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Abstract 
 

The largely unstudied extension of ultrasonic circulation measurement techniques 

(UCMT) to determine instantaneous lift in unsteady and three-dimensional flows has 

been addressed in this work. A combined analytical-numerical-experimental approach 

was undertaken with the goal of developing methods to properly convert the measurable 

time-dependent bound circulation to instantaneous lift force in unsteady flows. The 

measurement of mean sectional lift distribution along structure spans in three-

dimensional flows was also studied. 

An unsteady correction method for thin airfoils was developed analytically and 

validated numerically (with finite element solutions) to properly convert bound 

circulation to instantaneous lift based on unsteady potential flow theory. Results show 

that the unsteady correction method can provide increased accuracy for unsteady lift 

prediction over the Kutta-Joukowski method used in previous unsteady flow studies. The 

unsteady correction model generally should be included for instantaneous lift prediction 

as long as the bound circulation is time-dependent. 

Using the same framework, we also studied determination of instantaneous lift 

forces on stationary bluff bodies (circular cylinders) at low Reynolds number (Re=100). 

Various force models, including an approximate vortex force model, were studied. A new 

unsteady model, similar to that developed for the thin airfoils, using instantaneous bound 

circulation values, was proposed.  

Another important issue studied in this thesis is the effect of acoustic path 

sensitivity on bound circulation determination, which we found to be crucial for 
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accurately predicting the instantaneous lift in both unsteady flat plate and cylinder flows. 

Proper path selection should take into account the location of boundary layers, attached 

and shed vortices. These findings will be useful in future experimental design of UCMT, 

PIV and LDV methods. 

 Finally, we used the UCMT method to experimentally study the mean spatial lift 

distribution along structures. Low Reynolds number low aspect ratio (AR) wings that 

have application in micro-aerial-vehicles (MAV) were studied. The spanwise circulation 

(lift) distribution along the MAV wings exhibits a peak (maximum), and deviates from 

predictions of Prandtl’s lifting line theory. Although only ‘linear’ lift (due to bound 

circulation) was measured, comparison with force balance results showed that reasonable 

integrated lift values on low Re, low AR wings can be obtained using UCMT. 
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Chapter 1 

Introduction 

1.1 Background                          

The determination of the lift force on aerodynamic bodies in a fluid flow is of 

fundamental importance in many engineering applications. These include fluid-structure 

interaction problems such as the flow-induced vibration of aircraft wings, tall buildings, 

long bridges, and offshore engineering structures including flexible marine risers, cables 

and ribbons (Fig.1.1). These flows are characterized by both unsteady effects 

(oscillation) and three-dimensional spatial variations (along the structure) in the flow. 

These effects also occur in other flows (pitching airfoils, low aspect ratio wings), 

making lift measurement under such conditions a topic of general interest. In this 

research, a sub-class of these flows that exhibit unsteadiness and spatial variation will 

be studied. These include oscillating flat plate flows, cylinder wake flows and low 

aspect ratio wings. Though many issues need to be studied for these types of flows, our 

focus will be mainly on the topic of lift force determination through circulation 

methods. 

 Determination of local, unsteady lift force in these flows is critical due to the 

nonlinear coupling that exists between the structure motion and fluid forces. As shown 

in Fig 1.2, the motion of the structure influences the flow dynamics in the wake. The 

flow dynamics, in turn, determine the fluid loading (lift force) and hence the structural 

motion. As a result, accurate lift determination is a key in modeling of flow-induced 

vibration. Modeling of this type has been studied by many investigators. Only a brief  
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Fig. 1.1 Fluid-cable interaction by direct numerical simulation (Newman & Karniadakis, 1996) 
 
                     
             
    
 

                        

y(t)

Structure 
response

Wake dynamics

Fluid force F(t)

U

 
 
 
Fig. 1.2 Schematic of nonlinear coupling between fluid force, structural response and fluid loading
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summary is given here.  Detailed review of flow-induced vibration modeling can be 

found in Parkinson (1974), Iwan (1975), Blevins (1984), Sarpkaya (1979).  For 

example, a spring-mass modeling system for the coupling between structure motion and 

the exciting fluid force was studied by Bearman (1984). The model can be expressed as 

                               )(tFKyyyM =++ &&& β .                                                       (1.1) 

where y is the displacement of the body, M the mass per unit span, β the viscous 

damping coefficient  associated with the springs and their mounting, K the stiffness of 

the springs, F(t) the time-dependent fluid force. Physically, when a body is responding 

to vortex shedding, the fluid force must lead the excitation by some phase angle φ. The 

displacement and force F(t) can be presented as 

                  )sin()();sin( φωω +== tFtFtyy oo .                                     (1.2) 

where yo is the body vibration amplitude, Fo the fluid force amplitude. As a result, 

accurate determination of lift amplitude Fo and phase angle φ are critical for modeling 

of flow-induced vibration. 

Recently, Olinger (1998) developed a low-order dynamic model, based on circle 

maps, to study the dynamics of oscillating flexible cables. A spatial-temporal map 

lattice was used to predict the vortex shedding patterns and wake dynamics. 
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Here lC  is the fluid-induced lift force, k
nφ  is the phase between vortex shedding event 

and the lift force. As in the more traditional models described above, phase angle 

determination is again a critical element. 
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 Lift determination is also important for study of three-dimensional spatial flow 

variations along the body span. Fluid-cable interaction is one of the cases that involve 

the spanwise variation of vortex shedding patterns and fluid forces. Ramberg and 

Griffin (1976) studied the effect of vortex coherence on flow-induced forces on 

vibrating cables. Newman and Karniadakis (1996) utilized a parallel spectral element 

Fourier method to numerically study the flow over a flexible oscillating cable at laminar 

and transitional Reynolds numbers. They quantified and compared the coupled cable-

flow response for both forced and flow-induced cable vibrations. Three-dimensional 

patterns were also observed in the wake of two-dimensional bluff bodies (Triantafyllou, 

1990). One such mechanism includes the three-dimensional patterns resulted from a 

two-dimensional non-uniformity, such as the spanwise variation in body sectional size 

(Nuzzi et al, 1992). Spatial lift distributions in a similar flow, a flat plate with an 

imposed spanwise chord non-uniformity will be described in later sections (Yuan and 

Olinger, 1999). Details of the three-dimensional patterns generated from two-

dimensional bluff bodies were summarized in Williamson (1996). 

Finally, lift force determination is directly related to the structural stress and 

moment distributions at each spanwise sectional location. Fundamental understanding 

of lift force on structures will be beneficial in the design and construction of structures 

that are safe, functional, economical and able to resist impact from the environment 

over a required period.       

The fluid forces exerting on body immersed in a flow are derived from two 

sources: the normal pressure distribution exerted over the surface of the body and the 
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tangential shear stress distribution over the surface. The resultant force on a body can be 

decomposed into lift  (transverse force) and drag (in-line force), relative to the flow 

direction over the body. Lift is defined as the force component perpendicular to the flow 

direction, and drag is the component parallel to the flow direction. In this work, we 

focus on the lift force. While experimental techniques exist to measure the time-average 

mean lift on structures, little effort has been placed on accurate, non-intrusive 

techniques to measure the instantaneous lift at each local section in these types of flows. 

This will be a focus in this thesis. The main goal is to address certain aspects of these 

issues through extension of the ultrasonic circulation measurement technique (UCMT) 

developed by Schmidt (1970, 1975) and Johari & Durgin (1998), to study unsteady and 

spatially varying flows. Details of UCMT will be described in a later section. 

 

1.2 Review 

Traditional research efforts in fluid dynamics generally can include three 

aspects; theoretical work based on mathematical description of physical phenomena 

leading to governing equations of fluid motion, experimental study, and numerical 

simulation of the theoretical governing equations. In the following literature review, we 

will focus primarily on the theoretical and experimental investigations on lift 

determination. However, we will also focus briefly on certain numerical techniques, 

namely discrete vortex methods, when necessary to understand important theoretical 

aspects of lift determination.  
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1.2.1 Theoretical work 

It is well known that finding analytical solutions to equations of viscous fluid 

motion, associated with flow-structure interaction problems of practical importance, is 

often hindered by insurmountable mathematical difficulties. As a result, many past 

investigations involving the prediction of aerodynamic forces were simplified as much 

as possible to avoid the entanglement with the details of the viscous fluid motions. The 

assumption of potential flow (inviscid, incompressible, irrotational) has been a common 

simplification.  Even so, theoretical work involving force prediction has been less 

common compared to other aspects of research. 

The circulation theory of aerodynamic lift, the concept underlying a scientific 

breakthrough in understanding and calculation of lift, was first examined by Lanchester 

(1926). He suggested that flow over a lifting surface involved a circulating motion 

superimposed on the translation motion of the free stream. For example, a flow field 

over a lifting airfoil can be considered as two parts, a uniform flow and a circulatory 

flow. Lanchester theorized that the circulatory part of the flow could be analyzed by the 

conceptual vortex filaments first suggested by Helmholtz (1858), which were imagined 

as running along the span of the wing. Though Lanchester’s work described the 

circulation as the cause of lift, it was essentially qualitative, and no substantive 

aerodynamic calculation of lift was provided.  

Quantitative formula relating lift to circulation was developed by two 

researchers, Kutta (1902) and Joukowski (1906), working independently without any 

knowledge of Lanchester’s work (Giacomelli, 1934). In their work, a model of the flow 
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over a lifting airfoil was conceived to consist of vortical motions; the bound circulation 

vortex was embedded along chord line. A relation for calculating the lift per unit span 

of an airfoil was mathematically expressed as  

                                             Γ= UL ρ .                                                            (1.4) 

where Γ  is the bound circulation, ∫ ⋅=Γ ldV
rr

, expressed as line integral of the flow 

velocity taken around any closed curve encompassing the airfoil. Equation (1.4) was a 

revolutionary development in theoretical aerodynamics, named as Kutta-Jukowski (K-J) 

theorem, a key component leading to development of the UCMT that will be discussed 

in detail in a subsequent section. 

Use of the K-J theorem has been justified for steady, inviscid incompressible 

flows in the past. Because of the inviscid condition, the circulation around any closed 

curve enclosed the airfoil will remain constant and equal to the bound circulation within 

a curve that only encloses the airfoil for steady flow. In reality, however, the flow is 

viscous, and dissipation effects always exist. The circulation calculated within a curve 

far away from the model is thus zero, as is the circulation measured in a curve exactly 

matching the surface of the body due to the no-slip condition. Hence, an issue in 

applying this theorem in practice is selecting the proper closed curve that can provide 

the bound circulation for lift determination. Also the question of availability of this 

theorem under time dependent conditions is critical for unsteady flow study and is a 

major topic of our research. For example, Glauert (1959) and Katz and Plotkin (1991) 

found that an additional term to count for the unsteady effect of the circulation has to be 

included in the total lift force determination. 
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With incompressible unsteady potential flow theory; Katz and Plotkin (1991) 

have summarized earlier work by Theodorsen (1935) and von Karman & Sears (1938) 

on a two-dimensional unsteady flow around an oscillating flat plate. We will also use 

this flow as a representative unsteady flow in later sections. The unsteady potential 

theory assumes the flow is inviscid, time-dependent, and flow can be modeled with 

combinations of singularities (point vortex, source, doublet) as in steady potential flow 

theory. With the concept of velocity potential Φ and stream function Ψ, the complex 

potential theory can provide a good mathematical tool for analytical study. In the stress 

integration method, unsteady Bernoulli equation can act as the bridge to connect the 

circulation to lift force. 

                    
t

gZV
pp

∂
Φ∂

++=
−∞

2

2
1 r

ρ
 .                                                       (1.5) 

where ∞p is the static pressure of the free-stream flow, p is the static pressure on the 

surface of the airfoil, Φ  is the velocity potential, V
r

= Φ∇  is the velocity field. gZ is the 

gravitational potential energy which can be ignored for air flow. With 

),(1 Φ=⋅=Γ ∫ fldV
rr

 ),(2 Φ=⋅= ∫ fdspL  circulation Γ can be related with lift L.   By 

using a time derivative transformation between body frame (x,y,z) and inertial frame 

(X,Y,Z) (Fig 1.3). 
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Fig. 1.3 (a) Body (xyz) and Initial (XYZ) coordinate systems (Fig13.1 of Katz &Plotkin(1991)). 
(b) 2D view with nomenclature (Fig. 13.14 of Katz & Plotkin (1991)) 
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The unsteady Bernoulli equation can also be expressed as 

         
t

rV
pp

∂
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+Φ∇⋅×Ω+−Φ∇=
−∞ )()(

2
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0
2 rrr

ρ
 .                                       (1.7) 

 where 0V
r

, Ω
r

 is the velocity, rate of rotation of the airfoil, rr is the position vector in the 

body’s frame of reference. The continuity equation can be expressed as  

                                02 =Φ∇   .                                                                       (1.8) 

for an airfoil that is not rotating and only moving with velocity itUV
rr

)(0 = . With higher 

order small quantities eliminated, (1.7) can be simplified as  
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ρ
 .                                                         (1.9) 

hence, the pressures on the lower and upper surface of the airfoil will be 
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and the pressure difference across airfoil can be expressed as 

( ) ( )



 −Φ−+Φ

∂
∂

+−−+=−=∆ ),0,(),0,(),0,(),0,()( txtx
t

txutxutUppp ul ρ .       (1.12) 

According to the thin airfoil theorem, 
2

),(),0,( txtxu γ
=+ , 

2
),(),0,( txtxu γ

−=− , 

and ),(),(),0,(),0,(
0

txdststxtx
x

Γ==−Φ−+Φ ∫γ . Finally, the lift expression can be 

obtained through the pressure integration around the body as 



 11

             
44 344 21

B

cc

dxtx
t

ttUpdxL ∫∫ Γ
∂
∂

+Γ=∆=
00

),()()( ρρ  .                                   (1.13) 

where part A is the quasi-steady part and B is the unsteady part. )(tΓ  is the total 

instantaneous bound circulation around the body, and )(),(
0

tdsts
c

Γ=∫γ . The 

measurement of ),( txΓ , the circulation distribution along the airfoil chordline, in this 

equation is a challenge in experimental studies. This measurement will be discussed 

further in future sections.  

While the work of Katz & Plotkin (1991) will serve as the theoretical framework 

for later work in chapter 2, we also review other previous developments in the theory of 

lift determination that will also be applicable to our work. Wu (1981) developed a 

general theory for aerodynamic forces and moment, through a rigorous analysis of the 

viscous flow equations based on control volume concept, combined with vorticity 

transport and decay. When his theory is applied to steady flow over a flat plate or 

airfoil, a formula similar to Kutta-Joukowski theorem was obtained 

                                        )( asUL Γ+Γ= ρ  .                                                              (1.14) 

where circulation in two distinct regions is considered. sΓ  is the total vorticity 

(circulation) in the area just before the trailing edge, and aΓ  is the vorticity in the wake 

between the trailing edge and somewhere in the wake where the fluid velocity has 

recovered to the free stream velocity. Concerned about the viscous dissipation and 

decay, this work showed that for bound circulation determination, the selection of 

closed curves enclosing aerodynamic bodies is crucial. Later we will use a similar 
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technique of considering circulation in distinct flow regions when studying 

instantaneous lift forces for a circular cylinder flow. 

Lighthill (1986) analyzed the fundamental aspects of the wave loading acting on 

offshore structures; The main concept leading to an important advance in understanding 

of lift on bodies in an unsteady flow was developed to separate the total loading into a 

potential-flow force and an vortex-flow force. The potential flow force is related to the 

drag on structures and expressed as the well-known Morison equation, which is not a 

concern in this research. The vortex flow force is derived from the momentum of the 

vortex flow component, which can be expressed as ∫ ∀× dr ωρ rr

2
1 , where rr  is the 

position of a vortex element with volume ∀d  and vorticity ωr  in fluid flow. Similar to 

the Newton’s second law, the time derivative of the moment equals to the force. A more 

accurate vector expression for vortex force is given by 

                                           



 ∀×−= ∫ dr

dt
dFv ωρ rr

2
1  .                                              (1.15) 

Rockwell (1996) applied Lighthill’s results and equation (1.15) to the 

experimental study of flow around an oscillating cylinder, based on the flow field 

information obtained from particle image velocimetry techniques. Govardhan & 

Williamsom (2000) used it while investigating the vortex modes and frequency 

response for a freely vibrating cylinder. In later section, we will study the application of 

Lighthill’s results to estimate the instantaneous lift force on a circular cylinder at low 

Reynolds number. Our interest will be in determining if information measurable using 

the UCMT technique can be converted to an accurate lift estimation via equation (1.15). 



 13

Recently, more advanced techniques to obtain the flow velocity field 

experimentally have been used, such as the Particle Image Velocimetry (PIV). While 

discussion of experimental lift determination techniques will be reserved in section 

1.2.2, use of PIV has motivated a theoretical advance in this area. A theoretical 

expression for the evaluation of instantaneous forces on circular cylinder in an 

incompressible flow was put forward by Noca (1997). Based on a momentum principle, 

it can be expressed as 

           ∫ ∫ ∫ ××
−

−Θ⋅+∀×
−

−=
)( )( )(

)(
1

1
1

1

tV tS tSb

dSunr
dt
d

N
dSndr

dt
d

N
F rrrrrrr

ω .              (1.16) 

where N is the dimension of the space under consideration (N=2 in a two-dimensional 

space), Θ  is a tensor related to velocity, vorticity and viscous shear stress, V(t) is a 

volume bounded by a non-material surface S(t) moving with velocity ur . The first term 

in the right hand side of the equation is similar to the vortex force by Lighthill (1986). 

Application of Eq. (1.16) to cylinder wake experiments will be discussed in section 

1.2.2. 

Further investigations to develop refined theories for aerodynamic force 

prediction in unsteady flows have been undertaken in the past. Sarpkaya (1975) applied 

a numerical discrete vortex method to develop a lift expression for two-dimensional 

potential flow. The complex potential function and Joukowski transformation were used 

for the mathematical manipulation, and the generalized Blasius theorem (which apply 

the integration of derivative of the complex potential along a closed curve enclosing an 

aerodynamic body to calculate the normal and tangential force in a potential flow) was 
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used to determine the drag and lift. The lift includes two parts, quasi-steady and 

unsteady, it can be expressed as  
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where, U is the free stream velocity, kΓ and ku  are the circulation and velocity in the x-

direction of the kth vortex in the wake, while iku and ikr  are the velocity and location of 

the corresponding image vortex. Given that this is a numerical technique, it is difficult 

to apply in an experiment since the vorticity and velocity of each vortex element would 

need to be measured. However, we will later return to this equation to interpret some of 

our later results.  

 

1.2.2 Experimental work 

Several methods exist to obtain fluid forces acting on an aerodynamic body in 

experiments. In the following sections, the force balance method, pressure integration 

methods, particle image velocimetry (PIV) method and the ultrasonic circulation 

measurement technique (UCMT) are described. 

 Force balance measurement systems have been commonly used in aerodynamic 

research for many years. The term “balance” is generally used to describe instruments 

designed to measure forces on aerodynamic bodies with a relative high degree of 

accuracy. The first rough mechanical balance for measuring fluid forces was invented 

by Mariotte (Giacomelli, 1934) to study the forces created by a moving fluid impacting 

on a flat surface. Based on his investigation, he proved that the force of impact of the 
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fluid on the body varied with the square of the flow velocity. This is an early 

breakthrough in the history of aerodynamics. Later, it was derived theoretically based 

on the mathematical laws advanced by Newton in his Principia (1867).  

Since the invention of wind tunnel, aerodynamic research can be conducted in a 

controlled air stream under laboratory conditions. Correspondingly, various forces 

balances were developed for different force measurement requirements in various 

investigations. Six-component balances (three forces and three moments) are the most 

sophisticated set-up for aerodynamic research, but one, two or three-component 

balances are also used. However, a deficiency of force balances is that they are 

generally limited to measuring of total lift force on a structure, equivalent to integrating 

the local sectional forces along the span of an aerodynamic body. Force balance cannot 

isolate sectional lift forces that are important for determining the motion of flexible 

slender structures. As a result, an alternative method is required to measure the local 

sectional lift force. This is a goal of the present work, which will be addressed in a later 

section. 

Force balances generally operate on the principle of amplifying the effects that 

small structural deflections have on the capacitance, inductance, or resistance of 

measuring devices, such as strain gauges, load cells, or electromagnetic balances. The 

advantage of these types of balance is that the data can be acquired and processed more 

easily and automatically with the aid of modern computers.   
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Pressure integration methods involve obtaining forces directly from body 

surface pressure distribution, or from the pressure distribution along wind tunnel walls 

based on a control volume theorem.  

The surface pressure distribution integration method is more suitable for two-

dimensional flow measurements. Beyond the force acquisition capability, pressure 

measurement can also provide fundamental information related to the fluid motion 

around the body such as the velocity variation, separation effects and shear layer or 

vortex development. Experimentally measurement of the pressure distribution is 

generally carried out by covering the body with an array of pressure sensors. In some 

cases, however, the geometry of the model may be too small to permit the use of a 

sufficient number of sensors.  

The ‘pressure averaging’ method is another type of measurement technique 

based on pressure integration. In this technique, two sets of pressure taps are located 

around each half circumference of the cylinder. Each set of the taps is connected to a 

common reservoir (pressure averager), such that the average pressure over half the 

cylinder is obtained with insignificant distortion and phase shift. Then, by subtracting 

the integrated average pressure obtained on opposing sides of the cylinder, the net 

instantaneous transverse force is obtained (Surry & Stathopoulos, 1977; Bearman & 

Luo, 1988; Waker, 1990). This technique is more suitable for force measurement on 

two-dimensional rigid body that spans the tunnel test section. For sectional force 

measurement on flexible slender body, this method may not work.    
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The force on a model in a closed tunnel can also be determined from the 

reaction on the boundaries of the working section by measuring the distribution of the 

static pressure along the walls. The theoretical basis for this wall pressure method is the 

integral momentum equation. 

