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Abstract 

For individuals with type 2 diabetes, diabetic foot ulcers represent a significant health 

issue and the wound care cost is quite high.  Currently, clinicians and nurses mainly base 

their wound assessment on visual examination of wound size and the status of the wound 

tissue. This method is potentially inaccurate for wound assessment and requires extra 

clinical workload. In view of the prevalence of smartphones with high resolution digital 

camera, assessing wound healing by analyzing of real-time images using the significant 

computational power of today’s mobile devices is an attractive approach for managing 

foot ulcers. Alternatively, the smartphone may be used just for image capture and 

wireless transfer to a PC or laptop for image processing. 

To achieve accurate foot ulcer image assessment, we have developed and tested a novel 

automatic wound image analysis system which accomplishes the following conditions: 1) 

design of an easy-to-use image capture system which makes the image capture process 

comfortable for the patient and provides well-controlled image capture conditions; 2) 

synthesis of efficient and accurate algorithms for real-time wound boundary 

determination to measure the wound area size; 3) development of a quantitative method 

to assess the wound healing status based on a foot ulcer image sequence for a given 

patient and 4) design of a wound image assessment and management system that can be 

used both in the patient’s home and clinical environment in a tele-medicine fashion.  

In our work, the wound image is captured by the camera on the smartphone while the 

patient’s foot is held in place by an image capture box, which is specially design to aid 

patients in photographing ulcers occurring on the sole of their feet. The experimental 

results prove that our image capture system guarantees consistent illumination and a fixed 

distance between the foot and camera. These properties greatly reduce the complexity of 

the subsequent wound recognition and assessment. 
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The most significant contribution of our work is the development of five different wound 

boundary determination approaches based on different computer vision algorithms. The 

first approach employs the level set algorithm to determine the wound boundary directly 

based on a manually set initial curve. The second and third approaches are the mean-shift 

segmentation based methods augmented by foot outline detection and analysis. These two 

approaches have been shown to be efficient to implement (especially on smartphones), 

prior-knowledge independent and able to provide reasonably accurate wound 

segmentation results given a set of well-tuned parameters. However, this method suffers 

from the lack of self-adaptivity due to the fact that it is not based on machine learning. 

Consequently, a two-stage Support Vector Machine (SVM) binary classifier based wound 

recognition approach is developed and implemented. This approach consists of three 

major steps 1) unsupervised super-pixel segmentation, 2) feature descriptor extraction for 

each super-pixel and 3) supervised classifier based wound boundary determination. The 

experimental results show that this approach provides promising performance (sensitivity: 

73.3%, specificity: 95.6%) when dealing with foot ulcer images captured with our image 

capture box. In the third approach, we further relax the image capture constraints and 

generalize the application of our wound recognition system by applying the conditional 

random field (CRF) based model to solve the wound boundary determination. The key 

modules in this approach are the TextonBoost based potential learning at different scales 

and efficient CRF model inference to find the optimal labeling. Finally, the standard K-

means clustering algorithm is applied to the determined wound area for color based 

wound tissue classification. 

To train the models used in the last two approaches, as well as to evaluate all three 

methods, we have collected about 100 wound images at the wound clinic in UMass 

Medical School by tracking 15 patients for a 2-year period, following an IRB approved 

protocol. The wound recognition results were compared with the ground truth generated 

by combining clinical labeling from three experienced clinicians. Specificity and 

sensitivity based measures indicate that the CRF based approach is the most reliable 

method despite its implementation complexity and computational demands. In addition, 

sample images of Moulage wound simulations are also used to increase the evaluation 

flexibility. The advantages and disadvantages of three approaches are described.  
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Another important contribution of this work has been development of a healing score 

based mechanism for quantitative wound healing status assessment. The wound size and 

color composition measurements were converted to a score number ranging from 0-10, 

which indicates the healing trend based on comparisons of subsequent images to an initial 

foot ulcer image. By comparing the result of the healing score algorithm to the healing 

scores determined by experienced clinicians, we assess the clinical validity of our healing 

score algorithm. The level of agreement of our healing score with the three assessing 

clinicians was quantified by using the Kripendorff’s Alpha Coefficient (KAC). Finally, a 

collaborative wound image management system between the PC and smartphone was 

designed and successfully applied in the wound clinic for patients’ wound tracking 

purpose. This system is proven to be applicable in clinical environment and capable of 

providing interactive foot ulcer care in a telemedicine fashion.    
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Chapter 1  

Introduction 

1.1 Motivation and Challenges 

The World Health Organization (WHO) estimates that more than 180 million people 

worldwide have diabetes mellitus and this number will possibly double by the year 2030 

[1]. According to [1], one frequently occurring complication of diabetes (especially type 

2 diabetes) is Diabetic Foot Syndrome (DFS), which may increase the risk of developing 

foot ulcers and wounds as a result of neuropathy. For individuals with type 2 diabetes, 

foot ulcers constitute a significant health issue affecting 5-6 million individuals in the US 

[2], [3]. Such these wounds are painful, susceptible to infection and very slow to heal [4], 

[5]. According to published statistics, diabetes-related wounds are the primary cause of 

non-traumatic lower limb amputations, with approximately 73,000 such amputations in 

the US in 2010 [6]. The foot ulcer is a typical chronic wound, whose care and treatment 

involve high costs for health services and imply important consequences for the health of 

the population [7]. An estimated 6.5 million patients in the United States are affected by 

chronic wounds, and it is estimated that in excess of $25 billion is spent on the treatment 

of chronic wounds every year. The burden is growing rapidly due to increasing health 

care costs, an aging population and a sharp rise in the incidence rate of diabetes and 

obesity worldwide [8]. The cost associated with treating diabetic foot ulcers is high and is 

estimated to be $15,000 per year per individual. Overall diabetes healthcare cost in the 

US was estimated at $245 billion in 2012 [6].  

Accurate measurement of wound dimension and assessment of ulcer healing becomes an 

important task in clinical wound treatment, as the care for each individual patient largely 
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is based on this assessment. Today, clinicians usually measure wound dimensions (not 

area) using standardized scale and often record the results in paper format. The status of 

the wound tissue is based mainly on visual inspection, to which is added other relevant 

information about the patient’s state of health [7]. One example of the most widely used 

tools for assessment of the healing status of a pressure ulcer is called the PUSH (Pressure 

Ulcer Scale for Healing) tool [9]. This tool assess the ulcer by visual inspection of  four 

types of wound tissues, i.e., epithelial, granulation, slough, or necrosis, along with the 

manual measurement of the wound dimensions and the subjective assessment of oozing 

from the ulcer. According to [7], such a visual inspection based approach is a subjective 

and potentially inaccurate method, which lacks of the capability to perform consistent 

wound area determination or tissue classification in an objective way.  

Besides, patients must go to their wound clinic on a regular basis to have their wounds 

checked by their clinicians.  Bus et al [1] found that regular foot care for patients with a 

high risk for ulceration is recommended once at least every three months. Furthermore, 

the patients with conditions including visual impairment, living alone, cognitive problems, 

or lack of knowledge about the disease should have more frequent proper examination of 

their feet and such patients may benefit from screening on a weekly basis in order to 

identify ulceration or pre-signs of ulceration at an early stage [10]. This need for frequent 

clinical evaluation not only causes inconvenience for patients and an additional workload 

for clinicians, but also adds to the health care cost since patients with limited mobility 

require special transportation, e.g., ambulances [10].  

Computer-aided measurements of the size and characterization of chronic wounds is a 

new approach to standardize the accuracy of chronic wound assessment. Such a 

technology can potentially reduce clinicians’ workload considerably, make the treatment 

and care more consistent and accurate, increase the quality of documentation in the 

medical record and enable clinicians to achieve quality benchmarks for wound care, as 

determined by the Center for Medicare Services. Also, computer-aided measurements 

will permit the definition of “standard” wound healing rates, and minimize inter- and 

intra- observer variations [11].  
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The current state of the art approach in measuring wound size using digital images known 

as digital planimetry [12], requires the clinician to identify wound borders and tissue type 

within the image. This is a time-intensive process and is a barrier to achieve quality 

clinical benchmarks. Other attempts to use image processing techniques for such tasks 

include measurement of wound area, or alternatively using a volume instrument system 

(MAVIS) [13] or a medical digital photogrammetric system, which is able to 

automatically measure the dimensions of skin wounds. These wound image processing 

methods were based on color segmentation algorithms and were able to segment an 

image into one of these three tissue types: healthy skin, wound tissue and epithelial tissue. 

These approaches suffer from drawbacks including high cost, complexity, and lack of 

tissue classification [14].  Hence, for more accurate and flexible wound monitoring, PC 

or even mobile computing device based wound assessment methods are needed for an 

automatic wound area determination, tissue type classification and further overall 

evaluation of the wound healing status. Using this method, real-time wound monitoring 

in both the clinical and home environment context becomes possible given a set of image 

capture and computing devices configured with carefully designed wound analysis 

software. 

1.2 Image Capture for Diabetic Foot Ulcers 

Based on clinical literature [1], [15], foot ulcers usually occur on the sole of the feet. It is 

particularly challenging for diabetic patients, especially elderly patients or patients with 

limited flexibility, to photograph such ulcers due to mobility limitations.  Hence, for 

wound care at the patients’ home, it is necessary to design a device which enables 

individuals with advanced diabetes to capture quality foot ulcer images. From our 

literature review, we found two most related works as follows.   

Bus et al [1] described a device that uses digital photography as a telemedicine 

monitoring tool to assess the high risk diabetic foot in the home environment for 

prevention purposes. This device, shown in part (a) in Figure 1.1, provides high-quality 

digital photographs of the plantar surfaces of the feet under standardized conditions with 

respect to foot positioning camera orientation and light conditions. Moreover, this device 
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is fully automatic, and the acquired photographs are sent automatically via the Internet to 

a central database server from where they can be downloaded and assessed by trained 

healthcare professionals. In [1], all wound photographs were assessed independently by 

four clinically trained observers and compared with live and repeated photographic 

assessments of the feet by the same observers. The agreement between assessments is 

reported as 74% to 100%. The major shortcoming of this device is its dimensions. The 

foot soles are imaged from an optical distance of about 1 meter in order to minimize 

geometric image distortions. Even with a high-quality mirror to fold the imaging light 

path, the outer dimensions of the device, which can be indirectly determined by the 

dimension of the light path, makes it not portable. There is no specific discussion about 

the cost for this device. 

 

(a) 

 

(b) 

Figure 1.1 Two devices for foot ulcer image capture, and both images are screenshots from [1] 

and [15], respectively 
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Foltynski et al [15] described another novel device called “Patient’s Module (PM)” , as 

shown in part (b) in Figure 1.1, is presented for tele-monitoring of patients with diabetic 

foot ulcer. The PM consists of an optical scanner as image capture device, a PC 

motherboard with processor, RAM memory, hard disk drive, RS232-IR converter, AD 

converter with I/O ports, wireless GSM modem, wireless controller board for remote 

control and custom-made case. The study revealed that the PM can be used as a home 

tele-monitoring device, and the analysis of the data sent from patient’s home enables the 

assessment of wound healing progress, giving the physician the possibility for earlier 

change of the treatment if the wound healing is not satisfactory. 

1.3 Computer Based Wound Image Analysis Method Overview 

Reliable wound assessment is best achieved by performing accurate measurements of 

wound area size, colors and size of different wound tissues, including proliferation, 

infected area, slough or necrosis. Due to the lack of consistency, routine visual inspection 

based wound care, even with the assistance of tools such as PUSH, cannot ensure an 

objective assessment of wound healing rate. Hence, PC/laptop based evaluation of foot 

ulcers based on computer vision and image processing techniques is an ideal approach to 

accurate chronic assessment. Automatic detection of foot ulcer size and tissue 

composition are particularly desirable for both clinicians and diabetic patients to monitor 

the wound healing status and to provide more effective wound care.  

Prior work on ulcer image analysis: Current research on chronic ulcer image analysis 

mainly focuses on the following tasks [10]: 1) wound boundary determination and size 

measurement, 2) wound tissue classification within the determined wound area, and 3) 

wound healing rate assessment. In earlier investigations, active contour models or and 

level set based methods have commonly been applied to directly measure the area of 

wounds semi-automatically [16] [17] [18]. Although good segmentation results were 

obtained under well-controlled conditions, these approaches still suffer from several 

problems including dependence on the initial contour setting, sensitivity to illumination 

conditions and instability when dealing with the poorly defined wound boundary or false 

edges. Moreover, it was reported in [18] that these method failed to provide correct 

results when the wound boundary has an irregular shape.   In other works, the 
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investigators decomposed the wound boundary determination  into two sub-tasks: 1) skin 

area segmentation from the background and 2) wound area segmentation [19] [20]. As in 

[19], the fuzzy C-Mean (FCM) clustering method was applied to both two sub-tasks in 

different color spaces for burn wounds segmentation. The Positive Predicative Value 

(PPV) and the sensitivity (S) were used to measure the segmentation performance. It was 

reported that the proposed method was able to provide good results based on the ground 

truth generated by experienced clinicians, but the results were limited to images of burn 

wounds (PPV > 0.87 and S > 0.72).  

Wound area determination approaches by applying machine learning based classifiers 

have also been widely used [7], [21]–[24]. In [22] [21], the authors utilized a color 

feature (composed of the multi-dimensional histogram intersection and sampling, green 

and blue channels from RGB model) and a Salient Covariance (SCOV) texture feature to 

differentiate the wound and healthy skin. Then a regular support vector machine (SVM) 

classifier trained on 6 images was applied in a pixel-wise fashion for segmentation of the 

entire wound region. The average error rate of classification was reported as 9% on 2 test 

images. However, the validity of this method has not been substantiated due to their small 

image dataset.   

In some of the above publications [7], [23], [24],  a bottom-up object recognition scheme 

was applied for wound tissue classification and indirect wound area determination (by 

grouping all the regions classified as one type of the wound tissues). Generally, these 

classification approaches consist of following three modules: 1) image segmentation, 2) 

feature extraction for each segment and 3) classifier training on large numbers of features 

from either the wound or non-wound segments.  In module 1, different image 

segmentation algorithms were applied, including mean shift [23] [7], JSEG (an 

unsupervised segmentation of color-texture regions in images) [23], region growing [10] 

[7]  and integrated segmentation approach [24]. In [23], the segmentation results were 

evaluated by calculating the matching degree (overlapping score) with the medical 

reference constructed from clinicians’ tracings. However, this approach was  discarded in 

[7] because of the large intra-observer variability, which undermined the reliability of 

using manually delineated ground-truth reference images. Instead, they evaluated the 

segmentation results by measuring the region uniformity and contrast in segmented 



7 

 

images. In module 2, different feature descriptors were used to capture the most 

distinguishable characteristics of the wound tissue. In [23], several color and texture 

descriptors that had been already used in dermatological imaging system were compared. 

The authors in [23] concluded that the feature descriptor that combined 23 attributes 

provided the best results in terms of the specificity (92%) and sensitivity (77%) 

measurements. The attributes included Mean Color Descriptor (MCD) and Dominant 

Color Descriptor (DCD) as color descriptor and Gray Level Co-Occurrence Matrix 

(GLCM) as texture descriptor. Veredas et al [7] utilized a combination of color features 

(extracted on image pixels and histograms) and texture features (extracted by two-level 

wavelet filters). The features were used as the descriptor for each region in the segmented 

image. In [20], a combination of geometric indicators (area, perimeter, centroid and axes 

lengths) and min/max/mean intensities of each color channel were employed to describe 

each region. In module 3, support vector machine (SVM) [19] [22] [23] and Artificial 

Neural Network (ANN) [19] [20] were  applied  to train the wound tissue classifier. A 

cascade classifier based on ANN and Bayesian committee machine was formed in [19], 

which was reported with a global performance (sensitivity = 78.7%, specificity = 94.7%) 

in wound tissue classification.  

Prior work on wound healing assessment: In addition to wound boundary determination 

and tissue recognition, wound healing and monitoring have been the subject of several 

studies on wound image analysis. In [25], the authors described how the wound healing 

rate should be defined to enable appropriate description of wound healing dynamics. 

They suggested that wound area measurements should be described as a percentage of 

initial wound area and fitted to a delayed exponential model. In the proposed model, the 

wound healing rate is described by the slope of the time curve. The slope as a function of 

time is fitted to the normalized wound area measurements after initialization delay. 

Loizou et al [26] established and standardized an objective technique to assess the 

progress of healing of foot wounds. In this study, the authors perform automated 

segmentation of the wounds based on snakes while the initial contour is automatically 

positioned to the area of interest. They followed up the rate of wound healing by means 

of texture features and geometric measures extracted from the automated segmented 

areas. The overall conclusion was that while none of the geometrical features (area, 
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perimeter, x-, y-coordinate) showed significant changes between visits, several texture 

features (mean, contrast, entropy, sum variance, sum average) did change accordingly, 

indicating these features might provide a better wound healing rate indication. Finally, in 

[27] the authors evaluated several methods for quantitative wound assessment on diabetic 

foot ulcers, namely wound volume, wound area, and wound coloration.  

1.4 Wound Image Analysis Software Overview 

Quite a few computer device based tools are currently available for wound analysis and 

monitoring. However, most of these software packages have only incorporated semi-

automated wound area detection or segmentation to minimize the clinician’s initial 

involvement.    

PictZar Digital Planimetry Software [28] is a commercial software for wound analysis, 

which provides measurements such as length, width, surface area, circumference, and 

estimated volume to the users. The software requires the user to draw and calibrate in 

order for the above measurements to be computed. In [29], a color image processing 

software application called WITA was developed for digital wound image analyzing. 

Based on the tissue samples used for training, the program classifies the tissue and 

monitors wound healing. The wound tissue types are divided into black necrotic eschar, 

yellow fibrin or slough, red granulation tissue and unclassified parts of the image; 

however, no evaluation against the known ground truth was presented for the image 

analysis part of the software. To obtain wound dimensions, users must mark the distance 

on the photograph that is equivalent to 1 cm (or 1 inch). A different approach to wound 

monitoring software and hardware was proposed in [30]. The authors developed a new 

“wound mapping” device, which is based on electrical impedance spectroscopy and 

involves the multi-frequency characterization of the electrical properties of wound tissue 

under an electrode array. This approach, however, requires major changes to the clinical 

routine in wound care (nurses or care-givers needed to use large-scale medical imaging 

devices to take sample wound images on daily basis at the wound clinic). In [31], the 

authors developed a tool called “MelaFind” including an imaging device and automatic 

melanoma detection system. Based on my research, no further detailed information about 

the evaluation of the system performance was revealed for MelaFind.  
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Another evidence-based wound assessment tool, called “Silhouette TM”, was developed 

by Aranz Medical [32]. The system includes a laser imaging device that precisely and 

consistently measures the wound depth and volume of wounds and their healing progress. 

The system software allows users to store and manage wound information that is then 

available instantly to key stakeholders. It is claimed that any single Silhouette-derived 

measurement is likely to be within a 2% error for area, 1% error for perimeter, 5% error 

for average depth and 5% error for volume (95% confidence interval). Inter and intra-

rater variability is extremely low (below 1% for area and perimeter and below 2% for 

average depth and volume). Based on [28], this product is now available for clinical 

practice.  The main disadvantage of this system is that it relies on laser imaging 

techniques. Hence the cost is high and it is only applicable in clinical environment. 

In [33], a smartphone based application (this app has different versions for both Android 

and iOS based smartphones), called “MOWA”, for advanced management of pressure 

ulcers was developed. In this application, the user first opens the pre-captured wound 

image in the smartphone Gallery, and then draws the wound boundary using a “pen tool” 

with a pre-designed mask. The wound area is calculated either automatically if a blue 

marker with a fixed size is found on the image or manually by setting the size of the 

surrounding rectangle accordingly. Afterwards, this app will automatically perform the 

color segmentation within the wound area and categorize wound tissues into several types 

including necrosis, fibrin, granulation and unknown. It is claimed that this application is a 

practical software solution for analyzing wound image, but no performance or efficiency 

evaluation has been presented.  

1.5 General Wound Image Analysis System 

In this work, we propose a general wound image analysis system which consists of 

several functional modules including wound image capture, wound image storage, wound 

image preprocessing, wound boundary determination, wound analysis by color 

segmentation and wound trend analysis based on a time sequence of wound images for a 

given patient. The functional diagram of our quantitative wound assessment system is 

shown as in Figure 1.2 and explained below. 
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Figure 1.2 Wound Image Analysis Software System [20] 

All these processing steps can be carried out solely by the computational resources of the 

smartphone or on the collaborative system of PCs and smartphones (In the collaborative 

system, the smartphone will be used to capture image and the PC will be used to analyze 

wound images). Note that the words highlighted in bold in the text correspond to specific 

blocks in Figure 1.2 with block diagrams.  

A Nexus 5 smartphone was chosen due to its excellent CPU+GPU performance and high 

resolution camera. Although there are likely performance variations across the cameras of 

modern smartphones, such a study was considered beyond the scope of this research. 

After the wound image is captured, the JPEG file path of this image is added into a 
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wound image database. This compressed image file, which cannot be processed directly 

with our main image processing algorithms, therefore needs to be decompressed into a 

24-bit bitmap file based on the standard RGB color model. In our system, we use the 

built-in APIs of the Android smartphone platform to accomplish the JPEG compression 

and decompression task. The “image quality” parameter was used to control the JPEG 

compression rate. Setting “image quality” to 80 was shown empirically to provide the 

best balance between quality and storage space. For an efficient implementation on the 

smartphone alone, no method was used to further remove the artifacts introduced by 

JPEG lossy compression. 

In the Image preprocessing step, we first down-sample the high resolution bitmap image 

to speed up the subsequent image analysis and to eliminate excessive details that may 

complicate wound image segmentation. In our case, we down-sample the original image 

(pixel dimensions 3264 x 2448) by a factor 4 in both the horizontal and vertical directions 

to pixel dimensions of 816 x 612, which has proven to provide a good balance between 

the wound resolution and the processing efficiency. In practice, we use the standard API 

for image resizing on the Android smartphone platform to ensure high efficiency. 

Second, we smooth the images to remove noise (assumed mainly to be Gaussian noise 

produced by image acquisition process) by using the Gaussian blur method whose 

standard deviation σ = 0.5 was empirically judged to be optimal based on multiple 

experiments. Afterwards, for most of bottom-up object recognition systems mentioned in 

Section 1.3, the super-pixel segmentation can also be viewed as an important pre-

processing step to further down-sample the image grid by focusing on single 

homogeneous region, instead of single pixel, during the classification process.  

The wound boundary determination module, which is marked in yellow in Figure 1.2, is 

the most important part in the entire wound image analysis system. To determine the 

boundary of the wound area, different computer based object detection approaches 

mentioned in Section 1.3 will be applied. These approaches fall into two categories: the 

non-machine learning based or machine learning based methods. For non-machine 

learning based methods, the implementation usually is easy, efficient and does not 

depend on any priori-knowledge. This makes it quite suitable for the wound recognition 

task based on smartphone-alone platforms. One disadvantage is the fact that the wound 
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recognition approach is not adaptive and suffers from dealing with foot ulcers locating at 

foot boundary or toes, due to the lack of help from clinical input. For machine learning 

methods, the complexity of the model training makes the full implementation impossible 

for smartphone-alone system. Hence, we need to implement the model based wound 

boundary determination method on the smartphone or PC, and the model training on a 

sever or remote PC separately in an offline mode. This tends to increase the system 

complexity and the platform dependency. However, given a sufficient number of training 

images, the model can accurately determine boundaries for various types of wounds 

regardless of theirs shape, scale and location.      

When the wound boundary has been successfully determined and the wound area has 

been calculated, we next evaluate the healing state of the wound by performing Color 

segmentation, with the goal of categorizing each pixel in the wound boundary into 

certain classes labeled as granulation, slough and necrosis [34][35]. A classical self-

organized clustering method with high computational efficiency is used [36]. After the 

color segmentation, a feature vector including the wound area size and dimensions for 

different types of wound tissues is formed to describe the wound quantitatively. This 

feature vector, along with both the original and later analyzed images, is saved in the 

result database. 

The Wound healing trend analysis is performed on a time sequence of images belonging 

to a given patient to monitor the wound healing status. The current trend is obtained by 

comparing the wound feature vectors between the current wound record and the one that 

is just one standard time interval earlier (typically one or two weeks). Alternatively, a 

longer term healing trend is obtained by comparing the feature vectors quantitatively 

between the current wound and the base record which is the earliest record for this patient. 

1.6 Organization of Dissertation 

The material presented in Chapter 2 to 6 is roughly organized based on the flowchart 

shown in Figure 1.2. Chapter 2 describes the image capture device design to facilitate 

foot ulcer photographing, and also compare three widely used super-pixel segmentation 

algorithms using our wound image dataset. In Chapter 3 to 5, the most important module 
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in Figure 1.2, the wound boundary determination, is researched and implemented. 

Chapter 3 presents two non-machine learning based wound boundary determination 

approaches and supplemented with several optimization methods including the GPU 

based parallel implementation and the “turning points detection” method to better 

recognize the wounds located at the foot edges or toes. In Chapter 4, a SVM based two-

stage cascade wound classifier is developed by applying different super-pixel based 

wound descriptors. Following this, Chapter 5 describes and implements a more robust but 

also computationally more intensive machine learning model for wound boundary 

determination based on the conditional random field model. To achieve the best results, 

three CRF formulations have been applied and the performance is compared. To train the 

models and evaluate the wound boundary determination approaches proposed in Chapter 

3-5, the ground truth wound labeling is generated on 100 wound images collected given 

an IRB approval at the wound clinic in UMass Medical School, with help from three 

experienced wound clinicians. Chapter 6 describes our approach for color based wound 

tissue classification and wound healing status assessment. Finally, conclusions and future 

directions are presented in Chapter 7. 
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Chapter 2  

Wound Image Capture and Pre-processing

The ultimate goal for our wound image analysis algorithm is to determine the wound 

boundary and assess the wound healing status from a time sequence of wound images. To 

perform an objective wound analysis which may require comparison of visual indicators 

between different images, there are two key requirements: 1) the wound images should be 

captured using a special device to ensure the consistency of imaging conditions including 

illumination, viewpoint and scale, and 2) captured raw wound images may need to be 

refined by applying image pre-processing techniques. In addition, current computer 

vision tasks are usually based on super-pixels (perceptually homogeneous regions or 

patches) [37], instead of the individual pixels, to extract more visually meaningful 

features and reduce the complexity of following tasks. Therefore, we also consider the 

super-pixel segmentation as part of the wound image pre-processing flow. In the chapter, 

we will first introduce a novel design of image capture box to facilitate the image taking 

process for diabetic patients. Then, three widely used super-pixel segmentation 

algorithms will be reviewed and applied to our wound image dataset. The segmentation 

performance of these algorithms is evaluated based on uniformity and contrast measures. 

2.1 Image Capture Box Design 

As mentioned earlier, two devices for the image capture of diabetic foot ulcers have been 

reported in the literature [1] [15]. However, drawbacks to these designs are either large 

dimensions or high cost. Moreover, both devices require Wi-Fi connectivity and a laptop 

or PC for image processing. Our image capture box is specifically designed to aid 

patients with type 2 diabetes in photographing ulcers occurring on the sole of their feet. 
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This task can be particularly challenging due to mobility limitations, common for 

individuals with advanced diabetes. To this end, we designed and built an image capture 

box with an optical system containing a dual set of front surface mirrors, integrated LED 

lighting and a comfortable, slanted surface for the patients to place their foot. The design 

ensures consistent illumination and a fixed optical path length between the sole of the 

foot and the camera, so that pictures captured at different times would be taken from the 

same camera angles and under the same lighting conditions. 

2.1.1 Optical Design 

After some initial designs that did not accomplish the desired goals, we formulated a new 

design concept using two mirrors, which are in straight angle. The ray diagram for this 

design is shown in Figure 2.1. 

 

Figure 2.1 Ray diagram for two mirrors in straight angle 

An inspection of the diagram in Figure 2.1 shows that there are three images in this 

optical system. Image #1 is located directly across the face of the mirror and at the same 

distance behind the mirror as the object is in front of the mirror. Image #2 is located 

directly across the other face of the mirror and the same distance behind the mirror as the 
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object is in front of the mirror (still nothing surprising). Both image #1 and #2 are 

primary images. On the other hand, image #3 is located directly through the joint edge of 

the mirror and the same distance from the joint edge as the object is from the joint edge. 

In fact, a diagonal line drawn from the object location through the joint edge of the mirror 

will pass through the third image which is a secondary image. So the image locations for 

the primary images are found in the usual way; but the image location for the secondary 

image must be found by measuring the object's distance to the joint edge of the mirror 

and then measuring along the diagonal line the same distance behind the mirror. Actually, 

the final image captured by the smartphone using the new foot box is image #3. 

2.1.2 Detailed Design of Image Capture Box 

In this section, we present the mechanical design based on 3D drawing using SolidWorks, 

which is a 3D mechanical CAD (computer-aided design) program. The drawings from 

different angles are shown in Figure 2.2. 

As seen in the figure above, the entire box is in a shape of rectangular trapezoid.  The 

openings for placing the foot and smartphone are on the slanted surface which is placed 

at a 45 degree angle with respect to the horizontal base. This design allows the patient to 

rest his/her foot comfortably and view the wound through the smartphone camera. When 

using the box, the patient is able to ensure that the wound is completely located in the 

opening by simply observing the camera view on the smartphone.  

 

     

   (a)                                                             (b) 
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                                            (c)                                                                 (d) 

Figure 2.2 3D drawing of the mechanical structure of the foot box. (a) from the back; (b) from the 

front; (c) internal structure from the front; (d) internal structure from left side 

Inside the box there are two mirrors placed in a 90° angle relative to each other. The 

connecting line of the two mirrors is placed in a plane which is parallel to the slanted 

surface. Since we use a pair of straight-angled mirrors to perform imaging which contains 

more than one reflection, the ghosting effect will happen as shown in part (b) of Figure 

2.3 if normal mirrors are used. In order to avoid this interference, we use front surface 

mirrors. This type of mirror has the reflective surface on the front, as opposed to the 

conventional, back surface mirror with the reflective surface on the back side of the glass. 

The optical path for both the front surface mirror and the normal mirror is shown in part 

(a) of Figure 2.3. By comparing part (b) and part (c) in Figure 2.3, it is obvious to see the 

improvement achieved by using the front surface mirror to eliminate the ghost effect. 

