
Direct Demonstration of Self-Similarity In a Hydrodynamic

Treatment of Polymer Self-Diffusion

by

Susan Carol Merriam

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Physics

by

May 2002

APPROVED:

Professor George D. J. Phillies, Thesis Advisor

Professor Thomas H. Keil, Head of Department

Contents

1 Introduction 1

2 Kirkwood-Riseman Model 4

3 Phillies Model 9

3.1 Multichain Hydrodynamic Interaction Tensors 9

3.2 Ensemble Average of the Hydrodynamic Interaction Tensors 24

4 Derivation of u(4) 27

4.1 Analysis . 27

4.2 Numerical Confirmation of u(4) . 32

5 Evaluation of T54321 and b1232 33

6 Ensemble Average of the Self-Interaction Tensor for the Figure-

Eight Scattering Diagram 35

6.1 Analysis . 35

6.2 Monte Carlo Routine . 37

i

7 Discussion 39

A polyalg.for 43

B hydrpoly.for 50

C flyind.for 64

D flyintegrat.com 82

ii

Abstract

The self-diffusion coefficient of a polymer in solution may be expanded in the con-

centration of the polymer, as seen in equation 1. The linear term would represent a

perturbation due to the presence of another polymer; the c2 term would represent

a perturbation due to interactions of trios of polymers. Phillies[1] determined the

c2 term of a virial expansion of the self-diffusion coefficient for trios of polymers

interacting via a ring. Here I determine a correction to the c2 term due to trios of

polymers interacting via a figure-eight scattering diagram: the equivalent of four

polymers interacting in a ring where the second polymer and the fourth polymer

are the same.

Ds(c) = D0(1 + αD0c + βD2
0c

2 + · · ·), (1)

or,

Ds(c) = D0(1 + αDs(c)c). (2)

A D0 may be replaced by Ds(c) in equation 1 to arrive at equation 2. The left-

hand-side of equation 2 is the final self-diffusion coefficient, and the Ds(c) on the

right-hand-side of this equation is that due to the question of self-similarity. If

the Ds(c) on the right-hand-side is given by equation 1, resulting in β = α2, it

may be said that the system exhibits self-similarity. I demonstrate self-similarity

quantitatively for a polymer solution using a generalized Kirkwood-Riseman model

of polymer dynamics.

The major physical assumption of the model I utilize to derive equation 2 is

that, in solution, polymer motions are dominantly governed by hydrodynamic inter-

actions between the chains. First, I review the Kirkwood-Riseman model for intra-

chain hydrodynamic interactions. I then discuss Phillies’ extension of this model to

interchain interactions for duos or trios of polymers in a ring. I analytically calculate

the hydrodynamic interaction tensor from a multiple scattering picture T54321, for

five polymers in solution and verify this tensor by numerical differentiation. Finally,

I perform the ensemble average of the self-interaction tensor b1232 appropriate to the

figure-eight scattering diagram both analytically and with a Monte Carlo routine,

thereby verifying equation 2 to second order in concentration.

iv

Table of Symbols

A scalar part of u(3) less R̂1 · V(1)

a Rh1Rh2Rh3R
2
g2R

2
g3/R

2
1R

3
2

a0 bead-bead distance of closest approach

B2, B3 leading virial coefficients

B ′
3 virial coefficient due to figure-eight scattering diagram

b R̂1 · R̂2

bl bond vector

b0 length of bond vector

bil... self-interaction tensor

c concentration or R̂2 · R̂3

D0 zeroth order self-diffusion constant

Ḋj velocity of bead j due to changes in polymer internal configuration

Ds self -diffusion coefficient

d R̂1 · R̂3

Fl force applied to bead l

fj, f0j bead drag coefficient

g(s) bead distribution function

g(n) n-polymer distribution function

v

kB Boltzmann constant

M molecular weight of polymer or number of beads in a chain

M0 molecular weight of monomer

N number of chains

Rg radius of gyration

Rh hydrodynamic radius

s position in polymer relative to its center-of-mass

T temperature

Tls Oseen tensor

Ti...j cross-interaction tensor

u(n) current induced by nth polymer

ul velocity of monomer l

V(n) translational velocity of polymer n

v0 velocity field of solvent

v′ disturbance in solvent

vj velocity of bead j relative to stationary solvent

wl vl − ul

vi

α αD0 = B2

β βD2
0 = B3

γ fixed skeletal angle

η viscosity

µ mobility

Ξ molecular friction constant

ξ friction constant

φl angle between planes of successive bond pairs

Ω(n) angular velocity of chain n

∇R gradient with respect to the highest numbered

of the variables of the function being acted upon.

vii

Chapter 1

Introduction

This thesis considers hydrodynamic interactions between polymers in solution and

how they determine the self-diffusion coefficient of a polymer. Originally, Kirkwood

and Riseman[2] studied a single polymer, and how its molecular structure would

relate to its diffusion constant. Phillies[1] extended Kirkwood and Riseman’s theory

to interactions between polymers. Here, interactions between quintets of polymers

in solution, using Phillies’ model, are studied. The coefficient in a virial expansion of

the self-diffusion coefficient due to the addition of a figure-eight scattering diagram

of trios of polymers is determined.

In the Kirkwood-Riseman model[2], the diffusion constant of a polymer is related

to its molecular structure. This model considers hydrodynamic shielding of inner

monomers of high molecular weight polymers in the random-coil model. Flow in the

solvent field is perturbed by the introduction of the polymer. This disturbance is

described by the Oseen tensor. Forces due to drag are experienced by the monomers.

1

An ensemble average of these forces is equal to the product of a molecular friction

constant and the velocity of the center-of-mass of the polymer. Using the Einstein

relation, the diffusion constant is subsequently determined.

Phillies’ model[1], an extension of the Kirkwood-Riseman use of the Oseen tensor

to multiple polymers, uses a generalized Einstein relation with µ, a mobility, due

to single polymers, and to duos and trios of polymers in rings. The mobility is

expressed as a sum of self-interaction tensors. These tensors are determined from

cross-interaction tensors by requiring the first and last polymers to be the same.

The cross-interaction tensors are determined from the scattering wake of a series

of polymers interacting hydrodynamically. The theoretical basis of the wake is the

Oseen tensor.

In Phillies’ model, three forces are considered, namely, the hydrodynamic cou-

pling force, the excluded volume, and the bond-coupling force. In this model the

Oseen tensor interaction is expanded in powers of the hydrodynamic radius and sub-

sequently subject to zero-net-force and zero-net-torque conditions to determine the

translational and rotational velocities of the polymer. This polymer then scatters

the applied hydrodynamic flow. Phillies’ derivation produces general relations for

the translational and rotational velocities of the (n + 1)st polymer in terms of the

scattered wake of the nth polymer. From the generalized Einstein relation which

involves an ensemble average over the mobility, Phillies determines the leading co-

efficients in a virial expansion of the self-diffusion coefficient due to rings of duos or

trios of polymers interacting hydrodynamically.

2

In the following, Ω(4), the angular velocity of a fourth polymer due to the wake

scattered by the third polymer in a scattering series is derived. Then u(4), the flow

field scattered by the fourth polymer, is determined analytically and numerically.

It is here shown that Phillies’ expression for u(n+1) can be simplified. T54321, the

cross-interaction tensor for quintets of polymers interacting hydrodynamically, is

calculated. By requiring the first and fifth polymers, and the second and fourth

polymers to be the same, the self-interaction tensor, b1232, for a multiple scattering

picture for the figure-eight scattering diagram was derived from T54321. The expres-

sion was integrated analytically and with a Monte Carlo routine to determine its

ensemble average. This ensemble average is the primary part of the c2 coefficient in

the virial expansion of the self-diffusion coefficient.

3

Chapter 2

Kirkwood-Riseman Model

The Kirkwood-Riseman model[2] relates intrinsic viscosities and diffusion constants

of flexible macromolecules to molecular structure. Prior to this model, Staudinger’s

Law[3] predicted that intrinsic viscosities are linearly proportional to the molecular

weight M . While Kuhn[4], Huggins[5] and Kramers[6] confirmed this Law theoret-

ically for polymers of random coil structure, experiment found that viscosity goes

as Mα, 0.5 ≤ α ≤ 1.0. Debye[7] suggested that the reason for the discrepancy be-

tween theory and experiment may have been due to assuming equal resistance due

to each monomer unit, ignoring interactions between monomers within the chain.

Debye proposed that, at high molecular weight, hydrodynamic shielding of the inte-

rior monomers may become so effective that they contribute little resistance to the

resistance offered by the entire molecule to an external fluid flow. In the Kuhn[4],

Huggins[5] and Kramers[6] models, each element was taken to offer the same resis-

tance to solvent flow that it would have offered if there were no other chain elements

4

in its neighborhood. To describe the reduced flow due to shielding, Debye[8] and

Brinkman[9] independently investigated a molecular model of a sphere with uni-

formly distributed resisting points equal in number to the number of monomers.

Debye’s model agrees quantitatively with the experimental dependence of the in-

trinsic viscosity on molecular weight.

In the Kirkwood-Riseman model[2], the reduced flow is based on a more realistic

random-coil model. Below the method and model used by Kirkwood and Rise-

man to determine intrinsic viscosities and translation diffusion constants of flexible

macromolecules is presented. The results agree qualitatively with those of Debye.

However, the model is thought[2] to be quantitatively more reliable since the molec-

ular model employed is more accurate than that of Debye.

The Kirkwood-Riseman model uses the random coil model to treat fluid flow

through a linear polymer (CHX)2n+1. In the notation for the random coil model,

skeletal carbon atoms are numbered −n to n, and are connected by 2n bond vectors

bl from skeletal atom l − 1 to atom l. The length of these bond vectors |bl| equals

b0. The internal configuration of the macromolecule is specified by φl, the angles

between the planes of successive bond pairs, and γ, the fixed skeletal bond angle.

The configuration changes with internal rotation about each bond. This rotation is

hindered, with a plane of symmetry at φl = 0. The degree of polymerization is 2n,

represented by z = M/M0, where M is the total molecular weight, and M0 is the

molecular weight of the monomer unit CHX.

In the random coil model, average values for R2
ls, s2

l and sl · ss are obtained,

5

where Rls is the distance between chain elements l and s, and sl is the position

of chain element l with respect to the molecular center-of-mass. In addition, for a

normally distributed Rls the average value for 1/Rls as a function of mean bond

length and l and s is obtained.

When a polymer is introduced to a low molecular weight fluid in which a velocity

field v0(R) exists, the flow is perturbed by the resistance of each monomer unit. A

force Fl is applied to the solvent by monomer l as follows: if vl is the velocity the

solvent would possess at the location of monomer l without monomer l, and ul is

the velocity of that monomer, Fl is given by

Fl = −ξlwl, wl = vl − ul. (2.1)

Here ξl is the friction constant particular to the monomer structure and the solvent.

The disturbance v′ in the solvent at Rl, the location relative to the monomer l

at which Fl is applied, is determined via the Oseen tensor T

v′(Rl) = T(Rl) · Fl (2.2)

T(Rl) = 1/(8πηoRl)[I + R̂lR̂l] (2.3)

Here ηo is the viscosity of the solvent, I is the unit tensor, and R̂l is the unit vector

in the direction of Rl.

The tensor T appears twice in the Kirkwood-Riseman model. First, it is em-

6

ployed to determine the disturbance in the flow at monomer l due to other portions

of the molecule. Second, it is used to calculate an overall disturbance in the solvent

at a specified distance from the molecular center-of-mass due to all monomers. The

velocity vl the solvent would have had without monomer l is given by

vl = vo
l − ξ

n∑
s=−n

s �=l

Tls · ws. (2.4)

Here vo
l is the solvent velocity without a polymer and Tls is the Oseen tensor

corresponding to Rls.

If ul is given,

Fl = −ξ(v0
l − ul) − ξ

n∑
s=−n
s �=l

Tls · Fs. (2.5)

The perturbation in the solvent flow field v′ produced by the molecule as a whole

at a position R relative to the molecular center-of-mass is given by

v′(R) =
1

8πη0

n∑
l=−n

{
Fl

|R− sl| +
(R − sl)(R − sl) · Fl

|R− sl|3
}

. (2.6)

For the translational diffusion constant, the center-of-mass of the polymer is con-

sidered to have a velocity u relative to the solvent. The molecular friction constant

Ξ is given by

< F >= Ξu, < F >= −
n∑

l=−n

< Fl > . (2.7)

The average force < F > on the molecular center-of-mass due to the solvent is the

7

sum of the average forces − < Fl > exerted by the individual monomers. Once the

friction constant is known, the Einstein relation

D = kT/Ξ (2.8)

determines the diffusion constant.

8

Chapter 3

Phillies Model

3.1 Multichain Hydrodynamic Interaction Tensors

In Phillies’ generalization[1] of the Kirkwood-Riseman model[2] hydrodynamic in-

teractions between polymer chains are considered. The Kirkwood-Riseman model

of a bead-bead Oseen interaction is extended in the Phillies model to include hydro-

dynamic interactions from a multiple scattering picture, between two, three or four

polymer chains. The chain-chain interaction is an average over a sum of bead-bead

interchain interactions. In Phillies’ model three forces are utilized: the hydrody-

namic coupling of nearby beads, the excluded volume, and the bond-coupling force

linking neighboring beads on a polymer chain.

The first term of an expansion of the interaction is the Oseen tensor, an applica-

tion proposed in the Kirkwood-Riseman model for interactions between monomers

in one polymer. Since the Oseen tensor represents a long-range force (∝ 1/R), where

9

R is the distance from the center-of-mass, other shorter-range forces such as in the

Rotne-Prager model have been proposed. Shorter-range forces would be given by

higher-order expansions in s/R, where s is the distance of a bead from the molecular

center-of-mass.

In Phillies’ model[1], hydrodynamic interactions between distinct chains are

given by self- and cross-interaction tensors, bjl... and Ti...j, respectively. Instead

of the specific polymer/monomer designation of the Kirkwood-Riseman model[2],

Phillies considers beads or “frictional point”, as opposed to monomers, as the salient

unit of a polymer.

Phillies restricts his model to interchain coupling. Intrachain coupling is taken

to act so as to entrain the solvent. Entrainment causes f0i, the true drag coeffi-

cient of the entire chain, to be much less than would be expected from summed

individual bead contributions. Phillies considers explicitly only scattering events

between beads on distinct chains. A distance of closest approach is imposed by a

radial distribution function. Bond interactions, which determine the stiffness of a

chain, are incorporated into the radius of gyration and the hydrodynamic radius of

each chain. The further physical assumption is that each chain’s motion is highly

overdamped. The inertia and moment of inertia of a chain are negligible. For a

given chain, the sum of forces produced by the constituent beads is zero; the sum

of torques about the center-of-mass of a given polymer produced by the constituent

beads is also zero.

Hydrodynamic interactions arise because each bead has a frictional interaction

10

with the solvent. A bead j imparts a force on the solvent according to

Fj = fj(vj − u(rj)). (3.1)

Here u(rj) is the velocity that the solvent would have had without presence of

bead j, vj = ∂rj/∂t is the velocity of bead j, and fj is the bead drag coefficient,

where fj = 6πηRh, η being the solvent viscosity and Rh is the bead’s effective

hydrodynamic radius. The resulting induced current in the solvent, which leads to

hydrodynamic coupling of pairs of beads, is given to lowest order in Rh by

u(i)(r) = T · Fj , (3.2)

u(i)(r) =
3Rh

4r
(I + r̂r̂) · vj. (3.3)

Here T is the Oseen tensor. This application of the tensor was proposed by Kirkwood

and Riseman[2]. The superscript i refers to chain i, subsequent in the scattering

series to the chain which has bead j.

