
JP Morgan Chase & Co.
Continuous Integration Project

Major Qualifying Project Report

!
!
!

Submitted By:
!

 Yang Yang Yao Li!
!
!
Advisors:
! !
! !
 Arthur Gerstenfeld Xinming Huang

Project Center:

Wall St. New York, NY

B term 2013

Sponsor:

JPMorgan Chase & Co.

Jan 18, 2014
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 2!

2!

Abstract

!!!!! We collaborated with Global Real Asset team and Alternative Investment

team at JPMorgan to implement a continuous integration platform for software

development. The process utilized an open source tool to streamline the automated

build process accompanied with unit and regression suite testing to mitigate risk. This

platform helped reduce time and effort to initiate the regression testing in the

development cycle.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 3!

3!

Acknowledgements

The MQP team would like to thank their primary liaisons at JPMorgan Chase

& Co.: Sri Atluri, Scott Burton and Chris Rice for their constant support. The team is

also grateful for the guidance from their mentor Charles Dixon. Additionally, the

team would like to thank their advisors: Prof. Arthur Gersenfeld and Prof. Xinming

Huang for their help and assistance during the project in New York City. At last but

not least, the team would like to thank the entire JPMorgan Asset Management

Technology Team for granting them full access to the system, and helping them solve

technical issues.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 4!

4!

Authorship
!

The Major Qualifying Project was completed through collaboration between

both team members. Each team member worked diligently on the project and the final

report. The Introduction, Background and Methodology were completed by both

members. Yao Li was mainly responsible for the Result and Analysis section, and

Yang Yang was responsible for the Reflection section.

Each team member contributed equally to the report and they both dedicated a

significant amount of time of effort.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 5!

5!

Table of Content
Abstract!...!2!

Acknowledgements!...!3!
Authorship!...!4!

Table!of!Content!...!5!

Table!of!Figures!..!6!
Table of Tables!...!6!

Chapter!1!Introduction!..!7!

Chapter!2!Background!...!9!
2.1!Sponsor!Description!...!9!
2.2!Software!Development!Methodology!..!10!
2.2.1!Waterfall!Model!..!10!
2.2.2!Agile!Methodology!..!12!
2.2.3!Continuous!Integration!...!14!
2.2.4!Refactoring!Continuous!Integration!at!JPMorgan!...!15!

2.3!Tools!and!Data!Format!...!17!
2.3.1!Jenkins!..!17!
2.3.2!Nexus!..!19!
2.3.3!Sonar!...!20!
2.3.4!Subversion!and!TortoiseSVN!..!21!
2.3.5!XML!..!24!

Chapter!3!Methodology!..!25!
3.1!Task!List!..!25!
3.2!Survey!...!26!
3.3!Automated!Release!Management!...!26!
3.4!Connection!of!Jenkins!and!ARM!..!29!
3.5!Connection!of!Machine!and!ARM!..!31!
3.6!Deployment!Plan!Creation!and!Modification!..!32!

Chapter!4!Result!and!analysis!..!34!

Chapter!5!Future!Plan!...!36!
References!..!37!

Appendix!AP!Deployment!Plan!(All!actions!included)!..!38!

Reflection!on!the!Project!..!39!

!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 6!

6!

