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Abstract

This MQP report concerns the finding of the convergence rates to

the equilibrium constant states of shallow water wave equations with re-

laxation as time goes to infinity and establishing the existence of global

in time solutions. We study the initial value problem, under a certain

set of initial conditions, by considering the system in Lagrangian coor-

dinates using different transformations. We transform the hyperbolic

conservation laws for flood wave motion from Eulerian coordinates to

Lagrangian coordinates to a system of equations that is suitable for our

analysis. We develop two essential lemmas that we employ to prove

the global in time existence of solutions and show, moreover, how these

lemmas yield the convergence rates, given the initial conditions. We

also look at the general case by strengthening the initial conditions and

arrive at another system of equations that is similar to the previous

one, the analysis of which follows naturally.
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1 Introduction

In this section we introduce the system for shallow water waves modeled by

the hyperbolic conservation laws. We study this system under Lagrangian

coordinates and we introduce transformations to reexpress it into a form suit-

able for our analysis in section 2. We also outline the initial conditions that

need to be satisfied and subcharactersic conditions that we would require to

be maintained through out this paper.

1.1 System of Hyperbolic Conservation Laws

The motion of shallow water wave on an inclined surface can be modeled by

the following system of hyperbolic1 conservation laws (1):

hτ + (hu)y = 0

(hu)τ + (hu2 + 1
2g
′h2)y = g′hS − Cfu2

(1)

where g′ = gcos α is the gravitational acceleration, α also realized by S = tan α is

a constant representing the angle of inclination of the river with 0 < α < π
2 , Cf > 0

is the constant frictional coefficient, h > 0 and u > 0 are the depth and velocity of

the water, and τ and y are time and space variables, respectively. Figure1 shows

the physical interpretations of the variables h, α and u.

1 A second order PDE is called hyperbolic if it is of the form Auxx + 2Buxy +Cuyy +

Dux + Euy + F = 0 with det
(
A B
B C

)
= AC −B2 < 0.

5



Figure 1: Model of water wave on an inclined surface.

1.2 Water Wave Equations in Lagrangian Coordinates

If we consider system (1) by switching to Lagrangian coordinates under the trans-

formation,

x =
∫ y

β(τ)
h(z, τ)dz, (2)

with t = τ and β(τ) is a trajectory followed by particles satisfying β̇(τ) = u(β(τ), τ),

we can represent the system more conveniently.

However, before applying this transformation we first make the following obser-

vations on the derivatives with respect to τ and y,

∂

∂τ
=

∂

∂x

∂x

∂τ
+
∂

∂t

∂t

∂τ
=

∂

∂x

∂x

∂τ
+
∂

∂t

∂

∂τ
=

∂

∂x

∂

∂τ

(∫ y

β(τ)
h(z, τ)dz

)
+
∂

∂t

∂

∂τ
=

∂

∂x

(∫ y

β(τ)
h(z, τ)dz − h(β(τ), τ)β′(τ)

)
+

∂

∂t

∂

∂τ
=

∂

∂x

(∫ y

β(τ)
h(z, τ)dz − h(β(τ), τ)u(β(τ), τ)

)
+

∂

∂t

∂

∂τ
=

∂

∂x
(−hu(y, t) + hu(β(τ), τ)− hu(β(τ), τ)) +

∂

∂t

(∗) ∂

∂τ
= −hu ∂

∂x
+
∂

∂t
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In a similar fashion,

∂

∂y
=

∂

∂x

∂x

∂y
+

∂

∂τ

∂τ

∂y

(∗∗) ∂

∂y
= h

∂

∂x

Now, using transformation (2) and with the knowledge on the derivatives (∗) and

(∗∗), we apply this to system (1). The first equation of system(1) becomes:

hτ + (hu)y = 0

−huhx + ht + h(hu)x = 0

−huhx + ht + h(hxu+ hux) = 0

ht + h2ux = 0

ht
h2

+ ux = 0

−(
1
h

)t + ux = 0

vt − ux = 0

where v = 1
h . The second equation of system (1) becomes:

(hu)τ + (hu2 +
1
2
g′h2)y = g′hS − Cfu2

−hu(hu)x + (hu)t + (hu2 +
1
2
g′h2)y = g′hS − Cfu2

Applying the product rule, we arrive at

−hhxu2 − h2uux + htu+ uth+ h(hxu2 + 2uuxh) +
h

2
(g′xh

2 + 2g′hhx) = g′hS − Cfu2

−hhxu2 − h2uux + htu+ uth+ hhxu
2 + 2uuxh2 +

h3

2
g′x + g′h2hx = g′hS − Cfu2.
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Here the first term cancels with the fifth term and dividing by h

uth+ uht + h2uux +
h3

2
g′x + g′h2hx = g′hS − Cfu2

ut + u
ht
h

+ huux +
h2

2
g′x + g′hhx = g′S − Cfu2 1

h

ut + (ln(h))tu+
h

2
(u2)x +

h2

2
g′x +

g′

2
(h2)x = g′S − Cfu2 1

h

ut + (ln(h))tu+
h

2
(
(u2)x + g′x

)
+
g′

2
(h2)x = g′S − Cfu2 1

h

We will take the gravitational acceleration g′ to be a constant, hence g′x = 0.

ut + (ln(h))tu+
h

2
(u2)x) +

g′

2
(h2)x = g′S − Cfu2 1

h

ut +
ht
h
u+ huux + (

g′

2
v−2)x = g′S − Cfu2v

ut −
ux
v
u+ huux + (

g′

2
v−2)x = g′S − Cfu2 1

h

ut + p(v)x = g′S − Cfu2v

where ht = ( 1
v )t = −( vt

v2
) = −(ux

v2
) and (g

′

2 v
−2)x = p(v). In order to simplify the

system even more, we will set the gravitational acceleration to g′ = 1. Following

this simplifications, system (1) is transformed to:

vt − ux = 0,

ut + p(v)x = S − Cfu2v.
(3)

