
1

Generating Solitaire Games

A Major Qualifying Project Report

submitted to the Faculty of:

WORESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science.

March 11, 2020

SUBMITTED BY:

Daniel Duff, Andrew Levy

ADVISOR:

George T. Heineman

2

Abstract

Software developers face a steep learning curve when trying to work with complex object-

oriented frameworks. This reduces productivity since it takes a long time for a developer to learn

how to effectively use the complex frameworks. Combinatory Logic Synthesis (CLS) can be

used to generate code for arbitrarily complicated object-oriented frameworks given a simple

domain model. This automation can vastly improve the productivity of development in a new

framework by generating code that involves arbitrarily complicated boilerplate code necessary to

use the framework. This project looks to upgrade and complete a solitaire domain modeling

effort in an ongoing research project, Next-Gen Solitaire. A successful completion of this effort

will allow us to model a wide range of solitaire families, from which hundreds of variations can

be generated. We evaluate the project by the number of variations that are generated, ease of

usability, and making it possible to generate unit test cases directly from the domain models.

3

Table of Contents

Abstract 2

Table of Contents 3

Table of Figures 4

1 Introduction 5

2 Background 7

2.1 Solitaire 7

2.2 Combinatory Logic Synthesis 8

2.3 Code Generation 12

2.4 Test Case Generation 13

3 Design 14

3.1 Scala Solitaire Generation Framework 14

3.2 Code Registries 17

3.3 Technical Solitaire Terminology 20

3.4 Scala Domain Modeling 20
3.4.1 name (name = "Simplesimon") 21
3.4.2 structure (structure = structureMap) 21
3.4.3 layout (layout = Layout(map)) 22
3.4.4 deal (deal = getDeal) 22
3.4.5 specializedElements (specializedElements = Seq.empty) 23
3.4.6 moves (moves = Seq(tableauToTableauMove, tableauToFoundationMove)) 24
3.4.7 logic (logic = BoardState(Map(Foundation -> 52))) 28
3.4.8 solvable (solvable = false) 28
3.4.9 testSetup (testSetup = Seq()) 28

3.5 Testing 29

3.6 Code Consolidation 31

4 Development/Evaluation 33

4.1 Start of Current Project Iteration 33

4.2 Tools and IDE 33

4.3 Creating Solitaire Variations 33

4.4 Functioning Variations 34

4.5 Generating Test Cases 36

4.6 JAR Collection & GUI Launcher 38

5 Conclusion 40

References 41

4

Table of Figures

Figure 1: Simple Java Expression Combinators 9

Figure 2: CompilationUnit Combinator Example 10

Figure 3: Expression Template Loader 10

Figure 4: Generated Expression from Template 11

Figure 5: Gamma Repository Combinators 11

Figure 6: Gamma Repository Request 12

Figure 7: Generated Variations 12

Figure 8: LaunchPad Feature Model 14

Figure 9: Parameterized Combinator 15

Figure 10: Specialized Subclasses 15

Figure 11: Adding Combinators to the Gamma Repository 16

Figure 12: Initial Klondike Variation Specification 17

Figure 13: Inhabitation Target Set 17

Figure 14: Narcotic Code Generator 18

Figure 15: Narcotic Combinator 18

Figure 16: Extra Methods Combinator 19

Figure 17: Technical Solitaire Terminology 20

Figure 18: Simplesimon Scala Domain 21

Figure 19: Generic ContainerTypes 21

Figure 20: Example StructureMap 22

Figure 21: Variation Layout 22

Figure 22: Deal Concept Definition 23

Figure 23: Specialized Waste Element 23

Figure 24: Move Class Definition 24

Figure 25: MoveType Variations 24

Figure 26: Interaction GestureTypes 25

Figure 27: Element and Card Definitions 25

Figure 28: Basic Constraint Types 26

Figure 29: buildOnFoundation Constraint Definition 27

Figure 30: Tableau to Foundation Move Definition 27

Figure 31: TestSetup Java Board State 29

Figure 32: Simplevar Test Setup 30

Figure 33: AllSameSuit Constraint Negation Function 30

Figure 34: Combination of Constraints 31

Figure 35: Simplesimon Layout and Structure Maps 32

Figure 36: Overriding the Number of Tableaus in a Family 32

Figure 37: All Currently-Working Variations 36

Figure 38: Solitaire-Player GUI JAR Launcher 38

5

1 Introduction

 Software frameworks are created and implemented to simplify the development

environment for programmers. While a developer that is experienced in the framework will be

able to use this simplicity to their advantage, inexperienced developers have to learn the

framework from the ground up. It can be time-consuming to grasp a new framework with all of

its intricacies. During this learning process, newcomers may have a challenging time working

with the unfamiliar framework that results in suboptimal code.

Of course, the goal of a framework is to improve the efficiency of coding rather than

hinder it, but the learning curve can certainly be a burden. As time working with the framework

increases, so does the efficiency and eventually, a developer can master and implement with

ease. One of the significant goals of this project was to create a framework that could be learned

much faster, allowing any user to design and create without the challenge of understanding a

foreign schema. A key component in the creation of this new framework is code generation.

Code generation is a process in which the compiler will use a code generator to transform

a representation of source code into a machine-readable form that then can be run on its own.

This process is an extremely useful tool for alleviating difficulty in learning a new framework

because the programmer will not need to learn certain concepts within the framework if the

program is generating that code on its own. When used properly, code generation can remove a

lot of the heavy lifting for the programmer, which will drastically increase the efficiency of the

process and cut down on the time it takes to learn the framework.

A further expansion of code generation is the automatic generation of test cases. Testing

is an important part of the development of any software as it ensures the user that their code is

completing tasks properly and in full. It is essential for any project to be tested, but sometimes

this may be a time-consuming task for the user. Testing all the edge cases for each action may

result in more complete and secure code, but it comes at the cost of time and efficiency.

Generating these test cases is a way to limit that time since the program will be able to test the

code for the user. Assuming the test generation method is accurate and thorough, the program

will be able to test all edge cases in a smaller amount of time. Depending on the program, the

method of generating test cases will vary, as the test generation framework will need to know

how to test each method. Test case generation can be an extremely useful feature to improve

efficiency when implemented properly.

As described in Drew Ciccarelli, Ian MacGregor, and Simon Redding’s Generating

Solitaire Games Major Qualifying Project: “Next-Gen Solitaire is a code generation framework

designed by George Heineman, Jan Bessais, and Boris Düdder. Given a Scala model

representing the rules and design of a solitaire game, it uses Combinatory Logic Synthesis (CLS)

(Bessai et al., 2014) to generate Java or Python code for that game. The framework has been

under development for several years and includes a wide variety of pre-built solitaire elements.

Using the existing domain logic, developers can quickly create their own specialized logic to

deal with game rules or elements that are outside the scope of the base framework.” (Ciccarelli)

The newest iteration of this project continues upon the development of the Next-Gen

Solitaire framework. The first steps of this iteration were to learn the Next-Gen Solitaire

framework and how it uses code generation by creating new variations. This also included

testing all of the current variations as to whether or not they can be compiled and run. Once the

team learned the framework, the next step was to implement automatic test case generation for

Solitaire variations. Once the new variations and test case generation were completed, the last

6

undertaking was to polish the project so that it could be accessed by any user who had an

interest. This includes playing any of the generated Solitaire variations or creating their own.

Several tutorials were also created to allow users to follow along and learn how to create a

variation, which will decrease the learning curve of the Next-Gen Solitaire framework.

The changes in this newest iteration of the project were made with two objectives in

mind. The first was to improve the efficiency of working with the framework. While many

strides had been made previously in this regard, test case generation was a brand-new feature that

was implemented to improve efficiency. Users can test their code in a quick manner that also

ensures the code is working properly and that the variations are following the proper rulesets.

The second was to make the project more user-friendly. The intent of the framework was to

allow users to make their own Solitaire variations by creating their own models. However, before

this iteration, there was no simplistic way for the user to get access to the code or to add to it.

With the addition of the new tutorials, the ability for anyone to push variations to Git, as well as

the interface, users have a much more streamlined process to make and play variations.

7

2 Background

2.1 Solitaire

The game of Patience (Solitaire) dates back to the mid-18th century. The game was

spread all across Europe and while it was not the most popular game at the time, many historical

figures enjoyed the game, such as Napoleon, Prince Albert, and Charles Dickens (Tung, 2015).

