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Detection of polysaccharides on a bacterial cell surface using 

Atomic Force Microscopy 

 

1.0 Introduction 

The polysaccharides present on a bacterial cell surface play a major role in 

deciding the adhesive nature of the cell towards surfaces such as soil. The adhesive 

nature of the bacterial cells has applications spanning a number of areas of research, 

such as in biomedical engineering, environmental science, etc. (Fletcher and Williams, 

1996, Fletcher, DeFlaun, et al., 1999, Zehnder, Simoni, et al., 1998, Ouwehand, 

Salminen, et al., 2002). Bacterial adhesion may result in biofilm formation on teeth (in 

the form of dental plaque), artificial joints or other biomaterials such as endotracheal 

tubes (Triandafillu, Harms, et al., 2003), soil, and glass (Poelstra, Anthony, et al., 2000, 

Poortinga, Busscher et al., 2001, Sorongon, Burchard et al., 1991); in fouling of water-

supply systems and bioreactors; in failure of contact lenses; in subsurface soil 

remediation; in microbial dissolution of minerals; in cell to cell transfer of genetic 

material and in microbial uptake of metals. In nature bacteria are mostly found as 

adhered to surfaces rather than unattached (Tombs and Harding, 1997). 

    Most of the research in the field of bacterial adhesion concentrates on reducing 

bacterial adhesion by making natural and engineered systems free of biofouling, where 

bacteria tend to attach and reduce the efficiency of these systems such as heat 

exchangers and bioreactors or surfaces which are hydrophobic (Holmberg and Harris, 
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1998). Some of the studies use techniques like confocal laser microscopy (CLM), 

scanning electron microscopy (SEM), transmission electron microscopy (TEM) and 

Fourier transform infrared spectroscopy (FTIR) to deduce the cause of these bacterial 

adhesions and biofilms formations by studying the structure of the biofilms during their 

genesis (Mittelman, 1998).  

 Previous attempts were made to explain bacterial adhesion in terms of the 

Derjaguin, Landau, Verwey and Overbeek (DLVO) theory of colloidal stability, 

considering the bacterial cell to be a colloid. Thus bacterial adhesion was modeled as if 

the process was controlled by electrostatic and van der Waals interactions (Israelachvili, 

1992). However the polysaccharides present on the cell surface make the cells behave 

differently than model colloids, especially under conditions of low ionic strength where 

the polysaccharides are fully extended from the cell surface (Abu-Lail and Camesano, 

2002). The polysaccharides present on the cell surface contribute large steric repulsion 

while the cell moves towards the surface such that the actual cell body never gets as 

close to the surface of the substratum as the primary minima calculated by DLVO 

theory. These polysaccharides may increase the overall attraction towards the 

substratum due to covalent bonding of the groups present on the polysaccharides with 

the substratum.  

 Therefore, polysaccharides need to be studied and characterized in order to 

understand and control bacterial adhesion. Different polysaccharides such as cellulose, 

pullulan, dextran, etc. can form covalent bonds with varying strengths with certain 
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substrates. Thus identifying these polysaccharides present on the cell surface of a 

particular bacterial strain can help characterize the adhesive capabilities of the strain.  

 Atomic force microscopy (AFM) has been extensively applied as a spectroscopy 

technique for measuring interfacial forces between bacteria and surfaces. In a number of 

studies, AFM was used to study isolated polysaccharides for their properties. The 

application of AFM in studying polysaccharides was further extended to study the 

surface of a live cell for detecting the absence of a particular polysaccharide when the 

cells are treated with the appropriate enzyme. 

 The goal of this study was to detect the removal of polysaccharides, present on a 

cell surface, after treating the cells with appropriate enzyme, using atomic force 

microscopy. The technique is useful when used with some prior knowledge of possible 

sugars present on the cell surface. 

 Prior work done on Pseudomonas putida KT2442 using NMR, the EPS present 

on the cell surface was found to have three possible sugars including cellulose 

(Camesano and Abu-Lail, 2002). The Leuconostoc mesenteroides cells are known to be 

rich in dextran on their surface (Scott and Gregory, 1998).     

The concept used in this study exploits the adhesive nature of bacterial cells 

which is well known to be due to the polysaccharides present on the cell surface. The 

difference in the adhesive nature of a cell before and after the enzyme treatment, as 

observed using AFM spectroscopy, provides information about the changes that the 

polysaccharides on the cell surface undergo.  
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2.0 Literature Review 

2.1 Polysaccharides 

Polysaccharides and glycol-substances have emerged rapidly as a subject of 

interest in the last few years for researchers, mainly because of their application in the 

field of biotechnology. Despite being built up from very similar building blocks: the 

pyranose or furanose carbohydrate ring structure, they bear a vast diversity in structural 

and functional properties. Polysaccharides can be rod-shape molecules such as 

xanthans, chitosans and alginates, linear random coil-shaped structures such as dextrans 

and pullulans, or branched structures such as glycogens and amylopectin. 

Polysaccharides can also be categorized on the basis of charge such as polyanions like 

alginates, pectins, carrageenans, xanthans and hyaluronic acid; neutral structures like 

guar, pullulan and dextran, and polycations like dextran derivatives and chitosans 

(Tombs and Harding, 1997).  

Polysaccharides play an important role as structural components of living 

systems (Dumitriu, 1998) such as in plant cell walls and as storage (store carbohydrates) 

components such as in seeds (Tombs and Harding, 1997). Other important roles that 

they are believed to play are that of wound healing agents, anti-microbial agents and in 

some situations as anchors which fix algae to rocks and thus adhesives. Bacterial 

polysaccharides are also known to be involved in lectin interactions.  
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Conformations of common polysaccharides (Tombs and Harding, 1997) 

Table # 1 

Conformation  Examples 

Extra-rigid Rod Schizophyllans, xanthans 

Rigid Rod Alginates, pectins, chitosans 

Semi-flexible coil or 

Asymmetric Rod 

Xylans, chitosans, pectins, cellulose nitrate, methyl 

cellulose, mucin glycoproteins 

Random coil Pullulan, dextran, guar, locust-bean gum, konjac 

mannan 

Globular or highly branched Amylopectin 

    

The wide application of polysaccharides in the field of biotechnology has 

triggered a lot of research in understanding the structure and function of various 

polysaccharides. Polysaccharides are used as a source of oligosaccharides and as 

enzyme substrates in the determination of enzyme specificity (Sutherland, 1998).  

In order to understand the structure various techniques have been employed such 

as X-ray fiber diffraction (Clark, 1994), small-angle X-ray spectroscopy (Villetti et al., 

2000), X-ray photoelectron spectroscopy (Rouxhet et al., 1991), Infrared spectroscopy 

(Van der Mei et al., 1989), electron microscopy (Hermansson and Langton, 1994), mass 

spectrometry (Sturgeon et al., 1983), nuclear magnetic resonance (NMR) (Vignon et al., 
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1996) and molecular modeling. Due to properties like polydispersity, flexibility and 

crystallizability X-ray diffraction has not been able to provide enough information 

about the polysaccharides. Scanning electron microscopy (SEM) has provided with a 

direct visualization of polysaccharide structure but at the cost of harsh treatment upon 

the chains. High shearing and surface tension forces on air-drying prior to exposure to 

high vacuums can affect molecular integrity. The same is true for techniques like TEM 

(Ransom et al., 1997) and XPS where the sample needs to be in high vacuum 

environment. TEM can be used to determine mass per unit length of a polysaccharide 

(Tombs and Harding, 1997). Scanning electron microscopy can be used for studying 

particulate and composite gels such as starch (Hermannson and Langton, 1994). None 

of these techniques can provide information on the behavior of the polysaccharides as 

they exist in nature (Boonaert et al., 2000). Atomic Force Microscopy (AFM) can 

provide information about polysaccharides under more natural conditions.  