In order to provide enough light for illuminating wound, the light emitting diode (LED) 

lights are located at the back side of the box (we have tried to put the LED lights at 

different locations, from which we found that the light condition is optimal for foot 

imaging when the LEDs are placed at the back side). For the actual image capture box, 

we use white acrylic material to manufacture the box to further enhance the brightness of 

interior. The actual product and the sample image taken with this box are shown in part (a) 

of Figure 2.4. 
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(a) 

 

(b)                                                            (c) 

Figure 2.3 Ghost image caused by the normal second surface mirror. (a) ghost image optical 

path; (b) ghost image using the normal mirrors for the box; (c) improvement by using the front 

surface mirrors 

         

(a)                                                                (b) 

Figure 2.4 Image capture box illustration; (a) actual product of the image capture box; (b) 

wound image captured using the warm LED light 

In the new version of design, we use warm white LED lights which provide light that 

essentially resembles sunshine. The difference when compared with using the cool white 

LEDs can be clearly seen in part (b) of Figure 2.4. It is estimated that the manufacturing 

price for each box is within 100 US dollars.   
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2.1.3 Geometric Distortion Measurements 

Since we used a pair of straight angled mirrors to image the entire foot region, we need to 

verify that there is no obvious geometric distortion across the entire image plane. For this 

test, we prepared a grid of black and white squares on the white paper as shown in Figure 

2.5, where the physical side dimension of each square was 15 mm.  The grid paper was 

placed over the opening of the Image Capture Box, and an image was captured, as shown 

as in part (a) of Figure 2.6. Then we selected 9 black squares at different locations on the 

image plane, marked these squares in red using Photoshop and numbered them 1 - 9, as 

shown in part (b) of Figure 2.6,. After calculating the area size for each square (the 

detailed area calculation method will be introduced in the next paragraph), we can 

determine the geometric distortion by comparing the areas of squares at the edge of the 

image field with the  area of the square in the middle. Because we use the image capture 

box which provides fixed object-to-image distance, we can simply convert the area size 

in terms of pixel to actual unit by multiplier a constant scale factor to the former one. 

 

Figure 2.5 A grid of black and white squares 

To calculate the square area, we generate a binary image with the 9 selected rectangles 

highlighted in white. Then we apply the mean shift based segmentation algorithm, which 

will be introduced in details in Chapter 3, to segment the binary image into 10 different 

regions. 9 of them represent the 9 rectangles and the other one stands for the black 

background region. In this case, the area size for each rectangle can be easily calculated 

by counting the number of pixels in each region as shown in part (c) of Figure 2.6. The 
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results are shown in Table 2.1, and we can see from these results that largest deviation 

from each rectangle area to the middle rectangle is less than 3% percent of the mean area 

size. Even when considering the possible inaccuracy introduced by the square patch 

delineation using Photoshop, we may conclude that the geometric distortion is small 

enough to neglect.  

              

(a)                                       (b)                                      (c) 

Figure 2.6 Geometric distortion estimation for images captured with the image capture box: (a) 

original image of a black-white grid sheet; (b) five selected rectangle areas marked in red for 

geometric distortion detection; (c) region area determination results for all rectangle areas.  

Table 2.1  Geometric distortion estimation results 

Patch ID 
Physical 

dimension 
1 2 3 4 5 6 7 8 9 

Area in 

pixels 
N/A 2622 2590 2648 2638 2676 2639 2692 2622 2650 

Area in 

mm
2
 

225 219 216 220 220 222 220 224 219 220 

Percen-

tage 

error 

relative 

to Patch 

1 

+2.7 0 -1.4 +0.5 +0.5 +1.4 +0.5 +2.3 0 +0.5 

 

1 

2 3 

4 5 

6 7 

8 9 
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2.2 Super-pixel Segmentation Algorithms 

2.2.1 Segmentation Algorithm Categories and Overview 

As introduced to [38], image segmentation is an important low level computer vision 

operation, which clusters an image into a number of homogeneous regions in terms of 

selected features. The wound image segmentation is a significant step which provides the 

foundation of the following foot outline and wound boundary determination.  According 

to [38], the existing segmentation algorithms can be divided into the following categories: 

region based segmentation, edge based segmentation, feature space clustering and 

energy minimization (graph based).         

For region based segmentation algorithms, it is usually assumed that the values for pixels 

in a small patch always are quite similar. During the segmentation process, a given pixel 

is said to belong to a cluster if a pre-defined similarity criterion is satisfied between the 

cluster center and the pixel. The number of cluster centers needs to be specified as well. 

The most widely used region based segmentation algorithms are as follows: seeded 

region growing algorithm [39], unseeded region growing algorithm [40], JSEG algorithm 

[41] and fast scanning algorithm [42]. According to [38], the segmentation performance 

of all region based methods is greatly inferenced by noise and by similarity criterion 

selection.  

Feature space analysis based algorithms are in an iterative fashion, the cluster is 

represented by using a centroid, and in each iteration each pixel is assigned to one 

centroid based on a certain similarity measure. According to [43], the feature space 

analysis based algorithms can be further divided into two categories: hierarchical (this 

kind of algorithm can be further categorized into agglomerative and divisive algorithms) 

and partitional segmentation. The hierarchical algorithms suffer from high computational 

cost while the partitional algorithms, in spite of the relatively light computation 

requirement, suffer from their parametric nature and the assumption about the cluster 

shape (the assumed cluster model is described by a set of parameters, such as the 

Gaussian distribution model). As argued in [44], “arbitrarily structured feature spaces 

can be analyzed only by nonparametric methods since these methods do not have 

embedded assumptions”. Hence, the mean shift and quick shift algorithm [44], [45], one 
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of the density estimation based non-parametric approaches, is widely applied to low-level 

image segmentation tasks, due to its high efficiency and freedom from any a-priori 

knowledge based assumptions.  

For edge based segmentation algorithms, the main basis is the gradient information. One 

widely used algorithm, called watershed algorithm [46], tries to find the “watershed lines” 

which are viewed as the “separating lines” between adjacent regions. The watershed 

algorithm suffers from over-segmentation and high computational cost. Recently, a new 

type of image segmentation algorithms has been introduced which is based on energy 

functional optimization. According to [38], this segmentation category can be further 

divided into two groups based on the energy functional they are using: 1) functional 

defined on a continuous contour or surface (the level set based algorithm is a typical 

example) and 2) functional defined on a set of discrete variables (the graph cut based 

algorithm is a typical example, which is also called the labeling optimization method) 

[47]. According to [48], the labeling optimization method ensures a globally optimal 

solution and can be efficiently addressed by classical graph cut based algorithms. 

However, when dealing with a high resolution image, the graph based algorithm can 

become very computational demanding if the number of nodes grows rapidly [47], [48]. 

In the following several sections, we will introduce three widely used image 

segmentation algorithms in detail and compare their performance by applying them on 

our wound image dataset. First, the mean shift algorithm which is the most popularly 

applied feature space analysis based segmentation approach will be introduced. Then, we 

will describe how JSEG algorithm works, which is one of the most typical region-based 

segmentation algorithms. Finally, a detailed introduction of the SLIC algorithm, a state-

of-art segmentation algorithm which can be treated as the combination edge-based and 

region-based approaches will be given. 

2.2.2 Mean Shift Algorithm 

The mean shift algorithm belongs to the density estimation based non-parametric 

clustering methods, in which the feature space can be considered as the empirical 

probability density function of the represented parameter. This type of algorithms 

adequately analyzes the image feature space (color space, spatial space or the 
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combination of the two spaces) to cluster and can provide a reliable solution for many 

vision tasks [44]. In general, the mean shift algorithm models the feature vectors 

associated with each pixel (e.g., color and position in the image grid) as samples from an 

unknown probability density function (x)f  and then finds clusters in this distribution. 

The center for each cluster is called the mode [49]. Given n data points 
ix , 1,...,i n  in 

the d-dimensional space dR , the multivariate kernel density estimator is shown as below 

[44]. 
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where h is a bandwidth parameter satisfying 0h  and ,k dc  is a normalization constant 

[44]. The function (x)k  is the profile of the kernel defined only for 0x  and . represents 

the vector norm. In applying the mean shift algorithm we use a variant of what is known 

in the optimization literature as multiple restart gradient descent. Starting at some guess 

at a local maximum ky , which can be a random input data point ix , the mean shift 

computes the density estimate (x)f  at ky  and takes an uphill step using the gradient 

descent method. The gradient of (x)f  is given as follows [44]. 
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           Equation 2.3 

where '( ) ( )g r k r   and n is the number of neighbors taken into account in the 5 

dimension sample domain. In our case, we use the Epanechinikov kernel [50], which 

makes the derivative of this kernel a unit sphere. Based on [44], we use the combined 

kernel function shown in eq. (2.5) where 
sh  and 

rh  are different bandwidth values for 

spatial domain and range domain, respectively. In [44], the two bandwidth values are 

referred to as spatial and range resolutions. The vector ( )m x  defined in eq. (2.3) is called 
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the mean shift vector, since it is the difference between the current value x and the 

weighted mean of the neighbors 
ix around x. In the mean-shift procedure, the current 

estimate of the mode 
ky  at iteration k is replaced by its locally weighted mean as shown 

below in eq. (2.4) [44]. 

1 ( )k k ky y m y         Equation 2.4 

2 2
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This iterative update of the local maxima estimation will be continued until the 

convergence condition is met. In our case, the convergence condition is specified as the 

Euclidean length of the mean shift vector that is smaller than a preset threshold. The 

threshold value for the mean shift iteration is the same for the task of locating the foot in 

the full image and for locating the wound within the foot boundary. 

After the filtering (also referred to as the mode seeking) procedure above, the image is 

usually over-segmented, which means that there are more regions in the segmentation 

result than necessary for wound boundary determination [51]. To solve this problem, we 

have to merge the over-segmented image into a smaller number of regions which are 

more object-representative based on some rules. In the fusion step, extensive use was 

made of region adjacency graphs (RAG) [52], [53]. The initial RAG was built from the 

initially over-segmented image, where the modes are the vertices of the graph and where 

the edges are defined based on 4-connectivity on the lattice. The fusion was performed as 

a transitive closure operation [54] on the graph, under the condition that the color 

difference between two adjacent nodes should not exceed fh , which is regarded as the 

region fusion resolution.  

2.2.3 Simple Linear Iterative Clustering Algorithm 

Similar to the mean shift algorithm, the SLIC clustering takes the spatial continuity into 

account by expanding the original 3D color range space to 5D space, by including two 

spatial components. By default, we only need to specify one parameter k, the desired 

number of approximately equally sized super-pixels. Unlike the random initialization in 

typical K-Mean clustering method, the SLIC algorithm places k initial cluster centers 
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uniformly on the image grid with S pixels apart between each pair. It is easy to verify that 

𝑆 =  √𝑁/𝑘. In this case, we can expect the segmented super-pixels are in approximate 

equal size. In the assignment step, each pixel is assigned to the closest cluster center, 

which is similar to the traditional K-Mean process. However, instead of computing the 

distance between the target pixel with all cluster centers, SLIC only computes distances 

from each cluster centers to pixels within 2𝑆 × 2𝑆 neighborhood region. This narrowing 

down of the search region will largely reduce the number of distance calculation and then 

accelerate the algorithm. However, it was pointed out in [37] that this speeding up is 

allowed only when a special distance measure D is introduced, as in eq. (2.1). The novel 

combination of the distances from color space and spatial space can effectively prevent 

the variance of boundary adherence (the boundary of the resulting super-pixels are more 

consistent with the edge information presented in the image) due to the change of super-

pixel size [37]. 
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Equation 2.6 

where (𝐿𝑖, 𝑎𝑖, 𝑏𝑖, 𝑥𝑖 , 𝑦𝑖)  and (𝐿𝑗 , 𝑎𝑗 , 𝑏𝑗 , 𝑥𝑗 , 𝑦𝑗)  represent two points in the 5D color and 

spatial space. 𝑑𝑐  and 𝑑𝑠  represent the distance in color subspace and spatial subspace, 

respectively. As mentioned before, S stands for the approximate super-pixel size. The 

parameter m is used to weight the relative importance between color similarity and spatial 

proximity. If m is relatively large, the resulting super-pixels have good boundary 

adherence, but the size and shape is somehow irregular. It is recommended in [55] that 

the m should be chosen from the range [1, 40] if the algorithm is performed in CIE Lab 

color space. In our case, we empirically set m as 16 and S as 30. Then, the following 

process is much similar to K-mean algorithm: 1) replace the cluster center with the mean 

of all pixels in that cluster; 2) calculate the cluster center change and decide whether it 

converges; and 3) reallocate isolate pixels to nearby cluster center to enforce connectivity. 

According to [37], this iterative segmentation is guaranteed to converge after a certain 
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number of iterations. In practice, to improve efficiency, we can terminate the iteration 

when the cluster center change is smaller than a pre-specified threshold. 

2.2.4 JSEG Algorithm 

According to [41], the most prominent advantage of the JSEG algorithm is that there is 

no need for manual parameter specification. There are three stages for the segmentation 

process: 1) “color space quantization” to reduce the number of distinct colors, 2) “J-

Image Calculation” and 3) “region growing”. Stage 2 and 3 can be viewed as the spatial 

segmentation.  

In Stage 1, an unsupervised color quantization algorithm using peer group filtering , a 

non-linear algorithm for image smoothing and noise removal [56], with good perceptual 

information preserving property is applied. The key finding for this algorithm is that the 

human visual perception has higher sensitivity to intensity variation in homogeneous 

regions than in textured patches. In this stage, the spatial information for each pixel is not 

considered. Finally, we will replace the original color value for each pixel with a class 

number, similarly to the K-Means algorithm [36]. The total color class number C is 

usually set as an integer in the range from 10-20. Hence, a class-map of the image is 

formed.  

At the beginning of spatial segmentation stage, a novel notion of “J-Images” has been 

introduced. We assume Z is the set of all N pixels in the image. Each z Z is a 2D vector 

(x, y) representing the spatial position for the current pixel variable z. Let C be the total 

number of classes and we calculate the J value for the entire image by following formulas. 
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     Equation 2.7 
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According to [41], WS is defined as the total variance of the position vectors in the same 

color class TS  is defined as the total variance of all data points m  and im  are defined as 
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the mean of all vectors in set Z and vectors belonging to each class i , respectively. The 

concept of J values is based on the Fisher’s linear discrimination approach [57]. 

Furthermore, the average J  is defined as below. 

1
k k

k

J M J
N

        Equation 2.10 

where 
kJ  is the J value computed on region k, kM is the pixel-wise size of the region k. N 

represents the total number of data points. According to [41], given a specified region 

number, the lower the value of J , the better the segmentation. Hence, we can find the 

optimal segmentation by minimize the J  value. However, due to 10
6
 different possible 

segmentations, the direct minimization of J  is not tractable. Therefore, it is preferred to 

use local J  value to measure the color uniformity of certain local regions, such as a 

neighborhood centered a candidate pixel. In this way, we can replace the pixel value with 

the local J  calculated over the neighborhood region in difference size (different scales). 

The resulting image is called J-image, where the valleys represent the uniform region and 

the hills stand for boundaries. In practice, we will calculate several J-images at different 

scales.  

Finally, making use of the J-image based measure value, an iterative region growing 

approach can be employed to find the approximately optimal image, in a coarse-to-fine 

fashion. As stated in [41], the region growing process has two steps: 1) the seed location 

determination and 2) region growing starting from the seed points. This process will be 

repeated until no finer segmentation has been archived.     

2.2.5 Evaluation of Wound Image Segmentation of Different Algorithms 

It is argued in [7] that experimental results deny the feasibility of using manually 

generated ground truth to measure the performance of image segmentation algorithms. 

Furthermore, for segmentation algorithms with high complexity, it makes more sense to 

apply goodness evaluation methods, which assess the performance on a number of test 

images by using some desirable properties of segmented images as goodness measures. 

Hence, we use the following evaluation method used in [7] to assess the SLIC algorithm 

[37], mean-shift algorithm [44] and JSEG algorithm [41] mentioned earlier. The 
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evaluation is based on two measures: region uniformity measurement U  and region 

contrast measurement C [7], [58]. They are defined as in eq. 2.11 and eq. 2.12. In both 

equations, 
if  is the color vector in CIE lab space for pixel i in region

jR , 
jf is the 

average value of all if  in 
jR . 

jA .is the area of the region 
jR , minf .and maxf  are the 

maximum and minimum values in this region. Based on the goal of image segmentation 

(to achieve maximum uniformity in each resulting super-pixel), we can see that the larger 

the value of U , the better the uniformity is achieved in the current segmentation result, α 

is the significant area where the measure is evaluated. In eq. 2.12, 
jc  is the contrast 

measure in region 
jR , 

jv  is the weight assigned to region.
jR . Based on [7], 

jv  is 

modeled as the simple linear contribution of region 
jR  to the total area of image. 

ijc  is 

the contrast between region 
jR and iR . Finally, 

ijp  is the adjacency parameter as the ratio 

of the common perimeter of 
jR  to iR . More details about the definition and derivation of 

these formulas can be found in [7], [58]. 

max min

2
1

j j

j

i jR i R

jR

f f
U

A f f







 




 



 


       Equation 2.11 

j

j

i

j jR

jR

j ij ij

AdjR

i j

ij

i j

v c
C

v

c p c

f f
c

f f

























      Equation 2.12 

We applied the super-pixel segmentation evaluation scheme proposed in [7]. As shown in 

Table 2.2, we calculated the mean and standard variance of 𝑈𝛼 and 𝐶𝛼 measures for three 

super-pixel segmentation algorithms (with appropriate parameter tuning) applying on 100 

sample images (significant area α in eq. 2.11 and 2.12 is set as the entire image area). In 

Table 2.3, the same indicators are calculated with α containing the entire wound area 
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manually delineated by three experienced clinicians (the details about these ground truth 

generation process will be discussed in details in Section V). In Table 2.4, the efficiency 

of these three segmentation approaches is evaluated based on the Nexus 5 smartphone 

platform with Quad core CPU, 2.3 GHz Krait 400, 2GB RAM. We can see from Table 

2.1 and Table 2.2 that the mean value of region uniformity is generally large, and the 

mean value of region contrast is generally small. The results fulfill our expectation since 

we deliberately tuned the parameters to obtain a relatively large number of super-pixels. 

In addition, the standard deviation is generally small for all cases. Comparing these two 

tables, we can see that the uniformity in the wound area is smaller and region contrast is 

higher than the entire image. It tells us that the nature of wound area is more complicated 

than the background and healthy skin. Comparing the corresponding columns in the two 

tables, we find that SLIC provides the best performance balance on both the uniformity 

and contrast measures. However, the difference in the performance of different 

algorithms is not large. The average region uniformity U is larger than 0.86 and the 

average region contrast C is smaller than 0.2 for all three methods.  Hence, we may 

conclude based on these findings that all three super-pixel segmentation algorithms can 

achieve good performance given carefully parameter tuning. As mentioned earlier in 

Section 2.2.3, we only need to tune one parameter for SLIC algorithm. In contrast, at 

least 2 and 3 parameters need to be tuned in JSEG shift and mean shift algorithms, 

respectively [41], [44]. Furthermore, SLIC has the best performance in terms of 

efficiency as shown in Table 2.4.  

 

Table 2.2 Statistics of region uniformity and contrast measures on the CIE Lab space with the 

significant area containing the entire image for three different super-pixel segmentation methods 

Method Mean shift JSEG SLIC 

 μ σ μ σ μ σ 

𝑈𝛼 0.867 0.022 0.878 0.051 0.873 0.032 

𝐶𝛼 0.147 0.008 0.166 0.019 0.099 0.027 
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Table 2.3 Statistics of region uniformity and contrast measures on the CIE Lab space with the 

significant area containing the manually delineated wound area for three different super-pixel 

segmentation methods 

Method Mean shift JSEG SLIC 

 μ σ μ σ μ σ 

𝑈𝛼 0.692 0.109 0.769 0.162 0.748 0.174 

𝐶𝛼 0.217 0.058 0.233 0.084 0.184 0.061 

 

Table 2.4 Computation time results evaluated on Nexus 5 smartphone platform for three different 

super-pixel segmentation algorithms 

Method Mean shift JSEG SLIC 

Computation time 12.7s 9.7s 7.2s 
 

2.3 Conclusion 

In this chapter, we first designed an image capture box to facilitate the foot ulcer 

photographing process. Then, we briefly introduced the categorization of super-pixel 

segmentation algorithms and finally focused on three most widely used approaches. 

Finally, we applied the region uniformity and contrast based measures to evaluate the 

three segmentation algorithms on 100 sample wound images.  

Based on the evaluation results, we can conclude that all three segmentation approaches 

described in this chapter provide promising super-pixel segmentation with only slight 

differences on performance. The SLIC algorithm gives the best tradeoff on region 

uniformity and contrast, as well as the best efficiency. However, it seems easier to solve 

the over-segmentation problem by region-merge with the mean-shift based structure since 

there are plenty of previous works focusing on this topic. Hence, in Chapter 3, we choose 

the mean shift algorithm since the purpose is to find the foot area based on the region-

merging result of super-pixels grid. In Chapter 4 and 5, we need to calculate the feature 

vector for each super-pixel and generate final wound area by grouping all super-pixels 

classified as “wound” together. Therefore, we applied the SLIC algorithm for super-pixel 

segmentation due to its good boundary adherence property and high time performance.      
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Chapter 3  

Wound Boundary Determination (Non-Machine Learning 

Based)

As mentioned in Chapter 1, wound boundary determination is the most important step in 

the entire wound analysis flow, since the wound area, the most significant indicator for 

wound healing assessment, can be directly calculated based on the determined boundary. 

Besides, the wound boundary provides the foundation for the subsequent color based 

tissue segmentation and healing status evaluation. As discussed earlier, most of the 

previous works mainly dealt with the wound images containing the wound area and 

limited amount of surrounding normal tissue. One of the main goals of our application is 

patients’ self-management by our automatic wound analysis system, with assistance of 

the image capture box. This approach is to acquire the wound image results in images 

where the wound area only occupies a small portion of the entire image and where the 

image may contain background regions outside the foot image. These characteristics 

make the wound boundary determination more complicated.      

In this chapter, three non-machine learning based wound boundary determination 

approaches, based on widely used image segmentation algorithm, will be proposed and 

evaluated. First, it is nature to come up with a method by putting an initial curve which 

encloses the wound area and driving the curve to contract until it reaches the wound 

boundary. The level set algorithm introduced in [59] provides us a partial differential 

equation based mathematical tool to implement the method mentioned above. Instead of 

employing the standard level set model, we applied the distance regularized level set 

evolution (DRLSE) and a narrow-band implementation [60] to accelerate the curve 

evolution. The second approach is based on mean shift image segmentation algorithm [44] 
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and then applies the largest connect component detection method on the binary foot 

image to determine the wound boundary within the foot outline. In the third approach, we 

augment the mean shift image segmentation algorithm by determining the wound 

boundary by analyzing the internal and external boundaries of the foot outline. Based on 

the wound location, one of two different algorithmic paths is selected. In Section 3.1-3.3, 

we will introduce these three approaches, respectively. Finally, in Section 3.4, the 

comparison of these three approaches on sample wound images will be presented.  

3.1 Level Set Based Wound Boundary Determination Approach 

3.1.1 Theoretical Foundation 

The wound boundary determination approach is required to perform well for a wide 

range of wound images.  We chose the level set based algorithm to determine the wound 

boundary due to following reasons: 1) the level set based algorithm can achieve relatively 

fine resolution, which can result in smooth wound boundary; 2) the level set based 

algorithm is capable of handling of slightly tilted lines and corners, which is a desirable 

characteristic since the shape of wounds is often irregular; 3) the level set based 

algorithm allows precise and easy calculation of surface normal vectors, which can 

improve the curve evolution efficiency [61]–[63]. Furthermore, since joining surfaces is 

handled implicitly, the wound contour will be self-adaptive to the topological change 

during the evolution. This means that the implicit contour will accurately follow shapes 

that change topology, for example when a shape splits into two, develops holes, or the 

reverse of these operations [62], [63]. Finally the property of the level set algorithm 

allows direct numerical computation on image grids. Because of these features, level set 

based algorithms have been widely used in image segmentation.  

The original level set methods for capturing dynamic contours was introduced by Osher 

and Sethian [64]. The basic idea is to use the zero level set of a higher dimensional 

function to represent the target contour. This higher dimensional function is called the 

level set function (LSF), ( , , )x y t . In this case, finding the contour is accomplished by 

the evolution of the LSF from a random initial state to convergence on the target 

boundary. Caselles and Malladi [61], [62] first brought the level set idea to image 
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processing and computer vision areas. The most basic curve evolution equation is 

presented in a partial differential equation (PDE) as given in eq. (3.1) [61]–[64]. 

F
t





  


    Equation 3.1 

where F is the speed function that controls the motion of the contour and  is the gradient 

operator. We assume that the curve movement is always proportional to F in a direction 

normal to the curve itself. In the image segmentation case, the speed function F is 

formulated as in eq. (3.2) [62]. 

( )I A GF g F F          Equation 3.2 

where AF  causes the curve to uniformly expand or contract depending on the local 

geometry information. GF  is a function of local curvature, which keeps the propagating 

curve smooth and conforms to the edge distribution of the original image. The term Ig  is 

a stopping term defined in eq. (3.3) [62]. 
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1

1 ( ( , ))
Ig

G I x y


  

         Equation 3.3 

where ( , )G I x y  filters the original image by a Gaussian smoothing filter to minimize 

noise. Ig  is maximized when the gradient value is the smallest, which means the F is 

completely performed on the curve when no edge is detected. The gradient value 

increases greatly when the current contour is located in the vicinity of the boundaries, in 

which case Ig  is approximating to 0. This cancels the influence of F and then the 

evolution of the contour will be stopped [62]. 

3.1.2 Distance Regularization Level Set Evolution (DRLSE) 

The conventional level set methods suffer from the irregular boundary determination (i.e., 

the detected boundary may be irregular and misshapen [60], and the LSF may lose the 

signed distance property (  =1), which is the basis for the successful evolution) [59], 

[60]. Hence, after each iteration we have to re-initialize the LSF. This re-initialization 

becomes a large computation burden and can reduce the accuracy of the zero level set 

evolution as well. 
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Li et al proposed a novel evolution function [60], which includes a distance-

regularization term. This forces the LSF to maintain a desired shape and implies that the 

signed distance property of the LSF is preserved during the entire evolution process [60]. 

The evolution equation is modified from the gradient operation in eq. (3.1) to the 

expression in eq. (3.4). 

( , ) ( , ) ( , )p L g A g
t


     


   


      Equation 3.4 

where the term ( , )p   is the distance-regularization term mentioned above, ( , )L g   is 

minimized when the zero level contour is located at the object boundary, in other words, 

( , )L g   is the stopping term. The term ( , )A g   is used to speed up the motion of the zero 

level set contour in the evolution process, while p is the potential function and g is 

defined as in eq.(3.3).The controlling parameters ,   and   are set by users. Details 

regarding the function definitions are given in [60]. 

Finally, we formulate the numerical calculation of eq. (3.4) with a simple finite difference 

scheme [60], as shown in eq. (3.5).  
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   


        Equation 3.5 

where k represents the iteration times, t  is the time step, ,( )k
i jL   represents the right 

side of eq. (3.4) while replacing   with ,
k

i j , which denotes the LSF value at iteration 

time k on the position (i, j) in the image grid. As is commonly known, it is justified to 

apply the finite difference scheme to the discretization of the PDE like eq. (3.4). In order 

to reduce the computational demands, a narrow-band level set algorithm has been 

proposed to restrict the computation of the level set evolution to a narrow neighborhood 

area around the zero level set (usually 8-neighbor area surrounding the zero crossing 

points). According to [60], the narrow-band implementation of the model expressed in eq. 

(3.5) allows the use of a large time step, which will further speed up the evolution process. 

Based on the discussion provided by Li et al. in [60], the algorithm structure can be 

summarized as follows: 
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 Step 1: Initialization: initialize curve and LSF as a binary step function, which has 

been set according to different locations (c for the pixels within the initial curve, -c 

outside the curve and 0 for the pixels on the curve, where c is a random positive 

integer and is set to 2 in our case). Then, construct the initial narrowband region; 

 Step 2: Update the LSF as 
1

, , ,( )k k k
i j i j i jtL  

  just over the narrow band 

area; 

 Step 3: Update the narrow-band based on the new zero-crossing points on the 

previous defined narrow band area; 

 Step 4: Assign values to new pixels in narrowband, if ,
k

i j  >0, set ,
k

i j  to h, 

otherwise set it to –h, where h is a constant with a default value 3 (the same value of 

the width of the neighborhood area); 

 Step 5: Check the termination condition. If it is satisfied, quit and return the curve. 

Otherwise, return to step 2. 

3.1.3 Level Set Based Wound Boundary Determination 

The narrow-band based DRLSE algorithm was introduced in Section 3.1.2. Based on the 

algorithmic structure presented in the previous section, the implementation details of the 

narrow-band DRLSE algorithm for wound boundary determination will be discussed here. 

The flowchart of the wound boundary determination process is shown in Figure 3.1.  

The DRLSE can be implemented with a simple finite difference scheme on the image 

grid [60]. The evolution equation is given in as eq. (3.5). By iteratively updating the level 

set function, the implicit contour of the level set function will converge towards the 

actual wound boundary from its initial position. 

Considering the complicated nature of a typical wound, the level set evolution process 

might likely be prematurely stopped by the internal boundary within the wound area if we 

were to place the initial curve inside the wound area and expanded it gradually. To avoid 

this problem, we choose to set the initial curve on the healthy skin area and make sure 

that the curve encloses the entire wound area. As the level set evolution continues, the 

initial curve will keep contracting and approach the actual wound boundary with little 

resistance, since the healthy skin color is much more uniform than the wound area. In our 
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case, a simple skin detection method based on color will be employed to locate the skin 

area. Afterwards, the initial curve will be set as the boundary of the skin area. 

Initial curve specification
Narrow-band area 

initialization

Level set function update

(curve evolution)

Narrow-band area updateTerminate?end

no

yes

 

Figure 3.1 Flowchart of the wound boundary determination based on DRLSE algorithm 

As discussion in [60], the narrow band area is defined as the union of the 3x3 

neighborhoods of the zero crossing points of the level set function. We call a grid point 

(i,j) a zero crossing point if  either 1,i j   and 1,i j   or , 1i j   and , 1i j   are of opposite 

signs [60]. After each update of the level set function, the narrow band area will be re-

calculated accordingly. 

After each iteration, we have to decide whether to stop the evolution process based on 

some rules. In our case, we will make this decision by checking the evolution rate R  of 

the level set function defined as in eq. (3.6). 
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1 1
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







   Equation 3.6 

where kN represents the number of grid points (pixels) locating on the implicit contour of 

the current level set function, 1kN  represent the same number in the previous iteration. 

Hence, the numerator represents the absolute change of the level set function. 