Table of Figures
!
FIGURE!1!WATERFALL!MODEL!...!10!
FIGURE!2!AGILE!LIFECYCLE!...!12!
FIGURE!3!DEMONSTRATING!TIMELINE!FOR!AGILE!AND!WATERFALL!MODEL!...!13!
FIGURE!4!CONTINUOUS!INTEGRATION!MODEL!..!15!
FIGURE!5!CONTINUOUS!INTEGRATION!MODEL!IN!INDUSTRY!..!15!
FIGURE!6!!REFACTOR!CONTINUOUS!INTEGRATION!AT!JPMORGAN!..!17!
FIGURE!7!JENKINS!CONSOLE!...!18!
FIGURE!8!CONFIGURATIONS!OF!APPLICATION!...!19!
FIGURE!9!SONATYPE!NEXUS!...!20!
FIGURE!10!SONAR!DASHBOARD!...!21!
FIGURE!11!SUBVERSION!AND!TORTOISESVN!..!22!
FIGURE!12!TORTOISESVN!..!23!
FIGURE!13!COMMIT!CHANGES!(JIRA!TICKET)!..!23!
FIGURE!14!UPDATE!..!24!
FIGURE!15!ARM!MAIN!PAGE!...!27!
FIGURE!16!!DETAILED!CONTINUOUS!INTEGRATION!...!28!
FIGURE!17!CORRESPONDING!SOFTWARE!...!29!
FIGURE!18!JENKINS!POST!BUILD!SECTION!..!29!
FIGURE!19!ARM!MAIN!PAGE!...!30!
FIGURE!20!FLOW!CONTROLLER!MECHANISMS!..!31!
FIGURE!21!ARM!MAIN!PAGE!...!31!
FIGURE!22!DEPLOYMENT!PLAN!...!32!
FIGURE!23!REFACTORING!CONTINUOUS!INTEGRATION!PROCESS!..!34!
FIGURE!24!NEW!CONTINUOUS!INTEGRATION!MODEL!...!34!

Table of Tables
TABLE!1!TASK!LIST!..!25!
TABLE!2!SURVEY!...!26!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 7!

7!

Chapter 1 Introduction
!

A software development methodology is a framework that is used to structure,

plan and control the process of developing an information system. Some of the most

common methodologies are Waterfall and Agile.

Waterfall is a traditional software development methodology. It contains the

following steps: requirements, design, implementation, verification and release. It is a

linear sequential process, which means it is simple and easy to understand and use.

Waterfall especially works well for small and relatively simple projects. However in

many cases, it can be a bad practice due to its inflexibility to changes.

Agile software development is a good solution to the drawbacks of Waterfall.

It is an iterative and incremental process. Thus Agile is flexible to changes. The

technology division of JPMorgan Chase & Co. focuses on Agile methodology for

their financial software development. They created a continuous integration platform

based on Agile, which allows developers to integrate code changes frequently in order

to build up final products more efficiently.

 This already existed platform automatically built up software based on

requirements. However, quality assurance testing would still have to be done

manually. This was not an ideal situation as manual work meant waste of time. In

order to include quality assurance in the entire automated lifecycle, the MQP team

was assigned to refactor the continuous integration platform.

The team utilized various continuous integration tools including Jenkins,

Sonar and Subversion to bridge the automated development lifecycle and quality

assurance. The new continuous integration platform helps initiate testing within

quality assurance automatically after development.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 8!

8!

The team also set the following five objectives to achieve through this project:

• Identify and understand the goal of the Asset Management Technology Team

of JP Morgan Chase & Co.

• Conduct research on software development process as well as quality

assurance process

• Test the tools and scripts to eliminate errors and solve issues

• Optimize the continuous integration process

• Provide recommendation on future improvement!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 9!

9!

Chapter 2 Background
!

2.1$Sponsor$Description$
!

JPMorgan Chase & Co. is an American multinational banking and financial

services holding company. It is one of the oldest financial institutions in the United

States. With total assets of $2.509 trillion, it is the largest bank in the United States.

JPMorgan Chase & Co. operates in over 60 countries, serving consumers in the

United States and many of the world’s most prominent companies, institutions and

government clients. It is a leader in investment banking, financial services for

consumers, small business and commercial banking, financial transaction processing,

asset management and private equity. JPMorgan Chase & Co. is one of the Big Four

banks of the United States. According to a composite ranking by Forbes magazine in

2013, JPMorgan Chase & Co. is the world’s third largest public company.