The integral momentum equation states that the time rate of change of 

momentum due to unsteady fluctuations of flow properties inside a control volume plus 

the net flow of momentum out of the control volume across control surface is equal to 

the total force acting on the fluid enclosed in the control volume. When the momentum 

theorem is applied to a control volume enclosing an aerodynamic body in a wind tunnel, 

the walls will be the control surfaces and the pressure variation on these surfaces can be 

used to determine lift, through the integration of the wall pressure difference (Doenhoff 

& Abbott, 1947). The only parameter one needs to measure is the pressure distribution 

along wall from infinite upstream to infinite downstream theoretically, based on the 

location of the test model. Practically, the measured range is only several times of the 

model scale. The error caused by this finite measured range can be corrected by a 

momentum scheme coefficient. For the measurement of pressure distribution along the 

walls, a multi-tube manometer or a series of pressure transducers can be used for steady 

flows. For unsteady flow, fast response pressure transducers must be used. The wall 

pressure measurement method can also be explained with Newton’s third law; the lift 

acting on the body is of the same magnitude of that acting on the walls, but with 

opposite direction. The fluid is only acting as a medium to transfer the lift force.  
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This method has been broadly applied for about seven decades. Recently, Yuan 

(1994) used it to validate a novel velocity integration method for the correction of wind 

tunnel wall interference for test models with larger blockages. The corrected force and 

pressure distribution on the cylinder was very good even for a 17% blockage. Linn 

(1999) used a similar method to measure lift on a oscillating pitching NACA 0012 

airfoil by integrating the pressure distribution along the tunnel walls at different angle 

of attack. The goal was to investigate the effects of reduced frequency and amplitude on 

the final lift force. As for the force balance measuring system, this pressure integration 

method is also more suitable for measure the averaged lift for two-dimensional flow 

around a rigid body. For local sectional lift measurement, alternative methods are still 

required.  

As described above, the traditional force measurement methods are not effective 

for local sectional lift measurements. Hence, one has to resort to some other methods 

that have the capability for sectional lift measurement under non-intrusive (natural) 

conditions.  Recently developed techniques such as the particle image velocimetry 

(PIV) method and ultrasonic circulation measurement method have addressed this issue. 

Particle image velocimetry (PIV) is a technique for simultaneously measuring 

three components of fluid flow velocity at points on a two-dimensional plane. Generally 

PIV includes several components. First, the fluid flow being measured is seeded with 

small tracer particles that can follow the fluid velocity fluctuations. Second, the flow is 

illuminated by a sheet of laser light at least twice. Third, the particle positions during 

each illumination are recorded by camera. The flow speed within the light sheet can be 
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calculated approximately by measuring the distance particles moved between each 

illumination. In identify corresponding particles between two images, more advanced 

techniques are needed. One of them is the autocorrelation method, in which the 

resulting peak represents the most likely particle distance.   

Given the measured velocity field, forces on an aerodynamic body in the flow 

can be obtained by using various theoretical equations described in previous section. 

Lin & Rockwell (1996, 1997, 1999) used laser scanning and PIV techniques to 

investigate the relationship between the vortex formation and fluid loading for a two-

dimensional streamwise oscillating rigid cylinder in steady current. Lighthill’s equation 

(1.15), Noca’s equation (1.16) and Sarpkaya’s equation (1.17) were used respectively to 

calculate the transverse forces, which were obtained from the integration of the velocity 

or vorticity in a control volume enclosing the body (stationary or oscillating). The 

results were compared with forces obtained from other methods such as pressure 

average technique, Kutta-Joukowski theorem and Blasius formula. The amplitude and 

phase shift were studied and the instantaneous vortex structures were related to the 

instantaneous force at various times. However, the influence of the size and shape of the 

PIV control volume used for integration was not studied. 

While the PIV technique provide instantaneous velocity field information which 

can illuminate important physical process in a flow, its use in lift determination is less 

well developed. Noca (1997) conducted an experiment in a water tunnel with a two-

dimensional rigid circular cylinder as the model. The PIV technique was applied for 

measuring velocity field around the cylinder, and force balance was used to obtain the 
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spanwise-average lift force to validate equation (1.16). The force was converted from 

the velocity field measured in a square domain enclosing the cylinder and translating 

with it. The results show that 500% error exists in lift values between PIV and force 

balance results (Fig 1.4).  Another disadvantage of the PIV is the cost of instruments 

and the complex alignment and operation of the system. 

In recent years, a novel method, ultrasonic circulation measurement technique 

(UCMT) has been developed that may prove useful in resolving some issues of lift 

measurement in unsteady flows. In this section, we will first introduce the basic 

principle of this technique, and then review some past investigations that used UCMT. 

 
 
Fig. 1.4 Lift force comparison.   ⋅⋅⋅⋅⋅ DPIV data;    Force balance data (Fig.2 of 
Noca et al (1997)) 
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The possibility of expanding the capabilities of UCMT for the unsteady and spatial 

varying flows is then examined.   

It is well known that lift can be related to circulation within an enclosing curve 

of an aerodynamic body through the Kutta-Jukowski theorem under appropriate 

conditions. This opens a way to experimentally obtain lift data through acquiring 

circulation data. Instead of obtaining circulation through the velocity measurement 

along a closed path and mathematical integration, the possibility of measuring 

circulation directly and non-intrusively using ultrasound was introduced by Schmidt 

(1970,1975). In the past thirty years, ultrasound circulation measurement technique 

(UCMT) has been improved significantly and verified as an effective way to measure 

flow circulation. A detailed review can be found in Johari & Durgin (1998). A simple 

introduction to this technique is described below. 

UCMT is based on the measurement of the time difference for two sound waves 

traveling oppositely along a closed path that encloses a body immersed in moving fluid  
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           Fig.1.5 Schematic of a closed sound path for UCMT 
 



 22

as shown in Fig. 1.5. Two ultrasonic transducers and two acoustic reflectors (mirrors) 

are generally employed to establish the closed path that encloses the bluff body. Each 

transducer acts as both emitter and receiver. The sound pulse emitted by the first 

transducer is redirected by the reflectors and received by the second transducer. The 

propagation speed of the sound wave is the sum of the local sound speed and the local 

fluid velocity. Hence, if the sound pulse travels in the same (opposite) direction as the 

local fluid speed, the sound transit time will be decreased (increased). This process is 

repeated by emitting a pulse in the opposite direction along the closed path. The transit 

times of the pulse in the two directions around the closed path are 

                            Tcw= ∫
+Va
dl   ;  Tccw= ∫

−Va
dl .                                                          (1.18)                           
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From Eq. (1.19) and (1.20), the local sectional circulation can be given as    
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where lp is the total length of the sound path, a is the sound speed, V is the local fluid 

velocity. In the derivation of eq (1.19), (1.20), the assumption 1<<aV  is applied, 

limiting the technique to low speed incompressible flow.  A major advantage beyond 

the non-intrusive nature of UCMT is its low cost. A typical UCMT system costs one to 
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two orders of magnitude less than a PIV system. While the PIV technique does yield 

more detailed local flow information (velocity, vorticity fields); In this thesis, we will 

attempt to show how global correlation measurements can also be very useful for lift 

determination in unsteady and three-dimensional flows.  

 In the past, UCMT has been used for experimental studies of various flows 

including free surface vortices in aqueous flows, delta wing circulation determination, 

wing tip vortex effects and lift study of airfoils with/without oscillation.  Smith et al 

(1995) conducted experiments to study the swirl strength of free surface vortical flow. 

A Rankine vortex model was used to validate the circulations measured from the 

UCMT technique.  Moreira & Johari (1997) studied the leading edge vortex effects on a 

delta wing. Circulation behavior was examined as it related to primary vortex burst 

location. Linear and nonlinear regimes were found at different range of angle of attacks 

(AOA). Test results highlighted the need for more rigorous models of circulation 

incorporating primary vortex behavior. Desabrais & Johari (1998) further studied wing 

tip vortex behavior on a sharp-edged NACA 0012 wing. The effects of the size of 

closed ultrasound path was examined, they found that the circulation distribution 

achieved its maximum level when the sound path surrounds the whole vortex. The 

comparison of the lift measured from a load cell and the lift from UCMT showed a 

better agreement in streamlined flow with angle of attack of less 10 degree. Beyond that 

AOA, fair agreement was observed. For the airfoil lift study, Purutyan (1990) used 

UCMT with a simplified single leg path to study the behavior of a plunging airfoil, the 

motion of the airfoil was always leading the lift by a phase angle. Weber (1995) used 
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the similar single leg path to investigate the stall behavior of a NACA 4418 airfoil 

undergoing pitching oscillation. At lower oscillation frequency, hysteresis loops was 

observed. Maximum lift increased linearly with the reduced frequency. Comparison of 

these results with other investigators yielded some disagreements in lift measurements. 

While past research did provide interesting results using UCMT technique, a 

primary concern is the conversion of the measured circulation to the lift force. The 

Kutta-Joukowski theorem is applicable to steady flow. However, it was also applied 

using a quasi-steady assumption, )(tUL Γ= ρ , in the work of Purutyan (1990), Weber 

(1995). Here )(tΓ  represents the measured unsteady circulation with an acoustic path 

enclosing the body. UCMT has not been applied to measure lift distributions along 

structure spans in three-dimensional flows or unsteady flows. Hence, extending this 

technique for unsteady and spatial varying fluid flows, while addressing the issues 

introduced above, is the major intent of this research.  

 

1.3 Major goals 

Our introductory sections have highlighted the need for accurate lift 

determination on aerodynamic bodies in unsteady flows. In particular, the fundamental 

importance of the lift force in understanding nonlinear coupling between structural 

motions and flow dynamics in fluid-structure interaction problems has been addressed. 

At the same time, deficiencies exist in current experimental techniques available to 

measure lift forces. These deficiencies are most acute in the areas of instantaneous lift 

measurement, and measurement of local, sectional lift forces along structural spans. 



 25

However, these two effects, unsteadiness and spatial variation, are also key 

characteristics of lift forces in fluid-structure interaction problems.  

An experimental method with the potential to address these deficiencies, the 

ultrasonic circulation measurement technique (UCMT), has been developed in recent 

years. This method has been applied primarily to measure mean (time-averaged) lift in 

experiments on various flows. However, the extension of the UCMT methods to 

measure time-varying lift forces in unsteady flows has remained largely unstudied. The 

UCMT methods have also not been applied to measure local, sectional lift forces along 

structural spans. The major goals of this thesis are to address these concerns by; 

• studying the extension of the UCMT methods to determine instantaneous lift values 

in unsteady aerodynamic flows using a combined analytical-numerical approach. 

• applying UCMT methods to measure mean lift distributions along the spans of 

structural elements in experiments on low speed, incompressible flows. 

• study the issue of dependence of UCMT  lift measurements on the specific acoustic 

path used to determine bound circulation values. 

To accomplish these goals, an integrated analytical-numerical-experimental 

approach outlined in the following paragraphs is used. Table 1.1 summarizes the 

research matrix. In Chapter 2, an analytical study of the flow over an oscillating thin 

airfoil (flat plate) is described. This flow serves as a representative unsteady flow.  We 

address the issue of the proper method needed to convert instantaneous circulation 

measurements (of the type attainable from a UCMT experiment) to instantaneous lift 

values. The work of Theodorsen (1935), Karman & Sears (1938), Katz & Plotkin 
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(1991), based on unsteady potential flow theory, is extended to develop this proper 

conversion method, which we name the unsteady correction method. The unsteady 

correction method incorporates an additional unsteady term in addition to the quasi-

steady Kutta-Jukowski term that has been utilized in past investigations using UCMT. 

The accuracy of the unsteady correction method compared to the quasi-steady Kutta-

Jukowski approach is studied. RMS lift amplitudes and phase angles determined 

resulting time traces of instantaneous lift force are compared. After establishing this 

basic framework, we analytically study additional unsteady flows, including pitching 

flat plates, plunging flat plates, and impulsively started flat plates, in a similar manner. 

In Chapter 3 we use numerical simulations to verify that the developed unsteady 

correction method can properly predict instantaneous lift values in viscous, unsteady 

flows. While our eventual goal is application of the unsteady correction method to 

circulation data from experiments, we choose to first perform this verification using 

numerical techniques. Numerical techniques offer certain advantages including the 

capability to obtain independent lift values through integration of surface stress 

distributions. Also, in the numerical simulations we can easily mimic the acoustic path 

that would be utilized in an experimental UCMT set-up. Study of the effect of variation 

of the acoustic path on lift measurements is conducted. The dependence of lift 

measurements on the prescribed acoustic path has not been systematically studied prior 

to the present work.  

The finite element simulation of viscous flow over an oscillating flat plate is 

conducted at Reynolds numbers (based on plate chord-length) on the order of 100. The 
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study is conducted at low Reynolds numbers to avoid complexities arising from 

turbulent, three-dimensional flows, such as the need for phase-averaging of lift 

measurements. Also, since our correction methods are based on inviscid theory, we 

believe that a highly viscous flow at low Reynolds number represents a ‘worst-case’ 

scenario, and that the developed the correction method would yield even better results 

for higher Reynolds number flows. Also, many open questions regarding vortex 

formation and flow-induced vibration still exist even at these low Reynolds numbers. 

The velocity flow fields from the simulation are analyzed to determine the 

instantaneous circulation by integrating local velocity vectors along the enclosing 

acoustic path. This bound circulation is then converted to instantaneous lift using the 

developed unsteady correction methods and the quasi-steady Kutta-Joukowski 

approximation. These lift values are compared to instantaneous lift values (true lift) 

determined from integration of the unsteady surface stress distribution.  

Given the success of this validation using the numerical techniques, we next 

study the application of the unsteady correction method of Chapter 2 to correct 

instantaneous circulation data from a previous experimental UCMT study on rotational 

oscillations of a thin airfoil (Weber 1995).  

Having achieved a better understanding of lift determination in unsteady thin 

airfoil flows, in Chapter 4 we study another important flow, low Reynolds number 

vortex shedding from a stationary bluff body (circular cylinder), using similar 

techniques. We study whether instantaneous circulation values (of the type attainable 

from UCMT experiments) can be properly converted to instantaneous lift values in this 
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flow. Motivated by earlier work of Wu (1981), we study various force models including 

a quasi-steady Kutta-Jukowski method, a vortex flow force model (Lighthill, 1986), and 

a new unsteady correction model similar to that developed for the thin airfoil flow of 

Chapters 2 and 3. Finite element simulations for flow over a circular cylinder at Re = 

100 are once again performed in order to obtain true instantaneous lift values (from 

surface stress integration), which are then compared to various combinations of the 

force models. We study whether UCMT measurements can provide the necessary data 

in experiments to properly apply the vortex flow force model.  

In the previous chapters, we used theory and simulations to study the issue of 

converting circulation to instantaneous lift force for unsteady flows.  In  chapter  5,  we 

turn our focus to experimental UCMT studies of lift variation in three-dimensional 

flows.  

Again, a flat plate airfoil is studied since three distinct regimes exist depending 

on the angle of attack (AOA). At small AOA, streamlined flow exists, at intermediate 

AOA, stalled flow, and at larger AOA, bluff body flow. To verify our UCMT methods, 

various flat plates with constant chord length or imposed chordlength non-uniformity 

are studied. The mean lift distributions along the plate span are measured with UCMT.   

The near wake vortex structure is also visualized with smoke visualization techniques. 

Once the experimental methods are verified, we study low Reynolds, low aspect ratio 

(AR) finite wings related to Micro Aerial Vehicle (MAV) applications. MAVs are small 

flying wing aircraft (with maximum dimensions less than 12”) that operate at low 

Reynolds number. Rectangular wings with  Re  <  42,000  and  AR < 3 are  studied  and 
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                                       Table 1.1      Research matrix giving details of proposed work 
 

     Goal Flow cases   Parameters            Description 

Develop correction 
method to properly  
convert 
instantaneous 
circulation to lift.        

 
 
 
  U 

Low angle of attack 
α,  Low amplitude 
ha /c,  
 Low reduced 
frequency k 

 
 
Analytical work. 
 (chapter 2) 
 

 
 
 
 
  U   
   

Verify the above 
methods applied to 
both streamlined and 
bluff body flows. 
Investigate the effect 
of the size and 
location of the 
integral path used to 
determine the bound 
circulation. 

 
 
 
   U 
               

 
  
Low angle of attack 
α,  Low amplitude 
ha /c,  
 Low reduced 
frequency k 
 
 

Numerical work. 
Use a finite element 
code to obtain 
pressure, integrated 
lift and velocity field. 
Develop logic to 
determine circulation 
within integral path 
and convert to 
instantaneous lift. 
(chapter3 & 4) 

 
 
 
 
 
   U 

 
 
 
3D flat plates flows, 
sinusoidal  
chord variation for 
UCMT verification 
studies. 
 
 

 
 
 
 
 
 
Measure mean 
circulation 
distribution along 
span of spatially 
varying flows (3D 
flows) 
                
 

 
 
 
 
 
U 
  
   
 

 
Low aspect ratio 
b/c, low Re ≅10000, 
flat plate flows with 
applications to 
micro-aerial 
vehicles 

 
 
 
 
 
 
Experimental work. 
 
UCMT techniques in 
wind tunnel for mean 
lift measurement. 
(chapter 5)  
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compared with Plandtl’s lifting line theory. Finally, the integrated lift force on low Re 

low AR wings will be compared with results from force balance measurements and 

previous investigations. 

The conclusions will be presented in chapter 6. 
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Chapter 2 

A Method for Converting Circulation to Lift 
                            Based on Unsteady Potential Flow Theory 
 
2.1 Introduction 

In this chapter, we develop analytical methods to properly convert instantaneous 

circulation measurements (of the type that can be obtained from UCMT experiments) to 

determine the instantaneous forces (lift) on a structure oscillating in a two-dimensional 

fluid flow. This section will focus on issues related to unsteady aerodynamics by 

analyzing various motions of a streamlined aerodynamic body. Following Theodorsen 

(1935), von Karman & Sears (1938) and Katz & Plotkin (1991), we primarily study an 

oscillating thin airfoil (flat plate) as a representative flow, concentrate on extending the 

UCMT techniques to measure lift in unsteady flows, and leave any discussions of spatial 

variation effects to later chapters.    

The connection between lift and fluid circulation within an area enclosing an 

aerodynamic body is given by the Kutta-Joukowski (K-J) theorem for steady flows. An 

experimental method based on the K-J theorem, the ultrasonic circulation measurement 

technique (UCMT), first proposed by Schmidt (1975) to measure the circulation around 

airfoil, has unique advantages. Details of UCMT method have been described in chapter 

1. While most of the research based on this method has focused on measuring mean 

(time-averaged) circulation and lift, less emphasis has been placed on developing 

methods to measure instantaneous circulation and lift required for unsteady fluid flows. 

Several studies have been attempted in this direction. Purutyan (1990) applied UCMT 

method on a plunging NACA-0012 airfoil at Reynolds number of 5.8×105, and Weber 
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(1995) investigated the dynamic stall characteristic of an NACA-4418 airfoil undergoing 

rotational pitching oscillation with Reynolds number in range of 6.7×105∼6.7×105. 

However, these investigations made several simplifications to the basic UCMT set-up 

described in chapter 1. First, they used a single acoustic path to enclose the airfoil (Fig 

2.1a). This is not a proper assumption for steady or unsteady flows such as pitching and 

plunging airfoil where a continuously generated vortex wake forms behind the airfoil. An 

closed ultrasound path (Fig 2.1b) used recently is the proper choice  ( Johari  &  Durgin,  

      
 Transducer 1 Acoustic Reflector  
 
         Vortex    

 
    Vortex  

               
      
      
    plPla  
      
      
      
      
 Transducer 2    Transducers 
 (a)                     (b)   
         

                                Fig 2.1 Schematic of a straight path (a) and closed path (b) for UCMT method  

 

1998; Desabrais & Johari, 1998). Also, the conversion from time-dependent circulation 

into lift was carried out by using a quasi-steady K-J approximation 

                                  )()( ttUL Γ= ρ   .                                                            (2.1) 

where U(t) and )(tΓ  are the instantaneous free-stream velocity and circulation 

respectively. Here, U(t)=Uo=constant. In a quasi- steady assumption, one assumes that 

variations of circulation occur slowly enough so that the K-J theorem (valid for steady  
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  Fig. 2.2 Unsteady lift values during pitching motion of thin airfoil measured with  
  UCMT, from Weber (1995) 
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flows) can be applied at each instant of time. Additional unsteady effects are ignored.  A 

typical result from Weber’s work is shown in Fig. 2.2.   The deviation of Weber’s lift 

results from other investigations suggests that equation (2.1) is not valid for unsteady 

flows. One goal of this chapter is to determine how much error is introduced when a 

quasi-steady K-J theorem is applied for unsteady flow.   

In this work, we further develop the ultrasonic circulation measurement technique 

to improve lift measurement techniques in two-dimensional unsteady flows. Our analysis 

will use unsteady potential flow theory to develop a method to properly convert the 

instantaneous bound circulation into lift based on the work of Katz and Plotkin (1991), 

hence open a new way to experimentally study unsteady flows. 

In next section, we will first study the relationship between the instantaneous 

circulation and lift based on unsteady potential flow theory. We then apply the results to a 

representative two-dimensional unsteady flow, a flat plate airfoil undergoing low 

frequency oscillation, plunging, or pitching motions, with small-amplitude in the x-z 

plane (Fig 2.3). The instantaneous angle of attack α(t) and the vertical displacement h(t) 

of the pivot axis located at x=a, are expressed as   

                    )sin(),sin( 00 thhht aa ωωααα +=+= .                                     (2.2) 

 The subscript “0” denotes the initial value and the subscript “a” denotes the oscillation 

amplitude. ω denotes angular frequency of the oscillating plate. 
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Fig 2.3 Nomenclature for the oscillating motion of the flat plate 

Fig 2.4 The plate chordwise circulation distribution required for determination of Γ(x,t) 
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2.2 Unsteady Lift 

             Theodorsen (1935) and Von Karman & Sears (1938) have studied the unsteady 

fluid forces on thin airfoils based on two-dimensional unsteady potential flow theory. 

Recently Katz & Plotkin (1991) have also summarized this work. In this section, we 

briefly review their work (part of their work has been introduced in chapter 1). 