Denominating it by 1kN  , we can obtain the changing rate of the level set function after 

the current update. The reason to add 1 to 1kN  is to ensure that the denominator never 

equates to zero. In our case, we consider a changing rate smaller than 0.001 as a sign of 

convergence, and we will use a changing rate of 0.001 as the criterion for stopping the 

evolution process. In order to control the overall processing time below certain limit, the 

evolution will be stopped if the iteration time exceeds a preset maximum number of 

iterations (this number will be set as 200 in our case) even the condition defined in eq. 

(3.6) is not satisfied. The actual wound boundary determination results using level set 
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based approach, together with the results from the two mean-shift based approaches 

introduced in Section 3.2 and 3.3, will be presented in Section 3.4. 

3.1.4 GPU&CPU Collaborative Implementation of the Level Set Algorithm 

In spite of the narrow-band optimization, the level set method is still too computationally 

demanding for direct implementation on a smartphone. Hence, we need strategies that 

permit the boundary detection of the wound image to be carried out in an acceptably 

short time. In our system, we implement the iterative LSF updating, which is the most 

computationally intensive part of the level set algorithm, on a GPU (Graphic Processing 

Unit), which is available on most of today’s PCs and laptops. The major difference 

between CPU and GPU implementation is that the latter supports parallel computation to 

a much greater extent. Unlike the traditional, sequential approach to programming on 

CPUs, GPUs programs deal with complex parallel reductions to best utilize the available 

parallel resources [65].  

The traditional narrow band method avoids unnecessary computation by only updating 

field elements near the level set curve. However, according to [65], even computations 

near the level set curve can be eliminated in regions where the level set field has locally 

converged. This observation motivates the method of tracking the active computational 

domain according to both the temporal and spatial derivatives of the level set field. 

Afterwards, the level set updating only happens on the pixels belonging to the specified 

active computational domain [65]. The active domain is updated before each iteration. 

The original version of this algorithm is based on the 3D image situation [65], but we 

have transformed it to operate in the 2D wound image situation. 

In our system, the GPU programming is implemented with Open Computing Language 

(OpenCL), which is a framework for writing programs that execute across heterogeneous 

platforms, such as CPUs and GPUs. In our case, we view each pixel in the current active 

computational domain as the basic processing unit (called ‘work item’ in OpenCL). Then 

we maximize the usage of all the streaming cores at the same time by running a kernel 

(similar to the concept of function in C) on as many units as possible at the same time. 

The programming flow chart for modified level set algorithm based on OpenCL is shown 

in Figure 3.2. We can see from this figure that the host program is running on the CPU 

http://en.wikipedia.org/wiki/Heterogeneous_computing
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including the functions of target image reading, edge calculation, platforms and memory 

initialization. In contrast, the actual level set algorithm is encapsulated in kernels running 

on GPU. All the kernels process only one pixel at a time. Besides, the intermediate 

processing results of kernels are stored on global memory on GPU and will not be read 

back to the host until the end of the algorithm. In this way, the memory access latency 

from different platforms can be reduced to the greatest extend. 

3.2 Mean Shift Based Wound Boundary Determination Approach 

3.2.1 Mean Shift Based Segmentation Algorithm 

In this approach, we chose the mean shift algorithm proposed in [44] for several reasons. 

First, the mean shift algorithm takes into consideration the spatial continuity inside the 

image by expanding the original 3D color range space to 5D space, including two spatial 

components, since direct classification in 3D color range space only has been proved to 

be inefficient [44]. Second, a number of acceleration algorithms are available [52] . Third, 

for both mean shift filtering and region merge methods, the quality of the segmentation is 

easily controlled by the spatial and color range resolution parameters [44], [52]. Hence, 

the segmentation algorithm can be adjusted to different degrees of skin color smoothness 

by changing the resolution parameters. Finally, the mean shift filtering algorithm is 

suitable for parallel implementation since the basic processing unit is the pixel. In this 

case, the high computational efficiency of GPUs can be exploited. 
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Figure 3.2 Programming flowchart of level set algorithm on GPU&CPU platform 

The mean shift algorithm belongs to the category of density estimation based non-

parametric clustering methods, in which the feature space can be considered the empirical 

probability density function of the represented parameter. This type of algorithms 

adequately analyzes the image feature space (color space, spatial space or the 

combination of the two spaces) and can provide a reliable solution for many vision tasks 

[44]. In general, the mean shift algorithm models the feature vectors associated with each 

pixel (e.g., color and position in the image grid) as samples from an unknown probability 

density function (x)f  and then finds clusters in this distribution. Details about the mean 

shift based image segmentation algorithm were introduced in Chapter 2. This iterative 
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update of the local maxima estimation as shown in eq. (2.10) will be continued until the 

convergence condition is met. In our case, the convergence condition is specified as the 

Euclidean length of the mean shift vector that is smaller than a preset threshold. The 

threshold value for the mean shift iteration is the same for the task of locating the foot in 

the full image and for locating the wound within the foot boundary. 

After the filtering (also referred to as the mode seeking) procedure above, the image is 

usually over-segmented, which means that there are more regions in the segmentation 

result than necessary for wound boundary determination [51]. To solve this problem, we 

have to merge the over-segmented image into a smaller number of regions which are 

more object-representative based on some rules. In the fusion step, extensive use was 

made of Region Adjacency Graphs (RAG) [52], [53]. The initial RAG was built from the 

initial over-segmented image, the modes being the vertices of the graph, where the edges 

were defined based on 4-connectivity on the lattice. The fusion was performed as a 

transitive closure operation [54] on the graph, under the condition that the color 

difference between two adjacent nodes should not exceed fh , which is regarded as the 

region fusion resolution. The mean shift filtering and region fusion results of a sample 

foot wound image (part (a) in Figure 3.3) are shown in part (b) and (c) in Figure 3.3, 

respectively. We can see that the over-segmentation problem in part (b) is effectively 

solved by region fusion procedure. From the region fusion result in part (c), the foot 

boundary is readily determined by a largest connected component detection algorithm, 

which will be introduced in the next Section. A C++ based implementation method of the 

mean shift algorithm can be found in [52].    

 
 (a) 

      
(b) 

Over-segmented 

foot area 
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(c) 

 
(d)  

 
(e) 

Figure 3.3 Mean shift based image segmentation sample result. (a) Original image. (b) Mean 

shift filtered image. (c) Region fused image. (d) The foot boundary detection result. (e) Wound 

boundary determination result. Note that we artificially increased the brightness and contrast of 

the images in this figure to highlight the over-segmentation in part (b) and to better observe the 

region fusion result in part (c). 

3.2.2 Wound Boundary Determination 

Because the mean shift algorithm only manages to segment the original image into 

homogeneous regions with similar color features, an object recognition method is needed 

to interpret the segmentation result into a meaningful wound boundary determination that 

can be easily understood by the users of the wound analysis system. A standard 

recognition method relies on known model information to develop a hypothesis, based on 

which a decision is made whether a region should be regarded as a candidate object, i.e., 

a wound. A verification step is also needed for further confirmation. Because our wound 

determination algorithm is designed for real time implementation on the smartphones 

with limited computational resources, we simplify the object recognition process while 

ensuring that recognition accuracy is acceptable. 

Our wound boundary determination method is based on three assumptions. First, the foot 

image contains little irrelevant background information. In reality, it is not a critical 

Region fused 

foot area 

Detected wound  

area 

Detected foot 

 region 
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problem as we assume that the patients and/or caregivers will observe the foot image with 

the wound on the smartphone screen before the image is captured and ensure that the 

wound is clearly visible. Second, we assume that the healthy skin on the sole of the foot 

is a nearly uniform color feature. Finally, we assume that the foot ulcer is not located at 

the edge of the foot outline. These are reasonable assumptions for our initial system 

development and appear consistent with observations made initially from a small 

sampling of foot images. Later in this chapter, ways to relax these assumptions will be 

investigated. Based on these assumptions, the proposed wound boundary determination 

method is illustrated as in Figure 3.4, and explained below.  

 

Figure 3.4 Largest connected component detection based wound boundary determination method 

flowchart 
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The Largest connected component detection is first performed on the segmented image, 

using the fast largest connected component detection method introduced in [66] including 

two passes. In this first pass, temporary labels are assigned to each pixel and a class 

equivalence map is constructed. In the second pass, each temporary label is replaced by 

the smallest label of its equivalent class. In foot Color thresholding, the color feature 

extracted in the mean shift segmentation algorithm of this component is compared with 

an empirical skin color feature by calculating the Euclidean distance between the color 

vector for the current component and the standard skin color vector from the Macbeth 

color checker [67]. If the distance is smaller than a pre-specified and empirically 

determined threshold value, we claim that the foot area has been located. Otherwise, we 

iteratively repeat the largest component detection algorithm on the remaining part of the 

image while excluding the previously detected components until the color threshold 

condition is satisfied. 

After the foot area is located, we generate a binary image with pixels that are part of the 

foot labeled “1” (white) and the rest part of the image labeled “0” (black). The result of 

the foot area determination executed on the region fusion image shown in part (c) in 

Figure 3.3 is presented in part (d). To determine the actual wound boundary, the system 

locates the black part labeled as “0” within the white foot area (Hollow region detection 

in the foot area). Here we use the simple line-scanning based algorithm illustrated in 

Figure 3.5 and explained below.  

In this wound boundary determination algorithm, each row in the binary image matrix is 

regarded as the basic scanning unit. In each row, the parts labeled as “0” in the detected 

foot region are regarded as the wound part. After every row is scanned, the wound 

boundary is determined accordingly. Because some small outlier regions may also be 

generated due to the local color variation of the skin, a Small region filtering procedure 

is needed to identify only the largest black region as the wound. A sample of the wound 

boundary determination result is shown in part (e) in Figure 3.3. 

After the best estimate of the wound boundary is obtained, we analyze the wound area 

within the boundary using a wound description model. Many methods for assessing and 
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classifying open wounds require advanced clinical expertise and experience, and 

specialized criteria have been developed for diabetic foot ulcers [21] [32]. 

 

Figure 3.5. Wound part detection algorithm flowchart 

3.2.3 GPU based Implementation of the Mean-Shift Algorithm 

Because the CPUs on smartphones are not nearly as powerful as those on PCs or laptops, 

an optimized parallel implementation based on GPUs is critical for the most 

computationally demanding module in the algorithm structure. For current Android based 

smartphones, such as Nexus 4 from Google, the GPUs (Adreno 320) have good 

computational power (up to 51.2 G Floating Point Operation per Second (FLOPS)) [68]. 

As the experimental results in Section V shows, the hybrid implementation on both CPUs 

and GPUs can significantly improve the time performance for algorithms that are suitable 

for parallel implementation. 
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Since our wound analysis is implemented on Android smartphones, we take advantage of 

the Android APIs for GPU implementations. In our case, we use the Renderscript, which 

offers a high performance computation API at the native level written in C (C99 standard) 

[69] and which gives the smartphone apps the ability to run operations with automatic 

parallelization across all available processor cores. It also supports different types of 

processors such as the CPU, GPU or DSP. In addition, a program may access to all of 

these features without having to write code to support different architectures or a 

different number of processing cores [70]. 

On the Nexus 5 Android smartphone, we implemented the mean shift based segmentation 

algorithm on both the Adreno 320 GPU and the Quad-core Krait CPU using Renderscript. 

The algorithm implementation flow is shown as in Figure 3.6 and is explained below. 

Our implementation scheme is similar to the ones used in [71]. 

The processing steps Color space transformation, Color histogram generation and 

discretization, and Weight-map generation are all implemented on the CPU (these steps 

belongs to the mean shift filtering module introduced in Section 3.2.2). Afterwards, all 

the needed data are moved to the global memory on the GPU. This data includes the 

original image data in CIE Lab color space, the discretized color histogram for all three 

channels in this color space and the weight-map. The weight-map combines the edge 

information into the image segmentation to further improve the accuracy [52]. Because 

the mean shift based segmentation algorithm operates on each pixel of an image, and the 

computation, which takes place at each pixel, is independent of its distant surroundings, it 

is a good candidate for implementation on a parallel architecture.  
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Figure 3.6 Implementation flow of the mean shift algorithm on both CPUs and GPUs 

Hence, we developed a parallel implementation of Mean shift mode seeking, which 

simply copies the image to the device and breaks the computation of the mode seeking 

into single pixels and their surrounding intermediate neighboring region. An independent 

thread is spawned for the mean shift mode seeking for each pixel. Multi-threads are 

running at the same time on the GPU to realize the parallel computation. The number of 

threads running in parallel is determined by the computational capability of the GPU. In 
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the Renderscript programming, this number is optimized automatically and does not need 

to be specified. After the mean shift mode seeking, all the result modes for each pixel are 

moved back to the local memory of the CPU. The Region fusion step, as discussed in 

detail in [17], is performed on the CPU. 

3.3 Improvement to the Mean Shift Based Wound Boundary 

Determination Approach 

In Section 3.2, we applied the largest connect component detection method on the binary 

foot image to determine the wound boundary within the foot outline. The main 

shortcoming of this algorithm is the requirement that a closing (complete) foot outline, 

which leads to detection failure if a wound are located at the foot boundary (in this case, 

the wound boundary will be regarded as part of the foot boundary, as shown in the part (b) 

of Figure 3.7). Figure 3.7 is an example of the binary foot image on which our current 

algorithm cannot provide an accurate wound boundary determination. For example, it can 

be clearly seen that the result from the largest connect component detection method, used 

in the implementation of the mean shift method in Section 3.2 and described in [10] is 

differ greatly from the wound labeling ground truth from an expertized wound clinician 

(comparison between the part (c) and (d) in Figure 3.7).  

Hence, instead of detecting the connected “black” component within the “white” foot 

region from the foot binary image, we might need to detect the largest “almost enclosed” 

black region, which can also be understood as the most concave section on the foot 

outline. Based on carefully observation, this task may be done by locating the most 

irregularly changing point on the foot outline. We call these points as turning points on 

the foot outline (in our case, the number of turning points needed to be detected is 3).  

In this section, we propose novel wound determination method, which will first 

determine whether the wound is located at the edge of the foot or not and then determine 

the wound boundary by applying different methods depending on the location of the 

wound.  
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(a)                                                                (b) 

 

(c)                                                              (d) 

Figure 3.7 An example of the incomplete foot outline. (a) The original image, (b) foot binary 

image , (c) wound area manually labeled in red by a wound clinician,  (d) boundary   

determination results using the initial method, i.e., the largest connected component detection 

method. 

3.3.1 Boundary Determination for the Wounds Enclosed in the Foot Outlines 

First of all, we have to classify the wound boundary determination tasks into one out of 

two categories: 1) the wound is fully enclosed within the foot outline; 2) the wound is 

located at (or very near to) the boundary of the foot outline. One idea may be to use the 

foot boundary smoothness to distinguish between these two situations. However, the 

problem is that we may need a gold standard for the ordinary smooth foot curve, i.e. the 

boundary of the healthy foot, and quantitatively compare the actually detected foot 

outline to it in some way. The search for such a ground truth healthy foot curve is never 

an easy task. Moreover, we have to ensure that the patient’s entire foot is imaged 

completely, which is a difficult-to-meet expectation for a patient-based wound analysis 

system considering the low mobility and lack of smartphone experience using of many 
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type 2 diabetic patients. Therefore, we use the following method to realize the task 

classification.    

First we apply the image morphology operations called a closing operation to remove all 

the holes in the foot region (white part in the binary image) and smooth the external foot 

boundary which will help us to eliminate the possible interference for accurate wound 

boundary determination. The result after closing operation with a 9 x 9 circle structure 

element is shown in the part (b) of Figure 3.8, to be compared with the original foot 

binary image shown in the part (a). Second, we apply the combined region and boundary 

algorithm [72] to trace the external foot boundary along the edge of the white part in the 

foot binary image, as well as all the internal boundaries if there are any. The concepts of 

the external boundary and the internal boundary are illustrated in the parts (c) and (d) of 

Figure 3.8, respectively. For all the internal boundaries in a foot region, we only keep the 

ones with the perimeter larger than a preset threshold (in our implementation, it is set as 

50 pixel lengths). In this case, the internal boundary in the part (c) is going to be filtered 

out, while the internal boundary in the part (d) will be regarded as the target wound 

boundary.  

This simple thresholding method may not be a perfect algorithm but it works for most of 

the wound images in our experiments. In other words, if there is at least one internal 

boundary exceeding the preset threshold within the foot region, we regard it as the wound 

boundary and return it as the final boundary determination result (as shown in the part (e) 

of Figure 3.8). On the other hand, if there are not any internal boundaries whose length 

are beyond the threshold, we may need the boundary determination algorithm introduced 

in the next section. Note that here we assume there is at least one wound area on the 

photographed foot. Unfortunately, our method will assume the existence of at least one 

wound in the processing image. Even if there is no wound at all, an area which is 

recognized to be the most similar to a wound will still be identified. This false 

determination is certainly undesirable. This shortcoming might be overcome by design a 

wound filtering algorithm that can indicate the absence of a wound. For example, for 

each detected wound area, we will extract one feature vector from it and input to a well-

trained classifier. The output of this classifier will be a Boolean variable with the decision 
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about whether this area is actually a wound or not. This operation needs machine learning 

to be evolved and will discuss further in Chapter 4 and 5.   

            

(a)                                                               (b) 

 

(c) 

 

(d) 

 

(e) 

Internal boundary whose 

length is smaller than 50 
External boundary 

Internal boundary whose 

length is larger than 50 
External boundary 
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Figure 3.8 Classification of the wound boundary determination tasks. (a): The same foot region 

detection result as shown in the part (b) of Figure 1 (this part is placed here again for more clear 

comparison), (b): foot region after closing operation, (c) and (d): illustrations for the internal 

and external boundary of the binary foot region, (e) example of wound boundary determination 

by internal boundary detection of the foot region 

3.3.2 Boundary Determination for the Wounds Near the Edge of the Foot Outline 

 Algorithm Overview 

After a careful study and observation, we propose a wound boundary determination 

algorithm structured as shown in Figure 3.9, which is applicable for a wound located at or 

near to the foot outline. As was mentioned in Section 3.3.1, we already have the external 

boundary of the non-enclosed foot outline. 

As illustrated in the block diagram in Figure 3.9, the input to this algorithm is the external 

boundary of the foot region shown in part (c) of Figure 3.8. Instead of keeping all the 

points on the foot boundary, we down-sample the edge points (all the points on the 

external boundary of the foot region) by applying the Harris Corner Detection method 

[73] to a number of corner points. The corner points, also called junctions of edges, are 

prominent structural elements in an image and are therefore useful in a wide variety of 

computer vision applications, including serving as reference points for precise 

geometrical measurement [74]. A corner point can also be defined as a point, for which 

there are two dominant and different edge directions in a local neighborhood of the point. 

And corner points are more robust features for geometric shape detection than are the 

regular edge points. The corner detection result is shown in the part (a) of Figure 3.10, 

where the corner points are marked by black crosses. In our experiments, the perimeter of 

the foot outline usually is made up of over 2000 pixels. After down-sampling, the number 

of corner points is reduced to around 60-80 (also in terms of pixels). This down-sampling 

greatly improves the time performance of our algorithm. In addition, the down-sampling 

procedure will also be useful when detecting the turning points (this will be discussed in 

detail in the next bullet item).   
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Figure 3.9 Main structure of the new wound boundary determination algorithm 

The 3rd to the 8th block in Figure 3.9 shows the main concept, which is to detect the 

three turning points on the foot boundary. These turning points will be used to determine 

the wound section on the foot outline (the three turning points are marked with small 

black crosses in part (c) of Figure 3.10). The turning points can be defined as the points 

that define the largest direction changes in the contour along the foot boundary. In the 

next bullet item, the method for detecting the turning points will be discussed in details. 

After the three points are determined, we can move along from the global maximum 

point (which is the most concave point in the middle) to the two local minimum points 
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along the foot boundary in the two opposite directions. Then we will connect the two 

local minimum points by an arc which is the optimal approximation to the non-closed 

part of the wound boundary. In our case, we draw an arc from either local minimum to 

the other one with a radius equal to half of the diagonal length for the wound image. The 

arc drawing algorithm is as described in [23].  

       

(a)                                                                 (b) 

(a)                                                                                    (b) 

           

(c)                                                                    (d) 

Figure 3.10 The result of the opening operation (a) the corner point detection result, (b) the 

smallest fitting rectangle, (c) three turning points detection result on the foot outline, (d) the 

wound boundary determination result based on these three turning points 

 Turning Points Detection 

In this section, we propose a maximum-minimum search approach to detect the turning 

points. 

First, we sort all the corner points into a list based on their position on the foot boundary 

(from the top-right to top–left, in a clock-wise direction), then locate the two special 

The left-most and right-most corner point 

Three turning points 
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extreme corner points on the foot boundary: the leftmost and the rightmost (as indicated 

in part (a) of Figure 3.11).   

As shown in the part (a) in Figure 3.11, we divide the corner points into two groups: 1) 

the corners points which located between the two extreme points and 2) the corner points 

located outside this range. Note that this categorization is based on the clock-wise sorted 

corner points list. In the part (a), we mark the first group of corner points by blue circles 

and the second group by red circles. For the first group, we calculate the vertical distance 

of each corner point to the top side of the smallest fitting rectangle (SFR) of the foot 

region. The smallest fitting rectangle is supposed to be tangent to the foot area at four 

boundary points: the top-most, bottom-most, left-most and right-most point of the foot 

area, as shown by the red frame in the part (b) of Figure 3.11.   

 

(a) 

 

Vertical distance from the corner 

point to the sides of the smallest 

fitting rectangle (SFR) 
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(b) 

 

(c) 

Figure 3.11distance calculation from corner points to the sides of the smallest rectangle, (a): 

corner points grouping, (b): vertical distance calculation from each corner point to the 

corresponding side of the SFR, (c): three turning points determination result 

Similarly, we calculate the vertical distance of each corner point in the second group to 

the bottom side of the SFR (as shown in the part (b) in Figure 3.11). Afterwards, we 

locate the turning points by searching for the corner point with the global maximum 

vertical distance to the corresponding rectangle side (top or bottom based on its group 

number: first or second) and also the two corner points on each side of the maximum 

point with the smallest local minimum vertical distance (as shown in part (c) of Figure 

3.11). The only concern is the search for target turning points may be accidentally 

stopped by interfering local extrema, which is a common problem of most local search 

algorithms. As mentioned earlier, we only keep a certain number of corner points on the 

foot outline. Based on the experimental results, we find that this down-sampling 

procedure can eliminate most of the interfering local extrema that may impede the search 

for the optimal turning points.   

For the foot image shown in the part (a) of Figure 3.12, the turning points can be 

accurately located by this maximum-minimum search approach (as shown in the part (c) 

of Figure 3.12, where the black cross in the middle represents the global maximum corner 

point and the two crosses on sides represent the two local minimum points). However, for 

The corner point with the 

global maximum distance 

The two corner point with the 

smallest local minimum distance 
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the image in the part (b), the wound is located at the corner of the foot outline. In this 

case, the approach stated above may fail since the point with the global maximum is no 

longer the desired turning point for wound boundary determination (as shown in the part 

(d) of Figure 3.12). To solve this problem, we rotate the foot image clock-wise by the 

angle which is determined by the formula in eq. (3.7). 

    

(a)                                                                      (b) 

         

(c)                                                                      (d)                                                                      

       

(e)                                                                       (f) 

Figure 3.12 Turning Points detection results, (a) and (b): foot binary images, (c) and (d): 

three turning points detection results, (e): rotated foot binary image from (b), (f) three 

turning points detection result on the rotated image 
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      Equation 3.7 

where mostrighty , mostlefty , mostrightx , mostleftx  are the x-y coordinates of the two extreme points 

as shown in the part (a) of Figure 3.10 (we assume the origin is located at the top-left 

corner). The rotated image is shown in the part (e) of Figure 3.12. We can see from part 

(f) of Figure 3.12 that the detected global maximum corner point after rotation is the 

desired point.  

3.4 Wound Boundary Determination Results 

3.4.1 Experimental Set-up 

To evaluate accuracy, we tested the three approaches introduced in Section 3.1 – 3.3 on 

two categories of wound images. For the first category, we used 60 images of simulated 

wounds, typically referred to as moulage wounds. The moulage wounds permitted us to 

evaluate our method under relatively consistent skin conditions and on wounds with 

distinct boundaries. Moulage is the art of applying mock injuries for the purpose of 

training emergency response teams and other medical and military personnel. In our case, 

we use the moulage wounds that include typical granulation, slough and necrotic tissues; 

the wounds were provided by Image Perspectives Corporation (Carson City, Nevada) 

and applied to the this writer’s foot. The selected four sample images (not all 60 images 

were presented in this work of the Moulage wounds are shown in Figure 3.13 and were 

captured with the smartphone camera placed on the image capture box. 

For the second category, we evaluated our wound image analysis method on 100 images 

of actual patient wounds collected at the UMass-Memorial Health Center Wound Clinic 

(Worcester, MA), following an IRB approved protocol in accordance with Federal 

Regulations. The purpose of selecting these typical wound images from type 2 diabetic 

patients was to provide a more realistic test of our wound boundary determination and 

color segmentation algorithms. Six selected sample images are shown in Figure 3.14. 

Compared with the images in Figure 3.13, the real wound images are more complex: they 

may have uneven illumination over the image plane, complex surrounding skin texture 

and wounds appearing in a variety of shapes, sometimes lacking distinct boundaries. Note 
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that all six of the wound images in Figure 3.14 were captured by our smartphone and 

image capture box. 

To test algorithm efficiency, all three methods were implemented on the following PC: 

Intel quad-core CPU, 4GB RAM, ATI Radeon HD 6350 GPU. In addition, the two mean 

shift based wound analysis algorithms discussed in Section II was further implemented 

on the Nexus 5 Android smartphone: CPU (Quad core, 1500MHz, Krait, 2048 MB 

system RAM) and the GPU (Adreno 320, Qualcomm). All the programming was done in 

Java in the Eclipse IDE (Integrated Development Environment).   

   

(a)                                                         (b) 

    

(c)                                                          (d) 

Figure 3.13 Wound images of the moulage simulation applied on the author’s feet 

      

(a)                                   (b)                                 (c) 

   

(d)                                  (e)                                 (f) 

Figure 3.14 Clinical image samples of actual patients 
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As mentioned in Section 2.1, the captured wound images were down-sampled by a 

scaling factor 4 in either spatial dimension. Furthermore, irrelevant background 

information was cropped off to better facilitate the following boundary determination. As 

a result, the image dimensions of the Moulage wounds are 816 300  pixels. The image 

dimensions of the real wounds are  516 322  pixels.  

3.4.2 Wound Boundary Determination Results on Images of Moulage Wounds 

 Evaluation of the Level Set Based Algorithm 

After applying the level set based algorithm, the wound boundary determination results 

on images of Moulage wounds are shown in Figure 3.15, where the determined wound 

areas are marked in light blue color. As mentioned in Section 3.1, the level set based 

algorithm is semi-automatic and we need to manually set the initial curve to start the 

contour evolution. Because of the nature of the level set based algorithm, the evolution 

has been accidentally stopped on false edge information in the foot skin area (it can be 

easily observed on part (b) – (d) in Figure 3.15). Actually, we can increase the number of 

iterations to diminished the false wound area, however, this will be further contract the 

target wound boundary and cause leakage when the actual boundary is weak. This can be 

viewed in part (c), where the yellow wound tissue is not included in the determined 

wound area. Another possible solution to remove the outlier areas is to filter the resulting 

closing areas by size, i.e. only the largest area is kept.   

   

(a)                                                         (b) 

   

(c)                                                          (d) 

Figure 3.15 Wound boundary determination results on images of Moulage wound simulation by 

level set based approach 
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 Evaluation of the Mean Shift Based Algorithm 

The wound boundary determination results on Moulage wounds images are shown in 

Figure 3.16. As seen from the part (a)-(d), the mean shift segmentation algorithm 

described in Section II provides promising boundary detection results. However, there are 

still areas near the wound boundary with visibly imperfect detection as shown in part (c) 

where the yellow wound tissue at the boundary has similar color to the healthy skin 

surrounding it. 

    

(a)                                                                  (b) 

    

(c)                                                                   (d) 

Figure 3.16 Wound boundary determination results on images of Moulage wound simulation by 

mean shift based approach 

 Evaluation of the Improved Mean Shift Based Algorithm 

The wound boundary determination results on Moulage wounds images are shown in 

Figure 3.17. All the wound simulations are located within the foot outline. Therefore, 

according to the description in Section 3.3, the longest internal boundary will be viewed 

as the wound boundary. Compared with the results shown in Figure 3.15 and 3.16, we 

can see the combined region and boundary algorithm provides promising internal 

boundary determination. Finally, the morphological based boundary refinement 

procedure introduced in Section 3.3 also contributes significantly to smooth the 

determined wound boundary.  
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(a)                                                         (b) 

    

(c)                                                          (d) 

Figure 3.17 Wound boundary determination results on images of Moulage wound simulation by 

improved mean shift based approach 

3.4.3 Wound Boundary Determination Results on Real Wound Images 

 Evaluation of the Level Set Based Algorithm 

The wound boundary determination results of the level set based algorithm on real wound 

images are shown in Figure 3.18. These images are more complex than is the case for the 

images of Moulage wounds. Some of them are not illuminated correctly because the 

position of the foot, such as part (b), and some have uneven skin texture such as part (e) 

and (f). Moreover, some wounds are located at the foot boundary (perhaps with the toe 

amputated), or at the toe.  

We can see from these results that the DRLSE algorithm performs satisfactorily only 

when the wound is well located in the middle of the foot area and the skin texture is 

uniform (as shown in part (a) in Figure 3.18). Otherwise, this approach often suffers from 

the false edge information on the textured foot skin, which is common to patients with 

diabetic foot ulcers (the results contain some small false wound area as shown in part (b) 

– (f)). Furthermore, when wound is located at the edge of the foot outline, the contour 

evolution always leaks at the weak boundary since we set the foot outline as the initial 

boundary.   
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(a)                                   (b)                                 (c) 

     

(d)                                  (e)                                 (f) 

Figure 3.18 Wound Boundary determination results on images of real wound simulation by level 

set based algorithm 

 Evaluation of the Mean Shift Based Algorithm 

To adapt to different conditions in real wound images, we had to adjust the parameters of 

the algorithm for each wound image. There are three adjustable parameters in the mean 

shift based wound boundary determination algorithm for each wound image: the spatial 

resolution sh , the range resolution rh  and the fusion resolution fh . 

Initially, we tried the parameter settings 7sh  , 6rh  and 3fh   because a published 

work [52] showed good segmentation results with these values. However, our 

experiments with these default settings applied to the real wound images did not provide 

good wound boundary results for all six images. As mentioned in [44], only features with 

large spatial support are represented in the mean shift filtered image when sh increased, 

and only features with high color contrast survive when rh  is large. In [52], it is also 

stated that a larger number of regions will remain in the region-fused image when 

employing a smaller fh . In Section 3.2, we discussed how the wound boundary 

determination is strongly dependent on whether a complete foot boundary can be detected. 

