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Abstract

In this paper I describe a motion planning technique for intelligent ground vehicles. The

technique is an implementation of a path selection algorithm based on fuzzy inference. The

approach extends on the motion planning algorithm known as driving with tentacles. The

selection of the tentacle (a drivable path) to follow relies on the calculation of a weighted

cost function for each tentacle in the current speed set, and depends on variables such as

the distance to the desired position, speed, and the closeness of a tentacle to any obstacles.

A Matlab simulation and the practical implementation of the fuzzy inference rule on a

Clearpath Husky robot within the Robot Operating System (ROS) framework are provided.
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Chapter 1

Introduction

With recent advances in research and enabling technologies, intelligent robots are in-

creasingly being fielded in applications which require the robot to navigate autonomously

in unstructured environments. As a result, motion planning for nonholonomic wheeled ve-

hicles, operating in time-varying dynamic environments, has been the focus of extensive

research efforts. The overarching goal is to advance the capabilities of unmanned systems

and enable their adoption in applications including defense, search and rescue, exploration,

and transportation.

One approach is to use a probabilistic road map method in which the graph and map

are constructed with sampling techniques [1], [2]. Another method involves implementing

two rapidly-exploring random trees to configure the destination [3]. The authors of [4] de-

scribles a ripple tentacle algorithm, it is focus on the weighted coefficients [4]. Alternatively,

implementations have been demonstrated using the mathematical properties and functions,

for instance, one approach proposes the mathematical model with a remotely controlled

mobile robot system and its neural network [5]. Also, the knowledge of calculus, integrated

navigation system, and Kalman filter algorithms have been used [6]. The common charac-

teristic of the various methods is the mathematical model needed. However, the complexity

of the environment and the functional limits of a robot make path planning difficult. The

unstructured environments present planning difficulties primarily because of the complex-

ity of object identification, something which comes easily to a human. Hence, in order to
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implement an obstacle avoidance function on a robot, scientists rely on several advanced

sensor system, including: global position system (GPS) [7], radar technology [8], infrared

detector [9] and many other kinds of sensors, such as sonar [10], wide angle sonar [11], or

combinations of sensors, which are called sensor networks [12]. Although computing power

has increased at an exponential rate, mathematical models of systems are still difficult to

solve in real-time. To imitate a simple human eye’s object recognition process, a robot needs

lots of computing power working with a complex algorithm and calculation procedure. In-

telligent robots still has a long way to go before they will be able to achieve satisfactory

performance in dynamic environments. We need a simple and repeatable method of avoiding

obstacles urgently.

There is one path planning approach that use driving with tentacles method which

simplifies the trajectory analysis intuitive and easy. Path selection criteria is represented

in a form that is easy to represent in a computer model [13]. Another method uses fuzzy

logic to analyze ground smoothness [14]. The global traversability map is represented by

regions of different traversability indices by using fuzzy-logic constructs which simplifies the

calculation process. The method uses multiple layers of control laws in which three factors

are combined together and generate a final result for the robot [15]. One similar approach

is behavior-based, neuro-fuzzy controller for mobile robot navigation which is a neuro-fuzzy

controller for robot navigation with a sensor implemented [16]. Inspired by these methods,

our research presents a path planning and obstacle avoidance algorithm which combines the

method known as driving with tentacles, with a selection rule based on fuzzy inference. In

our approach, we utilize a fuzzy inference based selection algorithm to decide on the path to

be followed by the autonomous vehicle. The algorithm takes the parameters of 81 tentacles

(drivable paths in the form of circular arcs emanating from robots center of turning) in

each of the 16 speed sets corresponding to the vehicle speeds in the range of its minimum

and maximum speeds. This generates the tentacle selection as its output. Each tentacle

is implemented as a structure whose members are the identifier and range as well as the

membership function, and the parameters such as length and radius. In contrast to the

traditional implementation of the selection which is based on the calculation of a weighted

cost function, in this research we formulate the mapping between the inputs and outputs
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using fuzzy logic without the need for a mathematical model. In this way, the need for

adjustment of the weights in the cost function in different environments is avoided.

The paper is organized as follows: In Section II, we will describe the path planning

problem in detail. Section III shows the robot kinematic model and formula calculation,

section IV covers the selection of paths using fuzzy inference. Section V we discuss the

simulation design, and Section VI is the simulation results and analysis. Section VII provides

an analysis of the performance of the implementation on a Clearpath Husky ground vehicle.