All across the world, different countries and cultures put their own twist on the game with

different names and rules. This was the start of the creation of new solitaire variations which

paved the way for the countless number of solitaire variations that we see today. Over time, the

game continued to grow but in the 1980s Solitaire took off at a rapid rate due to the rise in

personal computers. Since these new computers could shuffle cards and moderate rules, this

made the process of playing a game of solitaire much simpler and more effortless. The release of

portable computers also led to a tremendous increase in the popularity of Solitaire, due to the

convenience and accessibility of being able to run Solitaire programs in any location.

Many people have taken the base solitaire game and modified it by adding their own

rules, moves, and structure. These modifications create entirely new adaptations of solitaire

called “variations”. The possibilities of variations of solitaire are seemingly endless. Due to this,

variations can be quite different from one another, which allows the player to get a new and

interesting experience with every game. However, not all variations are completely unique as

many tend to be slight changes of another variation. These similar variations are organized

together in groups called “families”. Families are named after the variation that is the origin of

that family. Each variation in a family usually has its own name, but also falls under the name of

a family as well. For example, a commonly known solitaire variation is Scorpion Solitaire.

Scorpion falls under the Spider Solitaire family since Scorpion originated from the Spider

Solitaire variation. The number of families and variations is large and continually growing.

 Solitaire was a natural fit for programmers during the period of the first personal

computers. Patience was simple and could be represented easily via text-mode (SolitaireCentral,

2012). It also allowed for a great deal of creativity as programmers could implement whichever

variations they enjoyed and could even create their own. The earliest programs allowed for only

one of these text-based games, but as computers continued to advance in graphics and memory

capacity, Solitaire programs progressed to include multiple variations with better graphics that

are still improving to this day. In 1987, the first commercial Solitaire collection, “Solitaire

Royale” was released. This collection contained eight playable variations. Five years later a new

collection, “Solitaire’s Journey” was released. This collection featured 105 different variations

and also included comprehensive user statistics which allowed players to work toward improving

their scores and earning rewards. The release of Microsoft’s Windows Solitaire contributed to a

major spike in the increase in the popularity of Solitaire. Microsoft offered a wide variety of

Solitaire variations, which led to the popularity of games such as Klondike, FreeCell

(https://en.wikipedia.org/wiki/FreeCell), and Spider. Within the past 20 years, the number of

Solitaire programs has exploded, allowing users to play any Solitaire variation they want on

almost any computing device.

An example of a popular open-source collection of Solitaire games is PySol. PySol was a

cross-platform collection of over 1,000 different solitaire variations. A feature within PySol

allowed users to include their own variations by adding a file with python code with the new

variation on it. The original framework came to a halt in 2004 but was continued as the Fan Club

https://en.wikipedia.org/wiki/FreeCell

8

edition and is still running today. PySol was the inspiration for many code generation projects

including the Next-Gen Solitaire framework, which utilizes its combinators to generate Solitaire

games in Python code.

 In 2003, Professor George Heineman developed KombatSolitaire for an undergraduate

software engineering course. Developed in Java, this project allowed students individually to

write solitaire variations that conformed to the framework. In 2014, Professor Heineman

collaborated with Jan Bessai and Boris Düdder to create LaunchPad v0.6

[https://github.com/combinators/nextgen-solitaire/wiki/V-0.6-solitaire], the first working version

of a code generation framework using CLS that could be extended to create new Solitaire

variations by combining existing game features. This tool was included as part of Boris Düdder’s

Ph.D. entitled “Automatic Synthesis of Component & Connector-Software Architectures with

Bounded Combinatory Logic”

The first major release, V1.0 [https://github.com/combinators/nextgen-solitaire/wiki/V-

1.0-solitaire] was described in a research publication that demonstrated how to automatically

synthesize five solitaire variations as part of a product line of solitaire variations (Heineman et

al., 2015).

The project later evolved in 2017 to the current project seen today, which utilizes

combinators in Scala [https://github.com/combinators/nextgen-solitaire/wiki/V-2.0-solitaire].

Developers model solitaire variations in Scala, which are provided as input to the code generator

which generates the resulting Java code. This new variation allowed for a significant increase in

scalability and since this process was language-independent, the combinators could also be used

to generate code in other languages such as Python. The current iteration of the project included

the generation of working test cases as well as the combination of the Next-Gen solitaire

framework with the UI which allows users to run all of the working variations of the project.

2.2 Combinatory Logic Synthesis

 Combinatory logic synthesis (CLS) utilizes combinators to synthesize code using

combinators. Combinatory logic synthesis (Bessai et al., 2014) [ETAPS2014] is a type-based

approach to component-oriented synthesis using types as interface specifications (Rehof &

Vardi, 2014). CLS automates the composition of components from a repository using

combinatory logic. CLS repository is modeled as a finite combinatory type environment Γ with

type assumptions x : τ , where x is a combinator symbol and τ is its implementation type. The

logical foundation of this idea is to consider the inhabitation relation in combinatory logic: Given

an environment Γ and a type τ , does there exist a combinatory expression M such that Γ ⊢ M : τ

? An algorithm that solves inhabitation problems can compute (or enumerate) expressions M,

referred to as inhabitants of the type τ. The basic process of CLS is to construct a repository of

combinators and then request the inhabitants for a given collection of types τ1, τ2, … τn.

To increase the flexibility of CLS, staged composition synthesis (SCS) (Düdder et al., 2014)

introduces a functional meta-language (referred to as L2) in which component implementation

language-code (referred to as L1) can be manipulated. The metalanguage is a restricted form of

the λ□-calculus of Davies and Pfenning. In λ□, a modal type operator □ ("box") is used to inject

L1-types into the type-language of L2. Type □int can be read as code of a program (L2) when

compiled and executed yielding a value of type int (L1). In SCS, inhabitation treats L1/L2

https://github.com/combinators/nextgen-solitaire/wiki/V-0.6-solitaire
https://github.com/combinators/nextgen-solitaire/wiki/V-1.0-solitaire
https://github.com/combinators/nextgen-solitaire/wiki/V-1.0-solitaire
https://github.com/combinators/nextgen-solitaire/wiki/V-2.0-solitaire

9

combinators as atomic building blocks additionally described by a stratified layer of semantic

types, attached by the intersection type operator "∩". Semantic specifications are used to guide

program synthesis

The best way to explain how CLS works is to use a small example. The current toolset uses

Scala as the L2 language and -- for the Solitaire example -- Java is the L1 language.

Figure 1: Simple Java Expression Combinators

These two combinators, respectfully, represent Java expressions. Combinator Earth

represents the Java string "Earth" while Mars represents "Mars". These two atomic building

blocks can be used to assemble larger programs. The @combinator annotation tells the Scala

system to treat this object as a combinator for CLS. Each combinator has a type specification as

shown by the semanticType val associated with the object. Each semanticType is a Type,

which here is a simple terminal symbol 'Planet. The application of a combinator (the apply

method) results in code artifacts in Java, in this case an Expression. Java is a convenient

language to use as L1 because of the extensive Abstract Syntax Tree (AST) tools available. In

our case, we use the powerful opensource javaparser [https://github.com/javaparser/javaparser].

Ultimately, each combinator results in a node in an AST.

https://github.com/javaparser/javaparser

10

Figure 2: CompilationUnit Combinator Example

The PlanetExploration combinator combines all elements and shows the power of CLS. First,

observe the semanticType which is of the form A → B. This is a standard abstraction which can

be viewed as a function f(A) which results in an object of type B. Note that A → B → C can be

interpreted as f(A, B) which results in an object of type C. In the case of PlanetExploration,

the result will be a CompilationUnit, (that is an entire Java class) after it consumes an input of

type 'Planet. From the earlier example, there are two combinators of this type.

PlanetExploration will consume either one (which produces an Expression) and use that

Expression inside the Java class as the argument to System.out.println. Observe how this

combinator definition makes extensive use of the String interpolation capability of Scala to

construct arbitrary strings, which are then parsed for syntax correctness to produce a Java class.

The inhabitation request of 'Complete would result in two inhabitants found, one would be a

Java class that prints out “Earth” – let’s call this PlanetExploration(Earth) – and the other

PlanetExploration(Mars) would print out “Mars.”