This system is strictly hyperbolic when 0 < v <∞ with two distinct characteristic

speeds λ1(v) = −
√
−p′(v) = −

√
g′v

3
2 , λ2(v) =

√
−p′(v) =

√
g′v

3
2 . When the

relaxation term S−Cfu2v vanishes, the system is in equilibrium and the equilibrium

equation corresponding to system (3)is given by

vt − f(v)x = 0,

where f(v) = ±
√

S
Cfv

satisfying S − Cf (f(v))2v = 0, assuming the case in a small
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neighborhood of (v, u) the equilibrium curve u = ±
√

S
Cfv

= f(v) It is expected that

system (3), as t→∞ is well approximated by the equilibrium equation given above,

provided the subcharacteristic condition |f ′(v)| <
√
−p′(v) holds. This subcharac-

teristic condition serves as a stability condition and for our model it translates to the

inclination angle being small, i.e tan α = S = 4Cf [1]. We notice we can even further

simplify system(3) if we use the following transformation w = v(x, t) − v̄, z(x, t) =

u − f(v̄). with given initial data v(x, 0) = v0(x), u(x, 0) = u0(x), satisfying the

conditions

lim
x→±∞

v0(x) = v̄, lim
x→±∞

u0(x) = f(v̄)

where v̄ > 0 is a constant and

∫ +∞

−∞
(v0(x)− v̄)dx = 0.

Hence, system(3) becomes:

wt − zx = 0

zt + p(v̄ + w)x = S − Cf (f(v̄) + z)2(v̄ + w)
(4)
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2 Analysis on Shallow Water Wave Equation

In this section we will investigate the trajectories taken by particles in water to un-

derstand the behavior of the motion of the wave based on initial data. Furthermore,

we predict how this wave motion will behave through time given initial values in

terms of the speed of particles and height of the water.

Before we begin the analysis on system(3), we introducing a new function ϕ(x, t)

given by,

ϕ(x, t) =
∫ x

−∞
w(y, t)dy (5)

which has a constant value in time as x→∞, as demonstrated below.

d

dt
ϕ(+∞, t) =

d

dt

∫ +∞

−∞
w(x, t)dx

=
∫ +∞

−∞
wt(x, t)dx =

∫ +∞

−∞
zx(x, t)dx

= z(+∞, t)− z(−∞, t) = 0.

Now lets assume that,

z+(t) = z(+∞, t), w+(t) = w(+∞, t)

z−(t) = z(−∞, t), w−(t) = w(−∞, t)

and

w+(0) = lim
x→+∞

w(x, 0) = lim
x→∞

(v0(x)− v̄) = 0

z+(0) = lim
x→+∞

z(x, 0) = lim
x→∞

(u0(x)− f(v̄)) = 0

w−(0) = lim
x→−∞

w(x, 0) = lim
x→∞

(v0(x)− v̄) = 0

z−(0) = lim
x→−∞

z(x, 0) = lim
x→∞

(u0(x)− f(v̄)) = 0
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then taking the time derivative of system(3), we find:

d

dt
w+(t) = 0

d

dt
z+(t) = S − Cf (f(v̄) + z+(t))2(v̄ + w+(t))

similarly,

d

dt
w−(t) = 0

d

dt
z−(t) = S − Cf (f(v̄) + z−(t))2(v̄ + w−(t))

The solutions to the O.D.E above are given by w+(t) = w−(t) = 0 and z+(t) =

z−(t) = 0(this result implies f(v̄) =
√

S
Cf v̄

)2. Hence w(±∞, t) = 0 and z(±∞, t) = 0

for all time t ≥ 0.

Using the transformation(5) and the information on the time and position deriva-

tives, we re-express system(4) as:

ϕtt + (p(v̄ + ϕx)− p(v̄))x = −Cf (f(v̄))2ϕx − 2Cff(v̄)v̄ϕt − 2Cff(v̄)ϕxϕt

−Cfϕxϕ2
t

(6)

From here on we will use system(6)3 to study the motion of shallow water waves

with respect to the initial given data.4

2 It is clear from the definition of ϕ(x, t) and analysis done; ϕt(x, t) = z(x, t) and
ϕx(x, t) = w(x, t)

3 The left hand side from transformation(4)S − Cf (f(v̄) + ϕt)2(v̄ + ϕx) is simplified
to −Cf (f(v̄))2ϕx − 2Cff(v̄)v̄ϕt − 2Cff(v̄)ϕxϕt − Cfϕxϕ2

t by using the subcharacteristics

condition f(v̄) =
√

S
Cf v̄

.
4 ϕtx − ϕxt = 0
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Lemma 2.1. Let ϕ(x, t) be a solution of the initial value problem(6) satisfying

ϕ(., t) ∈ H3(R) and ϕt(., t) ∈ H2(R) for t ∈ [0, T ]. Then there exists a number

δ > 0 , such that if

sup
x ∈ (−∞, +∞)

t ∈ [0, T ]

(|ϕxt|+ |ϕt|+ |ϕx| + |ϕ|) (x, t) ≤ δ

then ∫ +∞

−∞
(ϕ2 + ϕ2

t + ϕ2
x)(x, τ) dx+

∫ τ

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, t) dxdt

≤ O(1)
∫ +∞

−∞
(ϕ2 + ϕ2

t + ϕ2
x)(x, 0) dx

Remark 2.2. For d ≥ 1,Ω an open subset of Rd and m ∈ N, the Sobolev Space

Hm(Ω) is defined by

Hm(Ω) := f ∈ L2(Ω) : ∀|α| ≤ m, ∂αx f ∈ L2(Ω)

where

L2(Ω) := f : Ω→ R :
∫

Ω
|f |2dx ≤ ∞.