  The lift force on a plate airfoil is given by  

                      
44 344 21

321

B

c

A

c

dxtx
t

tUpdxL ∫∫ Γ
∂
∂

+Γ=∆=
00

),()( ρρ   .                                               (2.3) 

As introduced in chapter 1, the first term A is due to the instantaneous bound circulation 

used when a quasi-steady K-J theorem is applied, and the unsteady term B includes the 

contribution from time derivative of ),( txΓ , which can be expressed as  

                             ∫=Γ
x

dststx
0

),(),( γ  .                                                                         (2.4)       

Here, ),( txγ  is the chordwise circulation distribution (Fig2.4).      

 Based on the classic approach of Glauert, ),( txγ can be approximated by a 

chordwise trigonometric expansion at any time instant as 

                         ∑
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θθγ .                             (2.5) 

Using the standard transformation 

                                      )cos1(
2

θ−=
cx .                                                                      (2.6) 

The parameters )(tEo , )(tEn are coefficients of a Fourier series, 
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where ),( txW  is the local downwash, which is related to the motion of flat plate and the 

velocity potential. Applying a time-dependent boundary condition (no normal flow across 

the surface of flat plate) and after some mathematical manipulation, it can be expressed 

as 
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where the higher order small quantities are neglected. BΦ , WΦ ,η  are the plate potential, 

wake potential and plate shape function respectively (see Fig. 1.3(b)). 

Substituting Eq.(2.4) - (2.7) in Eq.(2.3) and after some mathematic manipulation, yields 
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For the unsteady plate flow in Fig. 2.3, the chord line shape function can be expressed as 

                                       ))(()()( axttht −−= αη   .                                                    (2.10) 

where h(t), α(t) and a have been defined in section 2.1. This formulation allows for study 

of various plate motions including oscillating, plunging, pitching through the h(t) and 
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α(t) terms. Substitute Eq. (2.10) into (2.8) and (2.9), after some mathematic 

manipulation, Katz & Plotkin (1991) find 
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Here 
U
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ω

=  is the reduced frequency, C(k) is called the lift deficiency factor which is 

related to wake potential WΦ , The lift deficiency factor was originally introduced in 

studies of airfoil flutter mechanisms, and later approximated by using an asymptotic 

method (Theodorsen, 1935; Von Karman & Sears, 1938). It can be expressed as 
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A detailed derivation of C(k)an be seen in appendix B. 

             Katz & Plotkin then summarized results for a flat plate oscillating vertically with 

a constant angle of attack, plate motion equation (2.2) will become as 

                             )tsin(hhh;ttancons a0 ω+==α        .                                         (2.13) 

 Here h0 is the equilibrium location of the plate before the oscillating, and ha is the 

oscillation amplitude. Substitution of Eq. (2.13) into Eq.(2.11), yields 
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Typical time traces of the various lift component L, A and B obtained from Eq. 

(2.14)-(2.16) are presented in Fig.2.5. The plate angle of attack is 0
0 2=α , the non-

dimensional vibrating amplitude 08.0=c
ha , and the reduced frequency is 35.0=k .  

From the plot, we find that phase differences exist between L, A and B, with the phase of 

A leading L, and the phase of B always lagging L. It clearly shows that the unsteady lift 

term B is a significant portion of the total lift L for typical kc
ha ,,0α  values. As a result, 

the unsteady lift term must be carefully studied. 

 

2.2.1 Limitation of UCMT for Γ(x,t) determination 

       In Eq.(2.3), the unsteady term B includes the time derivative of the circulation 

distribution ),( txΓ . When x=c  

                                   ∫=Γ=Γ
c

dststtc
0

),()(),( γ .                                                        (2.17) 

which is the total bound circulation within a region enclosed by the acoustic path in a 

UCMT experiment (Fig. 2.6). 
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       Fig 2.5 A typical lift variation with time using Katz & Plotkin’s (1991) analysis of an     
      oscillating thin airfoil (U=5m/s, c=4”, k=0.35, ha /c=0.05, α=20) 
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Due to the limitations in applying the ultrasonic measurement technique (UCMT), 

the measurement of chordwise circulation distribution ),( txγ  and circulation ),( txΓ  is a 

difficult challenge in UCMT experiments.  In an experiment, it would require openings 

along the chord line to construct an ultrasound closed path to measure the circulation 

distributions ),( txγ and ),( txΓ (Fig. 2.6a). As a result, one could only measure the local 

circulation distributions at limited chordwise locations. The measured circulation 

distributions may be inaccurate because the existence of physical openings would affect 

the flow pattern and fluid forces on the plate. The experiment would be very challenging 

if the plate were oscillating. However, the instantaneous bound circulation )(tΓ  around 

the plate is measurable with UCMT technique (Fig 2.6b).  This motivates us to study if 

the bound circulation )(tΓ can be used to accurately approximate the instantaneous lift on 

the plate.  

U
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  Fig 2.6 (a) Required set-up to measure Γ(x,t) using UCMT. (b) Γ(t)  measurement using UCMT
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It essence we will make an approximation which studies whether accurate lift 

predictions can be made even if the detailed information from the chordwise circulation 

distribution (e. g. ),( txγ and ),( txΓ ) required in equation (2.3) is unavailable. This 

detailed information is replaced in favor of the attainable total bound circulation )(tΓ . 

This assumption is reflective of difference between the UCMT and PIV techniques. The 

PIV, which provides local flow fields, could be used to measure ),( txΓ . However, UCMT 

generally provides global information such as )(tΓ . 

 

2.3 Approximations 

             In the previous section, we discussed the inappropriate utilization of K-J theory 

in unsteady flows, and the difficulty in applying UCMT methods to experimentally 

measure ),( txΓ , a crucial component of the unsteady part of lift B. We next investigate 

these issues by developing approximations that will be applied to the oscillating plate 

flow of Fig 2.3. 

              Approximation 1: In this approximation, the quasi-steady part A of Eq. (2.3) is 

assumed to describe the lift on the oscillating plate through  

                      )
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Inserting Eq. (2.10) into (2.18), yields 
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Substituting Eq. (2.13) into (2.19), yields 
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              Approximation 2: From Eq.(2.17) and Fig 2.6b, we know that bound 

circulation )t,c()t( Γ=Γ  can be measured using the UCMT technique. In approximation 

2, we replaced ),( txΓ  by )(),( ttc Γ=Γ  in the unsteady B term of Eq. (2.3).  Now )(t
t
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is only a function of time, so the unsteady B term in Eq.(2.3) will be 
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Total lift will be 
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We will seek to determine the error that is introduced by applying these approximations 

to determine instantaneous lift values. 

From Eq.(2.6) and (2.17), we have  
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Inserting ),( tθγ  from Eq.(2.5) into Eq.(2.23),  and noticing that 

                     0)sin()sin(;
2

)(sin
00

2 == ∫∫
ππ

ϑϑϑπϑϑ dnd  

yields 

                          )](
2
1)([)( 1UE

t
UE

t
ct

t o ∂
∂

+
∂
∂

=Γ
∂
∂

π  .                                                 (2.24) 

Substituting this relation into (2.21), result in  
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Again inserting Eq. (2.10) yields 
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Inserting Eq. (2.13) yields 
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Further discussion of Eq. (2.29) can be seen in Yuan & Olinger (2002). A 

comparison of the resultant lifts of approximation 1 and approximation 2 to the true lift 

are presented in Fig. 2.7 for the case of U=5m/s, α = 20, ha/c=0.05, k=0.35. It is 

observed from the peak lift values that the quasi-steady lift, L(1) (Eq. (2.20)), 

underestimate much of the true lift, L (Eq. (2.16)). However, the lift of approximation 2, 

L(2) (Eq.(2.29)), slightly overestimates the true lift L. It is also observed that a larger phase 

angle exists between the lift curves L and L(1), and L is always leading the phase of L(1).  

However, L is always lagging the phase of L(2) and the phase angle between them is much 

small. Based on the above qualitatively comparison, we believe L(2) is a better    

approximation to the true lift. 
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 In order to quantitatively and systematically analyze these approximations, we 

define ∆Φ(1)
 as the absolute value of phase angle between lift L(1) and L; ∆Φ(2) as absolute 

value of phase angle between L(2) and L. In addition to the phase angle analysis, we also 

need to study the amplitude errors between those lift curves. Hence, we define relative 

errors as 
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Root mean square error as 
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where the definition of the root mean square lift amplitude is 
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Mean lift is defined as 
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Next, those observations in Fig.2.7 will be further quantified based on the definitions of 

phase angle and rms errors. 
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Fig. 2.7  Typical time traces of lift curves for quasi-steady (K-J) lift L(1), unsteady approximation 
L(2) compared to true lift curve L for oscillating plate (U=5m/s, α=20, k=0.35, ha /c=0.05) 
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2.4 Results and discussion 

 In this section we study the errors that are introduced (in rms lift amplitude and 

phase angle behavior) when the quasi-steady and unsteady approximations of the 

previous section are applied to an oscillating flat plate with chord length of c=10.16cm 

and U=5m/s to match typical experimental values attainable in typical wind tunnel tests 

(see chapter 5). The effects of the oscillation amplitude, initial angle of attack and the 

reduced frequency are studied. 

             The comparison of the relative errors in Fig. 2.8 shows the phase difference 

between )()1( te  and )()2( te is almost π. Another interesting result is that at any time, the 

absolute value of )()2( te  is always one third of )()1( te , or  

                                             )(
3
1)( )1()2( tete −=    .                                                      (2.34) 

This clearly shows that approximation 2 is a better approximation for the unsteady plate 

flow.  

            Fig. 2.9 presents the phase angle variations with plate oscillating amplitude ha /c, 

reduced frequency k and plate angle of attack α. For all the cases, the phase angle of 

approximation 2, ∆Φ(2), is always less than phase angle of approximation 1, ∆Φ(1). At a 

typical case of k=0.3, ha /c=0.1, ∆Φ(1) is almost 400, but ∆Φ(2) is just 80, that means 

approximation 2 can improve the phase angle by almost 80% ( %80)1(

)2()1(

≈
∆Φ

∆Φ−∆Φ ). 

This shows that approximation 2 is more accurate than approximation 1 (quasi-steady K-J 

approximation). The behavior of phase angle variation shows that they do not change 
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with the plate oscillating amplitude and angle of attack (Fig. 2.9a, Fig 2.9c), but increase 

with the increase of the plate reduced frequency (Fig. 2.9b).   

Fig. 2.10 presents the variations of rms errors of those approximations with plate 

oscillating amplitude ha /c, reduced frequency k and plate angle of attack α. Fig. 2.10a 

and Fig 2.10b show that )1(
rmse  and )2(

rmse  increase with the increase of plate oscillating 

amplitude ha /c and reduced frequency k, but decrease with the plate angle of attack (Fig. 

2.10c). The reason can be found from Eq. (2.16), (2.20) and (2.29), the capability of the 

unsteady term contributes much to the total lift with the increase of plate oscillating 

amplitude and frequency, compared to the quasi-steady term. However, with the increase 

of angle of attack, the contribution from the quasi-steady term increases, hence the effects 

of the unsteady term relatively decreases, this cause the rms errors decrease with angle of 

attack. From quantitative comparison, )1(
rmse  is always larger than )2(

rmse  for all the cases. At 

a typical case of k=0.4, ha /c=0.1, )1(
rmse  is almost 0.3, but )2(

rmse is just 0.191, that means 

approximation 2 can improve the rms error by almost 35%. This again confirms that 

approximation 2 is a more accurate than the quasi-steady K-J approximation 1 for 

unsteady lift prediction. Hence, approximation 2 is more favorable and we will study )2(
rmse  

variation in detail next. 

Fig. 2.11 presents the 3D plots of )2(
rmse  variation with plate angle of attack α, 

vibration amplitude ha /c and reduced frequency k. The general trend is that )2(
rmse  decrease 

with plate angle of attack, this can be observed from change of )2(
rmse  peak values from 

)2(
rmse =0.22 at α=20 to )2(

rmse =0.11 at α=80. Another characteristic is )2(
rmse  decreases with 
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decrease of plate oscillating amplitude ha /c and reduced frequency k.  This 3D plots also 

show that )2(
rmse may reach unacceptable high values ( )2(

rmse >15%) for specified larger plate 

oscillating amplitude and reduced frequency. This fact will motivate further development 

of a corrected unsteady approximation later in section 2.5. 

So far, we know that approximation 2 is favored and the behavior of its rms error 

)2(
rmse variation with plate oscillating amplitude, reduced frequency and plate angle of 

attack. However, in real UCMT experiments, it should have some guidance for initial test 

design so that the errors may be kept in a reasonable range at first. This needs more 

quantitative data of )2(
rmse  and we present them in Fig. 2.12, the 2D contour of )2(

rmse  as a 

function of k, ha /c and α. If we define %5)2( ≤rmse  as acceptable domain of the 

combination of k and ha /c at different AOA, these 2D contours can clearly show the 

acceptable area and unacceptable area ( %5)2( ≥rmse ). Interesting is that the unacceptable 

domain dramatically decreases with the increase of AOA, this contributes to the decrease 

of the contribution from unsteady term B and increase of contribution from quasi-steady 

term A, with increase of AOA. This kind plot can guide investigators using UCMT for 

quick estimation of errors to be introduced in experiments.  
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Fig 2.8 Time traces of the relative errors for approximation 1 and approximation 2 for the case of
U=5m/s, α=20, k=0.1, ha /c=0.1. 
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       Fig 2.9 Variation of phase angle with key parameters. a) effect of plate oscillating amplitude 
 
       ha /c . (b) effect of reduced frequency k. (c) effect of angle of attack α. 
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Fig 2.10 Variation of rms error with key parameters. (a) effect of plate oscillating amplitude ha /c .  
(b) effect of reduced frequency k. (c) effect of angle of attack α. 
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Fig. 2.11 3D plots of )2(

rmse variation with plate oscillation frequency k, amplitude ha /c at different 
angle of attack α. 
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Fig. 2.12  Contour of )2(

rmse variation with plate oscillating frequency k, amplitude ha /c at different angle 
of attack α. 
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2.5 Corrected unsteady approximation 

The previous section has detailed the effects of including the unsteady term (B) in 

Eq. (2.3) on the resultant lift about an unsteady oscillating flat plate. It, therefore, serves 

as a guide for determining whether inclusion of the unsteady term B as opposed to a 

quasi-steady approximation is appropriate. 

Analysis in previous sections does verify that inclusion of the unsteady term is 

appropriate and approximation 2 is more favorable. However, in this section, we will 

extend our results to develop a ‘corrected’ unsteady approximation for predicting lift 

more accurately.  Previously we have 
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If we define R (see appendix A) as unsteady correction factor as 

                                           )2(B
BR =   .                                                             (2.35) 

Then accurate lift can be expressed as  
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From Eq. (2.15) and (2.28), yields R value for oscillating plate as 
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Eq. (2.36) will be the key equation for properly converting the measurable bound 

circulation Γ(t) to instantaneous lift L(t) in circulation based methods such as UCMT, 

PIV and LDV. It will serve as an important result in our further studies in unsteady flow. 

Comparison of Eq. (2.36) and Eq. (1.17) shows that the B term in Eq. (2.36) is similar to 

the final unsteady term in Sarpkaya’s lift equation.  In chapter 3, we will utilize 

numerical simulation of flow over an oscillating flat plate at low Reynolds number to 

validate the effectiveness of the corrected unsteady approximation of Eq. (2.36) in 

determining instantaneous lift values. However, prior to this, we would like to first show 

that this framework can be applied to other unsteady flows in next section. 

 

2.6 Correction in other unsteady flows 

In this section, we will present our analytical results for plunging flat plate flow, 

pitching flat plate flow and summarize results of Katz & Plotkin (1991) for impulsive 

started plate flows. The goal is to expand our understanding of lift approximations to 

other unsteady flows.  

 

2.6.1 Plunging flat plate flow 

This type of flow has been studied with UCMT experiments by Purutyan (1990), 

we try to confirm if quasi-steady K-J approximation was appropriately used in the UCMT 

lift determination. 

The motion of the plate can be described with following equation 
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Here h0, h1 are the plate initial and final (altitude) locations, tc is the plate plunging time 

(Fig 2.13). A similar derivation (see Appendix A) as discussed in section 2.3, yields 
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The result shows that for plunging plate flow, no unsteady correction is necessary, and 

the quasi-steady K-J approximation can predict the lift force accurately. 

 

 

 

z

U α

x0

h1

h0 h(t)

Plunging plate

                              Fig. 2.13 Schematic of a plunging flat plate 
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2.6.2 Pitching flat plate flow 

In this case, the flat plate undergoes a periodic pitching motion about a pivot axis 

located at x=a, and the motion of plate can be expressed as 

                ttanconshh);tsin( 0ao ==ωα+α=α  .                                       (2.40) 

Here 0α is the plate's initial angle of attack before the oscillating, and αa is the oscillation 

amplitude (Fig. 2.14). Weber (1995) studied this flow with UCMT techniques. The lift 

force was converted from bound circulation with a quasi-steady K-J approximation.  

Using the same mathematical manipulation, yield 
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                           Fig. 2.14 Schematic of pitching plate flow 
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Here the unsteady correction coefficient R is a complex function of reduced 

frequency, pivot location and freestream velocity. Hence, for this flow, an unsteady 

correction is more difficult to apply. However, 0≠R means that effect of the unsteady 

term B exists and quasi-steady K-J approximation can not predict lift accurately. 

 

2.6.3 Impulsively started plate flow 

 We have studied unsteady correction term for oscillating plunging and pitching 

plates in our work, and found appropriate R values for each flow. Wagner (1925) and 

Katz & Plotkin (1991) also studied an impulsively started plate flow using similar 

techniques. Wagner (1935) places a single vortex flow at the plate quarter chord point to 

model circulation on the plate. Here we summarize their results. 

The motion for this flow can be expressed as (Fig 2.15) 
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         Fig. 2.15 Schematic of a impulsively started plate flow  
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Katz & Plotkin (1991) summarized the work of Wagner (1925), found that 
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The results show that for impulsively started plate flows, approximation 2 can be 

used for lift prediction. 

 

2.7 Summary 

The work in this chapter leads to an important corrected unsteady approximation 

for instantaneous lift prediction in unsteady flows with low amplitude and frequency 

motions, given by 
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+Γ= ρρ .                                                   (2.36) 

This equation is the basis for our research work in this thesis. The value of unsteady 

correction factor R has been established for different unsteady flows. 

The focus was on oscillating flat plate flow in this chapter. The results for this 

flow show that quasi-steady K-J approximation can not predict unsteady lift accurately. 

Our corrected unsteady approximation improves the lift prediction. We derived a concise 

expression for unsteady correction coefficient as 
4
3

=R . The behavior of the phase angle 

and rms error can provide guidance for investigators using circulation method (UCMT) to 

keep measurement errors in a reasonable range. We found that 
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• The phase angle increased with plate reduced frequency, but was 

independent of oscillation amplitude and plate angle of attack. 

• The rms error increased with increase of plate oscillation amplitude and 

reduced frequency, but decreases with angle of attack. 

We also studied other types of unsteady flow using the framework developed for 

oscillating plate flow. The focus was on the determination of R for plunging plate flow, 

pitching plate flow and sudden accelerating plate flow. We found R=0 for plunging plate 

flow and R=1 for an impulsively started plate flow. However, for a pitching plate, R is a 

complex function of plate oscillating frequency, pivot location and freestream speed. It is 

more difficult to correct the unsteady lift for this type of flow. 

In next chapter, we would like to apply numerical methods to further validate our 

developed corrected unsteady method. The advantages of numerical methods used to 

accomplish this will be described in chapter 3.  
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Chapter 3 

Validation of Corrected Unsteady Approximation 
Using Numerical Simulation 

 
 
3.1 Introduction  
 

In the previous chapter, we developed a method to properly convert the 

instantaneous circulation measurements (attainable in UCMT experiments) into the 

instantaneous lift force for several unsteady flows. We verified the Kutta-Joukowski 

theorem is only suitable for steady flows, though some of researchers still use it to 

investigate unsteady flows (Obasaju, Bearman and Graham, 1988; Weber, 1995; Unal, 

Lin and Rockwell, 1997). From our work in last chapter, we have learned that unsteady 

effects play an important role in lift force determination. Most importantly, we 

developed a method for determining the unsteady part of the lift due to the measurable 

bound circulation. In this chapter, we intend to further verify this corrected unsteady 

approximation by studying numerical simulation of flow over an oscillating flat plate. 

In these simulations, we will mimic the acoustic path used in UCMT experiments to 

determine bound circulation Γ(t) which will be converted to lift L(t) using the developed 

methods of chapter 2.  

We pursue numerical simulations for several reasons. While our eventual goal is 

application of the corrected unsteady approximation in UCMT experiments, verification 

of the results of chapter 2 through numerical simulation has certain advantages. First, 

numerical simulation provides an independent method to determine instantaneous lift 

force, namely integration of stress tensor along the surface of aerodynamic body. This 
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method does not depend on measurement of circulation. This independent lift 

measurement is more difficult in experiments. Current deficiencies in force balance 

techniques have already been discussed in chapter 1. Secondly, in a numerical 

simulation the geometry of the mimicked acoustic sound path can be easily altered. This 

is important because the effect of varying acoustic path on the resulting circulation 

measurements has never been systematically studied in UCMT work.  Because of the 

viscous dissipation effect, the circulation obtained within an enclosed curve far away 

from the body is zero, as it is for a curve along the exact surface of the lifting body due 

to no-slip boundary condition. This suggests that Γ(t) measurement may be acoustic 

path sensitive. The acoustic path variation is difficult to apply in UCMT experiments. 

As a result, a primary goal of this chapter is to study this aspect of unsteady UCMT 

measurements. Finally, numerical simulations provide detailed velocity/vorticity field 

that can be used to determine the instantaneous circulation Γ(t) by integrating tangential 

component of velocity vectors along the acoustic path. Hence, numerical simulation 

becomes our choice for investigating these issues.   

In this section, we used a numerical simulation based on the Galerkin finite 

element method as the main tool for our study on an oscillating flat plate flow. The first 

goal is to verify the corrected unsteady approximation of chapter 2. The second goal is 

to study how the size varying and location of the closed acoustic path alters the bound 

circulation determination.  The main function of the numerical simulation is to provide 

the unsteady flow field. Given this velocity field, an algorithm is developed to obtain 

the instantaneous bound circulation along different paths. Finally, we may validate our 
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developed correction method through comparison with the lift force obtained through 

pressure and stress integration.   

