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Abstract

The maximum drawdown on a time interval [0, Thafandom process can be
defined as the largest drop from a high water n@aik low water mark. In this project,
expected maximum drawdowns are analyzed in twoscas@ximum drawdowns under
constant volatility and stochastic volatility. Wensider maximum drawdowns of both
generalized and geometric Brownian motions. Tpaths are numerically simulated and
their expected maximum drawdowns are computed udmgte Carlo approximation and
plotted as a function of time. Only numerical eg@ntation is given for stochastic
volatility since there are no analytical resultsttis case. In the constant volatility case,
the asymptotic behavior is described by our sinmiatwhich are supported by
theoretical findings. The asymptotic behavior badogarithmic for positive mean
return, square root for zero mean return, or liieanegative mean return. When the
volatility is stochastic, we assume it is drivendgnean-reverting process, in which case
we discovered that if one uses the effective vahain the formulas obtained for the
constant volatility case, the numerical resultsgasg) that similar asymptotic behavior

holds in the stochastic case.



Introduction

Quantifying risk is a primary concern of any int@s If the standard deviation of
returns for a manager is large enough to produossaduring some time period, that
manager will experience drawdowns. Many consideaaager’s drawdowns to be a
better measure of risk than simply consideringvitiatility of returns or a return/risk
measure such as the Shape ratio [1]. Also, tathimgydowns as a description of a
manager’s historical performance has the distinelity of referring to a physical reality.
It is known that the Commodity Futures Trading Cassion (CFTC) has a mandatory
disclosure regime that requires futures tradessdose as a part of their performance
their “worst peak-to-valley drawdown” [6]. Partlady in hedge funds, estimating
drawdown and maximum drawdown is imperative fomesting the probability of
reaching a stop-loss that may set off large ligtiides and of reaching the high water
mark prior to the end of the year that will resala performance fee [7].

A drawdown is defined as change in value of a pbaffrom any established
peak (high water mark) to the subsequent trough @Water mark). A high water mark
has occurred if it is higher than any previousasset value and is followed by a loss. A
low water mark has occurred if it is the lowest astet value between two high water
marks. A maximum drawdown of a portfolio is thegkest drop from a high water mark
to a low water mark. Even though a manager cay lae one maximum drawdown, it
is informative to look at the distribution from vehi the maximum drawdown was drawn.
If one considers several managers, all with theesansimilar track records and return

characteristics, it is feasible to see what thisitridhutions of worst drawdowns look like



[1]. Simulated drawdowns (DD) and correspondingimam drawdowns (MDD) can

be seen below, with mean return .2, 0, and -.2nai@3, and time interval 1.
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This project is structured as follows: Chaptee anll cover the theoretical and
empirical results of drawdowns and expected maxirdiemdowns under the
assumption of constant volatility. Chapter twolwelveal what happens to expected
maximum drawdowns when the volatility functionagén to be stochastic. Chapter
three will show numerical examples of expected maxn drawdowns under the cases of
constant and stochastic volatility. Finally, Creadbur concludes the theoretical and

empirical findings reported in this project and @ns recommendations for future work.



Chapter 1: Drawdowns and Maximum Drawdowns

under Constant Volatility

1.1 Empirical Derivations

Of the various parameters that can influence drawndo length of track record,
mean return, volatility of returns, skewness, anddsis, only the first three have great
effect [1]. The possibility of experiencing a didown of any size is significantly
independent of the amount of time the manager bas n the business, and so length of
track record does not greatly effect the distrimutdf drawdowns. Mean returns,
however, do effect the distribution. Higher meaturns lead to smaller expected
drawdown. Volatility of returns also has signiintanfluence over drawdowns; the
greater the volatility, the greater the expectedwdiown. Skewness and kurtosis do not
greatly affect drawdown. A possible reason fos thithat drawdowns result from adding
together a sequence of returns and by the ceitridltheorem, even if the distribution of
returns is highly skewed or contains fat tailsjrtsam produces a relatively normal
distribution of returns [1].

Analysis of historical data suggest that the refeghip between mean return,
volatility of returns, and drawdown can be empilicdescribed by

DD/o =f(u/o)
wherego is the standard deviation of returns and the mean return [1]. And so, a
manager’s drawdowns divided by the volatility ofur@s can be written as a function of
that manager’s Sharpe ratio. When viewing the slodphis function, the curve indicates

that volatility matters more than mean returna thanager’s mean return is doubled and



the volatility is held constant, the expected drawd per unit of volatility is lowered by
less than half. Likewise, if the volatility is doled but the mean return is held constant,
expected maximum drawdown will more than doubleyyet of volatility. However, if
one is only concerned with the size of drawdowsseiad of drawdown per unit
volatility, the empirical function can be rewrittas

DD =0 f(W/o).