   With the ability to image objects at the angstrom scale and record force 

interactions on the order of pico-Newtons (Fisher et al., 1999), AFM has proved to be 

the best instrument for studying polysaccharides. Not only have the polysaccharides 

needed not to be in an alien environment but also they can be imaged while attached to 

their parent cell. The first biopolymer studied through stretching experiments with the 

AFM was DNA (Smith1992, Lee 1994a, Marko 1994, Smith 1996, Strick 1996). The 

application was further extended to studying proteins and then to polysaccharides for 

determining elasticity and length of chains. Since then, AFM has been used extensively 

in the field of characterizing polysaccharides in a number of ways. Tips modified by 



   7

attaching different probes such as specific polysaccharides, proteins and even whole 

cells are being used to determine their interaction with similar or different entities. In a 

number of instances stretching experiments have been performed on independent 

polysaccharide molecules attached to surfaces such as gold and elasticity measurements 

for the respective polysaccharides (Rief and Gaub, 1997). The same concept has been 

used for determining the lateral distribution of receptor on a sample surface by mapping 

adhesion force with a corresponding immobilized at the tip (Rief and Gaub, 1999). 

AFM has also been used for polysaccharide fingerprinting where the extension-time 

graphs have been used by increasing the pulling force on the polysaccharide strand with 

time to see any characteristic behavior for that particular polysaccharide (Marszalek et 

al., 1998, 1999, 2001; Brant, 1999).  

 Properties of polysaccharide chains can be determined by measuring parameters 

like contour lengths, persistence lengths and end-to-end distances of the chain using 

AFM. For a linear polysaccharide which is not rigid, the most useful representation can 

be in terms of a worm-like-chain model, which covers the range of flexibilities from 

stiff rod to a completely random coil. The extent of flexibility can be determined by the 

ratio of the contour length to the persistence length or simply in terms of persistence 

length. A persistence length approaching zero (~ 10 Å) indicates the polysaccharide 

chain is very flexible and exists as a random coil. A persistence length approaching 

infinity (~ 2000 Å) indicates the chain is a rigid rod.   

Bacterial polysaccharides are quite different in function from those of higher 

plants.  They are secreted from the cell to form a layer over the surface of the body and 
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extend to large distances as compared to the size of the actual body. The growth of 

these polysaccharides on the surface of a cell is believed to be for protection. The 

polysaccharides protect the cell body by offering steric repulsion to foreign harmful 

bodies such as bacteriophage. Polysaccharides also help in preventing dehydration. 

They also help in protecting cells from the cells of the immune system or phagocytosis 

by microorganisms. Polysaccharides can also be involved in pathogenicity such as in 

Pseudomonas aeruginosa. Other than these functions these polysaccharides also help in 

attaching to different surfaces (Frank and Belfort, 1997) and some of the 

polysaccharides present on a cell surface might be responsible for penetrating into other 

living bodies. 

Besides these characteristics there are other important factors that can influence 

their structure and thus behavior in a medium. Ionic strength is one of the factors that 

have been very much investigated for its influence on the conformation of the 

polysaccharide chains. Hydrodynamic radius of anionic exo-polysaccharides decreases 

with increasing ionic strength of the surrounding media where the radius remains 

unaffected for the neutral exo-polysaccharides in similar conditions implying a change 

in the polymer conformation due to charge screening (Frank and Belfort, 1997).     
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2.2 Bacterial Adhesion  

The importance of bacterial adhesion was first introduced by Claude ZoBell and 

coworkers in the 1930s. After a silent period of 30 years the subject of bacterial 

adhesion again became of interest in the early 1970s. And for the last 3 decades many 

researchers have shown great interest in elucidating the mechanisms of attachment to 

surfaces and in understanding the influence of attachment on the bacterial cell and on 

the surface it attaches to.  

 Bacterial adhesion constitutes the first step toward the formation of biofilms on 

any surface (Razatos et al., 1998). Some of the driving forces for bacteria to adhere to a 

certain surface are the presence of nutrients at the interface and protection against toxic 

conditions. In many cases, however, surfaces of plants and animals remain free of 

bacteria because their chemistries are unsuitable for adhesive interactions (Rosowki et 

al., 1992), since they produce toxins or repellants (Keifer and Rinehart, 1986; Todd, 

1993) or they continually slough surface layers (Johnson and Mann, 1986). The ability 

of bacteria to adhere may vary due to the diversity in available substrata for attachment 

and associated environmental conditions.  

 

2.2.1 Factors affecting bacterial adhesion  

The surfaces of substrata and bacteria as well as the medium affect the 

attachment process. Some surfaces act as better attractants for the attachment where as 

others are repellant surfaces. Mostly the effort is to identify the nonsticky ones or make 

a surface resist adhesion. Some of the examples of surfaces where microbial fouling is a 



   10

serious problem are ship hulls, water pipelines, heat exchangers and bioreactors. And 

because of the formation of such microbial mats, gradients in environmental nutrients 

and low molecular weight substances are often established (Cohen and Rosenberg, 

1989). Bacterial colonization may involve changes in cell surface properties that 

regulate the adhesiveness, such as changes in hydrophobicity that alter the adhesion of 

benthic cyanobacteria (Shilo, 1989). Also bacterial adhesion can get affected by any 

changes with the properties of surface with time such as in the case of increased 

adhesion of Pseudomonas aeruginosa on worn rigid gas permeable lenses (Bruinsma 

and van der Mei, 2003). In another case roughness and topography of the surface 

affected the bacterial attachment (Boyd and Bhakoo, 2002; Shellenberger and Logan, 

2002). In a number of studies researchers have attempted to relate attachment to 

physicochemical properties of substrata such as net surface charge (Feldner, 1983; 

MacRae and Evans, 1983), surface free energy (Van Pelt and Arends, 1985), critical 

surface tension (Dexter, 1979; Becker and Wahl, 1991), surface hydrophobicity 

(Fletcher and Loeb, 1979; Fletcher and Marshall, 1982; Paul and Loeb, 1983; Vadillo-

Rodriguez and van der Mei, 2003) or work of adhesion for water (Pringle and Fletcher, 

1983). Most of these parameters can be determined using contact angle information 

about the surface. Medium in which the bacteria are suspended may play an important 

role in deciding the success of bacterial attachment.  

 The bacterial surface also plays an important role in deciding the fate of 

bacterial attachment. Properties like motility (Camper, 1993), growth rate (Mercer, 

1993), cell shape and size (Weiss, 1995), growth phase (Fletcher, 1977), cell elasticity, 
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electrostatics (Velegol and Logan, 2002) and length of lipo-polysaccharides present on 

the cell surface (Burks et al., 2003) affect the attachment. The properties of a cell such 

as shape, size and motility depend on the growth phase of the cell. Pseudomonas putida 

KT2442 changed from cylindrical to spherical as the cells reach stationary phase of 

their growth (Eberl et al., 1997). Size and shape of a bacterial cell affect its attachment 

to a certain surface (Weiss et al., 1995). Cell surface hydrophobicity may facilitate 

attachment to soil or sediment particles (Stenstrom, 1989; Vadillo-Rodriguez and van 

der Mei, 2003).  

