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Abstract

Real-world data often exhibit a long-tailed distribution, posing a challenge for classification models that are
inherently biased towards higher frequency classes. Despite extensive research on learning unbiased classifiers,
the issue of representation bias remains under-explored. Our observations show a negative correlation between
class frequency and intra-class variance in feature space. We explore the use of data augmentation, specifically
mixup and implicit semantic data augmentation (ISDA) in learning more uniformly distributed features.
Moreover, we use the class-conditional statistics obtained from ISDA to fit linear discriminant analysis (LDA)
directly on the features, which we hypothesize to be more robust than Softmax. Extensive experiments
demonstrate the competitiveness of our framework on four long-tail benchmarks. Our code can be found at
https://github.com/p-lam/LTR-MQP
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1 Introduction

The field of deep learning has experienced rapid advancements over the past decade, particularly in

computer vision, natural language processing, and reinforcement learning. While many of these improvements

have come as a result of new model architectures, such as ResNets and ViTs (21; 16) for vision, the success

of these models is founded upon newfound access to large labelled datasets, such as ImageNet (14). However,

these datasets are often artificially balanced to achieve an approximately even class distribution for model

training. This approach is inconsistent with real-world data, which often exhibits a "long-tail" distribution,

characterized by a few dominant categories (the "head") and a large number of relatively rare categories (the

"tail") (50) . Unfortunately, using standard training techniques on long-tail data is not relibale, as this often

results in poor performace on tail categories. As such, long-tailed recognition (LTR) has been introduced as

a necessary component for real-world deployment of deep learning models (28; 32; 57).

The main goal of long-tail recognition is to achieve high accuracy across all classes, regardless of

how many samples were present in the training set. The ability to detect tail classes is especially relevant

for safety-driven applications. For example, many skin cancer classification datasets heavily underrepresent

people with darker skin tones (48). Naive training of a classification model on such a dataset may result in

poor treatment of patients falling into the tail demographic. In this scenario, and many others, it may be

prohibitively expensive or difficult to collect enough tail samples to make the dataset balanced (42). Thus it

is imperative to be able to train robust models in spite of long-tail distributions.

In this work, we focus on image classification for long-tailed data, known as long-tailed visual

recognition. One common perspective is to mitigate the model bias introduced by the typical training

of a softmax classifier, which tends to associate a higher weight norm with head classes. Some recent

techniques include data resampling, loss re-weighting, and decoupled training. Data resampling and loss

re-weighting methods both look to equalize the impact of each class on the softmax classifier, typically through

bootstrapping tail classes or increasing the misclassification cost of tail classes. Inspired by representation

learning, recent studies have shown that training policies can be further improved by de-coupling the training

of features and the classifier (23). However, these approaches often require careful hyperparameter tuning

and may prioritize the learning of the classifier over the features.

We propose a new method that aims to learn an optimal feature representation for long-tailed data.

We first demonstrate that there exists a negative correlation between class frequency and intra-class variance.

Specifically, we find that samples in head classes tend to be more tightly clustered, while tail classes are more
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Figure 1: In a long-tailed distribution, few classes have many instances (head), while the majority of the
classes have a few (tail). In representation space, head class features are tightly compact, whereas tail class
features are diffused. The data here is drawn from CIFAR10-LT.

dispersed, resulting in more challenging classification. Figure 1 illustrates this phenomenon through a t-SNE

projection (40) of features produced from a pre-trained model of a head, middle, and tail class. Furthermore,

we show in Figure 7b that the use of stronger data augmentations, such as those proposed in (53), (43), and

(11), helps ameliorate this issue.

Finally, propose the use of Fisher’s Discriminant Analysis (FDA) (19; 47) for classification. This

method learns a linear projection to a subspace that can more effectively collapse classes, thereby reducing the

impact of noisy features. Our final composition of selected data augmentations and FDA achieves competitive

performance with state-of-the-art techniques.

1.1 Contributions

Our core contributions are provided as follows: We complete an extensive literature review with key

methods summarized in section 2. We conduct a theoretical analysis of common data-augmentation techniques

and classifier objectives under long-tail distributions, leading us to our proposed data augmentation+LDA

algorithm described in section 3. We demonstrate the efficacy of our method through extensive empirical

benchmarks in section 4. We conclude with a discussion of the project and potential plans for future work in

section 5.
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(a) Without mixup (b) With mixup (c) Our method

Figure 2: 2-dim TSNE projection of a tail class along with 2 head classes for CIFAR100-LT. (a) For models
trained with CE, the head class is relatively compact, while the tail class is diffused. However, the tail class
still occupies less space in feature space compared to the head class. (b) When mixup is added into training,
the tail class is emphasized. (c) Our method constrains the variances of all classes to be close to each other.

2 Related Works

2.1 Data Resampling

An intuitive way of handling imbalances in long-tailed data is to over-sample the tail classes (5; 33; 6).