Viewing the relationship between drawdowns andrregtin this form indicates some
other properties. For one, if both mean return\asidtility are doubled, and so the
modified Sharpe ratio is not changed, expected maxi drawdowns will exactly
double. Second, if volatility is doubled, expectedximum drawdowns will more than
double. And third, mean return would have to beertban doubled to make up for
doubling the volatility. This relationship alsoosts that two managers can have the
same volatility of returns but different expectedwidowns if their mean returns are
different. Also, two managers with the same medifsharpe ratio can have different
expected drawdowns if their volatilities of retuare different.

Maximum drawdowns, as in drawdowns, are greaflycééd by the mean return
and the volatility of returns, but not skewnes&uantosis. However, unlike the case with
drawdowns, the likelihood of a manager experieneit@rger drawdown than he ever has
before increases with each day. An increase itetingth of track record will shift the
maximum drawdown distribution to the left. Higheturns will generate smaller
maximum drawdowns. However, higher volatility wilcrease the possibility of large

maximum drawdowns.



1.2 Concerns with Using Drawdown as a Statistical Measure

Drawdowns lose value as the estimate of a manageakty due to some
limitations. There is a relationship between drawd and two important statistics, mean
and variability. Any portfolio with a long-run pidise return is expected to “drift”
upward in time. When a positive expected retusagifrom a stochastic or partly
stochastic process, the upward move will have s@meéom variation that will cause the
portfolio’s value to decline below its previousligtained peak. This fall is a drawdown.
A drawdown will be smaller if the upward drift ieeeper or the variability of the process
is lower. Because of this, drawdown is a functibmean and variability. Without
knowledge of this function, however, or the retgamerating process, one cannot
understand what the level of the drawdown relaiesThis means a raw drawdown offers
little information as a statistic and even lesa @gedictive one [6].

Since a maximum drawdown is one number determiyealseries of data, there
is a large error associated with it. Because isf the generation of a future return from
historical maximum drawdowns carries a high chafaaror. Large errors in statistical
measures can be resolved by averaging. In thjsgircnowever, a series of maximum
drawdowns are simulated.

Besides maximum drawdowns being error-prone, hewekiere are two other
adjustments that should be made. One is that dnawsl must be compared on the same
time interval. All things held equal, drawdowns &arger the greater the frequency of
the time interval. So any investment that is maxdadgily will be at a disadvantage over

one managed weekly or monthly. Secondly, managiinsong track records will



experience larger maximum drawdowns. They hava bethe business longer and have
overcome more difficulties in the market than a ocemver.

Thus, to improve drawdowns as a statistic, thektracord of a manager, the
error, measurement interval, and volatility musbaltaken into account. Also, the
return generating process must be known. It caardpeed that all of these disadvantages
to drawdowns are too much to correct and it isdoétt focus on mean and volatility. But
when using drawdowns, it is important to use thath these things in mind and with the

understanding of the underlying process rather snaply historical record.

1.3.1 Theoretical Findings of a Standard Brownian Motion

Drawdowns have been studied in a variety of dis@p, among them are:
mathematics, physics, and management. The sintpkstetical formulation of
drawdowns is that of downfalls in a standard Bramnmnotion. Results can be obtained
for maximum drawdowns in this case. Let B 3)¢B-1 be of standard Brownian motion
on a probability space&), F, P) where B = 0, E[B] = 0, and E[B¥] =, then the
maximum drawdown is defined as:

MDD = sUy<t<t<1 (Bt - By).

It can be seen that MDD describes the maximum dalvinf the trajectories of the
Brownian motion on the time interval [0, 1]. Itrche seen that the following equivalent
definitions hold:

MDD = SUR<t<1 (Bt — infi<t<1 Br)

SUR<r<1 (SUR<=r Bt - By).
In [6], the authors R. Douady, A.N. Shiryaev, andWér showed that the distribution of

maximum drawdowns for a standard Brownian motiaihéssame as that of



SUp<<1 |Bil-
Moreover, the expectation is

E[MDD] = sqri(t1/2) (Note: sqr& square root)
(where t = 1, otherwise the result is sgff@t)) and the distribution functionsfx) =
P{MDD < x} is given by

Fuoo(X) = 1 — 1/Sqrt(21m) Yo [% [g V42 _ gbraxakizgy,

1.3.2 Theoretical Findings of a Generalized Brownian Motion

Maximum drawdowns are defined as a measure otheskcan be defined for
more general stochastic processes. It is commasdome that the value of a portfolio
follows a “generalized Brownian motion.” Let Be a standard Brownian motion as
defined in the previous section. Then,ska generalized Brownian motion if it is of the
form

Xi=oBi+put 0<t<T
for the given constanise R, the drift rate, and, the diffusion parameter, greater than
zero.

