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Abstract 

 The maximum drawdown on a time interval [0, T] of a random process can be 

defined as the largest drop from a high water mark to a low water mark.  In this project, 

expected maximum drawdowns are analyzed in two cases:  maximum drawdowns under 

constant volatility and stochastic volatility.  We consider maximum drawdowns of both 

generalized and geometric Brownian motions.  Their paths are numerically simulated and 

their expected maximum drawdowns are computed using Monte Carlo approximation and 

plotted as a function of time.  Only numerical representation is given for stochastic 

volatility since there are no analytical results for this case.  In the constant volatility case, 

the asymptotic behavior is described by our simulations which are supported by 

theoretical findings.  The asymptotic behavior can be logarithmic for positive mean 

return, square root for zero mean return, or linear for negative mean return.  When the 

volatility is stochastic, we assume it is driven by a mean-reverting process, in which case 

we discovered that if one uses the effective volatility in the formulas obtained for the 

constant volatility case, the numerical results suggest that similar asymptotic behavior 

holds in the stochastic case.    
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Introduction 

 Quantifying risk is a primary concern of any investor.  If the standard deviation of 

returns for a manager is large enough to produce a loss during some time period, that 

manager will experience drawdowns.  Many consider a manager’s drawdowns to be a 

better measure of risk than simply considering the volatility of returns or a return/risk 

measure such as the Shape ratio [1].  Also, taking drawdowns as a description of a 

manager’s historical performance has the distinct quality of referring to a physical reality.  

It is known that the Commodity Futures Trading Commission (CFTC) has a mandatory 

disclosure regime that requires futures traders to disclose as a part of their performance 

their “worst peak-to-valley drawdown” [6].  Particularly in hedge funds, estimating 

drawdown and maximum drawdown is imperative for estimating the probability of 

reaching a stop-loss that may set off large liquidations and of reaching the high water 

mark prior to the end of the year that will result in a performance fee [7]. 

A drawdown is defined as change in value of a portfolio from any established 

peak (high water mark) to the subsequent trough (low water mark).  A high water mark 

has occurred if it is higher than any previous net asset value and is followed by a loss.  A 

low water mark has occurred if it is the lowest net asset value between two high water 

marks.  A maximum drawdown of a portfolio is the largest drop from a high water mark 

to a low water mark.  Even though a manager can only have one maximum drawdown, it 

is informative to look at the distribution from which the maximum drawdown was drawn.  

If one considers several managers, all with the same or similar track records and return 

characteristics, it is feasible to see what their distributions of worst drawdowns look like 
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[1].  Simulated drawdowns (DD) and corresponding maximum drawdowns (MDD) can 

be seen below, with mean return .2, 0, and -.2, sigma .3, and time interval 1.   

 

 This project is structured as follows:  Chapter one will cover the theoretical and 

empirical results of drawdowns and expected maximum drawdowns under the 

assumption of constant volatility.  Chapter two will reveal what happens to expected 

maximum drawdowns when the volatility function is taken to be stochastic.  Chapter 

three will show numerical examples of expected maximum drawdowns under the cases of 

constant and stochastic volatility.  Finally, Chapter four concludes the theoretical and 

empirical findings reported in this project and contains recommendations for future work. 
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Chapter 1:  Drawdowns and Maximum Drawdowns 

under Constant Volatility  

1.1 Empirical Derivations   

Of the various parameters that can influence drawdowns:  length of track record, 

mean return, volatility of returns, skewness, and kurtosis, only the first three have great 

effect [1].  The possibility of experiencing a drawdown of any size is significantly 

independent of the amount of time the manager has been in the business, and so length of 

track record does not greatly effect the distribution of drawdowns.  Mean returns, 

however, do effect the distribution.    Higher mean returns lead to smaller expected 

drawdown.  Volatility of returns also has significant influence over drawdowns; the 

greater the volatility, the greater the expected drawdown.  Skewness and kurtosis do not 

greatly affect drawdown.  A possible reason for this is that drawdowns result from adding 

together a sequence of returns and by the central limit theorem, even if the distribution of 

returns is highly skewed or contains fat tails, their sum produces a relatively normal 

distribution of returns [1].   