One such method is class-aware sampling (CAS) (33), which ensures an equal proportion of classes within

each mini-batch. Similarly, one can under-sample the head classes (5; 22) by removing their instances from

training. However, with over-sampling, a model risks over-fitting to tail classes. In contrast, the removal

of data in under-sampling can impact a model’s generalization ability and lead to under-fitting on head

classes. Improved resampling techniques, such as synthetic (9) or meta-sampling (30), can mitigate some of

these issues but are computationally expensive, particularly on large datasets. More recently, studies have

approached re-sampling from a meta-learning perspective (52). Balanced Meta-Softmax (30), for example,

estimates the optimal class sampling rate on a balanced meta validation set.

2.2 Loss Reweighting

Another approach to LTR is to re-weigh classes or instances through the network’s objective function

(50). Early works sought to reduce bias by adjusting class weights, the most simple being to weigh them

proportional to their inverse label frequencies (3). However, this method was found to produce sub-optimal

results. To improve upon this, Cui et al. (13) proposed the concept of effective number of samples, and

enforced a class-balanced re-weighting term that is inversely proportional to this value. Balanced Meta-

Softmax (30) utilizes the label priors for re-weighting by multiplying prediction logits by their label frequencies.
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Tan et al. (36; 35) approached the problem from a gradient perspective with the equalization losses, which

dynamically balance the gradients of the head and tail classes during training.

Instead of using label frequencies, Lin et al. (26)considers the difficulty of predicting each class as

a basis for re-weighting through Focal Loss. Their intuition is that since tail classes are harder to predict

than head classes, their prediction probabilities can be used determine appropriate class weights. Other

studies have utilized meta-learning to learn optimal class weights (34; 31). More recently, logit adjustment

methods, such as (29; 49) have achieved much success as well, and can be enforced within the CE loss or

applied post-hoc.

More recently, supervised contrastive learning (SCL) methods have proved to be extremely effective

on long-tailed data. Balanced Contrastive Learning (59) improves on vanilla SCL by equilibrating the

gradients of negative classes, and encouraging all classes to appear every mini-batch. PaCo (12) introduces

parametric prototypes to reduce model bias on head classes in SCL. TSC (25) enforces a uniform feature

distribution by manually calculating a set of "targets" classes should converge to during training. The efficacy

of these works serves as a motivation to learn robust representations for long-tailed data.

2.3 Data Augmentation

Data augmentation is frequently employed in deep network training to augment the size and

diversity of the training data, and has been previously utilized to improve the representation quality of tail

samples. Mixup (53) is a popular regularization technique that trains the model on convex combinations of

of input-target pairs. Several studies have observed that this regularization is effective for model calibration

(38; 56; 58) and robustness (54). More recent mixup-based approaches include Manifold-Mixup (43), which

expands mixup to intermediate feature representations, and Remix (10), which relaxes the mixing of labels to

assign more weight to infrequent classes. Unimix (49) further improves upon mixup in long-tailed scenarios

by incorporating a dynamic, tail-favored mixing factor and a sampler that encourages the formulation of

more h head-tail pairs.

Other augmentation-based works include Liu et al. (27), which promotes similar feature "clouds" by

augmenting tail classes with the angular variances learned from head classes, and MetaSAug (24) which adapts

upon ISDA (46) to the imbalanced case by incorporating meta-learning to estimate class-specific covariances.

Despite the remarkable successes of these works, data augmentation remains relatively underexplored in

long-tailed recognition. Our proposed method draws inspiration from the aforementioned studies.
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2.4 Two-stage methods

Following Kang et al. (23), long-tail recognition works separate the training process into feature-

learning and classifier-learning stages. The first stage is trained with standard instance-based sampling to

learn more general representations, while the second stage employs re-weighting or re-sampling methods to

fine-tune the classifier. Recent techniques to improve fine-tuning of the classifier include weight-balancing

losses (2), label-aware smoothing (58), and distribution calibration (44).

3 Methodology

3.1 Problem Definition

Long-Tailed Learning. Let Dtr = {(xi, yi)}Ni=1 be an imbalanced dataset with N samples and C classes,

where xi denotes a sample and yi = Y ∈ {1, · · · , C} denotes its label. Let nC denote the number of instances

within class c. Without loss of generality, we assume that classes are sorted by decreasing cardinality, i.e.

n1 ≥ n2 ≥ · · · ≥ nC . Furthermore, we define the imbalance factor (IF), ρ, of a dataset as ρ = n1/nC . A

greater degree of imbalance typically results in poorer performance on tail classes.

We train a classification model ϕ(·) consisting of two parts: a backbone network f(x; θ) that extracts

a feature representation, zi ∈ RD, and a classifier g(zi;W ) ∈ RC×D that outputs class predictions. Here,

D is the feature dimension, and θ and W are the parameters for the backbone and classifier respectively.

We omit the bias term of the linear classifier for brevity unless specified otherwise. As we expect consistent

performance across all classes, we evaluate our model on a class-balanced test distribution (i.e. ρ = 1).