Proof. We will apply the energy method used in [2] in order to prove this lemma.

We start with multiplying system(6) by ϕ and integrating over the entire real line.

We look at the left hand side(L.H.S) and the right hand side(R.H.S) separately.

L.H.S:

The first term becomes

ϕttϕ = (ϕtϕ)t − ϕ2
t∫ +∞

−∞
ϕttϕ dx =

d

dt

∫ +∞

−∞
ϕtϕ dx−

∫ +∞

−∞
ϕ2
t dx.

For the second term we use the fact that ϕ(±∞, t) = 0 and after integration by
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parts, we get

∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))xϕ dx = p(v̄ + ϕx)− p(v̄))ϕ|+∞−∞ −

∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕx dx∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))xϕ dx = −

∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕx dx

then the L.H.S becomes

∫ +∞

−∞
[ϕttϕ + (p(v̄ + ϕx)− p(v̄))xϕ] dx =

∫ +∞

−∞
[
d

dt
(ϕtϕ) − ϕ2

t + (p(v̄)− p(v̄ + ϕx))ϕx] dx

We move on to examine the R.H.S in a similar approach, term by term;

R.H.S:

The first term is given by

∫ +∞

−∞
−Cf (f(v̄))2ϕϕx dx =

∫ +∞

−∞
−Cf (f(v̄))2(

1
2
ϕ)x dx∫ +∞

−∞
−Cf (f(v̄))2ϕϕx dx = −Cf (f(v̄))2(

1
2
ϕ)|+∞−∞ = 0.

The second term is simplified to

−2Cf (f(v̄))v̄
∫ +∞

−∞
ϕϕt dx = −2Cf (f(v̄))v̄

∫ +∞

−∞
(
1
2
ϕ)t dx

−2Cf (f(v̄))v̄
∫ +∞

−∞
ϕϕt dx = − d

dt

∫ +∞

−∞
(Cf (f(v̄))v̄)ϕt dx

putting the terms together, the R.H.S becomes

− d

dt

∫ +∞

−∞
(Cff(v̄)v̄)ϕt dx− 2Cff(v̄)

∫ +∞

−∞
ϕtϕxϕ dx − Cf

∫ +∞

−∞
ϕ2
tϕxϕ dx

Putting the L.H.S and R.H.S together, System(6) is simplified to:

∫ +∞

−∞

d

dt
[ϕtϕ + (p(v̄)− p(v̄ + ϕx))ϕx − ϕ2

t ]dx = − d

dt

∫ +∞

−∞
(cf (f(v̄)v̄)ϕ2)dx

− 2Cff(v̄)
∫ +∞

−∞
ϕtϕxϕ dx − Cf

∫ +∞

−∞
ϕ2
tϕxϕ dx
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Rearranging terms and based on the assumptions from Lemma(2.1), we get the

following inequality;

∫ +∞

−∞

d

dt
[ϕtϕ + (cf (f(v̄)v̄)ϕ2)]dx+

∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))ϕxdx−

∫ +∞

−∞
ϕ2
tdx

≤ Cδ
∫ +∞

−∞
|ϕtϕx|dx

At this point we use the AM-GM Inequality5on the integrand to get a better

estimate;

∫ +∞

−∞

d

dt
[ϕtϕ + (cf (f(v̄)v̄)ϕ2)]dx+

∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))ϕxdx−

∫ +∞

−∞
ϕ2
tdx

≤ Cδ
∫ +∞

−∞
(ϕ2

t + ϕ2
x)dx

We can further reduce this by working on the second term of the inequality above.

We make use the Taylor’s expansion of the integrand on the second term, and apply

the O(1) notation to represent the error terms (terms with order > 2).

−
∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕx dx =

∫ +∞

−∞
−p′(v̄)ϕ2

x dx+

∞∑
n=2

dn

dx
[
(p(v̄ + ϕx)− p(v̄))ϕx

n!
]

−
∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕx dx = −p′(v̄)

∫ +∞

−∞
ϕ2
x dx + O(1)

∫ +∞

−∞
|ϕx|3 dx

∫ +∞

−∞

d

dt
[ϕtϕ + (cf (f(v̄)v̄)ϕ2)] dx+

∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))ϕx dx−

∫ +∞

−∞
ϕ2
t dx

≤ Cδ
∫ +∞

−∞
(ϕ2

t + ϕ2
x) dx

5 AM-GM(Arithmetic Mean - Geometric Mean) is given by α1x1+α2x2+···+αnxn
α ≥

α
√
xα1

1 xα2
2 · · ·x

αn
n whereα = α1 + α2 + · · ·+ αn and ∀ x, αk, α > 0.
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Using this information, the inequality further reduces to:

∫ +∞

−∞

d

dt
[ϕtϕ dx+ (cf (f(v̄)v̄)ϕ2)] dx+

∫ +∞

−∞
−p′(v̄)ϕ2

x dx−
∫ +∞

−∞
ϕ2
t dx

≤ Cδ
∫ +∞

−∞
(ϕ2

t + ϕ2
x) dx+O(1)

∫ +∞

−∞
|ϕx|3 dx∫ +∞

−∞

d

dt
[ϕtϕ + (cf (f(v̄)v̄)ϕ2)] dx+

∫ +∞

−∞
−p′(v̄)ϕ2

x dx −
∫ +∞

−∞
ϕ2
t dx

≤ Cδ
∫ +∞

−∞
(ϕ2

t + ϕ2
x) dx (7)

for some constant C. Now that we have found this estimate, we look for another esti-

mate by employing the same methods again except this time we multiply System(6)

by ϕt.Again we look at the L.H.S and R.H.S separately.