Finally, Section VIII is the conclusion.
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Chapter 2

Problem Statement

Our research is concerned with path planning for autonomous ground vehicles. Some

methods use mathematical methods which may cause an increase of calculations. The

workload of the computer will hold-up the calculation speed so the running vehicle will

receive data far on in time. Hence, the completed, refined and succinct mathematical

computing method is needed if we want to pursuit a good path planning system.

2.1 The Combination Method

We propose the idea of combining the tentacle model and fuzzy logic together to select

the trajectory. The combination method achieves the trajectory planning without using

complex mathematical modules and uses a simplified path planning procedure. The new

method increased the robot computing speed. This allows for it to be followed smoothly

and accurately without the need of additional computational considerations. The powerful,

efficient dodging system can be widely applied to any robot with Robot Operating System

(ROS) as its software framework, which needs to implement obstacle avoidance functionality.

2.2 The Simulation of Tentacle Path in Set 0

In the method ’Driving with tentacles’, the paths (or called tentacles) are split into 16

sets of 81 arcs. Each arc represents a possible vehicle trajectory and the length of each
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Figure 2.1: The simulation of one tentacle set

arc varies depending on the tentacle number k and the tentacle set number j. In Figure

2.1 shows the simulation of tentacle set 0, it is the sketch of the set number 0 of paths

of the robot, the small star stands for the beginning point of the path set, which is the

robot’s position. We use two formulas presented in ’Driving with tentacles’ to create the

mathematical representation of the tentacles [13]. One formula calculated the length of

the tentacle path lk, the other one calculated the radius of the path rk. The path length

and the radius are used to calculate the distance from the vehicle to the destination or the

closeness from the vehicle to the obstacle.

2.3 The Experiment Robot

In order to test the effectiveness of the proposed method, the algorithm has been im-

plemented on a Husky platform (named Polly) by Clearpath Robotics. The Figure 2.2

shows the experiment robot Polly used as a testbed for this research with the ladar imple-

mented, which will detect the obstacles. Polly is a six-wheeled vehicle compatible with the
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Figure 2.2: Clearpath Husky Robot

Robot Operating System (ROS). Our testing implementations used on the ground vehicle

are implemented in standard ROS form, enabling portability of the algorithm to other robot

platforms. The system specifications of our experiment robot (Husky A100) are shown in

Table 2.1.
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Table 2.1: The technical specifications of Polly

Item Value Units

L x W x H 860x600x340 mm

Clearance 85 mm

Weight 35 kg

Max. payload 40 kg

Power 600 W

Max. Speed 1.5 m/s

Kinematics Differential drive N/A

Operating Time 2 h

Batteries 12,44 V, Ah
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Chapter 3

Robot Kinematic Model

In this chapter, we mainly discuss about the robot kinematic model and its mathematical

representations. The kinematic model represents the motion of the vehicle as the following

parameters: the robot’s state, position, steering angle, the distance between the vehicle and

the obstacles/destination, and velocity. Note that the kinematic model has the following

properties:

• This is a two dimensional (2-D) model.

• The forces that effect the motion (such as friction, air resistance) are not taken into

consideration.

• It deals with the geometric model of the system.

• The model analyzes the relationship between the control parameters and the state

space model ([17], [18]).

3.1 Trajectory Plotting Calculation and Steering Angle

The method driving with tentacles details the geometry of the tentacles which are circu-

lar arcs emanating from the robot’s center of turning used as we mentioned in the previous

chapter, including the tentacle set number j with range from 0 to 15, the tentacle’s number

k with the range from 0 to 80, the radius of each tentacle rk, the length of each tentacle lk.
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The equation 3.1 calculates the radius rk of the kth tentacle in set j. Euqation 3.2 lists

the length of the kth tentacle in set j [13].

rk =







(1.15)k × (
(8+33.5×( j

15
)1.2)

1.2×(π
2
)×(1.01−( j

15
)0.9)

) if 0 ≤ k ≤ 39

(1.15)(k−40) × (
(8+33.5×( j

15
)1.2)

1.2×(π
2
)×(1.01−( j

15
)0.9)