Other than these factors the heterogeneity associated with the bacterial surface, 

even on a single cell is tremendous (Abu-Lail and Camesano, 2002). Numerous 

macromolecules interface with the surrounding medium, and these vary in composition 

and quantity from species to species and from strain to strain and with environmental 

conditions and physiological processes. Certain groups on the surface macromolecules 

of a bacterium may help in attaching to a particular surface and for the same bacterium 

some other groups present on the macromolecules would help in the attachment with a 

different surface with a different degree of adhesion (Doyle, 1982). These surface 

polymers may prevent adhesion by binding water or through steric repulsions. Among 

the surface polymers extracellular polysaccharides, proteins and lipo-polysaccharides 

are known to play important part in attachment process at different stages (Allison and 

Sutherland, 1987). EPS exist in the form of loosely bound capsule on the top of the LPS 

layer which in turn is an extension from the surface of a bacterial cell with O-antigens 

on top of the LPS layer (Kastowsky, 1992). O-antigens constitute an important part of 
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the LPS layer and decide the hydrophilicity of the cell surface (de Maagd, 1989). 

Absence of O-antigens, which may sometimes be the case, ensures cell surface 

hydrophobicity.  Extracellular polysaccharides assist in forming biofilms by binding 

with EPS on other cells and also help in bacterial adhesion. EPS can be a response to 

the process of attachment (Allison and Sutherland, 1987) or can be present before 

adhesion and actually be helping in the attachment as in the case of marine 

Hyphomonas sp. (Quintero and Weiner, 1995). Alginate (EPS) from Pseudomonas 

aeruginosa helps in binding cells together and to the epithelial cells of the respiratory 

tract (Ramphal, 1987; Pederson, 1992). In another case alginate produced by 

Pseudomonas fluoroscens strongly inhibited adhesion (Pringle, 1983). The variation in 

behavior of the same polysaccharide was due to the chemical structure in which it 

existed on two different types of cells i.e. because of different degree of acetylation and 

different ratio of mannuronic acid to guluronic acid in its structure in two different 

conditions (Fett, 1989; Conti, 1994).        

In a flow system, velocity of the flow, cell concentration and solution ionic 

strength affect bacterial transport to the site of attachment on a substratum (Gannon and 

Alexander, 1991; Li, 1996; Camesano and Logan, 1998). Bacterial transport is also 

affected by the relative amounts of monovalent and divalent cations present in the 

solution (Seaman, 1995). Presence of surfactants or surface charge modifying chemicals 

can also affect bacterial transport in porous media (Li, 1996; Sharma, 1985). Another 

physical parameter that can affect the transport of motile bacteria is temperature such 

that motile bacteria are rendered immobile at low temperatures (McCaulou, 1995). 
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2.2.2 Interaction forces during bacterial adhesion 

Two theoretical approaches derived from colloid and surface chemistry have 

been applied to studies of bacterial attachment in order to evaluate and understand the 

interactions that control adhesion. These theoretical approaches are The DLVO theory, 

which takes into account the attractive van der Waals interactions and repulsive 

electrostatic interactions; and thermodynamic models, in which the adhesive interaction 

is treated as an equilibrium process and is described in terms of the surface free energies 

of the bacterium, substratum and separating liquid.    

The DLVO theory accounts for the net surface charges on the surface bacteria 

and substrata. This electrostatic force usually exists as repulsion between the two bodies 

because of negative charge present on the surfaces in natural systems. The other force 

that acts against this repulsive force is van der Waals attraction. Under certain 

circumstances this type of force can be repulsive depending on relative magnitudes of 

an important parameter, the Hamaker constant, of the two surfaces interacting and of 

the separating liquid.  van der Waals forces do not depend on the ionic strength and pH 

of the medium (Israelachvili, 1992). The balance of these two long range forces predicts 

two separation distances from the stationary surface at which the approaching colloidal 

particle (or bacterium) can attach to the surface called primary minima and secondary 

minima. 

The primary minimum offers maximum attraction to the approaching colloid 

and results in irreversible attachment if once accomplished. Secondary minimum 

deposition results in reversible attachment such that the pull between the two bodies can 
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be overcome at the expense of some extra energy by the colloidal body which in the 

case of a bacterium can come from its motility.  

Otherwise motility has been found to assist in bacterial adhesion by facilitating 

the transport of bacteria to the site of adhesion (Wenyuan and Hong, 2002; Vigeant and 

Ford, 2001).  Apart from the classical DLVO theory extended DLVO theory was 

introduced which incorporated two extra features of bacterial cells i.e. the steric 

interactions due to surface polysaccharides and acid base interactions. In a study E. coli 

cells were attached to the AFM tip to probe surfaces with different degree of 

hydrophilicities and the forces of interaction have been compared with the extended 

DLVO model (Ong et al., 1999). 
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The above model of DLVO assumes plate and sphere system with tip (as shown 

in Figure 3) as a sphere and bacterium as a flat plate. The spheres in following figure 

represent imaginary spheres with the same radius as that of the tip.  

 

Figure 1: Representation of a tip in the form of number of imaginary spheres with the same 

radii as that of the tip   

 

Some of the studies done to characterize AFM cantilever contend that a tip 

should be considered to have two spheres of different radii interacting with the sample 

(Bykov, V. A. et al., 2003). 

 

Figure 2: AFM tip with its point acting as a sphere on a flat surface 
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Figure 3: Forces of interaction between an AFM tip and a bacterial cell surface as the distance 

between the two decreases.  

 

Another model is a sphere-sphere model. This model describes tip-bacterium 

system more closely since the tip radius is approximately same as that of the bacterium 

(Eq 3) (Abu-Lail and Camesano, 2003). 
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1a - Radius of tip 

2a - Radius of bacterium 

1Φ - Reduced potential of tip 

2Φ - Reduced potential of bacterium  

 

DLVO theory does not work for most of the systems especially for bacterial 

cells where biopolymers present on the cell surface play an important role in the 

bacterial adhesion. These steric repulsions due to extended biopolymers on bacterial 

surface are mostly very long range forces which hide all the other forces and factors 

included in the DLVO model. In the case of steric repulsions the bacteria adhere with 

the help of extending polysaccharides instead of the van der Waals attraction. 

Electrostatic forces may come into play if the polymers are charged. All other factors 

such as surface heterogeneity, acid-base interactions and dynamic interactions between 

double layers do not come into picture since these are only applicable in shorter ranges 

of interaction. Thus another model was developed which depends on two adjustable 

parameters that are length of the polymer brush (Lo) and grafting density of the polymer 

brush (Γ).   

 

)3...(50 /22/3 oLh
osteric eKTaLF π−Γ=  

 

K = Boltzmann constant 
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T = Temperature (298o K) 

a = Tip radius (250 nm) 

oL = Polymer brush length (nm) 

Γ = Grafting polymer density (m-2) 

 h = Separation distance (nm) 

 

 

 

Figure 4: Normalized force comparison between the three main possible forces of interaction. 

Steric repulsion being higher than van der Waals and Electrostatic forces and also extends to 

longer range comparatively. Adapted from (Camesano, T. A. and Logan, B. E., 2000)   
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 In the thermodynamic theory attachment is viewed as a spontaneous change, 

which is accompanied by a decrease in free energy of the system. To test this theory 

experimentally, it is necessary to determine values for interfacial free energies at the 

bacterium and substratum surfaces, and these are generally estimated indirectly by 

measuring the contact angles of liquids on the test substrata and on lawn of bacterial 

cells (Fletcher and Marshall, 1982; van der Mei et al., 1991).  

Some of the studies have found that bacterial attachment data are inconsistent 

with thermodynamic predictions, but in other cases results cannot be explained by this 

model (Bellon-Fontaine et al., 1990). The theory fails to describe the bacterial adhesion 

process firstly because of the assumption of an equilibrium situation and secondly 

because of difficulty in identifying all components of the process due to chemical 

complexity of bacterial attachment surfaces. Also determining exact values for the 

required parameters such as bacterium surface free energy is extremely difficult (van 

der Mei, 1991).     