To make it easier to develop complicated combinators, we take advantage of a template

mechanism to simplify their definition.

Figure 3: Expression Template Loader

11

The above combinator has the same overall type as PlanetExploration, but TemplateLoad

instead loads up the definition of the Java class file from a separate template file whose contents

appear in Figure 4. This stand-alone file is defined using Play

[https://www.playframework.com/documentation/2.8.x/ScalaTemplates] and supports passing in

arguments -- in this case, the consumed Expression object:

Figure 4: Generated Expression from Template

This template specifies in its first line that it takes a single argument, planet, of type

Expression. Similarly, the Expression value of planet is injected into the template.

Now assume there is a Γ repository consisting of { Earth, Mars, PlanetExploration,

TemplateLoad }. From this repository, the inhabitation request Γ ⊢ M : 'Complete? will

produce four inhabitants:
• PlanetExploration(Earth)
• PlanetExploration(Mars)
• TemplateLoad(Earth)
• TemplateLoad(Mars)

The existing toolset is supported by the Play framework to generate each inhabitant upon request

using a web server. From within the sbt framework, execute the command

nextgen-solitaire/run

and a web server is launched to process HTTP inhabitation requests. This populates the Gamma

repository with its included combinators.

Figure 5: Gamma Repository Combinators

https://www.playframework.com/documentation/2.8.x/ScalaTemplates

12

Based on the following request:

Figure 6: Gamma Repository Request

There are four inhabitants found. The web site produces four variations that can be generated and

the user can choose which one to produce. After selecting a variation, a git repository is created

which contains the generated code, and the user can simply check it out using git. There is no

need to show the actual generated code since the above examples are so small.

Solutions:

Variation 0:

• Compute

Variation 1:

• Compute

Variation 2:

• Compute

Variation 3:

• Compute

Figure 7: Generated Variations

2.3 Code Generation

 Code generation is a process in which the compiler will use a code generator to transform

a representation of source code into a machine-readable form that then can be run on its own.

Since the early stages of code generation, programmers have been attempting to generate code

for many various uses. The most prominent use is to generate repetitive and boilerplate code that

can be written once and utilized repeatedly throughout a program. Other uses include generating

code from information gathered from documents during runtime and generating a skeleton from

defined models (utilized within Next-Gen Solitaire). The code that is generated by a program can

be as small as a simple function or as large as an entire application.

 The four main reasons why programmers choose to generate code are to increase

productivity, consistency, portability, and simplicity (Tomassetti, 2018). When the user

generates code, they do not have to continue to rewrite duplicate code snippets within the same

program. When the program is generating repeated code on its own, the user can save time and

13

be more productive. Since the same code is being generated every time it is needed, it removes

the chance for variability within the code. Each variable, method name, and all other facets of the

code will be exactly the same. This will make it easier as everything remains consistent and

compatible when different developers with different styles may be working on the same project.

The portability of a project is increased with code generation because of the ability to generate

that code into different languages or frameworks. In Next-Gen Solitaire, the project has utilized

generated Python and Java code, which demonstrates the significance of code generation’s

portability. The last useful reason for code generation is simplicity. When code is being

generated from some abstract description, that description defines what will be generated and run

in the final product. All the user needs to work with is that description. In Next-Gen Solitaire,

this description is a model, which defines all the concepts for each variation of solitaire

 While code generation has many advantages, there are also reasons why it is not always

the best option for every program. When you create a code generator, the code that is generated

will always be the same, so while the rest of the program is developed and advances, the

generator needs to be maintained to stay up to date. This can become a major problem if the right

knowledge or resources become unavailable to continue maintaining the generator. Another

complication with code generation is that creating the code generator can sometimes be a

complex process. While working with a complex generator to improve simplicity in the future

can be extremely useful, sometimes the risk of overcomplicating the process does not outweigh

the reward. Finding a productive and worthwhile code generation process can drastically

improve a project, but an overly intricate process may make it harder for the developers in the

long run.

2.4 Test Case Generation

 While base code can be generated for an application, test cases can be automatically

generated as well. One of the biggest issues with generating test cases is creating meaningful

tests that are checking for accuracy instead of just for the ability to run without failure (Hicken,

2018). Generating assertions to check for success will ensure that the accuracy is being tested as

well as the program's ability to run. It can be simple at first to increase code coverage by testing

commonly used methods, but generating code for edge cases can be more difficult. Due to the

intricacies of some programs, it may be hard to create a generator that tests each program in its

entirety. Also, as the code changes, the tests will need to be regenerated, so any good test suite

generator needs to be able to be regenerated. While it may be difficult to produce complete

coverage with meaningful tests, when implemented properly, test case generation can be an

efficient tool for ensuring that a program works properly. A major advantage of generating tests

over writing them by hand is the increase in productivity. The developers do not need to spend

time writing test cases by hand when they can simply have the test cases generated for them.

14

3 Design

3.1 Scala Solitaire Generation Framework

The Scala solitaire generation framework is the result of refactoring the first initial

release of LaunchPad (Heineman et al., 2015). The inherent technical challenge with solitaire as

a feature-based product line is that the variation points do not align well with the composition

tools provided by FeatureIDE , the technology on which LaunchPad was built. Consider the

feature model from this paper:

Figure 8: LaunchPad Feature Model

This feature model contains the elements one would typically find in a feature diagram.

However, the coarse-grained nature of feature modeling means that the subdivisions do not align

well with the numerous variation points one typically finds in solitaire games. For example, in

the game of Klondike, one can either deal one card at a time from the stock to the waste pile or

three cards at a time. In the feature diagram above, DeckMove is the only feature one can select.

Under the hood, that is, invisible to the feature diagram, the Klondike feature has code artifacts

that determine the number of cards to deal.

Essentially, there is an impedance mismatch of sorts, where the feature units that are

visible in the diagram are much too coarse-grained to be of use when modeling dozens or even

hundreds of solitaire variations. In many ways, this is akin to the challenge of using straight

object-oriented programming to model all the various solitaire variations using subclasses. The

15

composition tools available to object-oriented programmers or feature-oriented software

engineers are not well suited to this application domain.

We assessed that LaunchPad was successful in generating a small number of variations

but that it would not be able to scale to support families of solitaire variations, where rather small

changes separate two different variations. Professor Heineman conducted an extensive

refactoring process that resulted in the Scala code generation framework, currently available in

the nextgen-solitaire GitHub repository on https://combinators.org.

The essence of the generation framework is that a solitaire variation is composed using

CLS from a repository of combinators, thus the problem reduces to determining how to create

the necessary combinators. The examples so far use static combinators as tagged with the

@combinator annotation. What is needed is a more flexible arrangement, which allows for the

programmatic construction of combinators. To give a specific example, consider the following

Scala class definition:

Figure 9: Parameterized Combinator

This looks very similar to the combinators we have seen thus far. The primary difference

is that it is parameterizable. Since we need to generate a number of Java classes, methods, and

fields, each one needs to have a proper name, which is the value parameter above which is

converted to a Java SimpleName. The semantic type is determined by the cons parameter. Thus

instead of hard-coding all information in a static combinator, from this basic template, many

specialized subclasses can be defined:

Figure 10: Specialized Subclasses

Each of these is specialized to name elements that are properly typed. To see these

combinators in action, consider how moves are represented in the Java solitaire framework. As

you may recall, each move has its own class, and in a move class, there must be logic to execute

a move, check if it is valid, and undo the impact of a move. Since each of these capabilities is

generated from a constructor, we need to populate the gamma repository with the relevant

combinators. The following fragment shows how move logic, stored in the solitaire variation s as

a collection of moves, causes several different combinators to be added to the gamma repository,

using the addCombinator method.

https://combinators.org/

16

Figure 11: Adding Combinators to the Gamma Repository

The solitaire generation framework makes it possible to provide boilerplate strategies for

constructing the repository. Here is the initial specification from the Klondike variation which

takes a solitaire object (whose specification is described in Chapter 3 of this report).

17

Figure 12: Initial Klondike Variation Specification

While this appears complicated, it streamlines the construction of the 𝚪 repository. Once

the repository is constructed, then a given set of targets is requested for inhabitation. The

standard set is:

Figure 13: Inhabitation Target Set

In plain English, this requests that the complete game be generated, together with the

complete set of constraints. Then all mouse controllers are generated, followed by special

classes, move classes for the solitaire domain, and finally all JUnit test cases.