L.H.S:

First term of the given by:

∫ +∞

−∞
(ϕttϕt) dx =

∫ +∞

−∞
(
1
2
ϕ2
t )t dx =

d

dt

∫ +∞

−∞
(
1
2
ϕ2
t )(x, t) dx

The second term of the L.H.S becomes:

∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕt dx = −

∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕxt dx

=
d

dt

(∫ +∞

−∞
(p(v̄ + ϕx)− p(v̄))ϕx dx

)
+
∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))tϕx dx

=
d

dt

(∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))ϕx dx

)
+
∫ +∞

−∞
p′(v̄ + ϕx)tϕxtϕx dx

=
d

dt

(∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))ϕx dx

)
+
∫ +∞

−∞
p′(v̄ + ϕx)t(

1
2
ϕ2
x)t dx

=
d

dt

(∫ +∞

−∞
(p(v̄)− p(v̄ + ϕx))ϕx dx

)
+
d

dt

(∫ +∞

−∞

1
2
p′(v̄ + ϕx)ϕ2

x dx

)
−

−
∫ +∞

−∞

1
2
ϕ2
xp
′(v̄ + ϕx)ϕxtdx

=
d

dt

(∫ +∞

−∞
(p(v̄) − p(v̄ + ϕx))ϕx +

1
2
p′(v̄ + ϕx)ϕ2

x dx

)
−

−
∫ +∞

−∞

1
2
p′(v̄ + ϕx)ϕ2

xϕxt dx.
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Putting all of the L.H.S together

d

dt

∫ +∞

−∞
[(

1
2
ϕ2
t ) + (p(v̄)− p(v̄ + ϕx))ϕx] dx+

1
2
p′(v̄ + ϕx)ϕ2

x dx −

−
∫ +∞

−∞

1
2
p′(v̄ + ϕx)ϕ2

xϕxt dx.

R.H.S:

Here we simply have

−Cf (f(v̄))2

∫ +∞

−∞
ϕxϕt dx− 2Cff(v̄)v̄

∫ +∞

−∞
ϕ2
t dx− 2Cff(v̄)

∫ +∞

−∞
ϕxϕ

2
t dx −

Cf

∫ +∞

−∞
ϕxϕ

3
t dx.

For simplicity let q be given by q := (p(v̄)− p(v̄+ϕx))ϕx + 1
2p
′(v̄+ϕx)ϕ2

x, then we

can put the R.H.S and L.H.S together and apply the condition that ϕxt and ϕx are

less than some small δ to get the following inequality;

d

dt

∫ +∞

−∞
[(

1
2
ϕ2
t ) + q] dx+ 2Cff(v̄)v̄

∫ +∞

−∞
ϕ2
t dx+ Cf (f(v̄))2

∫ +∞

−∞
ϕxϕt dx

=
∫ +∞

−∞

1
2
p′(v̄ + ϕx)ϕ2

xϕxt dx− 2Cff(v̄)
∫ +∞

−∞
ϕxϕ

2
t dx

d

dt

∫ +∞

−∞
[(

1
2
ϕ2
t ) + q] dx+ 2Cff(v̄)v̄

∫ +∞

−∞
ϕ2
t dx+ Cf (f(v̄))2

∫ +∞

−∞
ϕxϕt dx

≤ O(1)δ
∫ +∞

−∞
ϕ2
x dx+O(1)δ

∫ +∞

−∞
ϕ2
t dx

= O(1)δ
∫ +∞

−∞
(ϕ2

t + ϕ2
x) dx (8)

At this point we can get an estimate based upon the information at initial time,

by integrating the results from (7) and (8) up to a given time τ.This will give us an

insight on how the motion of the water waves will behave through time(up to τ),
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given some initial constraints. So integrating (7) w.r.t time in [0, τ ], we find:

∫ +∞

−∞
[ϕtϕ + (cf (f(v̄)v̄)ϕ2)](x, τ) dx+

∫ τ

0

∫ +∞

−∞
−(p′(v̄)ϕ2

x − ϕ2
t )(x, t) dxdt

≤
∫ +∞

−∞
[ϕtϕ + (cf (f(v̄)v̄)ϕ2)](x, 0) dx +

+ O(1)δ
∫ τ

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, t) dxdt (9)

similarly integrating (8) w.r.t time in [0, τ ], we have:

∫ +∞

−∞
[(

1
2
ϕ2
t ) + q](x, τ) dx+

∫ τ

0

∫ +∞

−∞
[2Cff(v̄)v̄ϕ2

t + Cf (f(v̄))2ϕxϕt](x, t) dxdt

≤
∫ +∞

−∞
[(

1
2
ϕ2
t ) + q](x, 0) dx+O(1)δ

∫ τ

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, t) dxdt (10)

Here we apply the Taylor expansion on q to get

q = (p(v̄)− p(v̄ + ϕx))ϕx +
1
2
p′(v̄ + ϕx)ϕ2

x =
1
2
p′(v̄)ϕ2

x +O(1)|ϕx|3.

and use a method introduced in [1] to get to our result. We add the result from (9)

and (10) in the following fashion; (9) + k(10) for an appropriate positive constant

in time k to be determined later. So adding (9) + k(10);6

∫ +∞

−∞
[ϕtϕ + (cf (f(v̄)v̄)ϕ2) +

k

2
ϕ2
t +
−kp′(v̄)

2
ϕ2
x +O(1)|ϕx|3 ](x, t) +∫ τ

0

∫ +∞

−∞
[−p′(v̄)ϕ2

x + (2kCff(v̄)v̄ − 1)ϕ2
t + Cfk(f(v̄))2ϕtϕx](x, t) dxdt

≤
∫ +∞

−∞
[(

1
2
ϕ2
t ) + q + ϕtϕ + (Cf (f(v̄)v̄)ϕ2)](x, 0) dx +

O(1)δ
∫ τ

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, t) dxdt

≤ O(1)
∫ +∞

−∞
(ϕ+ ϕ2

t + ϕ2
x)(x, 0) dx+O(1)δ

∫ τ

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, t) dxdt.