) if 41 ≤ k ≤ 80

∞ if k = 40

(3.1)

lk =







(8 + 33.5× ( j
15)

1.2) + 20× ( k
40)

0.5 if 0 ≤ k ≤ 39

(8 + 33.5× ( j
15)

1.2) + 20× ( (k−40)
40 )0.5 if 41 ≤ k ≤ 80

20 + 8 + 33.5× ( j
15)

1.2 if k = 40

(3.2)

The tentacle set is symmetric in the design (tentacle from 0 to 39 and 41 to 80) and

the symmetric axis is tentacle 40. The resolution of the arc plotting is R (pixel per meter)

which is defined by us and each arc is plotted by a point. We can use the equation 3.3 to

calculate the distance between two plotting points.

R =







10000×lk
π×rk

if 0 ≤ k ≤ 80, k 6= 40

10000×lk
π

if k = 40
(3.3)

The resolution helps us to plot the path which shows as a arc where rk and lk are

calculated using equations 3.1 and 3.2.

In Figure 3.1, the black arc is a tentacle with steering angle θ marked. The steering

angle corresponding to each tentacle (shows in Figure 3.1) can be calculated in equation

3.4.
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Figure 3.1: The steering angle of one tentacle

θ =







(os−
π

2
), (os−

π

2
+

π

10000
) . . . (

lk

rk
+ os−

π

2
)

︸ ︷︷ ︸

total of R factors

if 0 ≤ k ≤ 39

(os+
π

2
−

lk

rk
), (os+

π

2
−

lk

rk
+

π

10000
) . . . (os+

π

2
)

︸ ︷︷ ︸

total of R factors

if 41 ≤ k ≤ 80

0,
π

10000
. . . lk

︸ ︷︷ ︸

total of R factors

if k = 40

(3.4)

In equation 3.4, θ is the steering angle, lk is the length, rk is the tentacle’s radius, and

os is the initial steering angle which will be discussed in more detail in section 3.2.
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3.2 The Robot State

In this section, a simple 2D kinematic model with vehicle steering angle and position are

shown in the Figure 3.2. The robot’s previous state (ox, oy) and current state (ox′, oy′) are

marked. The robot running from position (ox, oy) to (ox′, oy′). os is the vehicle’s steering

angle with the range from −π/2 to π/2 in previous state. The initial os equals to 0, shown

in the Figure 3.2.

Figure 3.2: Robot steering angle and position

In Figure 3.2, the arc between (ox, oy) and (ox′, oy′) stands for the selected path by

using our method. In the next state, the robot’s current state will be the previous state,

hence the next os equals to os′. In the Figure 3.2, os′ equals to θ′.

(

x

y

)

=







((rk×cos θ−rk×sin os)+ox

(rk×sin θ+rk×cos os)+oy

)
if 0 ≤ k ≤ 39

((rk×cos θ+rk×sin os)+ox

(rk×sin θ−rk×cos os)+oy

)
if 41 ≤ k ≤ 80

(θ×cos os+ox
θ×sin os+oy

)
if k = 40

(3.5)

The arc’s (or called tentacle path) plotting points (x, y) shown in Figure 3.2 are cal-

culated in equation 3.5. ox, oy and os are calculated from previous state. rk and lk are
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calculated in equations 3.1 and 3.2. θ is calculated in equation 3.4.









ox′

oy′

os′









=















rk × cos lk
rk

+ (os− π
2 )− rk × sin os+ ox

rk × sin lk
rk

+ (os− π
2 ) + rk × cos os+ oy

lk
rk

+ os









if 0 ≤ k ≤ 39









rk × cos− lk
rk

+ (os+ π
2 ) + rk × sin os+ ox

rk × sin− lk
rk

+ (os+ π
2 )− rk × cos os+ oy

− lk
rk

+ os









if 41 ≤ k ≤ 80









lk × cos os+ ox

lk × sin os+ oy

os









if k = 40

(3.6)

The steering angle of current state os′ and robot’s position ox′, oy′ are shown in the

equation 3.6. Same as 3.5, ox, oy and os are calculated in last state. rk and lk are calculated

in equations 3.1 and 3.2. θ is calculated in equation 3.4.