3.2 Code Registries

Professor Heineman developed several code recipes to improve the extensibility of the

Scala code generation framework. In particular, the code infrastructure supports the principle that

solitaire variations should be able to define their own custom move logic separate from the

common code provided by the infrastructure. This most commonly presents itself with the ability

to specify additional constraints that are relevant only for the individual variation. For example,

in the solitaire game Narcotic one of the moves is to remove all four cards from the tableau if

they all have the same rank. Because this move is so unique to the Narcotic variation, the

framework does not provide a built-in constraint which could allow this type of behavior. As

18

such, it must be defined explicitly. Describing how Nextgen-Solitaire supports this capability

will demonstrate its flexibility and extensibility.

The first challenge is to describe the constraint.

case class AllSameRank(src:MoveInformation) extends Constraint

This Scala construct represents a new kind of constraint for the solitaire domain which

needs to be integrated into the existing framework. This is done at run-time using the following

structure:

Figure 14: Narcotic Code Generator

Briefly, this object takes the existing constraintCodeGenerators.generators

supported by the code generation framework and merges in a new case to be handled, namely

AllSameRank. The merged generator is integrated using the following combinator, which

ensures this object is used whenever the inhabitation algorithm requests

constraints(constraints.generator).

Figure 15: Narcotic Combinator

While this represents some of the combinatory logic, it does not provide the definition for

any individual constraints. The actual logic that implements this constraint is defined inside an

allSameRank method provided by the following ExtraMethods combinator.

19

Figure 16: Extra Methods Combinator

This combinator will return a collection of new methods to be injected into the solitaire

game variation. The allSameRank method ensures the array of stack objects all have the same

rank on top. The end result of these combinators is that existing infrastructure capabilities (in this

case, the mapping of a Constraint to a Java Expression that implements that Constraint) can

be easily extended to support additional user-specified extensions. In addition, if a solitaire

variation wishes to “override” an existing mapping, then this same approach can be used to

replace a mapping with a new version.

With this new constraint integrated into the solitaire generation framework, existing logic

that generates valid Move classes will simply inject the constraint logic as necessary without

requiring any further modifications to the framework; this is the very definition of extensibility.

This specific recipe is repeated a number of times:

1. constraintCodeGenerators.generators handles the mapping of Constraint to

Expression.

2. constraintCodeGenerators.doGenerators handles the mapping of MoveTypes

into Seq[Statement] that describe the logic for carrying out a move in Solitaire.

3. constraintCodeGenerators.helperGenerators handles the mapping of Move

Types into Strings that contain class fields and/or additional method declarations to

be inserted into a Move class.

4. constraintCodeGenerators.undoGenerators handles the mapping of MoveTypes

into Seq[Statement] that describe the logic for undoing a Solitaire move.

5. constraintCodeGenerators.mapGenerators handles the mapping of MapTypes

into Seq[Statement] that describes how cards can be dealt to existing Tableau

elements based on specific criteria (i.e., by Rank or by Suit).

In all of these cases, individual variations can extend the capabilities of the Solitaire code

generation framework.

20

3.3 Technical Solitaire Terminology

Before analyzing the structure of a given variation’s domain within the framework, it is

important to understand basic solitaire terminology. The following terms are used throughout all

variations and are used to describe both physical and constraint elements.

Card A regular playing card has a suit and a rank. It may be face up (in which case

this information is visible) or face down (which hides this information).

Column A stack of cards that are offset to allow the user to see all cards within the stack

Deal Adding cards to a layout by taking them from the stock at the start of the

game. Dealing is different in every solitaire variation. In some games, there is

no stock and therefore no dealing at all. In other variations, cards may even

return to the stock.

Foundation A designation pile for the cards. The goal of many solitaire games is to

eventually move all of the cards to foundation piles. Often, the foundations are

empty at the start of a game, but in some games, they may begin with a starter

card that determines which initial cards can be placed.

Layout The pattern of cards on the table. The initial layout is the set of cards created at

the start of the game.

Pile A stack of cards of which only the topmost card is visible.

Rank The number value of a card. In solitaire, the Ace can count as either the lowest

value card (one) or the highest value card (fourteen). The Jack, Queen, and

King count as eleven, twelve, and thirteen respectively.

Stock A kind of locational pile. Usually a single pile of cards that can be drawn upon,

one card at a time, during the game. In many variations, this is typically the

deck of remaining cards.

Suit The suits are Hearts , Spades , Diamonds , and Clubs . Hearts and

Diamonds are colored red, while Spades and Clubs are colored black.

Tableau These columns and piles are typically the "workspace" on the board. The

player can typically move individual (or stacks of cards) between tableau

elements during game play.

Figure 17: Technical Solitaire Terminology

3.4 Scala Domain Modeling

 With the framework in place, working code for Solitaire variations can be generated

without users having to write out all of the code themselves. However, a model still must be

defined so that the framework knows what structure and rules the generated game will follow.

These models appear in each variation’s respective Scala package object.

 Each model contains a set of concepts defined by the user when creating a variation, and

used by the framework for various purposes to generate the proper solitaire game. For example,

one of the defined concepts is the set of viable moves called moves. This set contains every move

within the variation that could be completed within the rules of the specific variation. These

moves are defined within the variationPoints.scala file for each family and can also be

made variation specific within the package object for that variation.

21

Figure 18: Simplesimon Scala Domain

 The above code snippet is an example of a Scala model from the Simplesimon variation

(derived from the Simple Simon Solitaire variation). This model is defined within the package

object for each variation within a family. The concepts of a particular game are derived from the

Solitaire class, which consists of multiple optional and non-optional concepts.

3.4.1 name (name = "Simplesimon")

Within any given solitaire variation model are concepts defined to create the components of a

game. The first concept shown is name which is simply the name of the variation and is defined

as a String variable. This String should be unique among all produced variations, as it is used as

a unique identifier.

3.4.2 structure (structure = structureMap)

The concept structure defines the type and quantity of card containers that will be used within

the variation. The structureMap is defined within the variationPoints.scala file that is

shared by all variations within the family (or placed in the base package if there is no

variationPoints.scala defined). This allows for other variations within a given family to

override or replace the base map. The variable type for this component is a Map of

ContainerTypes (such as Foundation, Stock, or Tableau) and element sequences (such as a

sequence of 10 Columns).

Below is the collection of generic ContainerType:

Figure 19: Generic ContainerTypes

22

A structureMap example is shown below, creating 10 Column tableaus, 4 Pile foundations, and

a single stock.

Figure 20: Example StructureMap

3.4.3 layout (layout = Layout(map))

 The layout map (usually called layoutMap or map in variationPoints.scala) defines

the location and size of the containers defined in the structure map. The container types are

arranged based on a placement function. Because the variable type of a layout is a map of

ContainerTypes (similar to those used in the structureMap), and sequence of widgets, the

horizontalPlacement function returns a collection of produced widgets. In the below example,

the layout map uses the horizontalPlacement function to define the x and y position of the

container, how many of that container will be placed (for example, 10 Tableaus), and the size of

the container (which can utilize the global card_height variable which represents the size of

one card). The number of container elements should match the amount defined in the

structureMap. As a result, it is recommended that variables be used in place of definitive

integers.

Figure 21: Variation Layout

3.4.4 deal (deal = getDeal)

After the layout is set, the cards must be dealt into the proper containers at the start of the

game. This is defined within the deal concept. The deal is also defined within

variationPoints.scala and is shared among all variations within a family. The deal concept

consists of a sequence of DealSteps, as defined below:

case class DealStep(target:Target, payload:Payload = Payload()) extends Step

The DealStep class consists of a target and a payload. In the context of the deal concept, tableau

elements associated with the given column number (colNum in the example below via the

ElementTarget association method) are the target or receiver of the deal. The Payload is

simply a collection of cards to be moved, with parameters determining if they should be face-up,

23

as well as the quantity of the cards dealt. These should all be compounded into a single sequence

to be returned. In the example below, the 0th to 3rd tableaus are dealt 6 cards, while the remaining

tableau columns are dealt 5 cards. Any cards not dealt at the start of the game remain in the

stock.