Hence, we need a better spatial resolution as well as a better region fusion resolution 

value to group the small regions in the foot area to a connected component when the skin 

texture is complex (as shown in part (f) in Figure 3.18). On the other hand, if the wound 

is located near to the foot boundary (as shown in part (d), (e) and (f)), better spatial and 
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fusion resolution is also needed to avoid the disconnected foot boundary detection, which 

will cause error in the wound boundary determination.  

Unfortunately, after trying different parameter settings over specified ranges (4 10sh  , 

4 7rh  ,3 15)fh   and using 0.5 as the adjustment step to customize the parameters 

for each wound image, the results shown in Figure 3.19 are still not promising. Especially 

when dealing with the wounds located not completely within the foot outline, the 

algorithm only provides partially correct wound recognition results, as shown in part (c), 

(e) and (f) of Figure 3.19. 

     

(a)                                   (b)                                 (c) 

     

(d)                                  (e)                                 (f) 

Figure 3.19 Wound Boundary determination results on images of real wound simulation by mean 

shift based approach 

 Evaluation of the  Improved Mean Shift Based Algorithm 

When applying the improved mean shift based algorithm to real wound images, 

promising results were obtained on most of the wound images. However errors occurred 

in particular on the images with toe-amputations. Examples of such errors can be seen in 

Figure 3.20. Since this algorithm is boundary based, we visualize the result by drawing 

determined boundary, instead of wound area, in both Figure 3.20 and Figure 3.21. 

For toe-amputated feet, the foot outline has a quite different shape compared to that of a 

healthy foot. Therefore, the corner point with the global maximum distance to the side of 

the SFR may not be located on the wound section in such cases, and the detected three 

turning points might not correspond to the target wound region. An approach to solve this 
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problem is formulated as follows. Instead of only seeking one global maximum, we 

locate all the corner points with local maximum vertical distance to the rectangle side and 

sort them in a descending order. Afterwards, we choose the first two corner points which 

have the two largest distances to the bottom side of the SFR. The one near to the right-

most corner point represents the toe-amputated area. And the other corner point is 

assumed to represent the wound area. We have implemented this approach, and the 

experimental results on all foot images with toe amputation are shown in Figure 3.21. It 

can be clearly seen that this modified wound boundary determination is much more 

accurate. However, this also brings to us another question: how to decide whether the 

foot image is that of a toe-amputated foot or not. One way to resolve this question is to 

include toe-amputation information (amputated or not) in the patient’s medical record.  

    

(a)                                                       (b) 

    

(c)                                                         (d) 

Figure 3.20 Wound boundary determination errors on images with toe-amputated feet 

Finally, we applied this approach to 6 wound images in Figure 3.14. Comparing to results 

provided by other two approaches, we can see an obvious improvement. However, the 

determined boundaries are still not completely consistent with the actual boundary, due to 

approximation nature of the contour generation method based on three turning points.  
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(a)                                                       (b) 

    

(c)                                                         (d) 

Figure 3.20  Improved wound boundary determination results on foot images with toe amputation 

      

(a)                                   (b)                                 (c) 

     

(d)                                  (e)                                 (f) 

Figure 3.21 Wound Boundary determination results on images of real wound simulation by 

improved mean shift based approach 
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3.4.4 Quantitative Evaluation and Comparison of the Three Wound Boundary 

Determination Algorithms 

To quantitatively evaluate the three wound boundary determination algorithms, described 

in this chapter, we asked three experienced wound clinicians from University of 

Massachusetts Medical School to independently trace the wound boundaries for all 100 

real wound images. Then we generated ground truth wound label from these boundary 

determinations.  The details of the ground truth generation process are described in 

Chapter 4. Finally, we use the Matthew Correlation Coefficient (MCC) [75] to measure 

the wound boundary determination accuracy for the three algorithms. The mathematical 

definition of MCC is shown in eq. (3.8). 

( )( )( )( )

tp tn fp fn
MCC

tp fp tp fn tn fp tn fn

  


   
    Equation 3.8 

where tp, tn, fp and fn represent true positive, true negative, false positive and false 

negative results, respectively [75]. The MCC returns a value between -1 (total 

disagreement) and +1 (perfect prediction). As mentioned in Section 3.1, 3.2 and 3.3, all 

three boundary determination algorithms have several parameters, which need to be set 

manually. For a fairer comparison, we find the optimal parameters empirically for each 

algorithm beforehand. Then we run these three algorithms on the same wound image 

dataset. The MCC based performance evaluation results are shown as in Table 3.1. 

Moreover, we perform the computation time analysis of these three algorithms on the 

same dataset. Especially, for each algorithm, the average running time for both CPU 

based implementation and the GPU optimized implementation are evaluated separately 

(Note that all the implementations of three algorithms are based the PC). The 

computation time analysis results are shown in Table 3.2.  

For the level set based algorithm (Approach 1), the boundary determination results are 

promising on images with normal and uniform skin color. However, false edges may 

interfere with the evolution when the skin color is not uniform enough and when missing 

boundaries, as frequently occurring in wound images, results in evolution leakage (the 

level set evolution does not stop properly on the actual wound boundary). In addition, the 
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level set evolution completely depends on the initial curve which has to be pre-delineated 

either manually or by a well-designed algorithm.  

For the mean shift and connected component detection based algorithm (Approach 2), the 

experimental results show that this method efficiently provides accurate wound boundary 

determination results when dealing with the wounds located within the foot outline. 

However, when the wounds are located on the image edge, such as on toes, this approach 

cannot find the actual wound boundary. For the improved algorithm presented in Section 

3.3 (Approach 3), the boundary determination results are much better than those obtained 

with Approach 2 when wounds occur on the image edge or on toes. Moreover, the toe-

amputation status needs to be an input parameter to Approach 3, which makes the 

approach not completely automatic.  

As seen from Table 3.2, the computation time for GPU+CPU implementation of the 

accelerated DRLSE algorithm has been enhanced by about a factor 5 compared with the 

CPU alone implementation. However, the parallel implementations of Approach 2 and 3 

do not provide such a significant improvement on time performance. The reasons are: 1) 

based on the description in Section 3.2 and [71], various CPU based optimization 

procedures have been applied to the mean-shift segmentation algorithm, and 2) the data 

transfer from RAM on PC to memory space on GPU chip is quite time-consuming and 

this extra time overhead undermines the efficiency enhancement from parallel 

implementation.     

Finally, we also perform the efficiency analysis for Approach 2 and 3 based on 

smartphone-alone platform. We haven’t implemented Approach 1 on the smartphone 

since it is only semi-automatic (the level set evolution needs to start with a manually set 

initial curve). While GPU+CPU implementation of the mean shift algorithm on PCs only 

provides minimal improvements in computation time over a CPU implementation, the 

GPU + CPU implementation on the smartphone does improve the time performance by 

about a factor of two, which can be seen from Table 3.3. This is partly because the CPU 

on the smartphone is not as powerful as the one on the laptop. Moreover, the 

Renderscript implementation utilizes both the smartphone GPU as well as the CPU and 

even available DSP devices on chip to provide the effective optimization.   
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Table 3.1MCC based wound boundary determination accuracy evaluation results on 100 real 

wound images. Approach 1, 2 and 3 represent the boundary determination approach introduced 

in Section 3.1, 3.2 and 3.3 respectively 

Approach ID 1 2 3 

MCC score 0.337 0.436 0.622 

 

Table 3.2 Computation time (unit: seconds) analysis results for three wound boundary 

determination accuracy approaches on 100 real wound images. Approach 1, 2 and 3 represent 

the boundary determination approach introduced in Section 3.1, 3.2 and 3.3 respectively 

Approach ID 1 2 3 

Implementation CPU CPU+GPU CPU CPU+GPU CPU CPU+GPU 

Computation time 13.8 4.9 4.7 3.9 6.8 5.3 

 

Table 3.3 Computation time (unit: seconds) analysis results for Approach 2 and 3 on 

smartphone-alone platform 

Approach ID 2 3 

Implementation CPU CPU+GPU CPU CPU+GPU 

Computation time 31.2 15.8 34.3 17.3 

 

3.5 Conclusion 

As has been described in the preceding sections, we have designed three different non-

machine learning approaches to determine wound boundary. Level set and mean shift 

based algorithms (referred as Approaches 1 and 2) suffer from their own disadvantages 

and cannot provide accurate results when the wound conditions are complicated. As an 

augmentation of Approach 2, we improved the mean shift based algorithm so that we can 

now detect the wounds, at almost any places and with various skin textures, with a much 

higher degree of accuracy (this approach is referred as Approach 3), with only a slight 
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reduction in efficiency. However, Approach 3 is still far from perfect. In this Conclusion 

section, we will give a quick overview of the algorithm flow an also provide some critical 

evaluation of this algorithm. Note that the improvement idea proposed for Approach 3 

cannot be applied to Approach 1 since the foot outline is not determined before level set 

evolution starts.   

Approach 3 classifies the wound locations into three categories: 1) wound in the middle 

of the foot, 2) wound at the edge of the foot without toe-amputation and 3) wound at the 

edge of the foot with toe-amputation. For the first category, the wound is expected to be 

surrounded by healthy skin and can easily be detected by tracing the internal boundary 

within the foot outline. For the second and third categories, we apply the three turning 

points detection method to locate the wound boundary which is assumed to be the most 

irregularly changed section on the foot outline. In practice, the method dealing with these 

two situations (with or without toe-amputation) is slightly different as described. Hence, 

we may require that the toe-amputation information is an input to the algorithm and 

obtained as part of the patient’s medical record. 

Generally speaking, this algorithm is fully automatic with an appropriate parameter 

setting. We need to set the parameters empirically, which means we have to try different 

parameter settings on different wound images and choose the setting which provides the 

most consistent wound boundary determination results on all sample images. A 

disadvantage of this algorithm is that there are quite a number of parameters that need to 

be set up. These parameters are fully described as in Table 3.4.  

As seen from the table above, we have 7 parameters which need to be chosen manually. 

Fortunately, the experimental results show that most of these parameters can easily be set 

to a fixed value, chosen empirically, and still provide robust results. The most difficult 

cases are the setting of region fusion bandwidth in the mean shift segmentation and the 

region area threshold value to filter out the small holes on the detected foot area.  

The region fusion bandwidth strongly impacts the accurate foot outline detection from the 

irrelevant background information, which serves as the basis for the subsequent wound 

boundary determination. Unfortunately, the experimental results show that there is no 
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single fixed region fusion bandwidth parameter that can provide us consistently 

promising foot outline detection results on all sample wound images. 

Finally, all three approaches heavily rely on the parameter setting and cannot be 

automatically refined based on new clinical inputs. In next two chapters, we will try to 

overcome these limitations by explore machine learning based wound recognition 

methods.  

Table 3.4 Parameters used in the improved mean shift based wound boundary determination 

algorithm 

Function Module Parameters Parameter 

Number 

Mean Shift 

Segmentation 

Spatial bandwidth, Color range bandwidth, Region 

fusion bandwidth 

3 

Morphology 

Operation 

Structure element radius 1 

Contour detection Region area threshold value to filter the small holes 1 

Corner Detection Corner quality threshold value to filter the less 

strong corners 

1 

Boundary 

Connection 

Radius for the arc that connects the two local 

minimum corner points 

1 
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Chapter 4  

Binary SVM Classifier Based Wound Boundary 

Determination 

4.1 Wound Recognition System Overview 

As mentioned at the end of Chapter 3, the mean shift algorithm, even the improved 

version with the three turning points detection method, still has difficulty in providing a 

consistently accurate result when the wound structure is complicated. This includes 

situations such as 1) the healthy skin area in the image is not smooth enough to be fused 

into an entire area, 2) the wound boundary is not clearly delineated and part of the wound 

may be fused as the healthy foot area and 3) the toe is amputated which causes an 

unexpected indentation on the foot outline, which may confuse the maximum-minimum 

searching based turning points detection method. To overcome these problems, we may 

need to adjust the region fusion bandwidth sometimes, and record the toe-amputation 

status as one item of patients’ medical history. Another drawback of the mean shift based 

algorithm is that we cannot update the algorithm based on new wound images and related 

clinical inputs. Besides, this algorithm does not exploit the clinical nature of wounds and 

therefore cannot provide consistently accurate wound boundary results. An example of 

the boundary determination error based on the improved mean shift based approach in 

Chapter 3 is shown in Figure 4.1. We can see some sutures attached to the actual wound 

area in part (a). However, Approach 3 erroneously recognizes the sutures as part of the 

wound as shown in part (b). Hence, we need find a smarter approach which can exploit 

the nature of wound texture for recognition. In part (c) of Figure 4.1, the wound 

determination result by the approach proposed in Section 4.3 is shown and we can see the 
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suture is successfully excluded from the determined wound area since we teach the model 

how to distinguish wounds from other objects, such as sutures, on the skin by ground 

labels from clinicians.  

   

(a)                                   (b)                                   (c) 

Figure 4.1 Example of the detection error, (a) the original image with sutures attached to the 

actual wound area, (b) wound boundary determination results by improved mean shift based 

algorithm introduced in Chapter 3, (c) wound boundary determination results by SVM based 

method introduced in Section 4.3 

As seen from the discussion above, it is a great challenge to develop accurate algorithms 

for the wound boundary determination, tissue classification and healing status analysis. 

The goal is for such algorithms to be automatically run in a real-time fashion and to 

provide meaningful feedback to the direct users or the remote observers through a 

telemedicine scheme. Since our system may not necessarily be used in a clinical 

environment (for example, it may be used in the patients’ homes), it is nearly impossible 

for us to fully control the image capture conditions and focus only on patients’ foot. 

Hence, we should assume the wound image will not only contain the necessary skin and 

wound information but also some irrelevant background scene, which will complicate the 

wound boundary determination. For this reason, some methods reviewed in Chapter 1 are 

semi-automatic and require some manual input to pre-locate the wound. In our work, our 

goal is to develop a fully automatic wound boundary determination method which is able 

to recognize the wound from the wound image under relatively relaxed image capture 

conditions. We categorize our method as an object recognition scheme whose output is an 

accurate object boundary rather than a bounding box enclosing the target as required by 

most object recognition tasks.  In this case, we start using the term “wound recognition” 

as the equivalent expression of “wound boundary determination”, since both have the 

same goal. In later sections, we may interchangeably use either one of these two terms to 



73 

 

refer to the same task. In computer vision, the object recognition is a task that identifies 

objects and further determines the object boundaries in an image or video sequence. As 

concluded in [76], machine learning (ML) is currently the “only known way to develop 

computer vision systems that are robust and easily reusable in different environments”. 

Hence, we plan to base our wound recognition method on a machine learning model. 

Based on the literature review in Chapter 1, the bottom-up machine learning based 

scheme is most widely used in current wound tissue recognition tasks and the 

corresponding experimental results prove its effectiveness.  

Therefore, in this section, we will develop a foot ulcer recognition system, by applying 

the bottom-up object recognition scheme, as illustrated in Figure 4.2. An image, which 

may or may not contain the target object, is first segmented into a group of homogenous 

regions (so-called super-pixels). Then a feature descriptor is generated for each region. 

This super-pixel based descriptor can also be referred as the “local feature representation” 

of the wound image. Then these descriptors will constitute the input into a binary 

classifier whose output is a Boolean value: “true” represents that the current super-pixel 

is classified as “wound”, or “false” represents that the super-pixel is classified as “non-

wound”. Usually, if there is an object and we need to accurately measure or analyze it 

(such as the wound area measurement and analysis), some methods will be utilized to 

further delineate the object boundary. In the bottom-up scheme, the object boundary can 

be easily determined by grouping all super-pixels classified as “wound” together. The 

binary classifier is the core of the object system and it is implemented by using a well-

designed machine learning method. Inside the dash frame on the right-hand side of Figure 

4.2, a typical flow of the supervised machine learning scheme (which is based on the 

training dataset with each sample labeled manually) is illustrated. Actually, we can build 

our wound recognition system on the basis of this general workflow. The key techniques 

used in this system consist of image segmentation (for local representation image), object 

representation (including feature detection and description) and classifier training and 

testing (based on a selected machine learning scheme). 
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4.2 Wound Descriptors  

In this section, we will explore the technical details about three types of super-pixel based 

feature descriptors and compare their performance by applying a SVM based binary 

wound classifier to these descriptors. Two of them have previously been applied to 

wound tissue classification in [23] and [7], respectively. The simplified version of the 

third descriptor has been used for object recognition from natural scene images [77]. For 

better performance on our wound recognition task, we augment it by Dominant Color 

information.    

 

Figure 4.2 A basic flow for machine learning based object recognition system 
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4.2.1 Wound Descriptor Based on Color and Gray-Level Co-occurrence Matrix 

Texture 

In [23], the authors used color and texture descriptors which have already been applied in 

dermatological imaging systems for the wound tissue classification task. Color is claimed 

to be most important visual cue as demonstrated by the red-yellow-black healing visual 

assessment of chronic wounds [35] during clinical visits. The color descriptors that the 

authors extracted were: the Mean Color Descriptor (MCD) [78], the locally adapted 

Dominant Color Descriptors (DCD) based on the mean-shift clustering algorithm [23], 

[78], [44], and 2-D and 3-D color histograms [21] [79] [80] tested in different color 

spaces and sizes. In addition, it is argued that texture is also a helpful discriminative 

feature for tissue classification if it is computed in a neighborhood in a properly specified 

shape and scale. According to [23], practical experience indicates that texture, although 

not as dominant as the color information, still provides complementary data for wound 

recognition when contrasted with healthy skin tissues. In [23], a number of widely used 

texture descriptors of different color channels (RGB for example) or gray level image 

(GL) were extracted from super-pixels in wound images. These descriptors are: Gabor 

based features (GAB) calculated on five scales, local binary pattern (LBP) histograms 

[21], Haralick Gray Level Co-occurrence Matrix features (GLCM) [81] and the 

normalized texture contrast and anisotropy (CA) [23]. The performance of these feature 

descriptors were applied to the wound tissue classification task reported in [23], and the 

results are shown in Table 4.1. The performance measures used in [23] are sensitivity 

(also called true positive rate or recall) and specificity [82] (also called true negative rate). 

The sensitivity indicates the proportion of wound regions (in ground truth images) which 

is correctly classified by the trained classifier, and the specificity measures the proportion 

of non-wound super-pixels which are correctly identified.    

We can read from the results in table 4.1 that the sensitivity is always lower than 

specificity for any descriptor, which may indicate that the binary classification task of the 

wound and non-wound region suffers mainly from the errors of mistaking the wound 

regions as non-wound ones. Another finding is that the combination of the MCD, DCD 

and GLCM descriptors provides the best wound tissue classification performance [23]. 
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Hence, we will apply this combined set of descriptors as one candidate for our foot ulcer 

recognition task. 

Table 4.1 wound tissue classification performance of several color and texture descriptors [23] 

Feature Descritpor Sensitivity (%) Specificity (%) 

Color 

Histogram-RGB 58 87 

Histogram-LAB 66 87 

Histogram-HSV 62 86 

Histogram-nRGB 57 89 

MCD-DCD 67 89 

Texture 

LBP 30 78 

GLCM 54 82 

GAB 47 81 

CA 32 79 

Color + Texture MCD+DCD+GLCM 77 92 

 

For the color descriptor part, we first use 3 color components (the L, a and b components 

in CIE LAB color space), which are obtained from the mean shift segmentation algorithm 

introduced in Chapter 2, and this 3-element color vector is called the dominant color for 

the current region [83]. In order to compute the dominant color descriptor, the colors 

present in a given region are first clustered. This results in a small number of colors, and 

the percentages of these colors are calculated [83]. Optionally, the variance of a given 

dominant color may also be computed. The percentages of the colors present in the 

region should add up to 1. Finally, a spatial coherence value, which is used to 

differentiate large color blobs from colors that are distributed widely on the entire image, 

is generated. The mathematical definition of this descriptor is shown as below. 

i i i{(c ,p ,v),s},(i 1,2,..., N)F            Equation 4.1 

where ic  is the i
th

 dominant color and ip  is its percentage value and iv  is its color 

variance, and where N represents the number of dominant color cluster centers. The 

spatial coherence s is a single number that represents the overall spatial homogeneity of 

the dominant colors in the image. Moreover, we add the mean color descriptor, which is 

also a 3-element color vector in CIE LAB color space, into the wound descriptor. This 

mean color descriptor is the mean vector of the three channel mean values of all pixels 
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for this super-pixel region in the original image. Finally, we calculate the occurrence 

probability oP , defined as below, of the dominate color in the current region. 

oP = # of pixels with the dominate color in the current region /# of pixels in the current 

region       Equation 4.2 

In conclusion, a 7-element color feature descriptor has been generated. 

The texture features are extracted based on the GLCM [81]. According to [81], the 

angular second moment, contrast, correlation of the GLCM provide a good representation 

of the significant texture properties for certain image regions. A co-occurrence matrix is a 

matrix that is defined over a image or a sub-region (in most cases, a rectangle region) of a 

image to be the distribution of co-occurring values at a given offset (in this disserttation, 

we set the offset as 1 pixel). Mathematically, a co-occurrence matrix C is defined over a n 

x m image I, with the offset vector ( , )x y  as parameters. The exact formulation is given 

as below. 

,

1 1

( , ) (( ( , ) ) &( ( , ) ))
n m

x y

x y

C i j if I x y i I x x y y j 

 

           Equation 4.3 

where i and j are the image intensity values of the image, x and y are the spatial 

coordinates in the image grid and the offset vector consists of values on different 

directions. As suggested in [81], four directions will be applied: horizontal, vertical, left-

diagonal and right diagnoal. The corresponding four offset vectors are (0, 1) , ( 1,0) ,

( 1, 1)  and ( 1, 1) . Generally, the co-occurrence matrix will be normalized by dividing 

each element by the total number of pairs of pixels involved in the calculation of eq. (4.3). 

Finally, four independent co-ocurrence matrices are generated (one in each direction out 

of four) and all elements are in the range of 0-1. Hence, these matrixes can also be 

viewed as co-occurrence probability matrices [84]. 

Based on the GLCMs, several texture properties can be calculated. As recommended in 

[81] and [84], we compute 5 texture features for each GLMC:  

(1) ngular second-moment, defined by eq. (4.4), is an indicator of the homogeneity of a 

super-pixel region;  
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(2) Contrast, defined by eq. (4.5), is an indicator of the contrast or amount of local 

variation presented in a super-pixel region;  

(3) Correlation, defined by eq. (4.6), is an indicator  of gray-tone linear dependencies in a 

super-pixel region;  

(4) Entropy, defined in eq. (4.7), is an indicator of the degree of randomness in a super-

pixel region;  

(5) Inverse difference momment, defined in eq.(4.8), which is another indicator of the 

homogeneity. 

secangular ond moment nm

n m

f p         Equation 4.4 

2

0 1 1

g g gN N N

contrast nm

k n m
n m k

f k p
  

 

        Equation 4.5 

( ) mn x y

n m
correlation

x y

nm P

f

 

 






    Equation 4.6 

2

1

1 ( )
inverse difference moment nm

n m

f p
n m

  
 

    Equation 4.7 

log( )entropy mn mn

n m

f p p        Equation 4.8 

where n and m are the indices of the all gray level ranging from 0-255, x , 
y , x and 

y are the means and standard deviations of the marginal probability xp and 
yp  for each 

GLCM, respectively. nmp  is the element of the GLCM at spatial position (n,m) [81]. gN

is the total number of gray levels, which should be equal to 255 in our case. 

In conclusion, incorporating the five features for each GLCM means we will obtain a 20-

element texture vector of all GLCMs for each region. When adding to that the 16-element 

color descriptor acquired previously, a 36-element feature descriptor for each region will 

be generated.  
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4.2.2 Wound Descriptor Based on Color Histogram and Wavelet Texture 

In [7], the color features are extracted using three different color models: CIE Lab, RGB 

and normalized-RGB. the normalized-RGB feature is extracted from the original RGB 

values by a straightforward normalization method / ( )r R R G B   ;

/ ( )g G R G B   ; / ( )b B R G B   [7]. It is obvious that the sum of the three 

normalized elements should be equal to 1, i.e. 1r g b   . Hence, the third component 

is redundant and can be skipped for reducing the dimensionality of feature descriptors. 

According to [7], the normalization procedure can eliminate the influence on color 

features due to the brightness of the lighting resource; specifically, using the normalized 

RGB color features enhances the classification robustness against the illumination change. 

A significant characteristic of this normalized color features is as follow: for matte 

surfaces, if ambient light is not taken into consideration, normalized-RGB features are 

robust (under certain conditions) to changes in the angle between the surface normal and 

the direction of the illumination resource [85]. This invariance to ambient light 

orientation serves well for extracting intrinsic characteristic of the original image under 

different illumination conditions. As introduced in [7], three types of color based features 

in various color spaces (CIE Lab, RGB and normalized RGB) can be extracted from the 

super-pixels in each wound image: 1) pixel based color features, 2) histogram based color 

features, and 3) wavelet based texture features for each channel isolated image in RGB 

space, i.e. three 8-bit image for R, G, B channel, respectively. 

For pixel based color features, the mean and the variance of each color component in 

both CIE Lab and normalized-RGB color models are extracted. Alternatively, the 

following features can be extracted from the normalized color histogram in RGB and 

normalized-RGB color space ( 1ii
h  , where ih  is the i

th
 bin): the two highest peaks of 

the results from moving average filter [86]; the intensity levels for whose bin value larger 

than the 50% of maximum amplitude in ascending-ordered histogram; the variance; the 

skewness 3 3

1
( ) / (( 1) )

n

ii
h n 


  , where  is the mean and  is the deviation; the 

energy ( 2

1

n

ii
h

 ); and the entropy (
1

log( )
n

i ii
h h


 ) [7]. 
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Wavelets make it possible to analyze a signal in different levels of details [83]. In the 

case of 2D image which can be viewed as 2D digital signal, the wavelet theory gives us 

the ability to analyze the images at different resolutions or scales. For example, if the 

original image is in size of 512 x 512, we can study the frequency responses in 

resolutions of 256 x 256, 128 x 128, 64 x 64 and so on. In particular, for texture analysis 

of images, the capability of describing the structure of the image at different scales is 

important since a texture can vary significantly if the distance between the object and the 

camera has been changed.  

The function shown in eq. (4.9) represents the general formulation of wavelets. 

1
(t) ( )

t b

aa
 


      Equation 4.9 

where a stands for the frequency scaling factor and b represents the time displacement. If 

we define a, such that 2ma  , the wavelet transform is referred to as the Dyadic Wavelet 

Transform (DWT), and its specific formulation can be derived from a smoothing or 

scaling function denoted as ( )t . According to [83], from the viewpoint of both the 

scaling function and the wavelet, two FIR filters can be formulated to compute the DWT. 

These filters are referred as h and g and are a low-pass and a high-pass filter, respectively. 

The 2D DWT transform can be illustrated in Figure 4.3 [83], where * is the convolution 

operator and the subscript for each filter indicates the direction in which the convolution 

is applied. Finally, the down-sample operation here means scaling down the rows or 

columns by a factor 2.  As seen from Figure 4.3, the 2D DWT results in four output 

images. In each filtering step, a low frequency image (similar to the intensity image 

representing the brightness) 
1jL 
and three detail images are produced. The detail images 

1...3

jD contain the details (high frequency components) extracted from 
jD that are not 

presented in 1jD  . This procedure will be repeated recursively until a specified iteration 

count is reached. 

All four output images obtained by applying 2D DWT can be viewed as basis for 

extracting texture features. Each of these images reveals important gradient information 

at a given direction (horizontal, vertical and diagonal) and scale. According to [7], two 
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levels of DWT have been applied for wavelet based texture feature extraction. The first 

level wavelet filters were applied to each color channel of the image derived with the 

Daubechies fourth order function [83]. Then, the second level wavelet filters were 

applied to the low frequency image (LL) [83]. On each output channel from wavelet 

filtering (LH, HL and HH) the energy per super-pixel ( 2

Re

1
p gion

p
area  , where p 

indicates the pixel value on each position in the output channel and “area” represents the 

super-pixel size in terms of super-pixel) was computed on each segmented region.  

Finally, a total of 63-element color texture descriptor has been obtained [7]. 

 

Figure 4.3 2D DWT using FIR filters  

4.2.3 Wound Descriptor Based on Bag-of-word Representation of DSIFT and 

Dominant Color Descriptor 

In this section, we create a new wound descriptor for each super-pixel by combining the 

Bag of Words (BoW) histogram based on local Dense SIFT (DSIFT) descriptors and the 

dominant color descriptor mentioned in Section 4.2.1.  

In [77] [87] [88], the bag-of-words representations for global or regional image features 

are widely used for object recognition tasks in natural scene images and the detection of 

humans in the image. In [77], a bag-of-words based classifier which uses the super-pixels 

as basic input unit was designed. To generate the bag-of-words based descriptor for each 

super-pixel, standard SIFT descriptors were first extracted “at each pixel of the image 

with a fixed scale and orientation” using the accelerating SIFT extraction approach. This 

is called the dense SIFT descriptor extraction [77] since the SIFT descriptor was 

extracted at each pixel of the image, instead of selected locations in the standard 
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procedure. According to [77], when applying the SIFT descriptor to tasks such as bag-of-

words based object category classification, experimental evaluations show that better 

classification results are often obtained by computing the SIFT descriptors over dense 

grids in the image domain, as opposed to the extraction at sparse interest points proposed 

in [89]. A basic explanation for this is that a larger set of local image descriptors 

computed over a dense grid usually provide more information than corresponding 

descriptors evaluated at a much sparse set of image points.  

This direction of development was initiated in [90] and has now been established as a 

state-of-the-art approach for visual object category classification. As mentioned in [91], 

the computation of dense SIFT descriptors is usually accompanied with a clustering stage, 

where the individual SIFT descriptors are reduced to a small vocabulary of visual words, 

which can then be combined with a bag-of-words model methods [91]. The extracted 

descriptors are clustered to generate K (a predefined number) centers (so-called a 

dictionary of visual words) using a K-means algorithm. Then each descriptor is classified 

based on its nearest center as determined by the minimum square distance rule. The 

descriptors in each super-pixel is are aggregated into one normalized histogram K

ih R  

based on the classification results, where K is the number of words predefined in the 

codebook (the set of clusters resulted from the K-means algorithm).   