JPMorgan Chase & Co. is built on the foundation of more than 1,000

predecessor institutions, including Chase Manhattan Bank, JPMorgan Chase & Co.,

Bank One, Bear Stearns and Washington Mutual. Originally established as the

Manhattan Company in 1799, JPMorgan Chase & Co. has over 200 years of banking

service experiences. In 2000, Chase Manhattan purchased J.P. Morgan & Co for $34

billion and the company was renamed JPMorgan Chase & Co.. It then acquired

Chicago-based Bank one in 2004 and the assets of Washington Mutual and Bear

Sterns in 2008. Now JPMorgan Chase & Co. is considered to be a universal bank.

JPMorgan Chase & Co. conducts businesses through two brands, Chase and

J.P. Morgan. Chase provides consumer and commercial banking service. Its consumer

businesses include but only limited to Credit Cards, Small Business, Education

Finance, Retire and Investment and Merchant Service. Its commercial banking

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 10!

10!

businesses include Middle Market Banking, Business Credit, Equipment Finance,

Commercial Term Lending and Community Development Banking. The J.P. Morgan

brand conducts businesses including Asset Management, Investment Banking, Private

Banking, Treasury and Securities Services, and Commercial banking. J.P. Morgan’s

broad global platform and strength enable it to create long-lasting value for clients.

The MQP team worked at the Asset Management division of JPMorgan Chase

& Co.. This division is a leading asset manager for individuals, advisors and

institutions. It is one of the largest asset and wealth managers in the world, with assets

under management of $1.5 trillion (as of September 30, 2013). It provides global

market insights and a range of investment capabilities that few other firms can match.

!
!

2.2$Software$Development$Methodology$

2.2.1$Waterfall$Model$

!
!

!
Figure!1!Waterfall!Model!

Requireme
nts

Design

Implementa
tion

Verificatio
n

Release

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 11!

11!

Waterfall is a classic approach to software development. As seen in Figure 1,

it is a linear sequential process, starting from gathering requirements and ending with

the release of software. Waterfall model is simple and easy to understand and use.

Before one starts to develop the software, he needs to gather all the requirements from

the clients. After he has all the requirements, he will start to design the software. Then

he will build up the design, test the product and release it.

Waterfall development process is a sequential approach to design and

development, assuming the requirement must be identified before starting the process.

Each phase must be 100% completed before the next phase starts. The product will be

delivered at the end of development process. However, when the requirement changes

during the term of the process, it would be difficult to turn back in the process. The

entire process would have to be restarted, which is time-consuming and expensive.

Advantage:

• Waterfall is easy to understand and implement

• It works well for small and relatively simple projects

Disadvantage:

• It is inflexible to changes. When there is any change in requirements, the

entire process has to be restarted

• Testing is relatively late, which makes it difficult to fix bugs

• Clients are not often involved. Voice of customer is weak

• It!is!not!a!good!model!for!complex!project!!
!

!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 12!

12!

2.2.2$Agile$Methodology$

2.2.2.1$Introduction$to$Agile$

Agile software development is a solution to the disadvantages of Waterfall

model. It is also the basic idea behind continuous integration. Unlike the linear

sequential waterfall model, Agile is based on an iterative and incremental process.

Figure!2!Agile!Lifecycle

As seen in Figure 2, it contains the following steps: Development, Build,

Testing and Deployment, which means developing the code, building up the product,

testing the product and deploying it (an iteration). Agile does not need to gather all

the requirements before starting to build the product. It can start from a few

requirements, and keep integrating clients’ changes in requirement later. Each

iteration in Agile contains a Testing phase, which helps detect bugs easily and early.

In each iteration process, the direction of the design can be changed base on the

requirements of the clients so that it is more efficient to meet the expectations of

clients. Thus Agile is more optimized.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 13!

13!

Advantages:

• Agile is flexible to changes

• Bugs are detected and fixed more easily

• Clients are involved

• It works well for complex projects

Agile methodology can respond to change of clients’ requirements efficiently. In

many cases, it is a good alternative to traditional waterfall development process.