Figure 22: Deal Concept Definition

3.4.5 specializedElements (specializedElements = Seq.empty)

specializedElements is a part of the model that is used to set special elements on the

board display. Elements that are “specialized” are any elements that are not contained within the

standard board components of decks, tableaus, and foundations. For example, the bigforty

variation involves the usage of a waste pile, which is added to when the stock is clicked. Only

the top card of this waste pile can be viewed and moved as well, adding an additional interaction

that sets it apart from a standard foundation or tableau element. An example of the waste pile

from the bigforty variation package is shown below:

Figure 23: Specialized Waste Element

 The interactions which are involved with the Waste Pile are defined in the variation’s

controller definition, as the pile is added to, and removed from via the usage of the stock, or the

waste pile itself. If there are no special elements to be defined, the concept can be set to an empty

sequence.

24

3.4.6 moves (moves = Seq(tableauToTableauMove, tableauToFoundationMove))

Next, the set of moves that a user can attempt to make in a given game needs to be

defined. The moves concept is set as a sequence of moves, where each move is defined within

variationPoints.scala (or in the variation package file if no variationPoints.scala is

defined). Move types are arguably the most complex element of a variation definition, as they

consist of multiple characteristics and constraints. Below is the class definition for the move

type:

Figure 24: Move Class Definition

The name is a String that uniquely identifies the move itself.

The moveType is the type of movement for which a given move corresponds to. The generic

moveTypes are listed below:

Figure 25: MoveType Variations

DealDeck(numCards:Int): Deals a specified number of cards to the specified source of the

overall move.

ResetDeck: Resets the deck via the given move.

MultipleCards: Movement involving multiple cards.

FlipCard: Flips the selected card over (either face up or down).

SingleCard: Movement involving a single card.

RemoveSingleCard: Removes the single selected card.

RemoveMultipleCards: Removes the stack of selected cards.

25

In addition to having container elements respond appropriately after performing a given

action, these types are also parsed in the variation’s controller class, causing the visual

components to be performed with the given MoveType.

A move’s gestureType is even more closely related to the controller’s front-end display

of the move, with visuals appearing in concordance with the action of the move. The base

gesture types are defined below:

Figure 26: Interaction GestureTypes

All of the GestureTypes correspond to the user’s mouse actions, with Click being a

Press and Release of the mouse. Most actions that correspond to physically moving cards are

considered Drag gestures, whereas interacting with an element like the stock would be Press or

Click gestures.

The moveableElement of a move is the type of element that is actually being moved

when the user performs a given action. This could range from single cards (such as when

clicking the stock) to whole columns (such as moving a stack of cards from tableau to tableau).

The definition and types of Elements are shown below:

Figure 27: Element and Card Definitions

Column and Pile elements are effectively the same, aside from Piles of cards only

showing the top of the stack. BuildablePile elements are considered Pile elements, yet show

26

cards similarly to Column elements, and are typically meant for building sequences of cards in a

particular order.

Row elements are similar to Column elements, besides vertical orientation.

Stock elements represent the game’s stock container, with only the top card being shown.

The final main elements of a move, the Source and Target concepts, have two

components: ContainerType and Constraint. ContainerType corresponds to the type of

container element involved in either the source or destination of the move. Constraint

components are the main facet of the validity of a given move. A move will only succeed if the

constraints for the Source and Target destinations are met. The amount of basic constraints is

large, and listed below:

Figure 28: Basic Constraint Types

While going into depth about the specifics of each constraint is outside the immediate

scope of this paper, additional examples of their usage and explanation are within the source

code. Many constraints are fairly self-explanatory, however. For example, the AllSameSuit

constraint returns true if a set of cards is all the same suit. Because constraints can be placed on

both the source (the cards being moved) and the target (the location they are being moved to),

both are checked when observing whether an action should succeed. To allow for multiple

27

constraints to be applied, they can be chained together using the AndConstraints or

OrConstraints, which are constraints themselves. These OrConstraints and AndConstraints

simply determine the Boolean logic of all input constraints, returning the “Or” or “And” results

respectively. An example of multiple constraints being compounded is shown below (from the

Simplesimon variation):

Figure 29: buildOnFoundation Constraint Definition

This buildOnFoundation constraint is the logic for determining whether a given stack of cards

can be moved to the foundation. Only a set of cards that are descending, all the same suit, and

range from King to Ace can be placed onto the foundation. If no constraints are required for

making a given move, this can be determined by the Truth constraint.

The last component for a move, isSingleDestination, is a simple Boolean flag that

determines whether the destination for the moving components is a single source or multiple

sources. This flag is set to true by default, however, if a move distributes cards to multiple

tableaus (such as dealing from the stock deck), then this flag should be set appropriately.

There are many components to a single move action, however many of these actions are similar

across variations. Usually, it is the number and constraints of the moves that determine the

variability of the rules between variations, even those within the same family. An example Move

that could be added to the sequence of possible actions is shown below (using the

buildOnTableu constraint from the previous subsection:

Figure 30: Tableau to Foundation Move Definition

To summarize, this tableuToFoundationMove determines the action of moving a

number of cards from the tableau to the foundation. This move allows for multiple cards to be

dragged as a column. When coming from the tableau, there are no constraints, however when

placing them into the foundation, the constraints IsEmpty and buildOnFoundation need to be

met. Only when these constraints are satisfied, will the move be valid and proceed.

28

3.4.7 logic (logic = BoardState(Map(Foundation -> 52)))

Once the moves of a given variation have been determined, the final board state logic

needs to be determined. This refers to how the user can win the game of solitaire. In the

Simplesimon variation example, the user wins when the game is in a board state where all 52

cards are all in the foundation (shown below):

logic = BoardState(Map(Foundation -> 52))

All forms of the logic are in the form of a BoardState object, with an input Map applying

the conditions to the listed elements. Another example is the Narcotic variation, wherein the user

wins by emptying the stock and all tableaus:

logic = BoardState(Map(Tableau -> 0, StockContainer -> 0))

3.4.8 solvable (solvable = false)

The next concept in the model is solvable. This is an optional value as when it is set to

false then it will not be utilized in the variation. If the value is set to true, then an additional

button is available to the user upon launching a variation: solve. This button then iterates through

all possible potential moves for a given board state, effectively brute-forcing all available options

until the most progress is made. The iteration of these moves is variation-specific and is defined

within the ExtraMethods combinator in the variation family’s domain. Even with a method of

iterating through possible moves defined, this does not guarantee that any given board state is

solvable. Many board states, depending on the variation and constraints for card movements, are

not actually solvable: an intended facet of many types of real-life solitaire games.

3.4.9 testSetup (testSetup = Seq())

The final concept defined within the model is the optional testSetup of the variation.

When set to an empty sequence, testSetup does nothing. However, testSetup can be set as a

board state (in the form of a Java sequence) that defines a situation in which all possible moves

defined by the moves trait can be tested. This is discussed further in the following section on

testing, but below is how it looks within the model (this example comes from the Simplevar

variation within the Simplesimon variation).

29

Figure 31: TestSetup Java Board State

The intention of this design component was to create a simpler and more efficient way

for users to create their own Solitaire variation with the framework. Instead of having to write

out long sections of code to define various concepts for a variation, all a user needs to do is

define a model with already built-in constraints and methods. Of course, anyone looking to pick

up this framework to create a variation would still meet a learning curve and would need to take

time to learn how to create a model and which constraints/methods are available to be used. The

simplistic nature of the modeling should allow users to define all of the concepts that will

generate a working variation faster than it would be to write out the entire variation by hand.

Each concept within the model can be defined easily and picked up quickly by new users

following through the tutorial discussing each concept. Even if users finds themselves confused

when learning how to utilize a concept, the likeness between each variation within the entire

Next-Gen Solitaire program allows users to look at how other variations define each concept and

copy or modify similar concepts across the variations.

3.5 Testing

 Originally, the unit testing capabilities of the framework only consisted of production

element accountability. The tests mostly consisted of checking whether a certain element or

constraint was generated properly within the Java code, confirming that the combinator

components were produced correctly. This did leave an absence in logic testing however.

Although it could be checked whether a certain Java component was produced, there was no way

of ensuring that the intended logic of card movements, winning and move validity was correct.