 

3.2 Numerical formulation 

The governing equations for an incompressible viscous flow that are solved in 

the finite element simulations are the continuity equation and Navier-Stokes equation 

                               ⋅∇ u = 0.                                                                            (3.1) 

                           σ•∇=
Dt

uRe D .                                                                     (3.2) 

where  I τσ +−= p is the stress tensor. Velocity vector u is non-dimensionalized using 

freestream velocity U, lengths with the chord length of the flat plate c, and time with 

c/U.  

The numerical grids are generated through PATRAN software and shown in 

Figure 3.1, the mesh near the plate is much finer so that the detailed near wake flow 

information can be captured. The boundary conditions of the computational domain are 

set as follows. At the inlet, upper and lower grid boundaries, velocity is set as the free-

stream velocity. At the surface of the plate, the no-slip condition is maintained. At the 

outlet boundary, a constant pressure condition is utilized following Malamataris (1991) 

and Olinger & Alexandrou (1995). The plate is aligned horizontally in line with the x-

axis, the angle of attack is controlled through changing the free-stream incidence 

relative to the chord of the flat plate. Based on the principle of relative motion, the 

oscillating plate motion )sin()( 0 thhth a ω+=  can be applied numerically through an 

oscillating free-stream flow at the inlet boundary with velocity 
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                                                                    (a) 
 
 

                                                                      (b) 
 
       Fig 3.1 Numerical grids used in the finite element simulations for a domain –3<x/c<6, -2<y/c<2 
       (a) grid 1: NM=1043, NND=4330, (b) grid 2: NM=1970, NND=8124 



 66

          .2;)cos()sin(;)cos(
c
UkthUvUu a =+== ωωωαα                (3.3) 

here α is the angle of attack, k the reduced frequency, ω the angular frequency, U the 

free-stream velocity. u, v are the resultant velocity in x and y direction. 

The non-linear Navier-Stokes equations are solved by using a classical Galerkin 

Finite Element approach, which has the advantage of unstructured meshes, element-by-

element formulation and processing, simplicity and rigor of boundary conditions being 

incorporated with sophisticated automatic mesh generation, adaptive meshing and re-

meshing, economical storage and improved solution techniques both in speed and 

accuracy (Lohner et al, 1984). The two primary unknowns, pressure and velocity, are 

solved using a segregated solution procedure, in which the conservation equations are 

solved to provide an intermediate velocity field at each time station through an explicit 

step after an initial guess for the pressure field 
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here n is the time counter, p the iteration counter. After applying the divergence 

theorem and integrating over the whole domain V, equation (3.4) can be written in finite 

element form as 
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The mass conversation equation can be written as 
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By combing Eq. (3.6) with (3.4), we can get the following equation 
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Substituting the stress tensor  I τσ +−= p , and applying the divergence theorem, 

equation (3.7) can be expressed as  
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The term τ⋅∇ can be evaluated separately as τλ ⋅∇= by using finite element form 

                             ∫∫ ∫ ⋅+∇⋅−=
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i ndAdVdV τφφτλφ .                                               (3.9) 

For each time step, the iteration procedure is repeated within the same iteration 

loop until convergence is achieved, and the velocity field and pressure distribution at 

that time step is available for post processing. The traction vector is integrated over the 

body surface to calculate the resultant lift force at each time instant.  The major 

parameters input to the FEM solver include Reynolds number, plate angle of attack, 

oscillating amplitude and reduced frequency. Further detailed information about the 

numerical scheme can be seen in Olinger et al  (1995). 

 

3.3 Circulation determination 

Generally, circulation can be obtained through the line integration of velocity 

along a closed path, as long as the velocity field data is known. With the velocity field 

data at each time-step provided by the FEM solver introduced in section 3.2, we can 

calculate the circulation value along a mimicked ultrasound path in the flow. A 

description of the algorithm for circulation determination follows. 
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                                         Fig 3.2 Schematic of circulation determination 
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Suppose a rectangular integration path is constructed with four points A(x1,y1), 

B(x1,y2),  C(x2,y2),  D(x2,y1), and  the  coordinates x1, y1, x2, y2  are  arbitrarily  selected in 

order to study the size and location of the ultrasound path effects on determination 

(Fig.3.2). The circulation in the area enclosed by ABCD can be obtained through the 

following expression with discrete method the bound circulation 

          ∑∫
=

∆⋅=⋅=Γ
M

k
kP

ABCD
ABCD lVdlV k

1

.                                                           (3.10) 

where Pk represents any points which is located on the ultrasound path, kPV means the 

velocity at point Pk (xk,yk) ( 2121 ; yyyxxx kk ≤≤≤≤ ). The parameter kl∆ is the 

infinitesimal distance along the path at point Pk, and M is the total number of the 

discrete points on the closed path. 

Due to arbitrarily selection of the ultrasound path ABCD, the coordinates of 

point Pk (xk,yk) may not match any one of the mesh nodes at which the velocity and 

pressure data are determined. Hence, we use the flow information at the nearest node to 

represent the flow at Pk. The nearest node is determined by finding the minimum 

distance between Pk and node Ni(xi, yi) through 

                 22 )()( ikikikki yyxxNPl −+−==   .                                       (3.11) 

Here Ni represents an arbitrary node position in the computational domain, kil  is the 

distance between point Pk and Ni. When lkj reaches a minimum value, then that node in 

the domain will be selected as the most representative of point Pk on the ultrasound 

path, The velocity at that node is then used to calculate the circulation around the 

arbitrarily selected path ABCD. A subroutine was developed and inserted into the FEM 
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solver introduced in section 3.2 to provide the circulation value at any time step. These 

methods will be used for further validation of the analytical results of chapter 2 for 

unsteady lift force determination.  

 

3.4 Code validation 

The finite element simulation of viscous flow over an oscillating flat plate is 

conducted at Reynolds numbers (based on plate chord-length) on the order of 100. The 

study is conducted at low Reynolds numbers to avoid complexities arising from 

turbulent, three-dimensional flows, such as the need for phase-average of lift 

measurements. Also, since our correction methods are based on inviscid theory, we 

believe that a highly viscous flow at low Reynolds number represents a ‘worst-case’ 

scenario, and that the developed correction method would yield even better results for 

higher Reynolds number flows. The low Reynolds number also implies large boundary 

layer thickness. This will become important in our later acoustic path sensitivity study 

where we wish to resolve the effect of the boundary layer on determined circulation 

values. Also, many open questions regarding vortex formation and flow-induced 

vibration still exist even at these low Reynolds numbers.  

Before any further study, the numerical codes must be first validated to ensure 

that simulation results are grid and time step independent. This validation is conducted 

for flow around a stationary flat plate at angle of attack α=60 first, then for plate 

oscillating with non-dimensional amplitude as ha/c=0.05 and reduced frequency 

k=0.15, with intention to check if the numerical code can provide reasonable lift force 
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Fig. 3.3 Grid effect on results with ∆t=1/40, (Grid 1: NM=1043,NND=4330; Grid 2: NM=1970, NND=8124). 
(a) Stationary plate. (b) Oscillating plate with k=0.15, ha/c=0.05
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predictions that are independent of grid and time steps resolution. The plate thickness is 

set at t/c=0.12. This was done to preliminarily incorporate some airfoil thickness effects 

(that will occur in experiments) into the flow, while also eliminating some numerical 

difficulties (mesh generation).   

 

3.4.1 Grid effects 

The numerical grid resolution may affect the final numerical results 

dramatically. Theoretically, higher resolution grids yield more accurate results. 

However, increase in grid resolution will increase the CPU run time for the codes. 

Hence, a proper grid should be selected that fulfills both requirements of providing 

accurate results with reasonable CPU running time.     

Here we study two grids as shown in Fig 3.1. The number of elements for grid 1 

is NM1=1043, total nodes number is NN1= 4330. Grid 2 essentially doubles the grid 

resolution of grid 1, with NM2=1970, NN2=8124.  

Fig 3.3 presents this comparison. The trend of the numerical data for a stationary 

plate in Fig. 3.3 (a) is similar; the lift forces will gradually converge to a final constant 

lift coefficient after the initial transient process. Grid 1 results in 4808.0≅LC ; grid 2 

leads to 4642.0≅LC . That means the difference between them is about 3.6%. Fig. 

3.3(b) shows the grid effect on lift for a sinusoidal oscillating plate with amplitude 

ha/c=0.05 and reduced frequency k=0.15. After the initial transient period of time, the 

lift curves gradually follow the sinusoidal nature of the plate motion. The lift coefficient 

from grid 1 is always larger than that from grid 2. However, the difference between 
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Fig 3.4 Time step effects on the results with Grid1:NM=1043, NND=4330, α=60
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them is approximately 3.6%, same as the difference in Fig.3.3 (a) for the stationary 

plate. With such small difference exist between these two grids and consideration of 

shorter running time, we select grid 1 to be used in our numerical simulation. 

 

3.4.2 Time step effects 

We also studied the effect of varying the time step on the numerical results. We 

seek to determine an optimum time step balancing the conflicting trends of more 

accurate solution but longer codes running times with smaller time steps. 

Fig 3.4 presents the time traces of the lift forces for ∆t1=1/40 and ∆t2=1/100. 

The numerical solutions are largely independent of the variation in time step, hence 

∆t1=1/40 will be used in the present work in order to yield shorter run times. The final 

grid and grid are set as grid 1 (NM=1043, NND=4330, ∆t1=1/40).  

Beyond the validations and convergence studies described here, we also note 

that the same numerical formulation and similar resolution grids have been used in 

numerical studies of oscillating cylinder flows in Olinger et al (1993) and Olinger et al 

(1995).   

 

3.5 Bound circulation determination 

3.5.1 Background 

In this section, we address in detail the issue of whether UCMT circulation 

measurements in viscous flows are dependent on the chosen acoustic path (for example, 

paths C1 and C2 in Fig 3.5). This acoustic path sensitivity was introduced earlier, but has 



 75

never been addressed in a systematic fashion. In a study of forces, circulation and 

vortex patterns around a circular cylinder in oscillating flows, Obasaju, Bearman and 

Graham (1988) determined the bound circulation through velocity measurement along a  

square closed path around a circular cylinder, with the leg length as 1.35d (d is cylinder 

diameter), however no justification was given for this selection. In a study of evaluation 

of time-dependent fluid dynamic forces on bluff bodies, Noca (1997) used a 

momentum-based control volume formulation to process velocity fields measured 

through the Particle Image Velocimetry technique. Different results were obtained with 

three domains of different size, and the author indicated that the largest domain couldn’t 

yield right answer. In the investigation of bound and wake circulation on a helicopter 

rotor,  Bhagwat  &  Leishman (2000)  measured  the  circulation  with  Laser  Doppler 

Velocimetry techniques. They pointed out that circulation measurements are very 

sensitive to the shape and size of the integration path, but offered no satisfactory 
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    Fig 3.5 Schematic of sound path effects on bound circulation determination 
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guidelines for choosing the right integration paths. Hence, a systematic study of path 

selection in force determination through circulation methods is needed. 

 

3.5.2 Effect of closed integration path variation 

As introduced in last section, the lack of previous guidelines for acoustic path 

selection, to some extend, is the result of the lack of systematical study of the path size 

effects, due to the limitations in experiments to adjust the path size. However, in 

numerical simulations, the path size and location can be easily adjusted, as introduced 

in section 3.3.  

Arbitrarily, we can select any closed path around the body, composed by four 

corners at A(x1,y1), B(x1,y2), C(x2,y2), D(x2,y1) in Fig. (3.5). We chose to fix three of the 

legs, and then study the circulation variation when changing the location of the 

remaining leg. Here we present the results in Fig 3.6 for flow around a stationary plate 

at angle of attack of 60. Fig.3.6 (a) presents the circulation variation with movement of 

leg AB. Fig3.6 (b) (c) (d) shows similar results for variation of leg CD, AD and BC. In 

Fig 3.6(a), but characteristics of all the plots, we see that a stable region exists where 

the circulation result is independent of the precious location of the leg, and these stable 

regions can provide a basis for path selection. The fast drop of bound circulation with 

the increase if distance away from leading edge may be due to some numerical 

boundary effects on bound circulation values. In Fig. 3.6(b), x2 /c leg must remain in 

near wake to avoid effect of shed vorticity in wake. In Fig. 3.6(c) and (d), the stable 
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regions have some relation with the thickness of boundary layers. We estimated the 

thickness of boundary layer at the plate trailing edge based on equation      

                                                  
Re
2.5

=
c
δ  .                                                               (3.13) 

it yields 52.0=c
δ for Re=100. Considering the thickness of the plate 12.0=c

t  and 

the origin of coordinate system is located in center of the plate, the thickness of 

boundary layer above and under plate should be 58.0±=c
yδ and this has been marked 

in Fig. 3.6c and Fig. 3.6d. The relative location between boundary layer and the stable 

regions suggest that the path selection should be at the edge of the boundary layer, and 

this is reasonable and consistent with inviscid potential flow theory used for developing 

our corrected unsteady method in chapter 2. In potential flow, ‘surface velocity’ is at the 

body surface, but in real viscous flow, it is actually at edge of the boundary layers.  

These findings also have implications for PIV and LDV studies. For example, due to 

resolution and body interference problem, it’s hard to obtain the vorticity values within 

boundary layers in PIV and LDV studies. For bound circulation determination, it should 

be a good method to use ∫ ⋅=Γ dlV
r

 on a path just outside the boundary layer to replace 

the traditional method using ∫∫ ⋅=Γ dAωr  operated within boundary layers. Based on 

the results from Fig. (3.6), we schematically present the reasonable region for acoustic 

path selection shown in shadow region in Fig. (3.7).  

While these results are obtained at a single angle of attack α=60, we believe they 

will provide reasonable estimates for proper path selection for  angle  of   attack  in  the 
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streamlined flow region below the stall angle. From this study, the proper closed path 

selected is set as x1= -0.7208c, x2 = 0.8893c, y1= -0.5689c and y2= 0.7007c for the 

reminder of the numerical work on the flat plate. In the present work, we have not 

repeated the path sensitivity study for oscillating plate flows. However, we point out 

that in our numerical simulations we study low amplitude oscillations with ha/c < 0.15, 

this is the range for which the theory of chapter 2 applied. If this oscillation amplitude is 

added to the boundary layer thickness, the ‘new’ boundary layer thickness will be 

7.0/2 ≅cy , it still remains within the stable region of Fig 3.6(d). As a result, the same 

closed path will be used when plate oscillation effects are introduced into the numerical 

simulation.   

These path selection guidelines will aid in sound path design in future UCMT 

experiments. We note the additional criterion that in UCMT experiments, one often 

strives to reduce the total acoustic path length in order to maximize acoustic pulse 

signal-ratio and sampling frequency. Beyond its usefulness in the present and future 

UCMT studies, this systematic study of the sensitivity of results to variation of 

integration path has broader implications for PIV and LDV studies. Investigations 

where local velocity and vorticity data are integrated over an enclosed region can be 

benefit from the present results. 

 

3.6 Results for oscillating plate flow 

In this section, we present the results from numerical simulations on a flat plate 

at a single intermediate value of angle of attack α=60. While a widen variation in α 
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could be conducted, we point out that the unsteady potential flow theory leading to the 

unsteady correction methods of chapter 2 is only valid within the limited AOA region 

below stall (α ≤ 100). Also study of AOA variation in the analytical work of chapter 2 

showed smooth, monotonic variation in results (rms error amplitude, for example) over 

a wider range of 20 ≤ α ≤ 80. As a result we would not expect to see dramatic 

quantitative difference in results in this section if a larger range bracketing the 

intermediate AOA was studied. The unsteady correction methods of chapter 2 are 

incorporated as follows. The bound circulation Γ(t), from Eq. (3.10), is determined at 

each time step. The quasi-steady approximation (K-J theorem) of equation (2.18), along 

with the corrected unsteady approximation (Eq. (2.36)) 

                                            )()1( tUL Γ= ρ    .                                                             (2.18) 

  
dt

tdcRtUtL )()()()3( Γ
+Γ= ρρ .                                              (2.36) 

are used to convert the numerical bound circulation Γ(t) into appropriate lift values. 

The reduced frequency of the oscillating plate was set at four values k=0.1, 0.2, 

0.3, 0.4. Amplitude was set at three values ha /c=0.05,0.1, 0.15. The numerical grid and 

time step are set at NM=1043, NND=4430, and ∆t=1/40 as discussed in our validation 

studies.  

Fig 3.8 (a)-(e) presents the flow fields, presented with contour of u-component 

of velocity field, around the oscillating plate at five time instants of one cycle with 

α=60, ha/c=0.15, k=0.15 and Re=100. The corresponding lift values in Fig. 3.8(f) 

shows the periodic variation due to the plate oscillating in a harmonic style, this can be 



 82

 

 

 

 

(a) tU/c= 10.325 (b) tU/c= 15.252 

(c) tU/c= 20.7 (d) tU/c= 26 

(e) tU/c= 31.3 
(f) time trace of lift 

Fig 3.8 Flow visualization represented by contour of u-component of velocity in the field around a
flat plate with α=60, ha /c=0.15, k=0.15 and Re=100. The flow fields a, b, c, d, e correspond to five
specific times lift in one cycle of the lift time trace. 
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judged from the almost same values of both lift and flow fields at (a) and (e).   From 

these flow fields, we see the cavities attached to the plate, not the separation bubbles for 

steady flow, due to two reasons. On is larger thickness of the plate t/c=0.12 and another 

reason is the unsteady oscillating of the plate. Due to the existence of a cavity behind 

the plate instead of a open separated boundary layer, the calculation based on laminar 

boundary (from Eq.(3.13)) overestimates the boundary layer thickness. Hence, the 

selected optimum closed path is appropriate enough for circulation determination. In 

addition, Fig. (3.8) shows that the numerical code can provide good information for our 

studies. 

Fig 3.9 presents a typical time trace of the numerical bound circulation Γ(t) and 

plate instantaneous location h(t). The plate non-dimensional amplitude is set as ha/c = 

0.1, reduced frequency as k=0.4, α=60 and Re=100. The bound circulation shows a 

periodic variation after a short transient time. The phase of the plate motion is always 

leading the phase of the bound circulation. This is the reasonable result because the 

plate motion affects the wake dynamics leading to the fluid loading through circulation 

as discussed in chapter 1.   

Fig 3.10 is a typical time trace of the lift forces and the plate instantaneous 

location from the numerical simulation. The quasi-steady lift )1(
lC , corrected unsteady 

approximation )3(
lC , and the true lift coefficient lC  obtained from plate surface stress 

integration are all presented. Plate non-dimensional amplitude is set at ha/c = 0.1, 

reduced frequency as k=0.4 and α=60. After the initial transient period, the lift forces 

also are periodic in nature following the periodic motion of the plate. The phase of the 
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plate location is always leading the phase of the true lift lC  by approximate a quarter of 

a cycle (
2
π ). The phase difference, )1(∆Φ , between the true integrated lift and the quasi-

steady lift is larger than the phase difference, )3(∆Φ , between the true lift and corrected 

unsteady lift approximation. The phase difference )1(∆Φ , )3(∆Φ  are a measure of the 

accuracy of the various unsteady approximation in correctly predicting the proper phase 

of the lift forces. We will further quantify these phase difference over a wide range of 

flow parameters, but first discuss the behavior of the rms lift amplitude. As in chapter 2, 

we use root mean square error for the comparison of the lift force amplitude. 

Fig. 3.11 presents the variation of phase difference ( )1(∆Φ , )3(∆Φ ) for the quasi-

steady and corrected unsteady approximations for a range of reduced frequency and 

amplitude  of  plate  motion.  In Fig 3.11a, the reduced frequency is fixed at k=0.3 and 

ha /c varied for ha /c<0.15. The phase difference for the quasi-steady approximation are 

in the order of 400, while the corrected unsteady approximation reduces these difference 

to approximation 150, an improvement of approximate 60%. The phase difference  

( )1(∆Φ , )3(∆Φ ) are found to be independent of the ha/c amplitude level. Fig 3.11b 

presents the variation in )1(∆Φ , )3(∆Φ when reduced frequency k is varied at a fixed ha 

/c=0.1, the phase difference )3(∆Φ is reduced from the quasi-steady value )1(∆Φ over the 

entire range of k. While the unsteady corrected method improves the phase prediction 

significantly, value of )3(∆Φ  remains as high as 0)3( 15≈∆Φ at larger k values. At low k 

values, phase differences 0)3( 5<∆Φ are obtainable. The phase difference increases with 

increase in reduced frequency k. 
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Fig 3.12 presents the variation of root mean square (rms) errors of the lift force 

(defined in chapter 2) for the quasi-steady and corrected unsteady methods over a range 

of flow parameters. Here, the analytical lift L is replaced by the true lift from surface 

stress integration. Fig 3.12a shows the rms error variation with plate oscillation 

amplitude ha /c at a fixed reduced frequency of k=0.2. Fig 3.12b shows the rms error 

variation with plate oscillation reduced frequency k at a fixed ha /c=0.1. Results show 

that rms error increase with both the plate oscillating amplitude and reduced frequency. 

The rms error for the the unsteady corrected method is much smaller than that from the 

quasi-steady approximation for all ha /c and k values. Larger amplitude and reduced 

frequency leads to the worst case, at k=0.4 and ha /c=0.1. The rms error from the quasi-

steady approximation is approximate 31%; from our corrected unsteady method, it’s 

reduced to 12%. The corrected unsteady method can improve the rms error by almost 

60%. In additional, we also run the case of higher Reynolds number (Re=200) flow 

around the oscillating plate (at k=0.4 and ha /c=0.1) to study the Re effects on results, 

within limitations of present numerical simulations (not including turbulent model and 

3D effects). The results show that the rms error at Re=200 is approximately 8%, smaller 

than that for Re=100. This shows that our unsteady correction method can predict rms 

lift amplitude within 10% even at the highly viscous Re=200, and confirms our idea that 

Re=100 is a worst case of scenario and the unsteady correction method should yield 

better results at higher Reynolds number.  