2.2.2.2$Comparison$between$Agile$and$Waterfall$$

Figure!3!Demonstrating!Timeline!for!Agile!and!Waterfall!Model!

!
As shown in Figure 3, Agile is less time consuming. Its iterative and incremental

characristic makes it flexbile to changes and helps improve risk management. It is a good

practice in software development

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 14!

14!

2.2.2.3$Development$HistoryofAgile$

Tracing back to 1957, E. A. Edmonds introduced an adaptive software

development process, at the same time New York Telephone Company's Systems

Development Center developed same method. In the early 1970s, Tom Gilb published

the Evolutionary Project Management (EVO), which is the predecessor of

Competitive Engineering. Half century later, Gielan came out with Incremental

software development methods. Agile software development methods evolved in the

mid-1990s as a reaction against the waterfall-oriented methods, which were

characterized by their critics as being heavily regulated, regimented, micromanaged

and overly incremental approaches to development. In 2001 software developers

published the Manifesto for Agile Software Development to define the approach agile

software development. Some of the manifesto's authors formed the Agile Alliance, a

nonprofit organization that promotes software development according to the

manifesto's principles.

2.2.3$Continuous$Integration$

!
Continuous integration is a practice of agile in software development and it

makes agile more efficient by automation. It allows developers to integrate code

changes frequently, to be more efficient in building up the final products. The entire

process of continuous integration is very similar to those in Agile, which contains

Development, Build, Test and Deploy. The only difference is continuous integration

automates its process.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 15!

15!

.

Figure!4!Continuous!Integration!Model

Whenever there is a change in requirement, it will be integrated immediately

through automated Build, Test and Deploy. This saves the time cost by manual

intervene, because developers do not have to communicate with those who would

trigger the following steps.

2.2.4$Refactoring$Continuous$Integration$at$JPMorgan$

!

!
Figure!5!Continuous!Integration!Model!in!Industry!

Figure 5 shows the continuous integration platform JPMorgan created in the

past. It contains two major parts: Development lifecycle and Test Environment.

Development lifecycle includes Development, Build, Test and Deploy. These four

Automated

Dev

Build

Test

Deploy

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 16!

16!

steps make up the automated development lifecycle. Test Environment, in another

word, Quality Assurance, contains regression testing, functional testing and other

testing which make sure the final product meets the requirements and is free of

defects. Functional testing is used to test whether the code functions as expected.

Regression testing is used to test unchanged code and make sure the changed code

does not introduce new fault. It determines whether the previous functions works

normally with the new change.

 Every time when there is a change in requirement, developers will make

changes on their own code copy and commit changes back to code library. The

automated Build, Unit Test and Deploy will then start. After a product goes through

Unit Test, it will be deployed to Test Environment in a non-automated manner, which

is time consuming.

 In order to optimize this continuous integration platform, the team worked to

reconstruct and revamp the platform by merging regression testing (part of Quality

Assurance) to the automated software development lifecycle. As shown in Figure 6,

Test Environment and Development lifecycle are merged and becomes one automated

process.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 17!

17!

Figure!6!!Refactor!Continuous!Integration!at!JPMorgan

!

2.3$Tools$and$Data$Format$
!

2.3.1$Jenkins$

Jenkins is the leading open-source continuous integration server. It is the main

continuous integration tool in this project. It was created in 2004 in Sun Microsystems

and was first released in java.net in 2005. Built with Java, Jenkins provides 824

plugins to support building and testing virtually any project. Jenkins helps build/test

software projects continuously and monitoring executions of externally-run jobs.

Jenkins has several features including easy installation/ configuration, permanent

links, after-the-fact tagging, distributed builds, plugin support etc. Current Jenkins

focuses on the following two jobs:

• Building/testing software projects continuously. Jenkins provides an easy-to-

use so-called continuous integration system, making it easier for developers to

integrate changes to the project, and making it easier for users to obtain a fresh

build. The automated, continuous build increases the productivity.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 18!

18!