According to [77], there are two major shortcomings of the dense SIFT descriptor. The 

first shortcoming for the Bag-of-word based descriptor is that the resulting classifier is 

very “specific” [77]. It identifies the similarity between super-pixels in the training data 

without examining the neighborhood region structure. In the wound recognition case, this 

shortcoming means the some outlier super-pixels far from the actual wound region may 

be incorrectly classified as wound due to its similarity in color with the actual wound. 

The second shortcoming of training a local classifier for each single super-pixel is that 

the associating histogram with each super-pixel contains too many zero elements 

(sparseness). This finding is easy to understand since the pixel values in each super-pixel 

are very homogeneous in terms both color and texture by the definition. Second, DSIFT 

features are extracted in a fixed-scale format and on an image grid with finer resolution 

than standard SIFT feature. Hence, most super-pixels possibly have many DSIFT 
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descriptors that are clustered to the same visual word in the generated visual dictionary 

[77]. Based on [77], the sparse feature vectors will heavily undermine the discriminative 

ability of the trained classifier using modern machine learning techniques, such as 

support vector machine (SVM) and artificial neural network (ANN).  

In [77], these two shortcomings have been corrected by applying a histogram merging 

techniques in the super-pixel neighborhood. In [77], an adjacency graph ( , )G S E is 

defined on super-pixels is in an given image, where 0

ih  is the non-normalized histogram 

calculated for all dense SIFT descriptors extracted from this region. E is the set of edges 

connecting pairs of adjacent super-pixels ( , )i js s  in the image, and ( , )i jD s s  is the length 

of “the shortest path” between two super-pixels.  Then, N

ih is the histogram obtained by 

merging the histograms of the super-pixel is and its neighbors, i.e. we update the value 

for each bin in the histogram by the sum of the given bin value in all histograms in a 

defined neighborhood. The histogram merging process is described in formula defined as 

below [77].  

0

| ( , )j i j

N

i j

S D s s N

h h


        Equation 4.10 

where N represents the radius of the neighborhood region in center of the current super-

pixel. In another word, each super-pixel in this neighborhood should be less than N nodes 

away from its center in the adjacency graph.   

According to [77], this solution can provide an effect similar to regularization (a well-

known procedure to avoid overfitting i.e., the learned model works promisingly for 

classification on the training dataset but shows poor generalization for the testing set) for 

the SVM or neural network based classifier [77]. It also provides spatial consistency in 

our classification because, as we increase N, histograms of adjacent super-pixels have 

more features in common.  

Second, since more super-pixel based neighborhood information has been considered 

using the histogram merge technique, long-range connection between object pixels has 

been better described. Therefore, by adjusting the parameter N, we can easily handle 

target objects at different scales [77]. This is important for our wound recognition task 
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since the size of the wound may vary a great deal, and also the object-to-observer 

distance will possibly cause the change of wound scale. However, as stated in [77], 

increasing N will blur object boundary and further result in recognition errors near the 

actual object boundary. According to [77], the conditional random field  (CRF) based 

technique can be applied to refine the resulting boundary. More details of CRF can be 

found in Chapter 5. 

After being combined with the dominant color descriptor (DCD) introduced earlier, the 

final descriptor contains 162 elements. 

4.2.4 Principal Component Analysis Based Dimensionality Reduction 

After a set of color and texture features is extracted from each resulting region, a 

Principal Component Analysis (PCA) allows the reduction in the dimensionality of the 

initial color and texture feature space [92]. The dimensionality reduction can enhance the 

time performance of model training and object classification. PCA is mathematically 

defined as an orthogonal linear transformation that transforms the data to a new 

coordinate system such that the greatest variance by some projection of the data comes to 

lie on the first coordinate (called the first principal component), the second greatest 

variance on the second coordinate, and so on.  

Consider a data matrix X in dimension of m n , whose columns have zero mean (the 

sample mean of each column has been shifted to zero). Each row represents a zero-mean 

shifted instance feature vector of length of n. Mathematically, the transformation is 

defined by a set of vectors of weights (transformation matrix) of p-dimensional (where p 

is supposed to be much more smaller than n, which will result the dimension reduction) . 

The weights are defined as
( ) 1 2 ( )( , ,..., )k p kw w w w  that maps each row vector 

( )ix  of X to 

a new vector of principal components ( ) 1 2 ( )( , ,... )i p it t t t  given by   

( ) ( ) ( )i i kt x w               Equation 4.11 

in such a way that the individual variables of t considered over the data set successively 

inherit the maximum possible variance from x, with each weight vector constrained to be 

a unit vector. The transformation matrix can be calculated from the p eigen-vectors 
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corresponding to the p largest eigen-values of the covariance matrix TX X . Note that the 

dimension of each feature vector is reduced from n to p. 

4.2.5 Wound Descriptor Evaluation 

In our experiments, we evaluate 4 combined feature descriptors by applying them to the 

single-stage binary SVM based wound classifier on 100 sample images of real wounds 

using leave-one-out cross validation scheme [1]. More details about the machine learning 

techniques can be found in the next section (Section 4.3). Descriptor 1 and 2 come from 

the contribution in Section 4.2.2 and 4.2.3, respectively. In Descriptor 3, we use the color 

features in Descriptor 1 and 2 (mean and variance of color in CIE Lab and normalized 

RGB space, two highest peaks, dominant levels, variance, skewness, energy and entropy 

of the color histogram in RGB and normalized RGB space), and we append the color 

features with the BoW histogram representation of local DSIFT features as mentioned in 

Section 4.2.4. In another word, Descriptor 4 is like a combination of descriptor 1-3. After 

applying the PCA dimention reduction method by maintaining 99% total invariance, the 

resulting descriptor length is 12, 19, 33, 39 for descriptor 1-4, respectively. 

Based on the results in Table 4.2, the general sensitivity and specificity measures when 

the evaluation is carried out on the entire image show that the Descriptor 3 provide the 

best performance (71.4% for sensitivity and 97.2% for specificity). However, when the 

significant area is confined to the wound and small number of surrounding skin super-

pixels only, Descriptor 1 performs better than the others (72.2% for sensitivity and 96.1% 

for specificity). These results may indicate that the BoW features are useful for ruling out 

the irrelevant background information, but the BoW features also demonstrate some 

inability to distinguish between the wound and healthy skin when compared to the 

wavelet and GLCM based texture features. This observation directly inspire us for the 

cascade two-stage classifier design introduced in the next section. Morever, the longest 

feature descriptor 4, while consuming more computing time as shown Table 4.3, provides 

no significant performance improvement. Based on the discussion above, we applied the 

Descriptor 3 and 2 to the first and second stage classification, respectively. The cascade 

two-stage classification system will be introduced in the next section (Section 4.3).  
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4.3 A Novel Two-Stage Cascade Binary Wound Classifier 

The major purpose of this chapter is to design a smartphone based wound image 

assessment system (bottom-up object recognition scheme based) for healing status 

tracking of diabetic foot ulcers. We have utilized several image processing techniques 

and proposed a cascade two-stage approach based on Support Vector Machine to 

determine the wound area. Support Vector Machine based methods have proved to be 

effective when applying to similar clinical problems [23], [93]. Our proposed 

methodology consists of the following steps: 1) use the Simple Linear Iterative Clustering 

(SLIC) method to segment the images into a number of super-pixels as mentioned in 

Chapter 2; 2) extract significant color and texture features from these super-pixel and use 

Principle Component Analysis (PCA) technique to reduce the dimensionality of the 

feature space as discussed in Section 4.2; 3) in the first training stage, train k SVM binary 

classifier based on partially different training images; 4) in the second training stage, train 

one SVM binary classifier based on the incorrectly classified test instances from the first 

stage, and 5) refine the determined wound boundary using Conditional Random Field 

techniques.   

Table 4.2 Wound recognition performance evaluation for different combined descriptors. 1) 

descriptor1: MCD + DCD + GLCM, descriptor 2: MCD + color histogram + wavelet, descriptor 

3: MCD + color histogram + BoW, 4: MCD + DCD + color histogram + wavelet + GLCM + 

BoW; 2) descriptors are evaluated on two different types of image area: the entire image area 

containing wound bed, healthy skin and irrelevant background and the area contianing only 

wound bed and small amount of surrounding healthy skin 

Descriptor ID 

Classification results 

(α = entire image) 

Classification results 

(α = wound + healthy skin only) 

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

1 68.7 86.2 72.2 86.1 

2 68.3 86.9 74.5 88.3 

3 71.4 87.2 69.4 86.6 

4 70.4 87.0 72.3 85.8 
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Table 4.3 Computation time evaluation for different combined descriptor generation (include the 

PCA dimension reduction) based on Nexus 5 smartphone 

Descriptor ID 1 2 3 4 

Computation time 4.5 4.2 5.6 8.8 
 

4.3.1 Methodology Overview 

Figure 4.4 describes our overall process for the wound boundary determination on 

diabetic foot ulcer images. We captured the sample foot ulcer images in the Wound 

Clinic at University of Massachusetts Medical School by tracking a number of patients 

over a period of two years, based on an approved IRB protocol. In most cases, the foot 

ulcers were located at the sole of foot. As mentioned in Section 2.1, to facilitate the 

image capture process, especially for elder patients with limited mobility, and to maintain 

fixed range between camera and wound and consistent illumination conditions, we used 

the image capture box described in Section 2.1. As mentioned in Section 3.4, we use the 

Nexus 5 smartphone whose F2.0 auto-focus lens can ensure well-focused, high resolution 

images within a certain distance. Then, the SLIC segmentation algorithm introduced in 

Section 2.2 is applied to accomplish the super-pixel segmentation task. For each super-

pixel, a color and texture based descriptor is extracted using one of the methods 

introduced in Section 4.2. The PCA based dimension-reduction method can be applied 

optionally to improve the training efficiency. The modules presented in the second and 

third columns in Figure 4.4 will be described in Section 4.3.3, except for the color 

segmentation block which will be presented in Chapter 6. 
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Figure 4.4  Complete flowchart for the wound boundary determination system (the details are 

introduced in the Methodology Section) 

We selected 100 photographs which were considered to be an appropriate data set for 

wound classifier training. As mentioned in Section 3.4, for an efficient smartphone based 

implementation, we down-sampled the original image by a factor 4 in both the horizontal 

and vertical directions. Furthermore, we frame the wound images to remove irrelevant 

background information (Thanks to the image capture box, we can safely rule out the 

irrelevant background by simply framing the original image with a rectangle with fixed 

size, center and orientation). The final dimensions of the image are 560 320 . The image 

cropping process can be illustrated in Figure 4.5.  
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(a)                                                                  (b) 

Figure 4.5 wound image framing, the irrelevant background information in (a) is removed and 

the resulting image is shown in (b) 

Afterwards, a cascade two-stage SVM based wound boundary determination method is 

proposed based on the extracted feature descriptors. The generation process of ground-

truth wound labeling will be introduced in Section 4.3.3. In the first stage, k-fold cross-

validation, which will described in details in Section 4.3.3, is performed to train k SVM 

binary classifiers. After applying these k classifiers to different testing datasets, we 

collect all the incorrectly classified super-pixels to form a new training dataset for the 

next stage. In the second stage, we extract new feature descriptors for these super-pixels 

and train a new SVM binary classifier. When analyzing a new wound image, first we 

apply the first stage SVM classifier to all super-pixels. Then, for all the super-pixels 

classified as “wound”, we applied the second stage SVM classifier to remove false 

positives. Finally, a Conditional Random Field (CRF) based algorithm is applied to 

further refine the determined wound boundary. In following sections, each module of the 

flowchart will be discussed in details. 

4.3.2 SVM Based Binary Classifier 

 SVM Basics 

As mentioned in the introduction section, the SVM based classifier is the most widely 

used supervised machine learning technique because of its capability of dealing multi-

dimensional features and convenience of over-fitting protection [76]. The major idea is as 

follows: the non-linear separable training data in low dimensional feature space becomes 

linear separable in higher dimension space, by mapping the feature vector from lower 
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dimensional space to higher dimensional space using an appropriate kernel function [94], 

[95]. The SVM classifier selected here is a soft-margin algorithm (so-called C-SVM) [95]. 

In the next several paragraphs, we will give a brief introduction of the basic SVM and C-

SVM algorithm.  

SVMs are built upon the concept of a “margin” – “the distance between the two sides of a 

hyperplane that separates two data classes” [94]. The class separation task can be 

converted to maximizing the margin, i.e. producing the largest distance between the 

separating hyperplane and the training samples on either side of it has been proven to 

reduce an upper bound on the expected  generalization error [76] [96].  

If the training data is from classes which are linearly separable, then a pair ( , )w b exists 

such that the following equations are satisfied.  

1T

iw x b  , for all ix P         Equation 4.12 

1T

iw x b   , for all ix N       Equation 4.13 

The decision rule is given by the following equation. 

, ( ) sgn( )T

w bf x w x b                  Equation 4.14 

where w is termed the weight vector and b the bias (or –b is termed the threshold). 

It is easy to show that, when it is possible to linearly separate two classes, an optimum 

separating hyperplane can be found by minimizing the squared norm of the separating 

hyperplane. The minimization can be formulated as a convex quadratic programming (QP) 

problem [94]: 

2

,

1
min ( )

2

( ) 1, 1,...

w b
w w

subject to y wx b i l

 

  

Equation 4.15 

In the case of linearly separable data, once the optimum separating hyperplane is found, 

data points that lie on its margin are known as support vector points and the solution is 

represented as a linear combination of only these points. Other data points can be ignored. 

This scheme can be illustrated in Figure 4.6. Therefore, the model complexity of an SVM 

is unaffected by the number of features encountered in the training data (the number of 
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support vectors selected by the SVM learning algorithm is usually small). For this reason, 

SVMs are well suited to deal with learning tasks where the number of features is large 

with respect to the number of training instances. A general set of algorithm steps for 

SVMs is formulated below. 

 Step 1: introduce non-negative Lagrange multiplier i , one for each of the 

inequality constraints in eq. (18). This gives Lagrange equation as below: 

2

1 1

1
( )

2

N N

P i i i i

i i

L w y x w b 
 

          Equation 4.16 

 Step 2: minimize PL  with respect to w and b, which is a convex quadratic 

programming problem. 

 Step 3: in the solution, those points for which 0i   are called “support vectors”. 

 

 
Figure 4.6 Maximum margin separator [76] 

 Kernel based soft margin SVM (C-SVM algorithm) 

Even through the maximum margin allows the SVM to select among multiple candidate 

hyperplanes, for many datasets, the SVM may not be able to find any separating 

hyperplane at all because the data contains instances of misclassification. The problem 
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can be addressed by using a soft margin that allows some misclassifications of the 

training instances to be present [95]. The implementation of a soft margin is carried out 

by introducing positive slack variables i , 1,...i N in the constraints, which then 

become as below. 

1 1

1 1

0, 1....

T

i i i

T

i i i

i

w x b for y

w x b for y

i N







   

     

 

      Equation 4.17 

Thus, for an error to occur, the corresponding i must exceed unity, so 
i

i

  is an upper 

bound on the number of training errors. In this case the Lagrangian is as below. 

2

1 1

1
{ ( ) 1 }

2

N N

P i i i i i i i

i i i

L w y x w b C   
 

                Equation 4.18 

where i are the Lagrange multipliers introduced to enforce positivity of the i . 

Although the C-SVM algorithm can provide good classification performance for simple 

and ideal cases, most real-world problems involve non-separable data for which no 

hyperplane exists that successfully separates the positive from negative instances in the 

training set. One solution to the inseparability problem is to map the data into a higher 

dimensional space and define a separating hyperplane there. This higher-dimensional 

space is called the transformed feature space, as opposed to the input space occupied by 

the training instances [94].  

With an appropriately chosen transformed feature space of sufficient dimensionality, any 

consistent training set can be made separable. A linear separation in transformed feature 

space corresponds to a nonlinear separation in the original input space. Mapping the data 

to some other (possibly infinite dimensional) Hilbert space H as : dR H  . Then the 

training algorithm would only depend on the data through dot products in H, i.e. on 

functions of the form ( ) ( )i jx x  . If there were a kernel function K such that 

( , ) ( ) ( )i j i jk x x x x  , we could only need to use K in the training algorithm, and 

wound never need to explicitly determine  . Thus, kernels are a special class of 

functions that allow inner products to be calculated directly in feature space, without 
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performing the mapping described above [76] [94]. Once a hyperplane has been created, 

the kernel function is used to map new points into the feature space for classification [94].  

4.3.3 Supervised Machine Learning Based Method for Wound Boundary 

Determination 

 Expert Labeling for Supervised Machine Learning 

In [7], [23], both Wannous and Verdedas developed a graphical user interfaces to deal 

with the time consuming task of having experts label a large set of more than 10000 

regions (super-pixels) from the segmented wound images. It was reported in [7] that 

labeling one image needed 6 minutes. To save clinicians’ time, we have implemented a 

simpler labeling method.  For this work, a team of 3 expert wound clinicians from the 

Plastic Surgery Department at University of Massachusetts (UMASS) Medical School 

delineated the wound boundary for all 100 wound images, and each expert did the 

delineation independently. They used a laptop, installed with Photoshop and USB 

connected with an electronic pen and drawing panel. In this way, it took only 30 seconds 

on average for the clinicians to label wound image. To generate the ground truth binary 

label for each super-pixel (wound or non-wound), we first assigned each pixel a label by 

applying a majority vote scheme: if the current pixel is located inside the wound 

boundary delineations by more than two clinicians, we label it as wound, otherwise it is 

labeled as non-wound. The entire process is shown as in Figure 4.7. Then for each super-

pixel, another majority vote scheme is applied: if more than half of all pixels in this 

super-pixel were labeled as wound, we assigned it as wound region, otherwise we 

assigned it as non-wound region. To validate our labeling method, we regenerated the 

wound boundary delineation based on super-pixels’ labels in each image and compared it 

with the original delineation from the clinicians. The resulting similarity in pixel-level 

between these two set of delineations is higher than 96%. Hence, we can conclude that 

the novel method provides labeling results with good accuracy, although the second 

majority vote may cause some inaccuracy for regions near the wound boundary. 
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Figure 4.7 Majority vote scheme for ground truth labeling generation from three experts’ 

labeling 

 Two-Stage Cascade SVM Based Machine Learning Architecture 

In [7], Verdedas et al created a classifier based on a stable neural network from a set of 

sub-classifiers trained by following a cross-validation strategy. The results has 

demonstrated that this approach provide promising wound tissue classification 

performance when dealing with images that only contains wound and surrounding 

healthy skins. In this work, we have expanded Verdedas’s proposal to a two-stage 

cascade machine learning architecture based on Support Vector Machines (SVMs), as 

shown in following steps. The entire system has been implemented in JAVA by using the 

LibSVM library [97].  

 Step 1: split the entire training image dataset into k subsets (folds) of equal size. Since 

we can control the segmented super-pixel number by using SLIC algorithm and since 

the dimensions of most training images are approximately the same, we have 

approximately an equal number of super-pixels for each training image. Hence, in 

each subset, we have both approximately equal number of images and super-pixels.  

 Step 2: make the number of wound regions and non-wound regions from k-1 subsets 

equal. Since we use the image capture box to photograph the foot, the number of 

wound regions is typically small compared to number of non-wound regions. This 

skewed distribution of the number of instances in the different categories undermines 

the performance of the trained classifier. The simple method for obtaining an equal 
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number of wound and non-wound regions is as follows:, if we have m wound super-

pixels and n non-wound super-pixels (n > m) in the subset 1 to k-1, we will randomly 

select m non-wound regions from n in total. Consequently, we have 2m training 

patterns.  

 Step 3: follow a classical 10-fold cross-validation scheme to train a binary SVM 

based classifiers on these 2m training patterns. Based on each subset, we further split 

this subset into 10 equal size folds. Then, we run the standard RBF-χ2 kernel based 

soft margin SVM (C-SVM) [95] 10 times, where each time one fold will be the 

validation set and the remaining 9 folds will be training set.  

 Step 4: use the trained classifier to classify regions in the subset other than k-1 subsets 

for training.  

 Step 5: collect the incorrectly classified instances from the results in Step 4 into the 

training set for the second stage. 

 Step 6: repeat first stage training (Step 2 to 5) k times and let each subset be the 

validation set exactly once. 

 Step 7: train the second stage SVM binary classifier in the same way mentioned in 

Step 3.   

Based on the findings in Section IV, we extract the descriptors consisting of the color 

features and the BoW histogram representation of DSIFT features for super-pixels for the 

first stage training set. For the second stage training, we extract the descriptors consisting 

of the color features and the wavelet based features for the second stage training set. In 

kernel based SVM training, the non-linear separable classes in low dimension feature 

space may become linear separable when mapping the features to higher dimensional 

space using a suitable kernel function [94]. Hence, the key point of the SVM classifier 

design remains the choice of the kernel function. Since no universal kernel will fit all 

applications, we evaluated different classical kernels, including linear, polynomial, 

perceptron and RBF-χ2, by computing ROC curves as shown in Figure. 4.8.   

It can be seen that the RBF-χ2 gives the best performance. After the selection of a 

particular kernel, its parameters must be tuned. In our case, we utilized the soft-margin 

SVM with the RBF kernel. Hence, we have two parameters to be tuned: (C, ϒ) where C 

is the regulation parameter and ϒ is the kernel parameter [94]. The best parameter 
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combination is often selected by a grid search with exponentially growing sequences of 

the two parameters [94]. Each point in this grid will be applied to the SVM training 

process and the General Testing Error (GTE) on the validation sets will be evaluated. 

Then the optimal parameter combination is the one that provides the least GTE. After 

running the grid search for both stages, we found the optimal parameters for the two 

stages are (C = 100, ϒ = 0.05) and (C = 85, ϒ = 0.12), respectively.   

 

Figure 4.8  ROC curves by using different kernels for SVM training 

To evaluate the performance of the two-stage SVM based approach more completely, we 

also compare it to other machine learning strategies, with the same descriptor as input.  

The reference strategies include the 1) single stage SVM based classifier with the same 

configuration as the first stage classifier in the two-stage approach, and 2) single stage 

classifier based on Artificial Neural Network (ANN) 1  with one hidden layer of 40 

neurons [7]. As mentioned earlier, we use the specificity and sensitivity as the 

                                                           
1
 Artificial neural networks (ANN) is a machine learning strategy, inspired by human-brain activity, which 

is used to estimate classification model depending on high dimensional input. ANN is commonly design as 

a multi-layer perceptron structure, where each node is usually a simple logistic regression classifier taking 

the output of the previous layer as its input.   
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performance measures of the wound boundary determination methods. Table 4.4 shows 

that the two single stage methods, either based on SVM or ANN, provide approximately 

equal performance. More importantly, in spite of a little cost increase on time 

performance (as shown), our two-stage SVM based classifier outperforms both single-

stage methods, achieving 5% higher in sensitivity and 8% higher in specificity. The 

significantly improvement in sensitivity shows that some incorrectly classification on 

original non-wound regions have been corrected in the second stage. Three examples of 

the wound classification results are shown in Figure 4.9.  

Table 4.4 Wound boundary determination performance evaluation of different machine 

learning strategies. Method 1: single-stage SVM based method, method 2: single-stage ANN 

based method, method 3: novel two-stage SVM based method, method 4: two-stage SVM + 

CRF refinement. The classification efficiency measures the average time consumed by the 

entire wound boundary determination process for 100 images including super-pixel 

segmentation, descriptor generation and classification, and only method 4 includes the 

boundary refinement process  

Method ID 1 2 3 4 

Sensitivity (%) 68.3 66.4 71.4 73.3 

Specificity (%) 86.9 83.7 92.8 94.6 

Computation time 

(second) 

 15.4 16.1 18.8 20.5 

 

 Wound Boundary Refinement 

Even though the two-stage SVM based classifier significantly improves the wound 

boundary determination performance, there are still some misclassified regions. Most of 

the error regions are located near the wound boundary and connected to the target wound 

area. In addition, some misclassified regions may also be found inside the wound bed 

(holes), healthy skin or in the irrelevant background (outliers). To refine the wound 

boundary determination, we first generate a binary result image based on the wound 

boundary determination result, by assigning the value 255 to the pixels classified as 

wound and 0 to the pixels classified as non-wound.   

Therefore, we have a three step approach for wound boundary refinement. The first step 

is to apply the Conditional Random Field technique to re-label the incorrectly classified 
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regions near the actual wound boundary. Second, the one precautionary step is to break 

narrow false bridges (connections between two pixels which should be classified into 

different categories) and fill the possible remaining holes inside the identified wound area 

by applying the closing image morphological operation (we used the circular structure 

element with radius = 3). At the last step, we remove the outlier regions if there are any, 

and this is easy because outliers are always disconnected from the main wound area and 

in small size. We can simply run a connected region detection method [20] and only keep 

the largest connected region. An example of the boundary refinement results after the two 

precautious steps are shown in Figure 4.9, Column 4. Especially when comparing last 

two images on the third row, we see significant refinement on the determined boundary 

by last two steps when CRF fails to provide accurate refinement.  

       

       

       

Figure 4.9 Examples of wound boundary determination results (the determined wound areas are 

covered with red color), column 1: the original image, column 2: the boundary determination 

results by applying our two stage classifier, column 3: the results after applying the CRF 

refinement technique, column 4: the results after the outlier removal or hole filling up. 

Since the last two steps are straightforward and only involve basic image processing 

techniques, in following parts of this section, we will provide additional details about the 

first refinement step. Conditional random field (CRF) and level set are two candidate 

techniques, which were used as post-boundary refinement approaches in [7]. As 

mentioned in Section 3.1, the level set based algorithm is unstable especially when the 

actual wound boundary is vague. Hence, we decide to apply the CRF to recover more 
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precise boundaries by further reducing the misclassification occurring near the edges of 

wound. CRF provides a natural way to incorporate the contextual constraints by 

including them in a pairwise edge potential term, as shown in eq. 4.20.  Actually, in 

Chapter 5, we will develop another novel wound boundary determination method based 

on more complicated CRF model, which is constructed on the entire wound image, rather 

than only focusing on the wound area determined by the SVM based classifier. More 

details about the CRF basics is found in Section 5.2. However, for a better demonstration 

of the boundary refinement method, we will provide a brief introduction about the pair-

wise CRF model applied here. 

The refinement problem can be formulated as the task of finding the most probable labels 

for all pixels in a given image. It includes the use of both unary pixel properties and 

pairwise relations between pixel labels. In a CRF, the labeling problem is transformed to 

an energy minimization problem. The energy is usually defined as the sum of a series of 

unary terms and pairwise terms, which indicate individual label preferences (unary term) 

and spatial coherence respectively (pairwise term).  

Let ( | ; )P c G w  be the conditional probability of the set of class label assignments c given 

the adjacency graph ( , )G S E  and scalar weight w. The energy function in [98] is shown 

as below. 

( , )

log( ( | , )) ( | ) ( , | , )
i i j

i i i j i j

s S s s E

P c G w c s w c c s s 
 

        Equation 4.19 

Our unary potentials ψ are defined directly by the probability outputs provided by 

libSVM library [97] for each super-pixel as below. 

( | ) log( ( | ))i i i ic s P c s      Equation 4.20 

Our pairwise edge potential φ is similar to those introduced in [77], defined as below. 

( , )
( , | , ) ( )[ ]

1

i j

i j i j i j

i j

L s s
c c s s c c

s s
  

 
      Equation 4.21 

where [.] is the zero-one indicator function and 
i js s  is the norm of color difference 

between super-pixels in the LUV (or CIE Lab) color space where the perceptible color 
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difference can be directly calculated. ( , )i jL s s  is the shared boundary length between 

super-pixels and acts here as a regularizing term which discourages small isolated regions. 

In many CRF applications for this domain, the unary and pairwise potentials are 

represented by a weighted summation of many simple features, and so the parameters of 

the model are trained by maximizing their conditional log-likelihood. In the formulation 

in eq. (4.18), it simply has one weight w which represents the trade-off between spatial 

regularization and our confidence in the classification. We estimate w by cross validation 

on the training data [94]. Once our model has been trained, we wish to find the most 

probable labeling *c ; i.e. the labeling that maximizes the conditional probability in eq. 

(4.18). The optimal labeling is found by carrying out inference with multi-label graph 

optimization library of [77] using α-expansion. Since the CRF is defined on the super-

pixel graph, inference is very efficient, taking less than half a second per image on a 

typical modern PC [77]. Based on our experimental results, the CRF refinement 

consumes 2.2 second in average on the Nexus 5 smartphone, which is still efficient 

enough for real time processing. Example of CRF refinement is shown in Figure 4.7, Col 

3. To demonstrate the refinement effectiveness, we re-evaluate the specificity and 

sensitivity measures based on the CRF refined boundary determination results on the 

same testing images in Section IV. By comparing column 2 and 5, we can see 1.9% 

improvement on sensitivity and 1.8% improvement on specificity.  

4.4 Conclusion 

A novel system for automatic wound boundary determination on diabetic foot ulcer 

images has been proposed in this paper. We tracked 15 patients in the Wound Clinic at 

UMASS over a 2-year period and 100 well-focus, high-resolution foot ulcer images were 

capture, with assistance of the image capture box to benefit the patients with limited 

mobility. The images were first segmented into super-pixels by SLIC algorithm, which 

outperformed other widely used segmentation algorithms in our evaluation.  

The inputs of the classifiers were color and texture descriptors of super-pixels. To train 

the supervised classifiers, we asked 3 experienced clinicians to delineate the wound 

boundary on 100 images and designed a novel way to generate the ground truth label for 
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each super-pixel. Experimental evaluation showed that our method largely reduced the 

workload for clinicians and maintained high reliability at the same time. In the first stage, 

k C-SVM based classifiers were trained by k-fold cross-validation strategy on the entire 

training dataset. In the second stage, only the incorrectly classified instances when 

applying the k classifiers trained in the first stage on their own testing set were used as 

the training set to train another C-SVM based classifier. To achieve better performance, 

we used different combinations of color and texture descriptors for the two training 

stages. Finally, to refine the determined boundary, we utilized a number of image 

processing techniques, including morphological operations, connected region detection 

and CRF based relabeling method, to either remove the outlier non-wound regions or fill 

the undetected wound regions. 

To evaluate our two-stage binary classification system, we compared its performance 

with two other machine learning strategies: single-stage SVM or ANN based classifier. 

Moreover, the classification performance on different color and texture descriptors were 

also assessed based on single-stage SVM machine learning strategy. During the 

evaluation, we found that the sensitivity rate became the most variable performance 

measurement across the different machine-learning approaches analyzed in this paper. On 

the other hand, almost every machine learning strategy used here can achieve promising 

specificity rate (higher than 92%) and there was only small variance between methods (< 

3%). According to our results, the mean color + color histogram + wavelet texture feature 

(applied in our second stage training) showed best distinguishability when dealing with 

the classification between wound regions and surrounding skin regions. However, the 

dominant color + color histogram + BoW histogram of DSIFT features (applied in our 

first stage training) provided the best sensitivity when classifying irrelevant background 

and foot skins.  Besides, our two-stage SVM based classifier provided the best sensitivity 

rate to determine wound boundary from foot ulcer images containing wound ,foot skin 

and irrelevant background, which were supposed to be images easy to acquire in real 

world.  

