

Managed Game Server Hosting

by

Walker Christie

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science

by

Walker Christie

September 2019

APPROVED:

Professor Jonathan Weinstock

Professor Therese Mary Smith

Abstract

Multiplayer video games have permeated our everyday lives, allowing people on other

sides of the world to play with each other. While some video games offer dedicated

server hosting as a feature, others require players to host their own video game servers.

This project describes the process of creating the basis for a managed video game

hosting service. Using primarily AWS resources, the following was created: a backend

allowing for the automated deployment of video game servers, group-based database

interaction, a Python command line utility for deploying and destroying stacks, and a

website featuring main and admin pages.

Acknowledgements

I want to thank Professor Smith and Professor Weinstock for guiding me through this

project and for agreeing to be my advisors at the last moment.

I also want to thank my parents for their endless love and support and for giving me the

opportunity to attend WPI.

Contents

1 Introduction ... 5

2 Project Scope ... 7

3 Prototyping .. 8

4 Requirements Analysis ... 9

4.1 Risk Assessment ... 9

4.2 PERT Chart ...10

5 Development .. 11

5.1 Website ...12

5.2 Database ...14

5.3 Authentication ..16

5.4 Distributed System ...18

5.5 Video Game Containers ..21

5.6 Control Script ...25

6 Results ... 26

7 Appendix ... 29

8 List of Figures .. 36

9 References .. 38

1 Introduction

From their culmination in the early 1970s, video games have grown from simple 2D

games to complex, highly-interactive experiences that permeate our culture and

everyday lives. One of the most pervasive aspects of gaming has been that of online

games. Instead of playing alone, players can now share a gameplay experience with

friends and strangers in an interactive online environment.

Online games allow players to remotely interact and play with each other

through a client/server architecture. In this architecture a player, or client, connects to

a remote host that acts as the game server. This server accepts the client’s connection

and adds it to a pool of currently connected players. The server then coordinates

sending information about the client such as world position, rotation, interactions,

played sounds, animations, etc. to all other clients connected to the server. By having a

server distribute a single player’s actions to all other players, and vice versa, each player

can participate in the same online game world.

The problem with online games is that game developers have two options for

creating a multiplayer service; either pay for server hosting or allow players to set up

and host their own servers. The first option requires game companies or indie studios to

host dedicated game servers for their player base. This is convenient for players because

they don’t have to think about the intricacies of hosting a game server, all they need to

do is join the server from their game client. The problem with this option, however, is

the cost. Hosting game servers costs money, and if the game’s player base is large, the

cost of hosting servers can become too much for a game company to pay. The

alternative to this method is to allow players to host their own game servers.

Player-hosted game servers are a good alternative for game companies that don’t

want to pay for the cost of hosting servers themselves. In order for a player to host their

own game server, an executable separate from the game client must be downloaded.

This executable, when run, creates a game server that other players (clients) can

connect to. The problem with player-hosted servers is the amount of computational

resources and technical knowledge required to set one up. Game servers need dedicated

RAM and CPU resources as well as a fast network connection in order to coordinate

connected players. As for the required technical knowledge, hosting a server is not as

simple as launching the game client itself. Hosting can involve port forwarding routers,

editing multiple configuration files, changing file permissions, setting rules in a firewall,

and much more. Despite the challenges that come with self-hosting game servers, there

are plenty of games where that is the only multiplayer option, one of them being

Minecraft (Mojang, 2011).

Minecraft is a sandbox video game where players explore, build, and gather

resources in a procedurally generated world. The game is extremely popular, being the

second highest selling game of all time with over 176 million copies sold. As of 2018,

Minecraft has over 91 million active players and has continued to grow in popularity

every year since its culmination. In order to host a Minecraft server, a user has to

download the server jar file, execute it via the command line, and specify how much

RAM to allocate to the server. A user must also port forward their router so outside

connections can enter, as well as allow Minecraft through their firewall. In addition to

the setup process, running a Minecraft server requires a lot of dedicated RAM, a

consistently high network bandwidth, low network latency, and a computer that can

constantly stay turned on. Because of the number of prerequisites that come with

hosting a Minecraft server, many players join servers hosted by other people, rather

than hosting their own.