Hydrodynamic interactions between entire chains are described by the self- and

cross-interaction tensors bjl and Tij and their multi-chain analogues. For instance,

bjlm would account for the self-interactions in the diffusion coefficient of chain j

due to the presence of chains l and m. Likewise, Tilj would account for the cross-

interactions in the diffusion coefficient of chains i and j due to the presence of chain

l. If an external force Fj is applied to the beads of a freely floating chain j giving

11

this chain a uniform translational velocity V(1), each of the other chains i, i �= j,

acquires an induced velocity from chain j’s wake determined by T

vi = [Tij +
N∑

l=1
l�=i,j

Tilj + · · ·] · Fj. (3.4)

Here Fj is the total force acting on chain j. Furthermore, the induced velocity of

chain j is affected by the presence of other chains through b

vj = f0j[I +
N∑

l=1
l�=j

bjl +
N∑

l,m=1
l,m�=j

bjlm + ...] · Fj . (3.5)

Phillies’ treatment of polymer diffusion neglects intrachain hydrodynamic inter-

actions. As a consequence, the computed chain-chain and chain-chain-chain hydro-

dynamic interactions overestimate the actual interactions.

The bead-bead excluded volume force prevents pairs of beads from overlapping;

the centers of two beads may never be closer than 2a0. If beads could interpene-

trate, no solvent could flow in the space along the line of centers. This situation is

not taken into account in the derivation of the Oseen and other bead-bead hydro-

dynamic interaction tensors. In addition, without a distance of closest approach,

many integrals of the derivation presented here would be divergent, a non-physical

result.

The calculation of the interaction tensors b and T begins with a polymer i

which has a translational velocity V(i), a rotational velocity Ω(i) with respect to the

12

stationary solvent, and Ḋj, the part of bead j’s velocity due to the time dependence

of the polymer’s internal coordinates. Bead j of chain i has an initial velocity

vj = V(i) + Ω(i) × sj + Ḋj (3.6)

with respect to the solvent. This bead exerts a force on the solvent Fj = fjvj.

Utilizing the Oseen tensor, the induced current in the solvent u(1)(r) due to the

entire chain is

u(1)(r) =
M∑
i=1

T(r − si) · fiv
(1)
i . (3.7)

Here M is the number of beads in a polymer.

Next the set of bead positions si is replaced by a variable s, the position relative

to the center-of-mass, and a bead distribution function g(s), which is centered on

the center-of-mass of the polymer in question. This distribution function gives an

ensemble average density of beads at a distance s from the polymer center-of-mass.

Here
∫

dsg(s)s2 = R2
g , Rg being the radius of gyration of the polymer. There

is evidence that the configuration of a typical polymer is other than spherically

symmetric[1]. An ensemble average of the configuration nonetheless leads to g(s) as

a function of s = |s| only. For a higher order expansion of T in s/r, greater caution

in the treatment of g(s) would be necessary. In addition to the introduction of s,

the sum of the bead drag coefficients fi is replaced by a chain drag coefficient f0.

A MacLaurin series expansion for the Oseen tensor is T(r − si) = T(r) − (si ·

13

∇)T(r) + O(s2), or

T(r − s) =
1

8πη

[
I + r̂r̂

r
− r̂

s · (I − 3r̂r̂)

r2
− sr̂

r2
+

s · r̂
r2

I

]
+ O

((
s

r

)2
)

. (3.8)

Here sr̂ is the dyadic product of s and r̂. Placing equation 3.8 into equation 3.7,

and using the replacements in the previous paragraph, it is found that

u(1) = f0

∫
dsg(s)

{
1

8πη

[
I + r̂r̂

r
− r̂

s · (I − 3r̂r̂)

r2
− sr̂

r2
+

s · r̂
r2

I

]}
·
{
V(1) + Ω(1) × s(1)

}
,

(3.9)

neglecting internal mode relaxation.

For the longest range parts of the solvent flow (zeroth and first orders in the s/r

expansion of T), using
∫

dsg(s)s · r̂Ω× s = (R2
g/3)Ω × r̂, that f0 = 6πηRh1, and

that terms odd in s vanish with integration over s

u(1)(r) =
3

4

Rh1

r
[I + r̂r̂] · V(1) +

1

2

Rh1R
2
g1

r2

(
Ω(1) × r̂

)
. (3.10)

Successive steps follow as this result has been obtained. The solvent flow u(n)

induces translational and rotational velocities in the next chain, which consequently

scatters the solvent yielding u(n+1). The velocities of the successive chains are found

by applying the zero-net-force and zero-net-torque conditions, so that a fluid flow

u(n) induces a translational velocity V(n+1) and a rotational velocity Ω(n+1) on the

(n + 1)st chain.

14

The force on a single bead due to u(1), considering the motion of the entire chain

as a result of the forces on all of its beads (neglecting internal mode relaxation) is

F
(2)
i = fi

(
u(1)(r)− V(2) −Ω(2) × si

)
. (3.11)

If u(1)(r) is expanded in powers of s · ∇ about r = R1, the zero-net-force constraint

is

f0

∫
dsg(s)

[
u(1)(R1) + (s · ∇)u(1)(R1) − V(2) − Ω(2) × s

]
= 0. (3.12)

Eliminating terms that vanish by reflection symmetry for s, equation 3.12 leads to

V(2) = u(1)(R1). (3.13)

Iterating the argument for different labels in equation 3.12 leads to a generalization

of equation 3.13, or, to lowest order in s

V(n+1) = u(n)(Rn). (3.14)

The zero-net-torque constraint leads to an equation for the angular velocity of poly-

mer 2.

M∑
i=1

fi

[
si × u(1)(ri) − si × V(2) − si × (Ω(2) × si)

]
= 0. (3.15)

The sum over a specific set of si is then replaced by an average over the bead density;

15

terms odd in s vanish because they integrate to zero. Hence

2

3
f0 < R2

g2 > Ω(2) = f0

∫
dsg(s)s × (s · ∇R)u(1)(R). (3.16)

Here the subscript on ∇ specifies the coordinate for its derivatives.

Applying the results s · ∇r(1/r
n) = −ns · r/rn+2 and s · ∇r(̂r) = s · [I− r̂r̂]/r,

and realizing that spherical averages over g(s) lead to < (s · a)(s× b) >= 1
3
R2

g(a× b); <

(s · a)(s× (b× a)) >= 1
3
R2

gb×[I−3aa]; < s(b · s) >= R2
gb/3; and < s×(b× s) >=

2
3
R2

gb, equation 3.16 leads to

Ω(2)(R1) = −3

4

Rh1

R2
1

[
R̂1 × V(1)

]
− 1

4

Rh1R
2
g1

R3
1

Ω(1) ·
[
I − 3R̂1R̂1

]
(3.17)

for a polymer chain at R1.

The physical picture for a second polymer hydrodynamically responding to a

first polymer is presented in equation 3.7 for the solvent flow near polymer 2, and

equations 3.13 and 3.17 for the translational and rotational responses of polymer 2 to

this flow. It may be noted that, fundamentally, V(2) and Ω(2) are different physically

from V(1) and Ω(1). The pair of velocities for polymer 1 are externally imposed; the

pair of velocities for polymer 2 are a result of the solvent flow through polymer 2.

Cross-coupling may also be noted in equations 3.13 and 3.17: although one or the

other, but not both, of the translational and rotational velocities of polymer 1 are

zero, polymer 2 has both non-zero translational and rotational velocities.

16

Next polymer 2 scatters the fluid flow u(1) adding a flow u(2). Utilizing equation

3.7 and recognizing that u(1) must be subtracted from bead j’s velocity vj with

respect to the stationary solvent, the net effect of polymer 2 is the vector sum of

the contributions of the individual beads j as follows.

u(2)(r) =
M∑
i=1

T(r − sj) · fj

[
vj(sj) − u(1)(R1 + sj)

]
. (3.18)

Here r and s are measured relative to the center-of-mass of polymer 2.

Now sj is replaced by a variable s, the position relative to the polymer center-

of-mass; the bead configuration is replaced by a radial distribution function g(s);

and T and u are expanded in powers of s · ∇, eliminating terms odd in s. Invoking

equations 3.6 and 3.13, it can be shown that generally

u(n+1)(r) =
f0

8πη

∫
ds

g(s)

r2
[−r̂s · [I − 3r̂r̂] − sr̂ + (s · r̂)I]·

[
Ω(n+1) × s− s · ∇

[
u(n)

]]
.

(3.19)

For averages over g(s), the results < (s · a)(s · b) >= 1
3
R2

ga · b, < (s · a)(b× s) >=

1
3
R2

gb× a, and < sa·(b× s) >= 1
3
R2

ga× b lead to

u(n+1)(r) =
Rh,n+1R

2
g,n+1

4r2

[
2(Ω(n+1) × r̂) − 3r̂r̂ · [(̂r · ∇R)u(n)(Rn)]

+∇R(̂r · u(n)(Rn)) − r̂ · ∇R(u(n)(Rn))
]
. (3.20)

17

where ∇R is the gradient with respect to the highest numbered of the variables of

the function being acted upon.

To obtain V(3), equation 3.14 is applied.

V(3) = u(2)(R2). (3.21)

The zero-net-torque constraint for the nth scattering occurrence is applied to give

Ω(n+1). This constraint is

M∑
i=1

fi

[
si × u(n)(ri) − si × V(n+1) − si × (Ω(n+1) × si)

]
= 0. (3.22)

Converting the sum over si to an integral over s, the position relative to the polymer

center-of-mass, and utilizing the distribution function g(s), to lowest order in s yields

2

3
R2

g,n+1Ω
(n+1) =

∫
dsg(s)s× (s · ∇)u(n)(rn). (3.23)

Expanding s in Cartesian coordinates converts the above integral to an integral over

s2 and a constant which does not depend on s. Consequently

Ω(n+1) =
1

2
(∇× u(n)(Rn)) (3.24)

to order O(s2). Setting n = 2 in equation 3.24 and applying the differential identities

∇r × r̂ = 0, ∇r × [(̂r · R̂)2r̂/r3] = [2(̂r · R̂)(R̂× r̂)/r3], ∇r × (r × a)/r3 = (a/r3) ·

18

[I − 3r̂r̂], ∇r × (r · a)b/r3 = [a · (I − 3r̂r̂) × b]/r3, and ∇r × [(a · r̂)(b · r̂)̂r/r2] =

(b · r̂)a× r̂/r3 + (a · r̂)b × r̂/r3 leads to an angular velocity of polymer 3 of

Ω(3) =
27

64

Rh1Rh2R
2
g2R1 · V(1)

R2
1R

3
2

R̂2 · R̂1(R̂1 × R̂2) +

9

16

Rh1Rh2R
2
g1R

2
g2

R3
1R

3
2

[
Ω(1)(1 − 2(R̂1 · R̂1)

2)

−R̂1Ω
(1) · [I − 2R̂2R̂] · R̂1 − R̂2Ω

(1) · [I − R̂1R̂1] · R̂2

]
. (3.25)

Simplification of the recursive formula for u(n+1) follows. Equation 3.20 provides

a recursive relation for u(n+1), the current induced by the (n + 1)st polymer due to

its translation and rotation under the influence of the nth polymer. Equation 3.24

provides a relation for Ω(n+1), the rotational velocity of the (n + 1)st polymer due

to the disturbance caused by the nth polymer, namely

Ω(n+1) =
1

2
(∇× u(n)(Rn)). (3.26)

We now show that three of the terms of equation 3.20 in u(n+1) cancel, leaving

only the second term in square brackets. This premise would imply that

2(Ω(n+1) × r̂) = −∇R(̂r · u(n)(Rn)) + r̂ · ∇R(u(n)(Rn)) (3.27)

Evaluating Ω(n+1) in Cartesian components yields

19

∇R × u(n) = x̂

[
∂uz

∂yn
− ∂uy

∂zn

]
+ ŷ

[
∂ux

∂zn
− ∂uz

∂yn

]
+ ẑ

[
∂uy

∂xn
− ∂ux

∂yn

]
(3.28)

Taking the vector product of Ω(n+1) with r̂ leads to

2(Ω(n+1) × r̂) = x̂

[
zn+1

rn+1

(
∂ux

∂zn
− ∂uz

∂xn

)
− yn+1

rn+1

(
∂uy

∂xn
− ∂ux

∂yn

)]

+ŷ

[
xn+1

rn+1

(
∂uy

∂xn
− ∂ux

∂yn

)
− zn+1

rn+1

(
∂uz

∂yn
− ∂uy

∂zn

)]

+ẑ

[
yn+1

rn+1

(
∂uz

∂yn
− ∂uy

∂zn

)
− xn+1

rn+1

(
∂ux

∂zn
− ∂uz

∂xn

)]
(3.29)

for the left-hand-side of equation 3.27.

Furthermore

r̂ · u(n) = [xn+1ux,n + yn+1uy,n + zn+1uz,n]/rn+1 (3.30)

The gradient with respect to Rn of this scalar product is

∇Rn (̂r · u(n)) =
xn+1

rn+1

[
∂ux

∂xn

x̂ +
∂ux

∂yn

ŷ +
∂ux

∂zn

ẑ

]

+
yn+1

rn+1

[
∂uy

∂xn

x̂ +
∂uy

∂yn

ŷ +
∂uy

∂zn

ẑ

]

+
zn+1

rn+1

[
∂uz

∂xn
x̂ +

∂uz

∂yn
ŷ +

∂uz

∂zn
ẑ

]
(3.31)

20

In addition,

(̂r · ∇Rn)u
(n) =

xn+1

rn+1

[
∂ux

∂xn
x̂ +

∂uy

∂xn
ŷ +

∂uz

∂xn
ẑ

]

+
yn+1

rn+1

[
∂ux

∂yn
x̂ +

∂uy

∂yn
ŷ +

∂uz

∂yn
ẑ

]

+
zn+1

rn+1

[
∂ux

∂zn
x̂ +

∂uy

∂zn
ŷ +

∂uz

∂zn
ẑ

]
(3.32)

Combining equation 3.31 with equation 3.32 leads to

−∇Rn (̂r · u(n)) + (̂r · ∇Rn)u(n) = x̂

[
xn+1

rn+1

(
∂ux

∂xn
− ∂ux

∂xn

)
+

yn+1

rn+1

(
∂ux

∂yn
− ∂uy

∂xn

)

+
zn+1

rn+1

(
∂ux

∂zn

− ∂uz

∂xn

)]

+ŷ

[
xn+1

rn+1

(
∂uy

∂xn
− ∂ux

∂yn

)
+

yn+1

rn+1

(
∂uy

∂yn
− ∂uy

∂yn

)

+
zn+1

rn+1

(
∂uy

∂zn
− ∂uz

∂yn

)]

+ẑ

[
xn+1

rn+1

(
∂uz

∂xn
− ∂ux

∂zn

)
+

yn+1

rn+1

(
∂uz

∂yn
− ∂uy

∂zn

)

+
zn+1

rn+1

(
∂uz

∂zn
− ∂uz

∂zn

)]
(3.33)

Eliminating terms which add to zero, and combining equations 3.33 and 3.29,

2(Ω(n+1) × r̂) + ∇R(̂r · u(n)(Rn)) + r̂ · ∇R(u(n)(Rn)) = 0 (3.34)

Hence, for general n,

21

u(n+1) = −Rh,n+1R
2
g,n+1

4r2
3r̂r̂ · [(̂r · ∇R)u(n)(Rn)] (3.35)

Letting n = 1, utilizing Ω(2) from equation 3.17, and applying the above differ-

ential identities to r · ∇RR̂ and r̂ · ∇RR−m leads to

u(2)(r) = − 9

16

Rh1Rh2R
2
g2

R2
1r

2

[
1 − 3(̂r · R̂1)

2
]
r̂(R̂1 · V(1))

+
3

8

R2
h1R

2
h2R

2
g1R

2
g2

R3
1r

2

[
r̂ × Ω(1) − (̂r × R̂1)R̂1 · Ω(1)

+r̂ · R̂1(Ω
(1) × R̂1) − r̂ · (Ω(1) × R̂1)R̂1 · (I − 3r̂r̂)

]
(3.36)

for the flow hydrodynamically scattered by polymer 2.