• Monitoring executions of externally-run jobs. Jenkins keeps outputs of

externally-run jobs and makes it easy for you to notice when something is

wrong.

Figure 7 shows the Jenkins console, and a list of GRA (Global Real Asset)

modules within Jenkins. GRA is one of the applications the team worked on. The

other one is the Alternative Investment.

Figure!7!Jenkins!Console

One plug-in of Jenkins is Maven. It is a software project management and

comprehension tool. Maven is based on the concept of a project object model (POM),

which contains specifications of the project. It can manage a project's build, reporting

and documentation from a central place. Maven lifecycle includes clean, build, unit

test, package and deploy.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 19!

19!

Figure!8!Configurations!of!Application

!
!

2.3.2$Nexus$

Sonatype Nexus (Figure 9) sets the standard for repository management

providing development teams with the ability to proxy remote repositories and share

software artifacts. With Nexus, developers can have control over open source

consumption and internal collaboration.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 20!

20!

Figure!9!Sonatype!Nexus

!

2.3.3$Sonar$

Sonar (Figure 10) is an open source software quality platform and it uses

various static code analysis tools to extract software metrics.

JPMorgan Asset Management Technology Team use Sonar, a separate

product, to monitor code quality. They also use Sonar plug-ins to display quality data

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 21!

21!

on Greenhopper (which can manage Agile project) dashboard.

Figure!10!Sonar!Dashboard

!

2.3.4$Subversion$and$TortoiseSVN$

Subversion (SVN) is a version control system that manages files and

directories over time and in a central repository.

!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 22!

22!

!
TortoiseSVN is a shell extension as well as a client for subversion. While

Subversion is the central repository containing the most updated code of development

team. TortoiseSVN is able to synchronize with Subversion, so that each developer has

his own local copy of the source code on his machines. The relationship between

Subversion and TortoiseSVN is shown in Figure 11.

!
Figure!11!Subversion!and!TortoiseSVN!

The developers may use web browser to check out code from subversion.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 23!

23!

!
Figure!12!TortoiseSVN!

After the developer made changes to the code, they will commit change to

subversion by creating a JIRA ticket with special name indicating what changes they

have made. The ticket will be used to record and memorize the changes, so in the

future the developers are capable of finding the changes they made and even revert

them. Figure 13 shows the commit dialog of TortoiseSVN.

!
Figure!13!Commit!Changes!(JIRA!ticket)!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 24!

24!

!
Figure!14!Update!

Since every developer updates the file before he makes new changes every

day, he will get the latest code before development process proceeds again. Thus the

function of TortoiseSVN makes it easier for different developers to make changes to

mainline code without having integration problem in the end.

2.3.5XML

!
XML (Extensible Markup Language) is the main coding language for this

continuous integration project at JPMorgan.

It is a markup language which sets rules for encrypting document in a special

format so that it can be read by both users and machine. It uses tags to describe the

content of a document. The language can be defined by user so that it is extendable

and unlimited. Presently, XML allows data sharing through Internet, computers and

applications which make it distinct among all other languages.

!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 25!

25!

Chapter 3 Methodology

3.1$Task$List$
!

Continuous Integration On-boarding Task

Steps Tasks
Our$Time$

Elapsed$
Time$

Completion
Status

1 Survey/project characteristics
2 Review Jenkins project and nexus info

3 Request ARM node on target machine
Set schedule

4 Request function ID
5 Test get-package script

6 Load groovy and get script on target
machine(s)

7 Create Install/deploy script
8 Test get & install script

9

Test calling get-package and install script from
ARM console
Test calling get-package and install script with
Scheduler

10 Test Jenkins build and ARM
Reset Scheduler to live run

11 Turn over to QA
12 Post implementation survey

Table!1!Task!List!

!
At the beginning of the project, the team created a task list (Table 1) in order

to plan and track future work progress. It contains twelve steps required for the

project as well as elapsed time and completion status.

