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Abstract

Alexander MOORE

Cycles Improve Conditional Generators

Learning information-dense, low-dimensional latent representations of high-dimensional
data is the thesis of deep learning. The inverse problem of learning latent representa-
tions is data generation, in which machines learn a mapping from information-dense
latent representations to high-dimensional data spaces. Conditional generation ex-
tends data generation to account for labelled data by estimating joint distributions of
samples and labels. This thesis connects learning meaningful latent representations
through compressive and generative algorithms and contains three primary contri-
butions to the improvement and usage of conditional GANs. The first is three novel
architectures for conditional data generation which improve on baseline generation
quality for a natural image dataset. The second is a novel approach to structure
latent representations by learning a paired structured condition space and weakly
structured variation space with desirable properties. Third, a novel application of
conditional data generation to a chemical sensing task with beneficial leaking aug-
mentations for extremely low-data paradigms (n < 100) demonstrates that condi-
tional data generation improves the testing performance of downstream supervised
models.
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Chapter 1

Introduction

1.1 Summary

Conditional generative adversarial networks are increasingly used in applications
(Karras et al., 2018). The extension of generative modelling to conditional genera-
tive modelling begets many interesting opportunities from architecture and training
algorithm perspectives. This thesis proposes a family of three models which im-
prove upon baseline conditional generative GANs by inducing cycles inspired by
CycleGAN (Zhu et al., 2017) with extensions to conditional data generation. Cycles
are defined as a mapping from an initial space to an intermediate space and back
with low reconstructive error such that each image of the distribution fulfills some
metric.

FIGURE 1.1: This thesis proposes a family of cycle-inducing models
which improve on baseline generators.

The efficacy of a generator can be quantified with established metrics such as the
Fréchet Inception Distance (Heusel et al., 2017). Quantifying the quality of a condi-
tional generator requires an extension accounting for the joint probability distribu-
tion of classes and images, given by the Fréchet Joint Distance (DeVries et al., 2019).
These two metrics are introduced in Chapter 3 and will be the primary measure of
quality for the baseline and proposed models of this thesis. Table 1.1 quantifies the
performance of two baseline conditional generators and the proposed cyclical mod-
els of this thesis in a controlled experiment on the natural image data set CIFAR-10
(Krizhevsky, Hinton, et al., 2009).

Lowering the FID and FJD scores of a generative model corresponds to gener-
ating samples closer to the data manifold given by an unseen holdout subset of
the CIFAR-10 data set, and correspondingly generating higher-quality, more real-
istic naturally images. Generating high-quality natural images is a competitive en-
vironment for machine learning, albeit with few practical applications (Mishra et
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FID FJD
CGAN 44.37± 0.54 51.97± 0.59
ACGAN 43.91± 0.31 61.59± 0.62
CAEGAN (ours) 37.67± 0.37 46.42± 0.47
ICAEGAN (ours) 39.06± 0.25 48.16± 0.27
CCAEGAN (ours) 35.72± 0.27 43.22± 0.32

TABLE 1.1: Conditional and unconditional Fréchet scores across
model architectures. Lower is better.

al., 2018, Odena, Olah, and Shlens, 2017). Generating high-quality labelled natu-
ral images, however, is a practical pursuit: Chapters 3 and 4 demonstrate applica-
tions of using conditional generation as a data set augmentation, in which both real
and generated training samples work together to improve the training of a super-
vised learner. Models trained in this manner exhibit lower testing error than models
trained with the training set alone: the inclusion of conditional generation for chem-
ical sensing also significantly improves the testing performance of a downstream su-
pervised model which utilizes some amount of generated samples. In this paradigm,
the desired task is a machine with low testing multiple regression error predicting
the chemical exposure on a testing set. Table 1.2 demonstrates that the inclusion of
stochastic data augmentation and data set augmentation with a conditional GAN
dramatically improves testing performance.

No Augmentation With Augmentation
No CGAN 23.11± 0.23 29.46± 0.32
With CGAN 24.05± 0.22 18.42± 0.22

TABLE 1.2: Testing loss for the combination of stochastic augmen-
tation and data set augmentation with a conditional GAN. Lower is

better.

In Chapter 1, language, notation, and current models specific to conditional gen-
erative machine learning are introduced. Chapter 2 details the architecture and
training algorithm of the novel cyclical models we propose. Chapter 3 provides a
proof-of-concept comparing baseline data generation approaches to cyclical models
on the CIFAR-10 natural image dataset, with additional experiments designed to
dissect model behaviors and scoring metrics. Lastly, Chapter 4 details a novel appli-
cation of conditional generation with beneficial leaking augmentations to a chemical
sensing application which improves baseline supervised learners.

1.2 Background

1.2.1 The Generative Assumption

The foremost assumption made in representation and unsupervised learning is the
generative or manifold assumption. This regime asserts that real data samples x in
data space X = Rn are distributed near some lower-dimensional manifold M ⊆ X
up to some random perturbation ε. Though the data in plot 1.2b lie in the data
space X = R3, we observe they lie near the lower dimensional manifold M ⊆ R3, a
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surface defined by some function on the latent space R2. The semantic information
of the data (here, the z-coordinate) is uniquely described within the low-dimensional
manifold up to some small perturbation ε.

(A) The latent distribution. (B) Data samples lie near the manifold.

Unsupervised learning often posits that this data manifold is substantially lower
than the data domain X, which is particularly evident in spaces such as high-resolution
natural images. Demonstrated in plot 1.4, even for a linear dimensionality estima-
tion method the estimated manifold of natural images is extremely low: 98 dimen-
sions made of linear combinations of the data dimensions are needed to express
90% of the variability in the training data. Relative to the data dimension of 32× 32
pixel RGB square images defined by 3072 real numbers, a conservative estimate is
that only 3% of the dimensions are needed to express 90% of the variation of these
images.

FIGURE 1.3: 9 CIFAR samples

Learning more flexible, non-linear models can provide even better dimension-
ality reduction. We will demonstrate how learning rich representations of these
compressed spaces can lead to superior predictive models, inference, and ultimately
generation of samples drawn from estimations of the training distribution.
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FIGURE 1.4: Natural images lie near a low-dimensional manifold

1.3 Background

1.3.1 Autoencoders

Autoencoders are a family of machine learning models which learn an approxima-
tion to the identity function I on training samples x given by Î(x) = x̂. Rather than
a simple identity, the autoencoder must recover samples under a bottleneck condi-
tion that the data must pass through some low-dimensional real-valued space before
being reconstructed back to the data space. These models leverage representation-
learning layers for compression which move the data to some low-dimensional,
information-dense space where dimensions represent variation in the semantic mean-
ing of their corresponding data-space samples.

FIGURE 1.5: Autoencoder Architecture.

The process to reconstruct samples x̂ after encoding them to a low-dimensional
representation z can be decomposed into an encoder Enc(x) = z and decoder Dec(z) =
x̂ functions, which are composed to create the identity approximation Dec(Enc(x)) ≈
x. Autoencoders are typically trained by minimizing the loss between an input sam-
ple x and the corresponding autoencoder image f (x), given by a mean reconstruc-
tion error over the elements i of each sample, specifically pixels for image data. For
one sample, the pixel-wise difference is defined as the distance between each of n
pixels xi in training image x, and each pixel under the image of the learned identity
approximation Î(x)i in the reconstructed image x̂:

LMSE(x, x̂) =
1
n

n

∑
i=1

(x̂i − xi)
2 (1.1)



Chapter 1. Introduction 5

Depending on the domain of the preprocessed data a binary cross-entropy loss
is often appropriate as well:

LBCE(x, x̂) = − 1
n

n

∑
i=1

xi log x̂i + (1− xi) log(1− x̂i) (1.2)

The per-sample error (implemented as the mean over a batch of sample) given
by Equations 1.1 or 1.2 is back-propagated through the autoencoder, so that both
decoding and encoding weights are updated. Using this loss for gradient descent the
decoder learn to map from low-dimensional representations back to the data space,
and simultaneously allows the encoder to learn a distribution which lends itself to
easier decoding. Significantly, the learned distribution has some inherent meaning
as points z ∈ Z have some learned bijective relationship with data point x ∈ X on
the decoder-learned manifold. Changes to the latent vector under decoding induce
changes to the decoded sample’s semantic content, and contemporary research such
as Locatello et al., 2019 measure performance of disentangling this latent space such
that representations dimensions correspond one-to-one with data space semantic
meaning.