ERM. Given a loss function L, the objective of empirical risk minimization (ERM) can be expressed as:

min
θ

E(x,y)∼Pδ
{L(f(xi; θ), yi)} (1)

in which Pδ = 1
N

∑N
i=1 δ(X = xi, Y = yi) is an estimate of the true data distribution, P (X,Y ). Unfortunately,

this approximation makes the naive assumption that the training distribution accurately reflects the test

distribution (57).
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3.2 Analysis of mixup

Based on Vicinal Risk Minimization (VRM), mixup synthesizes new training samples by linearly

interpolating pairs of examples and their labels. More specifically, given two random examples from the

training data, (xi, yi) and (xj , yj), mixup combines them using 2:

x̃ = λ · xi + (1− λ) · xj

ỹ = λ · yi + (1− λ) · yj
(2)

where yi, yj are one-hot vectors, λ ∼ Beta(α, α), α ∈ (0,∞). When applied to all the data, 2 constructs a

new dataset Dv = {(x̃i, ỹi}Ni=1 that approximates the true distribution with the empirical vicinal distribution,

Pv(x̃, ỹ) =
1
N

∑N
i=1 v(x̃, y|xi, yi). Thus, the new objective from VRM becomes:

min
θ

E(x̃,ỹ)∼Pv
{L(f(x̃i; θ), ỹi)} (3)

Previous works have shown that mixup training improves calibration (37; 58), robustness (55), and general-

ization of networks (55; 8) in both balanced and imbalanced settings. In the latter case, when coupled with

instance-balanced (natural) sampling (23), mixup demonstrates the ability to promote more balanced weight

norms (58). To better understand the effect of mixup on representation learning, we first divide the mixup

data into two classes: (1) Mixing between samples of the same class, and (2) Mixing between samples of

different classes (i.e. head and tail). We then attempt to understand the effect of both cases on intra-class

variance.

Lemma 1(a) (Input variance of interpolated samples within the same class).

Let x0 and x1 be two random variables drawn i.i.d from the same class conditional distribution X ∼ N (µx, σ
2
x).

Let x̃ denote the mixed sample, where x̃ = λ0x0 + λ1x1 and λ1 = 1− λ0. Then, the variance of x̃ is less than

that of x̃ by a factor of λ2 + (1− λ)2.
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Proof Sketch 1(a). Let σ2
x̃ be the variance of the mixed sample x̃. When x0 and x1 have the same label,

we get:

σ2
x̃ = E[(x̃− µx̃)

2]

= E[(
1∑

i=0

λixi −
∑
i=0

λiµX)2]

= E[(
1∑

i=0

λi(xi − µX))2]

= E[
1∑

j=0

1∑
i=0

ajai(xi − µX)(xj − µX)]

=

1∑
i=0

λ2
iE[(x0 − µX)2]E[x1 − µX)2] + 2λ0λ1E[(x0 − µX)(x1 − µX)]

=

1∑
i=0

λ2
iσ

2
X + 2λ0λ1E[(x0 − µX)(x1 − µX)]

Since E[(x0−µX)(x1−µX)] is the covariance of two independent variables, the second term becomes

0. Thus, we get:

σ2
x̃ = (λ2

0 + λ2
1)σ

2
X = (λ2

0 + (1− λ0)
2)σ2

X ≤ σ2
X

where in the last line, we use the fact that λ is drawn from a Beta distribution, and hence

λ2
0 + λ2

1 = λ2
0 + (1− λ2

0) ≤ 1.

Lemma 1(b) (Input variance of interpolated samples between different classes).

Given a long-tailed dataset {(xi, yi)}ni=1, let (x0, y0) and (x1, y1) be two random samples drawn i.i.d from a

two different classes respectively. Then, the variance of the mixed sample x̃ = λ0x0 + λ1x1 is bounded by

(σ2
x0
, σ2

x1
).
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(a) CE IF=100 (b) mixup IF=100 (c) CE IF=50 (d) mixup IF=50 (e) CE IF=10 (f) mixup IF=10

Figure 3: When training a model with just CE (see (a), (c), (e)), the weights of the head classes grow at a
rate much faster than that of the tail classes. This is somewhat ameliorated with mixup, as shown in (b),
(d), and (f). The "balancing" effect of mixup is more prominant as the imbalance factor decreases.

Proof Sketch 1(b). We begin in the same way as the previous proof, the difference being that our samples

have different class means.

σ2
x̃ = E[(

1∑
i=0

λixi −
1∑

i=0

λiµi)
2]

= E[(
1∑

i=0

λi(xi − µi))
2]

= E[
1∑

j=0

1∑
i=0

λjλi(xi − µi)(xj − µj)]

=

1∑
j=0

1∑
i=0

aiajE[(xi − µi)(xj − µj)]

= λ2
0σ

2
x0

+ λ2
1σ

2
x1
− 2σx0σx1E[(x0 − µx0)(x1 − µx1)]

= λ2
0σ

2
x0

+ λ2
1σ

2
x1

= λ2
0σ

2
x0

+ (1− λ0)
2σ2

x1

Since mixup finds linear interpolations of the data, it follows that the variance of the mixed sample is

bounded by the variances of its sample components. Consequently, mixup is beneficial for highly dispersed tail

classes, as it encourages models to learn better tail representations with the help of the head. To substantiate

our claim, we train a plain cross-entropy model with and without mixup. We illustrate the learning of tail

and head class representations by visualizing classifier weight norms (see Fig.4a) and intra-class variances

(see Fig.4b). The top-1 accuracies are listed in Table 1. From these results, we observe that mixup training

only marginally improves the top-1 accuracy of the model compared to CE. Despite this, it encourages

the classifier weight norms of the head and tail classes to be more similar, and substantially decreases the

intra-class variance of tail classes. As such, the class-covariances also become more similar across classes, as

illustrated in Fig. 4c and in Fig. 4d.