Having found V(3) and Ω(3), Phillies then calculates[1] u(3) from equation 3.20,

arriving at

u(3)(r) =
27

64

Rh1Rh2Rh3R
2
g2R

2
g3

R2
1R

3
2r

2

[(
1 − 3(R̂1 · R̂2)

2
)

(1 − 3(R̂2 · r̂)2)

−6(R̂1 · R̂2)(R̂2 · r̂)̂r · [I− R̂2R̂2] · R̂1

]
(R̂1 · V(1))̂r. (3.37)

From equation 3.14

V(4) = u(3)(R3). (3.38)

Phillies[1] then derives T21, T321, T4321, b12, and b123, the cross- and self-

interaction tensors from equations 3.3, 3.4, and 3.5 and the relations for V(n) and

Ω(n). Specifically, Tij, Tilj, and Tilmj are derived from the terms in V(2), V(3) , and

22

V(4) which are proportional to V(1), respectively, after demanding that the first and

last particles of a given scattering sequence be distinct, by factoring f01V
(1) out of

V(n). From equation 3.10

T21 =
1

f01

3

4

Rh1

R1

[
I + R̂1R̂1

]
. (3.39)

From equation 3.36 it results that

T321 = − 1

f01

9

16

Rh1Rh2R
2
g2

R2
1R

2
2

[
1 − 3(R̂2 · R̂1)

2
]
R̂2R̂1. (3.40)

Finally, from equation 3.37

T4321 =
1

f01

27

64

Rh1Rh2Rh3R
2
g2R

2
g3

R2
1R

3
2R

2
3

[(
1 − 3(R̂1 · R̂2)

2
)

(1 − 3(R̂2 · R̂3)
2)

−6(R̂1 · R̂2)(R̂2 · R̂3)R̂3 · [I− R̂2R̂2] · R̂1

]
R̂3R̂1. (3.41)

The self-interaction tensors bil and bikl are derived[1] from V(3) and V(4), respec-

tively, with the constraint that the first and last polymers in a scattering sequence

be the same, and factoring out an f01V
(1). The result for b12 is

b12 = − 1

f01

9

8

Rh1Rh2R
2
g2

R4
1

R̂1R̂1 (3.42)

23

while Phillies’ result[1] for the three polymer ring is

b321 = T4321|(R3=−R2−R1). (3.43)

3.2 Ensemble Average of the Hydrodynamic In-

teraction Tensors

In this section Phillies’ determination of the leading coefficients B2 and B3 of the

pseudovirial expansion of the polymer self-diffusion coefficient[1] due to rings

Ds ≈ D0

(
1 + B2c + B3c

2
)

(3.44)

is presented.

A generalized Einstein relation provides an expression for the self-diffusion coef-

ficient.

Ds =
kBT

3
Tr

1

N
<

N∑
i=1

µii > . (3.45)

Here the trace is taken with respect to the Cartesian coordinates; the brackets

< · · · > signify an ensemble average. The mobility µii expansion is

µii =
I

f0i
+

N∑
l=1

bil +
N∑

l,m=1

bilm + · · · . (3.46)

If two or more of the indices of the b’s are equal, the corresponding b is zero.

24

In order to take the ensemble average in equation 3.45, the N -particle poten-

tial energy UN and the polymers’ center-of-mass coordinates r1, r2, ..., and rela-

tive coordinates rij = rj − ri are invoked. The n-polymer distribution functions

g(n)(r12, ..., r1n) are given, for example, by

cg(2)(r12) =
N
∫

dr13...dr1N exp(−βUN)∫
dr12...dr1N exp(−βUN)

. (3.47)

Here c = N/V is the polymer number concentration. The self-diffusion coefficient

may be written in terms of the g(n)(r12, ..., r1n) and the µii as

Ds =
kBT

f01

[
1 +

f0

3

{
c
∫

V
dr12b12g

(2)(r12)

+c2
∫

V
dr12dr13b123g

(3)(r12, r13)
}]

. (3.48)

Equating like powers in equation 3.44 and 3.45, and utilizing equation 3.42 for

b12, an expression for B2

B2 =
1

3

{
c
∫

V
dr12

(
−9

8

Rh1Rh2R
2
g2

r4
12

r̂12r̂12

)
g(2)(r12)

}
(3.49)

follows. In order to evaluate B2, Phillies[1] assumed a form for g(2)(r12). He took

this distribution function to be flat subject to the constraint that r12 ≥ 2a0, where

2a0 is the bead-bead distance of closest approach.

25

Straightforward integration of equation 3.49 yields

B2 = − 9

16

Rh1Rh2

a0Rg

(
4π

3
R3

g

)
. (3.50)

In a manner similar to that utilized to obtain 3.49, Phillies[1] generates an ex-

pression for B3, namely

B3 =
9

64

Rh1Rh2Rh3R
2
g2R

2
g3

a0

{∫ ∞

2
r2dr

∫ ∞

2
s2ds

∫
4π

dΩrdΩs
g(2)(r23)

r2r3
23s

2
Tr [f(Ωr , Ωs)]

}
.(3.51)

Here r, s, and r23 are dimensionless distances in units of a0 = 1, where r is the

distance from polymer 1 to polymer 2, s is the distance from polymer 1 to polymer

3, and r23 is the distance from polymer 2 to polymer 3. The purpose of g(2)(r23)

is to ensure the excluded volume between polymers 2 and 3. The argument of the

trace is the bracketed function of unit vectors in equation 3.41 for T4321 subject to

the constraint that R3 = −R1 −R2. A numerical value for B3 was then determined

using a Monte Carlo routine, finding

B3 = 9.321 × 10−4 Rh1Rh2Rh3

a0Rg2Rg3

4πR3
g2

3

4πR3
g3

3
. (3.52)

26

Chapter 4

Derivation of u(4)

4.1 Analysis

u(n+1) as given in equation 3.35 is

u(n+1) = −Rh,n+1R
2
g,n+1

4r2
3r̂ · [(̂r · ∇R)u(n)(Rn)]̂r (4.1)

This equation will be employed to determine u(4) from u(3). In equation 4.1, if

n = 3, r is the point in the solvent relative to the fourth polymer. u(3), the fluid

flow at a point r in the solvent relative to polymer 3 due to scattering of u(2) by the

third polymer, is

u(3)(r) =
27

64

Rh1Rh2Rh3R
2
g2R

2
g3

R2
1R

3
2r

2

[(
1 − 3(R̂1 · R̂2)

2
)

(1 − 3(R̂2 · r̂)2)

−6(R̂1 · R̂2)(R̂2 · r̂)̂r · [I− R̂2R̂2] · R̂1

]
(R̂1 · V(1))̂r. (4.2)

27

Since u(3)(r) is used to determine u(4) in equation 4.1, one needs u(3)(R3), which is

u(3)(R3) =
27

64

Rh1Rh2Rh3R
2
g2R

2
g3

R2
1R

3
2R

2
3

[(
1 − 3(R̂1 · R̂2)

2
)

(1 − 3(R̂2 · R̂3)
2)

−6(R̂1 · R̂2)(R̂2 · R̂3)R̂3 · [I− R̂2R̂2] · R̂1

]
(R̂1 · V(1))R̂3. (4.3)

To evaluate equation 4.1, (̂r · ∇R)u(n)(Rn) is expanded as

(̂r · ∇R)u(3)(R3) =

[
x

r

∂

∂x3

u(3) +
y

r

∂

∂y3

u(3) +
z

r

∂

∂z3

u(3)

]
(4.4)

Define A by

A =
27

64

a

R3
3

[
(1 − 3b2)(1 − 3(R̂2 · R̂3)

2) + 6b(R̂2 · R̂3)
(
(R̂1 · R̂3) − b(R̂2 · R̂3)

)]
.

(4.5)

Here a = (Rh1Rh2Rh3R
2
g2R

2
g3)/(R

2
1R

3
2) and b = (R̂1 · R̂2)

2.

From equation 4.3, u(3) may be written as

u(3) = A(R̂1 · V(1))(x3x̂ + y3ŷ + z3ẑ), (4.6)

where R3 = (x3x̂ + y3ŷ + z3ẑ). Writing R3 in components everywhere, A becomes

A =
27

64

a

(x2
3 + y2

3 + z2
3)

3/2

[
(1 − 3b2)

(
1 − 3

(x2x3 + y2y3 + z2z3)
2

R2
2(x

2
3 + y2

3 + z2
3)

)

28

−6b
(x2x3 + y2y3 + z2z3)

R2(x2
3 + y2

3 + z2
3)

(
x1x3 + y1y3 + z1z3

R1
− b

(x2x3 + y2y3 + z2z3)

R2

)]
. (4.7)

In equations 4.6 and 4.7, x3, y3, and z3 appear on equal footing, which will be

useful in taking the gradient of A with respect to R3.

Substituting equation 4.6 into equation 4.4, one finds

x
∂

∂x3
u(3) = x(R̂1 · V(1))

[
∂A

∂x3
R3 + Ax̂

]
(4.8)

and similarly for the terms ∂/∂y3 and ∂/∂z3. Again, r = (xx̂ + yŷ + zẑ) is the

position in the solvent relative to the fourth polymer, From equations 4.4 and 4.8,

one obtains

(̂r · ∇R)u(3)(R3) = (R̂1 · V(1)) [(̂r · ∇RA)R3 + Ar̂] (4.9)

To find ∇RA, equation 4.7 is differentiated with respect to the components of

R3. The x3 derivative is

∂A

∂x3
= −3

2

27

64

2ax3

(x2
3 + y2

3 + z2
3)

5/2

[
(1 − 3b2)(1 − 3c2) − 6bc(d − bc)

]

+
27

64

a

R3
3

[
(1 − 3b2)

[
−6

x2(x2x3 + y2y3 + z2z3)

R2
2R

2
3

− 3
−2x3c

2

(x2
3 + y2

3 + z2
3)

]

− 6bx2

R2(x2
3 + y2

3 + z2
3)

1/2
(d − bc) − −6b(x2x3 + y2y3 + z2z3)(2x3)

R2(x2
3 + y2

3 + z2
3)

3/2
(d − bc)

29

−6bc

R3

(
x1

R1
− bx2

R2

)]
(4.10)

Here c = (R̂2 · R̂3) and d = (R̂1 · R̂3). Using the a, b, c, and d symbols where

applicable in the above equation, one obtains

∂A

∂x3
= −81

64

ax3

R5
3

[
(1 − 3b2)(1 − 3c2) − 6bc(d − bc)

]
+

27

64

a

R3
3

[
(1 − 3b2)

[−6x2c

R2R3

+
6x3c

2

R2
3

]
− 6bx2

R2R3
(d − bc) +

12bcx3

R2
3

(d − bc) − 6bc

R3

(
x1

R1
− bx2

R2

)]
(4.11)

From equation 4.11 and similar results for ∂A/∂y3 and ∂A/∂z3,

r̂ · ∇RA = −81a

64

r̂ · R̂3

R4
3

[
(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · R̂3)
2) − 6(R̂1 · R̂2)

×(R̂2 · R̂3)R̂3 · [I − R̂2R̂2] · R̂1

]
+

27

64

a

R4
3

[
(1 − 3(R̂1 · R̂2)

2)
[
−6(̂r · R̂2)

×(R̂2 · R̂3) + 6(̂r · R̂3)(R̂2 · R̂3)
2
]
− 6(̂r · R̂2)(R̂1 · R̂2)R̂1 · [I− R̂2R̂2] · R̂3

+12(̂r · R̂3)(R̂1 · R̂2)(R̂2 · R̂3)R̂3 · [I− R̂2R̂2] · R̂1

−6(R̂1 · R̂2)(R̂2 · R̂3)̂r · [I− R̂2R̂2] · R̂1

]
(4.12)

Factoring a -3 out of each subterm in the second term of the above equation, and

combining like terms gives

r̂ · ∇RA = −81

64

a

R4
3

[
(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · R̂3)
2)(̂r · R̂3) − 10(R̂1 · R̂2)

30

×(R̂2 · R̂3)(̂r · R̂3)R̂3 · [I− R̂2R̂2] · R̂1 + 2(1 − 3(R̂1 · R̂2)
2)(R̂2 · R̂3)

×r̂ · [I− R̂3R̂3] · R̂2 + 2(R̂1 · R̂2)(̂r · R̂2)R̂3 · [I − R̂2R̂2] · R̂1

+2(R̂1 · R̂2)(R̂2 · R̂3)̂r · [I− R̂2R̂2] · R̂1

]
(4.13)

Combining equations 4.1 and 4.9 results in

u(4)(r) = −3
Rh4R

2
g4

4r2
r̂(R̂1 · V(1))̂r · [(̂r · ∇R)AR3 + Ar̂] . (4.14)

Replacing (̂r · ∇R)A in equation 4.14 with equation 4.13 yields

u(4)(r) = −3
Rh4R

2
g4

4r2
r̂(R̂1 · V(1))

{
A + R̂3 · r̂

[
−81

64

a

R3
3

[
(1 − 3(R̂1 · R̂2)

2)

×(1 − 3(R̂2 · R̂3)
2)(̂r · R̂3) − 10(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · R̂3)
2)

(̂r · R̂3)R̂3 · [I− R̂2R̂2] · R̂1 + 2(1 − 3(R̂1 · R̂2)
2)(R̂2 · R̂3)̂r · [I− R̂3R̂3] · R̂2

+2(R̂1 · R̂2)(̂r · R̂2)R̂3 · [I− R̂2R̂2] · R̂1

]}

(4.15)

Replacing A with its value as given in equation 4.7 yields

u(4)(r) = −3Rh4R
2
g4

4r2

81

64

Rh1Rh2Rh3R
2
g2R

2
g3

R2
1R

3
2R

3
3

r̂(R̂1 · V(1))
{
(R̂3 · r̂)

[
(1 − 3(R̂1 · R̂2)

2)

×(1 − 3(R̂2 · R̂3)
2)(R̂3 · r̂) − 2(R̂1 · R̂2)[5(R̂2 · R̂3) − (R̂2 · r̂)]R̂3 · [I − R̂2R̂2] · R̂1

+2(R̂1 · R̂2)(R̂2 · R̂3)̂r · [I− R̂2R̂2] · R̂1 + 2(1 − 3(R̂1 · R̂2)
2)(R̂2 · R̂3)̂r · [I− R̂3R̂3] · R̂2

]

31

+
1

3
[(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · R̂3)
2) − 6(R̂1 · R̂2)(R̂2 · R̂3)R̂3 · [I − R̂2R̂2] · R̂1]

}
(4.16)

as a final expression for u(4)(r), the velocity of the solvent due to quartets of polymers

interacting hydrodynamically.

4.2 Numerical Confirmation of u(4)

Two programs which used pseudorandomly generated values for R1, R2, R3, and R4

were run to confirm numerically equation 4.16, the algebraic form for u(4), namely

polyalg.for (see appendix A) and hydrpoly.for(see appendix B). polyalg.for computes

u(4) from equation 4.16. hydrpoly.for uses equation 3.20, the recursive relation for

u(n), and performs a numerical differentiation of u(3) to determine u(4). The two

programs were run for 100 sets of 4 random points, and their predictions were

compared. For a differential of ≈0.001 times the average length of a component of

an R, the analytic form of equation 3.20 and the numerical form computed using

4.16 agree in 98 % of the cases to one part in 104.

32

Chapter 5

Evaluation of T54321 and b1232

Factoring an f0V
(1) out of u(4) and setting r = R4, R4 being the position of the

fifth polymer relative to the fourth polymer, one obtains T54321, the hydrodynamical

cross-interaction tensor for quintets of polymers in solution.