For my Major Qualifying Project, I’d like to create a paid game server hosting

service for players who would like to host their own game servers but do not have the

time, resources, or knowledge to do so. Players will login, choose the game they want

hosted, and select the amount of computational resources to allocate to the server. The

hosting choices will be a list of games each with their own automated startup and

configuration logic. The price of hosting is determined by the length of hosting time,

number of resources, and choice of game.

2 Project Scope

The scope of this project can be divided into the analysis, design, development, and

testing of 3 individual systems. These systems loosely follow the model-view-controller

(MVC) design pattern.

The first system is a distributed system used for serving an arbitrary amount of

game servers to the registered users. Using AWS (Amazon Web Services) EC2 instances

and Docker, multiple game servers can be deployed and run simultaneously in their own

isolated environments. This allows for a set amount of game servers to run on a single

EC2 instance, each with a set RAM allocation and max CPU utilization.

The next system is the web client (view) which presents an interactive way for

users to purchase, configure, deploy, and monitor their own game servers. The main goal

of the website is to make purchasing and deploying a game server as easy as possible for

beginners while simultaneously providing extensive configuration options for more

technologically advanced users. The website will be written in HTML/CSS and paired

with a frontend JS library for rendering data from the backend.

Finally, the controller system is used for interfacing between the AWS VPS

instances and the frontend website. Commands will be processed through a set of REST

endpoints, ensuring a clean separation between the front end and the back end. It also

ensures loose coupling between the view and the backend, making command

addition/subtraction easy.

3 Prototyping

Prototypes are useful for demonstrating that certain features of the project are possible

to create before building other dependent pieces. Prototyping is an important step in

the Software Development Life Cycle (SDLC) as it can save time in the future. In the

event that a feature isn't possible to create, the SDLC can be adjusted to remove or

replace the infeasible feature before extensive development is done.

In order to demonstrate that the automated creation of a game server is possible, a

prototype of the deployment system was created. The purpose of this prototype is to

demonstrate the automated setup and deployment of a containerized video game server

on an arbitrary Virtual Private Server (VPS). The chosen game was Minecraft with

Amazon Web Services (AWS) as a VPS. Docker was chosen as a containerization

software, allowing for a set amount of game servers to live on the same VPS without

interacting with each other. The result of this prototype was a playable Minecraft game

server hosted on an AWS EC2 VPS.

4 Requirements Analysis

4.1 Risk Assessment

Because this project requires paying for AWS EC2 instances, database hosting, web

hosting, and a domain name, there is an inherit risk of losing money. In order to

minimize this risk, most of the development will be done locally rather than on a paid

hosting service. Development and testing of the distributed system portion will be done

on an AWS EC2 "micro instance". AWS micro instances are virtual private servers with

low computational resources that are free for one year. While these servers aren't very

powerful, they are strong enough to deploy a few small game servers on a single instance

for testing purposes.

Once development is completed, all services will be relocated to remote hosts. At

that stage, entering credit card information will be required to pay for the hosting of the

various created services. While the expectation is that paying users will offset the cost of

hosting, the risk of losing money is still there. Regardless of how the financial aspects of

this project turn out--- I, Walker Christie, take full responsibility for all project related

financial outcomes.

4.2 PERT Chart

Figure 1: PERT Chart

Because this is a large project with multiple systems and moving parts, it was

important to devise a method of tracking progress. To do this, a PERT chart was

created at the beginning of the project, providing a clear timeline for the development

process. The PERT Chart, as seen in Figure 1, flows from the starting node (S) to the

ending node (E). Each node in the chart represents a project requirement and the

arrows represent dependencies. This choice of chart is useful because it displays what

tasks are dependent on one another as well as which tasks can be done simultaneously.