3.3 Obstacle and Destination Calculation

In this section, we model the distance between the vehicle and the obstacles/destination

by the following variables: pns, tns and tenavail. pns is the distance from each endpoint

to the desired position. tns is the minimum distance from the tentacle to the obstacle.

tenavail is the pre-selection(please see Section 5.1) output based on the tns value.

pns = min(((tx− desiredx)2 + (ty − desiredy)2)0.5) (3.7)

tns = min((((ox+ x− obx)2 + (oy + y − oby)2)0.5)− obr(n, 1)) (3.8)
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tenavail(m, 1) =







1 if tns(m, 1) > 0

0 otherwise
m = 1, 2, 3...81 (3.9)

pns, tns are calculated in 3.7, 3.8. The variables pns and tns where desiredx and

desiredy are coordinates of the destination position while obx and oby are coordinates of

the obstacle position. One thing to note here is that tns, pns are 81 by 1 vectors. If

the minimum distance from the tentacle to obstacle (equation 3.8) is a negative value, the

tentacle will not be selected in the pre-selection process (details in Section 5.1: Obstacle

Avoidance Simulation Design), because it intersected with one or more obstacles.

3.4 The Vehicle Speed

From the reference [13], we can calculate the speed of each speed set (shown in Table 3.1).

These speeds correspond to forward linear speed of the robot (Polly). In the simulation, n

equals 16, which means 16 sets of tentacles and j stands for the speed set number name.

Table 3.1: The table of speed set value

Speed Set Name Speed(m/s)

0-3 0.2500 0.6282 1.1188 1.6633

4-7 2.2460 2.8589 3.4970 4.1567

8-11 4.8357 5.5319 6.2437 6.9700

12-15 7.7095 8.4616 9.2253 10.0000

In this chapter, we presented the details of generating a tentacle set which contains a

preset number of drivable paths for the robot. This is an essential part to the selection

process using fuzzy logic which will be discussed next.
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Chapter 4

Selection of Path using Fuzzy

Inference

In 1965, the American mathematician professor Zadeh put forward the concept of the

fuzzy set [19]. His idea ’fuzzy logic’ improved the 0, 1 set concept into [0,1] interval which

contains infinite values. This means fuzzy logic is using fuzzy set including infinite contin-

uous values to discuss the fuzziness object. Fuzzy logic control offers a method of dealing

with modeling problems by implementing linguistic, non-formally expressed control laws

derived from expert knowledge [19] ’IF (process state) THEN (control action)’.

Fuzzy control has been used effectively to develop control methods for systems whose

mathematical model is complex or difficult to obtain. It solved our difficulty of tentacle

selection method.

In our tentacle selection method, the pseudo code (shows in Figure 4.1) describes the

tentacle selection flow.

4.1 Three Factors of Tentacle Selection

The underlying goal in tentacle selection is to reach the desired point safely and as

quickly as possible. Safely means without crashing, and without repeatedly having large
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Figure 4.1: Pseudo code of the one cycle

direction changes. Quickly means maintaining the highest velocity while as close to the goal

as possible along the safest tentacle possible.

The factors to consider are:

• The distance between the current point of the tentacle and the desired end position:

If the other conditions are same, from the available tentacle candidates, the closer to

the desired position the better that tentacle’s trajectory is. Range: 0 to 0.3.

• Speed: With higher speed (corresponding to a larger speed set index), the vehicle will

achieve its final position as soon as possible. There are 16 speed sets name set 0 to

set 15. Range: 0 to 0.3

• Closeness to obstacles: This factor considers the distance from a tentacle to an ob-

stacle. If the obstacle is extraordinarily close to the tentacle, as in Figure 4.2, the

free tentacle may not afford sufficient space for the vehicle because the robot itself

has certain volume. Therefore, tentacles which are further away from obstacles are

considered to be better than ones close to obstacles. Range: 0 to 0.4

In Figure 4.2 and 4.3, the coordinates axes are x,y,z respectively, they show the position

of the tentacle set. Figure 4.2: the obstacle is too close to the vehicle, Figure 4.3: the
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Figure 4.2: The tentacles with close obstacle

obstacles (black circles) are not that close to the vehicle, the path can be selected from

several red tentacles.

4.2 Transformation Functions

Now we introduce the transformation functions. The functions normalized the vectors’

value (tns,pns). The reason why we need transformation functions is because the matrices

obtained from calculation procedure in the Kinematic Model cannot be implemented into

the fuzzy calculation function directly. In our context, we obtained two matrices tns, pns

from the calculation procedure in Kinematic Model and transformed pns and tns into range

0 to 0.3 and 0 to 0.4 corresponding to the consider factors Distance and Closeness.