The autoencoder architecture is a vital departure from linear manifold learning
algorithms, and is a blank slate for inducing architecture alterations and penalties
which can dramatically change the content and interpretation of the completely un-
regulated latent space. The space of latent representations is targeted for modifica-
tions as structuring this information-dense layer opens opportunities for data gen-
eration and inference, discussed in Sections 1.3.2, 1.3.4, and 1.3.7

1.3.2 Variational Autoencoders

A significant modification to autoencoders, both in architecture and adopted priors,
is the variational autoencoder (VAE) proposed by Kingma and Welling, 2014. The
VAE distinguishes itself from autoencoder architectures by imparting the assump-
tion that latent representations should be distributions, not vectors. The inductive
assumption that latent representations are better interpreted as distributions than
vectors changes the latent space of the bottleneck dimension from a Rn space to a
paired µ ∈ Rn ⋂

σ2 ∈ Rn mean and variance space. Into this distribution-space data
samples x are encoded as

Enc(x) v N (µx, σ2
x)

Encoding to a distribution is a significant departure from encoding to a vector.
This interpretation means that a single input sample corresponds to a distribution
of output samples under the deterministic decoder network, and the encoder must
balance encoding the variance of the distribution against the reconstruction penalty
that may be incurred by a random sample of the point.

The decoder architecture is identical to an autoencoder, with the exception that
the latent vector is not specified by the encoder, but rather the learned distribution
is sampled then decoded. The rephrasing of the latent representation vector as a
representation distribution also redefines the VAE loss as

L = Eqθ(z|x)[log pθ(x|z)] + Lprior

Where the expectation E of the encoded sample distribution qθ(z|x) given train-
ing data x is taken over the pixel-wise loss (Equation 1.1, 1.2) logpθ(x|z), represent-
ing the decoded distribution corresponding to the encoding samples z. In addition
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the VAE includes another penalty term on the prior:

Lprior = −βDKL(log qθ(z|x)||p(z) (1.3)

The deterministic reconstruction loss has been replaced with the expectation
over the reconstructed random samples given the encodings qθ(z|x) (Kingma and
Welling, 2014), and second term DKL is the KL-Divergence, an estimation of the dis-
tance between two probability distributions p and q. The DKL term penalizes the dis-
tance between the multivariate standard normal and the distribution of the encoded
representations. Including the KL-Divergence loss means that the VAE may choose
to assign a low variance to an encoded point on the assumption that certainty in the
sampling step will consistently lead to low reconstruction errors - however this will
be balanced by the KL-Divergence penalty so only a select few difficult points may
be sampled with low variability.

The assumption behind the stochastic decoding design is that sampling latent
vectors instead of deterministic latent vectors provides the model with more gener-
alizability, helps to mitigate overfitting with overly complex encoded distributions,
and allows sampling of the latent space to generate images approximating the train-
ing distribution. The variational design choice enforces a strict structure on the latent
space which can be tuned by a hyperparameter proposed in the β-VAE (Higgins et
al., 2016), which anneals the coefficient on the KL-Divergence to allow increasingly
more flexibility to the encodings and increasingly less variation in the sampling. This
process yields one estimation of a disentangled representation of the training distri-
bution, in which each dimension of the latent space corresponds to a single semantic
feature of the data space samples. Similar methods for tuning the level of structure
in a learned latent space are discussed in Section 3.1 and 3.1.2.

1.3.3 Generative Adversarial Networks

Generative Adversarial Networks are a broad new class of statistical models based
on a game-theoretic min-max game for data generation. In this design two agents
called the generator G, Figure 1.6a, and discriminator D, Figure 1.6b, alternate weight
updates to maximize the adversary agent’s error. The generator player samples from
random latent space Z (often a multivariate standard normal) a vector as input to a
learned deep network, then passes the output G(z) to the input of D. The discrimi-
nator then evaluates the sample by returning a the probability that the sample was
drawn from the training distribution, rather than the generator distribution. The
agents update in turn, where the generator tries to minimize the objective against a
maximizing discriminator solved by Equation 1.4.

The min-max optimization uses expectation over samples from the training set
x ≈ pdata of the error of the discriminator given by log D(x). The discriminator error
on real samples is balanced against that of error on generated samples given by the
expectation over samples z ≈ pz(z) decoded by the generator G(z), where z is the
multivariate standard normal prior (Goodfellow et al., 2014).

min
G

max
D

V(D, G) = Exvpdata [log D(x)] + Ezvpz(z)[log 1− D(G(z))] (1.4)

Vitally, the objective of the generator is not to generate plausible training sam-
ples. Rather, generating estimations of the training distribution by the generator and
plausible evaluation by the discriminator is a by-product of the two agents trained
to maximize each other’s error. The min-max process which updates each model
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according to the rival model error defines the nominal adversarial loss, and can
induce instability in training where the adversarial process diverges from approx-
imating the training distribution. The results of this thesis are discussed in this light,
as regularization to the loss with additional model tasks (Chapter 2) is beneficial to
generator quality (Section 3.1).

Adversarial training is sensitive to hyperparameter selection and training algo-
rithms, and is prone to pitfalls in practice. This thesis will work in part address
a common shortcoming in GAN training, which is the mode collapse. Mode col-
lapse occurs when the generator output distribution collapses to produce a single
point, sometimes of high quality, in the training distribution. Training divergence
creates a chasing game where the discriminator and generator perform some cyclic
update pattern, or converge to some multi-modal distribution of a limited number
of points(Goodfellow et al., 2014).

Vital to adversarial training is the discriminator’s ability to discern the proxim-
ity of a batch of data samples to the training distribution which drives the genera-
tor’s decoded distribution to be of high quality. However, the discriminator’s task is
quantifiably easier than the generator’s, especially early in training as evidenced by
the frequency of mode collapse and overfitting (Donahue, Krähenbühl, and Darrell,
2016, Mescheder, Geiger, and Nowozin, 2018). For this reason the discriminator loss
often converges to 0 before the generator can produce reasonable distributional es-
timation. Sometimes referred to as discriminator overfitting, the discriminator may
memorize the training set and converge to 0 loss which by definition ends training as
the min-max game cannot be updated further by the adversarial loss alone. Signif-
icant research in non-saturating and non-collapsing losses is directed at stabilizing
against generator collapse to prolong training (Jolicoeur-Martineau, 2018, Arjovsky,
Chintala, and Bottou, 2017).

(A) Generator architecture. (B) Discriminator architecture.

FIGURE 1.6: A generator and a discriminator make a GAN.