T54321 = − 3

4f0

Rh1Rh2Rh3Rh4R
2
g2R

2
g3R

2
g4

R2
1R

3
2R

3
3R

2
4

27

64

{
(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · R̂3)
2)

−6(R̂1 · R̂2)(R̂2 · R̂3)R̂3 · [I− R̂2R̂2] · R̂1

−3(R̂3 · R̂4)
[
(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · R̂3)
2)(R̂3 · R̂4)

+2(R̂1 · R̂2)R̂3 · [I− R̂2R̂2] · R̂1R̂4 · [I− 5R̂3R̂3] · R̂2

+2(R̂1 · R̂2)(R̂2 · R̂3)R̂4 · [I− R̂2R̂2] · R̂1

+2(1 − 3(R̂1 · R̂2)
2)(R̂2 · R̂3)R̂4 · [I − R̂3R̂3] · R̂2

]}
R̂4R̂1(5.1)

In equation 5.1, setting R4 = −R1, R3 = −R2, Rh4 = Rh2, and Rg4 = Rg2 gives

33

b1232 = T54321|R4=−R1;R3=−R2 the self-interaction tensor from a multiple scattering

picture for a figure-eight scattering diagram,

b1232 = − 3

4f0

Rh1R
2
h2Rh3R

4
g2R

2
g3

R4
1R

6
2

1

R2
1

(−R̂1)(R̂1)
27

64

1

R2
1R

6
2

{
(1 − 3(R̂1 · R̂2)

2)

×(1 − 3(R̂2 · (−R̂2))
2) − 6(R̂1 · R̂2)(R̂2 · (−R̂2))(−R̂2) · [I− R̂2R̂2] · R̂1 − 3((−R̂2) · (−R̂1))

×
[
(1 − 3(R̂1 · R̂2)

2)(1 − 3(R̂2 · (−R̂2))
2)(R̂1 · R̂2) + 2(R̂1 · R̂2)(−R̂2) · [I− R̂2R̂2] · R̂1

×(−R̂1) · [I− 5(−R̂2)(−R̂2)] · R̂2 + 2(R̂1 · R̂2)(R̂2 · (−R̂2))(−R̂1) · [I − R̂2R̂2] · R̂1

+2(1 − 3(R̂1 · R̂2)
2)(R̂2 · (−R̂2))(−R̂1) · [I− (−R̂2)(−R̂2)] · R̂2

]}
(5.2)

Dropping terms which add to zero and evaluating the accessible scalar products,

b1232 =
3

4f0

Rh1R
2
h2Rh3R

4
g2R

2
g3

R4
1R

6
2

27

64

[
(1 − 3(R̂1 · R̂2)

2)(1 − 3) − 3(R̂1 · R̂2)

×[(1 − 3(R̂1 · R̂2)
2)(1 − 3)(R̂1 · R̂) + 2(R̂1 · R̂)(−1)(−1)(1 − (R̂1 · R̂2)

2)]
]
R̂1R̂1(5.3)

Performing the arithmetic,

b1232 =
81

128f0

Rh1R
2
h2Rh3R

4
g2R

2
g3

R4
1R

6
2

[−1 + 3(R̂1 · R̂2)
2 − 6(R̂1 · R̂2)

4]R̂1R̂1, (5.4)

a final expression for b1232, the self-interaction tensor from a multiple scattering

picture for the figure-eight scattering diagram.

34

Chapter 6

Ensemble Average of the

Self-Interaction Tensor for the

Figure-Eight Scattering Diagram

6.1 Analysis

Extending Phillies’[1] equation 3.48 for the self-diffusion coefficient one obtains a c2

correction, namely

B ′
3c

2 =
f0

3
c2
∫

V
dr12dr13b1232g

(3)(r12, r13). (6.1)

35

This term involves an ensemble average over b1232. Evaluating 6.1 with equation

5.4 for b1232, using Phillies’[1] distribution function, gives

< b1232 >=
81

128f0
Rh1R

2
h2Rh3R

4
g2R

2
g3

∫ ∞

2a0

R2
1dR1

R4
1

∫ ∞

2a0

R2
2dR2

R6
2

∫
4π

dΩR1

×
∫

dφ
∫ 1

−1
d(cos θ)(−1 + 3 cos2 θ − 6 cos4 θ)Tr < R̂1R̂1 > (6.2)

Here θ is the angle between R1 and R2. The lower bound on the R1 and R2 integrals

appears because g(3) imposes a distance of closest approach for adjacent polymers.

Performing the Ω and φ integrals,

< b1232 >=
81

128f0
8π2Rh1R

2
h2Rh3R

4
g2R

2
g3

∫ ∞

2a0

dR1

R2
1

∫ ∞

2a0

dR2

R4
2

[− cos θ + cos3 θ − 6

5
cos5 θ]1−1

×Tr < R̂1R̂1 >(6.3)

Making the change of variables

R1 → 2a0r, dR1 → 2a0dr

R2 → 2a0s, dR2 → 2a0ds (6.4)

where

R1 : 2a0 → ∞ ⇒ r : 2 → ∞

R2 : 2a0 → ∞ ⇒ s : 2 → ∞, (6.5)

36

and evaluating the θ integral leads to

< b1232 >=
81π2

16f0
Rh1R

2
h2Rh3R

4
g2R

2
g3

∫ ∞

2

a0dr

a2
0r

2

∫ ∞

2

a0ds

a4
0s

4

(
12

5

)
Tr < R̂1R̂1 > (6.6)

Performing the r and s integrals and replacing the ensemble average < b1232 > in

equation 6.1 with its value from equation 6.6,

B ′
3 =

81π2

4 · 5
Rh1R

2
h2Rh3R

4
g2R

2
g3

a4
0

[
−1

r

]∞
2

[
− 1

3s3

]∞
2

Tr < R̂1R̂1 > (6.7)

Since there is no preferred direction for R1, Tr < R̂1R̂1 >= R̂1 · R̂1 = 1. Using this

result and evaluating the brackets leads to

B ′
3 =

27π2

64 · 5
Rh1R

2
h2Rh3R

4
g2R

2
g3

a4
0

(6.8)

for B ′
3, the c2 coefficient due to the figure-eight scattering diagram in the pseudovirial

expansion of the self-diffusion coefficient.

This value for B ′
3 is much greater than Phillies’ B3, see equation 3.52, so Phillies’

B3 may be neglected.

6.2 Monte Carlo Routine

A Monte Carlo routine flyind.for was run to perform an ensemble average of b1232(see

appendix C). For 5×107 iterations, the output agreed with the analytic calculation

37

of < b1232 > to within 2 %.

38

Chapter 7

Discussion

B ′
3, the coefficient in the pseudovirial expansion of the self-diffusion coefficient due to

trios of polymers interacting hydrodynamically via a figure-eight scattering diagram,

a c2 term, has been determined. The figure-eight diagram applies when polymer one

is given an initial translational velocity and produces a wake influencing polymer

two; polymer two’s subsequent wake influences polymer three; the scattered wake

from polymer three acts back on polymer two; and finally, to close the ring, this

wake is rescattered, influencing polymer one’s motions.

B ′
3 resulted from an ensemble average of b1232, the self-interaction tensor for

trios of polymers interacting in a figure-eight scattering diagram. b1232 is derived

from T54321, the cross-interaction tensor for quintets of polymers, by requiring that

R4 = −R1 and R3 = −R2. T54321 is determined form u(4), the wake scattered by

the fourth polymer.

The three forces considered in this derivation are the hydrodynamic coupling of

39

nearby beads, the excluded volume, and the bond-coupling force linking neighboring

beads in a polymer. An approximation was made in that the MacLaurin series

expansion of the Oseen tensor was taken to O
(

s
r

)
only, giving the longest-range

part of the interaction. A higher order expansion would have required more care

in the treatment of g(s), which was taken as a function of s only. g(n), the n-

polymer distribution functions were taken to be zero for any argument < 2a0, and

flat otherwise.

The criterion for self-similarity in this system, that B ′
3, polymer three’s effect

on the self-diffusion coefficient of polymer one, may be expressed as its effect on

polymer two, which, in turn, effects polymer one. This effect of polymer three on

polymer two, the Ds(c) on the right-hand-side of equation 1, is found to be the

same as the effect of polymer two only on polymer one, the Ds(c) on the left-hand-

side of equation 2 as given by the first two terms on the equation’s right-hand-side.

Mathematically speaking, in equation 2, if a D0 may be replaced by a Ds(c) to arrive

at equation 1, subject to the constraint that β = α2, self-similarity is said to have

been exhibited.

Equation 6.8 for B ′
3 is

B ′
3 =

27π2

64 · 5
Rh1R

2
h2Rh3R

4
g2R

2
g3

a4
0

.

40

Equation 3.50 for B2 is

B2 = − 9

16

Rh1Rh2

a0Rg

(
4π

3
R3

g

)
.

For self-similarity to hold,

B ′
3 = B2

2 , (7.1)

or,

27π2

64 · 5
Rh1R

2
h2Rh3R

4
g2R

2
g3

a4
0

=

[
− 9

16

Rh1Rh2

a0Rg

(
4π

3
R3

g

)]2

. (7.2)

Since the polymers are identical, Rh1 = Rh2 = Rh3 = Rh and Rg2 = Rg3 = Rg.

Therefore, equation 7.2 gives

R2
g

a2
0

=
20

3
(7.3)

or,

a0

Rg
=

√
3

20
≈ 0.39 (7.4)

as a condition for self-similarity in the self-diffusion coefficient for trios of polymers

in solution interacting hydrodynamically via a figure-eight scattering diagram.

Quantitative representative data on polymer chain sizes are found in Adam and

Delsanti[10]: for 1.27 × 106 Da polystyrene in benzene, their work shows Rg =

62.1nm, and, with η = 0.6cP, Rh = 38.0nm. A Phillies model[11] works for the

distance of closest approach a0 ≈ 0.18Rg . Substituting into equation 7.3, it is found

41

that

B ′
3 ≈ 4.6B2

2 . (7.5)

A value of a0 ≈ 0.39Rg would give an equality in equation 7.3.

In conclusion, it may be stated that there is substantial support for self-similarity

being exhibited the the figure-eight scattering diagram. That is, a D0 may be

replaced by Ds(c) in equation 2 to arrive at equation 1, where Ds(c) is given by the

first two terms on the right hand side of equation 2, requiring that β = α2.

42

Appendix A

polyalg.for

PROGRAM POLYALG

!THIS PROGRAM TAKES ALGEBRAIC EXPRESSIONS FOR THE FLUID VELOCITIES

!AND POLYMER ROTATIONAL VELOCITIES TO EVALUATE THEM.

!

REAL*8 V(3),R1(3),R2(3),R3(3),R4(3),R1M,R2M,R3M,R4M

REAL*8 CROM2(3),CROM3(3)

REAL*8 R1R2,R1R3,R2R3,R1V

REAL*8 COU2,OM2(3),FACTU2,U2(3),COU3,F11,F12,F2,T2,T3

REAL*8 COOM3,OM3(3),U3(3),OM2M,U2M,OM3M,U3M,U4MAG

REAL*8 COOM4,CROM41(3),CROM42(3),T3OM4,T4OM4,T2OM(3),OM4(3),OM4M

REAL*8 COGRA,R1GRA(3),R2GRA(3),R3GRA(3),GRRA(3)

REAL*8 COA,T1A,T2A,T3A,A,R3R4,COU4,T1U4(3),R4GRA,CT2U4

REAL*8 T2U4,T3U4,T4U4,U4(3),T1R3GRA,T2R3GRA,COU4T4,COTXU4

REAL*8 COT4U4A,COT4U4B

REAL*8 POL13,POL14,POL24,POL24A,T5U4,T6U4

!CT2U4=A*R4M*R4M+R4GRA*R3R4

INTEGER I

OPEN(UNIT=8,FILE="polyalg.dat")

OPEN(UNIT=7,FILE="U4alg.dat")

OPEN(UNIT=9,FILE="alginput.dat")

!

!SET THE VALUES FOR V1 AND THE R’S.

!

V(1)=1.5

V(2)=0.0

V(3)=0.0

R1(1)=3.2147

R1(2)=-2.3417

R1(3)=7.1234

43

R2(1)=2.3417

R2(2)=7.1342

R2(3)=2.7431

R3(1)=-4.3172

R3(2)=-4.3721

R3(3)=1.7324

R4(1)=-2.3741

R4(2)=4.7123

R4(3)=1.2347

DO 100 I=1,3

READ(9,*)R1(I)

100 CONTINUE

DO 110 I=1,3

READ(9,*)R2(I)

110 CONTINUE

DO 120 I=1,3

READ(9,*)R3(I)

120 CONTINUE

DO 130 I=1,3

READ(9,*)R4(I)

130 CONTINUE

CLOSE(9,STATUS=’KEEP’)

!DO 98 I=1,3

! R3(I)=(-1.0)*R2(I)

! R4(I)=(-1.0)*R1(I)

98 CONTINUE

!

R1M=SQRT(R1(1)*R1(1)+R1(2)*R1(2)+R1(3)*R1(3))

R2M=SQRT(R2(1)*R2(1)+R2(2)*R2(2)+R2(3)*R2(3))

R3M=SQRT(R3(1)*R3(1)+R3(2)*R3(2)+R3(3)*R3(3))

R4M=SQRT(R4(1)*R4(1)+R4(2)*R4(2)+R4(3)*R4(3))

V1M=SQRT(V(1)*V(1)+V(2)*V(2)+V(3)*V(3))

!

!COMPUTE THE DOT PRODUCTS OF THE UNIT VECTORS(EXCEPTING V)

!

R1V=(R1(1)*V(1)+R1(2)*V(2)+R1(3)*V(3))/R1M

R1R2=(R1(1)*R2(1)+R1(2)*R2(2)+R1(3)*R2(3))/R1M/R2M

R1R3=(R1(1)*R3(1)+R1(2)*R3(2)+R1(3)*R3(3))/R1M/R3M

R2R3=(R2(1)*R3(1)+R2(2)*R3(2)+R2(3)*R3(3))/R2M/R3M

R1R4=(R1(1)*R4(1)+R1(2)*R4(2)+R1(3)*R4(3))/R1M/R4M

R2R4=(R2(1)*R4(1)+R2(2)*R4(2)+R2(3)*R4(3))/R2M/R4M

R3R4=(R3(1)*R4(1)+R3(2)*R4(2)+R3(3)*R4(3))/R3M/R4M

!

44

!COMPUTE OMEGA2, FIRST FINDING ITS CROSS-PRODUCT FACTOR.

!

CROM2(1)=(R1(2)*V(3)-R1(3)*V(2))/R1M

CROM2(2)=(R1(3)*V(1)-R1(1)*V(3))/R1M

CROM2(3)=(R1(1)*V(2)-R1(2)*V(1))/R1M

DO 10 I=1,3

OM2(I)=(-0.75)/(R1M*R1M)*CROM2(I)

10 CONTINUE

!

!COMPUTE U2.

!

COU2=(-9.0)/16.0/(R1M*R1M)/(R2M*R2M*R2M)

FACTU2=(1.0-3.0*R1R2*R1R2)*R1V

DO 20 I=1,3

U2(I)=COU2*FACTU2*R2(I)

20 CONTINUE

!

!COMPUTE OMEGA3.

!

CROM3(1)=(R1(2)*R2(3)-R1(3)*R2(2))/R1M/R2M

CROM3(2)=(R1(3)*R2(1)-R1(1)*R2(3))/R1M/R2M

CROM3(3)=(R1(1)*R2(2)-R1(2)*R2(1))/R1M/R2M

COOM3=27.0/16.0/(R1M*R1M)/(R2M*R2M*R2M)

DO 30 I=1,3

OM3(I)=COOM3*R1V*R1R2*CROM3(I)

30 CONTINUE

!

!COMPUTE U3.

!

COU3=27.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M)

F11=1.0-3.0*R1R2*R1R2

F12=1.0-3.0*R2R3*R2R3

F2=6.0*R1R2*R2R3

T2=F2*R1R3

T3=F2*R1R2*R2R3

DO 40 I=1,3

U3(I)=COU3*(F11*F12-(T2-T3))*R1V*R3(I)/R3M

40 CONTINUE

!

!COMPUTE MAGNITUDES.

!

OM2M=SQRT(OM2(1)*OM2(1)+OM2(2)*OM2(2)+OM2(3)*OM2(3))

U2M=SQRT(U2(1)*U2(1)+U2(2)*U2(2)+U2(3)*U2(3))

45

OM3M=SQRT(OM3(1)*OM3(1)+OM3(2)*OM3(2)+OM3(3)*OM3(3))

U3M=SQRT(U3(1)*U3(1)+U3(2)*U3(2)+U3(3)*U3(3))

!