Analysis of historical data suggest that the relationship between mean return, 

volatility of returns, and drawdown can be empirically described by  

 DD/σ = f(µ/σ)     

where σ is the standard deviation of returns and µ is the mean return [1].  And so, a 

manager’s drawdowns divided by the volatility of returns can be written as a function of 

that manager’s Sharpe ratio.  When viewing the shape of this function, the curve indicates 

that volatility matters more than mean return.  If a manager’s mean return is doubled and 
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the volatility is held constant, the expected drawdown per unit of volatility is lowered by 

less than half.  Likewise, if the volatility is doubled but the mean return is held constant, 

expected maximum drawdown will more than double per unit of volatility.  However, if 

one is only concerned with the size of drawdowns instead of drawdown per unit 

volatility, the empirical function can be rewritten as 

 DD = σ f(µ/σ).            

Viewing the relationship between drawdowns and returns in this form indicates some 

other properties.  For one, if both mean return and volatility are doubled, and so the 

modified Sharpe ratio is not changed, expected maximum drawdowns will exactly 

double.  Second, if volatility is doubled, expected maximum drawdowns will more than 

double.  And third, mean return would have to be more than doubled to make up for 

doubling the volatility.  This relationship also shows that two managers can have the 

same volatility of returns but different expected drawdowns if their mean returns are 

different.  Also, two managers with the same modified Sharpe ratio can have different 

expected drawdowns if their volatilities of returns are different. 

 Maximum drawdowns, as in drawdowns, are greatly affected by the mean return 

and the volatility of returns, but not skewness or kurtosis.  However, unlike the case with 

drawdowns, the likelihood of a manager experiencing a larger drawdown than he ever has 

before increases with each day.  An increase in the length of track record will shift the 

maximum drawdown distribution to the left.  Higher returns will generate smaller 

maximum drawdowns.  However, higher volatility will increase the possibility of large 

maximum drawdowns.  
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1.2 Concerns with Using Drawdown as a Statistical Measure 

Drawdowns lose value as the estimate of a manager’s quality due to some 

limitations.  There is a relationship between drawdown and two important statistics, mean 

and variability.  Any portfolio with a long-run positive return is expected to “drift” 

upward in time.  When a positive expected return rises from a stochastic or partly 

stochastic process, the upward move will have some random variation that will cause the 

portfolio’s value to decline below its previously obtained peak.  This fall is a drawdown.  

A drawdown will be smaller if the upward drift is steeper or the variability of the process 

is lower.  Because of this, drawdown is a function of mean and variability.  Without 

knowledge of this function, however, or the return generating process, one cannot 

understand what the level of the drawdown relates to.  This means a raw drawdown offers 

little information as a statistic and even less as a predictive one [6].   

 Since a maximum drawdown is one number determined by a series of data, there 

is a large error associated with it.  Because of this, the generation of a future return from 

historical maximum drawdowns carries a high chance of error.  Large errors in statistical 

measures can be resolved by averaging.  In this project, however, a series of maximum 

drawdowns are simulated.   

 Besides maximum drawdowns being error-prone, however, there are two other 

adjustments that should be made.  One is that drawdowns must be compared on the same 

time interval.  All things held equal, drawdowns are larger the greater the frequency of 

the time interval.  So any investment that is managed daily will be at a disadvantage over 

one managed weekly or monthly.  Secondly, managers with long track records will 
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experience larger maximum drawdowns.  They have been in the business longer and have 

overcome more difficulties in the market than a newcomer.   

 Thus, to improve drawdowns as a statistic, the track record of a manager, the 

error, measurement interval, and volatility must all be taken into account.  Also, the 

return generating process must be known.  It can be argued that all of these disadvantages 

to drawdowns are too much to correct and it is better to focus on mean and volatility.  But 

when using drawdowns, it is important to use them with these things in mind and with the 

understanding of the underlying process rather than simply historical record.          