To further investigate how the classifier weight norms are being "balanced", we plot their growth

8



over the course of training in Fig. 3. Unsurprisingly, we find that the norms for the head classes grow much

faster than those of the tail, especially when the imbalanced factor is high. However, we also note that the

norms of the tail classes seem to increase at a much slower rate towards the latter half of training. This,

combined with the fact that the mixed samples still follow a head-majority (49), motivates us to incorporate

another data augmentation method into training. Given T2 total epochs, we propose to train with mixup for

T1 epochs, and use ISDSA (46) for the other T2 − T1 epochs.

(a) (b)

(c) (d)

Figure 4: (a) Per-class weight norms for a model trained without mixup (blue) and with mixup (orange)
on CIFAR100-LT. (b) The intra-class variances for each class given a model trained without mixup (blue)
and with mixup (orange). (c) The L2 norms of the difference between per-class covariance matrices without
mixup training and (d) with mixup training on CIFAR10-LT. The figures are best viewed in color.
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3.3 Implicit Semantic Data Augmentation (ISDA)

Explicit data augmentation techniques, such as flipping or rotating an image, are commonly employed

in training deep learning networks to improve a model’s accuracy and generalization. However, these methods

are limited in their ability to augment semantic information, which can be critical for increasing data diversity,

especially for less common classes. Moreover, as the number of augmented samples used in training increases,

the computational complexity of the training process also increases.

Fortunately, Wang et al. (46) proposes a solution to this problem through an implicit semantic data

augmentation (ISDA) technique. The motivation of ISDA lies in the fact that deep features are typically

linearized (39), allowing for the existence of numerous semantic directions to exist in feature space. When

translating a feature along one of those directions, the feature is transformed semantically in a way that

preserves class identity. For example, one meaningful direction might be to change the visual angle of an

object in an image.

Specifically, for any given feature zi, ISDA samples semantic directions from a zero-mean normal

distribution, N (0,Σyi
) to augment the feature with. Here, Σyi

is the class-wise covariance matrix corresponding

to class yi, and is estimated in an online fashion, outlined in Section 3.3.1. Since it is computationally

exhaustive to explore all possible meaningful directions within the distribution, ISDA computes an upper

bound on the CE loss that considers augmenting zi in infinite directions:

LISDA =

N∑
i=1

L∞(f(xi; θ), yi; Σ)

=

N∑
i=1

−log( e(w
T
yi

zi+byi )∑C
j=1 e

(wT
j zi+bj)+

λ
2 (wT

j −wT
yi

)Σyi
(wj−wyi

)
)

(4)

From 4, we can observe that ISDA is highly dependent on the training data. To ensure that the head classes

will not dominate the augmentation method, we follow (13; 24) and re-weigh Eq. 4 by the effective number

of samples Ec ≈ (1− β)/(1− βNc), where β = (N − 1)/N . Thus, our final loss can be written as:

LISDA =

N∑
i=1

EiL∞(f(xi; θ), yi; Σ)

=

N∑
i=1

−log( e(w
T
yi

zi+byi )∑C
j=1 e

(wT
j zi+bj)+

λ
2 (wT

j −wT
yi

)Σyi
(wj−wyi

)
)

(5)
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3.3.1 Online Covariance Estimation

In the original ISDA algorithm, the online covariance estimation is performed as follows: at any tth

mini-batch during training, let mt
j as the number of training samples in the j− th class in the mini-batch. Let

nt
j as the number of training samples in the j − th class in all t mini-batches, and is estimated as the sum of

the previous estimation, n(t−1)
j and mt

j , or nt
j = n

(t−1)
j +mt

j . Then, the covariance can be computed using 7.

µt
µj

=
n
(t−1)
j µ

(t−1)
j +mt

jµ’tj
n
(t−1)
j +mt

j

(6)

Σt
j =

n
(t−1)
j Σ

(t−1)
j +mt

jΣ̄
t
j

n
(t−1)
j +mt

j

+
n
(t−1)
j mt

j(µ
(t−1
j − µ̄t

j)(µ
(t−1)
j − µ̄t

j)
T

(n
(t−1)
j +mt

j)
2

(7)

where µt
j and Σt

j are the means and covariances of jth class’ features at tth step, and µ̄j
t and Σ̄j

t are the

means and covariances of jth class in the tth mini-batch.