To remedy this missing component within the project and to improve scalability, a

TestSynthesis combinator was added to the framework, allowing the option to generate JUnit

4 move test cases to ensure that the variation logic is being generated as intended. The user can

choose to generate test cases by defining a testSetup concept in the model.

In order for the program to actually test solitaire moves, there must be a board state set

where all of the cards are placed into an orientation that allows for the moves to be tested. When

the user creates testSetup, they must define it as the board state that allows all of the moves to

be tested and succeed. This means that the starting board setup should contain the state for

performing a valid move, as the process involves negating a particular constraint to be tested

individually. The manual construction of the board state is necessary so as to be able to test both

30

user-defined and generic constraints. If there is no testSetup defined, or defined as an empty

sequence, then no test cases will be generated and the combinator will not be added to the code

synthesis.

An example board state for the Simplevar variation:

Figure 32: Simplevar Test Setup

The test cases generated test each constraint for all possible moves and should succeed

when the constraints are met and fail if any of the constraints are negated. Individual test cases

are generated based on the variation’s collections of move types defined in the moves concept,

such as movements to piles or foundations. Based on the constraints defined for each type of

move, a negating version of the constraint will be applied to the board state, innately negating a

particular constraint. This allows the user to test for false validity after the negated version of a

constraint is applied to a valid board state. By negating only a single constraint in each test, each

constraint is tested separately. In parsing a given variation’s moves, the validity of the board

state is negated using a drop-in Java function, such as the example below:

Figure 33: AllSameSuit Constraint Negation Function

In this example, the given Java code is inserted into the variation if a variation’s move

contained the allSameSuitNegative constraint.

While this system is valid for predefined constraints, it does not cover user-defined

constraints. To test a user-defined constraint, the test simply performs the move in which the

31

constraint was derived from, without falsifying any constraints. If the user-defined function was

created correctly, then it should already be reflected in the board state (as the state should be an

environment that allows for any legitimate move for that variation). If the test for the user-

defined constraint fails, then it can be reasonably assumed that there is either a problem in the

constraint or a discrepancy in the assumedly-valid board state. In either case, there is an error in

the model’s logic that should be addressed.

 Overall, the generation of test cases was designed to allow users to be able to test their

variations easily. Similarly to the benefits of the model, the testing allows the user to save time

and create tests in a much simpler manner than writing all of the code out by hand. Once the user

learns the basics of setting up a test board state, they will be able to create test cases for any

variation at a more efficient pace. Also, by creating a dynamic combinator that applies tests for

specific moves, the scalability of testing increases with variation size and diversity.

3.6 Code Consolidation

 Much of the project was designed with code consolidation in mind. When making

solitaire variations, a lot of the same structure, rules, and concepts are similar between variations.

A big emphasis on the design of the framework was to allow for the combination of code that is

duplicated over many of the variations and families. Instead of forcing the user to have to define

parts of the solitaire game that are shared between multiple families, this framework defines all

of those aspects itself and generates the game code without any work by the user. Many methods

that are utilized across families generate parts of the game such as the structure of the board, the

orientation of the cards, and the deal. The user will never have to spend their own time writing

out this method by hand, since it will be called within every newly-created variation. An

example of this is constraints. Constraints (as defined earlier in this section) are small tests for

the validity of a card or move. Throughout the entirety of the project, all moves in all variations

can utilize the same list of constraints to test moves.

Figure 34: Combination of Constraints

The figure above displays the method that defines an acceptable move when placing a

card onto a tableau in Simplesimon. TopCardOf(), BottomCardOf(), Descending(),

AllSameSuit(), AndConstraint(), OrConstraint(), and NextRank() are all constraints that

are not defined within variationPoints.scala for the family, but are still available to be used.

Constraints are defined in the constraints.scala file and shared across all variations.

The only details that the user needs to define are the characteristics of each game that

make it unique among all other variations. The model for each variation is where these

32

differences are determined. Each separate concept is applied to the methods shared by each

variation, in turn generating the game structure, rules, etc.

In addition to the consolidation of methods that are used between all families, the models

also utilize shared variables within a family. Many of the concepts that the model defines can

have attributes that could also be used by a different variation for that same concept. For

example, more than one variation can have a move that utilizes the same deal or the same

constraints on a move. Variations within the same family consolidate code by using the same

method for many of their concepts within variationPoints.scala. Each variation within the

family can use the variables defined there for their own model.

Figure 35: Simplesimon Layout and Structure Maps

The two figures above are the structure and layout maps for the Simplesimon family.

These maps are available to be utilized by any variation within the family. This is extremely

useful when creating a new variation because the user does not have to rewrite new maps for

each of the variations, they can just call upon the already existing ones within

variationPoints.scala. Many more shared concepts can be defined, including the number of

tableaus, stocks, foundations, deals, moves, etc. The models also offer the option to override

anything in variationPoints.scala to allow for flexibility if another variation within the

family needs to adjust any of the shared concepts. An example of this is shown in the figure

below where Simplevar overrides the number of tableaus because it uses 8 instead of the 10

used in most variations of the Simplesimon family.

Figure 36: Overriding the Number of Tableaus in a Family

Code consolidation within this project allows for the user to spend less time writing code

while the framework generates repeated code and utilizes shared methods instead. This allows

for an increase in productivity as there is no time wasted on rewriting much of the code that

every game needs and shares.

33

4 Development/Evaluation

4.1 Start of Current Project Iteration

 This iteration picked up after several years of development on the framework. In prior

iterations, solitaire variations in Java were generated using CLS but there was no separate

domain modeling. This resulted in a fragile code repository due to all the specialized knowledge

of the different variations being embedded within the individual combinators. Eventually Scala

domain modeling was added to the project and the process of modeling variations began. The

synthesizer had been almost completely finished and many Scala models had been created which

could generate lots of solitaire variations and families. While many models had been created, not

all of these models could compile and be run as a working solitaire game. This iteration of the

project picked up with finding the faulty variations and debugging them before continuing to

create new variations.

4.2 Tools and IDE

The IDE used for this project was IntelliJ. Creating Scala models, working with the

synthesizer, and running the solitaire games were all done in the same IDE. In previous iterations

of this project, the generated Java code was opened in Eclipse and then run from there, however

in this iteration of the project, that process was moved over to IntelliJ as well, using the modules

feature. The generated solitaire games were imported as a new module, given the standalone.jar,

and then run from the same project that held the models and synthesizer. For version control,

GitHub was used and the project can be found at https://github.com/combinators/cls-scala.

4.3 Creating Solitaire Variations

 In this iteration, the Simple Simon and Baker’s Dozen families were added to the

project. Simple Simon included the Simple Simon and Simplevar variations. Baker’s Dozen

included the Baker’s Dozen, Castles in Spain, and Spanish Patience variations.

 Baker’s Dozen is a variation of solitaire with thirteen columns in the tableau, four cards

in each column, and no stock. In order to win the game, all of the cards must be placed in the

foundation. Cards can be moved around to different piles in the tableau if the moving card is the

rank below the card on the top of the destination pile. For the classic variation of Baker’s Dozen

the suit does not matter when moving cards on the tableau. If the destination column on the

tableau is empty, then only a king can be moved to that column on the tableau. Cards in the

tableau can also be moved to the foundation. There are four foundation piles, each one of which

starts as an empty pile. Cards must be placed into the foundation in ascending order starting with

Ace and ending with King. Aces can be placed in any empty pile in the foundation, but every

other card must be placed on the card of the previous rank with the same suit. For example, the

Ace of clubs can be placed into an empty pile, yet the two of clubs must be placed on the Ace of

clubs. The variation of Castles in Spain follows the same ruleset as Baker’s Dozen, however,

the cards in the tableau can only be moved to other columns in the tableau if the top of the

https://github.com/combinators/cls-scala

34

destination is the same suit as the moving card. In the variation Spanish Patience, any card can

be placed on an empty tableau, instead of just kings.

 Simple Simon is a variation of solitaire which has no standard stock, as all the cards are

dealt among the 10 tableaus. Cards can only be moved from one tableau to another if the moving

set contains descending values of the same suit, and if the top of the receiving pile is one rank

higher than the top of the moving cards. Stacks of cards may only be moved to the foundation if

they consist of a full King to Ace descending same-suit stack. The game ends once all the cards

are placed in the foundation. The Simplevar variation of Simple Simon wherein 6 cards are

dealt among the first 4 tableaus, and 5 cards dealt among the remaining 4. All 8 remaining cards

reside in the newly added stock, which distributes a new card to each tableau when clicked.