The high, H, and low, L, of pare given by

H = supp 1 Xt L = infipo,m Xt
and the maximum drawdown is defined by

MDD (T; W, 6) = SURjo,1] [SUPx(0,q Xs — Xi].

The distribution function for MDD is

Guop(h) = 2% Yn=1”_Bnsindy  exp{-uh} (1 — exp{-c20:°T} exp{-u°T})
00,2 + p2h? -o2uh 02 2h? a2
+M

where, for > 1, 0, is the positive solution of the eigenvalue coraiti
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tarf, = (c2/uh)f;,

and M is
=0 u<o?h
= (3/e)(1 — exp{p?T/263}) n=o02h

= 26" sinhn exp{-uh/o? (1 — exp{-u2T/262} exp{o?T/2h?})  p>o?h
o2 - uzh? +o2uh

wheren is the unique positive solution of
tanhn = (c?/uh)n.

Using the identity E[IMDD] 3¢” dh Guop(h), it is determined that
E[MDD] = (262/1t) Quop(1 sart[T/(22)])

where Qipp(X) is defined to be

Qp(X) n>0
v sqrt(2x) u=0
-Qn(X) n<o

wherey = sqrt@8) and @ and Q are functions whose exact values are known and

tabulated. Their asymptotic behavior is given by

Qu(X) — v sqrt(2x) x— 0
Y2 log(x) + 0.49088 %> 00
Q(x) — v sqrt(2x) x— 0
X+ Y X— 00.

The general result obtained by Malik Magdon-Ismaiir F. Atiya, Amrit Pratap, and
Yaser S. Abu-Mostafa in [6], is that

E[MDD] = (262/1t) Quon(a?).

11



wherea = p sqrt[T/(2?)]. Notice that if T is ongy equals zero, anslequals one, as is
the case in standard Brownian motion, these regivies
E[MDD] = sqri(11/2)

which agrees with the findings of Douady, Shiryaaw] Yor.

1.4 The Asymptotic Behavior Expected Maximum Drawdowns

The distribution and asymptotic behavior of maximdrawdowns for a
generalized Brownian motion were also analyzed]n Those results show that the

asymptotic behavior for expected maximum drawdoas3 tends to infinity are:

E[MDD] = 262/p Qp(n2T/(262)) — 62/1(0.63519 + 0.5 log(T) + log(oc)
if u>0
=1.2538 sqrt(T) ifu=0
= -20%/u Qn(u2T/(202)) — uT - o2/ if u<O.

1.5 Geometric Brownian Motion

Theoretical results can also be obtained for marindrawdowns of a geometric
Brownian motion. In this case maximum drawdowrfo the process

dX; = uXdt + oXdB:.
Taking the log transformationy/X= log X and using Ito’s formula, one obtains

dX = (u - Yao?)dt +oXdBy

This result is the same as the generalized Browmiaiion case with altered parameters.

The result for expected maximum drawdowns then foeso
E[MDD] = 20%/(n - Y0?) Qu((p - ¥52)?T/(262)) ifu>0

= 1.2533\T ifu=0

12



= -26%/ (1 - Y02) Qu(u2T/(262)) if u<O.

Chapter 2: Expected Maximum Drawdowns under
Stochastic Volatility

It is no longer sufficient to use the Black-Schatesdel to explain modern
market occurrences [3]. This is especially truesithe 1987 crash. The common
practice, both in analytical and practical applmat has been to change the volatility
function from being constant to stochastic. A ktmstic process is more complex since
the volatility is the driving process but cannotdeen. Moreover, the volatility tends to
be mean-reverting. This means it fluctuates &t kegels for a time period and then
fluctuates at a low level for a similar amountiaie. The Black-Scholes model relies on
a lot of assumptions that do not necessarily Irold, tone being constant volatility. A
well known problem between predicted European oppiaces determined by Black-
Scholes and options traded in the market, the staitee, can be resolved by stochastic
volatility models. This shows that using stochasolatility models resolves a problem
in one area where the constant model failed. iBwlork maximum drawdowns are
considered only when the volatility is a functidnsome special cases of mean-reverting

processes.