Before turning to other issues, we point out that the circulation distributions 

γ(x,t) and Γ(x,t) introduced in chapter 2 are attainable from our numerical simulations. 
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Fig. 3.13 shows typical distributions for k=0.2, ha /c=0.1, Re=100, α=60 at one instant. 

In Fig. 3.13a, a higher vorticity region is observed near leading edge. It must be 

remembered that the γ(x,t) distribution in the viscous flow summarizes effects from both 

upper and lower surface boundary layers. Near the trailing edge, the γ(x,t) distribution 

becomes negative suggests that lower surface boundary layer with negative vorticity 

dominates. In a potential flow, γ(x,t)=0 at trailing edge due to the Kutta condition. In 

Fig. 3.13a, γ(x,t)=0 has shifted away from the trailing edge. These observations lead to 

consideration of the unsteady Kutta condition in these flows. In an unsteady flow, the 

location of stagnation point may oscillate and move away from the trailing edge. Our 

assumption of low frequency and low amplitude should imply that this movement is 

small in an inviscid flow. However, our simulations are highly viscous with thick 

boundary layers making interpretation in terms of the Kutta condition difficult. This 

needs further study. In Fig. 3.13b, the parameter Γ(x,t) is presented. We perform another 

path sensitivity study to determine how Γ(x,t) results are affected. Path 1 is the optimum 

path from Fig. 3.7. While in path 2, γ(x,t) values from leading to trailing edges (-

0.5<x/c<0.5) are integrated. Again, a sensitivity to path geometry is observed. This 

could have implications for PIV studies which could possibly measure Γ(x,t). The 

enclosed integration region in these studies would have to be carefully selected. 

  

3.6.1 Correction of experimental data from pitching plate study 

In this section, we study application of our corrected unsteady method to correct 

previous UCMT data from experiments on a pitching airfoil (Weber et al, 1995). Our 
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intent here is to study how much the properly converted lift values will deviate from lift 

values determined using the quasi-steady approximation, as was done in Weber et al 

(1995). We point out that Weber used a single acoustic leg downstream of the airfoil 

(see Fig.1, Weber et al, 1995) and not a closed acoustic path. Also, circulation data was 

often obtained for only one-half of an oscillation cycle. Given those facts, we will 

accept the measured circulation values as valid, and apply our unsteady correction 

methods.  

Reduced frequency k is one of the primary parameters studied in Weber et al 

(1995) for the pitching airfoil. Fig 3.14 represents a low reduced frequency case 

(k=0.059) in Weber’s work. In Fig 3.14a, measured Γ and lift coefficient values from 

Weber et al (1995) are presented for a pitching NACA 4418 airfoil with motion 

tta 10sin117sin 00
0 +=+= ωααα . The )(tf=α curve shows that the experimental 

data was only acquired in one half of a sinusoidal oscillation cycle. Prior to reaching the 

maximum angle of attack, the circulation and lift curves have a similar sinusoidal shape, 

but after the maximum point, they drastically deviate from the sinusoidal behavior. The 

lift and circulation values lead the angle of attack curve by a fairly large phase angle. In 

Fig 3.14b, the time derivative of circulation dΓ/dt and the unsteady correction factor R 

(from Eq.(A.19)) for this data are presented. The value of R is generally small in the 

area of the maximum angle of attack. Physically, when the pitching airfoil approaches 

αmax, its motion gradually becomes slowdown and stop, the contribution from the quasi-

steady term A in Eq. (2.3) to the total lift become larger, and correspondingly leads to 

the effect of the unsteady term B smaller. In Fig 3.14c, the R and dΓ/dt results from Fig 
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3.15(b) are applied through Eq. (2.36) yielding the corrected lift coefficients which we 

compare to the original Weber et al (1995) data. Large correction in lift coefficient is on 

the order of 0.3 in Cl (about 25% error) occurred at low AOA. However, due to the 

small values of dΓ/dt for high AOA, only small corrections in peak lift coefficient 

values are found. 

  In Fig 3.15 and Fig. 3.16, Similar results for intermediate and high reduced 

frequencies from Weber’s data are presented. The qualitative trends for these results are 

similar to those in Fig. 3.14. The difference between corrected lift and original data 

increases with increase of amplitude and reduced frequencies. Further of application of 

our unsteady correction methods to experimental data is limited by the lack of UCMT 

data at present in unsteady flows. Future anticipated studies to address this lack of data 

will be discussed in chapter 6. 

 

3.7 Summary  

The results in this chapter show that quasi-steady approximation based on K-J 

theorem used by previous investigators in UCMT and oscillating airfoil studies has 

limitations for predicting the unsteady lift force due to the lack of consideration of 

unsteady effects. Our corrected unsteady method can improve predictions of the phase, 

rms lift in oscillating plate flows at low Re number, compared to the quasi-steady 

method. Our work in this chapter further verified the methods developed in previous 

chapter to properly convert the time dependent bound circulation, which is measurable 

with the UCMT technique, to unsteady lift force. We have also shown that specification 
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of the size and location of the closed acoustic path are crucial to bound circulation 

determination, and hence will definitely affect the instantaneous lift force measurement. 

The knowledge studied here will provide guidance for experimental design when using 

the UCMT technique. This path sensitivity also has implications for PIV and LDV 

studies that perform integrations within a specified closed path. As an extension of 

current developed approximation for the oscillating plate flow, we suggest a general 

relation between the time-dependent bound circulation measurable with the UCMT 

technique and the time-dependent lift force that may have applications to other unsteady 

flows, through this relation 

                         
dt

tdlRtUtL )()()( Γ
+Γ= ρρ  .                                                 (3.13) 

and l is the characteristic length of the body. R will be vary with body shape and 

motion, and may not be a concise analytical result as in our studied flow where 
4
3

=R . 

For example, in the study of the pitching airfoil in chapter 2, R is a complicated function 

of time, oscillating amplitude, reduced frequency, angle of attack and pivot location. 

But in certain cases, R could be determined and used to develop further unsteady 

approximations. For example, in chapter 4, we will study the application of Eq. (3.13) 

to a classic unsteady flow over a stationary cylinder at low Reynolds number. 

To this point, we have fulfilled several major goals of the present work 

including developing a method to properly convert the time dependent bound 

circulation, which is measurable with UCMT or PIV techniques, to instantaneous lift 

force. We also better understand the importance of closed acoustic path selection on 
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bound circulation determination. Hence, our work has expanded the capability of 

UCMT for unsteady flow studies. 

Reader may noticed that in our path sensitivity studies, we only considered it at 

a fixed α=60 and Re=100. We believe the path sensitivity will also be affected by other 

parameters such as Reynolds number, angle of attack, turbulence intensity, and 

systematically investigations about these issues will be an interesting topic in future.   
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Fig 3.9 A typical case of plate instantaneous location and bound circulation variation with time, k=0.4, 
ha/c = 0.1. 
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           Fig. 3.10 Typical lift force obtained from different methods at k=0.4, ha /c=0.1 
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Fig 3.11 Phase difference variation with plate oscillating amplitude and reduced frequency 
at Re=100 
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         Fig 3.12 Rms error variation with plate oscillating amplitude and reduced frequency 
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Fig 3.13 Typical numerically attainable circulation distributions along plate at an
instant. Re=100, α=60, k=0.2, ha /c=0.1. (a) local chordwise vortex element strength
distribution. (b) Integrated vorticity distributions from the optimum path and a path
just from leading edge (LE) to trailing edge (TE).    
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Fig.3.14 Application of corrected unsteady methods to Weber et al (1995) measurements on a
pitching NACA 4418 airfoil.  )10sin(117 00 t+=α , k=0.059, Re=5.4×105. (a) Lift
coefficient and correlation measurements of Weber et al (1995). (b) Behavior of first
derivative and unsteady correction factor R (from Eq. (A.19)). (c) Corrected lift coefficients
compared to Weber et al (1995) original results. 
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Fig 3.15 Application of corrected unsteady methods to Weber et al (1995) measurements on a
pitching NACA 4418 airfoil. )54.19sin(209 00 t+=α , k=0.113, Re=5.5×105. (a) Lift
coefficient and correlation measurements of Weber et al (1995). (b) Behavior of first derivative
and unsteady correction factor R (from Eq. (A.19)). (c) Corrected lift coefficients compared to
Weber et al  (1995) original results.



 98

 

 
 
Fig.3.16 Application of corrected unsteady methods to Weber et al (1995) measurements on a
pitching NACA 4418 airfoil. )23.53sin(2610 00 t+=α , k=0.251,  Re=6.7×105 . (a) Lift
coefficient and correlation measurements of Weber et al (1995). (b) Behavior of first derivative
and unsteady correction factor R (from Eq. (A.19)). (c) Corrected lift coefficients compared to
Weber et al (1995) original results. 
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Chapter 4 
 

Circulation Methods for Instantaneous Lift Force 
Determination − Circular Cylinder Flow 

 
4.1 Introduction  

In chapter 2 and 3, we have achieved a better understanding of lift determination 

in unsteady thin airfoil flows through analytical and numerical studies. As long as the 

bound circulation is varying with time, unsteady effects have to be included for accurate 

instantaneous lift force determination. In our developed method, the instantaneous lift 

force is composed of the quasi-steady lift expressed in same form as Kutta-Joukowski 

(K-J) theorem, and an unsteady term involving the time-derivative of bound circulation, 

adjusted with a defined unsteady lift correction coefficient R (for the oscillating thin 

airfoil, R=0.75). Another important issue we have identified is that the size and the role 

that ultrasonic sound path is critical in determination of time-dependent bound 

circulation in the UCMT method. This systematic study will be helpful in design of 

sound paths in UCMT experiments. In chapter 4 we study whether the framework 

developed in previous chapters can be extended to a classical unsteady flow, low Re 

vortex shedding from a stationary bluff body. We again take a similar approach as in 

chapter 3 where numerical simulation are preferred and studied over future anticipated 

experimental UCMT studies. Before describing our work in this chapter, we will first 

present a literature review of past investigations on instantaneous lift measurement in 

vortex shedding studies. 

The fundamental question addressed in this chapter and by previous 

investigations is the proper method for converting flow field data (velocity, vorticity or 
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circulation field) to determine resultant fluid forces on the bluff body. This issue is 

important in PIV and LDV in addition to UCMT studies.  

Compared to the in-line (drag) force well represented by Morison equation in 

certain flow situation, the lift force is more difficult to analyze because it is more 

sensitive to how vortices are formed, shed and move in bluff body wake.  Several 

researchers have suggested that if detailed information about vortex strength and motion 

are available, then a Blasius equation could be a good choice to calculate the fluid 

forces. Using this equation, Maul & Milliner (1978) have qualitatively studied the 

relationship between development of the fluid force and the generation and movement 

of shed vortices in the wake. Ikeda & Yamamoto (1981) used similar ideas for a rough 

prediction of lift force by estimating the rough motion and strength of vortices in the 

wake from particle streak visualization photographs.  

With a desire to acquire quantitative information and have a better 

understanding of the role of vortices in fluid loading, Obasaju & Bearman (1988) 

experimentally studied the sectional and total lift force acting on an oscillating circular 

cylinder in a water tunnel. For bound circulation determination, the velocity 

measurement around the cylinder at its center span were made by using a thermo system 

Laser Doppler velocimetry (LDV) working in forward scatter mode with a frequency 

tracker, Measurements were made within a square circuit enclosing the cylinder (Fig 

4.1a). The measured bound circulation was converted to instantaneous lift forces based 

on the K-J theorem. Simultaneously, the pressure average technique (summarized in 

chapter 1) was used to obtain the instantaneous lift force for the purpose of comparison.  
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Mode 
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To pressure
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                                   (a) 

t/T

K-J theorem

Pressure average

 
                                                      (b)

Fig 4.1 Lift force measurement on an oscillating cylinder. (a) Schematic of a square
path enclosing cylinder (Fig. 1 in Obasaju & Bearman (1988)). (b) Comparison of lift
force from Kutta-Jukowski theorem and that from pressure average method at KC=6.75
(Fig. 20(a) in Obasaju & Bearman (1988)). 
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Fig 4.2 Instantaneous lift force at KC=10 obtained from three methods by
Lin & Rockwell (1996).  Difference in lift amplitude and phase exist
between different methods (Fig. 2 in Lin & Rockwell (1996)). 
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A typical result from this work is shown in Fig 4.1(b). The agreement between 

the lift obtained from the K-J theorem and that from the pressure average method is not 

good, but the gross features of the curves, such as the positions of the peaks were still 

well predicted.  Hence, they suggested that K-J theorem could be considered as a good 

first approximation to determine the unsteady lift on a bluff body, and the authors 

thought it was a remarkable finding and could not be explained and may be fortuitous.   

Lin & Rockwell (1996) studied the instantaneous lift force on an oscillating 

circular cylinder using the PIV technique. After obtaining the vorticity distribution in a 

region at successive instants, they used theoretical concepts such as the Blasius equation 

and Lighthill’s concepts to provide an experiment determination of the instantaneous 

lift (Fig 4.2). These methods were compared to lift forces obtained using the pressure 

average method. Larger difference exists between the instantaneous lift curves obtained 

using the different methods. They also mentioned that their future efforts would focus 

on studies when varying the size and location of the enclosing region where the 

sensitivity of the lift calculation is determined. The goal would be to enhance the 

accuracy of their methods through a systematic study similar to these we have 

conducted in the presented work. 

These show that work still needs to be done to gain a better fundamental 

understanding of the proper method for converting flow field measurements into 

instantaneous lift curves in wake studies. In this chapter, we seek to extend our 

previously developed framework to address issue. We study the low Reynolds number 

vortex shedding from a stationary bluff body (circular cylinder) using similar numerical 
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techniques as in chapter 3. We focus on whether instantaneous bound circulation values 

(of the type attainable from UCMT experiments) can be properly converted to 

instantaneous lift values in this flow. Motivated by earlier work of Wu (1981) and the 

cited previous investigations, we study various force models including a quasi-steady 

Kutta-Jukowski method, a vortex flow force model (Lighthill, 1986), and a new 

unsteady correction model similar to that developed for the thin airfoil flow in chapters 

2 and 3. Finite element simulations for flow over a circular cylinder at Re = 100 are 

once again performed in order to obtain true instantaneous lift values (from surface 

stress integration), which are then compared to various combinations of the force 

models. It is determined that stream-wise circulation distributions in the wake behind 

the circular cylinder are required to properly apply the vortex flow force model by 

Lighthill (1986). These distributions would be attainable in experimental UCMT 

studies. Again, the important issue of the proper size and location of the closed path for 

bound circulation determination will be studied.  

In section 4.2, we describe additional issues related to the numerical methods of 

chapter 3 that are now relevant to our circular cylinder flow investigation. We then 

study the streamwise circulation distributions in the wake behind the circular cylinder. 

These circulation distributions are required to properly determine the vortex force based 

on Lighthill’s model in section 4.3. In section 4.4, the effect of size and location of the 

mimic closed ultrasound path on bound circulation determination is investigated. 

Finally, lift forces results determined from different fluid force models will be discussed 

in section 4.5. We will show that proper superposition of the three previously listed 
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models (K-J quasi-steady, vortex force, and unsteady correction term) can accurately 

predict instantaneous lift values on circular cylinders. 

 

4.2 Numerical Method 

The numerical code used here is largely the same as that used in chapter 3, 

which is based on the classical Garlekin finite element method to solve the Navier-

Stokes equations. Difference includes changing the coordinates of the no-slip 

boundaries according to the geometry of the body (circular cylinder here), and 

numerical grid. Parameters are all non-dimensionalized with free stream speed U, and 

cylinder diameter d, for example, velocity is normalized as UV /V* = , time as 

dtUt /* = . The origin of the xy coordinate system is set at center of the circular 

cylinder. The numerical grid is generated through PATRAN in a computational domain 

extending 8 diameters in the y (transverse) direction (-4< y/d < 4) and 24 diameters in x 

direction (-4< x/d < 20). The mesh in vicinity of cylinder is much finer so that the 

detailed near wake flow information can be captured. The total number of nine-node 

quadratic elements is NM=984, number of nodes is NND=4068. The input Reynolds 

number is Re=100, and time step ∆t=1/40. 

  The boundary conditions of the computational domain are set as follows; at 

inlet, upper and lower grid boundaries, the velocity is set as the free-stream velocity. At 

the surface of the circular cylinder, no-slip condition is maintained. At the outlet 

boundary, a synthetic (constant pressure) condition is utilized as in chapter 3.  

The solution of the problem was conducted using a segregated procedure for the 
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primary unknowns at each node. The algorithm of interpolation with bi-quadratic 

polynomials was used for solutions of velocity components and pressure at any arbitrary 

spatial location. By using the potential flow solution of pressure field as initial guess to 

accelerate the convergence process, the conservation equations were solved at each time 

step using an explicit step for an intermediate velocity field. The numerical scheme has 

been used previously by Olinger et al (1995) to model flow over an oscillating cylinder 

wake at low Reynolds number. In the present work, stationary cylinder wakes are 

studied. 

A typical result from the numerical simulation is shown in Fig 4.3 for a low 

Reynolds number Re=100 flow. Fig 4.3(a) shows the flow field in vicinity of circular 

cylinder at tU/d=78.875, which shows clearly the velocity vector field, vortex 

generation and shedding process. Fig 4.3(b) is a typical time trace of the lift force acting 

on the circular cylinder, obtained from surface stress integration method at each time 

instants. The periodical lift force is due to the periodic vortex shedding process in the 

wake of cylinder shown in Fig 4.4. The numerical code can provide accurate velocity 

data to be used for circulation determination along an arbitrary selected closed path.  

 

4.3 Wake circulation distribution and vortex lift force 

In this section, we study how circulation measurements (obtainable with a 

UCMT method) can be used to determine the ‘vortex force’ developed by Lighthill 

(1986). The fluid forces in that model are related to wake vortex strength and locations. 

Lighthill proposed the following expression. 
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    







Γ−−≈








⋅×+−≈ ∑∑∑∑

= == =

x yx y N

i

N

j
ijijij

N

i

N

j
ijijijijv jxiy

dt
dAjyix

dt
dF

1 11 1
)(

2
)1()(

2
rrrrrr ρωρ .      (4.5)  

                      jx
dt
diy

dt
dF

x yx y N

i

N

j
ijij

N

i

N

j
ijijv

rrr
∑∑∑∑
= == =

Γ+Γ−≈
1 11 1

])(
2

[])(
2

[ ρρ .                            (4.6) 

Hence, the vortex lift force will be 
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The corresponding lift coefficient will be  
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                                                         (a) 
 

   
                                                    (b) 

 
Fig 4.3 Typical results from numerical simulation of flow over a stationary circular
cylinder at Re=100. (a) Velocity vector field and streamlines at one time instant
presented the vortex generation and shedding process. (b) The time trace of lift
force was from the stress integration method.   
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(a) tU/d=76.4 (b) tU/d=77.8 

(c) tU/d=79.2 
(d) tU/d=80.58 

Fig 4.4 Flow visualization of the near wake of circular cylinder during one lift cycle at
Re=100. (a)-(e) are instantaneous wake vortex structures at five time instants shown in (f),
the periodic time trace of the lift force.  

(e) tU/d=81.98 (f) Cl time trace 
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Fig 4.5 (a) Schematic of cylinder near wake and definition of variables needed for wake
circulation determination. In x-direction, wake is divided into Nx sections. In y direction,
it is Ny sections.  (b) Wake circulation distribution in x-direction with y1/d=-0.75,
y2/d=0.75. Wake is divided into a series of consecutive smaller paths like ABCD, with
the path extent in x-direction |AB|=∆(x/d)=0.5  
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Form Eq. (4.8), the vortex lift force only dependent on the x-coordinate of the 

fluid element, hence all the fluid elements enclosed by a path ABCD will be with the 

same x-coordinates, and    
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once Γi and xi are known, lift component of vortex force can be obtained. We note that 

Eq. (4.10) approximates the true Lighthill vortex force given by Eq. (4.1), it must be 

recognized when interpreting numerical results. 

Equation (4.10) is a useful expression for UCMT studies on circular cylinder 

wakes. It states that to determine lift component of vortex force in Lighthill’s model, 

one needs only measure Γi and xi in the wake of a circular cylinder. Γi can be obtained 

in a UCMT study by specifying the closed path ABCD (Fig 4.5(a)). It is particularly 

useful that only the location xi is needed to find the lift force in Lighthill’s model, since 
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xi is known once the path ABCD is specified. In the schematic of determination of 

ABCDΓ  in Fig. 4.5(a), we can calculate   

                             EFADEFBCABCDi Γ−Γ=Γ=Γ  .                                             (4.11) 

 Measurement of iΓ could be accomplished by using Eq. (4.11) where moving 

the downstream leg at x2 /d incrementally will aid finding iΓ . In real UCMT test, the 

size of acoustic transducers and the length of sound path may affect the resolution of the 

iΓ  distribution measurement. For PIV technique, however, Eq. (4.1) may yield more 

accurate results considering that the spatial measurement resolution of PIV is greatly 

better than UCMT.  Following the spirit of chapter 2, we will validate these ideas using 

our numerical simulation in the previous work. 

Using the numerical algorithm described in chapter 3 applied to the circular 

cylinder flow, we studied circulation variation in both x and y direction in the wake. It 

was found that the majority of shear layer vorticity is confined to a region between 

y1/d=-0.75 and y2/d=0.75. Hence, they were selected as upper and lower bound of the 

path ABCD with the size in x direction set as ∆(x/d)=0.5. Fig 4.5(b) presents typical 

wake circulation distributions in the x-direction at tU/d=76.4 and 79.2 corresponding to 

the flow visualizations of Fig 4.4(a) and 4.4(c) respectively. The circulation 

distributions at the two instants are clearly out of phase reflecting the shedding process 

in Fig 4.4. The wake circulation distribution shows a periodic variation with streamwise 

distance reflecting sequentially shed vortices in the wake. Peaks in the circulation 

distribution reach a maximum near x/d=3.5 and then decay due to viscous dissipation as 
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the vortices move downstream. These distributions provide all the necessary iΓ  and xi 

information for vortex lift force determination using equation (4.10) at any time instant, 

typical time traces of the wake vortex lift are shown in Fig 4.6.   