We implemented the entire wound classification system based on Nexus 5 android 

smartphone and measured the computation time for each module. We found the average 

consuming time for our two stage classification method is 17.5 seconds. Compared with 
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the method proposed in Section 3.4, our two-stage approach only increased the 

consuming time in a small extent (2 seconds), however, the boundary determination 

performance has been improved a lot (12 % improvement on sensitivity and 8% on 

specificity). We only implemented the off-line classification system on the smartphone, 

not including the classifier training process. Moreover, as stated in [76], SVM based 

training strategy is good at dealing with long descriptor on relatively small training set. 

Hence the PCA dimension reduction wasn’t really helpful and we didn’t use it in the 

actual smartphone implementation to further increase the time performance. 

To obtain a more precise estimation of the appropriateness and extend the feasibility of 

our machine learning approach, a few tasks need to be addressed in future. 1) We need to 

recruit more clinicians to delineate wound boundaries and try to minimize the impact of 

inter- and intra-observer variability, which was reported as an unavoidable problem to 

undermine the classification efficiency when using manual delineation as the ground 

truth; 2) we need to extend the current wound image database to further enhance the 

classifier training. Hence, not only more type 2 diabetic patients need to be recruited, but 

also we considered about training our supervised wound classifier on other type of wound 

images (for example burning wound) and also wound images taken under variant lighting 

conditions. In this case, our methodology would become easy to apply in other similar 

scenarios; and 3) we could exploit the cloud computing techniques to update the wound 

classification model using an online machine learning strategy to add more flexibility to 

our method, rather than pre-store the trained model files on the smartphone. 
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Chapter 5  

CRF Based Approach for Unconstrained Wound Boundary 

Determination under Various Imaging Conditions

5.1 Overview 

The cascade SVM classifier based method developed and tested in Chapter 4 can only 

provide accurate wound boundary determination results on wound images captured using 

the image capture box. In other words, this approach cannot handle the wound 

recognition task under ordinary imaging condition, i.e. different illumination level and 

ranges. We tried to train the model by using image dataset with more diversity, but were 

still not able to achieve robust wound boundary determination results. An example of the 

recognition failure is shown in Figure 5.1. Images of the same Moulage wound under 

different illumination levels and ranges are shown in images part (a) – (c). The identified 

wound area from our method is marked in red in part (d) – (f). We can see clearly false 

recognition on the second and third images. Especially, the cascade SVM classifier 

method totally missed the target when the wound scale is small and the background 

information is complicated. Hence, a more robust method is needed if we wish to broaden 

the applicability of the wound recognition algorithm by relaxing the image capture 

constraints, i.e. being able to capture images without the use of the image capture box . 

In modern computer vision research, two significant findings have been made [98]–[101]: 

1) it is better to model the object classification problem based on optimization principles, 

either explicitly or implicitly, and 2) contextual constraints (the similarity and mutual 

relationship between the current pixel and its neighborhood pixels) are important for the 

interpreting of visual information in images. Naturally, the following two questions have 
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been presented: 1) how to define an optimality criterion under contextual constraints, and 

2) how to find the optimal solution. Note that the object classification problem can also 

be referred as image multi-labeling problem (we assume that there are more than two 

object categories in images. This assumption should be valid for wound images used in 

our work) and the two terms “object classification” and “image multi-labeling” will be 

treated completely equivalent.  

       

(a)                          (b)                           (c) 

      

(d)                          (e)                           (f) 

Figure 5.1 An example of recognition failure by the SVM based approach on Moulage wound 

images of different scales (ranges) and illumination levels, (a) – (c): original wound images, (d) – 

(f): wound boundary determination results   

One response to these two questions is offered by a common approach called Markov 

Random Field (MRF), which is a branch of probability theory. MRF model is 

characterized by following two properties [102]: 1) it enables a formulation for the 

mathematical description of contextual constraints and the probability distribution of 

mutually related features; and 2) it provides an approach for defining optimality criteria 

based on Maximum A Posteriori (MAP) concept. This MAP-MRF framework provides 

us with the ability to develop algorithms for object classification using relational 
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principles instead of ad hoc heuristics [102], [103]. Technically, MRF model formulates 

in a probabilistic generative framework modeling the joint probability of the image pixel 

values and their corresponding labels. Especially important is the fact that a theoretical 

result about the equivalence between MRF and Gibbs distribution, a probability 

distribution of particles in a system over a set of possible states as in eq. (5.1), provides a 

mathematically tractable means of calculating the joint probability of an MRF [102].   

However, in spite of its recent popularity, MRF based approaches suffer from the 

following two limitations with respect to object classification problem [101]. First, due to 

the complexity of inference and parameter estimation, only local relationships between 

neighboring nodes are incorporated into the model. This property enables the model to 

maintain local consistency of the assigned labels, based on very local regularities, but 

makes it highly inefficient at representing multiple interacting features or long-range 

correlations of the observations. However, as the conditional probability of a labeling will 

likely depend on structure at different levels of granularity in the image. To accomplish 

this, we need to formulate a model that can capture both local and global relationships. 

Secondly, due to its generative nature 2, two steps are needed to estimate the conditional 

probability of a labeling given the observed data: 1) estimation of the likelihood and 2) 

estimation of the distribution of the observed image data [102]. Actually, we are only 

interested in the distribution of labels given image data, as it is a waste of resource to 

estimate the entire generative image model.  

A very different non-generative (discriminative) approach is to directly model the 

conditional probability of labels given a set of images: fewer labeled images will be 

required, and the resources will be directly relevant to the task of inferring labels. This is 

the key idea underlying the conditional random field (CRF) [104]. Originally proposed 

for segmenting and labeling 1D text sequences, CRFs directly model the posterior 

distribution as a Gibbs distribution [101]. This conditional probability model can depend 

on arbitrary non-independent characteristics of the observation, unlike a generative image 

model which is forced to account for dependencies in the image and therefore requires 

                                                           
2
 The major difference between the generative and discriminative models lies in the way to calculate the 

conditional probability of a label given the observed data (p(y|x)). The generative model specifies the joint 

probability of the observed data and the label and then calculate p(y|x) using Bayes rules. In contrast, the 

discriminative model calculates the posterior p(y|x) directly. 
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strict independence assumptions to make inference tractable. Besides, the CRF model 

does not model the distribution for observations, which can be regarded as constant 

values when performing classification. For these reasons, there has been increasing 

interests in recent years in modeling image labeling problems using CRF model. 

In this chapter, we will focus on applying different CRF based models to our wound 

recognition task and then evaluate the performance. The material will be organized as 

follows. First basic knowledge about CRF model will be introduced. Second, we will 

describe the hierarchical CRF models and apply them to our wound recognition task. 

Then we will discuss how to utilize the efficient model inference approach by modifying 

the original CRF model into a densely connected model. Finally, the wound recognition 

performance will be evaluated on both images of Moulage wound simulation and real 

wounds from recruited subjects. 

5.2 Conditional Random Field Basics in Context of Image Labeling 

5.2.1 Basic Pairwise Conditional Random Field Model 

Consider an ordered set of variables 1 2[ , ,... ]nX X X X , where each variable iX will be 

annotated by a label from a set L  corresponding to the object classes. We write ny L  

for a labeling of X, and use iy  to refer to the labeling of the variable iX . The random 

variables X  and y are jointly distributed, but in the discriminative framework we 

construct a probabilistic model ( | )P y X  to be estimated from M paired training instances 

( ) ( )

1{ , }i i M

iX y   and don’t need to model the marginal ( )p X .  

The neighborhood system N  is defined by sets iN , i V  , where iN  denotes the set of 

all neighbors of the variable iX . A clique c is a set of random variables cX  which are 

conditionally dependent on each other [102]. Any possible assignment of labels to the 

random variables will be called a labeling (denoted by y), which take its possible values 

from nL . The labeling on the clique c is referred as cy .We use {1,2,... }V n to refer to 

the set of valid vertices (or indexes) of X . As mentioned before, the posterior 
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distribution ( | )P y X  over the labeling of the CRF is a Gibbs distribution [102] and can 

be written as below. 

1
( | ) exp( ( ))c c

c C

P y X y
Z




       Equation 5.1 

where Z is a normalizing constant called the partition function, and C is the set of all 

cliques. The term ( )c cy  is known as the potential function of the clique c V  where 

{ : }c iy y i c  . The corresponding Gibbs energy is given by the formula below [98]. 

( ) log( ( | )) log ( )c c

c C

E y P y X Z y


           Equation 5.2 

Finding the most probable labeling is equivalent to solving the maximum a posterior 

(MAP) problem. This optimal labeling *x of the CRF is defined as below [98]. 

* arg max ( | ) arg min ( )y L y Ly P y X E y            Equation 5.3 

According to [98], [100], [101], labeling problems in computer vision area are typically 

formulated as a pairwise conditional random field whose energy can be written as the 

sum of unary and pairwise potentials [99].  

,

( ) ( , ) ( , , )
i

P

i i u ij i j p

i V i V j N

E y y y y   
  

           Equation 5.4 

where iN  is the set of neighbors of vertex i. The unary potential ( , )i i uy   is computed 

independently for each pixel by a classifier that produces a distribution over the label 

assignment iy  given image features. The pairwise potential ( , , )P

ij i j py y   is computed 

between each pair of two adjacent pixels in the image domain to penalize the adjacent 

pixels taking different labels. 
u  and p  are sets of parameters for the unary potential and 

pairwise potential, respectively. The details of the parameter estimation, also referred as 

the model learning, will be discussed in Section 5.2.2. The actual formulations to 

calculate the unary and pairwise potentials are task dependent. This flexibility allows us 

to incorporate different factors (color, edge, texture or spatial position) into the CRF 

energy formulations [98], [99].    
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5.2.2 Parameter Learning 

Parameter estimation is the problem of finding a set of parameters   so that the resulting 

conditional distribution ( | )P y X  best fits a set of training examples 
( ) ( )

1{ , }i i M

iD x y   

which were labeled manually as the ground truth. Intuitively, the goal, to be accomplish 

during parameter estimation, can be described as follows: if we look at any of the training 

data instance ( )ix , the model distribution over outputs ( | , )ip y x   should match the ground 

truth label ( )iy  as closely as possible.   

Ideally, the parameters in this model would be determined using maximum a-posteriori 

(MAP) method [99], [105]. In this case, we are supposed to maximize the conditional 

likelihood of the labels given the training data. The exact formula is shown as below [99]. 

* arg max ( ( ))

( ) log ( | , ) log ( )i i

i

L

L P y x P

 

  



 
          Equation 5.5 

According to [99], the purpose of the prior term log ( )P   is to regularize the learning 

process and avoid overfitting. According to optimization theory, the maximization of 

( )L   can be accomplished by applying gradient descent algorithm [99]. However, this 

algorithm requires the evaluation of marginal probability over the class labels at each 

pixel for all training images, and the exact computation of these marginal is intractable 

[106]. The practical evaluation is carried out using probabilistic inference [106], and the 

label marginal distribution can be approximated by the most probable labeling given by 

the probabilistic inference method [99]. These modes can be found using standard graph 

cut based inference approach, such as alpha-expansion [48] (more details about this 

algorithm can be found in the next section about model inference). Alternatively, belief 

propagation 3  [107] or variational methods [107] may provide more accurate 

approximation, but make the inference less efficient [99].    

According to [99], the number of parameters is large if multiple unary potential terms are 

used (each potential term is supposed to have more than one parameter), the modal 

                                                           
3
 Belief propagation is one inference algorithm on graphical model based on message passing scheme. It 

computes the marginal distribution for each unobserved node, conditional on any observed nodes. This 

algorithm has been proved to be quite effective for optimal label inference on general graph. 
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approximation is not sufficient. Hence, dealing with the difficulties for maximizing ( )L   

directly, a more practical piecewise training solution has been proposed in [99], [108]. In 

the piecewise training method, the parameters in each potential term in CRF formula is 

learned independently by maximizing the conditional likelihood, as if it was the only 

term in the model [99].  However, if the terms in the CRF model are correlated, 

performing piecewise training brings about the over-counting problem during the 

inference using the simply combined model, i.e. the learned parameter value is larger 

than the desired optimal one.  Hence, these trained terms need to be combined with 

weighting functions to overcome the over-counting problems [99].  

According to [99], there is no analytical method to accurately evaluate the degree of 

over-counting caused by correlation between different terms. Therefore, a scalar weight 

is introduced to each potential term, and these weights can be optimized on the validation 

dataset.   

5.2.3 Model Inference 

Given the CRF formula and the learned parameters, the optimal labeling *y  which 

maximizes the conditional probability in eq. (5.1) can be found using appropriate 

inference method. There are two most widely used inference approaches: 1) graph-cut 

based moving making algorithm [48], and 2) traditional message passing based algorithm 

[107]. A brief introduction about these two types of approaches will be given in the rest 

of this section. 

The two most typical graph-cut based move making algorithms are alpha-expansion and 

alpha-beta-swap algorithm, both breaking down the original multi-labeling problem into 

a sequence of binary labeling problem. These move making algorithms begin with an 

arbitrary initial solution of the labeling problem and proceed by making a number of 

sequential changes, where each of these changes is supposed to result a solution of the 

same or lower energy calculated by eq. (5.4) [109]. According to [48], the “near global 

optimal” solution found by alpha-expansion algorithm is ensured to be within a known 

factor of the actual optimal solution. For a pair of labels α and β, a swap move takes some 

subset of the pixels currently given the label α and reassign the label β to them. The swap 

move algorithms keep updating the local minimum until there is no swap move can result 
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a lower energy. Similarly, the expansion move algorithms finds a local minimum such 

that no expansion move, for any label α, yields a labeling with lower energy. 

According to [48], the swap move algorithms can be applied to any CRF models with a 

semi-metric pairwise term. But the expansion move algorithms are only applicable to 

CRFs with metric pairwise term. Definition for metric pairwise term 
P

ij  in the CRF 

model requires that the term should satisfy three constraints shown in eq. (5.6) [48]. If 

only the first two equations are satisfied in eq. (5.6), we called this term as semi-metric.    

( , ) 0

( , ) ( , )

( , ) ( , ) ( , )

P

ij i j i j

P P

ij i j ji j i

P P P

ij i j ik i k kj k j

y y y y

y y y y

y y y y y y



 

  

  



 

         Equation 5.6 

If the energy does not meet these constraints, graph cut based swap or expansion 

algorithms can still be applied by “truncating” the violating terms [48]. However, in this 

case we are no longer guaranteed to find the optimal labeling with respect to 

corresponding moves. According to [48], the performance of this version seems to work 

well when only relatively few terms need to be truncated.   

The message passing based algorithm can solve a wide variety of inference problems. 

The algorithms operate on factor graphs that visually represent the problems [107]. The 

factor graph is a bipartite graph that expresses how a global function of several variables 

factors into a product of local functions. The most well-known message passing 

algorithm is called belief propagation, also known as sum-product message passing [107]. 

It calculates the marginal distribution for each unobserved node, conditional on any 

observed nodes. The details about how to apply the message passing based algorithm in 

the CRF inference problem will be shown in Section 5.3.4.   

5.3 Tree Conditional Random Field Based Models for Object 

Classification 

As mentioned before, the conditional random field (CRF) based models have been widely 

applied to object classification (image labeling) tasks due to its generative nature and 

flexibility to incorporate various features in a single unified formulation. A lot of models 
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have been proposed in recent years [100], [101], [109]. The major difference between 

models lies with the potential granularity (pixel-wise or super-pixel wise) and the features 

used to generate the potential term. Consequently, the inference algorithm for each model 

varies accordingly. In this section, we will introduce three CRF based models, each of 

which has been claimed to provide strong performance in object classification on natural 

scene images.  

5.3.1 TextonBoost 

Practically, the unary potential term is a vector for each pixel (or super-pixel), and each 

element in this vector represents the corresponding probability of the current pixel taking 

a certain label. In other words, it can be viewed as a local statistical classifier, which 

produces distribution ( | , )i i uP y x   over a label 
iy  given the local pixel or region feature

ix , and 
u  is the classifier parameters that need to be estimated during the learning 

process.  

The multi-layer perceptron (also referred as ANN), as introduced in Section 4.3, might be 

an intuitive choice for the local classifier generation. However, according to [101], the 

performance of this classifier is limited by class overlap and even slight image noise. 

Hence, we need to search for more robust approaches. In most of recent CRF models for 

image labeling, the unary potentials for pixel-wise features are derived from TextonBoost, 

which estimates the probability distribution of labels on current pixel by boosting weak 

classifiers based on a set of shape filter responses [99]. Before we actually discuss each 

CRF model, we will introduce the TextonBoost concept at first. A general TextonBoost 

process is shown in Figure 5.2. The Each individual functional block in Figure 5.2 will be 

discussed in the  following text. 

 

Figure 5.2 TextonBoost working flow 

 Textons 

This section describe the first two functional blocks in Figure 5.2. Efficiency demands a 

compact representation for the range of different appearance of an object. Textons [110] 
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have been used since they have been proven effective in categorizing materials as well as 

generic object classes [99]. The term texton was utilized for describing human textural 

perception, and is somewhat analogous to phonemes used in speech recognition [99], 

[110].  

An example of a standard textonization process has been shown in Figure 5.3. For the 

first step, the training images are convolved with a filter bank at different scales. There 

are actually quite a number of different options for the filter bank, where the only 

requirement is that the filter bank should be sufficiently representative. In this work, we 

apply the same filter-bank as in [111], which consists of Gaussians at three different 

scales ( 1,2,4  ), Laplacian of Gaussians (LoG) [112] at four different scales 

( 1,2,4,8  ) and 4 first order derivatives of Gaussians (DoG). The Gaussians are 

applied to all three color channels, and then produce 9 filter responses. The LoGs are 

applied only to the luminance channel in CIE Lab space and provide 4 filter responses. 

Finally, DoGs, with two different scales and two different directions, are also only 

applied to the luminance channel and give 4 filter responses. Hence, 17 dimensional filter 

responses are produced in total for each pixel.  

The original RGB color space needs to be converted to CIE Lab space for perceptual 

uniformity. This filter-bank was determined to have full rank in a singular-value 

decomposition and therefore contains no redundant element [99]. The 17 dimensional 

responses for all training pixels are then normalized (to give zero mean and unit 

covariance), and an unsupervised clustering is performed to generate the texton 

dictionary. As recommended by previous works [99], we apply the Euclidean –distance 

K-means clustering algorithm. The one most obvious shortcoming of the original K-

means algorithm is its computational expense. Fortunately, its time performance can be 

greatly improved by employing the triangle inequality techniques for acceleration [113]. 

Finally the texton maps are generated by assigning each pixel in each image to the 

nearest cluster center. We will denote the texton map as T where pixel i  has value 

{1,2,...K}iT   and where K represents the cluster number set in the K-mean algorithm. In 

practice, we set the cluster number as 400 empirically. According to [99], to improve the 
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time performance, we can apply the kd-tree 4 [114] to perform the nearest neighbor search. 

It is claimed in [99] that “textonization using kd-tree with leaf node bins containing 30 

cluster centers gave a speed up of about 5 times over simple linear search ” .  

 

Figure 5.3 The process of image textonization 

In practice, we can use other dense features, such as the location feature [99] and dense 

SIFT feature [77] which has been introduced in Section 4.2, instead of the filter bank 

output introduced above. Actually, we extract multiple features at the same time for each 

pixel and generate an independent texton map based on each feature. More details about 

our implementation will be presented in Section 5.4.    

 Texture-Layout Filters 

Each texture-layout filter is a pair (r, t)  of an image region r (according to [99], it is 

better to use the rectangular region) and a texton t. Region r is defined in coordinates 

relative to the pixel i  being classified [99]. For simplicity, a set R of candidate rectangles 

are chosen at random, such that their top-left and bottom right corner lie within a fixed 

bounding box covering about half the image area. According to [99], the bounding box 

was 100  pixels in x and y direction. This enables the model to involve long-range 

contextual information, in addition to the original CRF model which only contains pixel-

wise connections between adjacent pixels in the second order clique [99]. The feature 

                                                           
4
 kd tree is a space-partitioning data structure to store k-dimensional data elements (each node contains one 

data point). The tree structure is organized in a way such that each non-leaf node can be viewed as a 

splitting hyperplane which separate the entire space into two half-spaces. A key advantage of the kd tree 

structure is that it can greatly accelerate the nearest neighbor search in the space by using binary search 

idea. 
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response at location i is the proportion of pixels having the texton index t in the offset 

region r i . The exact formula is shown below. 

[r,t]

(r i)

1
(i) [T t]

(r)
j

j

v
area  

         Equation 5.7 

Outside the image boundary there is zero contribution to the feature response. According 

to [99], the filter responses can be efficiently computed over the entire image by applying 

integral images which is used for efficiently calculating the sum of pixel values in a 

rectangular region. The texton map is separated into K different channels (one for each 

texton). Afterwards, a separate integral image is calculated for each channel. This can be 

regarded as an integral histogram, where each bin represents a single texton. The integral 

image can be used to compute the texture-layout filter responses in constant time [99]: if 

(t)T̂ is the integral image of T for texton channel t , then we can calculate the feature 

response as given below [99]. 

(t) (t) (t) (t)

[r,t]
ˆ ˆ ˆ ˆ(i) T T T T

br bl tr tlr r r rv             Equation 5.8 

where 
brr , 

blr , 
trr and 

tlr  denote the bottom right, bottom left, top right and top left 

corners of rectangle r. Texture-layout filters which is in form of pairs of rectangular 

regions and textons [48]. Similar features were proposed in [13], although textons were 

not used, and responses were not aggregated over a spatial region.  Region shapes other 

than rectangles were also investigated in [99]. In particular rectangles rotated by 45 

degrees were evaluated, and pairs of rectangles with the texton responses either added or 

subtracted. However, despite considerable extra computational expense (since these new 

combinations of features must be tested at each round of boosting, as demonstrated in 

following sections), no greatly improved performance was produced by these 

complicated features. It was stated that this should be attributed to overfitting. Besides, 

[99] tried to use the bag of visual words in [88] to model contextual appearance, and the 

final classification performance were worse than the K-means algorithms. The analysis in 

[99] argued that this is due to the invariance to spatial layout of the textons of the 

clustering algorithm used in [36].  
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 Unary Potential trained by using Joint Boost Scheme 

In [99], the unary potential term based on texture-layout filter output was trained using 

the adapted version of the Joint Boost algorithm [115], which combined a number of 

“weak classifiers” (iteratively selected discriminative texture-layout filters) into a strong 

classifier (c | x,i)P . Each weak classifier would be shared by a number of classes (class 

set C). In this case, each weak classifier is capable of dealing with the multi-classification 

task between the classes in C. According to [99], this also gives us the possibility of more 

efficient classification and better generalization.  

In simple binary classification case, boosting provides a simple way to sequentially fit 

additive models of the form below. 

1

(v) (v)
M

m

m

H h


           Equation 5.9 

where v is the input feature vector and M is the number of boosting rounds. (v)H  is 

called the strong classifier and (v)mh  is called the weak classifier. In the multi-class case, 

the cost function was modified as given in eq. (5.10) (the same as in the Adaboost5 [116]). 

1

(v,c) (v,c)
M

m

m

H h


        Equation 5.10 

where (v,c)H  can be viewed as a probability distribution over c and defined as below. 

(z 1| v)
(v,c) log

(z 1| v)

c

c

P
H

P




 
        Equation 5.11 

where zc is the membership label ( 1 ) for class c.  

Boosting then optimizes the following cost function shown as below by updating one 

term of the additive model at one iteration [115]. 

                                                           
5
 AdaBoost (Adaptive Boosting), is a machine learning algorithm whose final classification output is a 

weighted sum of output from a number of weak classifier. Different from traditional machine learning 

algorithms (SVMs and neural networks), the AdaBoost training process gradually favors those instances 

misclassified by previous weak classifier in subsequent boosting rounds. Besides, only those features 

capable of improving the classification accuracy of the model will be selected. Hence, the “curse of 

dimensionality” (lack of capability to deal with instances represented by high dimensional features) can be 

effectively avoided.  
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(v,c)

1

(e )
c

C
z H

c

J E 



           Equation 5.12 

where C is total number of classes. According to [115], the term (v,c)cz H  is called the 

“margin” and related to the generalization error [115]. The cost function was viewed as 

an approximation to the likelihood of the training data under a logistic noise model [115].  

In multi-class case, the joint boost algorithm proposed in [115] differs from the 

traditional Adaboost scheme in terms of the structure of the weak classifiers mh . The key 

contribution of this algorithm is that a subset of classes (m)S will be chosen at each round 

m, and this subset was supposed to share the feature that their classification error will be 

reduced.  

We now describe in more details how joint boost scheme works. At each iteration, this 

scheme will solve a weighted least squares problem as given below. 

2

1 1

(z h (v ,c))
C N

c c

wse i i m i

c i

J w
 

             Equation 5.13 

where (v ,c)c
i iz Hc

iw e


  are the weights for training example i and the classifier for class c . 

Each training example i has C weights, one for each binary problem. Again, zc  is the 

membership label ( 1 ) for class c. For each binary classification problem, we can 

consider as negative examples all the other classes and the background, or just the 

background class (in such a case, we can set the weights to 0c

iw   for samples in the 

class c ( 1c

iz  ), and we set 0c

iw   for samples in any other classes). 

Then, for classes in the chosen subset, (n)c S , it is common to define the weak 

classifier to be simple functions of the form as below. 

(v,c) a (v ) b (v )f f

m S Sh                   Equation 5.14 

where v f  denotes the f’th component of the feature vector v,   is a threshold, (.)  is the 

indicator function, and a S , bS  are regression parameters, which will be defined in eq. 

(5.15).  
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For classes not in the chosen subset, we define the weak classifier to be a class-dependent 

constant ck . The definition of the entire shared stump is as below. Note that this 

definition includes eq. (5.14).  

(n)

(v,c) (n)

(n)

f

S

n f

m S

c

S

a if v and c S

h b if v and c S

k if c S





  


  




       Equation 5.15 

The class-specific constant c

Sk  is used to prevent a class being chosen for sharing just to 

balance the numbers of negative and positive training examples. According to [115], the 

constant c

Sk encoded a prior bias for each class, without using features from other classes 

and changes how features are shared especially in the first round of boosting. Hence, to 

ensure that the shared features indeed improve the discriminative ability of the entire 

model, we only add a class into the shared subset when there is a decrease of the 

classification error which is larger than using a constant as weak classifier. At iteration n, 

the algorithm will select the best stump and a subset of classes. For the class subset (n)S  

for iteration n, we try to find the parameters to minimize eq. (5.13). According to [115], 

minimizing this equation provides us the following results. 

(n)

(n)

(v )
(f, )

(v )

c c f

i i ic S i

S c f

i ic S i

w z
a

w

 


 










 
 

        Equation 5.16 

(n)

(n)

(v )
b (f, )

(v )

c c f

i i ic S i

S c f

i ic S i

w z

w

 


 










 
 

       Equation 5.17 

(n)

c c

i ic i

c

i

w z
k c S

w
 



         Equation 5.18 

It is easy to see that each weak classifier has 4 parameters (a ,b ,f, )S S   for the positive 

class, (n)C S  parameters for the negative class and 1 parameter to decide which subset 

(n)S  should be chosen. 

The entire boosting training process with the shared regression stumps are summarized as 

below. 
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STEP 1: initialize all the weights 1c

iw  and set (v ,c) 0iH  for all 1,2,..Ni  and

1,2,..c C .  

STEP2: Repeat for 1,2...m M  

 Repeat for 1,2...2 1Cn    

a) Fit shared stump in eq.(14) by specifying the parameters by eq. 

(5.16)-(5.18)  

b) Evaluate error as in eq.(5.13) 

 Find the optimal subset: * arg min (n)n wsen J  

 Update the class estimates as below. 

*

(v ,c) : (v ,c) (v ,c)n

i i m iH H h             Equation 5.19 

 Update the weights as below. 

*
(v ,c)

:
c n
i m iz hc c

i iw w e


                Equation 5.20 

Finally, we will discuss about the weak classifier optimization. We must find the optimal 

regression stump, a slow computation, since it needs to span all features and all N 

thresholds (N is the number of training examples). According to [99], several 

optimizations are available to accelerate the search for the optimal weak classifier m

ih . 

Since the set of all possible sharing sets is exponentially large, it is suggested that the 

greedy approximation introduced in [115] should be used. This approximation method 

can ensure that the search can be accomplished in quadratic time complexity (meaning 

that the search time varies quadratically with the number of data points). 

To accelerate the minimization over features, a random feature selection procedure can 

be applied [115]. According to [115], optimization over    for a discrete set   will 

be more efficient if an appropriate histogram representation of weighted feature 

responses is applied. As we mentioned earlier, the feature that we used for boosting is the 

texture layout features [r,t](i)v . Hence, by treating   as an ordered set, histograms of 

values [r,t](i)v , which are weighted appropriately, are built over bins corresponding to the 
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thresholds in  ; these histogram are accumulated to give the threshold sums necessary 

for the direct calculation of a S and bS in eq. (5.16) and (5.17).  

Exhaustive search over all features (r,t) at each round of boosting is practically 

impossible. To improve the efficiency, it is suggested in [99], [115] that the search 

algorithm should only run over a random selected subset of all the possible features.  In 

this case, it is highly likely that all features are utilized at least once to ensure that good 

features will be selected eventually, given an appropriate number of iteration rounds 

(usually set as 1000 - 5000). 

Furthermore, the considerable memory and processing requirements of this procedure 

make training using all pixels from all sample images impractical. Hence we take training 

example i  only at pixels lying on a down-sampled grid. However, the texture-layout 

filter responses are still calculated at full resolution to allow for per-pixel accurate 

classification at evaluation time; we simply train from fewer examples. One possible 

consequence of this down-sampling is that a small degree shift-invariance is learned 

[115], which might lead to inaccuracy at the target object boundary. Fortunately, this 

inaccuracy can be reduced by the pairwise potential term in the CRF model.   

5.3.2 CRF Model 1 

The first CRF model we will apply to our wound recognition task was proposed in [99]. 

The CRF energy formulation is shown as below. 

,

( ) ( ( , , ) ( , , ) ( , , )) ( , , ( , ), ) log ( , )
i

unary potential terms pairwise potential

i i i i i i i i j ij i j

i i j N

E y y x y x y x y y g x x Z x           


        

Equation 5.21 

( , , ) ( | , )i i i i iy x p y x     is the unary potential term derived from the texture-layout 

boosted classifier trained by TextonBoost method. According to [99], this term 

incorporates the texture, layout, and textural context information of the object classes. It 

was proven in [99] that this unary term is the most powerful term in this CRF model.   