 The intention of generating Java code that runs Solitaire variations from Scala models is

to allow users to create new variations more simply and efficiently than writing out the Java code

by hand. To create a brand-new variation, all the user has to do is define various elements of the

Scala model and the code generation will do the rest. This severely cuts down on the time it takes

for a user to make a working solitaire variation. However, while modeling is a much shorter and

simpler process, there are still several steps that need to be followed to actually create the model

for a variation.

 A new package can be created for the family within the solitaire folder. Several files will

be located here that define and control the models for the family and allow the variations to run

properly. There are built-in templates within the project that allow for easier creation of these

files. The package object of the family is where the concepts of the solitaire game are set within

the model. Some of these concepts include the name, moves, and deal, among others. Many of

these attributes are more complex than just a string or boolean and therefore are defined within

the variationPoints.scala file and called in the package. variationPoints.scala defines

concepts such as the structure, layout, and move constraints. Each variation is different and

therefore no model will be able to be defined in the same way. Due to this, each different

variation in the model can override attributes that variationPoints.scala sets.

Once the user creates a model, they can generate the Java code for their variation by

running the run service in IntelliJ and then opening a web browser to

http://localhost:9000/<FamilyName>/<VariationName>. This will load the inhabitation page.

Here, a git repository with the generated code will be made. This repository can be cloned into a

folder on a computer and executed with the standalone.jar as a dependency. Running this

generated code should compile and display your working variation which can be played exactly

how it was defined within the model.

4.4 Functioning Variations

In addition to creating and testing new variations, we also evaluated the current condition of

existing variations within the NextGen-Solitaire framework. The following is a record of all

working variations at the time of this document being written (as well as the route to which

they can be accessed if the local server is running):

Variation (family) Route

Archway http://localhost:9000/Archway

http://localhost:9000/

35

Fan http://localhost:9000/fan/fan

Alexander The Great (Fan) http://localhost:9000/fan/alexanderthegreat

Fan Easy (Fan) http://localhost:9000/fan/faneasy

Fan Free Pile (Fan) http://localhost:9000/fan/fanfreepile

Fan Two Deck (Fan) http://localhost:9000/fan/fantwodeck

Labelle Lucie (Fan) http://localhost:9000/fan/labellelucie

Scotch Patience (Fan) http://localhost:9000/fan/scotchpatience

Shamrocks (Fan) http://localhost:9000/fan/shamrocks

Super Flower Garden (Fan) http://localhost:9000/fan/superflowergarden

Trefoil (Fan) http://localhost:9000/fan/trefoil

Free Cell http://localhost:9000/freecell/freecell

All in a Row (Golf) http://localhost:9000/golf/allinarow

Flake (Golf) http://localhost:9000/golf/flake

Flake Two Decks (Golf) http://localhost:9000/golf/flake_two_decks

Golf http://localhost:9000/golf/golf

Golf no Wrap (Golf) http://localhost:9000/golf/golf_no_wrap

Robert (Golf) http://localhost:9000/golf/robert

Narcotic http://localhost:9000/narcotic

Spider http://localhost:9000/spider/spider

Spiderette (Spider) http://localhost:9000/spider/spiderette

Scorpion (Spider) http://localhost:9000/spider/scorpion

Mrs. Mop (Spider) http://localhost:9000/spider/mrsmop

Gigantic (Spider) http://localhost:9000/spider/gigantic

Spiderwort (Spider) http://localhost:9000/spider/spiderwort

Baby (Spider) http://localhost:9000/spider/baby

OpenSpider (Spider) http://localhost:9000/spider/openspider

36

OpenScorpion (Spider) http://localhost:9000/spider/openscorpion

Curds and Whey http://localhost:9000/spider/curdsandwhey

Simplesimon http://localhost:9000/simplesimon/simplesimon

Simplevar (Simplesimon) http://localhost:9000/simplesimon/simplevar

Bakersdozen http://localhost:9000/bakersdozen/bakersdozen

Spanish Patience (Bakersdozen) http://localhost:9000/bakersdozen/spanish_patience

Castles in Spain (Bakersdozen) http://localhost:9000/bakersdozen/castles_in_spain

Figure 37: All Currently-Working Variations

4.5 Generating Test Cases

As well as the generation of solitaire games from Scala models, this iteration of the

project also began the creation of generating unit tests. These tests were designed with the intent

of validating the generated Java code to ensure that the models were creating a solitaire game

that followed all of the constraints created by the designer of the model.

 Originally, the design of the unit test generation was to create tests that took the Scala

model and generate Java tests based on the map and constraints defined in that model. The

solitaire variation Simplevar from the Simple Simon family was used as the sample variation to

generate the first test cases of the project. Simplevar includes a stock, tableau, and four

foundation piles. Valid moves in Simplevar include moving a stack of cards from the tableau to

another tableau or from the tableau to a foundation. Tests were created to determine if these

moves were working properly by attempting to move cards from tableau to tableau and from

tableau to foundation and checking to see if these cards successfully moved when they should.

The tests look at a list of constraints that must be met for each move to be valid. These

constraints are also defined in the model for each move. If all constraints are true then the test

should pass. Likewise, if even one constraint is false then the test should fail. To test these moves

and all of the constraints, a set of tests were created with one test testing all of the constraints as

true and the rest of the tests testing each constraint individually as false and asserting false.

Two main challenges were faced when creating generated test cases in this way. The first

problem was that the Scala model defined what a proper move was, however, the model did not

define any specific way to organize the cards before testing a proper move. When creating the

first generated test cases for Simplevar, Java code was manually written for the tests to organize

the cards in such a way that a valid move could be tested. While this method worked for creating

the first set of generated tests, this was not a long-term solution since every single variation

would need to have this code manually written for each move to pass all of the tests. This was

resolved by adding a valid board state to the models. This state is user-defined when creating the

model and is a representation of a valid state that can be used to test all possible moves.

The second challenge was dealing with user-defined constraints. Some constraints were

methods that were user-defined in the domain of the families and therefore could not be easily

generated and tested along with the other Scala constraints. In Simplevar, the AllSameSuit

constraint checks all of the cards in a stack and determines if they were all the same suit. This

37

specific method is user-defined in the Java code in the Simple Simon domain and therefore it

does not need to be converted to Java since it already exists in that format. The original solution

to this problem was to have users define their own tests for user-defined components, however,

we felt that this solution required too much explicit programming on behalf of the user. Our

alternative and simpler solution is to leave all user-defined constraints unalerted. This means that

user-defined constraints were testing by simply performing an unalerted move, with no validity

negation occurring. As a result, when run with all other constraints being met, the move should

succeed and the test should pass. The logic behind this decision was matching the user-defined

model and the user-defined constraint. If the model and its constraints are constructed as

intended, then a valid stack defined in the variations test setup should be able to validate without

fail. However, if this simple test failed, then it would show a discrepancy between the intended

model and the resulting generated structure. This would mean that either the model constraint

logic is incorrect, or the user-defined function is not working as intended. In either case, it would

signal to the user where there could be issues in the variation.

After creating tests for Simplevar, another solitaire variation in another family was also

tested to make sure that the test generation would create tests properly for an entirely new game.

The Shamrocks variation of the Fan family was selected. The unit test generation had to be

altered slightly to fit with this variation since moves in Shamrocks are for one single card at a

time instead of a pile of cards. Since every variation is different, there may be slight adjustments

that need to be made in future iterations of this project for unit test generation. However, every

variation that uses the same moves and constraints as Simplevar and Shamrocks will be able to

auto-generate test cases for each constraint that pass successfully when given a valid board state

in the model. UnitTestCaseGeneration.scala can be found in the shared Scala solitaire folder

alongside all of the Scala variation models.

 All test cases were generated in UnitTestCaseGeneration.scala. The apply method is

the main method that goes through all of the moves of a given solitaire variation and generates

test cases for them. The constraint tree for each move is flattened, allowing each constraint to be

tested individually. For each move’s constraints, the moving stack of cards is invalidated based

on each respective constraint, effectively falsifying a move that would normally be valid. This is

then asserted as false, confirming that reversing a particular constraint would result in an invalid

move. Some additional logic checks are also determined for the particular move (for example,

checking if the move is a deal or if a moving item is a single card instead of a pile).