1.3.4 VAE-GAN

Previous work has proposed collapsing the decoder of an autoencoder and the gen-
erator of a GAN and learning the parameters jointly, as this thesis proposes and
extends in Chapter 2. The work by Larsen et al., 2016 makes this assumption and
trains a variational autoencoder (VAE) and GAN simultaneously. The authors make
the additional alteration of re-phrasing the reconstruction loss as a distance in a rep-
resentation layer of the discriminator. This triple criterion is expressed by 1.5 as the
optimization over the VAE prior (KL-Divergence) given by Equation 1.3, the novel
representation distance LDisl

llike, and the min-max GAN Equation 1.4:

L = Lprior + LDisl
llike + LGAN (1.5)



Chapter 1. Introduction 8

Arguably the power of the model comes from the ability to perform the nominal
"autoencoding beyond pixels using a learned similarity metric" - meaning that the
reconstruction error is no longer expressed as a pixel-wise difference between a sam-
ple and its image, but rather as the distance between the representation of the sample
and its image in a layer of the discriminator. This leap from pixel-wise to image-wise
reconstruction quality quantification comes from the intuition that a GAN discrimi-
nator learns an excellent function mapping samples to their perceived quality, which
is the goal of reconstruction: minimizing the perceived difference between two sam-
ples. The loss component LDisl

llike therefore is given by the distance between a sample
x and its image f (x) when each is embedded into some representation layer of the
discriminator - Larsen et al., 2016 uses a depth of three. Intuitively this distance
corresponds to the difference in representation learned by the discriminator, which
is trained to evaluate the quality of samples by processing the entire image, rather
than a pixel-to-pixel analysis. The usage of representation-space distances is also
explored in Section 3.1 to quantify GAN performance.

1.3.5 Discriminators

Often, GAN research centers the importance of the generator as the product of a
trained model: from the inception of the GAN in Goodfellow et al., 2014 to recent
state-of-the-art (Zadorozhnyy, Cheng, and Ye, 2020), demonstrations and state-of-
the-art contests rely on demonstrations of scores of the generative component. The
generator is extremely useful, and success can be quantified by demonstrating suc-
cess in some well-established metrics (3.1). Though discriminators often have the
easier of the two tasks during training, it may harder to quantify performance of
one. The discrimination task explicitly is to balance two losses: the loss to return
a high probability when evaluating real samples, and the adversarial loss to return
a low probability when evaluating generator samples. This task has been noted by
Larsen et al., 2016 as a general-purpose description of a neural network who’s task
is to return the ’goodness’ of a sample relative to some reference distribution.

In a logical leap, one could describe a discriminator as an abstracted distribu-
tion divergence evaluator. Whereas metrics such as the KL-divergence evaluate
the distance between two distributions p and q, when these distributions are high-
dimensional manifolds such as a training set of natural images and a generator’s
learned distribution solving for pixel-wise distributional distances quickly loses use-
fulness and becomes costly. The discriminator, however, is implicitly trained as a
distance function between two distributions - this interpretation has even been for-
malized as the Wasserstein-GAN (Arjovsky, Chintala, and Bottou, 2017). Through
adversarial training the discriminator is incentivized to learn a tight bound around
the training data manifold, and by doing so becomes a powerful metric for the good-
ness of an estimation of the training distribution. This insight is leveraged by the
VAEGAN (1.3.4), but additionally in a novel way in Section 2.2.

1.3.6 Conditioning

Conditioning refers to structuring inputs to a function with some additional infor-
mation. This information is often a class label for multi-modal data but could be a
semi-supervised learned or set of labelled targets. For the purposes of this paper’s
discussion, conditioning refers to a disjoint set of class labels for multi-modal data
which may be the target for some downstream classification task, though in practice
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facile changes to architectures would allow for intersecting classes or scalar condi-
tions as shown in Figure 1.7.

FIGURE 1.7: Conditioning adds structure to a latent space.

Figure 1.7 demonstrates the particularities of conditioning for deep learning. In
the case disjoint class conditioning, each condition is an orthogonal dimension to
each other when interpreted as one-hot conditioning. In the scalar conditioning
paradigm, distributions in each dimension define the structure of the space.

The premise of conditioning is modifying functions f (v) = x mapping from
variation spaces from which multivariate standard normal samples are drawn to
the data space X to include another component of information c, a condition which
modifies the desired semantic content of the output. Rather than c being only an ar-
gument to a function, c specifically alters the geometric structure of the latent space
in the deep learning model of conditioning as interpreted in this thesis. Structuring
the latent space means that the generator in one interpretation maps from the joint
(v, c) distribution to the conditional joint distribution p(x|v, c). Figure 1.7 demon-
strates the geometric interpretation of the structure as experienced by conditional
decoders as the dimension of the problem is increased by the condition dimension.
The variation factors are specified as standard normal distributions, while the con-
dition space disjoints the distributions by the number of classes. In this instance,
the condition is one-dimensional of a scalar magnitude, but often classes are disjoint
one-hot encodings each represented by one dimension, or some real-valued vector
embedding (Wieting and Kiela, 2019 demonstrates one possible random-encoding
method for a natural language task). This difference signifies that in the deep learn-
ing context conditioning adds both substantial dimensionality as well as complica-
tion to the latent space, in the effort to facilitate class-dependent generation.

1.3.7 Conditional Autoencoders

Other work in Variational Autoencoders (Kingma and Welling, 2014) accounting for
the conditioning of multi-modal data has demonstrated the success of structuring
the data and latent space (Mishra et al., 2018). These models structure both inputs to
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the encoding function Enc(x|y) as well as the decoding function Dec(z|y), shown in
Figure 1.8 as an injection of conditions into both functions of the autoencoder. Thesis
thesis explores two modifications to this architecture by removing the need for the
conditioned encoder and inducing an adversarial loss on the model, discussed in
Section 2.1.

FIGURE 1.8: Conditional Autoencoders condition during encoding
and decoding

The addition of conditioning to a model allows function components to incor-
porate distinct information on multi-modal data, add degrees of freedom, and tune
by labelled factors of variation. Conditioning alters models f (x) to account for the
conditional probability of the sample p(x|c), learned by feedback on evaluation of
f (x|c). This departure from the typical autoencoder affords benefits in the interpre-
tation of the model as both the data space and latent space are partially structured:
the encoding and decoding models see some proportion of the domain as a condi-
tion which informs the subsequent representations.

Conditioning the decoder in particular begets many advantages, particularly
when paired with latent structuring such as in the VAE: using this design, the latent
space can be sampled at will and conditional generated samples may be produced.
This remarkable benefit, discussed in Section 1.3.8 and 2.1, extends representation
learning to training data approximation.

1.3.8 Conditional GANs

Training data approximation is the task of creating not only estimations of the train-
ing distribution p(x) with p(x̂|z), but estimations of the joint training distributions
given by p(x|c, z), where c ∈ C may be the labels of interest to a downstream super-
vised model.

The conditional GAN departs from the standard model by concatenating addi-
tional class information c to inputs to the generator G(z, c) and discriminator D(x, c).
This alteration gives both models inference to relate the condition to the expected
content of data space samples. For the discriminator, this is directly learned from
seeing (x, c) for training samples x and corresponding conditioning labels c. For the
generator, the relationship between c and the desired output x|c must be inferred
from losses returned by D.

Though the collapse of the generator-decoder architecture has been proposed
and is demonstrably useful, the distinction between the two remains interesting.
The generator has no control of the distribution which is must decode to the data
space

In a GAN, The discriminator can use this information to discern in the training
set how each condition should relate to the properties of the samples, and the gen-
erator then gets feedback on how the "seeding" condition applied to random normal
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samples should correspond to generated outputs. The generator models the condi-
tional probability p(x|z, c) where c is a sample from the class distribution p(c). Like-
wise, the discriminator evaluates p(x|c), the conditional probability that the sample
is drawn from the training distribution under the class condition c.