1.3.1 Theoretical Findings of a Standard Brownian Motion 

 Drawdowns have been studied in a variety of disciplines, among them are: 

mathematics, physics, and management.  The simplest theoretical formulation of 

drawdowns is that of downfalls in a standard Brownian motion.  Results can be obtained 

for maximum drawdowns in this case.  Let B = (Bt)0≤t≤1 be of standard Brownian motion 

on a probability space (Ω, F, P) where B0 = 0, E[Bt] = 0, and E[Bt²] = t, then the 

maximum drawdown is defined as: 

MDD = sup0≤t≤t′≤1 (Bt - Bt′). 

It can be seen that MDD describes the maximum downfall in the trajectories of the 

Brownian motion on the time interval [0, 1].  It can be seen that the following equivalent 

definitions hold: 

 MDD = sup0≤t≤1 (Bt – inft≤t′≤1 Bt′)  

   sup0≤t′≤1 (sup0≤t≤t′ Bt - Bt′). 

In [6], the authors R. Douady, A.N. Shiryaev, and M. Yor showed that the distribution of 

maximum drawdowns for a standard Brownian motion is the same as that of   
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sup0≤t≤1 |Bt|.  

Moreover, the expectation is  

 E[MDD] = sqrt(π/2) (Note:  sqrt ≡ square root)      

(where t = 1, otherwise the result is sqrt(π/(2t)) and the distribution function FD(x) = 

P{MDD ≤ x} is given by 

 FMDD(x) = 1 – 1/ sqrt(2π) ∑k=-∞
∞ ∫-x

x [e-(y+4kx)²/2 – e-(y+2x+4kx)²/2]dy. 

1.3.2 Theoretical Findings of a Generalized Brownian Motion 

 Maximum drawdowns are defined as a measure of risk that can be defined for 

more general stochastic processes.  It is common to assume that the value of a portfolio 

follows a “generalized Brownian motion.”  Let Bt be a standard Brownian motion as 

defined in the previous section.  Then, Xt is a generalized Brownian motion if it is of the 

form 

 Xt = σBt + µt 0 ≤ t ≤ T 

for the given constants µ є R, the drift rate, and σ, the diffusion parameter, greater than 

zero.      

 The high, H, and low, L, of Xt are given by 

 H = suptє[0,T] Xt L = inftє[0,T] Xt 

and the maximum drawdown is defined by 

 MDD (T; µ, σ) = suptє[0,T] [supsє[0,t] Xs – Xt]. 

The distribution function for MDD is 

GMDD(h) = 2σ4 ∑n=1
∞  θnsinθn  exp{-µh} (1 – exp{-σ²θn²T} exp{-µ²T})  

                  θ4θn² + µ²h² - σ²µh          σ²  2h²         2σ² 
 +M 

where, for n ≥ 1, θn is the positive solution of the eigenvalue condition 
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 tanθn = (σ²/µh)θn 

and M is 

 = 0         µ < σ²/h 

 = (3/e)(1 – exp{-µ²T/2σ²})       µ = σ²/h 

 = 2σ4η sinh η exp{-µh/σ²} (1 – exp{-µ²T/2σ²} exp{σ²η²T/2h²}) µ > σ²/h 
        σ4η² - µ²h² + σ²µh 

where η is the unique positive solution of 

 tanh η = (σ²/µh)η. 

Using the identity E[MDD] = ∫0
∞ dh GMDD(h), it is determined that 

 E[MDD] = (2σ²/µ) QMDD(µ sqrt[T/(2σ²)]) 

where QMDD(x) is defined to be 

 Qp(x)   µ > 0 

 γ sqrt(2x)  µ = 0 

 -Qn(x)   µ < 0   

where γ = sqrt(π/8) and Qp and Qn are functions whose exact values are known and 

tabulated.  Their asymptotic behavior is given by 

 Qp(x) →  γ sqrt(2x)   x → 0 

    ¼ log(x) + 0.49088  x → ∞ 

 Qn(x) → γ sqrt(2x)   x → 0 

   x + ½    x → ∞. 