    

  

 

 

 

 

 

 

 



   20

2.3 Atomic Force Microscopy (AFM) 

 Atomic Force Microscope (AFM) has made possible a number of imaging and 

spectroscopy tasks since its invention which happened only about 20 years ago. As 

discussed earlier all other imaging and spectroscopy techniques relied upon certain 

conditions to work in such as high vacuum or the sample to be conducting, whereas 

AFM can work without any such conditions. AFM can work in a number of different 

modes (Tapping mode, contact mode and non contact mode) making possible to image 

a variety of samples with different degree of softness such as soft biological cells in 

their living state (Yao, X. et al.,2002).   

 

2.3.1 Principles of AFM 

An AFM consists of a sharp tip, attached to a cantilever, which rasters over the 

surface of the sample in a bound scan area and the movement of the cantilever, as the 

tip moves across the surface, is recorded to produce the image of the sample. The 

movement of the cantilever is recorded with the help of a laser beam which is shot from 

the top of the microscope head and shined on the back of the cantilever and as it reflects 

from the cantilever the beam hits the adjustable mirror and then the fixed mirror and 

finally enters the position sensitive detector (Figure 5). This special photodiode gives 

the information about cantilevers position to compiler to generate the image of the 

surface of the sample. The position sensitive detector consists of a scanner piezo tube 

which is very sensitive to changes in applied voltage and it responds by contracting and 

expanding to minute changes in voltage. This sensitivity is used to record x, y and z 
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position of the cantilever end. The four elements of the quad photodiode combine to 

provide different information depending on the operating mode. In all modes the four 

elements combine to form the SUM signal. The amplified differential signal between 

the top two elements and the two bottom elements provides a measure of the deflection 

of the cantilever. This differential signal is used directly in contact mode AFM. For 

tapping mode the signal is fed into an RMS converter or phase module if attached. For 

Lateral Force Microscopy the amplified differential signal between the sum of the two 

left photodiodes and of the two right photodiodes provides a measure of the torsion in 

the cantilever.  

  

Figure 5: Microscope head and its parts  

Digital Instruments (Training Notebook) 
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As pointed out earlier one of the main advantages of AFM over other electron 

microscopic techniques are its ability to look at softer bodies such as cells, tissues and 

biomolecules such as proteins, nucleic acids etc. and also that AFM can image these 

entities in air as well as liquid. The tip that moves across the sample plays an important 

role in depicting the right picture. The AFM works with two different types of holders 

for carrying the tips for air and liquid. The type of tip that works well in air may not 

work that well in liquid. Following is a chart showing the type of tips suitable for 

different purposes. The resolution of an image captured by AFM depends on the radius 

of the tip. The radius of the tip should be smaller than the features on the sample to get a 

well resolved image. Depending on the kind of surface under observation the tips with 

different spring constant are chosen. Use of AFM in contact mode is generally avoided 

on biological samples due to their softer surface which can be damaged by friction 

between tip and surface while imaging. Thus AFM is used in tapping mode on 

biological samples and this allows the samples to be imaged unharmed and in their 

living state. Samples can be imaged very well in air using AFM but it is not possible to 

get good force curves on those samples in air due to high capillary forces that come into 

play because of thin water films present on the tip and on the sample surface. These 

capillary forces being so large hide the actual force of interaction between the tip and 

the sample and thus make capturing force curves in air useless. AFM’s ability to look at 

samples under liquid makes it possible to capture actual force curves. Capturing force 

curves for bacterial cells in water using AFM makes it more realistic since bacterial 



   23

adhesion takes place essentially in liquid systems in nature. Thus AFM gives a closer 

picture of the actual interaction forces that a bacterium experiences during the 

attachment process. The tips used are mostly silicon nitride tips, in case of bacterial 

cells, which imitate sand particles very well. Carbon nanotubes have been used as 

probes and have resulted in improved lateral resolution of the smaller features on a 

sample (Rozhok et al., 2003). The carbon nanotubes tips are widely accepted for their 

small diameter, high aspect ratio, large Young’s modulus, mechanical robustness, well 

defined structure and unique chemical properties (Hafner et al., 2001). Other silicon 

nitride cantilevers with oxidation-sharpened silicon tips have been made and used to get 

better resolution of softer samples such as cells. These tips are sharp and have a low 

spring constant (Grow, Randal et al., 2002).   

Table # 2 
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Digital Instruments (Choosing AFM probes for biological applications) 

www.veeco.com 

 

2.3.2 Applications of AFM 

The introduction of the atomic force microscope (AFM) and its application to 

biol. surfaces has offered new possibilities to obtain microscopic, physicochemical 

properties of bacterial cell surfaces (Vadillo-Rodriguez et al., 2003). AFM has been 

used to find relation ship between microscopic and macroscopic cell surface properties 

(Vadillo-Rodriguez et al., 2003). Besides imaging AFM provides quantitative 

information about the captured images as well which can be very useful in some 

instances. By applying varying shear/lateral force to detach individual bacterial cells 

from various substrata of different surface topographies, relation between changes in 

surface roughness and bacterial attachment was found on quantitative basis (Boyd et al., 

2002). A similar study has been done using AFM to find relation between surface 

charge heterogeneity and the deposition rates of colloids during their transport in porous 

media (Shellenberger and Logan, 2002). AFM has been used to understand the role 

polysaccharides present on bacterial cells play by offering steric hindrance and blocking 

the long range attractive forces between bacteria and substrata (Razatos et al., 2000). 

Understanding bacterial adhesions on biomaterials has been another important step 

made possible with the help of AFM. Modified AFM tip with E.coli cell has been used 

to get force interaction patterns with different kind of substrata such as mica, 

hydrophilic glass, hydrophobic glass, polystyrene and Teflon which has helped in 
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understanding the kind of interactions between E.coli strains with different could-be 

biomaterial surfaces (Ong Yea-Ling, et al., 1999). AFM has been used successfully in 

determining factors responsible for bacterial adhesion in certain cases. Razatos A. et al., 

in 1998 found that adhesion force is affected by the length of core lipopolysaccharide 

molecules present on the E. coli cell surface and by the production of the capsular 

polysaccharide, colanic acid. Similarly in a number of other instances AFM has helped 

in understanding factors affecting attachment process such as in Bacillus mycoides 

spore adhesion (Bowen et al., 2002). Other than recording topography of the sample 

AFM can also help in detecting the contamination on the sample by phase imaging 

technique (Pauli et al., 2003; Fasolka et al., 2001; Behrend et al., 1999).  

With its ability to scan small areas, of the range of few nanometers, of the 

sample AFM has found its application in the field of carbon nanotubes and in other non 

biological fields as well. AFM has been used in contact force mode to study the 

structures of carbon nanotubes and to cut carbon nanotubes adsorbed on a glass slide 

(Singjai et al., 2002).  AFM in combination with scanning capacitance microscopy was 

applied to study the two-dimensional carrier profile of semiconductor devices (Chao, 

Kuo-Jen et al., 2001). AFM has been used to characterize inorganic particles. In this 

study of characterization the roughness measurement was not of much help since the 

surface roughness of particle sample exceeded AFM limit but phase images from AFM 

helped in differentiating solid from hollow particles. The force spectroscopy from AFM 

was also able to tell the difference between the solid and hollow particles (Park, 1999). 

AFM has been used in a variety of studies covering different kind of samples for 
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ensuring heterogeneity on the surfaces. Phase imaging and nanoindentation techniques 

of AFM have been used to study the heterogeneity in polymeric materials (Gu, 

Xiaohong et al., 2000). AFM has been used to investigate the heterogeneity and 

flexibility of human ocular mucins and their subunits (Round et al., 2002). 

Heterogeneity in biopolymers on the same bacterium and among several bacteria has 

been found with the help of AFM (Camesano and Abu-Lail, 2002). AFM has also been 

used in mapping regions of heterogeneity in PEA/PS film by allowing the film to react 

in a low pH environment and analyzing by AFM (Raghavan et al., 2001).  