!COMPUTE OMEGA4

!

COOM4=(-81.0)/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)*R1V

CROM41(1)=(R1(2)*R3(3)-R1(3)*R3(2))/R1M/R3M

CROM41(2)=(R1(3)*R3(1)-R1(1)*R3(3))/R1M/R3M

CROM41(3)=(R1(1)*R3(2)-R1(2)*R3(1))/R1M/R3M

CROM42(1)=(R2(2)*R3(3)-R2(3)*R3(2))/R2M/R3M

CROM42(2)=(R2(3)*R3(1)-R2(1)*R3(3))/R2M/R3M

CROM42(3)=(R2(1)*R3(2)-R2(2)*R3(1))/R2M/R3M

T3OM4=R1R2*R2R3

T4OM4=R1R2*R1R2*R2R3

DO 50 I=1,3

T2OM(I)=CROM42(I)*(R2R3-T4OM4+R1R2*R1R3)

50 CONTINUE

!

DO 60 I=1,3

OM4(I)=COOM4*(CROM41(I)*R1R2*R2R3+T2OM(I))

60 CONTINUE

!

OM4M=SQRT(OM4(1)*OM4(1)+OM4(2)*OM4(2)+OM4(3)*OM4(3))

!

!COMPUTE VARIOUS PIECES OF TERMS IN U4.

!GRAD A WRT R3

!

COGRA=(-81.0)/32.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M)**2.0

DO 70 I=1,3

R1GRA(I)=R1R2*R2R3*R1(I)

R2GRA(I)=((1.0-5.0*R1R2*R1R2)*R2R3+R1R2*R1R3)*R2(I)

T1R3GRA=1.0-3.0*R1R2*R1R2-10.0*R1R2*R1R3*R2R3

T2R3GRA=(-5.0)*(1.0-5.0*R1R2*R1R2)*R2R3*R2R3

!R3GRA(I)=((1.0-3.0*R1R2*R1R2)-10.0*R1R2*R1R3*R2R3-5.0*(

c !(1.0-5.0*R1R2*R1R2)*R2R3*R2R3)*R3(I)/2.0

R3GRA(I)=(T1R3GRA+T2R3GRA)*R3(I)/2.0

GRRA(I)=R1GRA(I)+R2GRA(I)+R3GRA(I)

70 CONTINUE

!

!OUTPUT GRAD A WRT R

!

!COMPUTE A

!

46

COA=27.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

T1A=(1.0-3.0*R1R2*R1R2)*(1.0-3.0*R2R3*R2R3)

T2A=6.0*R1R2*R1R3*R2R3

T3A=6.0*R1R2*R1R2*R2R3*R2R3

A=COA*(T1A-T2A+T3A)

!

!OUTPUT A

!

!COMPUTE THE FOUR TERMS IN U4

!

!COU4=1.0/4.0/(R4M*R4M*R4M)

!T1U4(1)=2.0*(OM4(2)*R4(3)-OM4(3)*R4(2))*R1V

!T1U4(2)=2.0*(OM4(3)*R4(1)-OM4(1)*R4(3))*R1V

!T1U4(3)=2.0*(OM4(1)*R4(2)-OM4(2)*R4(1))*R1V

!

!R4GRA=R4(1)*GRRA(1)+R4(2)*GRRA(2)+R4(3)*GRRA(3)

!CT2U4=R4(1)*(A*R4(1)+R4GRA*R3(1))+R4(2)*(A*R4(2)+R4GRA*R3(2))

!R4(3)*(A*R4(3)+R4GRA*R3(3))

!CT2U4=A*R4M*R4M+R4GRA*R3R4

!DO 80 I=1,3

! T2U4(I)=3.0*R4(I)*CT2U4/(R4M*R4M)*R1V

! T3U4(I)=A*R4(I)+GRRA(I)*R3R4*R1V

! T4U4(I)=A*R4(I)+R4GRA*R3(I)*R1V

! U4(I)=COU4*(T1U4(I)-T2U4(I)+T3U4(I)-T4U4(I))

!CONTINUE

!

!FINALLY, MAYBE I HAVE AN EXPRSSION FOR U4

!

COU4=(-3.0)/4.0/(R4M*R4M)*R1V

COTXU4=(-81.0)/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)*R3R4

!T2U4=R1R2*R2R3*R1R4

!T3U4=(R2R3*(1.0-5.0*R1R2*R1R2)+R1R2*R1R3)*R2R4

!COT4U4A=1.0-3.0*R1R2*R1R2-10.0*R1R2*R2R3*R1R3

!COT4U4B=5.0*R2R3*R2R3*(1.0-5.0*R1R2*R1R2)

!COT4U4=COT4U4A-COT4U4B

!T4U4=R3R4/2.0*COT4U4

POL13=R1R3-R1R2*R2R3

POL14=R1R4-R1R2*R2R4

POL24=R2R4-R2R3*R3R4

POL24A=R2R4-5.0*R2R3*R3R4

T2U4=T1A*R3R4

T3U4=2.0*R1R2*POL13*POL24A

T4U4=2.0*(1.0-3.0*R1R2*R1R2)*R2R3*POL24

47

T5U4=2.0*R1R2*R2R3*POL14

DO 80 I=1,3

U4(I)=COU4*R4(I)/R4M*(A+COTXU4*(T2U4+T3U4+T4U4+T5U4))

80 CONTINUE

U4MAG = SQRT((U4(1)*U4(1)+U4(2)*U4(2)+U4(3)*U4(3)))

!

!I/O

!WRITE(7,97)T1U4

!WRITE(7,97)T2U4

!WRITE(7,97)T3U4

!WRITE(7,97)T4U4

WRITE(7,97)U4

!

!

WRITE(8,45)

WRITE(8,21)

WRITE(8,18)V

WRITE(8,19)V1M

WRITE(8,21)

WRITE(8,11)R1

WRITE(8,22)R1M

WRITE(8,21)

WRITE(8,13)OM2

WRITE(8,24)OM2M

WRITE(8,21)

WRITE(8,12)R2

WRITE(8,23)R2M

WRITE(8,21)

WRITE(8,14)U2

WRITE(8,25)U2M

WRITE(8,21)

WRITE(8,16)OM3

WRITE(8,27)OM3M

WRITE(8,21)

WRITE(8,15)R3

WRITE(8,26)R3M

WRITE(8,21)

WRITE(8,17)U3

WRITE(8,28)U3M

WRITE(8,21)

WRITE(8,49)R4

WRITE(8,51)R4M

WRITE(8,21)

48

WRITE(8,47)OM4

WRITE(8,48)OM4M

WRITE(8,52)U4

WRITE(8,*)U4MAG

97 FORMAT(3E14.7)

11 FORMAT(" R1x=",E14.7," R1y=",E14.7," R1z=",E14.7)

12 FORMAT(" R2x=",E14.7," R2y=",E14.7," R2z=",E14.7)

13 FORMAT(" Omega2x=",E14.7," Omega2y=",E14.7," Omega2z=",E14.7)

14 FORMAT(" U2x=",E14.7," U2y=",E14.7," U2z=",E14.7)

15 FORMAT(" R3x=",E14.7," R3y=",E14.7," R3z=",E14.7)

16 FORMAT(" Omega3x=",E14.7," Omega3y=",E14.7," Omega3z=",E14.7)

17 FORMAT(" U3x=",E14.7," U3y=",E14.7," U3z=",E14.7)

18 FORMAT(" V1x=",E14.7," V1y=",E14.7," V1z=",E14.7)

49 FORMAT(" R4x=",E14.7," R4y=",E14.7," R4z=",E14.7)

51 FORMAT(" |R4|=",E14.7)

47 FORMAT(" Omega4x=",E14.7," Omega4y=",E14.7," Omega4z=",E14.7)

48 FORMAT(" |Omega4|=",E14.7)

19 FORMAT(" |V1|=",E14.7)

21 FORMAT("")

22 FORMAT(" |R1|=",E14.7)

23 FORMAT(" |R2|=",E14.7)

24 FORMAT(" |Omega2|=",E14.7)

25 FORMAT(" |U2|=",E14.7)

26 FORMAT(" |R3|=",E14.7)

27 FORMAT(" |Omega3|=",E14.7)

28 FORMAT(" |U3|=",E14.7)

45 FORMAT("These are the algebraic results.")

52 FORMAT(3E14.7)

CLOSE(7)

CLOSE(8)

STOP

END

49

Appendix B

hydrpoly.for

PROGRAM HYDRPOLY

REAL*8 V(3),R(3),U_1(3),RP(3,3),RM(3,3),A

INTEGER I,J

REAL*8 RPX(3),RPY(3),RPZ(3),RMX(3),RMY(3),RMZ(3)

REAL*8 UPX(3),UPY(3),UPZ(3),UMX(3),UMY(3),UMZ(3)

REAL*8 UPLSA(3,3),UMINA(3,3),OM(3),R2(3),UN(3)

REAL*8 UNPX(3),UNPY(3),UNPZ(3),UNMX(3),UNMY(3),UNMZ(3),OM3(3)

REAL*8 R3(3),U3(3),OM4(3),R4(3),U4(3)

REAL*8 V1MAG,R1MAG,U1MAG,OM2MAG,R2MAG,U2MAG,OM3MAG,R3MAG,U3MAG

REAL*8 OM4MAG,R4MAG,U4MAG,OM2C(3),OM3C(3),OM4C(3)

REAL*8 U2C(3),U2CM,U3C(3),U3CM,U4C(3),U4CM,OM2CM,OM3CM,OM4CM

REAL*8 FPX(3),FPY(3),FPZ(3),FMX(3),FMY(3),FMZ(3)

REAL*8 FPLSA(3,3),FMINA(3,3),TEST(3)

OPEN(UNIT=4,FILE="testcurl.dat")

OPEN(UNIT=8,FILE="hydrpoly.dat")

OPEN(UNIT=9,FILE="hydrpol.dat")

OPEN(UNIT=10,FILE="alginput.dat")

V(1)=1.5

V(2)=0.0

V(3)=0.0

V1MAG=SQRT(V(1)*V(1)+V(2)*V(2)+V(3)*V(3))

R(1)=3.2147

R(2)=-2.3417

R(3)=7.1234

DO 201 I=1,3

READ(10,*)R(I)

201 CONTINUE

R1MAG=SQRT(R(1)*R(1)+R(2)*R(2)+R(3)*R(3))

CALL U1(V,R,U_1)

U1MAG=SQRT(U_1(1)**2.+U_1(2)**2.+U_1(3)**2.)

50

!

!NOTE WELL, THE "FIRST" POLYMER IS POLYMER ZERO.

!

!INITIALIZE RPLUS, RP(3,3), AND RMINUS, RM(3,3). THESE ARE THE VALUES

!OF R WHICH WILL BE USED TO COMPUTE THE VALUES OF U’S FOR TAKING ITS

!DERIVATIVES, BOTH THE GRADIENT AND THE CURL. I WILL USE AN INCREMENT,

!A, ADDED TO, AND SUBTRACTED FROM, EACH OF THE THREE COORDINATES.

!THE DIVISOR WILL THEN, NECESSARILY BE 2*A.

!

DO 10 I=1,3

DO 20 J=1,3

RP(I,J)=R(J)

RM(I,J)=R(J)

20 CONTINUE

10 CONTINUE

A=0.005

DO 30 I=1,3

RP(I,I)=R(I)+A

RM(I,I)=R(I)-A

30 CONTINUE

!

!I WILL PUT THE VALUES OF THE VARIOUS R’S INTO VECTORS IN ORDER TO

!USE THE ROUTINE U1.

!

DO 40 I=1,3

RPX(I)=RP(1,I)

RPY(I)=RP(2,I)

RPZ(I)=RP(3,I)

RMX(I)=RM(1,I)

RMY(I)=RM(2,I)

RMZ(I)=RM(3,I)

40 CONTINUE

!

!

!I WILL CALL THE ROUTINE, U1, FOR THESE SIX VALUES OF R, AND THEN USE

!THE RESULTING VALUES OF U1 TO COMPUTE ITS CURL, GIVING OMEGA2, THE

!ROTATIONAL VELOCITY OF POLYMER TWO.

!

!

CALL U1(V,RPX,UPX)

CALL U1(V,RPY,UPY)

CALL U1(V,RPZ,UPZ)

CALL U1(V,RMX,UMX)

51

CALL U1(V,RMY,UMY)

CALL U1(V,RMZ,UMZ)

!

!I WILL PUT THE VALUES OF U1 INTO ONE OF TWO MATRICES, UPLSA(3,3),

!OR UMINA(3,3). UPLSA HOLDS THE VALUES OF U1 FOR A ADDED TO X,Y OR Z.

!UMINA HOLDS THE VALUES OF U1 FOR A SUBTRACTED FROM X, Y OR Z.

!

DO 50 I=1,3

UPLSA(I,1)=UPX(I)

UPLSA(I,2)=UPY(I)

UPLSA(I,3)=UPZ(I)

UMINA(I,1)=UMX(I)

UMINA(I,2)=UMY(I)

UMINA(I,3)=UMZ(I)

50 CONTINUE

!

!I WILL CALL THE SUBROUTINE CURL WITH THESE VALUES OF U1, TO COMPUTE

!ITS CURL, HALF OF WHICH IS OMEGA2, THE ROTATIONAL VELOCITY OF

!POLYMER TWO.

!

CALL CURL(UPLSA,UMINA,A,OM)

!

OM2MAG=SQRT(OM(1)*OM(1)+OM(2)*OM(2)+OM(3)*OM(3))

!

!WE NOW HAVE U1(R) AND OM(R). NEED TO WRITE A ROUTINE FOR UN+1,

!N>=1. UN+1 NEEDS OMN+1 AT THE SAME POINT. CAN JUST USE THE

!U’S NEEDED TO DETERMINE ONEGA.

!FIRST USE SUBROUTINE TO CALCULATE U(R).

!THEN USE SUBROUTINE TOO CALCULATE U(R+/-A).

!GIVE THE SUBROUTINE RNP1(3), OM(3), UPLSA(3,3),

!AND UMINA(3,3). RETURN UNPLS1(3).

!

R2(1)=2.3417

R2(2)=7.1342

R2(3)=2.7431

DO 210 I=1,3

READ(10,*)R2(I)

210 CONTINUE

R2MAG=SQRT(R2(1)*R2(1)+R2(2)*R2(2)+R2(3)*R2(3))

!

!COMPUTE U2

!

!N IS THE GENERATION.

52

!

N=2

!

CALL UNPLS1(R2,N,OM,UPLSA,UMINA,A,UN)

!

U2MAG=SQRT(UN(1)*UN(1)+UN(2)*UN(2)+UN(3)*UN(3))

!

!COMPUTE OMEGA3.

!

DO 70 I=1,3

DO 80 J=1,3

RP(I,J)=R2(J)

RM(I,J)=R2(J)

80 CONTINUE

70 CONTINUE

DO 90 I=1,3

RP(I,I)=RP(I,I)+A

RM(I,I)=RM(I,I)-A

90 CONTINUE

!

DO 100 I=1,3

RPX(I)=RP(1,I)

RPY(I)=RP(2,I)

RPZ(I)=RP(3,I)

RMX(I)=RM(1,I)

RMY(I)=RM(2,I)

RMZ(I)=RM(3,I)

100 CONTINUE

!

CALL UNPLS1(RPX,N,OM,UPLSA,UMINA,A,UNPX)

CALL UNPLS1(RPY,N,OM,UPLSA,UMINA,A,UNPY)

CALL UNPLS1(RPZ,N,OM,UPLSA,UMINA,A,UNPZ)

CALL UNPLS1(RMX,N,OM,UPLSA,UMINA,A,UNMX)

CALL UNPLS1(RMY,N,OM,UPLSA,UMINA,A,UNMY)

CALL UNPLS1(RMZ,N,OM,UPLSA,UMINA,A,UNMZ)

!