While ISDA is an effective augmentation strategy for balanced datasets, it is limited in its ability to

learn appropriate covariance matrix for tail classes in long-tailed datasets due to its sparsity. MetaSAug (24)

proposes a balanced meta-dataset to adjust the estimated class-wise covariance. However, the covariance

estimation may still be inadequate, as its computation remains dependant on a small number of data. We

mitigate the problem of having sparse covariance matrices by augmenting samples trained with mixup, which

forces them to be full rank. To this end, we propose adding an additional similarity loss to ISDA that pushes

the covariance matrices Σ = {Σ1,Σ2, · · · ,ΣC} to their collective mean.

Lsim = ||
C∑
k

Σk −
1

C

C∑
k=1

Σk|| (8)

We can then update the class-wise covariance Σ using the gradient of Eq. 8:

Σ← Σ− γ∇Lsim (9)

where γ is the gradient step size for Σ. In turn, the updated covariance is used to calculate the loss in Eq. 4.

We postulate that this similarity loss not only provides a more robust estimate for the tail class covariances,

but augments them with more diverse semantic transformations from the head classes. The pseudo-code for

our representation learning algorithm is presented in 1.
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Algorithm 1 Learning algorithm for Stage 1 Training
Input: Training set D = {(xi, yi)}Ni=1, ending steps T1, T2

1: for t ≤ T1 do
2: Sample a mini-batch B ∼ D
3: for each example (xi, yi) ∈ B do
4: Sample (xj , yj) from P (· | (xi, yi)) and λ ∼ Beta(α, α)
5: x̃← λxi + (1− λ)xj

6: ỹ ← λyi + (1− λ)yj ▷ one-hot vectors
7: Compute Lmixup = Lce(f(x̃; Θ), ỹ)
8: Update model with SGD
9: for T1 ≤ t < T2 do

10: Sample a mini-batch B ∼ D
11: Estimate covariance matrices Σk per class k ∈ C
12: Compute Lsim = ||

∑C
k Σk − 1

C

∑C
k=1 Σk|| ▷ Push Σ’s to mean

13: Update Σ← Σ− γ∇Lsim

14: Compute LB with updated Σ:
15: LB =

∑|B|
i=1 ϵiLISDA(f(xi; Θ), yi; Σ)

16: Update model with SGD

3.4 Classification with Linear Discriminant Analysis (LDA)

3.4.1 Theoretical Motivation

Despite its popular usage on balanced datasets, the Softmax classifier is limited by its bias towards high class

frequencies on long-tailed datasets. In general, the Softmax classifier on Ptr(X,Y ) can be modelled as:

ŷtr = arg max
yi∈Y

P (Y = yi|X = x) = arg max
yi∈Y

P (X = x|Y = yi)P (Y = yi)

P (X)

∝ arg max
y∈Y

P (X = x|Y = yi)P (Y = yi)

(10)

with ŷtr being the class prediction and yi is the label of interest. Despite the assumption that both training

and testing instances come from the same underlying distribution P (X|Y = yi), their priors P (Y = yi) and

evidence factors P (X) differ. As such, their posteriors will also be different. This becomes more apparent

when estimating the posterior of the test distribution:

ŷte = arg max
yi∈Y

Pte(Y = yi|X = x) ∝ arg max
yi∈Y

Pte(Y = yi)

Ptr(Y = yi)
· Ptr(Y = yi|X = x)

Ptr(Y = yi)
(11)

in which the difference between a long-tailed training distribution and a uniform test distribution in Pte(Y=yi)
Ptr(Y=yi)

creates a biased estimate of the test distribution.
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3.4.2 Linear Discriminant Analaysis

Linear Discriminant Analysis (LDA) is a classical statistical learning method that models input class

distributions as class-conditional Gaussian distributions with a tied covariance matrix. Under this modelling

assumption, the optimal decision boundary is linear, and samples are classified by selecting the class cluster

with the highest posterior probability. Considering that our initial training approach aims to make the class

covariances more comparable, we believe that LDA (Linear Discriminant Analysis) be more advantageous in

our scenario than Softmax.

LDA is commonly formulated using Fisher’s LDA, which aims to find a lower-dimensional subspace

that maximizes the separation between classes by minimizing within-class variance and maximizing between-

class variance. Formally, let U ∈ RD×P , P > 1 be a P -dimensional subspace with the most discriminative

power. Let X = {x1, · · · , xN} ∈ Rd×N be the input data. The Fisher criterion is provided by:

J(U) =
Tr(UTSBU)

Tr(UTSWU)
(12)

which we want to maximize with respect to U . Here, SB is the between-class scatter matrix while SW is the

within-class scatter matrix. To account for the class-imbalance, we propose to normalize SW by the number

of samples Nc in each class c ∈ {1, . . . , C}:

SW =

C∑
c=1

1

Nc

Nc∑
i=1

(xi − µc)(xi − µc)
T , where (13)

µc =
1

Nc

Nc∑
i=1

n
(c)
i (14)

Following Variant 2 in (19), we determine the between-scatter SB by first defining the covariance matrix

of the entire data, or the total scatter matrix ST (Eq.15). Utilizing the property that ST = SW + SB, the

derivation of SB is obtained in Eq. 16:

ST =
1

N

N∑
i=1

(xi − µ)(xi − µ)T , where µ =
1∑C

c=1 Nc

C∑
i=1

ni (15)

