UCT-Enhanced Deep Convolutional Neural

Networks For Move Recommendation in Go

Sarun Paisarnsrisomsuk Pitchaya Wiratchotisatian

MTA SZTAKI COMPUTER AND AUTOMATION RESEARCH INSTITUTE HUNGARIAN ACADEMY OF SCIENCES

Outline

The Game of Go

Goal

Deep Convolutional Neural Networks (Deep CNN)

Upper Confidence Bounds applied to tree (UCT)

- Methodology
- **Experiments and Results**
- **Conclusion and Future Work**

Go: An Ultimate Challenge for Al

- An ancient board game
- Two-player
- Zero-sum
- Deterministic
- Perfect-information

Simple Rules, but Complex Strategies

- Place stones in turn on a 19x19 board
- Basic goal: secure more territories than the opponent
- Enormous combinatorial complexity
- Long-term influence of a move

To enhance move recommendation in Go using DCNN and UCT

Deep Convolutional Neural Networks (deep CNN)

Neural Network

http://cs231n.github.io/neural-networks-1

Neural Network

http://en.wikipedia.org/wiki/Artificial_neural_network

Deep Convolutional Neural Networks

http://deeplearning.net/tutorial/lenet.html

Deep Convolutional Neural Networks

http://www.cs.utoronto.ca/~ilya/pubs/2008/go_paper.pdf

Upper Confident Bounds applied to tree (UCT)

Applied bandit-based method to guide Monte-Carlo planning

Monte Carlo Tree Search

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf

Upper Confident Bounds applied to tree (UCT)

Selection Policy:

$$UCT = \overline{X}_j + 2C_p \sqrt{\frac{2\ln n}{n_j}}$$

Exploitation Exploration

Choose node which has maximum value of UCT

Methodology

Go Data

- 170,000 complete games from the KGS Server (Kiseido Go database)
- Extracted features from each individual move

Feature	Planes	Description
Black / white / empty	3	Stone colour
Liberties	4	Number of liberties (empty adjacent points)
Liberties ofter move	6	Number of liberties after this move is played
Legality	1	Whether point is legal for current player
Turns since	5	How many turns since a move was played
Conturo sizo	7	How many apparent stones would be contured
Loddor mous	. 1	Whather a more at this point is a successful ladder conture
KCS ronk	0	Pank of current player

New Feature

 Board pattern at the end of game, or "final board pattern"

Deep Convolutional Neural Network

- We implemented a small deep CNN
 - 1 hidden layer; no pooling
 - 10 kernels

Result from Adding Final Board Pattern to input

- Without final board pattern, accuracy 6%
- With final board pattern, accuracy 18%
- The actual final board pattern is not possible to be obtained

UCT-Simulated Final Board Pattern

 Collect final board pattern in each simulation during UCT

Experiments and Results

Result

Result

Conclusion and Future Work

Conclusion

- Adding final board pattern to inputs of the deep CNN improves the accuracy of the network.
- In practice, we can collect statistics in each simulation of UCT to approximate final board pattern.

Future Work

- Deep network's size
- More Training Data
- Additional Features
- Combining deep network with UCT

Acknowledgements

- Levente Kocsis, Project Advisor and SZTAKI liaison
- Gabor Sarkozy, MQP Advisor
- Worcester Polytechnic Institute
- MTA-SZTAKI
- SZTAKI Colleagues
- Pachi and Gnu Go Development Team

Questions?

Köszönöm szépen!