2.1 Mean-Reverting Stochastic Volatility Models

A mean-reverting process refers to the time iésaflor a process to return to the
mean level of its long-run distribution. A meamweging process in financial modeling

means the linear pullback term in the drift of todatility process. Letting: = f(Yy),

13



where f is a positive function, the mean-reverstachastic volatility means the
stochastic differential equation fog Eesembles:

dYi=a(m - Y)dt + ... dZ
where Zis a Brownian motion correlated with (M is the rate of mean reversion, and
m is the long-run mean level of Y. The drift tepmlls Y to m, sas; is pulled to the

mean value of f(Y) with respect to the invariardtdbution of Y.

The Ornstein-Uhlenbeck and Cox-Ingersoll-Ross Processes

One mean-reverting process used is the Ornstelenback process. This
process is defined as the solution of

dY: =a(m - Yydt +p dZ.
The process is Gaussian given in the terms ofatsirsg value y by

Yi=m+ (y — m& + o’ €9 dzg
where Y is normally distributed with mean m + (y — nfyand varianc@®[2a(1 - €™)].
As tincreases to infinity, its long-run distriboi becomes normally distributed with
parameters (m%(2a)). The second Brownian motion,\Zs usually correlated with the
Brownian motion (W from the stochastic differential equation

dX; = uX; dt + o X dW..
Letp € [-1, 1] denote the instantaneous correlation coefit defined by

d<W, Zx = pdt.
In empirical studies it is often found thats less than zero. Asset prices tend to decrease
when volatility increases, causing a negative ¢atiegn between the two. As can be seen
in the plots below, correlation has lesser effeteémwit is negative as opposed to when it

is greater than or equal to zero.
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The Ornstein-Uhlenbeck process is one of the peasethat often drive sigma and is the

one implemented in this project.

The Cox-Ingersoll-Ross process is another mearrtreganodel used and is

defined by

dYt =x(m’ - Yydt +v sqrt(Y;) dz.

Recall that for the OU process, the asymptotic bienaf Y; is the same for eitherb «

ora — c. This means that the problem can be rescaledifferent times and a fixed

time T and one can compare the asymptotic behagiotends to infinity.
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2.2 The Stochastic Volatility Model

In the stochastic case of determining expectedmax drawdowns, we will
assume a mean-reverting OU process. The drivinggss for the return on a portfolio
becomes

dX; = uXdt + oXdW;
where

ot = f(Yy)

dY; = a(m - Y)dt +pdz .

The rate of mean-reversiam,indicates how quickly the driving volatility
process, Y, tends back to its equilibrium. ; ¥ Gaussian with mean (m + (y — riff)e
and variancef?/(20)](1 - €™). What is of interest is the asymptotic behawibX; and
how it affects the drawdowns of the process Kirst one finds an initial distributiongY
so that for any t > 0, Yhas the same distribution. This would be its irard
distribution. So, as t tends to infinity;  Gaussian with mean m and variafig2a).
When using the OU process, this invariant distrdruts determined by the density

O(y) = 1/sqrt(Zv?) exp[-(y — m)?/27]
where

V2 = [2/(20).

From the fact that

Y ~Nm + (o — m)e™, v2(1 — €))

or from

E[(Y: — m)(Ys— m)] =v2e®l*sl

16



with s = 0, it can be seen that wittiixed the limits t— « anda — <« are the same in
terms of distributions. Therefore when t tendmfmity,

1/t]o g(Ys) ds= <g>
where <«g> denotels.” g(y)@(y)dy. <g> is the average of g respect to the riiave
distribution®. The uniqueness of the invariant distribution #relcorrelation property
are the primary characteristics of an ergodic ecddenote the effective volatility,

which is the volatility function averaged agairst invariant distribution, by

02 = 2,
In the empirical findings of this thesis, the vdibt function is taken to be exp(y). So
the effective volatility becomes

Js” e(y)dy.
Solving this integral yields an effective volaliof

5 = g )