6 Here we used the O(1) notation to bound the following terms: 1
2ϕ

2
t → ϕ2

t , q → ϕ2
x

and (Cf (f(v̄)v̄)ϕ2)→ ϕ2. Since ϕtϕ is a small positive term it can go away.
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We choose k to guarantee each term on R.H.S is positive definite.Working with the

first term, to guarantee the quadratic form
(
ϕtϕ + (cf (f(v̄)v̄)ϕ2) + k

2ϕ
2
t

)
is positive

definite, we require

ϕ2 − 4Cff(v̄)v̄ϕ2k

2
< 0

⇒ 1− 4Cff(v̄)v̄
k

2
< 0

⇒ k > (2Cff(v̄)v̄)−1 = (4CfSv̄)−1/2.

The quadratic form above is approximated by

(
ϕtϕ + (cf (f(v̄)v̄)ϕ2) +

k

2
ϕ2
t

)
≥ O(1)

(
ϕ2 + ϕ2

t

)
.7

Likewise, looking at the second term, we require the quadratic form below to be

positive definite.

−p′(v̄)ϕ2
x + (2kCff(v̄)v̄ − 1)ϕ2

t + Cfk(f(v̄))2ϕtϕx

This is equivalent to8

(
4
√
CfS

−3/2 − 2S−3/24
√
Cf − Sv̄

)−1/2
< k <

(
4
√
CfS

−3/2 + 2S−3/24
√
Cf − Sv̄

)−1/2
.

Similar to the first term, we can find a positive lower bound for the quadratic form

in the second term. It can claim the following bound

−p′(v̄)ϕ2
x + (2kCff(v̄)v̄ − 1)ϕ2

t + Cfk(f(v̄))2ϕtϕx > O(1)
(
ϕ2 + ϕ2

t

)
Now that we have found two estimates for k from the first and second term, to

find a bound that will be sufficient to both the terms of the R.H.S, we take the

7 This inequality is a consequence from the fact that ϕtϕ > 0 and Cff(v̄)v̄, k2 > 0.
8 Here the subcharacterstic condition is used and the fact that p′(v̄) = −v−3 and

f(v̄) =
√

S
Cf v̄

.
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maximum, i.e

max (4
√
CfS

−3/2 − 2S−3/24
√
Cf − Sv̄)−1/2, (4CfSv̄)−1/2

< k

< (4
√
CfS

−3/2 + 2S−3/24
√
Cf − Sv̄)−1/2. (14)

Once we choose an appropriate k that guarantees the L.H.S to be positive, we

integrate (8) over [o, t] by virtue of the estimates due to k, we arrive at

∫ +∞

−∞
(ϕ2 + ϕ2

t + ϕ2
x)(x, τ) dx+

∫ τ

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, t) dxdt

≤ O(1)
∫ +∞

−∞
(ϕ2 + ϕ2

t + ϕ2
x)(x, 0) dx.

Lemma 2.3. Let ϕ(x, t) be a solution of the initial value problem(6) satisfying

ϕ(., t) ∈ H3(R) and ϕt(., t) ∈ H2(R) for t ∈ [0, T ]. Then there exists a number

δ > 0 , such that if

sup
x ∈ (−∞, +∞)

t ∈ [0, T ]

(|ϕxx|+ |ϕxt|+ |ϕt|+ |ϕx|) (x, t) ≤ δ

then

∫ +∞

−∞
(ϕ2

xt + ϕ2
xx dx)(x, t) dx+

∫ t

0

∫ +∞

−∞
(ϕ2

xt + ϕ2
xx dx)(x, τ) dxdτ

< O(1)δ
∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, 0) dx.

Proof. We start by differentiating System(6) w.r.t x and multiplying by ϕxt and then

integrate over the whole real line to get an estimate that involves the derivatives of

ϕt and ϕt.

L.H.S
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the first term,

∫ +∞

−∞
ϕttxϕxt dx =

1
2

∫ +∞

−∞

∫ +∞

−∞
(
∂

∂t
)(ϕ2

xx)2 dx =
d

dt

1
2

∫ +∞

−∞
ϕ2
xt dx.

and the second term, using the method of integration by parts;

∫ +∞

−∞
p(v̄ + ϕx)ϕxt dx = −

∫ +∞

−∞
p(v̄ + ϕx)xϕxxt dx

= −
∫ +∞

−∞
p′(v̄ + ϕx)ϕxxϕxxt dx

= −
∫ +∞

−∞
p′(v̄ + ϕx)(

1
2
ϕ2
xx)t dx

= −
∫ +∞

−∞
(
1
2
p′(v̄ + ϕx)ϕ2

xx)t dx+
1
2

∫ +∞

−∞
p′′(v̄ + ϕxt)ϕxtϕ2

xx dx.