Other area where AFM has been successfully is the in-situ studies and it has 

been more helpful than many other techniques like TEM and SEM in certain cases. 

AFM coupled with XRD has been used to investigate mineral-surface heterogeneity and 

heterogeneous systems in situ (Liu, Chen et al., 2003). The kinetics and mechanism 

controlling dissolution from the (100) cleavage face of KBr single crystals in Methyl-

CN solutions have been identified by using a novel integrated electrochemical/AFM 

probe and a scanning electrochemical microscope (SECM) (Macpherson, Julie et al., 

1996). AFM has also been more helpful in studying non crystalline material than any 

other available techniques (Liu, Chen et al., 2003; Kowalewski, Tomasz, 1996).  
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3.0 Materials and Methods 

3.1 Culture 

 The experiments were performed on two bacterial strains Pseudomonas putida 

(KT2442) and Leuconostoc mesenteroid (NIRC1542). KT2442 was provided by M. 

Röthlisberger (Swiss Federal Institute of Technology, Zürich). KT2442 is a rifampicin-

resistant, plasmid-cured derivative of P. putida mt-2 (Eberl, Molin et al., 1996; 

Bagdasarian, Timmis et al., 1981).  KT2442 is a rod shaped bacterium and changes to 

spherical geometry as it reaches the stationary phase of its life cycle (Eberl, Molin et al., 

1996). KT2442 has been found to be motile in low ionic strength water systems 

(Samanta and Jain, 2000). KT2442 belongs to the gram-negative category of bacteria 

and thrives in aerobic environment. Being a gram negative bacterium the cell has a 

layer of lipopolysaccharide chains and protein on the surface of the cell (Figure 6).  

These LPS chains may secrete another layer of exopolysaccharide chains on top of them 

which play an important role in the attachment of bacterium to surfaces. The production 

of this loose layer of polysaccharides on LPS can also be a result of the bacterial 

adhesion.  

 The contact angle of water on a lawn of KT2442 cells is 24.5±3.4o indicating 

that the cells are hydrophilic in nature (Camesano, Logan et al., 1999). The zeta 

potential of the cell surface is normally considered as the surface potential. The zeta 

potential for the cells, when no polysaccharides present on the surface, is about (-16)-(-

20) mV in 0.1 mM MES buffer (pH 7)   (Camesano and Logan, 2000; Abu-Lail and 

Camesano, 2002).The zeta potential of the surface polymers for KT2442 was found to 
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be (-3)-(-4) mV (Abu-Lail and Camesano, 2002), indicating that the polymers present 

on the surface are not highly charged and they are only slightly negatively charged and 

this negative charge can be due to phosphate or carboxylic groups present on the 

polysaccharide chains. Also the iso-electric point for KT2442 cells was found to be at 

pH 2.3 (Abu-Lail and Camesano, 2002).    

 

 

Figure 6: Comparison of gram positive and gram negative bacteria cell surface. Gram positive 

possess a thicker cell wall consisting of peptidoglycans whereas gram negative have a thin cell 

wall made up of peptidoglycans and mostly consists of the LPS and protein brush. Adapted 

from Brock & Madigan “Biology of Microorganisms” 5th Ed., 1988 

 

The other strain used for the experiments was L. mesenteroides NIRC1542. The 

microbe was provided by Dr. Hui Zhang (Research institute of Biological resources, 

National institute of Advanced Industrial Science and Technology). The strain is one of 

the dextran producing strains of the L. mesenteroides family.  
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3.2 Media and other solutions 

The general medium of growth used for KT2442 was tryptic soy broth (TSB, 

purchased from Sigma). The medium was made by dissolving 30g of TSB powder in 1 

liter of Milli-Q water. The solution was sterilized at 121o C for 15 minutes before it was 

used. The medium was used for pre-culturing of KT2442 prior to growing the cells in 

its specific media. TSB provides all the nutrients needed for the growth and serves as a 

universal media for all bacterial cells.  

The specific media used for growing KT2442 was the benzoate solution of M9 

buffer. The M9 buffer (Maniatis et al., 1982) was made by dissolving Na2HPO4 (7g), 

KH2PO4 (3g), NaCl (0.5g) and NH4Cl (1.0g) in 1 liter of Milli-Q water. The pH of the 

solution was adjusted to 7.0-7.2. The solution was then sterilized at 121o C for 55 

minutes. 5mM solution of benzoate solution was made in M9 buffer by adding and 

dissolving 0.55 g of Benzoic acid (purchased from Sigma) in 900 ml of M9 buffer. This 

solution was then used as the selective media for growing KT2442 cells.  

Other ingredients were added to the specific media in order to accelerate the 

growth of the cells and also to prevent contamination of the cell culture. KT2442 strain 

being resistant to the antibiotic, rifampicin, gives an advantage of adding rifampicin to 

prevent the contamination in the media. 1 ml of rifampicin was added to 100 ml of the 

specific media (Nüβlein et al., 1992). Pseudomonas goodies were added to the media to 

accelerate the growth of the cells. The goodies consist of 50 ml of salt solution, 25 ml of 

1M MgSO4 solution and 25 ml of 36mM FeSO4.7H2O. The salt solution consisted 

CaCO3 (2g), MgO (10.75g), FeSO4.7H2O (4.5g), ZnSO4.7H2O (1.44g), MnSO4.4H2O 
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(1.12g), CoSO4.7H2O (0.28g), CuSO4.5H2O (0.25g), H3BO3 (0.02g) and HCl (51.3ml) 

in 1liter of Milli-Q water (Nüβlein et al., 1992). 250 µg of goodies were added to 100 

ml of the specific media. This composition of Benzoate solution, Pseudomonas goodies 

and rifampicin was used as the final media for growing KT2442 cells by inoculating 

with 1 ml of the pre-cultured cells in TSB. The cells were grown to an absorbance of 

0.6 @ a wavelength of 600nm.   

For growing L. mesenteroides MRS solution was prepared by dissolving 55g of 

MRS powder in 1 liter of Milli-Q water. The solution was sterilized at 121oC for 15 

minutes in the autoclave. The cells were grown to the final absorbance of 0.9 @ a 

wavelength of 600nm.  

EDC (purchased from Pierce) solution was used for treating bacterial cells in the 

process of attachment to glass slides. EDC solution was prepared by adding 0.192 g of 

EDC powder to 10 ml of Milli-Q water. The resulting 100mM solution was then 

adjusted for a pH of 5.5. The carboxyl groups present on the cell surface reacted with 

EDC to form an unstable intermediate (O-acylisourea) (Garabarek and Gergely, 1990; 

Staros, Swingle et al., 1986). 

NHS (purchased from Pierce) solution was used for treating bacterial cells and 

preparing them for attaching to glass slides. NHS solution was prepared by adding 

0.0879g of NHS powder to 10 ml of Milli-Q water. The resulting 40mM solution was 

then adjusted for a pH of 7.5. NHS reacted with the unstable intermediate by 

undergoing nucleophilic substitution by the amino group of the aminosilane compound 

(Garabarek and Gergely, 1990; Staros, Swingle et al., 1986).  
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The viability test on KT2442 cells have been performed, after they are treated 

with EDC/NHS in another study and they were found to be unaffected (Camesano and 

Logan, 2000).  

MES buffer was needed for the washing steps during the enzyme treatment. 

MES solution was prepared by adding 4.7 g of MES powder to 1 liter of Milli-Q water.  

The resulting 20mM solution was adjusted for a pH of 6.44.  

Cellulase stock solution was needed for the cellulase treatment. Cellulase 

solution was prepared by adding 0.1 g of cellulase (purchased from Sigma) powder to 

25 ml of Milli-Q water. The solution was stirred overnight and passed through a 0.45 

µm syringe filter and stored as a stock solution to be used later.   