Based on the task list, the team first designed a survey (Table 2) to gather

information from the development team. Then the team would review Jenkins project

and Nexus information, request ARM node on target machine, set schedule and

request function ID. When these steps were done, the team would create script with

specific functionality for the project. Next, the team would link various web

applications and machine together. Finally, the team would test the result and turn it

over to Quality Assurance. The team also created a post implementation survey at the

end of the project.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 26!

26!

3.2$Survey$
!

The survey as shown in Table 2, helped request information for the project,

such as server address of target machine, artifact type, installation time, recycle

frequency and specific configuration from the developers. This information provided

the team a detailed understanding of software development environment at JPMorgan.

The team interviewed the Global Real Asset and the Alternative Investment

development teams based on the survey and summarized the results. !

!
Which%Jenkins%environment%supports%your%project?%
What%are%your%target%machines?%How%many%machines%do%you%need%in%your%project?%
What%is%your%test%environment%and%how%is%it%like?%
What%types%of%artifacts%do%you%use?%Do%they%have%any%dependency?%How%to%deploy%them?%
%Do%you%have%scripts%for%deployment%on%the%target%machine?%
Who%to%contact%if%there%are%problems%with%script%deployment?%
Does%it%install%automatically%or%need%to%be%installed%manually?%
How%long%does%it%take%to%install?%
How%often%do%you%recycle%your%machine?%
How%many%people%can%access%the%machine%and%have%update%right?%
Is%the%machine%used%for%other%purposes%or%by%other%teams?%
Is%there%any%special%setup/configuration/customization%for%installation?%
What%do%you%expect%in%the%project?%%
What%do%you%think%of%the%survey?%Does%it%include%what%you%expect%for%the%project?%

Table!2!Survey!

!

3.3$Automated$Release$Management$
!

JPMorgan utilizes a web application named Automated Release Management

(ARM), which served as a communicator to trigger the deployment on machines. It

saves time spent on manual deployments and will increase efficiency of the

development lifecycle eventually. Automated Release Management (ARM) is a

lightweight communication protocol linked to machine and initiates desired

functionality on machine automatically. Below is the snapshot of ARM.

!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 27!

27!

!
Figure!15!ARM!Main!Page!

Figure 16 shows the detailed reconstructed continuous integration model at

JPMorgan. Whenever the developers want to make changes to the code, they check

out code from Subversion, which is a code repository containing the most updated

code. They then make changes on their own code copy and commit changes back to

Subversion using JIRA ticket. The continuous integration tool Jenkins scans the work

area every 15 minutes and looks for changes in code. When it detects a change, it will

start the development process automatically. This process includes clean, build, test,

package and deploy (Maven Lifecycle). After an artifact is built and packaged, it will

be stored in Nexus, which functions as an artifact repository. In the post - build

section of Jenkins, the ARM will automatically initiate deployment by pulling artifact

from Nexus and have it deployed on target machine. Regression testing will also be

performed on target machine.

!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 28!

28!

!
Figure!16!!Detailed!Continuous!Integration!

Figure 17 lists development lifecycle and the corresponding tools and web

applications. The team focused on Jenkins, Nexus, Target machines and ARM for the

platform. After Jenkins builds up artifacts, they are sent to be stored in Nexus. Target

machine will bring the artifacts from Nexus and start the deployment triggered by

ARM, which is a plugin of Jenkins.

!
!
!
!

Jenkins

Maven Life Cycle
Clean

Build
Test

Package
Deploy

…………………
Post Build:
Deployment

Nexus/ Sonar

Code Quality
Metrics

Target Machine

Deployment

Regression Testing

Subversion

Code Repository

Event Triggers
Build

Commit
Code

Changes

Snapshot Image of
Artifact

Dependencies
Management

Core Continuous Integration

Developers’
Machines

Check out
Make Changes

Update
Commit Changes

ARM

Artifact
Repository

R
ep

or
tin

g

12

develop build

test

deploy

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 29!

29!

!
Figure!17!Corresponding!Software!

!