SB = ST − SW =

C∑
c=1

(µc − µ)(µc − µ)T (16)

Optimization of Eq. 12 has been well-studied in the past (18; 4; 47) as a generalized eigenvalue
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problem (SB , SW ). We use the following formulation:

SBU = SWUΛ =⇒ U = eig(S−1
W SB) (17)

Here, U has columns corresponding to eigenvectors stacked column-wise from largest to smallest, while the

entries of the diagonal of Λ ∈ RD×D are the corresponding eigenvalues. We defer readers to (18) for a more

comprehensive overview of the optimization problem. To alleviate potential numerical instability (SW can be

invertible), we employed the use of several tricks, including the addition of a small positive constant, ϵ to

the diagonal of SW , and Robust FDA (15; 20). We find the former to be sufficient with less computation

overhead. Thus, Eq. 17 can be rewritten as:

U = eig((SW + εI)−1SB) (18)

3.4.3 Classification Rule

To evaluate our model, we employ LDA to derive the linear classifier weights W ∈ RD×C . Assuming

the input data Z is a class-conditional Gaussian distribution with class priors π ∈ ∆(C), mean µ ∈ R(C×D),

and a shared covariance matrix Σ ∈ RD×D, the LDA classifier can be interpreted as selecting the class-

conditional Gaussian with the highest posterior probability. Let the bias parameter be denoted as W 0. The

classifier weight and bias terms are as follows:

W 0 =
−1
2

diag(µΣ−1µT ) + lnπ (19)

W = Σ−1µT (20)

Finally, the classification function is expressed as:

gW (z) = W 0 +WTZ (21)

A full visualization of our method can be found in Appendix A.
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4 Experiments

We carry out extensive extensive experiments to demonstrate the efficacy of our framework on

long-tailed recognition. In Section 4.1, we introduce the datasets used for training and testing, as well as

the implementation details of our method. Then, in Section 4.2, we ablate the design choices of our method

with the factors detailed in Sections 3.2, 3.3, and 3.4. Finally, we compare the results of our best-performing

method with current state-of-the-art LTR methods.

4.1 Experiment Setup

4.1.1 Datasets

CIFAR-10/100 LT Both CIFAR-10 and CIFAR-100 datasets consist of 60,000 images, with 50,000 images

designated for training and 10,000 images for validation. Images in CIFAR-10 are divided into 10 classes,

whereas those in CIFAR-100 are divided into 100 classes. For LTR, we sample a long-tailed versions of the

CIFAR datasets with the same settings as those used in (7). Following the experiments conducted by (7) and

(59), we perform experiments with imbalance factors 100, 50, and 10.

ImageNet-LT ImageNet-LT is a long-tailed version of the large-scale object classification dataset ImageNet

(14). It is obtained by sampling a subset based on the Pareto distribution with a power value of α = 6. This

dataset contains 115.8K images from 1,000 categories, with class cardinalities ranging from 5 to 1,280.

iNaturalist 2018 The iNaturalist 2018 dataset (41) is a large, fine-grained species classification dataset

with 437.5K images across 8,142 categories. Out of the four datasets we use, iNaturalist is the only one that

is naturally imbalanced.

4.1.2 Implementation Details

We follow Kang et al. (23) in decoupling representation and classifier learning. To ensure a fair

comparison with previous studies, we adopt a ResNet-32 as our backbone architecture for CIFAR-10 and 100,

and ResNet-50 for Imagenet and iNaturalist. We also train our models in a deterministic fashion with a seed

of 0.
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Stage 1: Representation Learning For CIFAR10-LT and CIFAR100-LT, we train a ResNet-32 using

stochastic gradient descent (SGD) with momentum 0.9, learning rate 0.01, a weight decay of 2e−4, and a

multistep learning rate schedule that decays by 0.01 at epochs 160 and 180. Models for the CIFAR datasets

are trained on a single GPU with a batch size of 100 for 200 epochs. For Imagenet-LT and iNaturalist, we

alter the learning rate schedule to decay by 0.1 at epochs 60 and 80, and train our models on four GPUs

with a batch size of 64. The optimal value for the hyperparameter γ is found using grid search on the values

{0.0, 0.25, 0.50, 0.75, 1.0}. We train all models according to Algorithm 1 with T1 = 160, and employ the use

of both instance-balanced sampling (23) and an auxiliary softmax classifier. This classifier is discarded at the

end of training. In addition to the augmentations proposed in 3, we utilize random cropping and flipping.

Stage 2: Classifier Learning At the end of Stage 1, we keep our backbone parameters constant and fit

LDA using the fixed training features. During inference, we substitute the auxiliary softmax classifier for the

LDA classifier in Eq. 21. Note that as we do not use the LDA classifier during training, we can omit this

step up until the end of training to reduce the overhead of our method.

4.2 Ablation Study

We study (1) the addition of ISDA to our Stage 1 pipeline, (2) the addition of our similarity loss to

ISDA, and (3) the use of a LDA classifier on features trained with and without mixup, ISDA, and ISDA with

our similarity loss. The results of our ablations are presented in Table 1.