The general result obtained by Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and 

Yaser S. Abu-Mostafa in [6], is that 

 E[MDD] = (2σ²/µ) QMDD(α²). 



 12 

where α = µ sqrt[T/(2σ²)].  Notice that if T is one, µ equals zero, and σ equals one, as is 

the case in standard Brownian motion, these results give: 

 E[MDD] = sqrt(π/2) 

which agrees with the findings of Douady, Shiryaev, and Yor.        

1.4 The Asymptotic Behavior Expected Maximum Drawdowns 

 The distribution and asymptotic behavior of maximum drawdowns for a 

generalized Brownian motion were also analyzed in [7].  Those results show that the 

asymptotic behavior for expected maximum drawdowns as T tends to infinity are:  

 E[MDD]  = 2σ²/µ Qp(µ²T/(2σ²)) → σ²/µ(0.63519 + 0.5 log(T) + log(µ/σ)  

if µ > 0 

   = 1.2533σ sqrt(T)     if µ = 0 

   = -2σ²/µ Qn(µ²T/(2σ²)) → µT - σ²/µ  if µ < 0. 

1.5 Geometric Brownian Motion 

 Theoretical results can also be obtained for maximum drawdowns of a geometric 

Brownian motion.  In this case maximum drawdowns follow the process 

 dXt = µXtdt + σXtdBt. 

Taking the log transformation Xt^ = log Xt and using Ito’s formula, one obtains  

 dXt^ = (µ - ½σ²)dt + σXtdBt. 

This result is the same as the generalized Brownian motion case with altered parameters.  

The result for expected maximum drawdowns then becomes: 

E[MDD]  = 2σ²/(µ - ½σ²) Qp((µ - ½σ²)²T/(2σ²))  if µ > 0 

   = 1.2533σ√T     if µ = 0 
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   = -2σ²/(µ - ½σ²) Qn(µ²T/(2σ²))  if µ < 0. 

Chapter 2:  Expected Maximum Drawdowns under 

Stochastic Volatility 

It is no longer sufficient to use the Black-Scholes model to explain modern 

market occurrences [3].  This is especially true since the 1987 crash.  The common 

practice, both in analytical and practical application, has been to change the volatility 

function from being constant to stochastic.  A stochastic process is more complex since 

the volatility is the driving process but cannot be seen.  Moreover, the volatility tends to 

be mean-reverting.  This means it fluctuates at high levels for a time period and then 

fluctuates at a low level for a similar amount of time.  The Black-Scholes model relies on 

a lot of assumptions that do not necessarily hold true, one being constant volatility.  A 

well known problem between predicted European option prices determined by Black-

Scholes and options traded in the market, the smile curve, can be resolved by stochastic 

volatility models.  This shows that using stochastic volatility models resolves a problem 

in one area where the constant model failed.  In this work maximum drawdowns are 

considered only when the volatility is a function of some special cases of mean-reverting 

processes. 

2.1 Mean-Reverting Stochastic Volatility Models 

 A mean-reverting process refers to the time it takes for a process to return to the 

mean level of its long-run distribution.  A mean-reverting process in financial modeling 

means the linear pullback term in the drift of the volatility process.  Letting σt = f(Yt), 
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where f is a positive function, the mean-reverting stochastic volatility means the 

stochastic differential equation for Yt resembles: 

 dYt = α(m - Yt)dt + ... dZt 

where Zt is a Brownian motion correlated with (Wt), α is the rate of mean reversion, and 

m is the long-run mean level of Y.  The drift term pulls Y to m, so σt is pulled to the 

mean value of f(Y) with respect to the invariant distribution of Y.   

The Ornstein-Uhlenbeck and Cox-Ingersoll-Ross Processes 

 One mean-reverting process used is the Ornstein-Uhlenbeck process.  This 

process is defined as the solution of 

 dYt = α(m - Yt)dt + β dZt. 