4.2.1 Distance Transformation Function

The new matrix distance m equals to pns, it will be the input parameter of the function.

The key method of Distance Transformation Function is to get reciprocal values of each

member in distance m. It is easy to understand that the larger distance the less we prefer,

hence, get the reciprocal value will make things obvious: the smaller the distance, the larger

reciprocal value we get.
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Figure 4.3: The set of tentacles with distant obstacles covered

temp dv = max temp d (4.1)

temp vm =
temp d

temp dv
(4.2)

dist mtx = [ten avail] · [0.3× temp vm] (4.3)

temp d is the reciprocal value multiplied by 10000. The equations (4.1, 4.2, 4.3) are the

calculation detail of the function, the output matrix is dist mtx.

4.2.2 Closeness Transformation Function

If each value of the distance matrix tns is larger than 1, the closeness transformation is

same as the distance transformation function, otherwise, tns value needs to be separated

into three conditions: less than 0.3, between 0.3 to 0.6 or larger than 0.6. close mtx is the
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output matrix (4.4), Gold Function is a broken line model, when the input is 0.382 times

maximum input value, the output gets the maximum value.

close mtx(m, 1) =







tns(m,1)
1000 if tns(m, 1) ≤ 0.3

tns(m,1)
30 if 0.3 < tns(m, 1) ≤ 0.6

GoldFunction if 0.6 < tns(m, 1) ≤ 1

m = 1, 2, 3...81 (4.4)

The reason to choose 0.3 as the boundary is the width of robot Polly, our experiment

robot, is 0.6 meters, so 0.6 divide by 2 is the length from the center to the edge of the robot,

which is 0.3.

4.3 Fuzzy Control

Our system model is established in Matlab environment for simulation. In Matlab, the

three factors for selecting a tentacle were put into the Fuzzy Inference System(FIS) editor,

which returns an output value from 0 to 1. This procedure is called fuzzy control. If the

output is 1, the tentacle is optimal and the fuzzy controller will always select the tentacle

to be the path. This would only happen in the event of a tentacle that reaches the goal, is

in the highest speed set, and is not near any obstacles. In reality the preferability is always

a decimal value less than one, and the controller selects the one which is closest to 1. Thus

the control law can be described as a 7*7*7 3-dimensional cube, shown in Figure 4.4. The

three coordinates represent the distance to desired position, the speed of vehicle and the

closeness to obstacles.

4.3.1 Fuzzy Control Rules

Three-dimensional fuzzy rule cube has 343 combinations, shown in Figure 4.4. The three

coordinates stand for three factors. Each factor has 7 values(PB, PM, PS, Z, NS, NM, NB,

details in Section 4.3.1: The Sequence of Membership Functions). These 343 combinations

have 7 different output as same as the input values. They are combined to be the fuzzy

rule form.
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Figure 4.4: Fuzzy rule cube sketch diagram

4.3.2 The Sequence of Membership Functions

In the fuzzy rule cube, each factor has seven membership functions (MFs), but the

representation of these membership functions is different for each axis. In Fig 4.5, numbers

1 to 7 stand for size sequence in MFs, PB stands for positive big, PM stands for positive

middle, PS stands for positive small, Z stands for zero, NS stands for negative small, NM

negative middle, NB negative big. In the closeness to goal MF, the shorter the distance

from tentacle to the goal position the larger MF bin. In the velocity axis, the larger speed

set index we use, the higher the bin. In the closeness to obstacle axis, the further the robot

is from an obstacle, the higher the value in the bin is.
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Figure 4.5: The sequence of MFs and output according to the factors
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Chapter 5

Obstacle Avoidance Simulation

Design

After building the algorithm structure, the simulation procedure is ready to start. The

selection algorithm can be separated into two parts, the first one is pre-selection and the

second one is trajectory selection. By inputting the speed set number (from 0 to 15), the

simulation result will show in the plotting diagram.