Table 1: Ablation study on CIFAR10/100-LT of top-1 accuracy of different methods.

(a) CIFAR10-LT (b) CIFAR100-LT (c) ImageNet-LT (d) iNaturalist

Imbalance factor (ρ) 100 50 10 100 50 10 —– —–

naive (CE) 71.40 77.56 87.01 38.32 43.15 56.90 41.6 61.7
+ LDA 73.43 78.29 87.24 39.41 45.00 55.86 42.3 63.4

mixup (53) 72.81 79.41 87.76 40.45 44.20 57.06 45.5 66.9
+ LDA 82.00 83.67 89.22 46.37 49.21 59.96 48.9 68.5
+ ISDA (46) 80.89 84.35 88.53 48.70 53.36 61.56 50.3 69.1
+ ISDA + LDA 82.17 84.84 88.91 45.68 53.93 61.30 49.2 67.4
+ ISDA + SimLoss 81.26 84.60 88.96 50.79 53.99 62.01 51.0 69.6
+ ISDA + SimLoss + LDA 82.78 85.46 89.02 51.69 53.52 62.31 51.7 70.0
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Addition of ISDA. We tested the values {140, 160, 180} for T1 and found T1 = 160 to work best. From

Table 1, we can see that the incorporation of ISDA substantially improves the performance of mixup across

all datasets, except CIFAR10-LT. For example, with CIFAR100-LT IF100, ISDA improves the top-1 accuracy

of the model from 40.45% with mixup, to 53.93%. to Since CIFAR10-LT is relatively small, with only 10

classes, the data may be too limited for effective semantic transformations.

Addition of Similarity Loss. The addition of the similarity loss marginally improves upon the ISDA loss,

supporting our reasoning in Section 3.3.1. However, more experiments will need to be carried out to ensure

that this improvement is not attributed to noise. From Fig. 5, we observe that the intra-class variance and

classifier weight norms for our method are significantly lower than if we were to use mixup. The exception is

when the dataset is more balanced (i.e. IF=10), in which our stage 1 training increases the spread of the tail

features to ensure that they occupy relatively the same "space" in feature space as more common classes. In

addition, we show the classifier weight norms produced by our method in Fig. 6. Across all imbalance factors

100, 50, and 10, our method produces lower and more balanced norms.

(a) IF=100 (b) IF=50 (c) IF=10

Figure 5: Comparison of the intra-class variances of a model trained with our method (green) versus with
mixup ((orange)) and without (blue) on CIFAR100-LT. The left y-axis represents the scale, while the right
y-axis denotes the number of samples in a class.

LDA Classification. Unsurprisingly, when classifying features produced from a model trained with CE,

the LDA classifier only performs marginally better than a Softmax classifier. One reason for this is that the

class covariances largely differ from each other, as seen in Fig. 4b. Additionally, the sample size of some tail

classes is significantly less than its dimensionality, which poses an issue for LDA. However, the top-1 accuracy

is substantially improved when using a model trained with mixup. This further substantiates our claim that

mixup promotes more similar class covariances. Interestingly, the amount of improvement decreases as the

dataset becomes more "balanced", i.e. lower imbalance factor.
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(a) (b)

(c)

Figure 6: Comparison of the classifier weight norms of a model trained with our method (green) versus with
mixup ((orange)) and without (blue) on CIFAR100-LT.

For features produced from a model trained with ISDA, the LDA classifier performs slightly better

than the Softmax classifier. LDA also demonstrates improvement over Softmax when the similarity loss is

incorporated into training.

4.3 Benchmark Results

Methods for Comparison. We compare the performance of our framework with the most relevant

methods in the field. We select methods that are a blend of different techniques, such as CE+CB (13)

for loss re-weighting, BCL (59) for supervised contrastive learning, as well as methods that draw some

similarities to ours, including MiSLAS (58) and (24). Table 2 shows the benchmark results for CIFAR10-LT

and CIFAR100-LT, whereas Table 3 shows the results for Imagenet-LT and iNaturalist.

Results. Despite the simplicity of our framework, we are able to outperform many of the methods listed in

Table 2 and 3. Across all datasets, our method is able to reach near state-of-the-art results without bells and

whistles, falling slightly behind BCL (59) and PaCo (12), which rely on contrastive learning and are far

more computationally intensive.
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Table 2: Top-1 Accuracy on Benchmark Datasets

(a) CIFAR10-LT (b) CIFAR100-LT

Imbalance factor (ρ) 100 50 10 100 50 10

naive (CE) 71.40 77.56 87.01 38.32 43.85 55.71
CE+CB (13) 74.57 79.27 87.49 39.60 45.32 57.99
LogitAdj (29) 80.92 — — 42.01 47.03 57.74
LDAM-DRW (7) 77.03 81.03 88.16 42.04 46.62 58.71
τ -norm (23) — — — 47.73 52.53 63.80
RIDE (3-expert) (45) — — — 48.60 51.40 59.80
MiSLAS (58) 82.12 85.71 90.00 47.02 52.33 63.25
DRO-LT (32) — — — 47.31 57.57 63.41
MetaSAug-LDAM (24) 80.66 84.34 89.68 48.01 52.27 61.28
BCL (59) 84.32 87.24 91.12 51.93 56.59 64.87
PaCo (12) — — — 52.00 56.00 64.20
Ours 82.78 85.46 89.02 51.69 53.99 62.31

