 

TestSynthesis combinator was added to the framework, allowing the option to generate JUnit 

4 move test cases to ensure that the variation logic is being generated as intended. The user can 

choose to generate test cases by defining a testSetup concept in the model.  

 

In order for the program to actually test solitaire moves, there must be a board state set 

where all of the cards are placed into an orientation that allows for the moves to be tested. When 

the user creates testSetup, they must define it as the board state that allows all of the moves to 

be tested and succeed. This means that the starting board setup should contain the state for 

performing a valid move, as the process involves negating a particular constraint to be tested 

individually. The manual construction of the board state is necessary so as to be able to test both 



30 
 

user-defined and generic constraints. If there is no testSetup defined, or defined as an empty 

sequence, then no test cases will be generated and the combinator will not be added to the code 

synthesis. 

 

An example board state for the Simplevar variation: 

 

 

Figure 32: Simplevar Test Setup 

The test cases generated test each constraint for all possible moves and should succeed 

when the constraints are met and fail if any of the constraints are negated. Individual test cases 

are generated based on the variation’s collections of move types defined in the moves concept, 

such as movements to piles or foundations. Based on the constraints defined for each type of 

move, a negating version of the constraint will be applied to the board state, innately negating a 

particular constraint. This allows the user to test for false validity after the negated version of a 

constraint is applied to a valid board state. By negating only a single constraint in each test, each 

constraint is tested separately. In parsing a given variation’s moves, the validity of the board 

state is negated using a drop-in Java function, such as the example below: 

 

 
Figure 33: AllSameSuit Constraint Negation Function 

In this example, the given Java code is inserted into the variation if a variation’s move 

contained the allSameSuitNegative constraint.  

 

While this system is valid for predefined constraints, it does not cover user-defined 

constraints. To test a user-defined constraint, the test simply performs the move in which the 
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constraint was derived from, without falsifying any constraints. If the user-defined function was 

created correctly, then it should already be reflected in the board state (as the state should be an 

environment that allows for any legitimate move for that variation). If the test for the user-

defined constraint fails, then it can be reasonably assumed that there is either a problem in the 

constraint or a discrepancy in the assumedly-valid board state. In either case, there is an error in 

the model’s logic that should be addressed.  

 

 Overall, the generation of test cases was designed to allow users to be able to test their 

variations easily. Similarly to the benefits of the model, the testing allows the user to save time 

and create tests in a much simpler manner than writing all of the code out by hand. Once the user 

learns the basics of setting up a test board state, they will be able to create test cases for any 

variation at a more efficient pace. Also, by creating a dynamic combinator that applies tests for 

specific moves, the scalability of testing increases with variation size and diversity.  

 

3.6 Code Consolidation 

 

 Much of the project was designed with code consolidation in mind. When making 

solitaire variations, a lot of the same structure, rules, and concepts are similar between variations. 

A big emphasis on the design of the framework was to allow for the combination of code that is 

duplicated over many of the variations and families. Instead of forcing the user to have to define 

parts of the solitaire game that are shared between multiple families, this framework defines all 

of those aspects itself and generates the game code without any work by the user. Many methods 

that are utilized across families generate parts of the game such as the structure of the board, the 

orientation of the cards, and the deal. The user will never have to spend their own time writing 

out this method by hand, since it will be called within every newly-created variation. An 

example of this is constraints. Constraints (as defined earlier in this section) are small tests for 

the validity of a card or move. Throughout the entirety of the project, all moves in all variations 

can utilize the same list of constraints to test moves.  

 
Figure 34: Combination of Constraints 

The figure above displays the method that defines an acceptable move when placing a 

card onto a tableau in Simplesimon. TopCardOf(), BottomCardOf(), Descending(), 

AllSameSuit(), AndConstraint(), OrConstraint(), and NextRank() are all constraints that 

are not defined within variationPoints.scala for the family, but are still available to be used. 

Constraints are defined in the constraints.scala file and shared across all variations. 

 

The only details that the user needs to define are the characteristics of each game that 

make it unique among all other variations. The model for each variation is where these 
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differences are determined. Each separate concept is applied to the methods shared by each 

variation, in turn generating the game structure, rules, etc.  

In addition to the consolidation of methods that are used between all families, the models 

also utilize shared variables within a family. Many of the concepts that the model defines can 

have attributes that could also be used by a different variation for that same concept. For 

example, more than one variation can have a move that utilizes the same deal or the same 

constraints on a move. Variations within the same family consolidate code by using the same 

method for many of their concepts within variationPoints.scala. Each variation within the 

family can use the variables defined there for their own model. 