Recognizing that the extent of the wake over which Eq. (4.10) is applied could 

affect resultant vortex lift force values, we fix the region EFBC in Fig 4.5(a) as follows, 

the legs EC and FB are set at y1/d=-0.75 and y2/d=0.75 respectively. The leg EF is fixed 

just behind cylinder at x1/d=0.5, and the downstream leg BC is variable with x2/d 

adjusting, Eq. (4.11) is then used to find Γi. Fig.4.6 presents four curves of wake vortex 

lifts from four different EFBC regions with x2/d=5, 10, 15 and 20. Obviously there exist 

phase and amplitude difference between these curves. With an increase in size of EFBC 

domain, the amplitude of wake vortex lift gradually increases and the phase gradually 

decrease (earlier in time), due to inclusion of additional vortex elements in the far wake 

that were shed earlier. However, the difference between results for x2/d=15 and x2/d=20 

is much smaller than that between x2/d=5 and x2/d=10. This is because the fluid 

dissipation effect and the contribution to lift from vortices further away from the 

cylinder decrease. For region EFBC with x2/d=20, we encompass the downstream 

bound of our computational domain for the cylinder flow. Based on Fig.4.6, we 

conclude that use of region EFBC with x2/d=20 will yield accurate wake vortex lift 

forces and that contribution of vortices downstream of our numerical boundary can be 

neglected.   Hence, all of the wake vortex lift force results presented later will be 

obtained from region EFBC with y1/d=-0.75, y2/d=0.75, x1/d=5 and x2/d=20. 
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Fig 4.6 Time traces of wake vortex lift force obtained from Eq. (4.10) within different wake
domains. The lower, upper and left bounds of the domain are fixed at y1 /d= -0.75, y2/d= 0.75
and x1 /d= 0.5. The right bound is movable and set at four locations x2 /d= 5, 10, 15 and 20.     
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4.4 Bound circulation determination 

In section 4.3, we focused on the wake vortex force derivation based on 

Lighthill’s concept. In some sense, the contribution of the vortex force to the total lift is 

similar to the concept of wake circulation contribution in Wu’s work (1981). In chapter 

2 and 3, we also have shown that contribution from the time-dependent bound 

circulation in a region enclosing the cylinder is of significant importance. Our corrected 

unsteady approximation, equation (2.9), can properly convert the time-dependent bound 

circulation to instantaneous lift force. As a result in the same spirit of chapter 2, issues 

related to bound circulation determination will be studied. In this section, we focus on 

proper selection of a closed sound path for bound circulation determination in stationary 

circular cylinder wakes. 

Using the same algorithm for circulation determination introduced in chapter 3, 

we can easily calculate the value of circulation around an arbitrary closed path, and 

study the effect of path size and location on bound circulation determination. Due to the 

geometry of circular cylinders, we select a square shaped path with the center located at 

the center of the cylinder as done by Obasaju & Bearman (1988). By varying the side 

length of the square path (a), the bound circulation variation with length a can be 

obtained. 

Fig 4.7 shows this path variation for bound circulation determination. Five 

typical paths, A, B, C, D, E are highlighted to study effect of near-wake vortex 

structures including the attached and shed vortices labeled in the figure. The attached 

vortex develops in close proximity to the cylinder and later sheds down stream (see Fig  
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Fig 4.7  Schematic of path selection for bound circulation determination around circular
cylinder. Re=100, tU/d=76.875.  Five typical paths are highlighted to study the effect of near-
wake vortex structures on bound circulation values.  Define a as the length of one side of the
square paths, for path A, a/d=1.0; path B, a/d=1.6; path C, a/d=2.0; path D, a/d=3.0; path E,
a/d=8. 
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Fig 4.8  Bound circulation Γ at an instant of time variation with the size of the closed paths. A
small stable range exists in the plot where Γ is independent of a/d, These results can serve as a
useful guide for closed sound path design in UCMT experiments. Labels A, B, C, D, E
correspond to paths highlighted in Fig 4.7.   



 118

4.4). The smallest path A just encloses the circular cylinder, with each of its legs 

tangential to the cylinder. 

Fig. 4.8 shows the variation of bound circulation with the size of the paths 

defined in Fig 4.7 along with further intermediate path sizes. This plot shows that bound 

circulation increases with an increase in path size starting from path A, then it comes to 

a stable area in which the bound circulation becomes independent of path length while 

reaching its maximum value. With further increase of a/d, area enclosed by the path 

begins to include shedding vortices in the wake. The shedding vortices contain opposite 

signed vorticity compared to the attached vortex in the other shear layer. This addition 

of opposite signed vorticity causes the total bound circulation to decrease with increase 

in a/d. For 5/ ≥da , the bound circulation )(tΓ approaches zero. As the path becomes 

larger and encloses additional shed vortices, the vorticity of these shed vortices 

dominate the effect of the attached vortex. Since the downstream vortex street contains 

alternating vortices of opposite sign, the measured bound circulation becomes 

negligible. 

Based on the above results, a proper path should be selected from the stable area 

that covers from 5.1/3.1 << da  In Obasaju & Bearman’s experiments (1988), a value 

of 35.1/ =da  was used, which closely matches our optimum path. We will determine 

the bound circulation using this selected path in our later analysis of lift forces on 

circular cylinder. Here, we can conclude for the path selection: For bound circulation 

determination, sound path should include the attached vortex, but not include any part 

of the separated shedding vortex.  This fact can act as a guide for future UCMT 
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experiment design. As detailed in chapter 3, the path sensitivity study also has 

implications for PIV and LDV studies. We should point out that the optimum path 

a/d=1.5 may have some practical limitations. This path implies acoustic sound legs in 

close proximity to the cylinder that may require acoustic mirrors that disturb the flow. 

However, in an experiment, rectangular acoustic paths, with y1/d and y2/d legs placed 

further away from the cylinder and near the wind tunnel walls, could be used 

successfully. These issues require further study.  

 

4.5 Results and discussion 

In this section, we present lift force results from our numerical simulations 

based on different force models and compared these results with the true lift obtained 

from the stress integration method. The wake vortex lift force is based on Lighthill’s 

concept, which is expressed in equation (4.10). The quasi-steady lift force is based on 

Kutta-Joukowski theorem, where Γ(t) is the bound circulation within the optimum 

sound path (section 4.4). Osbasaju & Bearman (1988) used this approximation in their 

experimental work. The lift force from our corrected unsteady approximation (2.22) is 

based on unsteady potential flow theory and can count in the unsteady effects. A 

variation of this approximation will be applied later in this chapter. Finally, we will put 

forward a new lift model in this section to combine the quasi-steady, wake vortex and 

unsteady lift models. 

Next, we present lift curves from the numerical simulation for the true lift lC , 

wake vortex lift )(v
lwC , vortex lift )(v

lC (including contribution from bound and wake 
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circulation) and the quasi-steady lift )1(
lC  (K-J theorem) in Fig 4.9. )1(

lC  is determined 

using the bound circulation obtained from the optimum closed path selected in section 

4.4.  The vortex lift )(v
lC  shows the largest phase angle lag behind the true lift lC , and 

its peak-peak amplitude is larger than lC , a 15% deviation of lift rms amplitudes is 

observed between lC  and )(v
lC . This deviation should be due to approximation 

introduced in derivation of Eq. (4.10). However, it is interesting to note that in 

Rockwell’s experimental work using PIV technique (see Fig.4.2), similar deficiency 

between Lighthill’s vortex lift and true lift was observed. Compared with the vortex lift 

)(v
lC , the quasi-steady lift )1(

lC  better matches the true lift curve. Because )1(
lC doesn’t 

include the viscous effects (accounted by vortex lift), we next study the combination of 

)1(
lC and )(v

lwC . However, due to the large phase difference (
2
π

≈ ) between )1(
lC and )(v

lwC , 

the combination of )1(
lC and )(v

lwC  becomes less accurate than )1(
lC  in terms of phase 

angle prediction, and little improvement is noted for the rms lift. The best prediction 

occurs for the quasi-steady case where values in phase difference of 045≈β  between 

this case and the true lift are observed. This may serve as some justification for use of 

the quasi-steady approximation in earlier wake studies (Obasaju & Bearman, 1988). 

However, we will next see that better lift prediction on circular cylinders can be 

obtained by incorporating unsteady effects using the framework of chapter 2. 

Since the lift approximation )1(
lC , or various combinations using an 

approximation based on Lighthill’s vortex force concept, cannot predict the true lift lC   
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Fig 4.9  Comparison between true lift force lC , quasi-steady lift )1(

lC , wake vortex lift
)(v

lwC and vortex lift )(v
lC . Vortex lift is obtained from Eq. (4.10) within the selected domain.

Quasi-steady lift is determined from K-J approximation. β is the phase angle between true lift
and  )()1( v

lwl CC + . 
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    Fig 4.10  Phase comparison of true lift lC , bound circulation Γ and its first derivative   
    

dt
dΓ , which will be used for unsteady effect correction. 
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well, we next consider if the unsteady nature of the bound circulation can be used to 

increase lift prediction accuracy. In Fig 4.10, we present the results of the time variation 

of the bound circulation Γ and its first derivative 
dt
dΓ  that was used in our corrected 

unsteady approximation in chapter 2. We focus on the phase angle difference 'β  

between the dt
dΓ  curve and lC  curve defined in Fig 4.10, and find 0' 60≈β  with 

dt
dΓ leading lC . In Fig 4.9, we have seen that the phase angle 0' 45≈β with lC  

leading )()1( v
lwl CC + . This suggests that dt

dΓ curve (which describes the unsteady effect) 

has the proper leading phase to correct our lift predictions. As a result, we next study 

inclusion of an unsteady term into our lift approximations. 

In our corrected unsteady method in chapter 2, we developed the following 

approximation 

                     
dt

tddRtUtL )()()()3( Γ
+Γ= ρρ   .                                                (2.36) 

Eq. (2.36) was obtained after applying unsteady potential flow theory, focusing 

on the bound circulation Γ(t) that is obtained from a region enclosing the body.  Eq. 

(2.36) can be converted to non-dimensional form giving                                                   

                       2
)3(

)(2)(2
U

dt
tdR

Ud
tCl

Γ

+
Γ

=  .                                                      (4.12) 

We first use Eq. (4.12) to specify a value of the unsteady lift correction 

coefficient R, which was found to be ¾ for oscillating plate flow in chapter 2. For bluff 

circular cylinder flow, R will have a different value and may be a function of various 



 124

flow parameters such as Re etc. It may be possible to establish R analytically (similar to 

our work in chapter 2) using unsteady potential flow theory. Superposition of 

freestream flow along with doublet to model cylinder shape and a wake model would be 

required. In the present work, we have not undertaken this analysis, but instead we 

focus on a systematic study of the effect of R variation on lift results. 

 To accomplish this, we first choose to study the following lift approximation 

             {

forcevortex
wake

v
lw

forceunsteadyforcesteadyquasi

l C
U

dt
tdR

Ud
tC )(

2
)4(

)(2)(2
+

Γ

+
Γ

=

−
43421321

  .                                  (4.13) 

extending Eq. (4.12), we include the wake vortex force term (although we have shown 

it has negligible effect on lift prediction ) to account all physical effects considered by 

previous investigators. 

 We next define a new rms error similar to chapter 2, where )(rmslC  refers to the 

rms amplitude of the true lift value (stress integration) 

                                     
)(

)(
)4(

)()4(

rmsl

rmslrmsl
rms C

CC
e

−
= .                                                          (4.14) 

Fig 4.11 presents the results of our systematic study of varying R by showing 

the variation of )4(
rmse  with R. From this curve, we found that the best value of R for 

circular cylinder flow is 4.0≈R . The proof that 4.0≈R should hold for a low Reynolds 

cylinder wake is left as a challenge to analysts in potential flow theory, and is an area of 

anticipated future work. However, study of our unsteady correction term in Eq. (2.36) 

and Sarpkaya’s generalized Blasius theorem of Eq. (1.17) yields some interesting 
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findings. By comparing the final terms in Eq. (1.17) and Eq. (2.36), we can see that 

Rdr
ik ≈ . If we treat 

ikr as a constant and kΓ as the bound circulation, the parameter 

ikr represents the location of a vortex element in the flow. Then dRdr
ik 4.0=≈ is 

obtained using our result from Fig. 4.11. This says that the primary vortex element 

determines unsteady lift in Eq. (2.36) is located at 4.0===
d
x

d
r

R ik . Now study Fig. 

4.7, the attached developing vortex is located at 4.0=
d
x , suggesting that it is the 

attached vortex development dominates the unsteady lift creation. It is physically 

plausible that the attached vortex adjacent to the cylinder in the near wake has a 

dominant effect on unsteady lift creation, compared to vortices at larger 
d
x  values. 

Fig 4.12 presents comparison of lift curves using the approximations in Eq. 

(4.12) and (4.13). We first observe that the )4(
lC  lift approximation (with 4.0≈R ) best 

approximates the true lift curve. While there is excellent agreement between the two 

curves in rms amplitude (as required by Fig 4.11), small phase difference still exists. 

For comparison, we also present the results for )3(
lC  (Eq. (4.12)) which deletes the wake 

vortex force effect. Degradation in lift prediction is observed. We do however note that 

this approximation could also be adjusted to better match the true lift curve through an 

additional systematic study of R variation for this approximation, similar to Fig. 4.11. 

From this chapter, we may conclude that reasonable prediction of lift force 

based on circulation method generally has to include unsteady effects, as long as the 

bound circulation is varying with time. Lighthill’s vortex lift force concept, when 
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applied over the entire flow, using a UCMT based technique, results in approximate 

15% error in lift rms amplitude compared to the true integrated lift. As a result, an 

alternative lift model based on measuring bound circulation with an acoustic path 

enclosing the cylinder is proposed.  
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                Fig 4.11 Rms error of lift )4(

lC approximation with variation in unsteady lift     

                correction coefficient R.  4.0≈R  for circular cylinder flow yields 0)4( ≈rmse  . 
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Fig. 4.12 Comparison of lifts between true lift lC , vortex lift )(v

lC , unsteady corrected lift
)3(

lC (K-J theorem + corrected unsteady) and total lift )4(
lC ( K-J theorem + corrected unsteady

+ vortex force). 
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Chapter 5 
 

Experimental UCMT study on Three-dimensional Flows 
 
5.1 Introduction  

To expand the capability of UCMT for lift determination in unsteady and three-

dimensional flows, we have developed methods to properly convert the time-dependent 

bound circulation measurable with UCMT to instantaneous lift in chapter 2 and 3, based 

on unsteady potential flow theory. In chapter 4, we studied the instantaneous lift in bluff 

body flows, by applying our developed methods along with Lighthill’s vortex force 

concept in numerical simulations. However, we have not yet focused on lift 

determination in three-dimensional flows. This will be the main topic in this chapter in 

which we will conduct UCMT experiments to study the mean sectional lift distribution 

along aerodynamic bodies with three-dimensional features. 

In UCMT experiments, it is possible to systematically study the spanwise lift 

distribution along structures. For our aerodynamic body, we select the flow around a 

flat plate because it has three distinct flow regimes dependent on angle of attack (AOA). 

At smaller AOA, it can be characterized as streamlined flow; at intermediate AOA, a 

stalled flow; and at larger AOA, it becomes a bluff body flow. As a result, outcomes 

from a flat plate flow study should have broad application. Furthermore, it is convenient 

to design and fabricate plates with a variation in chord length along the span to study 

the three-dimensional lift distribution. 

In the past, most investigations on three-dimensional flows have focused on 

vortex generation and shedding patterns behind the body. For example, Nuzzi et al 
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(1992) studied the three-dimensional vortex formation from an oscillating, non-uniform 

cylinder. The gradual variation of the cylinder diameter acted to ‘detune’ the highly 

coherent vortex formation in the spanwise direction and promoted the occurrence of 

non-periodic and period-doubled states. This approach can result in an effective 

destabilization of the near wake vortex formation leading to three-dimensional flow. 

Recently, considerable attention has also been paid on the development of three-

dimensional flows from stationary plate trailing edges. Lasheras & Meiburg (1988, 

1990) employed combined experimental and numerical approaches to study the 

evolution of the wake from the trailing edge of a thin flat plate at low AOA having 

spanwise perturbations. They found that an important feature of the three-dimensional 

flow is the induction of spanwise undulations of the large scale (Karman) vortices. Such 

undulations can exhibit either an in-phase or varicose pattern.   

An important aspect of the investigation of three-dimensional flow is 
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             Fig. 5.1 Schematic of local sectional lift distribution on a finite wing 



 131

measurement of the local sectional fluid forces, which are crucial to aeroelastic analysis 

of structures such as aircraft wings (Fig. 5.1). However, past research in this direction is  

somewhat limited. Prandtl (1918, 1921) first analytically developed the lift line theory 

for predicting the lift distribution and induced drag on a finite lifting surface (wing). In 

his theory, he hypothesized that each spanwise section of a finite wing has a local lift 

equivalent to that acting on a similar section of infinite two-dimensional wing having 

the same circulation. This assumes negligible flow in the spanwise direction along the 

wing. However, this assumption is easily violated if three-dimensional flow exists.  

Recently, Bastedo et al (1985) experimentally studied the finite wing performance with 

a pressure measurement method at low Reynolds number Re = 8×104 ~ 2×105. For a 

rectangular wing with AR=4, the agreement between lift from Prandtl’s finite wing 

theory, and the measured local sectional lift based on the integration of the local 

pressure distribution became worse with an increase of angle of attack (Fig 5.2a). 

Bhagwat et al (2000) employed Laser Doppler Velocimetry to measure the spanwise 

bound circulation distribution on a rectangular wing with AR=9.6. As opposite to 

Prandtl’s smooth lift distribution, a peak was found in the measured circulation 

distribution at a location near the tip area where strong three-dimensional flow exists 

(Fig 5.2b).  Due to various experimental limitations, the above investigations could not 

measure the lift or circulation distribution along the whole span. Our effort in this 

chapter includes experiments to accomplish this to learn more about this type of three-

dimensional flow.  
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Another research area that has been arisen recently is the study of low aspect 

ratio (AR) wings at low Reynolds number. These wings have application in the design 

of   micro aerial vehicles (MAVs), which are small aircrafts with maximum dimension 

less than 25cm. MAVs can be used as surveillance or reconnaissance vehicles to carry 

visual, acoustic, chemical or biological sensors in military or commercial applications. 

For these vehicles, the accompanying chord Reynolds numbers are in the range of 

Re=2×104 to 2×105. This presents numerous aerodynamic challenges to the designer of 

MAV. Very little data exists for low Reynolds, low aspect ratio wings, and the 

applicability of exist model such as Prandtl’s lift line theory should be rigorously 

examined. Also, details of the spanwise lift distribution are critical to MAV design. 

Particularly in swept low AR wings, this lift distribution determines the location of the 

MAV center of pressure and neutral point and thus is critical in determining aircraft 

stability. Control and stability of MAV aircraft is a current challenge due to their small 

size. Experimental studies (Bastedo & Muller, 1985; Pelletier & Muller, 2000) have 

been conducted to determine the total lift and drag forces in low Reynolds, low AR 

wings. However, little attention has been placed on measurement of local sectional lift 

distributions.  

In the following sections, we will present experimental lift results obtained from 

UCMT and force balance measurements. In section 5.2, we will describe the 

experimental apparatus for our three-dimensional flow studying. Data processing and 

analysis will be described in section 5.3. In section 5.4, two-dimensional flow over a 

flat plate for a wide range of AOA is studied to validate our experimental methods. In  
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                                                                      (a) 
 

                                                                  (b) 
Fig 5.2 (a) Comparison of lifting line predictions with spanwise lift distribution obtained from
integrated pressure distribution for Re=2×105and AR=4 (Fig.9 in Bastedo et al (1985)). (b) LDV
measurement of bound circulation along airfoil span at Re=2.53×105 and AR=9.6 (Fig. 12(a) in
Bhagwat et al (2000)).           
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section 5.5, we present a study of flow over flat plate with local chord length variation 

along the span. In section 5.6, we will study lift distribution on low Reynolds number, 

low  aspect  ratio  wings  applicable  to  MAV  design.  Finally, we will summarize our 

experimental study in section 5.7.   

 

5.2 Experimental apparatus  

Measurements presented in this chapter were conducted in two low-speed wind 

tunnels located in the Mechanical Engineering Department in Worcester Polytechnic 

Institute. All of the UCMT testing was conducted in an open circuit wind tunnel 

(hereafter tunnel 1). Force balance lift measurements were conducted in tunnel 2, a 

closed circuit tunnel.  

 

5.2.1 Experimental study for UCMT measurements  

The entrance of tunnel 1 includes a honeycomb straighter to uniform flow, and 

four wire mesh screens used to reduce turbulence intensity. The contraction ratio is 

approximate 12, with entrance size of 165cm × 206cm.  The test section has dimensions 

of 45.7cm (height) by 61cm (width) by 91.4cm (length); The available velocity range is 

smUsm /64/3 ≤≤ , measurable with a Pitot-static tube set at a location near the 

entrance of the test section; Free stream turbulence intensity measured from hot-wire 

anemometry is approximate 09.007.0 ' ≤≤ ε . A downstream diffuser connects the test 

section to the fan assembly consisting of 75hp 3-phase induction motor driving an axial 
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fan. Tunnel speed control is accomplished by adjusting damper vanes located upstream 

of the inlet to the blower.   

A schematic of the test setup is shown in Fig. 5.3. A triangular ultrasound path 

was constructed for circulation measurement shown in Fig. 5.3a. The triangle path was 

also used in the work of Desabrais (1998) who verified UCMT measurements on a 2D 

airfoil based on comparison with results measured from a load cell force balance. In 

Fig. 5.4, we present a scaled schematic of the triangular sound path. It is noted that we 

measured spatial circulation distributions based on this triangular path (which is not the 

optimum path) prior to studying the path sensitivity. The triangular path is compared to 

the allowed acoustic path locations (Fig. 3.7) from the path sensitivity study of chapter 

3. Our main concern is that the downstream acoustic reflector is at an x2 position larger 

than that allowed in Fig 3.7. Study of Fig 3.6b shows that measured circulation values 

would be expected to decrease if the downstream reflector is at larger x2/c values (here 

x2/c ≅ 3), suggesting the triangular path may slightly underpredict Γ values. We also 

note that the Reynolds numbers are different in our experiments compared to the 

simulation of chapter 3, so these trends are only speculative. 