( , , )i iy x    is the unary color potential term which derived from the Gaussian Mixture 

Models (GMMs) in CIE Lab color space, and the mixture coefficients depend on the 
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class label. According to [99], the conditional distribution of the color x given a pixel 

depending on a class label c is shown in the formula below. 

( | ) ( | ) ( | )

( | ) ( | , )

k

k k

p x y p x k p k y

p x k N x 



 


         Equation 5.22 

where ( | )p x k  is the component Gaussian density for each cluster. Each component 

density is a multi-dimensional Gaussian function, where k  and k  are the mean and 

covariance matrix for cluster center k. ( | )p k y  can be viewed as the mixture weight 

(coefficient) for cluster center k. The color potential was defined in [99] as below. 

( , , ) log (y , ) ( | )i i i i

k

y x k p k x                  Equation 5.23 

Comparing eq. (5.22) with eq. (5.23), we can find that the parameter term (y , )i k  

represent the distribution term ( | )p k y  in eq. (5.22) for i
th

 label in the label set. The term 

( | ) ( | )i ip k x p x k  based on Bayesian rule given the known prior probability of the 

cluster center ( )p k .  Now the only task left for us is to learn the parameter. First, the 

color clusters are learned in an unsupervised manner using K-means. The iterative 

algorithm, called Expectation and Maximization (EM), then alternates between inferring 

the optimal labeling (expectation step) and computing the parameters for potential term 

(maximization step) [99]. The details about the EM algorithm can be found in [117]. 

The location potential term used in [99] is shown as below.  

ˆ,

ˆ

ˆ( , ) ( )
c i w

i

N
c i

N
















            Equation 5.24 

where ˆ,c i
N  is the number of pixels of class c at normalized location î for the entire 

training set. 
î

N  is the total number of pixels at location î .   and  are model constant 

parameters which are specified as 1  and 2   empirically [99]. 

The pairwise edge potential has the form of a contrast sensitive Potts model which will be 

presented in details in Section 5.3.3 and where the parameters in this model are estimated 

empirically. 



121 

 

5.3.3 CRF Model 2 

Basic CRF models consist of unary potentials, defined on individual pixels, and pair-wise 

potential terms defined on pairs of adjacent pixels. By incorporating smoothness term in 

the CRF potentials, similar pixels are encouraged to have the same label, and the 

contextual relationship between different object classes can be modeled. According to 

[109], the nature of the adjacency basic CRF structure results in the inability to include 

long range connections within image. Consequently, the inaccurate classification is likely 

to happen at the object boundary due to excessive smoothness. 

To solve this problem, higher order potentials, defined on super-pixels or between pair of 

super-pixels, were incorporated into the basic CRF models to better describe the 

hierarchical connectivity [109]. This method gives us a integration of the “top-down” and 

“bottom-up” approaches that are common to many problems in computer vision [109]. 

To achieve this unification, a smart model, called the associative hierarchical random 

field (AHRF) was proposed in [109]. More importantly, it is shown that this model can 

be solved efficiently using graph-cut based move making algorithms mentioned earlier. It 

was also proved that a new model generated by summing up two AHRFs is also an 

AHRF which can be solved effectively. It enables different potentials based on different 

features to be incorporated within the CRF model and the model inference is still 

practical [109]. In this section, we will introduce the AHRF model in details.  

 Framework of Associate Hierarchical Conditional Random Field 

The pairwise conditional CRF formulation in eq. (5.4) was improved in [109]  by 

incorporating higher-order potentials defined over super-pixels. This extension is valid 

since pixels in the same super-pixel are supposed to be assigned to the same label with 

high probability. The energy of the higher order random field proposed in [109] is of the 

form as shown below. 

,

( ) ( ) ( , ) ( )
i

P h

i i ij i j c c

i V i V j N c S

E x x x x x  
   

               Equation 5.25 

where S is a set of cliques (or super-pixels), given by one or more super-pixel 

segmentation algorithms [37], and ( )h

c cx  are higher-order potentials defined over the 
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cliques. The higher order potentials can be described as robust NP  model as given below 

[109]. 

max( ) min( , ( ))h l l

c c c c i c i
l L

i c

x w k x l  




                 Equation 5.26 

where iw  is the weight of the variable ix , and   satisfy max ,l

c c l L    . The potential 

has a cost of l

c  if all pixels in the segment are assigned with label l. The pixels not being 

assigned with the same label are penalized with a cost expressed as l

i cw k , and the 

maximum cost of the potential is truncated to max

c . This framework supports the 

integration of higher order potential based on super-pixels in multiple scales of the image 

grid.  

It was proven in [109] that the higher-order NP  of eq. (5.25) is equivalent to “ the cost of 

minimal labeling of a set of pairwise potentials defined over the same clique variables cx  

and a single auxiliary variable (1)

cx  that takes the values from an extended label set 

{L }E

FL L  ”. LF  is the free label meaning that there is no dominant label in this 

clique. Then this segment is said to be unassigned. Finally, we can formulate the 

framework to incorporate pairwise dependencies between auxiliary variables as shown in 

eq. 5.27 [109]. 

(1)

(1) (1) (1)

, ,

( ) ( ) ( , ) min( (x , x ) (x , x ))
i

P P

i i ij i j c c c cd c d
x

i V i V j N c S c d S

E x x x x   
    

          Equation 5.27 

These pairwise terms defined over higher-order clique grid forces consistency between 

adjacent cliques. Then, the model in eq. (5.27) can be generalized to a hierarchical 

framework in which the relationship between layers takes the form as below [109]. 

(1) (1) (1)(x , x ) (x ) (x , x )c c c c c c i c

i c

  


              Equation 5.28 

The weights for each node in the higher layer in (.)c  are proportional to the sum of the 

weights in the “base layer” belonging to the clique c. More generally speaking, the 

energy of the new hierarchical model is of the form as below [109]. 
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(1)

(1) (1)

,

( ) ( ) ( , ) (x, x )
i

P

i i ij i j

i V i V j N x

E x x x x E 
  

                Equation 5.29 

where the third term in this energy expression could be recursively defined as below 

[109]. 

(n 1)

( ) ( 1) ( ) ( 1) (n) (n) (n) (n 1) (n) (n 1)

,

(x , x ) (x , x ) (x , x )) min (x , x )n n n P n P

c c cd c d
x

c S c d S

E E 


   

 

     

 Equation 5.30 

where (0)x x  represent the state of the base level, and (n)x  for 1n   describes the state 

of auxiliary variables. The structure of the graph is defined previously. The inter-layer 

relationship between two layers of auxiliary variables can be described using a 

“ weighted robust NP potential with the unary term (n)(x )c c  and pairwise term ” as 

below [109]. 

(n)

(n) (n) (n 1)

1 (n)
0

(x , x )
c

c F c dn

c d c x

d

if x L x x

w k otherwise





   

 


           Equation 5.31 

where the weights are summed up over the base layer as 
d j

j d

w w


 . As formulated in eq. 

(5.31),  (n)

cx  is encouraged to take label LF  if either most of its directly connected nodes 

from the lower layer (we can call these nodes as the children of (n)

cx ) are assigned with 

label LF , or if these children are assigned with different labels. 

 Application of AHRF framework to object classification task 

Based on the definition of AHRF framework described above, a set of potentials used in 

the object-class segmentation problem have also been presented in [109]. This set 

consists of unary potentials defined on both pixels and super-pixels, pairwise potentials 

between pixels and between super-pixels, and connective potentials between different 

layers in the hierarchical graph structure. In the first model introduced in Section 5.3.2, 

the unary term in the CRF model has already been decomposed into a set of potentials 

(x )c c . In the model proposed in  [109], the unary potential term is decomposed similarly,  

writing as (x ) (x )c c c c c   , where c  is a feature based potential over c and c  is its 
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weight. First the parameter estimation of potentials (x )c c will be introduced, and later 

discuss the learning of the weights c .  

According to [109], the potentials defined over a three-level hierarchy provide 

sufficiently promising performance, and the performance has not been improved 

noticeably by increasing the hierarchical level indefinitely. The nodes of each layer are 

pixels, segments and super-segments, respectively. Here, we apply mean shift based 

algorithm [49], which has been introduced in Section 3.2, to perform the super-pixel 

segmentation.  The reason for choosing mean shift algorithm is that the spatial and range 

resolution parameters [49] allow us to adjust the segmentation scales easily. In this case, 

we can have the segments for the second layer with finer scale segmentation and super-

segments for the third layer with coarser scale segmentation.  

Features: In related works [99], [109], several features are used and evaluated, including 

textons based shape filters [99], local binary patterns [118], multi-scale dense SIFT [77], 

opponent SIFT [119], color distribution features [99] and histogram of oriented gradients 

(HOG) [120]. As mentioned earlier in this chapter, textons are defined as clustered 17-

dimensional responses to 17 different filters (Gaussian, Gaussian derivative and 

Laplacian filters at different scales). Local binary pattern is an 8-dimensional binary 

feature, of which each element represents a comparison of the pixel value of the center 

pixel with its 8 neighbors. The SIFT feature contains the histogram of gradients of 4 4  

cells quantized into 8 bins. The resulting 128 dimensional vector is normalized to the 

range from 0 to 1. Opponent SIFT is another version of the traditional SIFT and based on 

histograms of gradients for 3 channels in the chosen color space. According to [109], we 

will generate dictionary which contains 400 words for each descriptor, except the local 

binary feature,  using K-mean clustering method. Then we quantize all descriptors based 

their own dictionary.   

Unary Potentials from Pixel-wise Features: unary potentials from pixel-wise features 

are derived from TextonBoost as mentioned earlier, and allow us to perform texture 

based segmentation, at the pixel level, within the same framework. The features used for 

constructing these potentials are computed on every pixels of the image, and are also 

called dense features. TextonBoost estimates the probability of a pixel taking a certain 
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label by booting weak classifiers based on a set of texture layout responses. We observed 

that textons were unable to discriminate between some classes of similar textures. This 

motivated us to extend the TexonBoost framework by boosting classifiers defined on 

multiple dense features (such as color, textons, histograms of oriented gradients, and 

pixel location) together. The further details of the texton boost procedure have already 

been described in Section 5.3.1. The results in [109] show that the boosting of multiple 

features together results in a significant improvement of the scene classification 

performance (note the improvement from the 72% in [99] to 82% in [109]). The 

potentials are incorporated into the framework in the standard way as a negative log-

likelihood as below. 
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(x ) log (i) K
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i l iH
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e
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         Equation 5.32 

where (i)lH  is the Ada-Boost classifier response for a label l  and a pixel i and 

'

(i)
K log lH

i l L
e


   is a normalizing constant.  

Histogram-based segment unary potentials: in [109], unary potentials are also defined 

over segments and super-segments. For many object recognition problems, “the 

distributions of pixel-wise feature responses are more discriminative than any feature 

alone” [109]. The unary potentials of auxiliary segment variables are estimated using 

multi-class JointBoost mentioned in Section 5.3.1 over the normalized histograms of 

multiple clustered pixel-wise features. The learning process is the same to the pixel-wise 

unary potential introduced in Section 5.3.1. The unary potential defined on super-pixels is 

incorporated into the energy as below [109]. 
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           Equation 5.33 

where H (c)l is the response given by the Ada-boost classifier to clique c taking label l, 

h  a truncation threshold and 
'

'

(c)
K log l

H

i l L
e


   a normalizing constant [109]. In our 

case, the cost of pixel labels being different from an associated segment labels was set to 

(1) (1)( (x ) (x )) / 0.1l

c c F ck L l c     . It can be seen that 10% of the pixels at most is 
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allowed to take a label different to the segment label without changing the state of the 

segment to FL . 

Pairwise Potentials: The pairwise terms on the pixel level (.)P

ij  take the form of the 

classical contrast sensitive Potts potentials as below [109]. 

0
(x , x )

(i, j) otherwise

i jP

i j

if x x

g

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

          Equation 5.34 

where the function g(i, j)  describes the edge information based on the pixel value 

difference of neighboring pixels [98], as shown in eq. (5.35). 

(i, j) exp( )p v i jg I I                    Equation 5.35 

where iI  and 
jI  are the color vector of pixel i and j, respectively. This pairwise 

constraint encourages neighboring pixels in the image (having a similar color) to have the 

same label. More details can be found in [109].  

As stated in [109], we use the pairwise potential in the segment level defined as in eq. 

(5.36). This potential forces the super-pixels with the same texture and color features to 

be assigned with the same label. The term 
2

(1) (1)

2
(c,d) min( , ) (x ) (x )c dg c d h h  , where 

(.)h  is the normalized histogram for color values of a given segment [109], is based on 

the Euclidean distance of histograms between given neighboring two segments, indexed 

as c and d. 
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Equation 5.36 

5.3.4 CRF Model 3 

Although the hierarchical connectivity and high-order potentials defined on super-pixel 

are incorporated into the CRF framework, some researchers claim that these methods 

suffer from the instability of unsupervised super-pixel segmentation algorithms, 

especially with respect to the ability to recognize objects with complicated boundaries 
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[100]. In [100], a fully connected CRF model has been proposed to refine the image 

labeling results. In the fully connected model, each pair of pixels in the image is 

connected by an edge, which has been further associated with a pairwise potential. The 

main challenge for this model is the size of this model [100]: even for a low resolution 

image, there are in the order of 106 of nodes and 1010 of edges. To deal with this gigantic 

problem, a highly efficient inference algorithm has been proposed in [100]. In this 

approach, the pairwise edge potentials are defined by a linear combination of Gaussian 

kernels in an arbitrary feature space [100]. The CRF distribution was estimated by a 

mean field approximation [107]. Most importantly, it was proved that a mean field update 

of all variables in a fully connected CRF can be performed using Gaussian filtering in 

feature space [100]. This inference algorithm is sub-linear in the number of edges in the 

model. The details about the dense connected CRF model and the inference algorithm 

will be provided in following two sub-sections. 

 The fully connected CRF Model 

The basic conditional random field (CRF) model has been introduced earlier this section. 

In the fully connected pairwise CRF model, we consider all unary and pairwise cliques in 

the complete graph G defined on the entire image. As in eq. (5.4), the pixel-wise unary 

potential was computed independently for each pixel by a classifier that provides a 

probabilistic distribution of the assigned label given image features. The pairwise 

potentials in the fully connected CRF model are defined as below [100]. 

( ) ( )

1

( , ) ( , ) ( , )

( , ) ( , )
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ij i j i j i j

K m m

i j i jm

x x x x k f f

k f f w k f f

 






              Equation 5.37 

where  each ( )mk  is a Gaussian kernel defined as in eq. (5.38), the vectors if  and 
jf  are 

feature vectors for pixel i  and j  in an arbitrary feature space,  mw  are linear 

combination weights, and   is a label compatibility function, which could be defined as 

simple as Potts model [121]: ( , ) [ ]i j i jx x x x   . It penalizes the adjacent similar pixels 

to be assigned different labels. Each kernel ( )mk is characterized by a symmetric, positive-

definite precision matrix ( )m , which defines its shape.     
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( ) ( )1
( , ) ( ( ) ( ))

2

m m

i j i j i jk f f exp f f f f                Equation 5.38 

In [100], a contrast-sensitive two kernel potential, as shown in eq. (5.39) and defined on 

the color vectors ( iI and jI )  and positions ( ip  and jp ), is used.  

2 2 2
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p p I I p p
k f f w w

    

  
             Equation 5.39 

where the first term is called the appearance kernel which encourages the neighboring 

pixels with similar color to be assigned the same label. According to [100], the second 

term, called the smoothness term, is used to remove small, isolated regions. 

 Efficient Inference in Fully Connected CRFs 

Usually, the inference for grid connected random fields with dense structure makes the 

traditional message passing algorithm [122] converge slowly, resulting in high cost 

solutions. According to [109], the difficulties faced by these message passing algorithms 

can be attributed to the presence of frustrated cycles (where a cycle refers to some 

number of nodes in the graph are connected in a closed chain) that can be eliminated via 

the use of cycle inequalities, but only by significantly increasing run time. On the other 

hand, graph cut based move making algorithms don’t suffer from this problem, but have 

been shown to be less powerful. For these reasons, [100] provides a filter-based approach 

for performing fast approximate maximum posterior marginal (MPM) inference (the 

optimal solution satisfies the formula in eq. (5.40)) in multi-label CRF models with fully 

connected pairwise terms.  As mentioned earlier, a random field is a set of random 

variables 1{ ,... }NX X X conditioned on an image I , where N represents the number of 

variables (pixels). The random variables take values from a label set 1{ ,... }LL l l . The 

fully connected pairwise CRF is shown as in eq. (5.41). 

* arg max ( | )i xx p x I                   Equation 5.40 
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              Equation 5.41 
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where ( | )E X I is the energy functional that need to be minimized. As mentioned in 

Section 5.2.1, ( )Z I  is the partition function. Both the unary and pairwise potential terms, 

as mentioned in Section 5.3.4, are implicitly conditional on the image I .  

Given this form of CRF in eq. (5.41), the fast approximate MPM inference can be 

performed by cross bilateral filtering techniques with a mean-field approximation 

framework [107]. The details will be given below. 

The mean field approximation involves an alternative distribution ( )Q X  over the random 

variables of the CRF, and the marginal on this distribution are defined to be independent, 

i.e. ( ) ( )i ii
Q X Q x . The mean-field approximation makes attempt to minimize the 

KL-divergence ( )D Q P  between Q  and the true distribution P , where KL-divergence is 

a measure of the difference between two probabilities Q  and P  , and this difference 

reflects the amount of information lost when Q  is used to approximate P [123].  By 

considering the fixed-point equations that must hold at the stationary points of ( )D Q P , 

the following update can be derived for ( )i iQ x l  given the settings of ( )j jQ x  for all 

j i  as shown below [123]. 

1
( ) exp{ ( ) ( ) ( , )}i i u i j j p i j

l L j ii

Q x l x Q x l x x
Z

 
 

                  Equation 5.42 
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i u i j j p i jx l L
l L j i

Z x Q x l x x 
 

 

                Equation 5.43 

where iZ  is a constant which normalizes the marginal at pixel i . If the updates in eq. 

(5.42) are made in sequence across all pixels (updating and normalizing the L values 

( )i iQ x l  where 1...l L at each step), the KL-divergence is guaranteed to decrease 

[123]. According to [123], parallel updates for eq. (5.42) can be evaluated by convolution 

with multi-dimensional Gaussian kernel using any efficient bilateral filter, such as a 

noise-reducing smoothing filter for images where the intensity value at each pixel in an 

image is replaced by a weighted average of intensity values from nearby pixels [123]. 

This can be achieved by the formulation shown as below. 
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( ) ( )( ) ( , ) ( ) [ ( )]( ) ( )m m

i j j m i i

j i

Q l k f f Q l G Q l f Q l


              Equation 5.44 

where mG is a Gaussian kernel corresponding to the m
th

 component of eq. (5.37). Since 

( ) ( , )j j p i jQ x l x x  can be written as 
( ) ( ) ( )m m

m
w Q l , and the complexity of 

approximate Gaussian convolution using the method in [123] is linear with the number of 

pixels. The algorithm is run for a fixed number of iterations. At the final iteration, the 

MPM solution is obtained by searching for the maximum ix  as formulated in eq. (5.45). 

* arg max ( )i l i ix Q x l         Equation 5.45 

5.4 Wound Recognition System Design Based on CRF Models 

In this section, we design a wound classifier based on the CRF models described in 

Section 5.3. The entire model training and wound recognition process is illustrated in 

Figure 5.4. Different CRF models correspond to different unary and pairwise potential 

terms, as discussed in Section 5.3.  

5.4.1 Classifier Training 

The wound classifier training process is shown in the left column in Figure 5.4. Most 

modules in the system have been introduced in details in Section 5.3. As mentioned in 

earlier chapter, there are many different algorithms for super-pixel segmentation. In our 

system, we apply the parallel version of SLIC algorithm [37] due to its good boundary 

adherence and efficient implementation. Note that there is no need for super-pixel 

segmentation and super-pixel based potential training if CRF model 1 or 3 described in 

Section 5.3 has been applied.  

According to [23], color based features in various color spaces have proven to be the 

most effective discriminative indicators for wound classification against the healthy skin. 

As mentioned in Section 4.2, other texture based features have also been adopted as 

auxiliary tools. In our classifier, we extract filter-bank based features [99], dense SIFT 

(DSIFT) feature [77], location features [99] and opponent SIFT [109] feature for boosting 

the unary potential term.  According to Section 4.4, our wound recognition system is 

expected to be able to determine the accurate wound boundary from less controlled 
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images where the illumination and angles can vary. Especially, these images might 

contain wounds acquired at different ranges, and the images may also contain other 

background objects. Therefore, we apply these features which have already provided 

promising performance on object classification tasks in natural scene images [99], [109]. 

The features used for unary potential term training are all supposed to be extracted 

densely, i.e. the feature vector is extracted at every pixel location for all training images.  

However, this is not practical considering the large volume of dataset and high resolution 

of images. Instead, we extract features on a down-sampled version of the original image 

grid. The down sampled rate for each feature has been determined empirically.  

 

Figure 5.4 Wound recognition classifier based on CRF model 
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According to [99], [109], there are two different ways to incorporate these features into 

the CRF model. In the first method, we can further decompose the unary potential term as 

a weighted summation ( ) ( )c c

c

x x   , where ( )c x  is a feature-based potential and c  

is its weight. We need to perform the joint boost approach to learn each feature based 

potential, then we estimate the weights using local search scheme on a validation set 

[109]. This training method turns out to be robust, but time consuming as well.  

The second method to learn a single unary potential term is implemented by combining 

multiple dense extracted features together. After extracting each feature over the image 

grid, we perform the texton generation. In this case, we have NM texton channels in total 

where N is the number of types of features in total and M is the cluster center number for 

texton generation. Before performing the texture-layout filtering, we calculate the integral 

image [99], as mentioned in Section 5.3.2, for each channel. Then we extract the texture 

layout based features based on these NM texton channels. Finally, we perform the joint-

boost approach to learn the final unary term only for one time. Weighing the strengths 

and weaknesses of the first and the second method, we have chosen to apply the second 

method. 

For the pairwise potential terms, no matter which formulation we are using, the 

parameters of the model are manually selected to minimize the error on the validation set 

using grid search approach [94], [97]. The details about the grid search method have been 

introduced in Section 4.2.    

5.4.2 Wound Recognition Performance Evaluation 

For evaluating the CRF methods’ ability to recognize a wound and determine its 

boundary on a given set of images, the super-pixel segmentation and feature extraction 

are the same as is used in the training process. We applied the learned textons to generate 

the texton map for each feature channels. Afterwards, we evaluate the unary potential, 

pairwise potential and segment based potentials (if applicable) based on the model 

learned in the training process. Then we apply the CRF inference method to find the 

optimal labeling over the entire wound image.    
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5.4.3 Experimental Results 

To evaluate the performance of the wound recognition system designed in Section 5.4.1 

and 5.4.2, we apply the three CRF models, introduced in Section 5.3, to two different 

wound image datasets. The first image dataset is composed of images of Moulage 

wounds placed on an artificial foot. The second dataset consists of images of real diabetic 

foot ulcers from recruited subjects at the Wound Clinic in UMass Medical School. To 

better evaluate our system, the wounds in images of the first dataset were captured at 

different ranges, illumination levels and viewpoints. Specifically, we collected 162 

images of 6 Moulage wound for the first dataset. 27 images for each wound, at 3 different 

ranges, 3 different viewpoints, and 3 different illumination conditions, were captured. In 

the second training dataset, 100 images were captured for 18 subjects and most of them 

were acquired using the image capture box designed in earlier chapter. 

To evaluate the performance of the wound recognition over the entire dataset, we split 

both dataset equally into 10 folders. Then a ten-folder validation method is carried out as 

follows. We will perform the “train and test” operation for 10 rounds. In each round, we 

train the model on 9 folders and test the model on the remaining folder. The general 

specificity and sensitivity defined in Section 4.3 are evaluated by combining the testing 

results from 10 rounds.  For the Moulage image dataset, we label the image using 4 

different labels: the wound, gel which is the transparent material that surrounds the 

Moulage wound, the healthy skin and the background, as shown in Figure 5.5 (a) and (c).  

For the real image dataset, the image is labeled into 3 labels, which are the same as the 4 

labels except the surrounding gel category, as shown in Figure 5.5 (b) and (d). 

To compare the three CRF models, we apply these models one by one independently on 

the same two datasets in the ten-folder validation approach mentioned above. The two 

most important parameters are the cluster center N for the texton generation and the 

boosting iteration number M for joint boost training scheme. To obtain better parameter 

estimation, we perform a grid search method to select the best parameter pair ( , )N M . 

We perform the CRF model 3 on the moulage image dataset using the ten-fold validation 

method mentioned above. The Matthews Correlation Coefficient [75] results are shown 

as in Table 5.1. And the wound recognition computation time evaluation results are 
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shown in Table 5.2. We didn’t evaluate the training efficiency evaluation since the model 

training is supposed to be performed “offline”.   

                

(a)                                (b)                           (c)                               (d) 

Figure 5.5 Single sample of original image and ground truth from two dataset, (a) Original 

image of the dataset 1, (b) Original image of the dataset 2, (c) Ground truth labeling of the 

dataset 1: green for background, yellow for healthy skin, blue for artificial gel and red for wound, 

(d) Ground truth labeling of the dataset 2: the same labeling color fashion as in dataset 1 except 

for the absence of artificial gel category 

Table 5.1 Matthew Correlation Coefficient results using different (N,M) parameter settings 

 N = 100 N = 200 N = 300 N = 400 N = 500 N = 600 

M = 1000 0.393 0.438 0.471 0.523 0.532 0.538 

M = 2000 0.469 0.498 0.547 0.596 0.602 0.606 

M = 3000 0.550 0.582 0.617 0.648 0.651 0.655 

M = 4000 0.598 0.632 0.668 0.699 0.694 0.703 

M = 5000 0.707 0.738 0.769 0.813 0.816 0.821 

 

Table 5.2  Wound recognition time using different (N,M) parameter settings (Unit: seconds) 

 N = 100 N = 200 N = 300 N = 400 N = 500 N = 600 

M = 1000 10.2 10.3 10.8 11.0 11.2 11.3 

M = 2000 18.1 18.5 19.9 20.2 22.0 22.4 

M = 3000 27.7 28.2 30.0 30.9 31.3 33.0 

M = 4000 38.8 39.9 41.3 41.5 42.9 42.9 

M = 5000 46.3 47.2 49.3 50.1 50.5 51.2 

 

Based on the results shown in Table 1 and 2, when N = 600 and M = 5000, the MCC 

result is the best. Moreover, we can see that the MCC value increases as we increase the 

boosting iteration number, but the time performance decreases obviously. On the other 
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hand, when the cluster center number N becomes larger than 400, there is no obvious 

improvement for the MCC result. However, increasing the cluster center will 

substantially increase the computation burden for the model training. In conclusion, we 

set N= 400 and M = 3000 empirically for the best tradeoff of accuracy and efficiency.   

The sample wound recognition results are shown in Figure 5.6 and Figure 5.7 for dataset 

1 and 2, respectively. The specificity and sensitivity evaluation results for the three CRF 

models on two dataset are shown in Table 5.3 and 5.4. Finally, the time performance 

results for wound recognition are shown in Table 5.5. We can see the Model 1 didn’t 

perform the wound recognition very well on multi-scale situation, since it is a pairwise 

model where the pairwise potential terms have only been evaluated on pair of pixels in 

the same clique. Model 3 out-performed Model 1 on wound recognition accuracy since it 

generated the pairwise potentials on each pair of pixels in the image. In this case, the 

long-range connections were incorporated into the CRF formulation. The CRF Model 2 

provided even better wound recognition performance than Model 3, i.e. the best of the 

three models introduced in this chapter, especially dealing with images of the same 

wound captured in different ranges (scales), viewpoints and illumination conditions, due 

to its hierarchical structure involving super-pixel based higher-order potential terms. 

According to [109], the potentials defined over a three-level hierarchy provide the best 

tradeoff between the time performance and recognition performance, although the 

hierarchy can be extended indefinitely. It is also found that performance saturated when 

the number of hierarchy level increases beyond three. However, the Model 2 required 

longer computing time than other two models due to the super-pixel segmentation and 

more potential terms to be evaluated. The comparison of these three models in terms of 

specificity and sensitivity is shown in Table 5.3.  

The comparison between the results presented in Table 5.3 – 5.5 and Table 4.4 leads to 

the conclusion that the CRF model based methods are a better option than the super-pixel 

based SVM classifier for wound boundary determination tasks with relaxed image 

capture constraints. However, the SVM classifier based approach is far more 

computationally efficient than the CRF model based method, which can be easily proved 

by comparing the last two columns in Table 5.5. Hence, for smartphone alone system, the 
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method presented in Chapter 4 is a better candidate considering the tradeoff of 

performance and efficiency.  

 

 

 

   

 

Figure 5.6 Samples of wound recognition results on dataset 1, Row 1: the original images, image 

1-3 and 4-6 represent the two different wound simulation in different scales and viewpoints, 

respectively, Row 2-4: wound recognition results provided by CRF model 1-3, the wound areas 

are labeled in red color. 
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Figure 5.7 Samples of wound recognition results on dataset 2, Row 1: the original images, image 

1-2, 3-4, and 5-6 represent three different wounds imaged in different scales, viewpoints and 

illumination, respectively. Row 2-4: wound recognition results provided by CRF model 1-3, the 

wound areas are labeled in red color 

 

Table 5.3 Wound recognition specificity using different CRF models on two datasets 

 CRF model 1 CRF model 2 CRF model 3 

Dataset 1 0.927 0.992 0.984 

Dataset 2 0.898 0.955 0.911 

 

Table 5.4 Wound recognition sensitivity using different CRF models on two datasets 

 CRF model 1 CRF model 2 CRF model 3 

Dataset 1 0.674 0.844 0.767 

Dataset 2 0.618 0.769 0.703 

 

Table 5.5 Wound recognition computation time using different CRF models on two datasets (Unit: 

seconds) 

 CRF model 1 CRF model 2 CRF model 3 SVM based method 

Dataset 1 36.7 57.4 30.9 7.3 

Dataset 2 37.4 60.3 35.9 8.4 
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Chapter 6  

Wound Healing Status Assessment  

With the wound boundaries determined by one of the wound recognition algorithms, 

described in Chapters 3 - 5 (the wound areas can be indirectly determined at the same 

time), we will further analyze the wound based on its color features. Then, we wish to 

quantitatively assess the wound healing status for a given wound in an image, and further 

carry out a comparison analysis of the healing status of the same wound in images 

captured at a later times. In this chapter, we will first discuss the color based wound 

tissue classification. Next, a quantitative measure, called the healing score, will be 

formulated, in order to evaluate the foot ulcer healing status based on a sequence of 

wound images. This will be tested on a sequence of wounds captured at the Wound Clinic 

in UMass Medical School. Finally, we will introduce the design of a collaborative wound 

image analysis system used at the Wound Clinic to track the wound status for visiting 

patients.   