 

 
Figure 35: Simplesimon Layout and Structure Maps 

The two figures above are the structure and layout maps for the Simplesimon family. 

These maps are available to be utilized by any variation within the family. This is extremely 

useful when creating a new variation because the user does not have to rewrite new maps for 

each of the variations, they can just call upon the already existing ones within 

variationPoints.scala. Many more shared concepts can be defined, including the number of 

tableaus, stocks, foundations, deals, moves, etc. The models also offer the option to override 

anything in variationPoints.scala to allow for flexibility if another variation within the 

family needs to adjust any of the shared concepts. An example of this is shown in the figure 

below where Simplevar overrides the number of tableaus because it uses 8 instead of the 10 

used in most variations of the Simplesimon family. 

 

 
Figure 36: Overriding the Number of Tableaus in a Family 

Code consolidation within this project allows for the user to spend less time writing code 

while the framework generates repeated code and utilizes shared methods instead. This allows 

for an increase in productivity as there is no time wasted on rewriting much of the code that 

every game needs and shares.  
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4 Development/Evaluation 
 

4.1 Start of Current Project Iteration 

 

 This iteration picked up after several years of development on the framework. In prior 

iterations, solitaire variations in Java were generated using CLS but there was no separate 

domain modeling. This resulted in a fragile code repository due to all the specialized knowledge 

of the different variations being embedded within the individual combinators. Eventually Scala 

domain modeling was added to the project and the process of modeling variations began. The 

synthesizer had been almost completely finished and many Scala models had been created which 

could generate lots of solitaire variations and families. While many models had been created, not 

all of these models could compile and be run as a working solitaire game. This iteration of the 

project picked up with finding the faulty variations and debugging them before continuing to 

create new variations. 

 

4.2 Tools and IDE 

 

The IDE used for this project was IntelliJ. Creating Scala models, working with the 

synthesizer, and running the solitaire games were all done in the same IDE. In previous iterations 

of this project, the generated Java code was opened in Eclipse and then run from there, however 

in this iteration of the project, that process was moved over to IntelliJ as well, using the modules 

feature. The generated solitaire games were imported as a new module, given the standalone.jar, 

and then run from the same project that held the models and synthesizer. For version control, 

GitHub was used and the project can be found at https://github.com/combinators/cls-scala.  

 

4.3 Creating Solitaire Variations 

 

 In this iteration, the Simple Simon and Baker’s Dozen families were added to the 

project. Simple Simon included the Simple Simon and Simplevar variations. Baker’s Dozen 

included the Baker’s Dozen, Castles in Spain, and Spanish Patience variations.  

 Baker’s Dozen is a variation of solitaire with thirteen columns in the tableau, four cards 

in each column, and no stock. In order to win the game, all of the cards must be placed in the 

foundation. Cards can be moved around to different piles in the tableau if the moving card is the 

rank below the card on the top of the destination pile. For the classic variation of Baker’s Dozen 

the suit does not matter when moving cards on the tableau. If the destination column on the 

tableau is empty, then only a king can be moved to that column on the tableau. Cards in the 

tableau can also be moved to the foundation. There are four foundation piles, each one of which 

starts as an empty pile. Cards must be placed into the foundation in ascending order starting with 

Ace and ending with King. Aces can be placed in any empty pile in the foundation, but every 

other card must be placed on the card of the previous rank with the same suit. For example, the 

Ace of clubs can be placed into an empty pile, yet the two of clubs must be placed on the Ace of 

clubs. The variation of Castles in Spain follows the same ruleset as Baker’s Dozen, however, 

the cards in the tableau can only be moved to other columns in the tableau if the top of the 

https://github.com/combinators/cls-scala
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destination is the same suit as the moving card. In the variation Spanish Patience, any card can 

be placed on an empty tableau, instead of just kings. 

 Simple Simon is a variation of solitaire which has no standard stock, as all the cards are 

dealt among the 10 tableaus. Cards can only be moved from one tableau to another if the moving 

set contains descending values of the same suit, and if the top of the receiving pile is one rank 

higher than the top of the moving cards. Stacks of cards may only be moved to the foundation if 

they consist of a full King to Ace descending same-suit stack. The game ends once all the cards 

are placed in the foundation. The Simplevar variation of Simple Simon wherein 6 cards are 

dealt among the first 4 tableaus, and 5 cards dealt among the remaining 4. All 8 remaining cards 

reside in the newly added stock, which distributes a new card to each tableau when clicked.  