 In real experimental test, the sound path may not keep as straight geometric line 

due to the effects of turbulence and wake vortex flow. This may affect the final 

measurement precision. However, these effects may be negligible considering the 

freestream velocity is just 5m/s, far less than the sound speed (340m/s) in air.  

In UCMT test, two 100KHz ultrasonic transducers (3/4” diameter, bandwidth 

about 20KHz) from Panametric were used as both transmitter and receiver to generate  
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Fig 5.3  Schematic of the experimental arrangement in tunnel 1. Spanwise lift distributions along plates 
with chord length variation are studied. (a) Setup for UCMT measurement. (b) Setup for smoke 
visualization.   
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      Fig. 5.4 Diagram of the closed triangular acoustic path and its relative location to our   
      allowed region from the path sensitivity study.  
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and receive sound pulses, and two acoustic reflectors (mirrors) were used for redirecting 

the acoustic pulses. The broadening of pulse width and deflection from its undisturbed 

propagation direction due to freestream flow in the tunnel was carefully calculated and 

checked. A Panametric  GP68  Flowmeter  controlled  the  emitted  and  received  sound  

pulses and measured their average transit times. These transit times are critical for mean 

circulation measurement. 

A PC based data acquisition system was used for data storage and post-process. 

Two Panametric model PRE-120 preamplifiers were used to amplify the signals 

received from the transducers. Each measurement of the transit time was obtained by 

averaging  approximately  100  data  acquired  over  7  seconds  and  stored  in  a  data  

acquisition file. The relationship between the measured transit times and the circulation 

has been described in chapter 1 as 

                       )()(2)(
2
1 22

ccwcw
ccwcw

p
ccwcw TT

TT
l

TTa −
+

=−=Γ  .                              (1.21)        

where a is sound speed, lp is the total length of sound path, Tcw, Tccw are the transit times 

(Johari & Durgin, 1998).     

The total length of the closed sound path lp was carefully measured as 201cm.                           

Transducers and acoustic reflectors were recessed into cavities in the test section walls 

to reduce disturbances to the flow field. In order to reduce cross-talk between 

transducers, rubber O-rings were used to isolate the transducers from each other and the 

supporting structure.  

The effect of interference from boundary layers on the tunnel walls was assumed 

negligible because of the symmetry of the designed sound path. The vorticities in the 
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boundary layers on opposite sides of the tunnel were assumed to have equal and 

opposite signs. Furthermore, a small baseline circulation that was measured in the 

tunnel with the flow on, but with no flat plate in place, was subtracted from the 

circulation measurements. 

Calibration of the UCMT setup in still air showed that resolution of the GP68 

Flowmeter measurement was about 50 ns, which corresponded to an error about 2.3% 

in circulation values, based on the measured transit time at U=5m/s and plate angle of 

attack of α=60.  In addition, a barometer and a thermometer were used to measure the 

ambient temperature and pressure for accurate determination of air density and sound 

speed.   

In order to correlate the measured lift distribution to the flow structures in flat 

plate wake, a smoke flow visualization method was employed (Fig. 5.3b). A propylene 

glycol smoke generator was set in front of the wind tunnel entrance to provide smoke as 

a flow tracer. A 300W ELH high energy bulb provided a light sheet (with a thickness of 

about 1.5mm) to visualize the wake vortex flow in a two-dimensional plane. The 

spanwise (z direction) location of the smoke generator probe and the light sheet were 

fixed at the mid-point of test section height. The plates were vertically aligned in the 

tunnel (span in z direction), and the measurement of local circulation and flow 

visualization were implemented by moving the plate in z direction with the aid of two 

circular rotating plugs in the test section walls, which were designed to adjust the plate 

spanwise position and its angle of attack. In order to reduce interference from top and 

bottom test section walls, transparent end plates were designed following Stansby 
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(1974) and mounted on the plate, with a distance of about one chord length from the test 

section walls.  

Four thin flat aluminum plates with thickness of 3.2mm and maximum chord 

length of 89mm were studied (Fig 5.5).  Case 1 was a 2D plate used for validation of 

two-dimensional flow results. Case 2-4 were plates with sinusoidal varying chord length 

in the center section plate from z=0 to z=z0=6.35cm. The chord length c(z) for case 2 

and 3 was given by )4947.0cos(016.1874.7)( zzc −= . Case 2 was used to study the 

effect of trailing edge chord variation on lift distributions, and case 3 for studying the 

effect of leading edge variation. Case 4 was used to examine combined trailing and 

leading edge effects. Its chord length variation was )4947.0cos(032.2858.6)( zzc −= . 

The chord length variation was carefully machined on a CNC machine. For local 

circulation and lift measurements, 12 stations in z direction were tested with a resolution 

of ∆z=6.35mm from z=0 to z=1.1z0. 
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          Table 5.1 Plate parameters  
 
 Case 1 Case 2 Case 3 Case 4 
z/z0 c(z)/C c(z)/c c(z)/c c(z)/c 
0.0 1.0 0.7714 0.7714 0.5429 
0.1 1.0 0.777 0.777 0.5541 
0.2 1.0 0.7933 0.7933 0.5865 
0.3 1.0 0.8134 0.8134 0.6268 
0.4 1.0 0.8504 0.8504 0.7008 
0.5 1.0 0.8857 0.8857 0.7714 
0.6 1.0 0.921 0.921 0.8421 
0.7 1.0 0.9529 0.9529 0.9058 
0.8 1.0 0.9782 0.9782 0.9563 
0.9 1.0 0.9944 0.9944 0.9888 
1.0 1.0 1.0 1.0 1.0 
1.1 1.0 1.0 1.0 1.0 

Fig 5.5 Schematic of four plates with varying chord length used for study of sectional  
lift distribution on flat plates. 
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The spanwise lift distribution along low aspect ratio wings at low Re was also 

measured using UCMT in tunnel 1 (Fig 5.6a). The UCMT setup was the same as 

described in section 5.2.1. Plates were vertically aligned in the test section using a sting 

and support that was designed to move the plate in spanwise direction and change its 

angle of attack. The distance from wing tips of the low AR wings to the test section 

walls was always greater than one chord length to reduce wall effects on trailing 

vortices. Due to the symmetry of the wings, we measured the spanwise circulation and 

lift distributions along the upper half of the plates only.  

 

5.2.2 Experimental setup for force balance measurement 

Force balance measurements were conducted in tunnel 2 to further verify 

UCMT measurements (Fig5.6b). Wind tunnel 2 is a 24” re-circulating tunnel. 

Dimensions of its test section are 61cm wide by 61cm high by 240cm long. The free-

stream velocity in test section can vary from 3m/s to 55m/s. Turbulent intensity is 

approximate 0.5% ~ 0.8%.                                                                                                                             

Force measurements were conducted with a LVDT (Linear Variable 

Displacement Transducer) dynamometer that was incorporated into the wind tunnel. 

The dynamometer is externally mounted to the bottom of the test section to 

independently measure lift and drag based on a internal beam deflection principle. 

These deflections are translated into a voltage change in the LVDT output signal 

filtered and amplified by a signal-conditioning unit (Popp, 2000). Calibration of the  
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Fig. 5.6 Schematic of experimental setup for low aspect ratio wing study. (a)
Arrangement for UCMT measurement of spanwise lift distribution along wings in
tunnel 1. (b) Setup for force balance measurements in tunnel 2. 
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LVDT is using known external weight before and after each test run was 

conducted. Fig 5.7 shows a typical calibration curve used for lift measurements. Once 

the output voltage is collected by the signal-conditioning unit, it was sent to a Cyber 

Research© CYDAS 6402 HR data acquisition card, which interfaced with a PC through 

a commercial software package, HPVee©, to visualize and analyze the acquired signal. 

It permits the user to alter the scan rate and time period for the recorded signal. Fig 5.8 

is a typical acquired voltage signal in HPVee© with a sampling rate as 1000HZ and scan 

time of 6 seconds during the calibration process.      

 

 

Four low aspect ratio plates made of aluminum were studied in wind tunnel 2 as 

part of our focus on low Re, low AR aerodynamics study. The plate thickness was 

3.2mm, plate chord length c and span b are varying with aspect ratio, which were shown 

in Table 5.2. Free-stream speed of oncoming airflow in test section was set at U=5m/s, 

yielding Reynolds number (based on chord length of the plates) in the range of 2.1×104 

to 4.1 ×104. The distance from wing tips of the low AR wings to the test section walls 

was always greater than one chord length to reduce wall effects on trailing vortices.     

Plates were horizontally aligned in wind tunnel test section and attached to a pivot strut 

Table 5.2 Geometry of the four low aspect ratio wings

           AR     b(cm)      c(cm)        Re 

             1     10.16      10.16     41,753 

            1.5     15.24      10.16     41,753 

              2     17.78        8.89     36,534 

              3      15.24        5.08     20,876 
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                          Fig 5.7  Typical calibration curves for lift measurement before and after test 

 
            
                       Fig 5.8 A typical output voltage signal in HPvee during  calibration process. 
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used to vary plate angle of attack. One of the flat plates with leading and trailing edge 

chord variation (case 4 from section 5.2.1) was also studied in wind tunnel 2 using the 

force balance system. 

 

5.3 Data analysis 

All the test data measured by both UCMT and the force balance system was 

processed using standard statistic analysis. The Chauvenet method was used the reject 

abnormal data points. Data points where the absolute error (from mean value) exceeded 

three times standard deviation were eliminated.  

Great care was also given to account for a base circulation value that occurred 

when the wind tunnel was running without the flat plates installed. This base circulation 

value, which was found to be approximately, Γbase = 0.0143 m2/s, was subtracted from 

all measured circulation values. When measuring this base circulation value, all 

experimental parameters were carefully adjusted to match later experiments with the 

flat plate present.    

Finally, all results were corrected for solid blockage, wake blockage and 

streamlined curvature by using techniques presented by Pankhurst & Holder (1952) and 

Rae & Pope (1984). For example, the solid blockage was accounted for using 

                  αεπεε sin];48/)(1)[21( 2

w
cCC lml =−−=  .                               (5.1) 

where ε is solid blockage, c plate chord length, w wind tunnel width, α the plate angle 

of attack. Clm is the raw lift value and Cl the corrected value. Other correction 

expressions for 2D and 3D (finite wings) flows can be found in Rae & Pope (1984). The 



 146

required blockage correction for the low aspect ratio wings was only on the order of 

2.2% because of their small thickness and volume.  

 

5.4 Validation of UCMT measurement 

The UCMT measurements were compared with force balance measurements 

either from previous investigations or from our LDVT measurement in tunnel 2. In this 

section, we present the lift force comparison for a 2D plate (with no chordlength 

variation) with the force balance data of Blevin (1984). We will also provide this type 

of comparison for the plates with chord length variation and low aspect ratio wings in 

later sections. The measured mean circulation values were converted to mean lift values 

using Kutta-Joukowski theorem. Smoke flow visualizations are also presented in this 

section. 

Fig 5.9 presents the validation for a stationary 2D plate with chord length 

c=8.89cm in the test section of wind tunnel 1. The lift was converted from the 

circulation measured at the center of the plate in the spanwise direction. The lift 

comparison is shown in Fig 5.9a. The lift measured with UCMT shows that lift 

increases linearly with angle of attack in the range of 00 80 ≤≤α (streamlined flow 

regime). For 00 158 ≤≤α , the lift decreases with angle of attack, it is in stalled flow 

regime. In the regime 00 3015 ≤≤α , the mean lift increases with angle of attack again, 

it is in transitional flow regime. After α>300 (bluff body regime), error bars (based on 

standard deviation of the UCMT measurements) abruptly increase, and the mean lift 

decreases after it approaches the maximum value at α=400. Fig. 5.9b presents smoke  
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                                                                 (a)     

                              (b) α=300                                                        (c) α=400 

 

Fig 5.9 Validation of UCMT measurement for 2D flat plate flow at U=5m/s. (a) Comparison with force 
balance data published by Blevin (1984).   (b) Smoke visualized near wake structure at α=300. (c) Near 
wake vortex structure at α=400, vortex shedding process can be clearly observed.                                                                   
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visualization of the near wake vortex structure behind the plate at α=300. A stable 

vortex is attached to the rear surface of the plate, and vortex shedding was not observed. 

In Fig 5.9c, the vortex shedding process in near wake at α=400 is clearly shown. We 

believe the larger error bars accompanying the mean lift value in the bluff body flow are 

due to the effect of shed vortices on circulation measurements. The mean lift measured 

with UCMT agrees very well with the data of Blevin (1984), except in the stalled flow 

regime. However, the trends of both measurements are the same in this regime, with lift 

decreasing with angle of attack. Underprediction of lift values in the stalled flow region 

was also observed in Desabrais & Johari (1998), who studied mean lift on 2D airfoils. 

Based on the error bars on lift measurement in Fig 5.9, we can conclude that for 

flow around a 2D stationary plate, the Kutta-Joukowski theorem can be used to predict 

the mean lift in the streamlined and transitional flow regimes.  In  bluff  body  flow,  the 

instantaneous lift values should be predicted with the methods developed in chapter 4. 

However, for the mean lift prediction, K-J theorem can be applied (although with larger 

error bars) because the unsteady lift fluctuation generated by the periodic vortex 

shedding process is averaged to zero during the period of data acquisition over many 

shedding cycles. 

 

5.5 Results for flow over plates with varying chord length  

In this section, we present the mean lift force distribution along the span of the 

plates with chord length variation. The four plates described in section 5.2.1 were used 

in UCMT test. Each data point presented in this section is the mean lift averaged from 5 
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separate measurements. Lift distributions for streamlined flow (α=60) and transitional 

flow (α=150) are presented.  

 

5.5.1 Spanwise lift distributions 

We next present lift distributions along the flat plate spans (z direction) in Fig 

5.10 and 5.12. The local lift L(z) was non-dimensionalized with L0, the measured lift 

value for z > z0 where the chord length is constant. In order to determine whether three-

dimensional flow is induced by curved leading and trailing edges, we also present the 

nominal two dimensional lift distribution which was calculated based on local chord 

length with 

                                    
c
zc
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zL )()(

0

=  .                                                               (5.2) 

Here c(z) is the local chord length which is a sinusoidal function of the coordinate z, c is 

the constant chord length for z > z0. If the plate flow remains purely 2D, we would 

expect that its distribution would follow Eq. (5.2). As a result deviations of measured 

lift distributions for various plates will be a measure of the level of three-dimensionality 

in the flow. 

In Fig 5.10(a) for the streamlined flow, the deviation of the 3D lift distribution 

from the nominal 2D is small. This shows that curved trailing edge generates slight 3D 

effect on the spanwise lift distribution. However, in Fig 5.10b, a curved leading edge 

yields a larger 3D variation, especially near center span area where the plate chord 

length is minimum. Here the deviation between the 2 curves is almost 26%.  This 

demonstrates that leading edge dominates the flow development in streamlined flow.  
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Fig 5.10 Mean lift distributions along a plate with sinusoidal curved leading or trailing edge in 
streamlined regime (α=60) at U=5m/s.  (a) Trailing edge curved; (b) Leading edge curved; (c) Both 
leading and trailing edge curved; (d) Comparison of different cases. 
 

                               (a)                               (b) 

                              (c)                               (d) 



 151

 

 

 

 

 

 

 

 

                                                 (a)

                                                 (b) 

                                                (c)

Fig 5.11 Smoke visualization of flow at three sections along plate span at α=60. Separation bubble 
size changes at various spanwise locations. (a) z/z0 = 1.0. (b) z/z0 = 0.5. (c) z/z0 = 0.0 
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Fig 5.10c presents the lift distribution from the plate with both sinusoidal 

leading and trailing edge (case 4). the deviation between the curves is the largest among 

all cases. The deviation of 3D lift from the nominal 2D results in Fig 5.10a-c serves to 

determine the relative contribution of the curved leading or trailing edges in 

development of 3D effects in the flow. In Fig 5.10d, we summarize the results from Fig 

5.10a-c and include case 1 (constant chordlength plate). The maximum deviation occurs 

at the midspan with largest 3D effect for case 4. 

A possible physical mechanism for these results could be related to the chord 

length variation and separation bubble effects.  In general, the plate lift will be larger if 

there is a bubble attached on its upper surface, because the bubble effect seems to make 

the flow around a cambered airfoil (Tani, 1964). When the bubble bursts and no longer 

reattaches, a leading edge stall will occur resulting in lift reduction.  This point can be 

used to partially explain our results combined with our smoke flow visualization at 

α=60.  Fig. 5.11 presents the flow patterns at three local sections of z/z0 = 1, 0.5, 0.0 

respectively for the plate with combined leading and trailing edges curved. At section 

z/z0=1, a separation bubble clearly exists on plate upper surface extending from plate 

leading edge x/c(z) = 0.0 to a place with x/c(z) = 0.7. At z/z0=0.5, the separation bubble 

covers the whole plate upper surface and extends beyond the trailing edge, a burst may 

happen. At plate middle span section z/z0=0.0, the bubble no longer reattaches to the 

plate and leading edge stall occurs.  These flow observations combined with Tani’s 

viewpoint could explain the trend of the spanwise variation of lift distribution. Of 
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course, the effect of chord length variation also contributes to the lift variation. A larger 

chord length may result in larger circulation and lift. Finally it should be noted that the 

complex 3D flow interaction between shear layers at neighboring sections along plate 

span may also affect the lift distribution on final results. This is an interesting topic in 

the future.    

The spanwise lift distribution along these curved plates for typical transitional 

flow (α=150) is presented in Fig 5.12. In Fig 5.12(a), the deviation of the 3D lift 

distribution from the nominal 2D is still small, but it is larger when compared with the 

same case for streamlined flow (Fig 5.10(a)). From Fig 5.12(b), the curved leading edge 

yields much stronger 3D effect than in streamlined flow (Fig 5.10(b)). The difference 

between the 3D lift distribution and the nominal 2D lift increases with the reduction of 

chord length, and approaches its maximum value at the minimum chord length section 

as 62%, which is a dramatically variation compared with the same case for streamlined 

flow as of 26% in Fig 5.10(b). This further demonstrates the leading edge effect on 3D 

flow generation. Fig 5.12(c) presents the results for the plate with both sinusoidal 

leading and trailing edges. The difference between 3D and 2D nominal lift has the same 

trend as that for case 3. The maximum deviation is about 67%, showing that the 

combined leading and trailing edges still generate the strongest 3D effects in the flow. 

However, this is not a large change compared with case 3, which has a 62% deviation. 

Fig 5.12(d) presents the 3D lift distribution of all cases along with the 2D plate (case 1). 

The deviation of case 2-4 are much larger compared to case 1 than in the streamlined  
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Fig 5.12 Mean lift distributions along plate with sinusoidal curved leading or trailing edge in a 
transitional flow regime (α=150) at U=5m/s.  (a) Trailing edge curved; (b) Leading edge curved; (c) Both 
leading and trailing edge curved; (d) Comparison of different cases. 

 

 

 

                               (a)                               (b) 

                             (c)                               (d) 
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flow case. This shows curved leading and trailing edges inducing stronger 3D effects in 

transitional flow than in streamlined flow. However, we reach the same conclusion as in 

streamlined flow, i.e., the leading edge predominates in creating 3D effects in the flow. 

This is further illuminated by the fact that the difference in lift distributions between 

case 3 and case 4 is much smaller compared with that in streamlined flow (Fig 5.10(d)). 

A possible physical mechanism may relate to the leading edge stall at α=150 for all 

cases. The shear layers have separated from the plate leading edges as observed in 

smoke flow visualizations, hence results in smaller lift value compared to the 2D 

results. 

 

5.5.2 Comparison between UCMT and force balance results 

In order to further validate the UCMT measurements, we also used the force 

balance system in tunnel 2 to measure the total lift force on a flat plate (case 4) and 

compared it with the integrated lift obtained by integrating the lift distributions (in Fig. 

5.10 and 5.12) across the plate span. An independent force measurement is necessary to 

confirm that the lift distributions measured with UCMT in section 5.5.1 are valid. The 

plate from case 4  (with both sinusoidal curved leading and trailing edges) was selected 

for the test, because it induced the strongest 3D effects on the flow as discussed 

previously. In previous section, our focus was mainly on the streamlined and 

transitional flow regimes, so in force balance measurement, the range of plate angle of 

attack was set from α=00 to α=200, which includes the streamlined, stalled and part of 

the transitional flow regimes. The free stream airflow speed was U=5m/s as in the 
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UCMT test. For each data point, we repeated the test for 5 times and present the mean 

value and error bars based on standard deviation. The UCMT lift distribution was 

integrated over plate span to give to the total mean lift from UCMT for comparison to 

the LVDT force balance measurements in tunnel 2, with following expression 
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Where CL  is the UCMT total lift; Cl (z) the measured local lift coefficients; 

il
C the lift coefficient at each local section with chord length )(zci , setting i=0 

corresponds to the middle span of the plate and i=N=12 represents the section with 

constant chord length. 

An identical plate (case 4) used to determine the lift distribution (Fig 5.10c and 

Fig 5.12c) in tunnel 1 was now tested in tunnel 2.  Since the test section dimension is 

slightly larger in tunnel 2 than tunnel 1, the plate did not extend to the test sectional wall 

in tunnel 2. Endplates (Stansby, 1974) were added to the plate in tunnel 2 to eliminate 

any wing tip vortex effects.    

Fig 5.13 presents the comparison of lift force measured from the UCMT lift 

distributions and the force balance system of tunnel 2 for the case 4. The integrated lift 

from the UCMT lift distribution shows slightly lower values than the force balance 

measurements. In the streamlined flow regime at α = 60, the difference is about  7%. In 

the transitional flow regime at α = 150, the difference increases to almost 12%. The  
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Fig 5.13 Comparison of UCMT lift measurement (in tunnel 1) and force balance
measurement (in tunnel 2) at U=5m/s for a plate with both sinusoidal curved leading and
trailing edge. 
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error may result from the discrete process when using integration and from 

measurement error in both the UCMT and force balance system. Another concern is that 

if Kutta-Joukowski theorem developed for 2D flow may yield some error in a 3D flow. 