It also helps track progress as the project is developed over time. While this PERT

chart wasn’t entirely followed during the development of this project (as seen in the

results section) it provides an easy method of prioritizing work over the lifetime of the

project.

5 Development

In order to develop a managed video game server hosting service in a timely manner,

the project timeline is divided into three objectives. These objectives loosely correspond

with the Model View Controller pattern mentioned in chapter 2.

5.1 Website

The first objective is to create the website (or view in the MVC model) that is presented

to the client. Because the website is the first thing a prospective client sees, it is

imperative that the product being offered is simple to understand and appears

attainable. In other words, the website should present a clear solution to the problems

that come with hosting one's own game server.

The technical stack for the website extends beyond the standard HTML/CSS

markup. In order to increase extensibility and allow for reuse of components, I decided

to use the React Javascript library. React is a front-end web framework used for

building user interfaces. React code is organized by components, which are modular

elements of a website. An example component may be a navigation bar that gets

displayed at the top of every page. In traditional HTML/CSS, the programmer would

have to manually place the code for the navigation bar on every page of the website.

With React, however, one can create a navigation bar component a single time and

include it across each page, removing duplicate code.

React also has a concept of component state. A component's state determines

how a component renders and behaves. In other words, state makes components

dynamic, allowing them to adjust to user input, network responses, timers, any other

type of event. One example of a component using state would be a clock. A clock is a

component that renders its text every second, displaying the current time to the user.

With React, this component could have a state object containing the current time where

the state is updated every second.

In order to decrease development time, Typescript was added to the project.

Typescript is the same language as Javascript except that it contains strong typing. A

strongly typed language is one in which variables are bound to a specific data types and

will result in errors if the types don't match up as expected. This is advantageous

because it allows the compiler to catch syntax errors before the program is run, reducing

unexpected errors down the line.

The organization of the website itself is divided into two main sections: the main

site and admin pages. The main sites’ pages are meant for unauthenticated users to

learn more about the service and what features are available. The admin pages allow

authenticated users to monitor existing servers, monitor resource usage, view invoices,

and any other task related to the management of a purchased server. On the main site

the following pages are available: home, games, pricing, and support. The home page

displays a gallery of available games, some servers and their prices, hosting features, and

a step-by-step graphic that illustrates how easy it is to launch a game server. The games

page lists all available game servers and their lowest prices. The pricing page displays all

available game servers and their various pricing plans. Finally, the support page

contains a contact form, allowing visitors and customers to ask questions about the

hosting service.

The admin panel contains the following pages: invoices, account, server list, and

manage server. The invoices page displays which servers the user has purchased. The

account page lists user information such as: their email address, name, and user ID. The

server list page contains all servers currently registered to the user. Each server can be

turned on or off from this page. Finally, the manage server page contains various

options for controlling and visualizing a video game server. Some options include:

viewing server resource usage, viewing console activity and sending commands, FTP

account management, and configuration file editing. Figures for all web pages on the

website can be viewed in the appendix of this document.

5.2 Database

While there are plenty of database options out there, it was important to select one that

fit with the website's use cases. Having a database that can be distributed across many

servers at once is important, as there may be users on opposite sides of the world

accessing the database at the same time. Next, the database schema should be easily

adjustable. Since the database is so tightly coupled to many systems, it’s likely that the

schema will have to change as more systems are implemented and connected together.

In order to satisfy these two constraints, a NoSQL database was chosen.

NoSQL databases are unlike traditional SQL databases because they do not work

through tabular relations. There are many different choices for a NoSQL database, but

for this project AWS' DynamoDB was chosen. DynamoDB is a document store

database, where data are organized into documents and collections. In this database,

documents (similar to rows in a SQL DB) are stored within collections (similar to

tables). The big difference between a document store database and a SQL database is

that every row in a SQL database has the same sequence of fields (or columns). In a

document store database, it is possible to store an arbitrary number of fields within a

single document.