(A) Conditional generator. (B) Conditional discriminator.

FIGURE 1.9: Conditional GAN architecture.

1.3.9 Auxiliary Classifier GAN

The initial formulation of GANs by Goodfellow et al., 2014 laid the foundation for
the broad class of game-theoretic generative models which were both cheap to sam-
ple and made minimal assumptions on the image synthesis distribution. However
the basic implementation has success constrained to low-variable, low-resolution
task (Radford, Metz, and Chintala, 2015). The auxiliary classifier GAN (ACGAN)
demonstrated that the structuring of the latent space produced higher-quality sam-
ples, particularly when moving to higher-resolution tasks in natural images (Odena,
Olah, and Shlens, 2017). This represented a significant step in improving the dis-
criminability and diversity of samples, as the invariances and structures of natural
images were a large barrier for early GANs to overcome. As in this thesis, the AC-
GAN generator demonstrated success on its own merits, without the GAN training
techniques which can drastically alter model behavior (Salimans et al., 2016). The
ability to maintain image structure and invariances across distant regions of a gener-
ated image demonstrate a significant improvement when generative models access
a conditioning element which partitions the latent space in disjoint regions.

(A) Conditional generator. (B) Auxiliary Classifier discriminator.

FIGURE 1.10: Auxiliary Classifier GAN architecture.

This model mimics the CGAN with the exception that the discriminator does not
get the condition appended to the input. Instead, the discriminator must predict us-
ing the nominal classifier split as a classification head on the penultimate layer of the
discriminator. When training this model, the discriminator coefficients are updated
with respect to both the classification and adversarial errors, effectively training a
two-task model. Thesis thesis uses an extension of this encoding philosophy in Sec-
tion 2.1 which extends image-wise quality evaluation learned by the discriminator
to image-wise representation encoding seen in an autoencoder.
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1.4 Model Architecture

Each of the established and proposed models of this thesis could operate with one
of countlessly many possible architectures: inclusion of batch normalization, activa-
tions, depth, width, and network learning rate are some of many designer choices
a neural network engineer must grapple with when designing any model. For the
purposes of this thesis, a heuristic middle ground must be chosen in order to com-
pare a diverse set of algorithms over a various experiments. As each encoder, de-
coder, generator, discriminator, and predictive model ultimately serves one of two
general roles ("data to latent" or "latent to data"), two primary architectures are used
as a starting point before necessary tweaks are made to accommodate the differences
between algorithm design. Encoders and discriminators for all models share gener-
ally identical architecture with the exception of small input and outputs to account
for unique training algorithms. Generators and decoders generally share identical
architecture with the same exceptions for input and output type.

Explicit design for architectures shared by all models discussed in this thesis are
discussed at length in Appendix Section A.2 with corresponding diagrams, activa-
tions, motivations, and layer descriptions.

1.4.1 Hyperparameter Selection

One manner to control the instability of GAN training is to select a heuristic hy-
perparameter for use in Section 3. Fortunately once the model architectures have
been established, many "rule of thumb" hyperparameters have demonstrably good
performance in GAN training. The learning rate which determines the magnitude
of the gradient updates at each training step can be safely set to 2 ∗ 10−4 for many
tasks considering the number of parameters and batch size (Mescheder, Geiger, and
Nowozin, 2018). Training time for GANs on the CIFAR-10 task determined by im-
plementations of Karras et al., 2020a determine a batch size of 8 to be admissible
as it begets a number of training updates corresponding to the number of train-
ing epochs, chosen to be 10 for the results of Chapter 3. Quantitative evaluation of
trained generators confirms that increases to quantitative performance are extremely
slow after the 10-epoch range due to limited model capacity of the model architec-
tures discussed in this thesis.
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Chapter 2

Architecture Contributions

2.1 Autoencoder-GAN

This thesis proposes the Autoencoder-GAN (AEGAN) both as an alternative archi-
tecture to the GAN and CGAN for the purposes of generative modelling, and an
alternative to autoencoders for representation learning. This alteration comes from
the observation that both the decoder of an autoencoder and generator of a GAN
both map from a low-dimensional latent space to a data space. In the autoencod-
ing paradigm, both the encoder and decoder components contribute to learning the
unstructured distribution of the latent space as the loss given by reconstruction is
back-propogated to the encoder, which controls the training sample encodings. For
the GAN generator, this distribution is out of its control: the distribution is a prior
imparted which the model must approximate the corresponding transformation to
the training data distribution. Usually stipulated to be a multivariate standard nor-
mal distribution, the generator must learn to assign meaning to the dimensions of
this space such that the generated samples contain enough variability and structure
to minimize the loss returned by the discriminator.

The AEGAN and the conditional extension CAEGAN combine the explicit repre-
sentation learning of an autoencoder with the semantic decoding of random samples
of a latent space performed by a generator. This process weakly structures the vari-
ation space without the need for an explicit prior as in the VAE (1.3.2). Equation 2.1
gives the triple-criterion optimized by the CAEGAN:

L = Lcond + Lpixel + LGAN (2.1)

Two of the loss elements are directly borrowed from the nominal models: the
adversarial GAN loss LGAN (Equation 1.4) and the autoencoders’ pixel-wise recon-
struction loss Lpixel (Equation 1.1, 1.2). The Lcond loss is a departure from the typical
conditional autoencoder, given by a supervised loss (binary cross-entropy for one-
hot labels, Equation 1.2) from the encoder’s prediction of the input sample label,
meaning the model must predict the corresponding conditions of the input sample
rather than be provided it as an argument. This predicted label is used to condition
the decoding-generative portion of the model as well, meaning the model receives
a loss on the encoding step from all three components of the optimization Equation
2.1. The autoencoder-GAN collapses the GAN generator and autoencoder decoder
into a shared model, where gradients are summed and back-propogated through the
entire model including the encoder. This means that generative and reconstructive
tasks must be managed by the same set of coefficients, leveraging our prior that the
manifold assumption ensures the training distribution and the learned approxima-
tion share a latent representation.
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The inclusion of conditioning is a vital part of the design on this model. The third
element Lcond represents a structural prior imparted on the condition space, one of
the two latent spaces. This inductive bias is implemented depending on the task as
a predictive layer into the conditional latent space representing a class label which
may be double as a target of interest for a classification task. This is what defines
the Conditional Autoencoder GAN (CAEGAN). This design allows the encoder to
map any information into the unstructured variation space V, but must learn to map
input samples x with corresponding condition c into a latent point (v̂, ĉ). This pro-
cess dramatically differs from the conditional autoencoder (1.3.7), which conditions
both the encoding and decoding functions. While the variation space is totally un-
structured for this thesis, it could have additional structure such as in the variational
autoencoder. The condition-space C however is highly structured by a supervised
loss (Binary Cross-Entropy int he disjoint one-hot condition space given by Equa-
tion 1.2). This enforces that up to some penalty, input samples x must be encoded to
predict their class in the C-space and the learn inter-class factors of variation in the
V space. Increasingly strict assumptions about the nature of the structure of C are
explored in Section 3.1.2.

FIGURE 2.1: Hidden Conditional Autoencoder-GAN Architecture.

A proposed benefit of this architecture is the loss-disincentive of the modal col-
lapse GAN and CGAN are prone to. These models often rest in shallow local minima
in which the discriminator loss quickly reaches 0 before the generator can roughly
approximate the training distribution. Another training failure mode is when the
generator learns to nearly replicate one or a small subset of training samples, and
periodically moves between these modal distributions with the discriminator "chas-
ing" the updates. By enforcing a reconstruction loss on the shared decoder-generator,
the generative component of the model does not rely solely on feedback from the
discriminator and instead updates according to the non-adversarial reconstructive
task, which grounds the learned coefficients to produce data-space samples: not just
fool the discriminator. This also allows the model to escape loss-collapses where
0 adversarial loss would end training for a generator relying on the discriminator
alone by nullifying gradients. The proposal that additional loss terms regularize the
side effects of adversarial training will be a common theme in this thesis.