Dextranase stock solution was prepared for the dextranase treatment of 

Leuconostoc mesenteroides cells. 3 mg of dextranase powder (purchased from Sigma) 

was added to 10 ml of Milli-Q water. The solution was stirred overnight and passed 

through a 0.45 µm syringe filter and stored as a stock solution to be used later.   

 

3.3 Sample preparation 

After KT2442 cells were grown the required absorbance of 0.6 @ 600, the cells 

were prepared for attachment on the clean glass slides for AFM experiments.  

3.3.1 Cleaning glass slides 

The glass slides (micro slides, purchased from VWR) were treated with a 

mixture of 30 ml of HCl and 10 ml of HNO3 acids for 25 minutes. The slides were 

further treated with a mixture of 40 ml of H2SO4 and 10 ml of H2O2 for 25 minutes after 
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rinsing the slides with lots of Milli-Q water (Graber, Natan et al., 1995). The slides 

were rinsed with water and finally the clean glass slides were stored under Milli-Q 

water in a beaker for later use. 

 

 

3.3.2 Cell Attachment 

The clean glass slides were treated with methanol for 10 minutes. Methanol was 

replaced with 10 ml of Aminosilane solution. The Aminosilane solution was prepared 

by adding 1 ml of 3-aminopropyl dimethoxysilane (purchased from Aldrich) and 9 ml 

of methanol (purchased from Fisher Scientific). The slides were allowed to be in this 

Aminosilane solution for 15 minutes. The Aminosilane solution was replaced with 

methanol and the slides were kept in methanol until the bacterial solution was ready to 

be poured on the slides (Graber, Natan et al., 1995).  

The bacteria on the other hand were centrifuged at 6000rpm (1000g) for 15 

minutes. After the cells were spun down, the supernatant was replaced with equivalent 

amount of Milli-Q water. The cells were resuspended in 9 ml of water and treated with 

300 µl of EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodimide) for 15 minutes. The 

cells were further treated with 300 µl of NHS (N-Hydroxysulfosuccinimide) for 15 

minutes. The cells were now ready to be poured on the Aminosilane treated slides. 18 

ml of the cells treated with EDC and NHS were added to the petri dish containing 

treated glass slides. The attachment process between the cells and glass slides was 
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allowed to take place for 9 hrs on a shaker table at 70 rpm (Garabarek and Gergely, 

1990; Staros, Swingle et al., 1986).  

The following reactions take place upon the addition of EDC and NHS to the 

cells: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: EDC reacts with surface carboxylic groups of bacterial cells to form an intermediate 

which further reacts with Sulfo-NHS to form a complex that can readily bind to silanized glass 

slide 
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The stable intermediate formed further reacts with the silanized glass slides to 

form the covalent bond and thus the cells become chemically attached to the slide. The 

reaction that takes place between the intermediate compound and the glass slide is as 

follows: 

 

Figure 8: The bacterium forms a peptide bond with the glass slide (P) as shown in the reaction.  

 

3.3.3 Enzyme Treatment 

 20 ml of the KT2442 cells grown to the absorbance of 0.6 were centrifuged at 

6000rpm (1000g) for 15 minutes and the supernatant was replaced with an equivalent 

amount of the MES buffer. The cells were resuspended and again centrifuged. This step 

was for washing the cells with the MES buffer. The cells were resuspended in 18.75 ml 

of MES buffer. 1.25 ml of cellulase solution from the cellulase stock solution was added 
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to this cell-buffer solution. The final concentration of cellulase in the solution was 250 

µg /ml. The solution was set for shaking at 50 rpm on the shaker table for 60 minutes. 

After the cells were treated with enzyme, the cells were again washed with the MES 

buffer. The cells were centrifuged at 6000rpm for 15 minutes and the supernatant was 

replaced with 20 ml of the MES buffer. The cells were resuspended and again 

centrifuged in the same fashion. The cells were now ready for the attachment procedure. 

This procedure was modified, for the present system, from the one developed in another 

study (Frank, 1999)   

 

3.3.4 AFM Experiments  

 The glass slides with attached bacterial cells were analyzed using Atomic force 

microscopy (Dimension 3100). The slides were placed on the stage right under the 

microscope head. The tip used was silicon nitride tips for working in liquid. The tip was 

mounted on the microscope head and laser was aligned at the back of the cantilever. 

These tips had a radius of 250 nm and had a typical resonant frequency of about 8 KHz. 

The sample was scanned in both directions a number of times to find and locate an 

attached cell on the slide. Several trial force curves were captured before bringing the 

cell to the center of the scan area. The force curves captured on the clean area of the 

slide were used to check for artifacts, if any, due to optical interference or distorted tip. 

Finally the imaged were captured by bringing the located cells to the center of the scan 

area. The scan area was magnified in order to ensure that the force curves were being 

captured on the center of the cell. For each cell captured 10-15 force curves were 
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captured by dropping the drive amplitude to zero while capturing the force curve. 4-6 

cells were captured for the cells treated with cellulase and for the untreated cells.  

 

3.3.4.1 Analyzing Force Curves   

 The files captured on AFM were exported as ASCII data files and the force 

curves were constructed. The deflection-distance curves obtained from the AFM were 

converted into force curves by multiplying the displacement by the spring constant of 

the cantilever (Figure 9(a)).   
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Figure 9(a)
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 These force curves were then zeroed to exclude the force measurements made 

by the tip after it stopped indenting into the sample surface. This was done by adjusting 

the slope to pass though the origin as well as the curve was adjusted vertically so that 

the constant-deflection region of the curve rests at zero vertical height.  
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Figure 9(b) 
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 The force curves were obtained on a silanized glass slide with silicon nitride tip under 

DI water. 

 The set of curves got for each force curve captured were analyzed by averaging 

the approach curves for all the different cells and the retraction data was plotted for all 

the cells on the same chart for comparison between cellulase treated and untreated 

retraction peaks. 
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4.0 Results and Discussion 

 The glass slides bonded with bacterial cells were placed under the atomic force microscope and 

force curves were captured on the bodies of the cells centered in the scan area. The approach and 

retraction curves captured on the cells were then regenerated as force-distance plots in excel. The 

curves were adjusted to correct for the force exerted by the cell by “zeroing” the force curves both on x 

and y axis. The average of the 4-5 approach curves captured on each untreated (U) cell for 5 cells was 

plotted and compared with that got for the average of the 4-5 approach curves captured on each cell for 

5 enzyme-treated (ET) cells. Since the treatment process of the cells with enzyme included a number 

of centrifugation steps, a control experiment was performed in which the cells were grown to the same 

absorbance under similar conditions and kept untreated but were allowed to go through same number 

of centrifugation steps as was done for enzyme treated cells. 4-5 approach curves were averaged 

similarly for these untreated but centrifuged (UC) cells in a similar fashion as was done for the enzyme 

treated and untreated cells.  

 The retraction force curves were also analyzed and adjusted accordingly for cellulase treated, 

untreated and untreated but centrifuged cells to see to the change in magnitude of the attractive forces 

on the cell surfaces due to chemical (enzyme treatment) and physical (centrifugation) modifications.  
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4.1 Pseudomonas putida KT2442 

 The KT2442 cells were found using the AFM under DI water. Each cell was centered and 

imaged as shown in Figure 10. The cells were found to be in the range of 1-2 microns in size and 0.8-

1.4 microns in height.   