In order to interface the database with the website,

AWS AppSync with GraphQL is used. AWS AppSync is a

development platform used for building GraphQL-driven

databases. It provides features for interfacing between

GraphQL and DynamoDB, as well as restricting table access to

certain groups of users (discussed in depth in chapter

Authentication5.3). GraphQL is used for interfacing with all

kinds of AWS database solutions, including DynamoDB. GraphQL works by defining a

database schema that is then used to automatically configure DynamoDB on AWS'

servers. An example query for the pricing schema is shown in Figure 2.

Figure 2: GraphQL pricing schema

In the pricing schema there are two

defined types, GamePricing and Price.

GamePricing is denoted with @model

meaning the type acts as its own collection in

the database, similar to a table. The Price

type is not its own collection. Rather, it

serves as the type for the prices array within

the GamePricing collection. This schema,

when uploaded to AWS through AppSync, is provisioned and created in DynamoDB as

a collection. An example item in the GamePricing collection is seen in Figure 3. Any

attempts to modify the collection with data that does not fit the defined schema are

rejected by GraphQL. This is useful because it guarantees data consistency by rejecting

malformed insert operations.

5.3 Authentication

Authentication is done through AWS Cognito, a managed user authentication

service that handles sign in, sign up, password recovery, and two factor authentication.

Cognito allows for users to be sorted into groups which define what resources they are

allowed to interact with. There are three groups defined for this project:

Figure 3: GraphQL schema provisioned on DynamoDB

• Guest – Users in this group

have the most limited access.

Guests may only read public-

facing database tables, such as

the prices table. Every

unauthenticated client that

visits the site is automatically

assumed to be in this group.

• Member – Users are

automatically assigned to this group after successfully signing up and confirming

their email address. Members are able to get data from database tables

pertaining to their own account. For example, members may read rows from the

servers table that have a user ID that matches their own.

• Admin – Users in this group have the most access to resources. Admins may read

and write data to every table in the database.

Group permissions are enforced using AWS AppSync resolvers, small programs that tell

AppSync how to translate incoming GraphQL requests and transform response data.

Figure 4 shows one such resolver for the prices table. This resolver is used for saving

items in the prices table, an operation that should be done only by administrators. By

using AppSync resolvers, unauthorized requests (i.e. requests from Guests or Members)

are rejected by returning a 500 status code and an unauthorized error message.

Figure 4 AppSync Resolver for Prices PutItem operation

Authorized Admins, however, are able to insert items into the database simply by

passing their session ID. The following table outlines each operation and their associated

group requirements:

Table Operation Allow Groups

Servers Put Item Admin

Servers Get Item Member (own ID), Admin

Servers Get All Items Admin

Servers Delete Item Admin

Prices Put Item Admin

Prices Get Item Guest, Member, Admin

Prices Get All Items Guest, Member, Admin

Prices Delete Item Admin

Figure 5 Database Group Permissions Table

5.4 Distributed System

The distributed system portion of the application is comprised of multiple AWS

resources contained within a single “stack”. A stack in AWS is a collection of resources

(i.e. AWS Lambda, DynamoDB, IAM, EC2, etc.) that are created or destroyed

simultaneously. Stacks are modeled and provisioned through AWS CloudFormation.

CloudFormation is a service that allows developers to create a single template file that

models all the resources that make up a stack. CloudFormation then reads these

template files (written in JSON or YAML), creates the requested resources, and treats

the deployment as a group (or stack) of resources. This removes the process of manually

creating AWS resources, configuring them to communicate with each other, and deleting

the provisioned resources when they’re no longer needed. Using stacks also makes it easy

to develop, test, and deploy instances of the application within isolated environments.

For example, staging, testing, and production environments could be created, each one

being a fully-functional instance of the application. This also means that every developer

working on the application could have her own development environment, all while the

live production environment remains untouched.

 A visual representation of this project’s template/stack can be seen in Figure 6.