3.4$Connection$of$Jenkins$andARM
!

In post-build section of Jenkins, there is a plugin called ARM plugin, which

does the link between Jenkins and ARM. This process enables development teams to

have their artifacts deployed on to the target machines automatically. In other words,

Jenkins builds the project, and ARM triggers deployment on machines. This

automation saves a lot time that was normally spent on manual builds and

deployments.

!
!

!
Figure!18!Jenkins!Post!build!Section!

!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 30!

30!

!
Figure!19!ARM!Main!Page!

Figure 18 and 19 show the ARM plugin in Jenkins post build section and

ARM web application respectively.

First, the team needed to enter specific Job Identifier, which is a piece of

translated information of a numeric value from ARM web application (Tab out of the

Job ID field and the plugin will pull out the Job information from ARM), as well as

Job Option. Job ID tells ARM what specific functionality the developers want it to

perform. In this project, the Flow Controller is a job from ARM, which primarily

controls flow of different actions; Job Option provides the web application with the

information needed for this specific job. In this project, it is the URL of deployment

plan (http://subversion.ny.jpmorgan.com/svn/repos/IM-IMA-GRA/GRA-

Dispositions/branches/GRA-Dispositions-1.1/GRA-Dispositions-CI-ARM-SIT-

Deploymentplan.xml), and the encoded password (sshPassword) for special password

protected sever. After the SAVE button is clicked, Jenkins will pass Job Description

to ARM. Thus Jenkins job is integrated with an ARM job. When Jenkins finishes the

build, ARM will trigger the deployment on machine automatically.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 31!

31!

Figure!20!Flow!Controller!Mechanisms

Figure 20 shows the mechanism of ARM’s job in this project, Flow

Controller. Flow controller defines the flow of the work. It reads the XML, constructs

the syntax and calls other appropriate controllers to do all the work. For instance, it

calls the FASTLEGACY controller (version 301) to do different commands such as

stop, deploy, undeploy and start. Additionally, it can call shell script to perform

regression test.

!

3.5$Connection$of$Machine$andARM

!
Figure!21!ARM!Main!Page!

!
!

Scripts
(XML)

Controller

Flow Controller
Flow

controlle
r

FAST
AS

Start
Unload
Load
…….

FAST
LEGAC

Y

Stop
Undeplo

y
Deploy

Start

Shell
Scripts

Shell
Script
 I.E.

Regressi
on Test

Other
Controll

ers

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 32!

32!

!
After the team connected Jenkins and ARM together, they focused on the

connection between target machine and ARM. In ARM, there is a section called

Matched Nodes. It tells ARM which specific machine to communicate with. As seen

from Figure 21, the piece of string in the Match Nodes is the server address. That is

how target machine is connected to ARM, and where ARM can start the deployment.

3.6$Deployment$Plan$Creation$and$Modification$
!
!

!
Figure!22!Deployment!Plan!

!
!

The team was assigned to create Deploymentplan.xml for over 20 applications

of two different teams (Global Real Asset Team and Alternative Investment Team).

As mentioned in the previous section, Deploymentpan.xml is an XML file that ARM

will call to perform Flow Controller job, and target machines will follow each steps

on XML to do all the jobs. The Deploymentplan.xml contains different actions

including stop, deploy, undeploy and start. Figure 22 shows a piece of

Deploymentplan.xml, containing only the deploy action. The team worked on

modifying tag <deploymentPlan> to make sure it points to correct deployment file in

Subversion. They also modified tag <war> to get accurate address from Nexus for

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 33!

33!

target machines to pull out corresponding artifacts. Also, the team located correct

machine address, which is shown in tag <hostURL>, and verified some of basic

information such as application name, application type with POM file of 20

applications.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 34!

34!

Chapter 4 Result and analysis
!
!

!
Figure!23!Refactoring!Continuous!Integration!Process!

!