 The intention of generating Java code that runs Solitaire variations from Scala models is 

to allow users to create new variations more simply and efficiently than writing out the Java code 

by hand. To create a brand-new variation, all the user has to do is define various elements of the 

Scala model and the code generation will do the rest. This severely cuts down on the time it takes 

for a user to make a working solitaire variation. However, while modeling is a much shorter and 

simpler process, there are still several steps that need to be followed to actually create the model 

for a variation. 

 A new package can be created for the family within the solitaire folder. Several files will 

be located here that define and control the models for the family and allow the variations to run 

properly. There are built-in templates within the project that allow for easier creation of these 

files. The package object of the family is where the concepts of the solitaire game are set within 

the model. Some of these concepts include the name, moves, and deal, among others. Many of 

these attributes are more complex than just a string or boolean and therefore are defined within 

the variationPoints.scala file and called in the package. variationPoints.scala defines 

concepts such as the structure, layout, and move constraints. Each variation is different and 

therefore no model will be able to be defined in the same way. Due to this, each different 

variation in the model can override attributes that variationPoints.scala sets. 

Once the user creates a model, they can generate the Java code for their variation by 

running the run service in IntelliJ and then opening a web browser to 

http://localhost:9000/<FamilyName>/<VariationName>. This will load the inhabitation page. 

Here, a git repository with the generated code will be made. This repository can be cloned into a 

folder on a computer and executed with the standalone.jar as a dependency. Running this 

generated code should compile and display your working variation which can be played exactly 

how it was defined within the model. 

 

4.4 Functioning Variations 

 

In addition to creating and testing new variations, we also evaluated the current condition of 

existing variations within the NextGen-Solitaire framework. The following is a record of all 

working variations at the time of this document being written (as well as the route to which 

they can be accessed if the local server is running): 

 

Variation (family) Route 

Archway http://localhost:9000/Archway 

http://localhost:9000/
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Fan http://localhost:9000/fan/fan 

Alexander The Great (Fan) http://localhost:9000/fan/alexanderthegreat 

Fan Easy (Fan) http://localhost:9000/fan/faneasy 

Fan Free Pile (Fan) http://localhost:9000/fan/fanfreepile 

Fan Two Deck (Fan) http://localhost:9000/fan/fantwodeck 

Labelle Lucie (Fan) http://localhost:9000/fan/labellelucie 

Scotch Patience (Fan) http://localhost:9000/fan/scotchpatience 

Shamrocks (Fan) http://localhost:9000/fan/shamrocks 

Super Flower Garden (Fan) http://localhost:9000/fan/superflowergarden 

Trefoil (Fan) http://localhost:9000/fan/trefoil 

Free Cell http://localhost:9000/freecell/freecell 

All in a Row (Golf) http://localhost:9000/golf/allinarow 

Flake (Golf) http://localhost:9000/golf/flake 

Flake Two Decks (Golf) http://localhost:9000/golf/flake_two_decks 

Golf http://localhost:9000/golf/golf 

Golf no Wrap (Golf) http://localhost:9000/golf/golf_no_wrap 

Robert (Golf) http://localhost:9000/golf/robert 

Narcotic http://localhost:9000/narcotic 

Spider http://localhost:9000/spider/spider 

Spiderette (Spider) http://localhost:9000/spider/spiderette 

Scorpion (Spider) http://localhost:9000/spider/scorpion 

Mrs. Mop (Spider) http://localhost:9000/spider/mrsmop 

Gigantic (Spider) http://localhost:9000/spider/gigantic 

Spiderwort (Spider) http://localhost:9000/spider/spiderwort 

Baby (Spider) http://localhost:9000/spider/baby 

OpenSpider (Spider) http://localhost:9000/spider/openspider 
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OpenScorpion (Spider) http://localhost:9000/spider/openscorpion 

Curds and Whey http://localhost:9000/spider/curdsandwhey 

Simplesimon http://localhost:9000/simplesimon/simplesimon 

Simplevar (Simplesimon) http://localhost:9000/simplesimon/simplevar 

Bakersdozen http://localhost:9000/bakersdozen/bakersdozen 

Spanish Patience (Bakersdozen) http://localhost:9000/bakersdozen/spanish_patience 

Castles in Spain (Bakersdozen) http://localhost:9000/bakersdozen/castles_in_spain 

Figure 37: All Currently-Working Variations 

4.5 Generating Test Cases 

 

As well as the generation of solitaire games from Scala models, this iteration of the 

project also began the creation of generating unit tests. These tests were designed with the intent 

of validating the generated Java code to ensure that the models were creating a solitaire game 

that followed all of the constraints created by the designer of the model.  