DO 110 I=1,3

UPLSA(I,1)=UNPX(I)

UPLSA(I,2)=UNPY(I)

UPLSA(I,3)=UNPZ(I)

UMINA(I,1)=UNMX(I)

UMINA(I,2)=UNMY(I)

UMINA(I,3)=UNMZ(I)

53

110 CONTINUE

!

!CALL CURL TO COMPUTE OMEGA3

!

CALL CURL(UPLSA,UMINA,A,OM3)

!

OM3MAG=SQRT(OM3(1)*OM3(1)+OM3(2)*OM3(2)+OM3(3)*OM3(3))

!

!CALL UNPLS1 TO COMPUTE U3

!

R3(1)=-4.3172

R3(2)=-4.3721

R3(3)=1.7324

DO 220 I=1,3

READ(10,*)R3(I)

220 CONTINUE

!R3(1)=(-1.0)*R2(1)

!R3(2)=(-1.0)*R2(2)

!R3(3)=(-1.0)*R2(3)

R3MAG=SQRT(R3(1)*R3(1)+R3(2)*R3(2)+R3(3)*R3(3))

!

!OM3(1)=-0.000004090333

!OM3(2)=0.0000005618257

!OM3(3)=0.000002030606

!WRITE(9,85)

85 FORMAT("Omega3 set equal to the algebraic results.")

!

OM2C(1)=0.0

OM2C(2)=-0.01475751

OM2C(3)=-0.004851289

OM3C(1)=-0.000004090333

OM3C(2)=0.0000005618257

OM3C(3)=0.000002030606

OM4C(1)=0.000000006005069

OM4C(2)=-0.0000000008248233

OM4C(3)=-0.000000002981159

!

OM2CM=SQRT(OM2C(1)*OM2C(1)+OM2C(2)*OM2C(2)+OM2C(3)*OM2C(3))

OM3CM=SQRT(OM3C(1)*OM3C(1)+OM3C(2)*OM3C(2)+OM3C(3)*OM3C(3))

OM4CM=SQRT(OM4C(1)*OM4C(1)+OM4C(2)*OM4C(2)+OM4C(3)*OM4C(3))

!

N=3

!

54

CALL UNPLS1(R3,N,OM3,UPLSA,UMINA,A,U3)

U3MAG=SQRT(U3(1)*U3(1)+U3(2)*U3(2)+U3(3)*U3(3))

!

!PREPARE TO COMPUTE THE GRAD TERMS IN OMEGA4 WITH UPLSA AND UMINA.

!

DO 120 I=1,3

DO 130 J=1,3

RP(I,J)=R3(J)

RM(I,J)=R3(J)

130 CONTINUE

120 CONTINUE

DO 140 I=1,3

RP(I,I)=RP(I,I)+A

RM(I,I)=RM(I,I)-A

140 CONTINUE

!

DO 150 I=1,3

RPX(I)=RP(1,I)

RPY(I)=RP(2,I)

RPZ(I)=RP(3,I)

RMX(I)=RM(1,I)

RMY(I)=RM(2,I)

RMZ(I)=RM(3,I)

150 CONTINUE

!

!TESTING CURL SUBROUTINE WITH Y XHAT - X YHAT, or f(x,y,z)=(y,-x,0)

!

CALL COMPUTE(RPX,A,FPX)

CALL COMPUTE(RPY,A,FPY)

CALL COMPUTE(RPZ,A,FPZ)

CALL COMPUTE(RMX,A,FMX)

CALL COMPUTE(RMY,A,FMY)

CALL COMPUTE(RMZ,A,FMZ)

DO 200 I=1,3

FPLSA(I,1)=FPX(I)

FPLSA(I,2)=FPY(I)

FPLSA(I,3)=FPZ(I)

FMINA(I,1)=FMX(I)

FMINA(I,2)=FMY(I)

FMINA(I,3)=FMZ(I)

200 CONTINUE

CALL CURL(FPLSA,FMINA,A,TEST)

!

55

WRITE(4,99)TEST

99 FORMAT(3F14.7)

CALL UNPLS1(RPX,N,OM3,UPLSA,UMINA,A,UNPX)

CALL UNPLS1(RPY,N,OM3,UPLSA,UMINA,A,UNPY)

CALL UNPLS1(RPZ,N,OM3,UPLSA,UMINA,A,UNPZ)

CALL UNPLS1(RMX,N,OM3,UPLSA,UMINA,A,UNMX)

CALL UNPLS1(RMY,N,OM3,UPLSA,UMINA,A,UNMY)

CALL UNPLS1(RMZ,N,OM3,UPLSA,UMINA,A,UNMZ)

!

DO 160 I=1,3

UPLSA(I,1)=UNPX(I)

UPLSA(I,2)=UNPY(I)

UPLSA(I,3)=UNPZ(I)

UMINA(I,1)=UNMX(I)

UMINA(I,2)=UNMY(I)

UMINA(I,3)=UNMZ(I)

160 CONTINUE

!

!CALL CURL TO COMPUTE OMEGA4

!

CALL CURL(UPLSA,UMINA,A,OM4)

!

OM4MAG=SQRT(OM4(1)*OM4(1)+OM4(2)*OM4(2)+OM4(3)*OM4(3))

!

!CALL UNPLS1 TO COMPUTE U4

!

R4(1)=(-2.3741)

R4(2)=4.7123

R4(3)=1.2347

DO 230 I=1,3

READ(10,*)R4(I)

230 CONTINUE

CLOSE(10,STATUS=’KEEP’)

!R4(1)=(-1.0)*R(1)

!R4(2)=(-1.0)*R(2)

!R4(3)=(-1.0)*R(3)

R4MAG=SQRT(R4(1)*R4(1)+R4(2)*R4(2)+R4(3)*R4(3))

!

N=4

CALL UNPLS1(R4,N,OM4,UPLSA,UMINA,A,U4)

U4MAG=SQRT(U4(1)*U4(1)+U4(2)*U4(2)+U4(3)*U4(3))

!

U2C(1)=-0.00002116203

56

U2C(2)=-0.00006447204

U2C(3)=-0.00002478950

U3C(1)=0.00000006213650

U3C(2)=0.0000001893044

U3C(3)=0.00000007278756

U4C(1)=-0.0000000001182996

U4C(2)=0.00000000008617355

U4C(3)=-0.0000000002621381

U2CM=SQRT(U2C(1)*U2C(1)+U2C(2)*U2C(2)+U2C(3)*U2C(3))

U3CM=SQRT(U3C(1)*U3C(1)+U3C(2)*U3C(2)+U3C(3)*U3C(3))

U4CM=SQRT(U4C(1)*U4C(1)+U4C(2)*U4C(2)+U4C(3)*U4C(3))

!OUTPUT VARIOUS RESULTS

!

WRITE(8,45)

WRITE(8,21)

WRITE(8,46)A

WRITE(8,21)

WRITE(8,11)V

WRITE(8,31)V1MAG

WRITE(8,21)

WRITE(8,15)R

WRITE(8,32)R1MAG

WRITE(8,21)

WRITE(8,16)U_1

WRITE(8,33)U1MAG

WRITE(8,21)

WRITE(8,17)OM

WRITE(8,34)OM2MAG

WRITE(8,21)

WRITE(8,18)R2

WRITE(8,36)R2MAG

WRITE(8,21)

WRITE(8,19)UN

WRITE(8,37)U2MAG

WRITE(8,21)

WRITE(8,22)OM3

WRITE(8,38)OM3MAG

WRITE(8,21)

WRITE(8,28)R3

WRITE(8,39)R3MAG

WRITE(8,21)

WRITE(8,23)U3

WRITE(8,41)U3MAG

57

WRITE(8,21)

WRITE(8,24)OM4

WRITE(8,42)OM4MAG

WRITE(8,21)

WRITE(8,26)R4

WRITE(8,43)R4MAG

WRITE(8,21)

WRITE(8,27)U4

WRITE(8,44)U4MAG

WRITE(9,21)

WRITE(9,74)

WRITE(9,21)

WRITE(9,75)

WRITE(9,21)

WRITE(9,79)A

WRITE(9,21)

WRITE(9,76)

WRITE(9,21)

WRITE(9,77)

WRITE(9,21)

WRITE(9,78)V,V1MAG

WRITE(9,21)

WRITE(9,21)

WRITE(9,51)

WRITE(9,21)

WRITE(9,52)R,R1MAG

WRITE(9,21)

WRITE(9,53)R2,R2MAG

WRITE(9,21)

WRITE(9,54)R3,R3MAG

WRITE(9,21)

WRITE(9,55)R4,R4MAG

WRITE(9,21)

WRITE(9,21)

WRITE(9,56)

WRITE(9,21)

WRITE(9,57)U_1,U1MAG

WRITE(9,21)

WRITE(9,58)UN,U2MAG

WRITE(9,71)U2C,U2CM

WRITE(9,21)

WRITE(9,59)U3,U3MAG

WRITE(9,72)U3C,U3CM

58

WRITE(9,21)

WRITE(9,61)U4,U4MAG

WRITE(9,73)U4C,U4CM

WRITE(9,21)

WRITE(9,21)

WRITE(9,62)

WRITE(9,21)

WRITE(9,63)OM,OM2MAG

WRITE(9,67)OM2C,OM2CM

WRITE(9,21)

WRITE(9,64)OM3,OM3MAG

WRITE(9,68)OM3C,OM3CM

WRITE(9,21)

WRITE(9,65)OM4,OM4MAG

WRITE(9,69)OM4C,OM4CM

!WRITE(9,66)

11 FORMAT(" V1x =",E14.7," V1y =",E14.7," V1z =",E14.7)

15 FORMAT(" R1x =",E14.7," R1y =",E14.7," R1z =",E14.7)

16 FORMAT(" U1x =",E14.7," U1y =",E14.7," U1z =",E14.7)

17 FORMAT(" Omega2x =",E14.7," Omega2y =",E14.7," Omega2z =",E14.7)

18 FORMAT(" R2x =",E14.7," R2y =",E14.7," R2z =",E14.7)

19 FORMAT(" U2x =",E14.7," U2y =",E14.7," U2z =",E14.7)

21 FORMAT("")

22 FORMAT(" Omega3x =",E14.7," Omega3y =",E14.7," Omega3z =",E14.7)

28 FORMAT(" R3x =",E14.7," R3y =",E14.7," R3z =",E14.7)

23 FORMAT(" U3x =",E14.7," U3y =",E14.7," U3z =",E14.7)

24 FORMAT(" Omega4x =",E14.7," Omega4y =",E14.7," Omega4z =",E14.7)

26 FORMAT(" R4x =",E14.7," R4y =",E14.7," R4z =",E14.7)

27 FORMAT(" U4x =",E14.7," U4y =",E14.7," U4z =",E14.7)

31 FORMAT(" |V1|=",E14.7)

32 FORMAT(" |R1|=",E14.7)

33 FORMAT(" |U1|=",E14.7)

34 FORMAT(" |Omega2|=",E14.7)

36 FORMAT(" |R2|=",E14.7)

37 FORMAT(" |U2|=",E14.7)

38 FORMAT(" |Omega3|=",E14.7)

39 FORMAT(" |R3|=",E14.7)

41 FORMAT(" |U3|=",E14.7)

42 FORMAT(" |Omega4|=",E14.7)

43 FORMAT(" |R4|=",E14.7)

44 FORMAT(" |U4|=",E14.7)

45 FORMAT("These are the results from the calculus equations.")

46 FORMAT(" The increment for differentiation, A, equals ",E14.7)

59

51 FORMAT("Field Point Rx Ry Rz |R|")

52 FORMAT(" 1 ",3E16.8,E17.8)

53 FORMAT(" 2 ",3E16.8,E17.8)

54 FORMAT(" 3 ",3E16.8,E17.8)

55 FORMAT(" 4 ",3E16.8,E17.8)

56 FORMAT("Field Point Ux Uy Uz |U|")

57 FORMAT(" 1 ",4E16.8)

58 FORMAT(" 2 ",4E16.8)

59 FORMAT(" 3 ",4E16.8)

61 FORMAT(" 4 ",4E16.8)

62 FORMAT("Polymer Omegax Omegay Omegaz |Omega|")

63 FORMAT(" 2 ",4E16.8)

64 FORMAT(" 3 ",4E16.8)

65 FORMAT(" 4 ",4E16.8)

66 FORMAT("Polymer Omegax(Set) Omegay(Set) Omegaz(Set)")

67 FORMAT("2,alg",4E16.8)

68 FORMAT("3,alg",4E16.8)

69 FORMAT("4,alg",4E16.8)

71 FORMAT("2,alg",4E16.8)

72 FORMAT("3,alg",4E16.8)

73 FORMAT("4,alg",4E16.8)

74 FORMAT("Fluid motion, Ui, at a field point, Ri, for polymer i+1,")

75 FORMAT("with angular velocity Omega i+1.")

76 FORMAT("Translational velocity of polymer 1, V1.")

77 FORMAT(" Vx Vy Vz |V|")

78 FORMAT(4E16.8)

79 FORMAT("The differential element of integration is equal ",E16.8)

CLOSE(8)

CLOSE(9)

STOP

END

SUBROUTINE COMPUTE(R,A,F)

DIMENSION R(3),F(3)

REAL*8 R,A,F

F(1)=R(2)

F(2)=-1.0*R(1)

F(3)=0.0

RETURN

END

SUBROUTINE U1(V,R,U_1)

REAL*8 V(3), R(3), RMAG, COEFF, TERM1, FACT

REAL*8 U_1(3)

INTEGER I,J

60

!

!THE EQUATION EMPLOYED CAN BE FOUND IN PHILLIES,

!MACROMOLECULES 31 (98) 2317-2327.

!

COEFF=0.75

RMAG=SQRT(R(1)*R(1)+R(2)*R(2)+R(3)*R(3))

FACT=(R(1)*V(1)+R(2)*V(2)+R(3)*V(3))/(RMAG*RMAG)

DO 10 I=1,3

U_1(I)=COEFF*(V(I)+R(I)*FACT)/RMAG

10 CONTINUE

RETURN

END

SUBROUTINE CURL(UPLSA,UMINA,A,OM)

DIMENSION UPLSA(3,3), UMINA(3,3), OM(3)

REAL*8 A, UPLSA, UMINA, OM

OM(1)=(UPLSA(3,2)-UMINA(3,2)-UPLSA(2,3)+UMINA(2,3))/A/4.

OM(2)=(UPLSA(1,3)-UMINA(1,3)-UPLSA(3,1)+UMINA(3,1))/A/4.

OM(3)=(UPLSA(2,1)-UMINA(2,1)-UPLSA(1,2)+UMINA(1,2))/A/4.

RETURN

END

SUBROUTINE UNPLS1(R,N,OM,UPLSA,UMINA,A,U)

DIMENSION R(3),OM(3),UPLSA(3,3),UMINA(3,3),U(3),CR(3)

DIMENSION GR1(3), GR2(3), GR3(3)

REAL*8 R,OM,UPLSA,UMINA,A,U

REAL*8 CR, Co, RMAG

REAL*8 PUXX, PUXY, PUXZ, PUYX, PUYY, PUYZ, PUZX, PUZY, PUZZ

REAL*8 COR1, COR2, COR3, GR1, GR2, GR3

INTEGER I,J

OPEN(UNIT=7,FILE="U2.dat")

OPEN(UNIT=6,FILE="U3.dat")

OPEN(UNIT=5,FILE="U4.dat")

RMAG=SQRT(R(1)*R(1)+R(2)*R(2)+R(3)*R(3))

!COMPUTE PREFACTOR

Co=1.0/(4.0*RMAG**3.)

!

!COMPUTE CROSS-PRODUCT, CR(I)

!

CR(1)=2.*(OM(2)*R(3)-OM(3)*R(2))

CR(2)=2.*(OM(3)*R(1)-OM(1)*R(3))

CR(3)=2.*(OM(1)*R(2)-OM(2)*R(1))

!

!COMPUTE PARTIALS, PUXX - PARTIAL UX, PARTIAL X; PUXY - PARTIAL UX,

!PARTIAL Y; ETC.