5.1 Pre-Selection

Before running the fuzzy controller selection algorithm, there exist a pre-selection pro-

cedure at each update cycle. Pre-selection reduces the computational complexity of the

tentacle selection. We should note that the cartographic model will change in different

circumstances, hence, two of many representative conditions are selected and listed below:

road map and obstacle map. The road map condition means the vehicle needs to follow

the road path to avoid the obstacle without touching the edge of the road and all available

routes beyond the boundary of the road cannot count as free trajectories. Obstacle map

condition means the vehicle needs to avoid those obstacles (yellow circles) showing on the

map. The obstacles are the simulation of woodland.
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5.1.1 Pre-Selection In Road Map

The Figure 5.1 shows the selection detail in road map condition. First, eliminate any

tentacles which touched the edge of the road collide with an obstacle. The x coordinate and

y coordinate stand for position, the start point in the figure is (2, 10). The green colored

arcs are tentacles that pass the pre-selection process; the red arcs are tentacles that are

out of the roads edge. The black segment stands for obstacle. The two blue arcs are the

boundaries of tentacles that were eliminated by colliding with obstacle arcs.

Figure 5.1: Pre-selection method simulation in road map

5.1.2 Pre-Selection In Obstacle Map

The Figure 5.2 shows the pre-selection in the obstacle map. The obstacle map is a map

with ten random circles which stand for obstacles distributed in defined areas. The radius

range of those circles is from 3 to 18 (unit length, meters).

The start point (blue star) in Figure 5.2 is (100, 0), the green colored arcs are available

tentacles by pre-selection calculation; the red arcs are not selected by pre-selection because

they are touching the obstacle.
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Figure 5.2: Pre-selection method simulation in obstacle map

The distance between the plotting points is π/10000, which is the resolution of the

simulation points as we mentioned in the chapter 3. In the path trajectory simulation, the

pre-selection method in the task map has been implemented with slight changes of start

position (change to (0, 0)) and obstacles area. With the implementation of pre-selection, it

reduces the calculation of trajectory selection significantly.

5.2 Trajectory Selection

The trajectory selection runs after the pre-selection process. We have multiple po-

tentially good path choices for the vehicle to follow as seen in Figure 4.4. We use the

fuzzy-controller to select the optimized tentacle from the good tentacle candidates as in

Figure 5.3.

The blue tentacle in Figure 5.3 stands for the selected tentacle which is the optimized
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Figure 5.3: Tentacle selection method schematic diagram

tentacle among those available tentacles (green set) based on our method. The black circles

represent obstacles. The number of x and y axis are the current position of the tentacle set.

There are 343 fuzzy control rules in FIS rule editor as seen in Figure 5.4.

We are using the fuzzy logic toolbox in Matlab and edit those rules into the Rule Editor

(Figure 5.4). The rules are following the format:

IF (process state) AND (process state) AND (process state) THEN (control action).

After editing the rules, the surface of the whole fuzzy controller can be shown from the

FIS (showing in Figure 5.5, Figure 5.6, Figure 5.7).

Each free tentacle will have its own parameters such as velocity, angle, distance to desired

position, etc. We apply the MFs to each good tentacle candidate to get the final ranking

value for each tentacle. If there is a tie for the largest value, the algorithm will use the

closeness to obstacles as the first tie-breaker, the distance to goal as the second tie-breaker,

and the velocity as the final tie-breaker. In the unlikely event that all of these values are

tied, then it will simply choose the tentacle with the smallest index. The pre-selection

tentacle choice followed by fuzzy control selection process is repeated every update cycle

until the robot reaches its goal point.
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Figure 5.4: The fuzzy rule editor, it showing 343 fuzzy rules of the complete fuzzy controller

5.3 Matlab Function Structure Chart

This section mainly talks about the Matlab functions and the framework. Figure 5.8 lists

the function flow, our simulation build based on the flow chart. The simulation starts from

the obstacle model and Start/End Point, these two functions generate obstacle maps with

desired destination. If the destination is valid, the simulation will get into loop. The loop is

a big function to find the path selected by our algorithm and judge whether the vehicle will

arrive to destination or not. The judgment comes first and basic calculation and selection

come after, the figure plotting happens in every loop. In the basic calculation, we will need

to input the speed set number, in the fuzzy selection function, we will need to implement and

convert three factor matrices into fuzzy calculation function with fuzzy control function. We

can use fuzzy logic tool box to create and edit it by simply typing ’fuzzy’ in the command

window, after saving the fuzzy control function, we need to erase the ’bad’ tentacle from the

pre-selection result. If the vehicle gets no path to follow, the command window will show

need backup warning and the whole simulation exits. Otherwise the vehicle will follow the

selected path until the vehicle ’arrive’ (close desired position within 5 units of length) to

destination.
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Figure 5.5: 3D surface representation of the velocity and distance to goal axis of fuzzy
selection cube

Figure 5.6: 3D surface representation of the closeness to obstacles axis vs. distance to goal
axis of the fuzzy selection cube.
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Figure 5.7: 3D surface representation of the closeness to obstacles axis vs. velocity axis of
the fuzzy selection cube.