 

Figure 10: Image of a KT2442 cell, under water in tapping mode, brought to the center of the scan area, before 

capturing the force curve on the cell.   
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4.1.1 Approach curves for Pseudomonas putida before and after the cellulase 

treatment       

   The final approach curve upon averaging for the untreated KT2442 cells showed repulsion for 

the approaching silicon tip starting at several hundred nanometers away as is evident in Figure 11. 
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Figure 11: Approach curve obtained after averaging of 5 approach curves captured on each cell for 5 cells  

 

Whereas for the cellulase treated cells the repulsion begins only a couple of hundred 

nanometers away from the cell surface and goes as high as 2.5 nN at the cell surface (Figure 12). Thus 

the treatment of the KT2442 cells results in a reduction of both the range and magnitude of the 

repulsive force at a given distance from the cell surface. The result could be due to the scission of the 

cellulose present on the cell surface or due to the attrition of the biopolymers present on the cell 

surface because of the centrifugation steps or due to the combined effect of the both.    
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The difference due to the treatment as depicted by force curves obtained using AFM is more 

evident in the comparison plot (Figure 13).  
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Figure 12: Approach curve obtained after averaging of 5 approach curves captured on each cell for 5 

cells 
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Figure 13: Approach curve obtained after averaging of 5 approach curves captured on each cell for 5 

cells 

 

A control experiment was performed on the untreated cells by treating the cells in the same 

fashion as was done for the cellulase treated except, actually treating the cells with cellulase. The 

control was performed to check the influence of centrifugation steps on the final results. The approach 

curve obtained for the control run by averaging 5 approach curves captured on each cell for 5 cells was 

almost same as obtained for the untreated cells (Figure 14).      
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Figure 14: CT-Cellulase treated, U-Untreated, UC-Untreated but centrifuged (Control) 
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4.1.2 Steric Model  

 The approach force curves obtained for untreated, cellulase treated and control cells were fitted 

against the steric model assuming the repulsion was mainly due to the biopolymers extending from the 

cell surface since van der Waals and electrostatic forces are short range forces and can not extend to 

distances that we found in our case. The steric model applied to the force curves included two fitting 

parameters grafting density (m-2) and polymer chain length (nm). 
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Figure 15: Cellulase treated fitting curve against steric model from TCWin 
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Figure 16: Untreated-centrifuged fitting curve against steric model from TCWin 
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Figure 17: Untreated fitting curve against steric model from TCWin 
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 Cellulase 

Treated 

Untreated-

Centrifuged 

Untreated 

Regression  (99.49%) (99.92%)  (99.51%) 

Chain length (nm) 341.39 728.27  715.11 

Grafting density (m-2) 2.64e+15 2.48e+15 2.61e+15 

    

Table # 3: The chain length appears to be shortened for the biopolymers present on the cell surface after the 

cellulase treatment, as predicted by the steric model.  

  

 The fitting of the approach force curves with the steric model for each of the three cases allows 

for quantifying the results in terms of polymer brush length and grafting density (Table # 3). The 

grafting density of the polymers present on the cell surface remained almost the same with and without 

the cellulase treatment whereas the length of the brush decreased after the cellulase treatment. The 

chain length and grafting density for the untreated-centrifuged cells were found to be close to those for 

untreated cells indicating no contribution of the centrifugation steps, towards decreased repulsion upon 

cellulase treatment, quantitatively.  

 

 

 

 



   51

4.1.3 Carbohydrate Assay  

 The assay was run to check if any biopolymers came off during the centrifugation process 

which might not be detected with the atomic force microscopy experiments. The experiment performed 

included the anthrone test on 1 ml of the supernatant sample from each post-centrifugation step. 

Anthrone assay:  

1 ml of the bacterial sample (diluted/undiluted) was mixed with 1 ml of 100% HCl acid.  

0.1 ml of 90% formic acid was added to the above solution.  

8 ml of Anthrone solution (Anthrone 20mg in 80% H2SO4) was slowly poured into the 25cm 

glass tube containing the sample solution.  

The tubes containing samples in different dilutions were then kept in hot water bath for 12 

minutes.  

Degree of change in color of the sample solutions indicated the amount of sugar present in 

different dilutions. The absorbance was recorded for all the samples and compared with the Anthrone 

solution (as blank) and with water (as blank) to check for the presence of sugars in all the samples.     

Absorbance of the supernatant solution at two different dilutions 1:1 and 1:10 were measured 

@ a wavelength of 600nm after each centrifugation step (Table # 4). Absorbance of the Anthrone 

treated diluted samples was measured @ 630nm (Table # 5).  
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 Untreated  

cells 

(Abs @ 630 nm) 

Untreated-Centrifuged 

cells 

(Abs @ 630 nm) 

Cellulase treated 

cells 

(Abs @ 630 nm) 

1st centrifugation 0.021 0.025 0.020 

2nd centrifugation 0.030 0.025 0.021 

3rd centrifugation - 0.014 0.028 

4th centrifugation - 0.014 0.010 

5th centrifugation - 0.010 0.017 

 

Table # 4: Absorbance measured for the supernatant samples after each centrifugation step for Untreated, 

cellulase treated and Untreated-centrifuged cells. 

 The third centrifugation step shows an increase in the absorbance of the cellulase treated 

supernatant indicating removal of biopolymers from the cell surface in the cellulase treatment step 

performed just prior to the third centrifugation. Whereas for the Untreated-centrifuged cells the 

absorbance is very low indicating that at this stage the biopolymers are not coming off of the cell 

surface anymore. This argument is well supported by the results from the Anthrone test for different 

dilutions of the supernatant samples gave similar results (Table # 5).   

   The absorbance was measured relative to the Anthrone sample @ 630nm. The results showed 

the presence of carbohydrate in the supernatant obtained from the centrifugation step right after the 

cellulase treatment step, whereas no carbohydrate was detected with the Anthrone assay in the 

supernatant sample for Untreated-centrifuged cells. Also for the untreated cells the supernatant did not 

have a lot of carbohydrate released into it. The small amount of carbohydrate released into the 
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supernatant after 2nd centrifugation of the untreated cells can be explained as removal of loosely bound 

biopolymers due to the centrifugation action. But after 2-3 centrifugations the biopolymers present on 

the cell surface are only those which are tightly bound to the surface and could only come off with the 

help of some specific enzyme activity.   

Blank used = Anthrone 

 

Dilution Sample ( 1ml) Absorbance @ 630nm 

1-1 Untreated supernatant-2 0.024 

1-10 Untreated supernatant-2 - 

1-1 UC-supernatant-3 - 

1-10 UC-supernatant-3 - 

1-1 CT-supernatant-3 0.152 

1-10 CT-supernatant-3 0.085 

 

Table # 5: Anthrone test results for i) Untreated cells at 2nd centrifugation, ii) Untreated-centrifuged cells at 3rd 

centrifugation and iii) Cellulase treated at 3rd centrifugation  

 

4.1.4 Retraction curves for Pseudomonas putida KT2442 cells 

 The retraction force curves were zeroed like the approach curves (Figure 18). The magnitude 

of the peaks in the zeroed-retraction force curve was plotted against the distance at which the pull 

occurs (Figure 19). The adhesion peak is represented by the inverted peak in Figure 18 indicating the 
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force (Blue arrow) with which the tip is pulled back by the surface polymers. The distance at which the 

polymer-tip bond breaks is represented by the red arrow in Figure 18.      