In order to prove the efficacy of the CAEGAN, it must be demonstrated that ei-
ther the encoding portion of the model performs the classification task better than
a predictive model with only the classification loss and identical architecture per-
forms the task, or that the decoding portion of the model likewise outperforms an
identical decoder (CGAN) which is informed solely by the adversarial loss. This the-
sis hypothesizes that for all proposed models, the incorporation of additional loss
terms regularizes each component, lessens reliance on adversarial losses which can
be unstable or move the parameters into undesirable regions, and incorporate indi-
rect information on the task goals that simple models are not privy to; for example
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feedback from decoder reconstruction influencing how the encoder maps samples
into the condition-variance space.

2.2 Inverse Autoencoder-GAN

The Inverse Autoencoder GAN is the second proposed alternative architecture of
this thesis. The nominal inversion performed by this model comes from two sources
of inspiration: the CycleGAN (Zhu et al., 2017) and contemporary research in latent
representation learning (Donahue, Krähenbühl, and Darrell, 2016). Recovering la-
tent representations of data is an ongoing and highly researched topic in machine
learning. Methods such as contrastive learning (Dai and Lin, 2017) and BiGAN
(Donahue, Krähenbühl, and Darrell, 2016) emphasize the importance of recover-
ing the sampled latent code which led to the generation of an image. This inverse
mapping with demonstrable semantic meaning in a dense space is not provided by a
typical GAN - though it is known to be useful for auxiliary supervised feature learn-
ing. A non-conditional formulation of the inverse autoencoder-GAN (IAEGAN),
called the latent regressor model, is proposed in Donahue, Krähenbühl, and Darrell,
2016 as was shown to under perform the BiGAN model. The authors hypothesize
that the latent regressor model struggles to recover latent representations of com-
plex natural images, though this thesis argues that conditioning for modalities may
ameliorate that challenge.

FIGURE 2.2: Inverse Conditional Autoencoder-GAN Architecture.

An inverse autoencoder as proposed by this thesis is identical to a conditional
GAN - the only departure is the addition of an encoder network borrowed from
the autoencoder family. This alteration modifies the otherwise normal GAN to in-
clude a reconstructive loss. Whereas reconstructive losses are usually taken on the
data space samples passed though a bottleneck autoencoder, this reconstruction
loss is taken between the latent sample v and the reconstruction v̂. The inverse
autoencoder-GAN utilizes the same loss formulation as the CAEGAN (2.1), though
with very different interpretations. The adversarial model is described as:

L = Lcond + Lv recon + LGAN (2.2)

In the ICAEGAN model, the reconstructive loss Lrecon is given not in the data
space for training sample reconstruction, but rather in the latent variation space V.
Like a typical GAN, the variation-space is sampled (multivariate standard normal),
and decoded by the standard conditional decoding architecture. Continuing the sim-
ilarity to a GAN, this decoded random latent sample is evaluated by a discriminator,
and each model receives an adversarial loss LGAN given by 1.4. However, this thesis
insists on cycles induced by reconstructions of encoded or decoded points, so this
generated sample is now returned the the condition-variance space by the encoder,
which defines the reconstructive and predictive lossesLcond,Lrecon. The conditioning
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appearing in the inputs to the generator and outputs to the encoder alter the inverse
autoencoder GAN to be a inverse conditional autoencoder-GAN (ICAEGAN).

The design of this inverted autoencoder was inspired by the CycleGAN paradigm
(Zhu et al., 2017). In CycleGAN, there exist two unpaired image sets drawn from dis-
tinct training distributions X and Y. Effectively two GANs are trained, one which
learns F(x) = y dictated by a discriminator trained to distinguish real and fake sam-
ples in x, and another mapper who learns G(y) = x taught by a discriminator who
learns to distinguish real and fake samples in Y-space. The return of the CycleGAN
design to a single-distribution problem is inspired by the observation that a GAN
learns the unpaired relationship between some prior sampling distribution V and a
target distribution X. In the same manner as CycleGAN, this mapping must be bijec-
tive and invertible to minimize the corresponding loss function which requires not
only high-quality images in each domain, but a cyclical loss in which samples must
maintain the reconstruction F(G(y)) ≈ y and G(F(x)) ≈ x under cycles through the
unpaired space.

The hypotheses of the implications of these additional losses are as follows. The
reconstruction and conditional prediction of generated samples encourages the model
to maintain a conditional manifold P(x|v, c) of dimension weakly bounded below by
the dimension of the latent variation space V. This is because when the model ulti-
mately re-encodes the sample to the variation space, if the learned conditional data
space manifold is substantially lower dimension than V, the reconstruction of the
latent code will be impossible as the co-domain dimension is bounded above by the
domain dimension for linear functions f .

In addition, one experiment and practical usage of conditional generation is for
supervised data augmentation (Section 3.2). By training a model capable of re-
encoding its own generated samples, it may be possible to improve classification
accuracy and latent-representation reconstruction by including these goals at train-
ing time, as the CAEGAN is not optimized to re-encode its own samples for class
and latent prediction - though it does indirectly perform this task without supervi-
sion.

2.3 Cycle Autoencoder-GAN

FIGURE 2.3: Cycle Conditional Autoencoder-GAN Architecture.

The cycle autoencoder-GAN is the logical extension of the CAEGAN and ICAE-
GAN. Where the CAEGAN and ICAEGAN perform reconstruction of a space un-
der the bottleneck of another space (data-latent-data and latent-data-latent, respec-
tively), the cycle autoencoder-GAN does both. This leads to a four part loss, given
by:

L = Lcond + Lpixel + Lv recon + LGAN (2.3)
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Where the Lcond comes from two sources: supervised learning of training data
labels, and reconstructing the random samples of C-space by generating and re-
encoding latent samples:

Lcond = Lc|x + Lc|Dec(v,c) (2.4)

This model extends the goals of the CAEGAN and ICAEGAN by performing
both tasks: autoencoding training data to learn a meaningful latent representation
of the training distribution, as well as performing reconstruction of generated sam-
ples as inspired by BiGAN (Donahue, Krähenbühl, and Darrell, 2016). This design
lends itself to inflated losses: only a small component of the overall magnitude of the
gradients comes from the adversarial loss itself, this model relies heavily on the as-
sumptions of CycleGAN between the unpaired prior space and the data space (Zhu
et al., 2017), where the discriminating adversary on the prior space (in this case, mul-
tivariate standard normal samples) has been replaced with a supervised loss because
of the special case where we know the structured distribution over (v, c).