Considering all these issues, the 6% deviations are still acceptable. In addition, we also 

present the UCMT lift for a 2D plate (Case 1) for comparison. The trend of lift variation 

with angle of attack is similar for case 1 (2D plate) and case 4. The difference between 

the lift curves for case 1 and case 4 reflects the data in Fig 5.10c and Fig. 5.12c.   

 

5.6 Low Reynolds, low aspect ratio wing study 

Given that we have developed methods in section 5.5 to study lift distributions 

in 3D flows, in this section, we present UCMT measurement results for low aspect ratio 

wings of rectangular planform shape. The wings consist of flat plate with no camber. 

These low AR wings may induce 3D flow naturally through the effect of wing tip 

vortices. The range of plate aspect ratio varied from AR=1 to AR=3. For such low 

aspect ratios, 3D effects are expected to be strong. Given this, we recognize that in 

UCMT experiments, we are only measuring bound circulation related to the so-called 

‘linear’ lift on the wing (Muller, 2001). Lift due to low-pressure regions near the wing 

tips created by trailing wing tip vortices is not measured with UCMT. Still, we perform 

UCMT experiments similar to that in section 5.5 to study the linear lift, to see if UCMT 

can be used to accurately predict lift on low Re, low AR wings applicable to MAV 

design. This isolation of the ‘linear’ lift from the vortex lift may also useful in low AR 

studies. We will discuss this in more detail later.  Here, we present lift distributions 

measured with UCMT and determine the integrated total lift on the plates, then compare 
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our UCMT measurements with force balance measurement results. Our focus is again 

on a typical streamlined flow at α = 60 and a transitional flow at α = 150. Circulation 

values were again converted using the Kutta-Joukowski theorem, although its 

applicability for lift determination in highly 3D flows such as low AR wings must be 

verified. 

Fig 5.14 presents a typical bound circulation distribution measured with UCMT 

along span of a low aspect ratio wing with AR=2.0 and Re=3.65×104. Streamlined flow 

(α = 60) and transitional flow (α = 150) cases are shown. Circulation were measured at 8 

sections varying from z/(b/2) =0.0 to 1.0. The results shown here have processed as 

described in section 5.2. The uniform spanwise circulation distribution at α = 00 shows 

negligible bound circulation as expected. The circulation distribution for α = 60 and α = 

150 are similar. The primary characteristic is a maximum (peak) at a spanwise location 

near wing tip area. This deviates from the typical monotonic decreasing of lift 

(circulation) distributions for high AR wings through Prandtl’s lift line theory (see Fig 

5.15).  This phenomenon may result from the strong three-dimensional flow induced 

near the tip vortex. It was also found by Bhagwat (2000) who measured the bound 

sectional circulation along the span of a wing with AR=9.6 at Re=2.53×105 using the 

Laser Doppler Velocimetry method (see Fig 5.2(b)). We should point out that Bhagwat 

(2000) was studying rotating helicopter  blades where a resultant freestream velocity 

variation existed along the wing span. This may explain his observation of a peak in 

circulation along the span of fairly high aspect ration wing. As a result, direct  
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Fig 5.14 Typical circulation distributions along span of a low aspect ratio wing with AR=2
and Re=3.65×104, measured with UCMT in streamlined flow (α = 60) and stalled flow (α =
150).  
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comparison to our flow may not be proper.  However, the existence of a circulation 

distribution peak in another flow is interesting. The spanwise location of the circulation 

peak in our work seems to be independent of AOA for α = 60 and α = 150. Final 

resolution in UCMT measurements along the span may yield some variation. However, 

ratio of 0Γ
Γpeak (see Fig 5.14) is larger for α = 150 compared to α = 60 suggesting 

larger induced 3D effects at higher AOA.  

Fig 5.15 presents our measured lift distribution for a low aspect ratio wing 

(AR=2) at α = 60 compared with Prandtl’s lifting line theory (schlicting, 1979) for a 

wing with AR=6 (Prandtl’s lifting line result for AR=2 is not available in literatures to 

the best of our knowledge). The sectional lift Cl is normalized with the mean lift of the 

wing CL. The difference between the UCMT measurement and results form Prandtl’s 

lifting line theory is dramatic.  This is attributed to the strong three-dimensional effect 

induced by tip vortex in low aspect ratio wings. Similar results were also found by 

Bastedo et al (1985) (see Fig 5.2a) for a low aspect ratio wing with AR=4 and 

rectangular planform and in Bhagwat (2000) (Fig 5.2b). These results indicate that 

Prandtl’s lifting line theory is not applicable to low aspect ratio wings due to violation 

of the assumption of negligible flow in spanwise direction (Phillips et al, 2000). 

The effect of varying aspect ratio on the lift distribution along the span of low 

aspect ratio wings is presented in Fig 5.16.   The trends are the same for streamlined 

flow and transitional flow, here we only present the case for streamlined flow at α = 60.  

We find that larger aspect ratios generally yield larger local lift across the span 

including the local lift value at the peak. The relative location of the peak lift value also  
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Fig 5.15 Comparison of lift distribution from UCMT along span of low aspect ratio 
wing (AR=2) with Prandtl’s lifting line results for a wing (AR=6) (Schlichting, 1979) 
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Fig 5.16 Effect of aspect ratio on lift distributions measured with UCMT on low aspect 
ratio wings at α = 60. 

α = 60
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varies with aspect ratio. For larger aspect ratios, the relative distance of the peak away 

from the wing tip decreases.     

We have described the characteristics of lift distribution on low Re, low AR 

wings (measured with UCMT) and compared them to results from Prandtl’s lifting line 

theory. Next, we will study the integration of the lift distributions (Fig 5.16) and 

compare these results with force balance measurements, results from other 

investigations (Pelletier & Mueller, 2000), and results from Prandtl’s lifting line theory. 

The total lift measured with UCMT was generated from integration of sectional lift 

distributions (Fig 5.16) using Eq. (5.3) with N = 8. The lifting line theory result is based 

on 
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from Anderson (1991), where 0a = 2π(rad-1) = 0.1(deg-1) is the lift curve slope for two-

dimensional airfoil, αLC the lift curve slope for finite wing. τ is a parameter related to 

wing planform shape, where typically 25.00 ≤≤ τ , following Pelletier & Mueller 

(2000), we set τ = 0.164 for a rectangular plate in our calculations. 

We first present our lift data from UCMT measurements and our force balance 

measurement in Fig 5.17(a) at α = 60. Each data point from balance measurement is the 

average of five independent runs. Mean value and error bars based on standard 

deviation are shown.   The UCMT lift values are less than the force balance values,  and 

difference between the two values increase slightly with increase of aspect ratio, with a  
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                                                             (a)                                                    
 

                                                                   (b) 
 
Fig 5.17  Comparison of lift coefficient vs aspect ratio in several investigations. (a)
Current UCMT and force balance measurements. (b) Comparison of our force balance
measurements, Pelletier & Mueler (2000)’s force balance data and finite wing theory. 
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maximum difference of approximate 12%. The lower lift values for the UCMT 

measurements  seems  reasonable,  since  the  ‘linear’  lift  due  to  bound  circulation  is 

accounted for in the UCMT data. The data in Fig. 5.17a suggests that integration of 

bound circulation from UCMT measurement can provide reasonable estimates of lift on 

low Re, low AR wings. The 12% difference between the curves in Fig 5.16a is 

acceptable at least for preliminary design work on MAVs. 

In Fig 5.17(b) we compare our force balance measurements to data from 

Pelletier & Mueller (2000) and Prandtl’s lifting line (finite wing) theory in order to 

check the reliability of our measurements. All these data sets show an increase in lift 

coefficient with increasing AR as expected. Results from Pelletier & Mueller (2000) 

and the present work generally bracket Prandtl’s lifting line theory, however, fairly 

difference in lift coefficient value is observed. These differences may be attributed in 

part to different test conditions. For  example,  the  Reynolds  number  for  our  test  was  

about Re = 4×104, but Re = 1.4×105 in the work of Pelletier & Mueller (2000). Also in 

their work, a wing configuration with only one wingtip exposed to the flow (i.e., a half 

aspect ratio configuration) was used which is different from our work. The interaction 

between the two wingtip vortices plays an important role in low aspect ratio wings, and 

will certainly affect measured lift values. Unfortunately, limited lift measurements on 

low Re, low aspect ratio wings exists in the literature. This is an area for future work. 
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5.7 Summary 

Two types of three-dimensional flow were studied in this chapter using UCMT 

and force balance techniques. First, flow over flat plate (non-uniformity) with 

curvedleading or/and trailing edges was studied. Next flow over low Re, low aspect 

ratio wing was considered. Focus was on measuring mean lift distributions along the 

span of plates leading to total integrated lift force measurement in the streamlined and 

transitional flow regimes. 

For the flow over the curved flat plates, the measurements of lift distributions 

showed that leading edge effect dominates the 3D flow development. Plate with both 

curved leading and trailing edges induce the strongest three-dimensionality in the flow. 

For streamlined flows, the lift variation in span along the plates was conjectured to be 

related to the relative size of the separation bubble, and leading edge stall and 

reattachment phenomena.  Smoke visualization of the flow was conducted to aid in this 

interpretation. Total lift data obtained by integrating the lift distributions was compared 

with force balance measurements.  A deviation of 6% to 12% was observed and 

discussed.   

For the low Reynolds, low aspect ratio wing study applicable to MAV design, 

local maximum (peaks) were observed in spanwise lift distributions measured with 

UCMT. This was attributed to the strong three-dimensionality in flow near wingtips. 

Only the bound circulation, or ‘linear’ lift effect is accounted for in UCMT 

measurements. The UCMT technique therefore can serve as a way to isolate the ‘linear’ 

lift effect verse the lift induced by wingtip vortices. This may prove useful in future 
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studies of low AR wings. The relative location and value of the peak lift varies with 

aspect ratio. Comparison between total integrated lift from UCMT lift distributions and 

force balance measurements showed that UCMT measurements under-predicted lift 

slightly as expected since only the ‘linear’ lift is measured. The qualitative trends from 

these different measurements were the same, with larger aspect ratios leading to larger 

lift coefficients. 

In calculating mean lift forces from UCMT measurements, the Kutta-Joukowski 

theorem was used to convert circulation to lift. This may contribute some error in lift 

determination since the Kutta-Jouskowski theorem is valid principally for two-

dimensional flows. However, we have found that UCMT techniques can provide 

reasonable measured lift distributions and integrated lift values as long as the imposed 

three-dimensionality is not too large.  Another concern is whether Prandtl’s lifting line 

theory is applicable to low aspect wings because its assumption of negligible flow in 

spanwise direction may not hold near the wing tip region. Future investigations are still 

needed to further understand these issues.  
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Chapter 6 
 

Conclusions  
 
6.1 Summary of Results 
 

Lift force determination is a key issue in many engineering applications, 

especially in understanding nonlinear coupling between structural motions and flow 

dynamics in fluid-structure interaction problems. However, deficiencies exist in past 

experimental techniques available to measure lift forces, particularly in areas of 

unsteady instantaneous lift measurement, and measurement of spatial lift distributions 

variation of sectional forces along structural spans.  

The major goal in our work is to explore a method that can be used in future 

experiments to address the above issues. The developed ultrasonic circulation 

measurement technique (UCMT) has shown potential for addressing those issues. 

UCMT was developed for lift determination based on the quasi-steady K-J theorem that 

properly converts the circulation to lift for steady flow. Hence, it has been mainly used 

in the past for mean lift measurement in two-dimensional steady flows around various 

aerodynamic bodies, including airfoils and delta wings. The extension of the UCMT 

methods to measure time-varying lift forces in unsteady flows has remained largely 

unstudied, and UCMT methods have also not been applied to measure lift distributions 

along structural spans. The focus of this research is to study extension of UCMT for lift 

determination in unsteady and three-dimensional flows.  

We used a combined analytical-numerical-experimental approach to fulfill this 

major goal. We first developed analytical methods that can properly convert time-
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dependent circulation (measurable with UCMT) to instantaneous lift forces based on 

unsteady potential flow theory. Then we verified the developed correction method 

numerically with a finite element solution. Finally, we experimentally used UCMT to 

study lift distributions along spans of structures that can induce three-dimensional 

flows. 

The corrected method was developed based on the work of Katz & Plotkin 

(1991), who deduced a general expression to relate unsteady circulation to 

instantaneous lift for an unsteady flow around a thin plate. 

                          
44 344 21

43421

B

c

A

dxtx
t

tuUtL ∫ Γ
∂
∂

+Γ=
0

),()()()( ρρ .                                      (2.3) 

In real experiments, ),( txΓ  is very difficult to measure using UCMT.  However, the 

bound circulation )(tΓ  is attainable. Hence, we developed a corrected unsteady method 

that can properly convert measurable unsteady bound circulation to instantaneous lift 

through 
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Here R is defined as an unsteady lift correction factor. The value of R was determined 

for several unsteady flow cases; R=3/4 for an oscillating plate; R=0 for a plunging 

plate; R=1 for an impulsively started plate. For a pitching plate, R is a complicated 

function of plate oscillation frequency, pivot location and freestream velocity. These 

results are valid for low amplitude, low frequency motions of thin airfoils. For flow 

around a stationary circular cylinder at Re=100, R=0.4 was determined empirically 
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from finite element solutions. Our corrected unsteady method expands the capability of 

the UCMT technique for unsteady flow studies may have application in other 

experimental methods that can acquire bound circulation such as the PIV techniques. 

Our corrected unsteady method was validated numerically using a finite element 

solution for flow around an oscillating flat plate at low angle of attack and at Re=100. 

Time-dependent bound circulation, based on the instantaneous velocity field integration 

along a mimicked closed sound path, was converted to instantaneous lift force using our 

developed methods. These results were compared to the ‘true’ lift forces (from stress 

integration). It was shown that our unsteady correction method provided improved 

results compared to the quasi-steady K-J approximation for unsteady flow studies. 

 Another important issue was the effect of variation in the acoustic path on bound 

circulation determination, which has not been addressed in previous UCMT studies. We 

systematically studied this issue with numerical finite element solutions and found that 

proper selection of the enclosing acoustic path is critical for accurate lift measurements. 

The information obtained in this work will be useful for closed path design in future 

UCMT, PIV or LDV experiments.  

Having achieved a better understanding of lift determination in unsteady plate 

flows, we next studied another important flow, low Reynolds number vortex shedding 

from a stationary bluff body (circular cylinder) using similar methods. We study various 

force models including a quasi-steady K-J method, an approximate Lighthill’s vortex 

force model, and a new unsteady model similar to that developed for plate flows. Finite 

element simulations for flow over a circular cylinder at Re = 100 were once again 
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performed. Various combinations of force models were studied. An approximate vortex 

force model based on an UCMT concept yielded lift predictions differing from the true 

lift values. As a result, an alternative model similar to that developed for unsteady flat 

plate flows was proposed and studied. This model requires measurement of 

instantaneous bound circulation in a region enclosing the cylinder. Some of our results 

also will have future impacts on PIV and LDV studies where flow data is integrated 

over regions enclosing aerodynamics bodies. 

To expand the capability of the UCMT technique for three-dimensional flow 

studies, we experimentally studied the mean lift distribution along structures that can 

induce three-dimensional flows. Flow around plates with sinusoidal curved leading 

or/and trailing edges and low Reynolds, low aspect ratio wings applicable to micro-

aerial-vehicle (MAV) design were studied. The size of the local chord length, size of 

separation bubbles and leading edge stall and reattachment phenomena were suggested 

to understand the results on the curved plates. Investigation of the lift distribution on the 

curved plates, and comparison to force balance results validated the UCMT methods 

used.  

Study of low Reynolds low aspect ratio wings with the UCMT technique 

showed that spanwise lift distributions are dramatically different from those obtained 

from Prandtl’s lifting line theory.  UCMT measured results showed that a peak 

circulation (lift) value exists at a location near the wing tip. The UCMT measurements 

only measure the bound circulation (e.g. ‘linear’ lift). Lift due to low pressure region 

created by wing tip vortices are not included. However, integration of the spanwise lift 
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distributions yielded reasonable (but lower) total lift values compared to independent 

force balance measurements.  

Based on the deviation between lift values from integrated lift distribution and 

force balance measurements, some concern still exist concerning the applicability of the 

K-J theorem in the MAV studies. Our results suggest that the K-J theorem is valid as 

long as the three-dimensionality in the flow is small (curved plates), but care must be 

taken with highly three-dimensional flows such as low Reynolds, low aspect ratio 

wings. 

 

6.2 Future Work 

Future research in this area would first concentrate on applying what has been 

learned in the present study to experimental UCMT studies on unsteady flows. From the 

present work, we have not only learned how to properly convert measured unsteady 

circulation values to instantaneous lift, but also gained insight into a wide variety of 

unsteady flows. These results are valid for low amplitude, low frequency motions of flat 

plate airfoils. We have learned that plunging plates and impulsively started plates are 

the best candidate flows for UCMT experiments. Plunging plates, for example, require 

no-unsteady correction (R=0), and the quasi-steady K-J theorem is applicable. Pitching 

airfoils, on the other hand, require complex unsteady corrections ( ),,,( tUc
akfR = ) 

and may be more difficult to study. Systematic determination of R values for other 

unsteady flows will be of interest in future work.  
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We have also gained insight into the dependence of lift measurements on the 

geometry of acoustic path. As a result, we now can design proper acoustic path in 

experiments on unsteady flows and low Re cylinder wakes and possibly re-interpret 

previous UCMT results. In future, we would like to systematically study variation of the 

allowed region for path selection as a function of Reynolds number, body oscillation 

amplitude and reduced frequency, so that the results become a true resource for 

guidance of circulation measurement experiments such as UCMT, PIV and LDV. We 

also foresee studying combinations of K-J theorem, unsteady correction and vortex flow 

models in UCMT experiments on cylinder wakes. 

 In three-dimensional flows, we plan to focus on low Reynolds, low aspect ratio 

wings for MAV studies. We would like to better understand the observed circulation 

distribution peaks, while also measuring trailing wing tip vortex strength (circulation) 

using UCMT. All parameters may depend on the wing tip chord-length, freestream 

velocity, angle of attack, and airfoil span at extreme low aspect ratios.   

On the numerical side, we would like to repeat the simulation of chapter 3 and 4 

at higher Reynolds numbers. Simulations on oscillating plates at Re=103, 104 would 

confirm our unsteady correction methods at Reynolds numbers of many engineering 

applications. Simulations on a pitching flat plate could also be conducted to verify and 

better understand the complex unsteady correction factor R in this flow. The application 

of the cylinder wake work to data from numerical simulation of freely vibrating cables 

(NEKTAR code of G. Karniadakis) is also a possibility. 
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For analytical studies, confirming the empirically determined corrected factor, 

R=0.4 for cylinder flow, remains as a challenge. In the development of our correction 

method, higher order time derivatives of bound circulation were not included in Eq. 

(2.36), which only expressed the quasi-steady and one unsteady term. Those high order 

terms may improve our results for body oscillations with higher frequency and 

amplitude. The methods of chapter 2 could also be extended to develop unsteady 

corrections for pitching moments in unsteady aerodynamic flows.  
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Appendix A 
 

Derivation of Unsteady Correction Factor, R 
 

(1) General plate motion 

The unsteady correction coefficient is defined in chapter 2 as 
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BR = .                                                                  (2.35) 
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The integrated circulation ),( txΓ is expressed as 
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With the aid of following integrals 
 

                                  
4
2sin

2
sin 00 0

2 θθθθ
θ

−=∫ d .                                         (A.4) 

 

                     
)1(2
)1sin(

)1(2
)1sin()sin()sin( 00 00 +

+
−

−
−

=∫ n
n

n
ndn θθ

θθθ
θ

.                                 (A.5) 

 
and considering U(t)=U=constant in our work, (A.3) will be 
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For bound circulation πθ =⇒=⇒Γ=Γ cxtct ),()( , substitute into (A.6), yields 
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Substitute (A.7) into (A.2), yields 
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Substitute (A.8), (A.9) into (2.35), yields 
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From eq. (2.7), it gives 
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Local downwash is given in eq. (2.8) as 
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For the motion studied in this work, plate shape function is given in eq. (2.10) 
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Substitute (A.12) in (2.8), yields 
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The wake potential WΦ  is a complex function of the plate motion history. From the work 

of Theodorsen (1935) and Von Karman & Sears(1938), effect of WΦ  can be corrected by 

using a lift deficiency factor C(k) (see Appendix B) to the quasi-steady term. Hence, here 

it can be temporarily neglected. (A.13) will be 
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Substitute (A.14) in (A.11), and notice )cos1(
2

θ−=
cx , yields 

 

                   















=

=

−+−=

0)(

,
2

)(

)],21(
2

)()([1)(

2

1

tE
U

ctE

c
acthtU

U
tEo

α

αα

&

&&

 .                                               (A.15) 

 
Substitute (A.15) in (A.10), yields 
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(2) Application to typical unsteady flows 
 
   (2.1)  Oscillating plate 
 
For an oscillating plate, eq. (2.13) gives 
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Substitute it in (A.16), yields 
 

                                        
4
3

)2( ==
B
BR .                                                                      (2.17) 

 
 
  (2.2) Plunging plate 
 
For a plunging plate, its motion is given by eq. (2.38) 
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yields 0,0 === h&&&&& αα , substitute in (A.16), get 
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   (2.3) Pitching plate 
 
For a pitching plate, the plate motion is given as 
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Appendix B 
 

Lift Deficiency Factor, C(k) 
 

Lift deficiency factor is also called Theodorsen’s function (Fung, 1993), it is used 

to correct the lift obtained from a mathematical manipulation in which the wake effect is 

temporarily neglected due to the complex mathematical difficulty. It is a function of 

reduced frequency and it’s exact expression is 
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Where K(ik) are modified Bessel functions. Obviously (B.1) is a complex 

mathematical expression.  An approximate expression of C(k) can be expressed as 
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After some mathematical manipulation, its module can be expressed as 
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(B.3) was used in our work in chapter 2 (equation (2.12)). 
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