 

 

 

Figure 18: Representative example of a retraction curve for cellulase treated KT2442 cells.  
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Retraction Data
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Figure 19: Plot of all the adhesion peaks captured for all the cellulase treated cells 

The retraction data for the untreated KT2442 were plotted as was done for the cellulase treated 

cells (Figure 20). 
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Figure 20: Plot of all the adhesion peaks captured for all the cellulase treated cells 

 Upon comparison between the untreated and cellulase treated KT2442 cells on the retraction 

basis the cellulase treated cells were found to have slightly reduced forces of attraction and extending 

to shorter distances than for the untreated cells (Figure 21). This indicates that the presence of 

cellulose on the KT2442 cell surface made it stickier and the cells should have a lower tendency to 

stick to a surface after the removal of cellulose from their surface.   
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Comparison of retraction data
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Figure 21: Comparison of retraction data between untreated and cellulase treated KT2442 cells 

 

Further to verify the absence of any role played by the centrifugation steps, the retraction 

curves for the untreated cells were compared with those of the untreated-centrifuged cells. The data 

points ranged to the same magnitude of forces and to the same extent from the cell surface for both the 

untreated and untreated-centrifuged cells (Figure 22). 
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Figure 22: Comparison between Untreated and Untreated-Centrifuged (control) KT2442 retraction data. 

 

The results based on the retraction curves were compared on the basis of normalized number of 

instances of a certain magnitude of pull experienced by the AFM tip (Figure 23), and on the basis of 

the number of pull instances in a certain range of distance (Figure 24), for the cellulase treated and 

untreated KT2442 cells.  
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Figure 23: Comparison of normalized number of events occurring in a certain distance range for each case 
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Figure 24: Comparison of normalized number of events occurring in a certain force range for each case 

 

Overall the force of repulsion and attraction both decreased after the enzyme treatment for the 

KT2442 cells accompanied with a decrease in the length of the biopolymer chains present on the cell 

surface.  

 

4.2 Leuconostoc mesenteroides NIRC1542 

The NIRC1542 cells were found using the AFM under DI water. Each cell was centered and 

imaged as shown in Figure 25. The cells were found to be in the range of 0.5-1.0 microns in size and 

0.6-1.2 microns in height.   
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Figure 25: Image of a NIRC1542 cell brought to the center of the scan area, before capturing the force curve on 

the cell.   

 

 

4.2.1 Approach curves for Leuconostoc mesenteroides before and after the dextranase treatment       
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Further the results obtained for the Leuconostoc mesenteroides NIRC1542 cells were analyzed. 

After doing AFM experiments on the untreated and dextranase treated NIRC1542 cells in the same 

way as were done for the KT2442 cells, the captured force curves were averaged and compared. 

Figure 17 shows both the averaged approach curves for the untreated NIRC1542 cells. 

   

Average approach force curve
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Figure 26: Average approach force curve for the untreated LM NIRC1542 cells under DI water 

 From the same batch of the grown NIRC1542 cells, same amount of cells were treated with 

dextranase and the cells were bonded to the clean glass slides. The force curves captured for the 

dextranase treated NIRC1542 cells were regenerated and zeroed in the excel sheets (Figure 26). The 

approach force curves were averaged and compared with the average of the approach curves obtained 

for the untreated cells (Figure 27).   



   63

 

 

 

Average approach force curve

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450

Distance (nm)

Fo
rc

e 
(n

N)

Dextranase treated
NIRC1542

 

 

Figure 27: Averaged approach force curve for the dextranase treated LM NIRC1542 cells 
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Comparison of the averaged approach curves

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450

Distance (nm)

Fo
rc

e 
(n

N)

Dextranase treated LM
LM Untreated

 

 

Figure 28: Comparison of the averaged approach force curves of dextranase treated (red) and untreated (blue) 

NIRC1542 cells. Dextranase treated cells show lower repulsion compared to the untreated cells as the silicon tip 

approaches the cell surface. 
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 Chain length and grafting density parameters, for the treated and untreated set of cells, were 

deduced as upon fitting these approach force curves to the steric model using TCWin.   

 

 

Figure 29: Averaged approach curve for the untreated NIRC1542 fitted to the steric model 
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Figure 30: Averaged approach curve for the dextranase treated NIRC1542 fitted to the steric model 
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 Dextranase-treated 

NIRC1542 

Untreated NIRC1542 

Regression  (99.23%) (99.92%) 

Chain length (nm) 693.85 675.46 

Grafting density (m-2) 1.0474305e+15 1.468117e+15 

 

Table # 6 The grafting density appears to be reduced for the biopolymers present on the cell surface, where as 

the chain length remains almost the same after the dextranase treatment, as calculated by the steric model.  

  

 The fitting of the approach force curves with the steric model allows for quantifying the results 

in terms of approximate chain length and grafting density (Table # 6). The grafting density of the 

polymers present on the cell surface appeared to decrease after the dextranase treatment while the 

brush layer of the chain remained the same after the treatment.  
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4.2.2 Retraction curves for Leuconostoc mesenteroides NIRC1542 cells 

 The retraction force curves were zeroed like the approach curves truncating the effect of the 

body of the cell on the force curve. The magnitude of the peaks in the zeroed-retraction force curve 

was plotted against the distance at which the pull occurs for all the peaks.  

 

Retraction force curve

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 100 200 300 400 500 600 700

Distance (nm)

Fo
rc

e 
(n

N
)

Untreated LM

 

Figure 31: Retraction data for all the untreated NIRC1542 cells captured  
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Figure 32: Retraction data for all the dextranase treated NIRC1542 cells 
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Retraction data comparison
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Figure 33: Comparison of retraction data between untreated and dextranase treated NIRC1542 cells 
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The results from the retraction curves of the untreated and dextranase treated NIRC1542 cells 

indicate increase in attractive forces after the cleavage of dextran from the cell surface. The results 

based on the retraction curves were compared on the basis of normalized number of instances of a 

certain magnitude of pull experienced by the AFM tip (Figure 34), and on the basis of the number of 

pull instances in a certain range of distance (Figure 35), for the dextranase treated and untreated cells.  

 

 

Figure 34: Comparison of normalized number of events occurring in a certain force range for each case  
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Figure 35: Comparison of normalized number of events occurring in a certain distance range for each case 

 

 

Overall the force of repulsion decreased whereas the force of attraction increased after the 

enzyme treatment for the NIRC1542 cells with not much change in the length of the biopolymer chains 

present on the cell surface.  
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5.0 Conclusions 

 The results indicate the sensitivity of the atomic force microscopy in detecting the loss of 

polysaccharides from the surface of Pseudomonas putida KT2442 and Leuconostoc mesenteroides 

NIRC1542 bacteria upon their treatment with cellulase and dextranase, respectively.  

 The change in the behavior of force curves as detected with the help of AFM after treating 

KT2442 bacteria with cellulase indicates an appreciable amount of loss of cellulose from the surface of 

the cells which could be measured using AFM in terms of reduced repulsive force at the surface of the 

cell attributing to loss in density of the polysaccharides on the surface. Also the reduction in the range 

of force from the cell surface indicated shortening of the polymer brush on the cell surface after the 

enzyme treatment for Pseudomonas putida KT2442.  Further analysis of the retraction curves for 

KT2442 shows reduced force of attraction due to the loss of cellulose from the surface indicating 

cellulose to be contributing towards adhesive nature of the cell. 

 Treating of the NIRC1542 cells with dextranase and studying them under AFM reveals reduced 

repulsive force at the surface after the treatment indicating loss in polymer brush density at the surface. 

The treatment with dextranase does not affect the polymer brush height on the cell surface as seen in 

results obtained from fitting approach curves to the steric model.  Analysis of the retraction curves for 

enzyme treated NIRC1542 cells shows enhanced adhesion force suggesting the presence of dextran 

must be having a screening effect on other polymers with capacity of adhering to surfaces more 

strongly. As soon as the dextran is removed the cell surface and other polymers present on the surface 

show greater adhesive force.     
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Thus manipulating a bacterial cell for the polysaccharides present on its surface by treating it 

with a specific enzyme can make the bacterium more or less adhesive in nature. And AFM is a reliable 

instrument in understanding the effect of the specific enzyme on the bacterial cell surface properties.   
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