The cycle autoencoder-GAN incorporates conditioning in the same manner as
the CAEGAN and ICAEGAN, forming the CCAEGAN. This model serves a special
purpose for the sake of experimental integrity in this thesis. One valid argument for
why the CAEGAN may perform well, as analyzed in Section 3.1, because it has the
unfair advantage of reconstructing training samples. This could lead to the model
performing well on quantitative metrics as a model which "generates" training sam-
ples exactly will receive good scores without having truly generated a new sample
which does not already exist in the training set. The ICAEGAN and CCAEGAN
are important goalposts against which the performance of the CAEGAN must be
compared: the ICAEGAN only experiences training labels in the same manner as a
GAN: indirectly through the lens of the discriminator’s feedback. The CCAEGAN,
however, does get to directly autoencode training samples: it exists as an in-between
model to the models it extends upon, with surprising results in Chapter 3.
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Chapter 3

Results

3.1 Quantifying Generative Quality

This section evaluates the generative quality of the proposed and baseline models.
Natural image data sets are a common benchmark which allow generative models
to be analyzed, and representations learned on one natural image data set are often
generalizable for transfer across vision tasks (Pan and Yang, 2009, Touvron et al.,
2021, Foret et al., 2020). For this reason this section uses the CIFAR-10 dataset, a col-
lection of 60, 000 natural images evenly distributed across 10 classes of 32x32 pixels
in three RGB channels (Krizhevsky, Hinton, et al., 2009). There exists a pre-defined
train-test split, which is used to evaluate supervised learners on the unseen partition
as well as compare distributional distance between generated samples and unseen
testing examples to evaluate generative quality. It is important to report both the
quality of generated data distributions and the adherence of the conditional samples
to their conditional distribution to measure both the quality of the learned generator,
as well as its adherence to inter-class similarity and intra-class differences. During
GAN training, this is often done by inspection - the designer can review a swathe of
samples by eye, and judge the quality (Mathiasen and Hvilshøj, 2020). The qualita-
tive eye-test metric is extremely useful for implementation and rapid feedback, but
is not sufficient for accurately determining high-quality generation.

FIGURE 3.1: CIFAR-10 is a benchmark natural image data set. Image
from Krizhevsky, Hinton, et al., 2009.

In a competitive setting, there exist multiple compute-expensive options to quan-
tify GAN performance after training is completed, though there is presently research
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for more rapid quality reporting (Mathiasen and Hvilshøj, 2020). The Fréchet In-
ception Distance (FID Equation 3.1), proposed by Heusel et al., 2017, quantifies the
quality of a generated distribution with respect to a target distribution by encoding
each in a learned representation of the Inception-v3 model, which was trained to be a
record-setting ImageNet classifier but has had its’ usage expanded to be a more gen-
eral workhorse of natural image representations (Szegedy et al., 2015). Because of
Inception-v3’s powerful representation-learning layers, it doubles as a robust image-
content embedder by utilizing the penultimate representation activation values be-
fore the classification layer. Though embeddings of samples into the massive model
are expensive, the FID is the standard measure for competitive generative models
(Karras et al., 2020b, DeVries et al., 2019, Zhang et al., 2019).

For the purposes of calculating the FID, one generated data set and one holdout
data set of real images are embedded into a representation-space by the Inception
model. This embedding yields the real-data representation distribution given by the
encoded CIFAR-10 testing samples, as well as a distribution of embedded generated
points made by the decoding of random multivariate standard normal samples. The
Wasserstein-2 (Korotin et al., 2020) distance then returns the FID score as the dis-
tance between the testing distribution and generated distribution expressed as nor-
mal distributions of maximum likelihood mean and variance in the representation
layer shown in 3.1, where Tr indicates the trace operator, µr, µg indicates the mean
of the embedded real and generated distributions, and Cr, Cg are the covariance ma-
trices of the embedded real and generated distributions (Heusel et al., 2017):

d2 = ||µr − µg||2 + Tr(Cr + Cg − 2
√

Cr ∗ Cg) (3.1)

Lower FID scores are better, as an ideal generator would minimize the distance
between the generated distribution and target distribution represented in Inception-
v3’s layers. Significantly, the Fréchet Inception Distance does not account for the
joint distribution of samples and classes for conditional data: one must either par-
tition the testing data set and compute one FID for each discrete class, or turn to
new research on the specific evaluation of conditional generative models. However,
using this approach makes for substantially slower evaluation, and in the case of
CIFAR-10, splitting the testing set into 10 classes yields only 1000 images per class
- a sparse sample of the high-dimensional and complex natural image manifold. In
addition, FID estimation of the conditional generation quality only holds for discrete
conditions, as in CIFAR-10: If the conditioning space were continuous this approach
would be intractable without discretization as the FID requires embedded distribu-
tions, not points (DeVries et al., 2019).

The Fréchet Joint Distance (FJD) proposed by DeVries et al., 2019 accounts for
joint distributions of images and conditions to express generated sample quality, ad-
herence to the intended class, and diversity from other classes. The FJD accounts
for the joint image-condition distribution in the embedded space space when calcu-
lating the distance between maximum likelihood Gaussian estimations. FJD further
improves upon the FID for evaluating the conditional quality of generated images by
extending discrete classes to continuous, a task necessary for applications in Chapter
4 and one which is intractable for the FID.

For the results in Table 3.1, each of the models uses identical architecture for en-
coding and decoding portions as discussed in 1.4. Additionally, the experiments
were performed ten times for each model, accounting for the variability in GAN
training and hedging against potential collapse. The variability in the results of
these experiments, which is a significant metric for generative quality, is recorded
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in the standard error reported for each experiment. For each trial, the model was
trained with the same hyper parameters and at training conclusion of ten epochs,
the generator was passed to the metric evaluator which returns the FID and FJD
of the generated samples compared to the designated testing set of CIFAR-10. The
discriminators and hyper-parameters are all held constant across all trials and archi-
tectures, determined a priori by typical GAN heuristics (Larsen et al., 2016, Salimans
et al., 2016). Additional GAN heuristic modifications and training algorithm alter-
ations have not been explored here, including: multi-step updates (Salimans et al.,
2016), discriminator loss blocking (Zadorozhnyy, Cheng, and Ye, 2020), relativistic
discrimination (Jolicoeur-Martineau, 2018), and augmentations (Karras et al., 2020b),
though augmentations are discussed for applications in Section 4.2.

The ACGAN does not use weight tuning on the supervised and adversarial
losses, and uses unweighted contributions. The cycle models we propose (CAE-
GAN, ICAEGAN, and CCAEGAN) also lack tuning on relative weighting between
conditional, reconstruction, and adversarial losses - all are unweighted despite us-
ing different loss functions. However we see cyclical models CAEGAN, ICAEGAN,
CCAEGAN all outperform strictly generative models GAN, CGAN, ACGAN in FJD.
The discrepancy between the baseline and cycle models cannot be explained only by
the autoencoders generating samples based on leaking reconstruction of the train-
ing distribution as foretold in Section 2.3, as the ICAEGAN does not perform train-
ing sample reconstruction. Rather, generative performance is improved when the
learned weights are updated at least in part by a non-adversarial task.

FID FJD Difference
Training Distribution 3.07 33.47 30.4
GAN 33.09± 0.31 56.48± 0.25 23.39
CGAN 44.37± 0.54 51.97± 0.59 7.60
ACGAN 43.91± 0.31 61.59± 0.62 17.57
CAEGAN (ours) 37.67± 0.37 46.42± 0.47 9.05
ICAEGAN (ours) 39.06± 0.25 48.16± 0.27 9.10
CCAEGAN (ours) 35.72± 0.27 43.22± 0.32 7.50

TABLE 3.1: Fréchet distances across model architectures. Lower is
better.