All together the L.H.S becomes:

=
d

dt

∫ +∞

−∞

1
2

(ϕ2
xt − p′(v̄ + ϕx)ϕ2

xx)(x, t) dx+
1
2

∫ +∞

−∞
p′′(v̄ + ϕxt)varphixtϕ2

xx dx.

R.H.S

=
∫ +∞

−∞
−2Cff(v̄)v̄ϕ2

xt − Cf (f(v̄))2ϕxtϕxx dx −∫ +∞

−∞
(2Cff(v̄)[ϕxxϕt + ϕxϕxt dx+ Cf [ϕxxϕ2

t + 2ϕxϕtϕxt]ϕxt dx.

to simplify to following calculations we will assign I to be

I :=
∫ +∞

−∞
(2Cff(v̄)ϕxϕ2

xt + 2Cfϕtϕxtϕx + Cfϕ
2
tϕxx)ϕxt dx
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Putting the L.H.S and R.H.S together, we have

d

dt

∫ +∞

−∞

1
2

(ϕ2
xt − p′(v̄ + ϕx)ϕ2

xx)(x, t) dx +∫ +∞

−∞
2Cff(v̄)v̄ϕ2

xt + Cf (f(v̄)2ϕxtϕxx dx = −1
2

∫ +∞

−∞
p′′(v̄ + ϕxt)varphixtϕ2

xx dx− I.

Integrating the result in time from [0, t] and in view of the lemma on sup of |ϕxt|, |ϕt|

and |ϕx| we can get the estimate below by reducing I,

∫ +∞

−∞
(
1
2
ϕ2
xt − p′(v̄ + ϕx)ϕ2

xx)(x, t) dx+∫ t

0

∫ +∞

−∞
(2Cff(v̄)v̄ϕ2

xt + Cf (f(v̄))2ϕxtϕxx)(x, τ) dxdτ

= −1
2

∫ t

0

∫ +∞

−∞
(p′′(v̄ + ϕxt)ϕ2

xx)(x, t) dxdτ +
∫ t

0
I dτ

+
∫ +∞

−∞
(
1
2
ϕ2
xt − p′(v̄ + ϕx)ϕ2

xx)(x, 0) dx

≤
∫ +∞

−∞

1
2

(ϕ2
xt − p′(v̄ + ϕx)ϕ2

xx)(x, 0) dx +O(1)δ
∫ t

0

∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, τ) dxdτ. (F)

To get another estimate we multiply the derivative of System(6) w.r.t x by ϕxx and

integrate of the the whole real line.

L.H.S

the first term

∫ +∞

−∞
ϕttxϕxx dx =

d

dt

∫ +∞

−∞
ϕtxϕxx dx−

∫ +∞

−∞
ϕtxϕtxx dx

=
d

dt

∫ +∞

−∞
ϕtxϕxx dx.
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for the second term

∫ +∞

−∞
p(v̄ + ϕx)xxϕxx dx = −

∫ +∞

−∞
p(v̄ + ϕx)xϕxxx dx

= −
∫ +∞

−∞
p′(v̄ + ϕx)ϕxxϕxxx dx

= −
∫ +∞

−∞
p′(v̄ + ϕx)(

1
2
ϕ2
xx)x dx

=
1
2

∫ +∞

−∞
p′′(v̄ + ϕx)ϕ3

xx dx.

So the L.H.S becomes9:

=
d

dt

∫ +∞

−∞
ϕtxϕxx dx+

1
2

∫ +∞

−∞
p′′(v̄ + ϕx)ϕ3

xx dx.

R.H.S

∫ +∞

−∞
−Cf [f(v̄)ϕxxϕt + f(v̄)ϕxϕxt + ϕxxϕ

2
t + 2ϕxϕxtϕt]ϕxx dx.

We put the L.H.S and R.H.S together and using the using the fact sup (|ϕt| +

|ϕx|) = δ 10, we get the inequality

d

dt

∫ +∞

−∞
(ϕtϕ+ cf (f(v̄)v̄)ϕ2) dx +

∫ +∞

−∞
(−p(v̄)ϕ2

x)dx −
∫ +∞

−∞
ϕ2
t dx

+ 2cff(v̄)
∫ +∞

−∞
ϕtϕxϕ dx− cf

∫ +∞

−∞
ϕ2
tϕxϕ dx

≤ O(1)δ
∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, t) dx.(FF)

To complete the proof, we make use of the method employed in lemma 2.1, we

9 The term
∫ +∞
−∞ ϕtxϕtxx dx→ 0 and [− 1

2

∫ +∞
−∞ p′(v̄ + ϕx)ϕ2

xx]x = 0.
10 Notice the inequality |ϕxtϕxx| ≤ 1

2 (ϕ2
t + ϕ2

x) also notice ϕ2
tϕ

2
xx ≤ δ2ϕ2

xx
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find a constant in time k such that F + kFF is greater than or equal to

≥ c1

∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, t) dx+ C2

∫ t

0

∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, t) dx.

So

c1

∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, t) dx+ C2

∫ t

0

∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, t) dx

≤ O(1)
∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, 0) dx+ C2

∫ t

0

∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, 0) dx

≤ O(1)
∫ +∞

−∞
(ϕ2

xx + ϕ2
xt)(x, 0) dx.