Figure 5.8: Function flow chart of the whole simulation
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Chapter 6

Trajectory Simulation Results and

Analysis

In this chapter, we show the trajectory simulation result utilizing our combined method,

fuzzy algoritm. In the simulation, the vehicle’s task is to reach the desired position given

random start point and random obstacles. We demonstrate the simulation results under

five different conditions: invalid destination, close destination, distant destination in slow

speed set, simulation by using large speed set, simulation with time scale. The simulation

is based on Matlab.

6.1 Invalid Destination

The invalid destination means the destination point is inside of an obstacle. In this

case, the plot of obstacles map will first display but the system will not run the simulation,

instead, a warning message will be shown in the command window (see Figure 6.1) and the

simulation will exits. For example, in Figure 6.1, the destination coordinates, given by the

user input, is an invalid destination. Therefore, the error message pops up.
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Figure 6.1: Invalid destination

6.2 Close Destination

When the start position and valid destination are in close proximity, which means the

distance from the start point to the desired position is smaller than or equals to 5 by our

definition, we consider it to be an arrival to the destination. The obstacles may change

because they are generated randomly and the command window will show the hint: ’You

are close to your destination’ (Figure 6.2).

Figure 6.2: The command window in the situation that the destination close to the start
position

6.3 Distant Destination

Several trajectory simulations in distant destination are discussed in the current section,

in these simulations, the speed values (j value) are from 0 to 8. The advantages to driving

with small velocity are: good maneuvering, easy turning and fast braking. One disadvantage
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is driving slowly is a time consuming way to arrive to the desired position.

Another situation, when no path is found to the destination, the command window

shows the warning: Wrong way, stop, and need backup! (Figure 6.3).

Figure 6.3: The command window of no available path
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Figure 6.4: Schematic plan of trajectory selection in speed set 1

One of the successful simulations is shown in Figure 6.4. The small red star at (0,0)

designates the vehicle starting point and the blue star at (120,0) is the goal point. The

vehicle keeps a certain velocity (j equals to 1) in the simulation process. Blue tentacles

are the pre-selected paths, red arcs are blocked paths, and those green arcs are the selected

tentacles. A red star is plotted at the end of each selected tentacle. The yellow circles stand
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for obstacles.

Other simulation results with the same start point and desired position as in Figure 6.4

are shown in Figure 6.5, the desired position among those subplots in Figure 6.5 are same,

which is (250, 0), j equals to 2,4,6,8 respectively.

Figure 6.5: Schematic plan of trajectory selection with random obstacles map, j=2,4,6,8

6.4 Simulation Analysis in Different Speed

The simulation in Figure 6.6 displays the selected paths in different values of j with

the same obstacles map. The destination is (200, 0) and the speed set is 6, 3.4970m/s.

The selected trajectory is not the shortest one because the shortest path is the straight

line between two points: start position and the destination, other simulations in speed sets
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0,1,4,5 have as same destination as simulation j=6, nearly all of them are selected closer

path trajectory compared with the path in the last simulation shown in Figure 6.6 because

they are all closer to the straight line between start point and end point, compared with the

simulation j=6. Putting speed factor into consideration, the speed set 6 gets the minimum

duration to arrive the desired position.

From the simulation results shown in Figure 6.6 we can obtain each subplot figure’s

simulation path length, speed set value and loop number. Each path length divided by its

own speed value comes out with the duration of the simulation. The Table 6.1 shows that

with the increasing of the speed, the duration reduces significantly as well as calculation

loop times. Meanwhile, the path length basically showed a similar tendency as the speed.