61

!

PUXX=(UPLSA(1,1)-UMINA(1,1))/(2.*A)

PUXY=(UPLSA(1,2)-UMINA(1,2))/(2.*A)

PUXZ=(UPLSA(1,3)-UMINA(1,3))/(2.*A)

PUYX=(UPLSA(2,1)-UMINA(2,1))/(2.*A)

PUYY=(UPLSA(2,2)-UMINA(2,2))/(2.*A)

PUYZ=(UPLSA(2,3)-UMINA(2,3))/(2.*A)

PUZX=(UPLSA(3,1)-UMINA(3,1))/(2.*A)

PUZY=(UPLSA(3,2)-UMINA(3,2))/(2.*A)

PUZZ=(UPLSA(3,3)-UMINA(3,3))/(2.*A)

!

!COMPUTE FIRST GRAD TERM, GR1(3)

!FIND COEFFICIENT OF R, COR

!

COR1=R(1)*(R(1)*PUXX+R(2)*PUXY+R(3)*PUXZ)

COR2=R(2)*(R(1)*PUYX+R(2)*PUYY+R(3)*PUYZ)

COR3=R(3)*(R(1)*PUZX+R(2)*PUZY+R(3)*PUZZ)

COR=3.0*(COR1+COR2+COR3)*(-1.0)/(RMAG*RMAG)

GR1(1)=R(1)*COR

GR1(2)=R(2)*COR

GR1(3)=R(3)*COR

!

!COMPUTE SECOND GRAD TERM, GR2(3)

!

GR2(1)=R(1)*PUXX+R(2)*PUYX+R(3)*PUZX

GR2(2)=R(1)*PUXY+R(2)*PUYY+R(3)*PUZY

GR2(3)=R(1)*PUXZ+R(2)*PUYZ+R(3)*PUZZ

!

!COMPUTE THIRD GRAD TERM, GR3(3)

!

GR3(1)=(R(1)*PUXX+R(2)*PUXY+R(3)*PUXZ)*(-1.0)

GR3(2)=(R(1)*PUYX+R(2)*PUYY+R(3)*PUYZ)*(-1.0)

GR3(3)=(R(1)*PUZX+R(2)*PUZY+R(3)*PUZZ)*(-1.0)

!

!COMPUTE U

!

DO 10 I=1,3

U(I)=Co*(CR(I)+GR1(I)+GR2(I)+GR3(I))

10 CONTINUE

!

IF(N.EQ.2)THEN

WRITE(7,11)CR

WRITE(7,11)GR1

62

WRITE(7,11)GR2

WRITE(7,11)GR3

WRITE(7,11)U

END IF

IF(N.EQ.3)THEN

WRITE(6,11)CR

WRITE(6,11)GR1

WRITE(6,11)GR2

WRITE(6,11)GR3

WRITE(6,11)U

WRITE(6,12)

END IF

IF(N.EQ.4)THEN

WRITE(5,11)CR

WRITE(5,11)GR1

WRITE(5,11)GR2

WRITE(5,11)GR3

WRITE(5,11)U

END IF

!

11 FORMAT(3E14.7)

12 FORMAT("")

CLOSE(7)

CLOSE(6)

CLOSE(5)

RETURN

END

63

Appendix C

flyind.for

C <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C * Program INTEGRATE Version 001 *

C * Integrates a specific function via Monte Carlo Means *

C * Variables in integrat.com *

C * June 1997 GDJP *

C ***

program flyind

include ’flyintegrat.com’

c Independently generates the R’s, i.e., R1 is tested before R2

c is generated. Succeeds fly.for and butterfly.for.

c...opening steps that are the same for all runs

write(6,1000) ’ begin program’

call start

write(6,1000) ’ start’

1000 format(A)

write(6,1000) ’ in start’

do 1100, iintegrate = 1, nintegrate

call function

1100 continue

C...do things to the results

call postmortem

write(6,1000) ’ postmortem’

64

c...stable termination of the run

call shutdown

write(6,1000) ’ shutdown’

write(6,1000) ’ complete program’

C ************ next line must be last line of program *******************

end

C ************ previous line must be last line of program ***************

C ^^^

C * End of program ’INTEGRATE’ *

C * Subroutines follow *

C * GDJP Summer 1997 *

C * Subroutines are Below *

C ***

C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C * subroutine FUNCTION *

C * Generates a sample of the function being integrated. *

C * Requires list of coordinates. *

C * Calls Random repeatedly. *

C * GDJP June 1997 *

C ***

subroutine function

include ’flyintegrat.com’

REAL*8 R1R2,R1R3,R2R3,R1R4,R2R4,R3R4

REAL*8 COA,T1A,T2A,T3A,A,Aang,COU4

REAL*8 T2U4,T3U4,T4U4,COTXU4,TXang

REAL*8 POL13,POL14,POL24,POL24A,T5U4

C Generate a pair of particle positions.

C First fill innermost box

C Return here if positions are not good.

1000 continue

call random

x1 = scale1*(rand - 0.5)*0.5

call random

y1 = scale1*(rand - 0.5)*0.5

call random

z1 = scale1*(rand - 0.5)*0.5

65

r1s = x1*x1+y1*y1+z1*z1

if (r1s .lt. beadsizesq) then

goto 1000

endif

if (r1s .gt. sphere1/4.) then

goto 1000

endif

1010 call random

x2 = scale1*(rand - 0.5)*0.5

call random

y2 = scale1*(rand - 0.5)*0.5

call random

z2 = scale1*(rand - 0.5)*0.5

c x2=x2-x1

c y2=y2-y1

c z2=z2-z1

r12s = (x2)*(x2)+(y2)*(y2)+(z2)*(z2)

if (r12s .lt. beadsizesq) then

goto 1010

endif

if(r12s.gt.sphere1/4.) then

goto 1010

endif

x3=-x2

y3=-y2

z3=-z2

x4 = -x1

y4 = -y1

z4 = -z1

C Compute distances. Impose bead size approach limit.

r4s = x4*x4+y4*y4+z4*z4

r1m = sqrt(r1s)

66

r2m = sqrt(x2*x2+y2*y2+z2*z2)

r3m = r2m

r4m = r1m

r1r2 = ((x1*x2)+(y1*y2)+(z1*z2))/r1m/r2m

R1R3 = ((x1*x3)+(y1*y3)+(z1*z3))/r1m/r3m

R2R3 = ((x2*x3)+(y2*y3)+(z2*z3))/r2m/r3m

R1R4 = ((x1*x4)+(y1*y4)+(z1*z4))/r1m/r4m

R2R4 = ((x2*x4)+(y2*y4)+(z2*z4))/r2m/r4m

R3R4 = ((x3*x4)+(y3*y4)+(z3*z4))/r3m/r4m

!

!COMPUTE A

!

COA=27.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

T1A=(1.0-3.0*R1R2*R1R2)*(1.0-3.0*R2R3*R2R3)

T2A=6.0*R1R2*R1R3*R2R3

T3A=6.0*R1R2*R1R2*R2R3*R2R3

Aang = T1A-T2A+T3A

A = CoA * Aang

!FINALLY, MAYBE I HAVE AN EXPRSSION FOR U4

!

COU4=(-3.0)/4.0/(R4M*R4M)

COTXU4=(-1.0)*81.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

POL13=R1R3-R1R2*R2R3

POL14=R1R4-R1R2*R2R4

POL24=R2R4-R2R3*R3R4

POL24A=R2R4-5.0*R2R3*R3R4

T2U4=T1A*R3R4*R3R4

T3U4=2.0*R1R2*POL13*POL24A*R3R4

T4U4=2.0*(1.0-3.0*R1R2*R1R2)*R2R3*POL24*R3R4

T5U4=2.0*R1R2*R2R3*POL14*R3R4

TXang=T2U4+T3U4+T4U4+T5U4

value1 = R1R4*(COU4*CoA*Aang+CoU4*COTXU4*TXang)

nintegratecount1 = nintegratecount1 + 1

total1 = total1 + value1

C fill second box

C Return here if positions are not good.

1001 continue

call random

x1 = scale2*(rand - 0.5)*0.5

call random

y1 = scale2*(rand - 0.5)*0.5

67

call random

z1 = scale2*(rand - 0.5)*0.5

r1s = x1*x1+y1*y1+z1*z1

if (r1s .lt. beadsizesq) then

goto 1001

endif

if (r1s .gt. sphere2/4.) then

goto 1001

endif

1020 call random

x2 = scale2*(rand - 0.5)*0.5

call random

y2 = scale2*(rand - 0.5)*0.5

call random

z2 = scale2*(rand - 0.5)*0.5

c x2=x2-x1

c y2=y2-y1

c z2=z2-z1

r12s = (x2)*(x2)+(y2)*(y2)+(z2)*(z2)

if (r12s .lt. beadsizesq) then

goto 1020

endif

if (r12s.gt.sphere2/4.) then

goto 1020

endif

x3=-x2

y3=-y2

z3=-z2

x4 = -x1

y4 = -y1

z4 = -z1

C Compute distances. Impose bead size approach limit.

68

r1m = sqrt(r1s)

r2m = sqrt(x2*x2+y2*y2+z2*z2)

r3m = r2m

r4m = r1m

r1r2 = ((x1*x2)+(y1*y2)+(z1*z2))/r1m/r2m

R1R3 = ((x1*x3)+(y1*y3)+(z1*z3))/r1m/r3m

R2R3 = ((x2*x3)+(y2*y3)+(z2*z3))/r2m/r3m

R1R4 = ((x1*x4)+(y1*y4)+(z1*z4))/r1m/r4m

R2R4 = ((x2*x4)+(y2*y4)+(z2*z4))/r2m/r4m

R3R4 = ((x3*x4)+(y3*y4)+(z3*z4))/r3m/r4m

!

!COMPUTE A

!

COA=27.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

T1A=(1.0-3.0*R1R2*R1R2)*(1.0-3.0*R2R3*R2R3)

T2A=6.0*R1R2*R1R3*R2R3

T3A=6.0*R1R2*R1R2*R2R3*R2R3

Aang = T1A-T2A+T3A

A = CoA * Aang

!FINALLY, MAYBE I HAVE AN EXPRSSION FOR U4

!

COU4=(-3.0)/4.0/(R4M*R4M)

COTXU4=(-1.0)*81.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

POL13=R1R3-R1R2*R2R3

POL14=R1R4-R1R2*R2R4

POL24=R2R4-R2R3*R3R4

POL24A=R2R4-5.0*R2R3*R3R4

T2U4=T1A*R3R4*R3R4

T3U4=2.0*R1R2*POL13*POL24A*R3R4

T4U4=2.0*(1.0-3.0*R1R2*R1R2)*R2R3*POL24*R3R4

T5U4=2.0*R1R2*R2R3*POL14*R3R4

TXang=T2U4+T3U4+T4U4+T5U4

value2 = R1R4*(COU4*CoA*Aang+CoU4*COTXU4*TXang)

C Test if both particles within inner sphere

iflag1 = 1

if (r1s .gt. sphere1/4..and. r12s.le.sphere1/4.) then

iflag1 = 0

nintcount2a = nintcount2a + 1

total2a = total2a + value2

69

endif

if (r12s .gt. sphere1/4..and.r1s.le.sphere1/4.) then

iflag1 = 0

nintcount2b = nintcount2b + 1

total2b = total2b + value2

endif

if (r1s.gt.sphere1/4..and.r12s.gt.sphere1/4.) then

iflag = 0

nintcount2c = nintcount2c + 1

total2c = total2c + value2

endif

if (r1s.le.sphere1/4..and.r12s.le.sphere1/4.) then

nintegratecount2a=nintegratecount2a + 1

total2d = total2d+value2

endif

C fill third box

C Return here if positions are not good.

1002 continue

call random

x1 = scale3*(rand - 0.5)*0.5

call random

y1 = scale3*(rand - 0.5)*0.5

call random

z1 = scale3*(rand - 0.5)*0.5

r1s = x1*x1+y1*y1+z1*z1

if (r1s .lt. beadsizesq) then

goto 1002

endif

if (r1s .gt. sphere3/4.) then

goto 1002

endif

1030 call random

x2 = scale3*(rand - 0.5)*0.5

call random

y2 = scale3*(rand - 0.5)*0.5

call random

70

z2 = scale3*(rand - 0.5)*0.5

c x2=x2-x1

c y2=y2-y1

c z2=z2-z1

r12s = (x2)*(x2)+(y2)*(y2)+(z2)*(z2)

if (r12s .lt. beadsizesq) then

goto 1030

endif

if (r12s.gt.sphere3/4.) then

goto 1030

endif

x3=-x2

y3=-y2

z3=-z2

x4 = -x1

y4 = -y1

z4 = -z1

C Compute distances. Impose bead size approach limit.

r1m = sqrt(r1s)

r2m = sqrt(x2*x2+y2*y2+z2*z2)

r3m = r2m

r4m = r1m

r1r2 = ((x1*x2)+(y1*y2)+(z1*z2))/r1m/r2m

R1R3 = ((x1*x3)+(y1*y3)+(z1*z3))/r1m/r3m

R2R3 = ((x2*x3)+(y2*y3)+(z2*z3))/r2m/r3m

R1R4 = ((x1*x4)+(y1*y4)+(z1*z4))/r1m/r4m

R2R4 = ((x2*x4)+(y2*y4)+(z2*z4))/r2m/r4m

R3R4 = ((x3*x4)+(y3*y4)+(z3*z4))/r3m/r4m

!

!COMPUTE A

!

COA=27.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

T1A=(1.0-3.0*R1R2*R1R2)*(1.0-3.0*R2R3*R2R3)

T2A=6.0*R1R2*R1R3*R2R3

T3A=6.0*R1R2*R1R2*R2R3*R2R3

71

Aang = T1A-T2A+T3A

A = CoA * Aang

!FINALLY, MAYBE I HAVE AN EXPRSSION FOR U4

!