Each rounded white box represents a single resource while the arrows between them

represents a relationship between resources. Resources are also labeled with a logical

identifier to uniquely identify a resource (i.e. LHSITE). There are six resources on the

left that represent database tables (LHDBREGISTRY, LHDBPRICES, and

LHDBSERVERS), the website S3 bucket (LHSITE), container registry (LHECR), and

game servers cluster (LHECS). The other resources to the right are used to enable user

authentication and interfacing with the database.

 The LHSITE resource is an S3 bucket that is used for hosting the website. When

creating a stack using this template, all website files are copied to LHSITE and web

hosting is enabled on the bucket. LHECR is an AWS Elastic Container Registry (ECR)

resource. ECR, like its name implies, is an AWS-managed docker container registry and

is used to store video game container images. LHECS is an AWS Elastic Container

Service (ECS) resource that creates a cluster where video game container images are

deployed. ECS works by pulling container images from ECR and starting them in the

specified region. This means video game servers can be deployed across the world,

allowing the customer to choose which region is closest to themselves, minimizing

Figure 6: Project CloudFormation Template

network latency. The functionality of LHECR and LHECS is explained in greater depth

in section Video Game Containers5.5. LHDBREGISTRY, LHDBPRICES, and

LHDBSERVERS are each AWS DynamoDB tables. LHDBREGISTRY stores

information about container images uploaded to LHECR. LHDBPRICES stores pricing

information and is read every time a user opens the pricing page on the website.

LHDBSERVERS stores data about provisioned servers. This includes the container

image that was launched, amount of computational resources requested, region the

server is running in, and the ID of the user that launched the server.

5.5 Video Game Containers

Video game servers across different games often have unique configuration and

resource requirements. The game Minecraft, for example, is very RAM heavy while the

game Counter Strike is more CPU intensive. Similarly, the steps taken to setup a game

server differ widely between the two games. In order to automate the setup process for

individual video game servers, each game was containerized using Docker.

Docker (Docker (software), n.d.) is a set of Platform as a Service (PaaS) products

that use OS-level virtualization to deliver software in packages called containers.

Containers are isolated from one another and bundle their own software, libraries, and

configuration files. There are multiple advantages to using Docker containers for server

hosting. Because containers are isolated, running game servers cannot interact and

accidentally break each other. Docker also makes it easy to test, build, and run

containers very quickly. When building a container image, Docker reads a Dockerfile— a

text document that describes how a container is built and runs. When a container image

is run, Docker automatically creates a small virtual machine and runs the commands

specified in the Dockerfile. This means configuring how the container functions can be

automated and quickly extended.

Each video game version receives its own unique Dockerfile that describes server

dependencies, how the server is configured, and what

script starts the server. Figure 7 is an example of the

Minecraft version 1.15.1 Dockerfile. Line 1 references the

Docker base image, metrics, which is described in the next

paragraph. Lines 3-6 pull the dependencies needed to run

a Minecraft server. In this case, Java and bash are

installed. Lines 8-9 open the necessary port, 25565, for

both UDP and TCP. Lines 11-19 copy the required files to

the container and apply executable permissions to them. Finally, line 21 tells Docker

which script to run (in this case start.sh) when the container image is started.

One important feature in server hosting is the ability to monitor the resource usage

of the server. If a server is frequently crashing or lagging it may be simply running out

of RAM or CPU bandwidth. In order to track these resources (or metrics) and display

them to the user, two scripts were created. The first script, metrics.sh, is launched when

Figure 7: Minecraft 1.15.1 Dockerfile

the container starts and is used to continuously write resource usage to a file every 30

seconds. This is accomplished by referencing the Linux cgroup assigned to the container

and reading the pseudo-files for memory and CPU usage. The second script, metrics.py,

exposes a set of HTTP endpoints that can be contacted to retrieve this resource usage

file. The website can then contact the endpoint at the server IP address and retrieve up-

to-date information about the server’s resource usage. Each incoming metrics request

must also pass a session ID which is checked against the user database, ensuring that

only the server owner has access to her own metrics.