Table 6.1: The table of duration comparison in different speed

Speed set Speed (m/s) Duration(s) Path length(m) Loop number

0 0.2500 860.8076 215.2019 9

1 0.6282 327.7057 205.8647 8

4 2.2460 92.4026 207.5363 7

5 2.8589 77.6952 222.1228 7

6 3.4970 61.7619 215.9815 7

6.5 Simulation With Time Scale

We can see the simulation result from Figure 6.7, the vehicle obtains selected tentacle

from the output of algorithm and follows the selected path until the end point of the tentacle.

During the path following procedure, the vehicle gets into the next loop to calculate the

next optimized path, the start point of the next loop is the end point of the selected tentacle

in the current loop.

There is another way to simulate the path selection process: plot the path by using

points. The distance between two points is the ’mapping resolution’ as we defined in the

chapter ’Robot Kinematic Model’. One disadvantage of this method is that it does not

need to obtain a calculation result before each plotting point in every loop. If the mapping

accuracy is 0.0003, the mission is to move forward 30 (unit length), the method needs to run

the path selection algorithm 100,000 times with 99,999 pauses. The pause occurs because
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the robot needs to get the calculation result before plotting the next point.

In our solution, the selection algorithm only calculates one time, thus we can complete

the next path selection result during the vehicle following the current selected tentacle path.

The pre-selection procedure provides free tentacles set. As a result, if we need to achieve the

goal ’move forward 30 (unit length)’, our simulation needs to calculate the time with same

amount of pauses. It depends on the vehicle’s speed and the distance to the destination as

well.
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Figure 6.6: Path selection in one map
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Figure 6.7: Schematic plan of trajectory selection in speed set 0 with time scale



36

Chapter 7

Experimental Results

After the simulation, we implemented the algorithm on a Clearpath Robotics Husky

A100 robot running the Robot Operating System (ROS), using the C++ programming

language. The data output of our tests are LIDAR scan results (Figure 7.1). They are

stored and recorded in Polly during the experiment (Figure 7.2)

By using the ROS visualization tool rviz, we got the diagram result in Figure 7.1 shows

obstacle avoidance with our algorithm implemented. When the obstacle appears in front of

the vehicle, the system will choose a tentacle to avoid the obstacle. The smooth arc is the

selected tentacle, the other data points are obstacle information from the LIDAR scan.

The top graph is the robots X/Y position, the middle graph is its linear velocity, and

the bottom graph is its rotational velocity. The angular velocity graph is noisy due to

the inaccuracies of the encoders, but the large excursions represent obstacle avoiding. The

X-axis for all graphs is in seconds.
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Figure 7.1: Output from Local Planner node in rviz

Figure 7.2: The output from Polly
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Chapter 8

Conclusions

We proposed a simple path planning method using only LIDAR information for obsta-

cle avoidance. The approach can be used in situations without global positioning system

data or other localization techniques as it is only dependent on basic odometry data that

does not need to be very accurate. The obstacle avoidance behavior itself is completely

decoupled from localization as it is performed in the robot-frame. The algorithm was suc-

cessfully implemented both in simulation and on actual hardware, and in both instances

successfully drove autonomously and avoided obstacles while moving towards a goal point.

The simulation successfully demonstrated tentacle sets modeling, obstacles avoidance and

tentacle selection using fuzzy logic. We proposed three dimensional fuzzy rules with weight

for each factor, and produced a fuzzy controller. In the experiment portion, we imple-

mented the fuzzy-tentacle algorithm on our Clearpath robot Polly using the UTM-30LX

LIDAR installed on the robot for our environmental sensor. The testing environment ex-

perimental results indicated the feasibility and efficiency of the fuzzy-tentacle algorithm.

Meanwhile, several extensions are possible to improve the algorithm. One of the interesting

ideas would be all tentacles reach obstacles. In this situation the vehicle could still run with

low speed and modified bad-tentacle criteria, as well as increased LIDAR scan frequency to

pass through very closely spaced obstacles. In addition, the global planner is necessarily as

simple as the point was to demonstrate the feasibility of the obstacle avoidance behavior.

More complex global planners could improve tentacle selection by strategically placing the
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goal point at various points along a basic pre-computed optimal path that is updated at a

much slower rate for computational efficiency. Finally, the algorithm currently is only in

2D space (x,y). However it could be easily expanded to 3D space by extending both the

tentacle generation algorithm and the local planner into 3D.
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