COU4=(-3.0)/4.0/(R4M*R4M)

COTXU4=(-1.0)*81.0/64.0/(R1M*R1M)/(R2M*R2M*R2M)/(R3M*R3M*R3M)

POL13=R1R3-R1R2*R2R3

POL14=R1R4-R1R2*R2R4

POL24=R2R4-R2R3*R3R4

POL24A=R2R4-5.0*R2R3*R3R4

T2U4=T1A*R3R4*R3R4

T3U4=2.0*R1R2*POL13*POL24A*R3R4

T4U4=2.0*(1.0-3.0*R1R2*R1R2)*R2R3*POL24*R3R4

T5U4=2.0*R1R2*R2R3*POL14*R3R4

TXang=T2U4+T3U4+T4U4+T5U4

value3 = R1R4*(COU4*CoA*Aang+CoU4*COTXU4*TXang)

C Test if both particles within inner sphere

iflag1 = 1

if (r1s .gt. sphere2/4..and.r12s.le.sphere2/4.) then

iflag1 = 0

nintcount3a = nintcount3a + 1

total3a = total3a + value3

endif

if (r12s .gt. sphere2/4..and.r1s.le.sphere2/4.) then

iflag1 = 0

nintcount3b = nintcount3b + 1

total3b = total3b + value3

endif

if (r1s .gt. sphere2/4..and.r12s.gt.sphere2/4.) then

iflag1 = 0

nintcount3c = nintcount3c + 1

total3c = total3c + value3

endif

if (r1s.le.sphere2/4..and.r12s.le.sphere2/4.) then

nintegratecount3a=nintegratecount3a + 1

total3d = total3d+value3

endif

2000 continue

return

72

end

C ^^^^^^^^^^^^^^^^^^^^^^^^^^END OF FUNCTION^^^^^^^^^^^^^^^^^^^^^^^^^^^^

C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C * subroutine POSTMORTEM *

C * Computes Final Results. Stores Final Results. *

C * Written GDJP June 1997 *

C ***

subroutine postmortem

include ’flyintegrat.com’

if (nintegratecount1 .gt. 0) then

vol0 = beadsize*beadsize*beadsize*3.14159*4.0/3.0

vol1 = scale1*scale1*scale1*3.14159/48.

total1 = total1*(vol1-vol0)*(vol1-vol0)/

Q nintegratecount1

endif

vol2 = scale2*scale2*scale2*3.14159/48.0

if (nintegratecount2a .gt. 0) then

total2d = total2d/nintegratecount2a*(vol1-vol0)**2

endif

if (nintcount2a.gt.0) then

total2a = total2a/nintcount2a

testtotal2a = total2a

total2a = total2a * (vol1-vol0) * (vol2-vol1)

endif

if (nintcount2b.gt.0) then

total2b = total2b/nintcount2b

testtotal2b = total2b

total2b = total2b * (vol1-vol0) * (vol2-vol1)

endif

if (nintcount2c.gt.0) then

total2c = total2c/nintcount2c

testtotal2c = total2c

total2c = total2c * (vol2-vol1)**2

endif

73

vol3 = scale3*scale3*scale3*3.14159/48.0

if (nintegratecount3a .gt. 0) then

total3d = total3d/nintegratecount3a*(vol2-vol0)**2

endif

if (nintcount3a.gt.0) then

total3a = total3a/nintcount3a

testtotal3a = total3a

total3a = total3a * (vol2-vol0) * (vol3-vol2)

endif

if (nintcount3b.gt.0) then

total3b = total3b/nintcount3b

testtotal3b = total3b

total3b = total3b * (vol2-vol0) * (vol3-vol2)

endif

if (nintcount3c.gt.0) then

total3c = total3c/nintcount3c

testtotal3c = total3c

total3c = total3c * ((vol3-vol2)**2)

endif

P1 = (vol1-vol0)/(vol2-vol0)

Psh = (vol2-vol1)/(vol2-vol0)

P2 = (vol2-vol0)/(vol3-vol0)

P3sh = (vol3-vol2)/(vol3-vol0)

total2 = (P1*Psh*(total2a+total2b)+Psh*Psh*total2c)/

Q (2.*P1*Psh+Psh*Psh)

total3 = (P2*P3sh*(total3a+total3b)+P3sh*P3sh*total3c)/

Q (2.*P2*P3sh+P3sh*P3sh)

total = total1+total2a+total2b+total2c+

Q total3a+total3b+total3c

analy1 =- 16.*3.141592654**2*((1./beadsize-4./scale1)*(

Q 1./beadsize**3-(4./scale1)**3)/3.)*(6./5.)*(81./128.)

analy2 =-(((1/beadsize-4./scale1)*((4./scale1)**3-(4./scale2)

74

Q **3)/3.+(4./scale1-4./scale2)*(1/beadsize**3-(4./scale1)

Q **3)/3)*P1*Psh+(4./scale1-4./scale2)*((4./scale1)**3

Q -(4./scale2)**3)/3.*Psh*Psh)

Q *16*3.141592654**2/(Psh*Psh+2*P1*Psh)*(6./5.)*(81./128.)

analy2a =- 16.*3.141592654**2*

Q (1./beadsize**3-(4./scale1)**3)*

Q (4./scale1-4./scale2)/3.*(6./5.)*(81./128.)

analy2b = -16.*3.141592654**2*

Q (1./beadsize-4./scale1)*

Q ((4./scale1)**3-(4./scale2)**3)/3.*(6./5.)*(81./128.)

analy2c = -16.*3.141592654**2*

Q (4./scale1-4./scale2)*

Q ((4./scale1)**3-(4./scale2)**3)/3.*(6./5.)*(81./128.)

analy3 =-(((1/beadsize-4./scale2)*((4./scale2)**3-(4./scale3)

Q **3)/3.+(4./scale2-4./scale3)*(1/beadsize**3-(4./scale2)

Q **3)/3.)*P2*P3sh+(4./scale2-4./scale3)*((4./scale2)**3

Q -(4./scale3)**3)/3.*P3sh*P3sh)

Q *16*3.141592654**2/(P3sh*P3sh+2.*P2*P3sh)*(6./5.)*(81./128.)

analytic = -(1./beadsize)*(1./(beadsize**3))*6./5.*81./128.*

Q 16.*3.141592654**2/3.

analy3a = -16.*3.141592654**2*

Q (1./beadsize**3-(4./scale2)**3)*

Q (4./scale2-4./scale3)/3.*(6./5.)*(81./128.)

analy3b = -16.*3.141592654**2*

Q (1./beadsize-4./scale2)*

Q ((4./scale2)**3-(4./scale3)**3)/3.*(6./5.)*(81./128.)

analy3c = -16.*3.141592654**2*

Q (4./scale2-4./scale3)*

Q ((4./scale2)**3-(4./scale3)**3)/3.*(6./5.)*(81./128.)

analytot = analy1+analy2a+analy2b+analy2c+analy3a+

Q analy3b+analy3c

analytwo = analy2a+analy2b+analy2c

75

analythree = analy3a+analy3b+analy3c

nintegratecount2 = nintcount2a+nintcount2b+nintcount2c

nintegratecount3 = nintcount3a+nintcount3b+nintcount3c

open(63, file = ’flyI.dat’)

write(63,*) runname$

write(63,*) ’scale1,scale2,scale3,beadsize,nintegrate’

write(63,*) scale1,scale2,scale3,beadsize,nintegrate

write(63,*) ’total1,nintegrate,nintegratecount1’

write(63,*) total1,nintegrate,nintegratecount1

write(63,*) ’analytic 1’,analy1

write(63,*) ’total’, total

write(63,*)

write(63,*) ’total2,nintegratecount2’

write(63,*) total2,nintegratecount2

write(63,*) ’total2a,b,c’

write(63,*) total2a,total2b,total2c

write(63,*) ’analy2a,analy2b,analy2c’,analy2a,analy2b,analy2c

write(63,*) ’analytic 2’,analy2

write(63,*)

write(63,*) ’total2d,nintegratecount2a’

write(63,*) total2d,nintegratecount2a

write(63,*) ’total3,nintegratecount3’

write(63,*) total3,nintegratecount3

write(63,*) ’total3a,b,c’

write(63,*) total3a,total3b,total3c

write(63,*) ’analy3a,analy3b,analy3c’,analy3a,analy3b,analy3c

write(63,*) ’analytic 3’,analy3

write(63,*)

write(63,*) ’total3d,nintegratecount3a’

write(63,*) total3d,nintegratecount3a

close (63, status = ’KEEP’)

open (63, file = ’comresults.dat’)

write(63,*) ’beadsize’,beadsize,’nintegrate’,nintegrate

write(63,*)

write(63,*) ’scale, analytic, numeric, counts, error’

76

write(63,*)

write(63,*) scale1,analy1,total1,nintegratecount1

write(63,*)

write(63,*) scale2,analy2,total2,nintegratecount2

write(63,*)

write(63,*) scale3,analy3,total3,nintegratecount3

write(63,*)

write(63,*)

write(63,*) ’TOTAL ’,analytic,total,nintegrate

write(63,*) ’for convergence, total3c’,total3c

write(63,*)

write(63,*) ’seed’, seed

close(63, status = ’KEEP’)

2000 continue

return

end

C ^^^^^^^^^^^^^^^^^^^^^^^^^^END OF POSTMORTEM^^^^^^^^^^^^^^^^^^^^^^^^

C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C * subroutine RANDOM *

C * Random generator of variate on 0, 1 *

C * Purpose: generates a pseudorandom number RAND *

C * whose distribution is flat on the interval (0,1). *

C * Uses as seeds xrandom, yrandom, zrandom stored between runs *

C * in file RANDOM. DAT *

C * Variables: rand,temprand,xrandom,yrandom,zrandom *

C * based on Wichman and Hill *

C * begun GDJP 1/9/90 *

C ***

subroutine random

include ’flyintegrat.com’

PARAMETER (IM1=2147483563,IM2=2147453399,AM=1./IM1,IMM1=IM1-1,

* IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,

* IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2E-7,RNMX=1.-EPS)

INTEGER IV(NTAB)

SAVE IV,IY,IDUM2

DATA idum2/123458789/,iv/ntab*0/,iy/0/

IF (IDUM.LE.0) THEN

idum=max(-idum,1)

77

idum2=idum

do 11 j=ntab+8,1,-1

k=idum/iq1

idum=ia1*(idum-k*iq1)-k*ir1

if (idum.lt.0) idum=idum+im1

if (j.le.ntab) iv(j)=idum

11 continue

iy=iv(1)

endif

k=idum/iq1

idum=ia1*(idum-k*iq1)-k*ir1

if(idum.lt.0) idum=idum+im1

k=idum2/iq2

idum2=ia2*(idum2-k*iq2)-k*ir2

if (idum2.lt.0) idum2=idum2+im2

j=1+iy/ndiv

iy=iv(j)-idum2

iv(j)=idum

if (iy.lt.1) iy=iy+imm1

rand=min(am*iy,rnmx)

C xrandom=171*(xrandom-177*INT(xrandom/177))-2*INT(xrandom/177)

C IF (xrandom .le. 0) xrandom = xrandom + 30269

C yrandom=172*(yrandom-176*INT(yrandom/176))-35*INT(yrandom/176)

C IF (yrandom .le. 0) yrandom = yrandom + 30307

C zrandom=170*(zrandom-178*INT(zrandom/178))-63*INT(zrandom/178)

C IF (zrandom .le. 0) zrandom = zrandom + 30323

C TEMPRAND = xrandom/30269.0+yrandom/30307.0+zrandom/30323.0

C rand = TEMPRAND - INT(TEMPRAND)

return

end

C ^^^^^^^^^^^^^^^^^^^^^^^^^^END OF RANDOM^^^^^^^^^^^^^^^^^^^^^^^^^^^^

C <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C * Subroutine SHUTDOWN 1.01JENNX *

C * Purpose: Records terminal variables, closes files, *

C * and turns everything off *

C * Saves all computed correlation functions *

C * Variables: nbead, rsphere, xrandom,yrandom,zrandom,iset3g,gsetg, *

C * gasdevg *

C * GDJP 1/18/90 7/19/93 9/9/94 Summer 1995 *

C **

78

subroutine shutdown

include ’flyintegrat.com’

C commands to shut down stably

open(63, file = ’random.dat’)

write(63,*) xrandom,yrandom,zrandom,iset3g,gsetg,gasdevg

close (63, status = ’KEEP’)

return

end

C ^^^^^^^^^^^^^^^^^^^^^^^^^^^^END OF SHUTDOWN^^^^^^^^^^^^^^^^^^^^^^^^^^^

C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C * subroutine START *

C * initializes matrices, etc. *

C * GDJP June 1997 *

C ***

subroutine start

include ’flyintegrat.com’

C use file to seed the random number generators

open(63, file = ’random.dat’)

read(63,*) xrandom,yrandom,zrandom,iset3g,gsetg,gasdevg

close (63, status = ’KEEP’)

C open file that holds the control variables

C sed above

C Variables listed in integrat.dat in logical order

open(63, file = ’integrat.dat’)

C THE CALCULATION

read(63,*) a$

read(63,*) runname$

read(63,*) a$

read(63,*) scale1

read(63,*) a$

read(63,*) scale2

79

read(63,*) a$

read(63,*) scale3

read(63,*) a$

read(63,*) beadsize

read(63,*) a$

read(63,*) nintegrate

read(63,*) a$

read(63,*) idum

close (63, status = ’KEEP’)

beadsizesq = beadsize*beadsize

sphere1= scale1*scale1 / 4.

sphere2= scale2*scale2 / 4.

sphere3= scale3*scale3 / 4.

seed = idum

C finished reading control file; close the file.

close (63, status = ’KEEP’)

C Initialize variables requiring initialization.

value1 = 0.0000000000000000000

value2 = 0.0000000000000000000

value3 = 0.0000000000000000000

total1 = 0.0000000000000000000

total2 = 0.0000000000000000000

total3 = 0.0000000000000000000

total2a = 0.0000000000000000000

total2b = 0.0000000000000000000

total2c = 0.0000000000000000000

total2d = 0.0000000000000000000

total3a = 0.0000000000000000000

total3b = 0.0000000000000000000

total3c = 0.0000000000000000000

total3d = 0.0000000000000000000

nintegratecount1= 0

nintcount2a = 0

80

nintcount2b = 0

nintcount2c = 0

nintegratecount2a= 0

nintcount3a = 0

nintcount3b = 0

nintcount3c = 0

nintegratecount3a= 0

return

end

81

Appendix D

flyintegrat.com

C ***

C * COMMON BLOCKS flyintegrat.com *

C * common blocks and variables for integrate *

C * GDJP June 1997 *

C ***

C implicit undefined (a-z)

C An error trap

C common block for integer variables

common/integervars/ iterate,iintegrate,nintegrate,iflag1,

Q nintegratecount1,nintegratecount2,nintegratecount3,

Q nintegratecount1a,nintegratecount2a,nintegratecount3a,

Q nintcount2a,nintcount2b,nintcount2c,

Q nintcount3a,nintcount3b,nintcount3c

integer*4 iterate,iintegrate,nintegrate,iflag1,

Q nintegratecount1,nintegratecount2,nintegratecount3,

Q nintegratecount1a,nintegratecount2a,nintegratecount3a,

Q nintcount2a,nintcount2b,nintcount2c,

Q nintcount3a,nintcount3b,nintcount3c

C***

C common block for random number generator

common/randomvars/facg,gasdevg,gsetg,inull,iset3g,rand,temp,

Q temprand,v1g,v2g,xrandom,yrandom,zrandom,idum,seed

integer*4 inull,iset3g, xrandom, yrandom, zrandom,idum,seed

82

real*4 facg,gasdevg,gsetg,rand,rg,temprand,temp,v1g,v2g

C common block for real dynamic variables

common/realvars/

Q x1,y1,z1,r1,x2,y2,z2,r2,r12,scale,beadsize,beadsizesq,

Q r1s,r2s,r12s,

Q scale1,scale2,scale3,sphere1,sphere2,sphere3,

Q ave,vol0,vol1,vol2,vol3,

Q value1,value2,value3,

Q total1,total2,total2a,total3,total3a,

Q total2b,total3c,

Q total2c,total2d,total3b,total3d,

Q analy2,analy2a,analy2b,analy3,analy3a,analy3b

real*8

Q x1,y1,z1,r1,x2,y2,z2,r2,r12,scale,beadsize,beadsizesq,

Q r1s,r2s,r12s,

Q scale1,scale2,scale3,sphere1,sphere2,sphere3,

Q ave,vol0,vol1,vol2,vol3,

Q value1,value2,value3,

Q total1,total2,total2a,total3,total3a,

Q total2b,total3c,

Q total2c,total2d,total3b,total3d,

Q analy2,analy2a,analy2b,analy3,analy3a,analy3b

C***

C common block for timestamp variables

common/timestamp/hrs,hundrs,mins,secs,time1,time2

integer*4 hrs,hundrs,mins,secs

real*4 time1,time2

C***

common/loosechars/a$,a1$,a2$,name$,runname$

character a$,a1$,a2$,name$,runname$

c dimension drij(3),force(100,3),

c Q rsphere(100,3),rij(3)

83

Bibliography

[1] G.D.J.Phillies. Macromolecules 31(98)2317-2327.

[2] J.G.Kirkwood and Riseman,J. J.Chem.Physics. 16(48)565-573.

[3] H.Staudinger. Die Hochmolecularen Organischen Verbindungen(Verlag Julius

Springer, Berlin, 1932).

[4] W.Kuhn. Zeits. f. physik Chemie A161(32)1.

[5] M.L.Huggins. J.Phys.Chem. 43(39)439.

[6] H.A.Kramers. J.Chem.Phys. 14(46)415.

[7] P.Debye. Reports to the Office of Rubber Reserve, Reconstruction Finance

Corp, October 10, 1946.

[8] P.Debye. Phys.Rev. 71(47)486.

[9] H.C.Brinkman. Physica 13(47)447.

[10] M.Adam and M.Delsanti. J.Colloid Interface Sci. 10(77)1229.

[11] G.D.J.Phillies. In press.

84