Theorem 2.4. There exists a positive number δ > 0, such that if ||ϕ(., 0)||H3(R) +

||ϕt(., 0)||H2(R) < δ, then the initial value problem System(6) with the initial data

ϕ(x, 0) and ϕt(x, 0), has a global in time solution. Moreover,

∫ +∞

−∞
(ϕ2

x + ϕ2
t )(x, t) dx ≤

C

t
(12)

∫ +∞

−∞
(u− f(v̄))2 + (v − v̄)2(x, t)dx ≤ C

t

and

sup
x ∈ (−∞, +∞)

(|ϕt(x, t)|+ |ϕx(x, t)|) ≤ C

t
1
4

sup
x ∈ (−∞, +∞)

(|u− f(v̄)| + |v − v̄)|) ≤ C

t
1
4

(13)

Proof. The first inequality comes from (8)by integrating over (t, T ):

∫ +∞

−∞
(

1
2
ϕ2
t + q)(t, T ) dx +

∫ T

t

∫ +∞

−∞
( 2cf (f(v̄)) v̄ ϕ2

t + cf (f(v̄))2ϕt ϕx)(x, s) dx ds

≤
∫ +∞

−∞
(

1
2
ϕ2
t + q)(x, t) dx + O(1)δ

∫ T

t

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, s) dx dt
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then integrate the above result on [0, T ] for t:

T

∫ +∞

−∞
(

1
2
ϕ2
t + q)(t, T ) dx +

∫ T

0

∫ T

t

∫ +∞

−∞
( 2cf (f(v̄)) v̄ ϕ2

t + cf (f(v̄))2ϕt ϕx)(x, s) dx ds dt

≤
∫ T

0

∫ +∞

−∞
(

1
2
ϕ2
t + q)(x, t) dx + O(1)δ

∫ T

0

∫ T

t

∫ +∞

−∞
(ϕ2

t + ϕ2
x)(x, s) dx dt

because of the positive integrand, this reduces to11:

=⇒ T

∫ +∞

−∞
(

1
2
ϕ2
t + q)(x, T ) dx ≤ O(1)

∫ T

0

∫ +∞

−∞
(ϕ2

t + ϕ2
x) dx dt

=⇒ T

∫ +∞

−∞
(

1
2
ϕ2
t + q)(x, T ) dx ≤ O(1)

=⇒ T

∫ +∞

−∞
(

1
2
ϕ2
t + ϕ2

x)(x, T ) dx

≤ C

T
.

Notice that (12) is a simple consequence derived from Schwarz’s Inequality12.

ϕ2
t (x, t) =

∫ x

−∞
(ϕ2

t (x, t))x dx

=
∫ x

−∞
2ϕt(y, t)ϕxt(y, t) dy

≤ 2
(∫ x

−∞
ϕ2
t (y, t) dy

) 1
2
(∫ x

−∞
ϕ2
xt(y, t) dy

) 1
2

≤ 2
(∫ +∞

−∞
ϕ2
t (y, t) dy

) 1
2
(∫ +∞

−∞
ϕ2
xt(y, t) dy

) 1
2

≤ C

t
1
2

⇒ |ϕt| ≤
C

t
1
4

11 We used integration by parts on the integrand
∫ T

0

∫ T
t

∫ +∞
−∞ (ϕ2

t + ϕ2
x)(x, s) dx dt =

t
∫ T
t

∫ +∞
−∞ (ϕ2

t + ϕ2
x)(x, s) dx dt|T0 +

∫ T
0

∫ +∞
−∞ (ϕ2

t + ϕ2
x)(x, s) dx dt =

∫ T
0

∫ +∞
−∞ (ϕ2

t +
ϕ2
x)(x, s) dx dt.
12 Given two integrable functions ϕt(x, t) and ϕxt(x, t) in [x,−∞] then Cauchy’s In-

equality is given by
∫ x
−∞ ϕt(y, t)ϕxt(y, t) dy ≤

(∫ x
−∞ ϕ2

t (y, t) dy
) 1

2
(∫ x
−∞ ϕ2

xt(y, t) dy
) 1

2
.
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Similarly, we have |ϕx| ≤ C

t
1
4

. From here we get (12),

sup
x ∈ (−∞, +∞)

(|ϕt(x, t)|+ |ϕx(x, t)|) ≤ C

t
1
4

.

The global in time existence follows by the standard local existence result of

hyperbolic systems ([6]) and the a priori estimates(Lemma 2.1 and Lemma 2.2).

This a priori estimates enable us to extend the local in time solution to global in

time solution([7]).
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3 More General Situation

In this section we analyze how the system of equations for shallow water wave would

change if the initial conditions were changed. We look at the case where the velocity

of the water at ±∞ is not the same. Instead we start with the assumptions listed

below:

lim
x→±∞

v0(x) = v̄

lim
x→+∞

u0(x) = u+, lim
x→−∞

u0(x) = u−

where u+ and u− are positive constants.

Now let

v+(t) = lim
x→+∞

v(x, t), u+(t) = lim
x→+∞

u(x, t)

v̄ = lim
x→−∞

v(x, t), u−(t) = lim
x→−∞

u(x, t) and f(v̄) =

√
S

Cf v̄
.

then rewriting system(3), we get13;

v+
t (t) = 0

u+
t (t) = S − Cf (u+)2(v+)c

At this point we introduce new transformations that can be used to express

system(7) in a similar fashion as system(6). This approach is beneficial due to

the fact that the lemmas developed to prove the existence of a global solution for

system(6) could be directly applied here as well.

Set

U+(t) =
1 + y+(t)
1− y+(t)

√
S

Cf v̄
, U−(t) =

1 + y−(t)
1− y−(t)

√
S

Cf v̄

13 Notice that v+(0) = v̄, u+(0) = u+, v+(t) = v̄, u+
t = S − Cf (u+)2v̄.
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where,

y+(t) =
u+

√
Cf v̄ −

√
S

u+

√
Cf v̄ +

√
S
exp

(
−
√
SCf v̄t.