The process is Gaussian given in the terms of its starting value y by 

 Yt = m + (y – m)e-αt + β∫0
t e-α(t-s) dZs 

where Yt is normally distributed with mean m + (y – m)e-αt and variance β2/[2α(1 - e-αt)].  

As t increases to infinity, its long-run distribution becomes normally distributed with 

parameters (m, β2/(2α)).  The second Brownian motion (Zt) is usually correlated with the 

Brownian motion (Wt) from the stochastic differential equation 

 dXt = µXt dt + σtXt dWt. 

Let ρ ε [-1, 1] denote the instantaneous correlation coefficient defined by  

 d<W, Z>t = ρdt. 

In empirical studies it is often found that ρ is less than zero.  Asset prices tend to decrease 

when volatility increases, causing a negative correlation between the two.  As can be seen 

in the plots below, correlation has lesser effect when it is negative as opposed to when it 

is greater than or equal to zero.   
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The Ornstein-Uhlenbeck process is one of the processes that often drive sigma and is the 

one implemented in this project.   

The Cox-Ingersoll-Ross process is another mean-reverting model used and is 

defined by 

 dYt = κ(m′ - Yt)dt + υ sqrt(Yt) dZt. 

Recall that for the OU process, the asymptotic behavior of Yt is the same for either t → ∞ 

or α → ∞.  This means that the problem can be rescaled for different times and a fixed 

time T and one can compare the asymptotic behavior as α tends to infinity.    
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2.2 The Stochastic Volatility Model 

 In the stochastic case of determining expected maximum drawdowns, we will 

assume a mean-reverting OU process.  The driving process for the return on a portfolio 

becomes 

 dXt = µXtdt + σtXtdWt  

where 

 σt = f(Yt) 

 dYt = α(m – Yt)dt + βdZtˆ. 

 The rate of mean-reversion, α, indicates how quickly the driving volatility 

process, Yt, tends back to its equilibrium.  Yt is Gaussian with mean (m + (y – m)e-αt)  

and variance [β²/(2α)](1 - e-αt).  What is of interest is the asymptotic behavior of Xt and 

how it affects the drawdowns of the process Xt.  First one finds an initial distribution Y0 

so that for any t > 0, Yt has the same distribution.  This would be its invariant 

distribution.  So, as t tends to infinity, Yt is Gaussian with mean m and variance β²/(2α).  

When using the OU process, this invariant distribution is determined by the density 

 Φ(y) = 1/sqrt(2πυ²) exp[-(y – m)²/2υ²] 

where  

 υ² = β²/(2α). 

From the fact that  

Yt ~ N(m + (y0 – m)e-αt, υ²(1 – e-2αt)) 

or from  

 E[(Yt – m)(Ys – m)] = υ²e-α|t-s| 
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with s = 0, it can be seen that with υ fixed the limits t → ∞ and α → ∞ are the same in 

terms of distributions.  Therefore when t tends to infinity, 

 1/t ∫0
t g(Ys) ds ≈ ‹g› 

where ‹g› denotes ∫-∞
∞ g(y)Φ(y)dy.  ‹g› is the average of g respect to the invariant 

distribution Φ.  The uniqueness of the invariant distribution and the correlation property 

are the primary characteristics of an ergodic process.  Denote the effective volatility, 

which is the volatility function averaged against the invariant distribution, by 

 _ 
σ² ≈ ‹f²›. 

 
In the empirical findings of this thesis, the volatility function is taken to be exp(y).  So 

the effective volatility becomes 

 ∫-∞
∞ e2yΦ(y)dy.  

Solving this integral yields an effective volatility of 
 _ 

σ² = e2(m + υ²). 
 

Chapter 3:  Numerical Results 

3.1 Constant Volatility 

 In this section we use the code developed in [8] to compare the numerical 

simulations to the theoretical asymptotic behavior of expected maximum drawdowns.  