Table 3: Top-1 Accuracy on Benchmark Datasets

(c) ImageNet-LT (d) iNaturalist

Imbalance factor (ρ) —– —–

naive (CE) 44.4 61.7
CE+CB (13) 33.2 54.0
LogitAdj (29) 51.1 68.4
LDAM-DRW (7) 49.8 66.1
τ -norm (23) 49.4 65.6
RIDE (3-expert) (45) 54.9 72.2
MiSLAS (58) 52.7 71.6
DRO-LT (32) 53.5 69.7
MetaSAug-LDAM (24) 47.4 68.8
BCL (59) 56.0 71.8
PaCo* 54.4 72.3
Ours 51.7 70.0

5 Conclusion

In this major qualifying project, we explored the task of long-tail image classification, a crucial

problem in real-world vision applications.

The problem began with an extensive literature review of previous LTR methods, which continued

throughout the entire project as new publications became relevant. We initially began the project by

developing a theoretical understanding for why certain representation learning methods were successful. Once

we had sufficient knowledge of this area, we extended this theory to classifier learning and sought to unite the

two. A large portion of this project became centered around the empirical analysis, which became exhaustive
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due to all the different ideas, baseline methods, hyperparameters, and benchmark scenarios we wanted to

implement. Overall, we are pleased with the knowledge and experience we gained from this MQP. We believe

our proposed method is a strong baseline and perspective for future work to build upon. We provide a

detailed discussion on future directions below.

5.1 Future Work

Transfer Learning between the Head and Tail To better augment tail classes in ISDA, we can look

at transferring semantic transformation directions from head classes. For example, given a common class

"Cat" and a rare class "Caracal", which are both felines, we can augment the "Caracal" class by "adding

stripes to the fur", which is also a semantic transformation direction available to the "Cat" class. Such an

augmentation scheme would be more robust than augmenting all classes based on a shared covariance.

Multi-Domain Long-Tailed Learning. Up till now, previous LTR solutions operate on the crucial

assumption that the conditional distributions of the training and test sets remain equal, despite the discrepancy

between their label distributions, i.e., Ptrain(y) ̸= Ptest(y), Ptrain(y|x) = Ptest(y|x). However, this assumption

may not hold in practice, as training data can be drawn from multiple domains. For instance, one can enrich

training data for autonomous driving by combining urban scenes from various cities or through simulation

software. In this case, we can assume that each city or simulation environment produces images with different

underlying distributions.

In MDLT, we extend the problem to multiple domains, such that the overall data distribution is

drawn from a set of K domains {D}Kk=1, and each domain is associated with a class-imbalanced dataset

{(xi, yi, d)}Ki=1. Following (1; 51), the training and testing domains, Dtr and Dte, can be expressed as a

mixture distribution over domain space D, P tr =
∑D

d=1 η
tr
d P tr

d and P tr =
∑D

d=1 η
te
d P te

d , where ηtrd and ηted

denote the mixture probabilities. The corresponding training and testing domains are Dtr = {d ∈ D|ηtdr > 0}

and Dte = {d ∈ D|ηted > 0}. Each label distribution within Dtr follows a long-tail distribution, as formulated

in the previous section. Furthermore, we consider the setting where the label distribution is imbalanced

across domains as well.

(51) proposes two types of test distributions, namely subpopulation shift and domain shift. In

subpopulation shift, the test distribution is class-balanced and domain-balanced, or Dte ⊆ Dtr and {ηted =

1
|Dte| | ∀d ∈ D

te}. In domain shift, the test and training domains are disjoint. In this work, we will address

both types of distributions in testing.
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In order to connect ERM to MDLT, we follow previous works (17) in decoupling the feature extractor

f and the classifier h. This allows us to derive the following test error ϵte with the importance sampling trick,

to which we want to minimize:

ϵte = E(x,y)∼PDte (x,y)
L(h ◦ fθ(x), y)

= E(x,y)∼PDtr (x,y)
L(h ◦ fθ(x), y)

PDte
(fθ(x), y)

PDtr
(fθ(x), y)

= E(x,y)∼PDtr (x,y)
L(h ◦ fθ(x), y)

PDte(y)

PDtr
(y)

PDte(fθ(x)|y)
PDtr

(fθ(x)|y)

= E(x,y)∼PDtr (x,y)
L(h ◦ fθ(x), y) wy α(x,y) (22)

Equation 22 serves as a good motivation towards combining LTR and domain generalization

techniques. In LTR, we assume α(x,y) = 0, as Ptr(x|y) = Pte(x|y), whereas in DG, we assume wy is equal

across all classes, Ptr(y) = Pte(y).
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Appendices

A Visualization of Proposed Framework

(a) Stage 1 Learning

(b) Stage 2 Learning

Figure 7: Illustration of our method, decoupled into (a) Representation Learning and (b) Classifier Learning
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