 Originally, the design of the unit test generation was to create tests that took the Scala 

model and generate Java tests based on the map and constraints defined in that model. The 

solitaire variation Simplevar from the Simple Simon family was used as the sample variation to 

generate the first test cases of the project. Simplevar includes a stock, tableau, and four 

foundation piles. Valid moves in Simplevar include moving a stack of cards from the tableau to 

another tableau or from the tableau to a foundation. Tests were created to determine if these 

moves were working properly by attempting to move cards from tableau to tableau and from 

tableau to foundation and checking to see if these cards successfully moved when they should. 

The tests look at a list of constraints that must be met for each move to be valid. These 

constraints are also defined in the model for each move. If all constraints are true then the test 

should pass. Likewise, if even one constraint is false then the test should fail. To test these moves 

and all of the constraints, a set of tests were created with one test testing all of the constraints as 

true and the rest of the tests testing each constraint individually as false and asserting false. 

Two main challenges were faced when creating generated test cases in this way. The first 

problem was that the Scala model defined what a proper move was, however, the model did not 

define any specific way to organize the cards before testing a proper move. When creating the 

first generated test cases for Simplevar, Java code was manually written for the tests to organize 

the cards in such a way that a valid move could be tested. While this method worked for creating 

the first set of generated tests, this was not a long-term solution since every single variation 

would need to have this code manually written for each move to pass all of the tests. This was 

resolved by adding a valid board state to the models. This state is user-defined when creating the 

model and is a representation of a valid state that can be used to test all possible moves.  

The second challenge was dealing with user-defined constraints. Some constraints were 

methods that were user-defined in the domain of the families and therefore could not be easily 

generated and tested along with the other Scala constraints. In Simplevar, the AllSameSuit 

constraint checks all of the cards in a stack and determines if they were all the same suit. This 
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specific method is user-defined in the Java code in the Simple Simon domain and therefore it 

does not need to be converted to Java since it already exists in that format. The original solution 

to this problem was to have users define their own tests for user-defined components, however, 

we felt that this solution required too much explicit programming on behalf of the user. Our 

alternative and simpler solution is to leave all user-defined constraints unalerted. This means that 

user-defined constraints were testing by simply performing an unalerted move, with no validity 

negation occurring. As a result, when run with all other constraints being met, the move should 

succeed and the test should pass. The logic behind this decision was matching the user-defined 

model and the user-defined constraint. If the model and its constraints are constructed as 

intended, then a valid stack defined in the variations test setup should be able to validate without 

fail. However, if this simple test failed, then it would show a discrepancy between the intended 

model and the resulting generated structure. This would mean that either the model constraint 

logic is incorrect, or the user-defined function is not working as intended. In either case, it would 

signal to the user where there could be issues in the variation.  

After creating tests for Simplevar, another solitaire variation in another family was also 

tested to make sure that the test generation would create tests properly for an entirely new game. 

The Shamrocks variation of the Fan family was selected. The unit test generation had to be 

altered slightly to fit with this variation since moves in Shamrocks are for one single card at a 

time instead of a pile of cards. Since every variation is different, there may be slight adjustments 

that need to be made in future iterations of this project for unit test generation. However, every 

variation that uses the same moves and constraints as Simplevar and Shamrocks will be able to 

auto-generate test cases for each constraint that pass successfully when given a valid board state 

in the model. UnitTestCaseGeneration.scala can be found in the shared Scala solitaire folder 

alongside all of the Scala variation models. 

 All test cases were generated in UnitTestCaseGeneration.scala. The apply method is 

the main method that goes through all of the moves of a given solitaire variation and generates 

test cases for them. The constraint tree for each move is flattened, allowing each constraint to be 

tested individually. For each move’s constraints, the moving stack of cards is invalidated based 

on each respective constraint, effectively falsifying a move that would normally be valid. This is 

then asserted as false, confirming that reversing a particular constraint would result in an invalid 

move. Some additional logic checks are also determined for the particular move (for example, 

checking if the move is a deal or if a moving item is a single card instead of a pile).  

UnitTestCaseGeneration.scala takes information from the variation’s model and defines 

variables for several of each game’s key components such as the stock and foundation. For each 

variation, a valid board state must be set up for each move. This is another domain parameter 

that uses user-defined Java code to set the cards into a valid placement so that when a move is 

tested it will be successful. This method (setBoardState) is created within the Scala code of 

each variation and is located in the model as the testSetup variable.  