UnitTestCaseGeneration.scala takes information from the variation’s model and defines

variables for several of each game’s key components such as the stock and foundation. For each

variation, a valid board state must be set up for each move. This is another domain parameter

that uses user-defined Java code to set the cards into a valid placement so that when a move is

tested it will be successful. This method (setBoardState) is created within the Scala code of

each variation and is located in the model as the testSetup variable.

To summarize the series of operations, firstly the apply method in

UnitTestCaseGeneration will generate the testSetup Java code and then attempt to make a

successful move. Then the move is tested several more times, once for each constraint. Every

one of these tests has one negated constraint. These should all be asserted as false since each test

should fail if even one constraint is falsified. The one exception to this is user-defined constraints

which are not negated but just tested as true to prove continuity between the desired model and

hardcoded constraint check.

38

These steps are repeated for each move until all of the moves have successfully generated

tests for each of their constraints. Tests will only be generated for a specific variation if an initial

board state has been defined within the model, however. The Controller.scala file checks to

see if the testSetup parameter is empty and if it is not then it creates a new

SolitaireTestSuite for that variation.

4.6 JAR Collection & GUI Launcher

As the number of variations increased, more and more time was spent on configuring

generated variations. While developing a framework model for a given variation was

streamlined, the process of running the generated code in a development environment required

additional steps to play the variation. As a result of this, all current variations were packaged in

JAR form and stored in the Github Repository Solitaire-Downloads. (A link to this repo can be

found here: https://github.com/combinators/solitaire-downloads). By creating a collection of

working JAR variations, the process of configuring the generated code in an IDE was eliminated.

If a user simply wanted to play a variation, they could download and run a given variation’s

packaged JAR file without any additional setup.

The online JAR collection also allows for the contributions of 3rd-party users. After

developing a variation using the main Scala framework, a compiled JAR file can be submitted in

the form of a pull request to the solitaire-downloads repository. This submitted JAR can then be

tested and approved by any project administrator.

To further increase the usability and access of the JAR collection, a JavaFX-based GUI

launcher was developed. While the main components of the Scala framework are publicly

available, its complexity warranted a tool that 3rd-party users could easily access and

understand.

Figure 38: Solitaire-Player GUI JAR Launcher

https://github.com/combinators/solitaire-downloads

39

The launcher, upon startup, collects the names, locations, and download links of all

variation JARs. Using a simplified ListView JavaFX element, all variations uploaded to GitHub

are listed to the user, which can be run by selecting the variation and clicking the Run Selected

JAR button. The information can also be regathered from GitHub via the Redownload from

Github button. Upon selecting the Run Selected JAR button, the selected JAR’s download link is

retrieved and a connection to the online resource is established. Once this process is completed,

the JAR’s Main class is loaded and run dynamically, starting the process as an extension of the

currently-running launcher. Variations among the ListView can also be searched using an edit-

distance fuzzy-search algorithm.

While the process of starting a JAR was simple, the closing of a launched application

closes the entire Java Virtual Machine (JVM). As a result, closing the variation also closed the

GUI Launcher. To alleviate this problem, an extension of the SecurityManager class structure

was implemented to prevent the shutdown of the JVM through the closing of a variation.

The JAR launcher can be found at the Combinators solitaire-player repository

(https://github.com/combinators/solitaire-player). In addition to having the source code for the

launcher, it also holds a JAR that contains the program itself.

https://github.com/combinators/solitaire-player

40

5 Conclusion

 The current iteration of the project implemented useful features to improve the efficiency

of the framework for new users. Coming into the project, there was little information regarding

the creation of a variation, or the main components of the domain model. Also, the process of

running a variation from the ground-up was tedious, especially with lacking and outdated

documentation. Our goals coming into the project were to make the framework more

approachable, as well as design a test suite combinator to validate solitaire moves defined in the

domain. We believe we achieved our goals by improving the client framework, implementing a

dynamic testing suite combinator, and developing a 3rd-party accessible JAR collection and GUI

Launcher.

The improved client and tutorials allowed for users inexperienced with the framework to

make and play their own solitaire variations as well as play the already existing variations. Test

case generation was added to allow the user to be able to check the success of their models and

the generated code, iterating through all of the domain’s designated moves, and producing

dynamically-appropriate JUnit 4 test cases. Among these larger changes, numerous bug fixes

were remedied, and new variations added. A JAR database and launcher were also developed to

streamline the ability to play and search approved variations. Third-party users are now capable

of contributing to the system more easily than ever, with an online JAR database holding

executable variations that can be approved via Github’s pull request system.

 While this iteration concluded most of the work from the previous iterations of Next-Gen

Solitaire, there are still many more routes in which the project can be continued. The idea of

utilizing code generation and combinatory logic synthesis to improve efficiency can be expanded

much farther, not only in this project but also in other areas and programs in the future.

41

References

(Bessai et al., 2014) Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens, and

Jakob Rehof. 2014. Combinatory Logic Synthesizer. In ISOLA 2014

(LNCS), Vol. 8802. Springer, 26–40.

(Ciccarelli et al., 2019) Drew Ciccarelli, Ian MacGregor, Simon Redding, George Heineman.

2019. Generating Solitaire Games (https://web.wpi.edu/Pubs/E-project/Available/E-project-

030119-174649/unrestricted/MQP_Report_Final.pdf)

(CleverMedia, 2020) Just Solitaire: The History of Solitaire

[https://justsolitaire.com/history.html]

(Düdder et al., 2014) Boris Düdder, Moritz Martens, and Jakob Rehof. 2014. Staged

Composition

Synthesis. In Programming Languages and Systems - 23rd European Symposium on

Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings. 67–86.

[https://doi.org/10.1007/978-3-642-54833-8_5]

(Heineman et al. 2019), Jan Bessai, Boris Düdder, George Heineman, Jakob Rehof

Towards Language-independent Code Synthesis

ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, 2018.

(Heineman et al., 2015), George Heineman, Armend Hoxha, Boris Düdder and Jakob Rehof,

Towards migrating object-oriented frameworks to enable synthesis of product line members.

Software Product Line Conference (SPLC) [https://dl.acm.org/doi/10.1145/2791060.2791076]

(Hicken, 2018) Arthur Hicken Code Coverage and Automated JUnit Test Case Generation.

Parasoft [https://blog.parasoft.com/code-coverage-and-automated-junit-test-case-generation]

(Pacheco & Ernst, 2005) Carlos Pacheco and Michael D. Ernst. Eclat: Automatic Generation and

Classification of Test Inputs [https://homes.cs.washington.edu/~mernst/pubs/classify-tests-

ecoop2005.pdf]

(Randoop, 2020) Randoop Manual Version 4.2.2

[https://randoop.github.io/randoop/manual/index.html]

(Rehof, 2013). Jakob Rehof, Towards Combinatory Logic Synthesis

[https://pdfs.semanticscholar.org/8754/d21b46bf9b1a66b22936d1d71c377d3c1fdb.pdf?_ga=2.26

3244175.2001077669.1580746930-28288596.1580746930]

(SolitaireCentral, 2012) The History of Solitaire. The History of Computer Solitaire

[http://www.solitairecentral.com/history.html]

(Rehof & Vardi, 2014) Jakob Rehof and Moshe Y. Vardi. 2014. Design and Synthesis from

https://web.wpi.edu/Pubs/E-project/Available/E-project-030119-174649/unrestricted/MQP_Report_Final.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030119-174649/unrestricted/MQP_Report_Final.pdf
https://doi.org/10.1007/978-3-642-54833-8_5
https://dl.acm.org/doi/10.1145/2791060.2791076

42

Components (Dagstuhl Seminar 14232). In Dagstuhl Reports, Vol. 4. Leibniz Zentrum für

Informatik

(Tomassetti, 2018) Gabriele Tomassetti. A Guide to Code Generation

[https://tomassetti.me/code-generation/]

(Tung, 2015) Angela Tung A brief history of Solitaire, Patience, and other card games for one.

The Week [https://theweek.com/articles/558738/brief-history-solitaire-patience-other-card-

games]

https://tomassetti.me/code-generation/