)
y−(t) =

u−
√
Cf v̄ −

√
S

u−
√
Cf v̄ +

√
S
exp

(
−
√
SCf v̄t.

)

We introduce new variables v̂(x, t) and û(x, t) defined as:

v̂(x, t) = m0(x)
∫ +∞

t

(
u−(s)− u+(s)

)
ds

û(x, t) =
(
u+(t)− u−(t)

) ∫ +∞

x
m0(y) dy

where

∫ +∞

−∞
m0(y) dy = 1 and supp m0(x) = [−1, 1].

Here we make a quick observation on the relation between v̂(x, t) and û(x, t);

d

dt
v̂(x, t) =

d

dt

(
m0(x)

∫ +∞

t

(
u−(s)− u+(s)

)
ds

)
= m0(x)

d

dt

(∫ +∞

t

(
u−(s)− u+(s)

)
ds

)
= m0(x)

(
u−(s)− u+(s)

)
|+∞t

= m0(x)
(
u+(t)− u−(t)

)
.

d

dx
û(x, t) =

d

dt

((
u+(t)− u−(t)

) ∫ +∞

x
m0(y) dy

)
=
(
u+(t)− u−(t)

) d
dt

(∫ +∞

t
m0(y) dy

)
=
(
u+(t)− u−(t)

)
m0(y) |x−∞

=
(
u+(t)− u−(t)

)
m0(x).

This shows that ûx(x, t) = v̂t(x, t).

Following similar steps we took in Section 2, we define the variables w(x, t) and
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z(x, t) in the following way.

w(x, t) := v(x, t)− v̄ − v̂

z(x, t) := u(x, t)− f(v̄)− û.

From the relation between v̂ and û, it follows that wt(x, t) = zx(x, t) and if we look

at the time derivative of z(x, t), we find14

zt = ut − ût

zt = S − Cfu2v − p(v)x − ūt

zt = S − Cfu2v − p(v̄ + v̂ + w)x − ūt

zt + p(v̄ + v̂ + w)x = S − Cfu2v − ūt

zt + p ((v̄ + v̂ + w)− p(v̄))x = S − Cfu2v − ūt.

Combining these information we get a system of equations that is alike system(4)

wt − zx = 0

zt + p ((v̄ + v̂ + w)− p(v̄))x = S − Cfu2v − ūt (15)

Now let;

ϕ(x, t) =
∫ x

−∞
w(y, t) dy

=
∫ x

−∞
(v(y, t)− v̄ − v̂) (y, t) dy

We want ϕ(±∞, t) = 0 for all t > 0 and we want to show that ϕ(±∞, 0) = 0 and

14 From system(3), we have ut = S − Cfu
2v − p(v)x and p ((v̄ + v̂ + w)− p(v̄))x =

p(v̄ + v̂ + w)x because p(v̄)x = 0, also f(v̄)x = v̄t = 0
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ϕt(±∞, t) = 0.15

ϕ(+∞, 0) =
∫ +∞

−∞
[v0(x)− v̄ − v̄] dx = 0

=
∫ +∞

−∞

[
v0(x)− v̄ −m0(x)

(∫ +∞

t=0
(u−(s)− u+(s)) ds

)]
= 0

⇒
∫ +∞

−∞
(v0(x)− v̄) dx =

∫ +∞

−∞
m0(x)

(∫ +∞

t=0
(u−(s)− u+(s)) ds

)
dx

⇒
∫ +∞

−∞
(v0(x)− v̄) dx =

∫ +∞

t=0
(u−(s)− u+(s)) ds

d

dt
ϕ(+∞, t) =

∫ +∞

−∞
(vt − v̄t(x, t)) dx

=
∫ +∞

−∞
(ux − ūx(x, t)) dx

= (u(+∞, t)− u(−∞, t))− (û(+∞, t)− û(−∞, t))

=
(
u+(t)− u−(t)

)
−
(
u+(t)− u−(t)

)
= 0.

Once we have the conditions listed above, we are ready to express the system of

equations for the general case in terms of ϕ(x, t).

ϕx = v − v̄ − v̂ = w, ϕt =
∫ x

−∞
zx dx

ϕt = z = u− f(v̄)− û

ϕtt = zt

Hence the equation for the general case becomes,

ϕtt + p ((v̄ + v̂ + ϕx)− p(v̄))x = S − Cf (f(v̄) + û+ ϕt)2(v̄ + v̂ + ϕx)− ût. (16)

Once we have found this equation, we apply all the arguments presented in section

2 to arrive at the global solution and find the convergence rate.

15 It is clear that ϕ(−∞, t) = ϕt(−∞, t) = ϕ(−∞, 0) = 0
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4 Conclusion

This MQP project looks at the partial differential equations describing Shallow

Water Wave(SWW). The motivation for the project comes from the journal papers

[2] and [2], where the local existence of the solutions of SWW were proved. However,

the convergence rate for the solution and the existence of the global in time solutions

were out of reach.

In this project we study SWW equations with certain given initial data. We

start by assuming the height of the surface and the inclination of the surface are

small with respect to the horizontal. Using this assumption and applying multiple

transformations we convert the SWW equations to a single equation that we found

suitable. From there on we use concepts from real analysis to arrive at convergence

rate for the Shallow Water Wave. Furthermore, we introduce two new lemmas that

we consider as a-priori conditions to prove the existence of the global solution.

In conclusion, we try to generalize by looking ahead at general situations, by

minimizing the restriction on the initial conditions. Here, we introduce transforma-

tions that would carry the system of SWW equations to a single equation similar

to what we have found and studied on previous section. We leave the details from

showing the existence and convergence rate of the global solution, as the argument

follows naturally from the previous section.
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