 Docker containers are packaged and distributed in container imagesꟷ lightweight,

standalone executables that contain everything needed to run an application’s code.

These images are generated locally using the docker build command. The images are

then stored in an Elastic Container Registry (ECR) and are deployed when needed to

the Elastic Container Service (ECS) cluster. Servers are created and destroyed by

contacting REST endpoints created in AWS Lambda.

 AWS Lambda is a service that allows developers to run code without having to

provision or manage servers. The biggest advantage to this is cost. With Lambda, you

only pay for the compute time used while the program is running, unlike traditional

REST endpoints which run on a 24/7-uptime dedicated server. Lambda is used in this

project to deploy game servers stored in ECR to an

ECS cluster located at a particular region. The

function that does this is called lh-add-server, which

exposes a REST endpoint with a set of input

arguments that deploy the requested game server.

Arguments include:

• Stack: Name of the deployed stack (i.e.

production).

• Family: Combination of the game name and

version.

• Image: Container image URI stored in the

Elastic Container Registry.

• CPU: Amount of CPU resources to allot to

the server.

• RAM: Amount of RAM to allot to the server.

• Region: AWS region to deploy the server.

• PortMappings: A dictionary containing which

ports to open across either TCP or UDP.

Figure 8: Add Server Flowchart

Figure 8 shows a flowchart of deploying a video game server to an ECS cluster. In order

to avoid duplicate resources, both the VPC and Security Groups for the passed

configuration are checked to see if they already exist. Security Groups are only checked

against the passed port mappings and created if the requested ports do not exist in any

security group. This means that server connections are limited to the minimum required

opened ports. For example, a game server hosting Minecraft, which requires port 25565

to be open, cannot be connected to via Counter Strike’s open port, 6003.

5.6 Control Script

While CloudFormation helps get the bulk of the distributed system deployed, it

cannot deploy everything. Uploading the website files and container images, for

example, must be done after the stack has been deployed. Deleting deployed stacks also

requires some more work other than simply pressing delete on the AWS console.

Running ECS tasks, for example, must be stopped before a stack can be deleted. The

same goes for the ECR, which must be cleared of any container images before being

deleted. In order to automate these tasks, a Python command line utility was created.

Control.py is a command line utility used for automating the creation, deletion, and

updating of stacks. It features help information for every command, as well as detailed

error messages should any task fail. The script works on both Windows and Mac OSX

systems and features the following commands:

• deploy – Issue stack deployment commands.

o template [-h] path name – Deploy a stack via a template file specified at

the passed path.

o site [-h] [--upload-prod] [--upload-dev] [--upload-bundle] [--build-prod] [--

build-dev] name – Upload website to the passed stack’s S3 bucket.

Optionally run a production or development build before uploading and

upload either the development build or production build.

o registry [-h] [--game GAME] [--version VERSION] name – Upload a game

version to the ECR within the passed stack. If version isn’t specified, all

versions for the passed game are uploaded. If game and version aren’t

specified, all games and their versions are uploaded to the ECR.

• delete [-h] name – Delete the stack with the passed name.

• list [-h] [--all] [--name NAME] – Either list information about all deployed stacks

or list information about the stack with the passed name.

• seed [-h] table file name – Seed database tables with content from a local file.

This command takes: the name of the table to seed (i.e. prices), a path to a

JSON file to seed the table with, and the name of the stack containing the table.

6 Results

At the beginning of this project, I wanted to ensure that every step taken followed the

SDLC guidelines as close as possible. It was important to me that the project was

carefully planned and created in a way that ensured loose coupling between systems. By

following these ideas, I was able to create an application that can be actively extended

by multiple developers simultaneously in an Agile environment.

The culmination of this project resulted in a website and backend able to launch

and configure a single type of video game server. Developers are able to deploy, delete,

and update stacks through a command line utility allowing for quick development

iterations. Through this system of multiple deployment stacks, developers can easily

work on this project without having to worry about breaking other developers’

deployments or the production deployment.