While FJD captures image quality, diversity, and class adherence, FID only mea-
sures quality of generated images with respect to the training distribution. In Table
3.1, "Training Distribution" demonstrates what a floor on the FID would look like:
by sampling random unconditional training observations and comparing the dis-
tance under the Inception embedding to testing samples, a Wasserstein-2 (Korotin
et al., 2020) distance of around 3 is expected. However, since this random sampling
does not account for the joint distribution over classes, we see the FJD is substan-
tially higher. The difference between FID and FJD is not an established metric, but
is useful to quantify how well the model is balancing the quality and conditional
components of the FJD score relative to the FID score. It is demonstrated here that
to minimize conditional quality score, a model could to some extent get away with
ignoring the condition as long as the image quality is sufficient, though this exploita-
tion of the score would fail in metrics such as 3.5 which require class consistency
more explicitly.
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The unmodified GAN outperforms in image quality alone, in part because it is
trained without regard for the conditional task, while the CCAEGAN demonstrates
success in both metrics, scoring as the lowest-FID conditional model as well as the
single-best FJD model. The GAN has not been bolded as it serves as a demonstration
of the kind of generative quality one can expect. The training distribution demon-
strates that high-quality images, ignoring conditioning, still lead to good FJD scores
from nearness to the training manifold under the Inception-v3 representation. The
CCAEGAN additionally has the lowest difference between its FID and FJD perfor-
mance, demonstrating the strictest adherence to inter- and intra-class differences in
content, though this difference is not an established metric.

It is worth noting that the ICAEGAN and CGAN are nearly identical models,
down to hyperparameters, architectures, and training algorithms. The only differ-
ence is that the ICAEGAN "re-encodes" its own generated samples, and receives a
supervised loss from this self-supervised operation. However, when quantifying
the quality of the generated distribution, the ICAEGAN actually outperforms the
CGAN to a substantial degree. Ignoring the other models and focusing on these two
paints a sharp image as cyclical losses being a substantial benefit to the training of
generative models. There is no training data leakage, increased model capacity, or
other confounding factors beyond the possible regularization or disentangled rep-
resentations being imparted on the generative component by the encoder. This is
one example of a compelling argument for the inclusion of cycles as a form of regu-
larization, or perhaps an advantage of disentangled learning which requires further
study.

FIGURE 3.2: Sample CCAEGAN conditional generation of image
classes

Figure 3.2 provides a sample of what a trained conditional image generation
generator creates. By taking random samples of the variation space and combining
with specified type tuples, visual inspection shows that the generator somewhat
adheres to inter-class and intra-class variation, though the image quality is not high.

3.1.1 Low-Data Regime

Often, real data sets have few observations. This can further exacerbate the curse
of dimensionality or sparseness of the high-dimensional data space of natural im-
ages. The challenges posed by GANs such as modal collapse and adversarial diver-
gence are made worse when overfitting to the training data is an easier task due to
the reduced problem difficulty (typically for the discriminator). Additionally, it has
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been found that even the full-data CIFAR-10 task can be considered a limited data
benchmark: Karras et al., 2020b demonstrate how augmentation of even the full the
training set can substantially increase generative quality, implying that the training
set alone is not a rich-enough distribution for optimal generation. In this section we
investigate how the performances reported in Table 3.1 change with a substantially
smaller data set, with one-quarter the training dataset of CIFAR-10 (12500 images)
in order to evaluate potential collapses or differences more apparent in the model
designs for this realistic problem.

FID FJD Difference
GAN 67.70± 0.54 87.19± 0.47 19.49
CGAN 79.70± 0.83 90.56± 0.90 10.86
ACGAN 71.02± 0.40 88.58± 0.41 17.56
CAEGAN 71.77± 0.67 83.00± 0.68 11.23
ICAEGAN 86.04± 1.04 99.01± 1.19 12.93
CCAEGAN 73.00± 0.80 84.11± 0.85 11.11

TABLE 3.2: Small-data Fréchet distances across model architectures.
Lower is better. The GAN has not been bolded as it serves as a
demonstration of the kind of generative quality one can expect, but

fulfills a different task to the other models.

In the low-data paradigm, the previous reasonable success of the ICAEGAN has
been totally diminished, falling dramatically behind the competition. While the
GAN continues to outperform in unconditional generation, the CAEGAN beats the
CCAEGAN in conditional generation measured by the mean FJD, though the stan-
dard error indicates that this is a uncertain claim. It can be assumed that if regular-
ization limiting the plausible coefficient space on the generative models contributed
to their success in the full-data task, that the same effect is even more apparent when
the training data is substantially reduced. The ACGAN has substantially lower stan-
dard error estimates than the rival models, indicating consistency even in the low-
data paradigm, while the other models have substantially increased variability in
generated quality. The autoencoding-cycle models CAEGAN and CCAEGAN do
outperform the competition with the lowest mean FJD scores, however, likely as-
sisted by the reconstruction error gradient weights maintaining the decoder’s prox-
imity to the training distribution.

FID Gap FJD Gap
GAN 34.61 30.71
CGAN 35.33 38.59
ACGAN 27.11 26.99
CAEGAN 34.10 36.58
ICAEGAN 36.98 50.85
CCAEGAN 37.72 40.89

TABLE 3.3: Differences between quarter-data and small-data Fréchet
distances across model architectures. Lower is better.

The change in performance is shown in Table 3.3, in which the differences be-
tween the full-data and low-data paradigms are quantified. The ACGAN loses less
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ground than its competition when three quarters of the training data have been
removed. It is possible that the more difficult discriminator task of simultaneous
quality-evaluation and class-prediction regularizes the discriminator against over-
fitting to the small training set. Despite losing less ground in performance than the
competitors, the ACGAN fails to outperform the cyclical models with regard for
FJD.

3.1.2 Snapping

The interpretation of the CAEGAN and CCAEGAN latent conditions under the ini-
tial design was initially a non-probabilistic encoding over the classes by using the
sigmoid activation into the latent code space. This means that the model can assign
some vector c ∈ R10 over C for each sample, according to the loss taken between
the encoding and the 10-class label in the case of CIFAR-10. In this paradigm, the
model can incorporate some nonzero amount of information about the samples into
the condition space which is effectively a second variation space despite a penalty.
However, it could be beneficial to use the inductive assumption that the C space
is a multi-class classification task, for which we use the softmax (Equation A.1) of
the output of the encoder into c space for tasks known to have disjoint labels, such
as CIFAR-10. Furthermore, to prevent the model from using the condition space to
include information beyond only the class label, a differentiable rounding function
can be applied to the encoded condition-space samples Encc(x) before the decod-
ing step, but after taking the condition-encoding loss, c = max(so f tmax(Encc(x))).
Taking the max of the softmax of the encodings is an argmax function: the most
likely class is chosen as the effectively one-hot encoded class. Rounding in this way
means the model decodes samples according to the same specifications as the gen-
eration task, in which only one-hot labels are used as conditions - not distributions
over labels, as in the softmax and sigmoid activations. No additional information
may be encoded into the condition space using this design, which is in line with the
assumptions of the bipartite split.

Table 3.4 catalogs the FID and FJD of the proposed changes to the CAEGAN
architecture including an alternate classification activation and force-sparsity Snap
layer, though no effect is noticeable. It is likely that the Snap model has superior
characteristics for analysis of the latent space z, since all non-class variation must be
encoded there. This begets the double benefit of making the decoding and genera-
tion tasks more similar, as well as assures that the variation between samples of a
constant class exist only in the variation space.

FID FJD Difference
CAEGAN (Sigmoid) 37.67± 0.37 46.42± .47 9.05
CAEGAN (Softmax) 36.61± 0.40 45.00± 0.47 8.39
CAEGAN (Snap) 37.27± 0.40 45.70± 0.35 8.43

TABLE 3.4: Proposed alterations to the autoencoding model inductive
bias on the conditional encodings. Lower scores are better.

Table 3.4 demonstrates that the selection of inductive bias on the condition space
matters very little. The benefits of the softmax activation match the assumptions of
the data labels and naturally performs the best, though the flexibility of the sigmoid
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is reassuring for extensions to intersecting label tasks. Though the Snapping algo-
rithm is a strong assumption to structure the condition space, it has little effect on
the Fréchet distances as the generative task of the model is unaffected.