The team successfully refactored the continuous integration platform by

linking up different tools (Figure 23). At the end of the project, ARM was able to

deploy artifacts automatically on machine instead of manual work. If the team follow

the same steps and change controller (FASTLEGACY) in ARM, they would be

capable of performing regression testing (Part of Testing Environment) on machine

automatically as well. Instead of the manual work in between the Development

Lifecycle and the regression testing, the entire process is fully automated (Figure 24).

!
Figure!24!New!Continuous!Integration!Model!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 35!

35!

!
This new continuous integration platform helps save time and improve process

efficiency. It is currently being in use in the technology division of JPMorgan.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 36!

36!

Chapter 5 Future Plan
!
!

The Asset Management Technology Team at JPMorgan will keep on merging

regression testing in the automated lifecycle. In the future, they will work on changing

ARM controller from FASTLEGACY to Shell Script (Figure 20) and send regression

test script to this Shell Script controller in order to initiate regression test on

machines. Other than merging regression test suite of quality assurance into

automated development lifecycle, JPMorgan will continue to include other parts of

quality assurance such as functional testing into the automated cycle and try to

achieve the target of making the entire software development process more efficient

and productive.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 37!

37!

References

 "Agile Methodology Understanding Agile Methodology." Agile Methodology RSS. Web. 15

Oct. 2013.

"Agile Project Management Meets Customer Needs." New Horizons Computer Training

Industry News Related Courses. Web. 15 Oct. 2013.

"Agile Methodology." ADF KickStart Agile Methodology Comments. Web. 15 Oct. 2013.

"Advantages of Agile Development." Agile Enterprises. 15 Oct. 2013.

"Agile Software Development." Employment Staffing Agency. 15 Oct. 2013.

"Agile Project Management Meets Customer Needs." New Horizons Computer Training

Industry News Related Courses. 15 Oct. 2013.

"XML (Extensible Markup Language)." What Is ?. Web. 15 Oct. 2013.

"XML.com." XML.com. Web. 15 Oct. 2013.

"Chase Ranked #1 for U.S. Customer Satisfaction." Chase Bank. Web. 15 Oct. 2013.

"DUELS, BOMBINGS AND APPLE: The Incredible Story Behind The Creation Of

JPMorgan Chase." Business Insider. Web. 15 Oct. 2013.

"Aaron Burr Opens Earliest Predecessor Firm | J.P. Morgan." Aaron Burr Opens Earliest

Predecessor Firm | J.P. Morgan. Web. 15 Oct. 2013.

“Jenkins” Software. Informer.Web. 15 Oct. 2013.

“What is Jenkins” Jenkins. Web. 15 Oct. 2013.

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 38!

38!

Appendix A- Deployment Plan (All actions included)
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

JPMorgan!Chase&!Co.!New!York!Team!MQP!Report!(2013!B!term)!

! 39!

39!

Reflection on the Project
!
Design component

During the Major Qualifying Project at JPMorgan, we designed a continuous

integration platform for the development of financial applications and software. This

platform allows software developers to integrate their code changes frequently, to be

more efficient in building up the software. It contains two major parts, which are

development lifecycle and test environment. Each part is fully automated and they are

linked together in an automated manner.

Constraints and alternatives

Time is one major constraint during this project. Our team needed to build up

continuous integration platforms for 22 financial applications in 7 weeks. Both of us

had little knowledge in continuous integration and XML (the main coding language

for the platform) before we started the project. We spent a lot of time learning and

discussing with our colleagues. We also made specific work plans for each day. We

are glad we finished the project successfully.

Need for life-long learning

This project was a wonderful learning experience and we both enjoyed it very

much. We not only gained technical skills in continuous integration and XML coding,

but also learnt how to work, talk and behave professionally in a top financial firm. By

presenting in front of the management and professors, we gained public speaking

skills. Teamwork was very important in this project. We have helped each other learn

and grow during the entire project. This project was also a great platform for us to

apply critical thinking.

We believe what we learnt and gained from this experience will be very

helpful for our future study and work.