Other features, such as user authentication and table operation permissions were

implemented as well. Users are currently able to sign in, sign up, and recover their

account through password reset emails. Database table operations are also limited by

the group a user is in, securing the database through the principle of least privilege.

While a lot was done over the three terms, there are still many features that need to

be implemented. As of now, users have no way of paying for a game server, website staff

cannot update prices without manually changing table rows, there is no way to

send/receive support tickets, users can only deploy one game (Minecraft), and much

more. The purpose of this project, however, was not to create this entire hosting service

over three terms. Instead, it was to use the principles of good software engineering to

construct the basis for a video game hosting service website. The result of this project is

a backend and frontend that can be quickly extended by multiple developers. While

these are good results for an MQP, the plan is to continue development of this project

and release a beta version in a few months.

7 Appendix

Figure 9: Home page

Figure 10: Games page

Figure 11: Pricing page

Figure 12: Support page

Figure 13: Sign in dialog

Figure 14: Servers list page

Figure 15: Invoices page

Figure 16: Account page

Figure 17: Manage server metrics page

Figure 18: Manage server console page

Figure 19: Manage server FTP users page

Figure 20: Manage server settings page

8 List of Figures

Figure 1: PERT Chart ...10

Figure 2: GraphQL pricing schema ..15

Figure 3: GraphQL schema provisioned on DynamoDB ...16

Figure 4 AppSync Resolver for Prices PutItem operation ..17

Figure 5 Database Group Permissions Table ..18

Figure 6: Project CloudFormation Template ..20

Figure 7: Minecraft 1.15.1 Dockerfile ..22

Figure 8: Add Server Flowchart ...24

Figure 9: Home page...29

Figure 10: Games page ...30

Figure 11: Pricing page ...30

Figure 12: Support page ...31

Figure 13: Sign in dialog ...31

Figure 14: Servers list page ...32

Figure 15: Invoices page ...32

Figure 16: Account page ...33

Figure 17: Manage server metrics page ...33

Figure 18: Manage server console page ...34

Figure 19: Manage server FTP users page ..35

file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915957
file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915958
file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915959
file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915960
file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915962
file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915963
file:///C:/Users/CChristie/Desktop/Folders/Google%20Drive/Classes/MQP/Report.docx%23_Toc36915964

Figure 20: Manage server settings page ..35

9 References

Amazon AWS Documentation. (n.d.). Retrieved from Amazon AWS:

https://docs.aws.amazon.com/

Atwood, J. (n.d.). Understanding Model-View-Controller. Retrieved from Coding

Horror: https://blog.codinghorror.com/understanding-model-view-controller/

Client–server model. (n.d.). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Client%E2%80%93server_model

Docker (software). (n.d.). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Docker_(software)

Gilbert, B. (n.d.). 'Minecraft' is still one of the biggest games in the world, with over 91

million people playing monthly. Retrieved from Business Insider:

https://www.businessinsider.com/minecraft-has-74-million-monthly-players-2018-

1

How to install Minecraft Server on Ubuntu. (n.d.). Retrieved from Foss Linux:

https://www.fosslinux.com/18063/how-to-install-minecraft-server-on-ubuntu.htm

Introduction to GraphQL. (n.d.). Retrieved from GraphQL: https://graphql.org/learn/

Mojang. (2011, November 18). Minecraft. Retrieved from Wikipedia.

React Documentation. (n.d.). Retrieved from React JS:

https://reactjs.org/docs/getting-started.html

SDLC - Overview. (n.d.). Retrieved from Tutorials Point:

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

SQL vs NoSQL: What's the difference? (n.d.). Retrieved from Guru 99:

https://www.guru99.com/sql-vs-nosql.html

TypeScript for JavaScript Programmers. (n.d.). Retrieved from Typescript Lang:

https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html