Chapter 3: Numerical Results

3.1 Constant Volatility

In this section we use the code developed ind&pimpare the numerical
simulations to the theoretical asymptotic behaweioexpected maximum drawdowns.
The theoretical results were tested numericallMatlab by simulating returns using
finite difference schemes for the processes invbbed computing expected values via
Monte Carlo methods. The stock path is determinddllow a generalized or geometric
Brownian motion through a switch statement in théec The volatility is kept constant

at .3 and the return is .2, 0, or -.2 to obsereeatbymptotic behavior for positive, zero,
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and negative returns. Drawdowns and maximum drawda@re stored in arrays. The
code is run for varying values of time that is graented by a half from 1 to 5 and the
maximum drawdowns at each time T is plotted agdivestheoretical value obtained
from the theoretical formulas stated in Chapter. dBelow is the graph for the expected
maximum drawdowns for generalized Brownian motioder constant volatility and
then for geometric Brownian motion under constanatility. In the generalized
Brownian motion plot, MDD stands for the numerigaheration of expected maximum
drawdowns and Exact MDD represents the theoreatadallation of expected maximum
drawdowns for the given mean and volatility. le fflot for geometric Brownian motion
(GBM), expected maximum drawdowns are plotted magalized Brownian motion

(GenBM), as well, for comparison.

Generalized Brownian Motion with Constant Volatility

6
5 n
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Geometric Brownian Motion with Constant Volatility
6
5 —GBM: R>0
4 GBM: R=0
g GBM: R<0
s 3
= ¢ GenBM: R>0
2 ¢ GenBM: R=0
1 > GenBM: R<0
0 T T T T T T T T
1 15 2 25 3 35 4 45 5
Time

3.2 Stochastic Volatility

A limitation exists in the stochastic case sinogheoretical results are currently
known. However, in this section we show that iEases the effective volatility in place
of the volatility in the formulas obtained for tbenstant volatility case, then similar
numerical results are obtained in determining etggbmaximum drawdowns. Just as in
the constant volatility case, returns are genenraiedfinite difference schemes and the
expected values are computed via Monte Carlo appedions. The stock path is
determined to follow a generalized or geometricvidrian motion through switch
statements in the code. The volatility functiow,iss exp(x), and so the effective
volatility function is as it was defined in Secti@r? and the return is .2, 0, or -.2 to cover
the asymptotic behavior for positive, zero, andatieg returns. As in the constant case,
drawdowns and maximum drawdowns are stored in surdfe code is run for varying

values of time incremented by a half from 1 to 8 #re expected maximum drawdowns
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at each time T is plotted. Below is the graphtf@ expected maximum drawdowns for
generalized Brownian motion with stochastic voigtihnd then for geometric Brownian
motion with the same volatility function. “MDD” ahds for the numerical expected
maximum drawdowns generated. These expected maxunawdowns with stochastic
volatility are plotted against the theoretical lesobtained in Chapter one, but using the
effective volatility instead. It can be seen ttia theoretical results hold even in the

stochastic case.

Generalized Brownian Motion with Stochastic
Volatility
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o = N w SN (6)] (@]
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Geometric Brownian Motion with Stochastic
Volatility

MDD1: R>0
— MDD2: R=0
MDD3: R<0
& Theoretical: R>0
¢ Theoretical: R=0

| ® 6 & ¢ & Theoretical: R<0

1 15 2 25 3 35 4 45 5

Time
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Chapter 4: Conclusion and Future Work

Maximum drawdowns have been shown to reflect aighi reality of risk in the
performance of a portfolio manager. They relatamreturn and variability to yield a
measurement of risk in return. They provide sugb@d insight into performance that
the CFTC requires a disclosure of maximum drawdosfrigtures traders. When
considering maximum drawdowns, it is imperativéaie into account the mean return,
variability of returns, and length of track recorilach parameter effects the distribution
of maximum drawdowns, and so it is important whemparing expected maximum
drawdown results to keep these parameters in mind.

It has been shown that when the volatility is tatebe constant, expected
maximum drawdowns follow an asymptotic behavioredgpng on whether the mean
return is positive, negative, or zero. Thoughehae no such analytical results for

expected maximum drawdowns of stochastic volatifiégults can be obtained through
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numerical simulations. These experiments sugpasthe same asymptotic behavior
holds in the stochastic case. But the crucial @dpeaccount for is the effective
volatility. This brings up the intriguing probleaf analytically showing what the
asymptotic behavior of expected maximum drawdownsder stochastic volatility. In
this project, expected maximum drawdowns were nigalsimulated under the mean-
reverting process of Ornstein-Uhlenbeck and an eeptial volatility function. Another
interesting experiment would be to conduct moreusations with other mean-reverting
processes and alternate volatility functions. iRlaresults considering other volatility

functions and further analysis on the effect ofelation can be found in [8].
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