The theoretical results were tested numerically in Matlab by simulating returns using 

finite difference schemes for the processes involved and computing expected values via 

Monte Carlo methods.  The stock path is determined to follow a generalized or geometric 

Brownian motion through a switch statement in the code.  The volatility is kept constant 

at .3 and the return is .2, 0, or -.2 to observe the asymptotic behavior for positive, zero, 
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and negative returns.  Drawdowns and maximum drawdowns are stored in arrays.  The 

code is run for varying values of time that is incremented by a half from 1 to 5 and the 

maximum drawdowns at each time T is plotted against the theoretical value obtained 

from the theoretical formulas stated in Chapter one.  Below is the graph for the expected 

maximum drawdowns for generalized Brownian motion under constant volatility and 

then for geometric Brownian motion under constant volatility.  In the generalized 

Brownian motion plot, MDD stands for the numerical generation of expected maximum 

drawdowns and Exact MDD represents the theoretical calculation of expected maximum 

drawdowns for the given mean and volatility.  In the plot for geometric Brownian motion 

(GBM), expected maximum drawdowns are plotted for generalized Brownian motion 

(GenBM), as well, for comparison.     
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Geometric Brownian Motion with Constant Volatility
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3.2 Stochastic Volatility  

 A limitation exists in the stochastic case since no theoretical results are currently 

known.  However, in this section we show that if one uses the effective volatility in place 

of the volatility in the formulas obtained for the constant volatility case, then similar 

numerical results are obtained in determining expected maximum drawdowns.  Just as in 

the constant volatility case, returns are generated via finite difference schemes and the 

expected values are computed via Monte Carlo approximations.  The stock path is 

determined to follow a generalized or geometric Brownian motion through switch 

statements in the code.  The volatility function is σx = exp(x), and so the effective 

volatility function is as it was defined in Section 2.2 and the return is .2, 0, or -.2 to cover 

the asymptotic behavior for positive, zero, and negative returns.  As in the constant case, 

drawdowns and maximum drawdowns are stored in arrays.  The code is run for varying 

values of time incremented by a half from 1 to 5 and the expected maximum drawdowns 
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at each time T is plotted.  Below is the graph for the expected maximum drawdowns for 

generalized Brownian motion with stochastic volatility and then for geometric Brownian 

motion with the same volatility function.  “MDD” stands for the numerical expected 

maximum drawdowns generated.  These expected maximum drawdowns with stochastic 

volatility are plotted against the theoretical results obtained in Chapter one, but using the 

effective volatility instead.  It can be seen that the theoretical results hold even in the 

stochastic case.       
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Geometric Brownian Motion with Stochastic 
Volatility
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Chapter 4:  Conclusion and Future Work 

 Maximum drawdowns have been shown to reflect a physical reality of risk in the 

performance of a portfolio manager.  They relate mean return and variability to yield a 

measurement of risk in return.  They provide such a good insight into performance that 

the CFTC requires a disclosure of maximum drawdowns of futures traders.  When 

considering maximum drawdowns, it is imperative to take into account the mean return, 

variability of returns, and length of track record.  Each parameter effects the distribution 

of maximum drawdowns, and so it is important when comparing expected maximum 

drawdown results to keep these parameters in mind.    

It has been shown that when the volatility is taken to be constant, expected 

maximum drawdowns follow an asymptotic behavior depending on whether the mean 

return is positive, negative, or zero.  Though there are no such analytical results for 

expected maximum drawdowns of stochastic volatility, results can be obtained through 
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numerical simulations.  These experiments suggest that the same asymptotic behavior 

holds in the stochastic case.  But the crucial aspect to account for is the effective 

volatility.  This brings up the intriguing problem of analytically showing what the 

asymptotic behavior of expected maximum drawdowns is under stochastic volatility.  In 

this project, expected maximum drawdowns were numerical simulated under the mean-

reverting process of Ornstein-Uhlenbeck and an exponential volatility function.  Another 

interesting experiment would be to conduct more simulations with other mean-reverting 

processes and alternate volatility functions.  Partial results considering other volatility 

functions and further analysis on the effect of correlation can be found in [8].          
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