6.1 Color Based Wound Tissue Segmentation 

6.1.1 Red-Yellow-Black (RYB) Model 

The RYB (red-yellow-black) wound classification model, proposed in 1988 by Arnqvist, 

Hellgren and Vincent, is a consistent, simple assessment model to evaluate chronic 

wounds [35]. It classifies wound tissues within a wound boundary as red, yellow, black 

or mixed tissues, which represent the different phases on the continuum of the wound 

healing process. Specifically, red tissues are viewed as the inflammatory (reaction) phase, 

proliferation (regeneration), or maturation (remodeling) phase; yellow tissues imply 
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infection or tissue containing slough that are not ready to heal; and black tissues indicate 

necrotic tissue state, which is not ready to heal either [35]. Based on the RYB wound 

evaluation model, our wound analysis task is to classify all the pixels within the wound 

boundary into the RYB color categories and cluster them. Therefore, classical clustering 

methods will be applied to solve this task.  

6.1.2 K-Mean Algorithm Basics 

In unsupervised clustering methods, k-means clustering is “a method of cluster analysis 

which aims to partition n observations into k clusters in which each observation belongs 

to the cluster with the nearest mean” [36]. In our case, all pixels within the wound 

boundary can be viewed as observations. The three colors referred in RYB model are 

regarded as clusters. The algorithm is presented in block diagram form as well as 

graphically in Figure 6.1. 

  There are several issues that need to be further clarified. 

 The color difference between the cluster center and the target pixel (expressed as Eu 

in the flowchart in part (a) in Figure 6.1) is calculated by the Euclidean distance in 

CIE Lab space. This measure has been shown to be consistent with the color 

difference perceived by human eyes.  

 Strictly speaking, the K-mean algorithm is a NP-hard problem, which means that it is 

unable to converge to a solution within limited time when the image size is large. 

However we can terminate the iteration when the mean variance of each cluster is 

smaller than a specified threshold. This heuristic method is expressed as the decision 

block in part (a) of Figure 6.1. In part (a) of Figure 6.1, the initial centers are chosen 

randomly. However, in practice we may specify the initial centers according to some 

empirical values such as the Macbeth Color Checker table described in [67]. By this 

operation, the converging speed will increase and make the color clustering process 

more efficient. 

 As shown in Figure 6.1, we preset the number of cluster center to be 3. However, the 

number could be smaller or bigger than 3. When the number is greater than 3, we 

have to perform some post-processing to the resulting clusters in order to combine 

such clusters that are close to each other. This post-processing can be performed by 

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Mean
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determining whether the mean value difference between a pair of clusters is smaller 

than a preset threshold. 

 

(a) K-mean algorithm flowchart 

 
(b)K-mean algorithm description 

Figure 6.1 K-mean algorithm 
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6.1.3 Wound Tissue Segmentation Results 

Color segmentation results provided by K-mean algorithm based on wound boundary 

determination results on sample real wound images are shown in Figure 6.2. The results 

are promising despite a few misclassified pixels in part (c) and (f).  In part (c), some dark 

red part is recognized as black tissue. In part (f), some “dark yellow” part is classified as 

the red tissues. In general, the wound analysis task is more complicated for the clinical 

images of real patients compared to those of moulage wounds due to the complicated skin 

color and texture of patients’ feet and various wound locations. 

     

(a)                                     (b)                                        (c) 

        

(d)                                         (e)                                      (f) 

     

(g)                                (h)                                    (i) 

     

(j)                              (k)                                     (l) 

Figure 6.2 Wound tissue segmentation results based on color, (a) - (f): original wound images,  

(g) – (l): color segmentation results 
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6.2 Healing Score: A Quantitative Measure for Wound Healing Status 

Our final goal is to provide more meaningful wound analysis results to the users, where 

the users might be either clinicians and/or diabetic patients. For clinicians, the wound 

area size and different color tissue composition may be sufficient. They can make their 

diagnosis based on these raw data. However, for patients assumed not to have clinical 

knowledge about wounds, only providing them some absolute numbers does not give 

them with much help in understanding of their actual wound status. Hence, there is a 

need to translate the raw data into a meaningful numerical value, like a score in the range 

of 0-10, where larger simply means better. In this section, we propose a numerical wound 

evaluation measure called healing score.   

6.2.1 Healing Score Definition 

To create a measure of wound healing status, we translate the raw wound assessment 

results into a numerical value called healing score (
nS ) using eq. (6.1) – (6.3). Such a 

single-valued healing score will provide patients and caregivers with a simple measure of 

the wound healing or wound deterioration relative to the wound status at the initial visit. 

This score can range from 0-10. The larger the score is, the better the healing status is. 

The fundamental principle underlying the healing score design is the RYB evaluation 

model as mentioned in Section 6.1. The calculation of the healing score is described in 

the 3 steps below. 

 Step1: For each patient, a reference score of 5 is assigned to the wound image at the 

first visit to the wound clinic;  

 Step2: At each subsequent visit, the weighed area of the wound is calculated by 

applying eq. (6.1), where nWA  represents the weighted area of the wound at the nth 

visit. nRA , nYA and nBA  represent the red, yellow and black tissue areas, respectively. 

, ,[ ]R Y BW W W  is the vector of weights for red, yellow and black tissue areas, 

respectively. From clinical observations, changes in yellow and black tissue areas 

influence the healing status more than do changes in the red tissue area, which can be 

expressed as R Y BW W W  . In our case, we empirically determined an appropriate 

weight vector to be [1, 1.5, 2.5]. 
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n R n Y n B nWA W RA W YA W BA          Equation 6.1 

 Step 3: Compute a relative healing score using eq. (6.2) to compare nWA  with 0WA , the 

weighted area for the first wound image of the current patient. The parameter G is an 

empirically determined gain value, ranging from 0 – 1, to control the dynamic range 

of the healing score such that our assessment results match clinicians’ judgments. 

0

0 0

1 * (1 )
n n

n
WA WA WA

S G G G
WA WA


              Equation 6.2 

     We find that the gain values of 0.5 and 0.4 provide similarly good results. Choosing G 

= 0.4, we verified that nS  ranges from 0 to 1.4 if we assume that nWA  is bound by

00 3.5nWA WA  . 

       To normalize nS  into the range [0, 10], we multiply the expression in eq. (6.2) by 

10/1.4. This results in the final formulation of the healing score, as given in eq. (6.3). 

It is easily verified that the healing score increases from 0 (wound condition is 

seriously degraded) to 10 (wound is completely healed) as the weighted wound area 

decreases from its upper bound ( 03.5WA ) to 0. 

0

2.857
10

n
n

WA
S

WA
           Equation 6.3 

The healing score is a simple, but useful mathematical construct, which may be 

applicable to other types of chronic wounds, such as venous ulcers, possibly requiring a 

parameter adjustment. 

6.2.2 Clinical Assessment of Healing Score 

 Theoretical Basics 

To provide clinical validation for our wound healing score, which is meant as a tool for 

quantitative wound assessment, we need to compare the assessment results of our 

algorithm with the evaluation results provided by experienced wound clinicians, based on 

either wound images alone or wound images together with additional information.  We 

presented the wound images by a laptop based custom App to each participating clinician 

independently. Then the clinician was asked to score the wound healing status multiple 

times, based on different amount of measurement data of the wound.   
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The wound image captured at the first visit for each patient was always given the score of 

5. This wound image was taken as the reference image for the assessment of later images. 

For the wound images collected from patients’ following visits, their wound healing 

status was scored based on the assumptions below: 

 Assumption 1: relative to the wound observed at the first visit, in the subsequent 

visits the wound can begin to heal or get worse. Hence, the score can either increase 

or decrease from the initial score of 5. 

 Assumption 2: the assigned healing score ranges from 0-10. The larger the score, the 

better the healing status. Specifically, a score ranged from 0-4 represents the wound 

healing status is becoming worse; a score ranged from 6-10 represents the wound 

healing status is becoming better.  

 Assumption 3: score 10 represents the wound being almost healed, and score 0 

represents a worsening of the wound conditions, to the point where a new treatment 

method is deemed necessary. 

The before-mentioned  computer-based app was used to present wound images to 

clinicians. Only the first image was shown initially, and each click of the ‘Next Image’ 

button brought up a new image for scoring, while retaining the previous images, as 

shown in Figure 6.3. For example, we first displayed the initial wound image; then we 

displayed the initial wound image with the next acquired wound image, and we asked the 

physician to score the latest image. The same is the case with the third wound image; it 

was displayed together with the initial image and the second image. The clinicians were 

only allowed to score the latest image presented.  

In the first round of scoring, we showed original wound images for each patient to three 

clinicians independently and asked each one of them to score the healing status by 

comparing each image with the wound image collected during the first visit. In this 

evaluation, the scoring of the healing status was completely based on the clinicians’ 

observation or measurement using the rulers, without any assistance from our wound 

assessment algorithm and based on no given rules. 
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In the second round of scoring, we showed original wound images for each patient, along 

with the wound area size and relative area ratio of the red, yellow and the black tissues 

within the wound boundary as determined by our algorithm, to three clinicians 

independently and asked each one of them to score the healing status. As a reminder, in 

the Red-Yellow-Black wound evaluation system, red, yellow and black represent the 

healing, infected and necrotic tissues, respectively. We compared the score results 

between these two evaluation scenarios to see how the accurate wound area measurement 

by our algorithm could help clinicians to better assess the wound healing status. 

 

Figure 6.3 Software interface screenshot for presenting wound images to clinicians. Clinicians 

click the “Next Image” button to view the next image for current patient, click the “Next Patient” 

button to score the images for the next patient and click “Next Phase” button to score all images 

again with different given information. 

 Clinical Assessment Results 

To evaluate our wound assessment method, we involved 12 patients over a period of one 

year where each patient was seen over a period ranging from 1 month to 5 months in the 

Wound Clinic at UMass Medical School, based on an approved IRB protocol. Among the 
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12 patients, 9 of them were monitored over at least 2 consecutive visits (2 visits for 3 

patients, 3 visits for 4 patients, 4 visits for 1 patient and 6 visits for 1 patient). In total, 32 

foot ulcer images were collected (one patient, visiting only once, had foot ulcers on both 

feet) and 28 images were used for the clinical validation of the healing score algorithm. 

The two sets of scores mentioned in the previous section from the clinicians were 

compared to the scores, generated by the healing score algorithm, by calculating the 

Krippendorff’s Alpha Coefficient (KAC) [124]. KAC is a statistical measure of the 

agreement of ratings given by two or more clinicians. The value of this coefficient ranges 

in [ ,1] , where value 1 indicated perfect agreement and value 0 indicates the absence 

of agreement. A value less than 0 implied that the disagreement is systematic and exceeds 

what can be expected by chance.  

First, we utilized the KAC to compare the consistency of healing score among the three 

clinicians (also referred to as ‘raters’), both for the case where the clinicians are presented 

with only the wound image and for the case where wound assessment data are also 

available (Figure 6.3 illustrates the latter case). The calculated coefficients are referred to 

as the inter-rater consistency coefficients. The results are shown in the diagonally 

symmetrical Table 6.1 where the top number in each cell is the consistency coefficient 

for wound image only while the bottom number is the coefficient for wound image plus 

quantitative wound data. We can see that Clinician 1 and 2 have similar assessment about 

the wound healing status irrespective of whether the quantitative data is presented (KAC 

> 0.8 in Cell (1, 2)). Clinician 3’s assessment differs somewhat from that of the other 2 

clinicians (KAC < 0.5 in Cell (1, 3) and the top number in Cell (2, 3)). This lack of 

agreement is also evident in Figure 6.4, where the red curve (scores from Clinician 3) 

deviates from the green and black curves (scores from Clinicians 1 and 2) at several 

points. Another finding was that Clinician 2 and 3 agreed more when the wound 

quantitative data is also presented (KAC > 0.6 for the bottom number in Cell (2, 3)). Due 

to the limited number of clinicians and wound samples, our preliminary results indicating 

that adding wound data could have some influence should be tested with a larger group of 

clinicians and additional samples. 
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Next, the effect of providing quantitative wound data, in addition to the wound image 

itself, on the healing scoring of a given clinician (or ‘rater’)  was evaluated by 

determining the KAC between the healing scores with and without the quantitative 

wound data presented. The evaluation results were reflected in the intra-rater data 

impact coefficients. The quantitative wound data consisted of healing score, total wound 

area and area components of red, green and black tissues. The results were given in Table 

6.2 for the three clinicians, showing a modest, but detectable effect (0.8 < KAC < 0.9 for 

each cell); had there been no effect, KAC would be 1.0. We conclude that adding 

quantitative data to visual image appears to result in better and/or more consistent 

assessments, but with our limited set of observations, we cannot generalize as to whether 

these results would apply in a larger wound sample. 

The agreement between the algorithm-based healing score and the clinician-based healing 

score was measured similarly, using the KAC. The results were given in Table 6.3, where 

the measured coefficients were called the clinical validity coefficients. As with the inter-

rater consistency coefficients, the results were provided for both the case where the 

clinicians see only the wound image (top values) and the case where they see both the 

wound image and the quantitative wound data (bottom data). The values in Table 6.5 

showed that our healing score algorithm agrees well with Clinician 2 (KAC > 0.8 

especially when quantitative wound data is presented) and had an acceptably good 

agreement with Clinician 1 (KAC > 0.6). The KAC value for the scoring results from 

Clinician 3 and our algorithm was less than 0.5, possibly indicating differences in 

evaluation criteria. 

The actual healing scores for 19 wounds (the wound image for each patient’s initial visit 

is the reference image) given by 3 clinicians (for the case where both the wound images 

and quantitative wound data are presented) and by our algorithm were shown in Figure 

6.4. From this figure, we can see that the scores given by our algorithm were a reliable 

quantitative indicator of the wound healing trend. Overall our algorithm provided a 

promising quantitative assessment that approximated well the average score from three 

clinicians.  In Figure 6.5 and 6.6, we presented the wound area and tissue classification 

results for two patients, resulting in two time sequences of foot ulcer images. The 

corresponding actual wound area, areas of different wound tissues and the healing scores 
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for the two patients were shown in Table 6.4 and 6.5. We can see the basic trend is: the 

larger the weighted wound area, the smaller the healing score. However, there is one 

exception in Table 6.4. The Image 5 has more yellow tissues and less red tissues. 

However, it has a higher score. This is because we apply the G parameter tuning, as 

shown in eq. (6.2), to further fit the scores given by our healing score method with the 

results provided by wound clinicians.  

Table 6.1 Krippendorff’s Alpha Coefficients for the inter-rater consistency measurements, both 

for wound image only (top values) and for wound image plus quantitative wound data (bottom 

values) 

          Clinician 1 Clinician 2 Clinician 3 

Clinician 1  
0.85 0.42 

0.80 0.46 

Clinician 2 

0.85 

 

0.46 

0.80 0.63 

Clinician 3 
0.42 0.46 

 

0.46 0.63 

 

Table 6.2 Krippendorff’s Alpha Coefficients for the intra-rater data impact measurements 

Clinician Number 1 2 3 

Intra-rater data 

impact coefficients 
0.81 0.80 0.86 

 

Table 6.3 Krippendorff’s alpha coefficients for the clinical validity measurements, both for 

wound image only (top values) and for wound image plus quantitative wound data (bottom values) 

Clinician Number 1 2 3 

Clinical validity 

coefficients 

0.73 0.68 0.42 

0.66 0.81 0.46 
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Table 6.4 Wound assessment results for patient 1 (area unit: mm
2
). For better accuracy, 2 

significant digits for the healing scores are displayed. 

 Image 1 Image 2 Image 3 Image 4 Image 5 

Healing score 5 (ref) 7.0 7.4 6.9 7.3 

Wound area 928 403 293 279 332 

Red area 751 353 283 215 126 

Yellow area 158 39 10 43 184 

Black area 19 11 0 21 22 

 

 

Table 6.5 Wound assessment results for patient 2 (area unit: mm
2
) 

 Image 1 Image 2 Image 3 

Healing score 5 (Ref) 3.9 5.6 

Wound area 249 329 253 

Red area 203 247 232 

Yellow area 11 82 21 

Black area 38 0 0 
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Figure 6.4 Healing scores by the three raters (green, black and red for Clinicians 1, 2 and 3, 

respectively), and by the healing score algorithm (blue), for the case where both wound images 

and wound data are presented. 

 

 

 

Figure 6.5 Wound area and tissue classification results for patient 1; Row 1: original foot ulcer 

images, Row 2: Wound boundary determination results, Row 3: Tissue classification results 
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Figure 6.6 Wound area and tissue classification results for patient 2; Row 1: original foot ulcer 

images, Row 2: Wound boundary determination results, Row 3: Tissue classification results 

6.3 Collaborative Wound Image Analysis System 

The purpose of the collaborative wound image analysis system based on the smartphone 

and the laptop is to greatly increase the often insufficient computational resources of just 

the smartphones. In our work, we managed to make the less efficient wound analysis 

algorithm implementation work on Nexus 5, a powerful Android smartphones. However, 

a collaborative system is necessary for implementing the more advanced and robust 

wound recognition algorithms, such as the CRF based algorithms, which would be used 

by clinicians rather than patients. The reasons are stated as following. First, although the 

capability of wound image analysis on the smartphone is verified, we still want the 

wound assessment system can run as efficiently as possible given sufficient computer 

resources, and laptops or PCs are generally more powerful than smartphones.  Second, 

the wound boundary determination algorithms introduced in Chapter 3 and 4 only work 

sufficiently well on wound images captured under strictly controlled acquisition 

conditions. Hence, we need the CRF based algorithm introduced in Chapter 5 to provide 

more robust performance on images taken under more relaxed imaging conditions. The 

efficiency analysis results in Chapter 5 show that the CRF based method can only be 

implemented efficiently based on PC due to its complexity. Finally, the wound analysis, 

especially the trend analysis results, can be illustrated in a more user-friendly way 
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graphically. Besides, we can manage the patients’ demographics, wound images, image 

analysis results in a more intelligent database system.  

6.3.1 System Structure 

The basic structure for this collaborative system is shown as Figure 6.7. Since there will 

be a client (the smartphone) and a server (the laptop) to work in a cooperative way, the 

communication scheme is rather significant. In this system, we chose the communication 

scheme between the smart phone and laptop in the application layer to be based on http 

protocol rather than the common method manipulating the transport layer by socket 

programming based on TCP/IP protocol. The reason is that the operation in the highest 

layer (application layer) in the TCP/IP network protocol model will be more generalized 

and can be applied to different settings in lower layers of this network model. 

The smartphone will play the role of client in the communication scheme. It will 

accomplish the following task sequentially: 1) take the picture of the wound and save on 

the specified directory on the SD card; 2) make request to the server and send the JPEG 

file of wound image to the laptop by function “post()” in android http library and 3) 

receive the analyzed image file sent by laptop and display it on the screen. The  laptop 

will be viewed as the server party, which will 1) listen to the request of the  client and get 

the image file sent by the client by “dopost()” function, 2) accomplish the wound image 

process to he received wound image and 3) send the JPEG file of the processed image 

back to the smartphone (client) as a response.   
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Figure 6.7 smartphone & laptop cooperation system 

Based on the above description, one application should be designed to run on the client 

(smartphone) and another application should be designed to run on the server. On the 

smartphone, the task is easy to accomplish by using the apache http library included in 

the Android SDK. However, on the laptop, it is a little more difficult to establish a servlet 

application. We could run the servlet application in Tomcat, which is an open source 

servlet container developed by the Apache Software Foundation (ASF). The server 

program on the laptop will keep running and listening for the request from the client 

process on smartphones. In this case, any smartphone getting access to the Wi-Fi is able 

to send requests to the server. However, considering the integration of the servlet 

application into a clinical wound management system, we need a servlet container 

completely programmed in JAVA in order to pack the entire servlet application and 

container into an independent executable jar file. Hence, we use the Jetty which is a small, 

fast, embeddable web server and servlet container developed in JAVA. Moreover, the 

Jetty server can be started using API from the main thread in JAVA application.   
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As mentioned above, the servlet will be integrated into a wound image management 

system for clinical research purpose in wound clinics. Besides the wound image 

transmission and analysis, the software system also manages all registered patients’ 

personal information and wound images in databases constructed by MySQL. This will 

allows clinicians to perform trend analysis for a certain patient over a time sequence of 

wound images. This system will be introduced in detail in the following section. 

6.3.2 Work Flow and Main Functions 

In this section, we will introduce our wound management system from the user’s 

perspective. Once a user (usually a clinician in the wound clinic) double-clicks the 

application icon on the desktop of the laptop, the welcome page will be shown as in 

Figure 6.8. Three buttons are located on this page including “New Patients”, “Existing 

Patients” and “Label Image”. This system is going to be demonstrated begun from these 

three entries. 

 Registering a new patient 

When a new patient comes to the wound clinic center, the clinician needs to register this 

patient into our database and click the button “new patient” on the welcome page to 

initiate the new patient registration page shown in Figure 6.9. First, the clinician should 

click the “Assign” button and the system will automatically assigned an ID number to 

this new patient. Then the required patient’s information must be input including the first 

name and last name. Other physical information, such as gender, age, weight, height and 

Body Mass Index (BMI), are optional. Note that the BMI is calculated by the system if 

the “Calculate” is clicked using the following formula [80]. 

2

( )
703

( ( ))

mass lb
BMI

height in
            Equation 6.4 

After all needed information is entered (note that the sample information in Figure 6.9 is 

faked), the clinician will click the “Confirm” button to finish the registration process and 

save the patient’s record. If the “Clean” button is clicked, all the input information will be 

erased and a new registration has begun. 
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Figure 6.8 Welcome page 

 

Figure 6.9 New patient registration page 

 If you want access a previously registered patient 

If a registered patient comes to the wound clinic to have his foot photographed, the 

clinician has to set up both the smartphone image capture app and the wound 

management system on the laptop. On the welcome page in Figure 6.8, the user will click 
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the “Existing patients” button which will takes him/her to the registered patient menu 

page for previously registered patients’ management as shown in Figure 6.10. On the 

menu page, the user inputs the patient’s ID number and which foot is going to be 

photographed (L or R) in the textboxes. Then the user clicks the “GO” button to enter the 

wound image management page as shown in Figure 6.5. On the smartphone side, the user 

runs the “phone client” app and follows the instructions to take a picture of the wound. 

Then the wound image will be sent to the laptop and automatically analyzed. 

Once the image is analyzed, the captured wound image in its original and its analyzed 

form will be shown under the “current” tag. If there are any previous wound records 

associated with this patient, the five latest recorded wounds in their original form and in 

their analyzed form will be shown as well under the corresponding date tags. Moreover, 

the user can click any analyzed image to perform the trend analysis including comparing 

the current analysis result with the “one week earlier” and “five week earlier” records 

respectively. The trend analysis result is displayed in Figure 6.6. The comparison is 

performed in terms of the wound area size and size of different wound tissues. 

If planning to search for a registered patient’s wound records on the wound image 

management page, the user will input the patient’ ID number in the textbox on the “Find” 

menu panel, which is on the right-top area of the page in Figure 6.11, and click the “GO” 

button. Then the six latest records about this patient will be shown under the 

corresponding date tags.  Note that in order to protect the subjects’ privacy, the wound 

records will be stop being displayed from this page after 1 minute if there is no further 

operation. 

Back to the menu page in Figure 6.10, if planning to view the information about a 

previously registered patient, the user should click the “View” button on the menu page. 

A table containing the personal information for all registered patients in our database will 

be shown in a new window as presented in Figure 6.12-6.13. 
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Figure 6.10Previously registered patients menu 

 

Figure 6.11 Wound image management page 
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Figure 6.12 Trend analysis result 

 

Figure 6.13 Patients’ information view page 

6.4 Conclusion 

This chapter proposed a wound healing status assessment method, which consists of a 

color based tissue segmentation module and a trend analysis mechanism based on healing 

score. The healing score is a quantitative measure to evaluate the healing status by 

comparing the current wound measurements to the initial record. Moreover, to facilitate 

the patients’ tacking at the wound clinic, a collaborative system between the smartphone 

and PC is designed. The clinical assessment results of our healing score algorithm shows 

very good agreement with clinicians’ scores and thus indicates its strong potential for 
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automated quantitative wound healing assessment. However, more validation data is 

needed to further evaluate our algorithm. 

The collaborative system has been practically used for wound tracking in the UMass-

Memorial Health Center Wound Clinic in Worcester, MA. The evaluations have shown 

that our system did provide a convenient software platform to systematically manage the 

wound records for patients at wound clinics.  

One major concern is the possibility of microbial contamination of the image capture box 

by the users or the environment. So far, we addressed this problem by wiping the surface 

of the box with an anti-microbial wipe after each use. A better solution may be a 

disposable contamination barrier, which will cover the slanted surface of the box except 

the openings. This will avoid the patient’s foot directly touching the surface of the image 

capture box. 

Finally, telehealth is an obvious extension to the collaborative system whereby clinicians 

can remotely access the wound image and the analysis results. Hence, a database will be 

constructed on a possibly cloud-based server to store the wound data for patients. The 

data privacy will be another concern. We plan to only allow the registered clinicians to 

have access to our database. In addition, the data will be encoded properly during the 

transmission.   

   



160 

 

 

Chapter 7  

Conclusion

In this work we proposed a novel diabetic foot ulcer image assessment system to 

quantitatively measure the wound area size, tissue composition and healing status based 

on foot ulcer images captured in high quality. The major purpose of our system is to 

design and evaluate a convenient foot ulcer assessment system (either used by patients 

themselves or by clinicians at the wound clinic) based on computational devices (PC or 

mobile devices). Four major tasks have been carried out as follows: 1) a low-cost, easy-

to-use image capture system consisting of an Android smartphone and an image capture 

box is designed to facilitate the high-quality foot ulcer imaging especially for elder 

patients with limited mobility; 2) five different wound boundary determination 

approaches have been proposed  for applications in different context; 3) a wound healing 

assessment method including tissue classification based on RYB color model, healing 

status assessment based on well-designed healing score mechanism and 4) a collaborative 

wound management software for clinical use.  The complete foot ulcer assessment 

pipeline was evaluated on two different image databases: 1) image database of Moulage 

wound simulations and 2) real wound images collected at wound clinic in UMass 

Medical School. 

For better comparison, we summarize the quantitative measurement results of the 

performance and time performance (evaluated on PC) for all 5 wound boundary 

determination methods proposed in our work in the following table.  According to the 

results presented in Table 7.1, we see that machine learning based approaches obviously 

provided better wound recognition performance than the non-machine learning based 

approaches. However, in terms of the time performance and implementation complexity, 
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the non-machine learning based wound boundary determination approaches performed 

better than machine learning based approaches. To be exact, with GPU based 

optimization, the run time for the entire wound assessment, including non-machine 

learning based wound boundary determination, color segmentation and healing status 

assessment, is about 6 and 16 seconds based on PC and smartphone, respectively. The 

two machine learning based approaches overcome the shortcomings of the first approach 

by enabling the self-adaptivity of wound recognition models when more and more 

clinical labeled data were available for training. The SVM classifier based method 

provided a good tradeoff: promising performance (specificity: > 94%, sensitivity: > 73%) 

and real-time performance (< 24 seconds in average on smartphones, < 11 seconds in 

average on PCs). Furthermore, the CRF based approach provided more robust wound 

determination performance than SVM based one when dealing with images captured in 

variant conditions (specificity: > 95%, sensitivity: > 77%). Especially, the CRF model 

involving with the unary potentials defined on segment based grid performed most 

consistently on images captured at different illuminations and ranges (or scales). 

However, the CRF based method is characterized by high computational requirements in 

its implementation and we are more inclined to apply it to the collaborative system where 

the wound assessment is running on PCs or servers with more powerful computational 

resources.     

There are a number of directions for future research work. First, to further stabilize the 

wound boundary determination robustness, we might need to expand the diversity of the 

real wound image database in terms of wound type, shape, color composition, 

surrounding tissues (calculus or not), skin color and texture. Moreover, the image 

calibration for our system was accomplished by using the image capture box. To broaden 

the application context (without the assistance of image capture box when imaging the 

wounds), image calibration methods depending on standard color patches placed on the 

corner of patients’ limbs need to be developed.  In addition, although the clinical 

assessment results of our healing score algorithm shows good agreement with clinicians’ 

scores and thus indicates its strong potential for automated quantitative wound healing 

assessment, more validation data is needed to further evaluate our algorithm. 
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Table 7.1 Summary of the wound recognition performance and time performance for five wound 

boundary determination methods proposed in our work; Approach 1: level set based approach; 

Approach 2: mean shift based approach; Approach 3: improved mean shift based approach; 

Approach 4: two-stage cascade SVM classifier based approach; Approach 5: hierarchical CRF 

based approach 

Category Non-machine learning based Machine learning based 

Approach ID 1 2 3 4 5 

Sensitivity 48.7% 56.7% 63.6% 73.3% 76.9% 

Specificity 83.1% 89.6% 92.3% 94.6% 95.5% 

Computation time 

(PC) 

6.4 5.8 7.0 10.4 62.4 

Computation time 

(smartphone) 

N/A 18.9 20.2 23.1 N/A 

Model training 

needed? 

No No No Yes Yes 

 

Another direction could be to improve the efficiency of the CRF based approach. The 

results presented in Chapter 5 show that the computational time of this approach is nearly 

60 seconds even when implemented on powerful PCs. Due to the iterative nature, the 

potential evaluation is the most computationally expensive part. As described in Chapter 

5, the iteration number has to be larger than 3000 to acquire near-optimal results. Hence, 

according to my best knowledge, the best option to reduce the computational burden is to 

remove the extraction of less effective features. This may require more detailed feature 

effectiveness evaluation. 

Besides, instead of the measurements used in this work such as the area size and different 

wound tissue size, the depth is also a significant indicator for healing assessment. 

However, this measurement can only be extracted by using 3D imaging techniques or 

indirect 3D reconstructing based on multi-view model.     
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Finally, our wound assessment system can also be applied for monitoring of other types 

of wound (such as surgical wound) or skin disease (such as skin cancer, also known as 

melanoma) monitoring. All 5 boundary determination approaches might be used for these 

new tasks with only slight modification. However, the validity of the RYB model may 

need to be determined for such new applications. New models may also need to be 

constructed based on the specific nature of different skin problems. 
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