To summarize the series of operations, firstly the apply method in 

UnitTestCaseGeneration will generate the testSetup Java code and then attempt to make a 

successful move. Then the move is tested several more times, once for each constraint. Every 

one of these tests has one negated constraint. These should all be asserted as false since each test 

should fail if even one constraint is falsified. The one exception to this is user-defined constraints 

which are not negated but just tested as true to prove continuity between the desired model and 

hardcoded constraint check.  
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These steps are repeated for each move until all of the moves have successfully generated 

tests for each of their constraints. Tests will only be generated for a specific variation if an initial 

board state has been defined within the model, however. The Controller.scala file checks to 

see if the testSetup parameter is empty and if it is not then it creates a new 

SolitaireTestSuite for that variation.  

 

4.6 JAR Collection & GUI Launcher 

 

As the number of variations increased, more and more time was spent on configuring 

generated variations. While developing a framework model for a given variation was 

streamlined, the process of running the generated code in a development environment required 

additional steps to play the variation. As a result of this, all current variations were packaged in 

JAR form and stored in the Github Repository Solitaire-Downloads. (A link to this repo can be 

found here: https://github.com/combinators/solitaire-downloads). By creating a collection of 

working JAR variations, the process of configuring the generated code in an IDE was eliminated. 

If a user simply wanted to play a variation, they could download and run a given variation’s 

packaged JAR file without any additional setup.  

 

The online JAR collection also allows for the contributions of 3rd-party users. After 

developing a variation using the main Scala framework, a compiled JAR file can be submitted in 

the form of a pull request to the solitaire-downloads repository. This submitted JAR can then be 

tested and approved by any project administrator. 

 

To further increase the usability and access of the JAR collection, a JavaFX-based GUI 

launcher was developed. While the main components of the Scala framework are publicly 

available, its complexity warranted a tool that 3rd-party users could easily access and 

understand.  

 

 
Figure 38: Solitaire-Player GUI JAR Launcher 

https://github.com/combinators/solitaire-downloads
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The launcher, upon startup, collects the names, locations, and download links of all 

variation JARs. Using a simplified ListView JavaFX element, all variations uploaded to GitHub 

are listed to the user, which can be run by selecting the variation and clicking the Run Selected 

JAR button. The information can also be regathered from GitHub via the Redownload from 

Github button. Upon selecting the Run Selected JAR button, the selected JAR’s download link is 

retrieved and a connection to the online resource is established. Once this process is completed, 

the JAR’s Main class is loaded and run dynamically, starting the process as an extension of the 

currently-running launcher. Variations among the ListView can also be searched using an edit-

distance fuzzy-search algorithm. 

 

While the process of starting a JAR was simple, the closing of a launched application 

closes the entire Java Virtual Machine (JVM). As a result, closing the variation also closed the 

GUI Launcher. To alleviate this problem, an extension of the SecurityManager class structure 

was implemented to prevent the shutdown of the JVM through the closing of a variation.  

 

The JAR launcher can be found at the Combinators solitaire-player repository 

(https://github.com/combinators/solitaire-player). In addition to having the source code for the 

launcher, it also holds a JAR that contains the program itself.  

  

https://github.com/combinators/solitaire-player
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5 Conclusion 
 

 The current iteration of the project implemented useful features to improve the efficiency 

of the framework for new users. Coming into the project, there was little information regarding 

the creation of a variation, or the main components of the domain model. Also, the process of 

running a variation from the ground-up was tedious, especially with lacking and outdated 

documentation. Our goals coming into the project were to make the framework more 

approachable, as well as design a test suite combinator to validate solitaire moves defined in the 

domain. We believe we achieved our goals by improving the client framework, implementing a 

dynamic testing suite combinator, and developing a 3rd-party accessible JAR collection and GUI 

Launcher.  

The improved client and tutorials allowed for users inexperienced with the framework to 

make and play their own solitaire variations as well as play the already existing variations. Test 

case generation was added to allow the user to be able to check the success of their models and 

the generated code, iterating through all of the domain’s designated moves, and producing 

dynamically-appropriate JUnit 4 test cases. Among these larger changes, numerous bug fixes 

were remedied, and new variations added. A JAR database and launcher were also developed to 

streamline the ability to play and search approved variations. Third-party users are now capable 

of contributing to the system more easily than ever, with an online JAR database holding 

executable variations that can be approved via Github’s pull request system.  

 While this iteration concluded most of the work from the previous iterations of Next-Gen 

Solitaire, there are still many more routes in which the project can be continued. The idea of 

utilizing code generation and combinatory logic synthesis to improve efficiency can be expanded 

much farther, not only in this project but also in other areas and programs in the future. 
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