3.1.3 Generative Diagnostics

FIGURE 3.3: Higher estimated manifold dimensions indicate more
variation in generated classes.

Figure 3.3 gives a sense for the complexity of the generated samples on a per-
class basis. In this demonstration, each trained model produces 2000 samples per
class condition (x-axis). The dimension of each of these batches is then estimated
with PCA, where the estimated dimension is given by the number of dimensions
formed of linear combinations of the data space dimensions have a cumulative ex-
plained variance ratio above 95%. Figure 3.3 implies that the number of dimen-
sions needed to explain 95% of the variation in each class generated by the CGAN
is significantly higher than the other models. In addition, it is remarkable that the
CAEGAN and CCAEGAN, which outperformed the competition in the FJD metric,
have substantially lower variability in their class samples. This is related to the low
FJD scores reported on each model, as inter-class similarity is an important contri-
bution to the score. It is possible that studying the linear dimension estimation is
capturing variability in a negative sense: the CGAN and ICAEGAN are producing
more "complex" classes by blurring the lines between classes. The CAEGAN and
CCAEGAN, however, are adhering more strictly in inter-class similarity which min-
imizes FJD but may lead to a lack of interesting diversity which demonstrates true
understanding of the class manifolds.

3.2 Augmenting Training Data

One proposed benefit of training data approximation by conditional generation is
augmenting the data set with generated samples to improve a downstream predic-
tive model. Conditional generators have the advantage of producing estimated la-
belled data tuples G(z|y) = (x, y), of which generation is nearly free: once the model
is trained, sampling of the latent space, generating, and saving samples is facile, and
could be done as many times as desired regardless of the size of the training data.
Exploiting indefinite free sampling of random normal distributions, we can aug-
ment the dataset with any amount of labelled samples, where the supervised labels
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are given by the class which conditioned the generator. Assuming the task at hand
for the generator was to minimize the FJD to the testing distribution through expo-
sure to the training distribution, these samples should be beneficial to the supervised
learner to augment the training set.

Table 3.5 reports the down-stream test accuracy of a multi-classification neural
network according to a variety of augmentation strategies. In each cell, ten trials are
performed in which a baseline supervised learner with architecture shown in A.2.1
is trained using a training set which is the indicated percentage of the CIFAR-10
training set. The remainder of the 50, 000 images are filled in with generated labelled
samples given by the row name. This means that for the 75% column, the first 37500
CIFAR-10 samples are chosen from a pre-determined shuffle of the training data
constant for each experiment, and 12500 samples are generated and concatenated to
the dataset. Each generative model is compared against a lack of augmentation, the
"None" row. In the "None" row there is no additional augmentation performed - only
the indicated percentage of the training data is used. In each case, the training data
is stratified-sampled down to the indicated percentage. In each case the testing set
remains a holdout set of 10, 000 samples uniformly distributed across the 10 classes.
The top-1 accuracy is the reported metric on this unseen testing set.

It is important to note that the experimental design used here is not identical to
how augmentation would be used to optimize a model for strictly testing accuracy.
Usually some kind of validation hyperparameter search would be used to find an
augmentation loss weight ω which would contribute to the model loss:

L = LTrain + ωLAugment (3.2)

The augmentation weight is a concession that generated samples can only ap-
proximate the training distribution, and may be harmful if they contribute equal
weight as the real samples in model optimization. Results in section 4.2 demonstrate
this effect. Results in Table 3.5 demonstrate how using ω = 1 contributes to model
testing performance for a variety of ratios of training data to GAN-augmented data.

75% Real 25% Real 10% Real 5% Real 0% Real
None 69.87± 0.23 59.12± 0.06 47.09± 0.07 32.60± .12 10.11± 0.04
GAN 69.12± 0.05 49.62± 0.09 26.23± 0.16 12.09± 0.13 10.47± 0.11
CGAN 69.89± 0.05 64.06± 0.38 34.13± 0.16 24.91± 0.09 18.55± 0.12
ACGAN 69.45± 0.04 44.72± 0.20 27.93± 0.17 21.24± 0.17 16.13± 0.15
CAEGAN 69.45± 0.04 51.18± 0.18 34.45± 0.19 25.89± 0.15 19.45± 0.16
ICAEGAN 69.44± 0.05 49.61± 0.14 32.78± 0.17 25.42± 0.13 19.25± 0.15
CCAEGAN 70.00± 0.05 52.41± 0.19 36.49± 0.21 26.46± 0.10 19.95± 0.10

TABLE 3.5: Test accuracy when training data is augmented with fake
data. Higher is better.

It is apparent in Table 3.5 that the design to back-fill the missing component of
CIFAR-10 with generated samples is likely not the correct direction if the explicit
task is downstream test accuracy. Rather, this table demonstrates the model’s ca-
pability to inform a downstream supervised learner. Investigating the first column,
it is clear from the standard error of the testing accuracy that the addition of 25%
generated data (the 75% Real column) actually serves as a productive regularizer
for the supervised model by considering the standard error of the testing accuracy,
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albeit with a very slight decrease in average accuracy for the majority of the gener-
ative models, which is a worthy trade-off for some applications. For the purposes
of dataset augmentation for the explicit task of downstream testing accuracy with
a high augmented-sample weight loss of ω = 1, Table 3.5 implies that an augmen-
tation to real data ratio of between 1 : 3 and 3 : 1 is appropriate. This is under the
assumption that the fake samples are weighted by the supervised learner’s loss at an
equal rate to real samples. It is possible that the benefits of regularization imparted
by generative augmentation are improved when fake sample losses are weighted
significantly lower than real samples, to improve performance on the data distribu-
tion while regularizing with the benefit of indefinite generated samples as discussed
in Section 4.2. The third and forth columns demonstrate this problem: at 10% and
5% real samples, the simple predictive model does overfit to the testing distribution
and lose some accuracy, but the benefits of not seeing an overwhelming majority
of highly-variable, heavily-weighted generated data is a greater boon. Finally, when
performing 0-shot learning (Romera-Paredes and Torr, 2015), the CCAEGAN has the
highest corresponding supervised learner performance. The relationship between
the victorious CCAEGAN in FJD and testing accuracy is not a coincidence - Fig-
ure 3.4 shows the tight relationship between conditional image quality and testing
performance of a downstream predictive model.

FIGURE 3.4: Testing accuracy increases linearly with conditional im-
age quality.

Figure 3.4 demonstrates that higher FJD-scoring models correlate with higher
testing accuracy for predictive models trained only on augmented data. This is
a reasonable assumption but helpful to demonstrate that tuning models to opti-
mize performance in the FJD metric is beneficial for downstream data augmentation
tasks. Optimizing a single generative model using the variety of GAN best practices
such as adaptive augmentation, discriminator loss blocking, and multi-step updates
would be a promising direction of research to make theoretically optimal "zero-shot"
(no training samples were used for training) accurate models which generalize to the
testing set. NVIDIA’s StyleGAN2 is a wonderful example of a model which incor-
porates the best of contemporary research on GAN modifications, and is capable
of producing unconditional generation of CIFAR-10 manifold approximations with
as low as 2.42 FID (Karras et al., 2020a). Two synergistic extensions to the work
presented in this thesis exist: combining the successful StyleGAN2 architecture and
training algorithms with the cyclical models, and injecting conditional techniques
into the presently non-conditional model. With such incredible FID performance,
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one may expect comparatively good FJD performance with the right conditioning
technique, and by extension exceedingly powerful data augmentation.

3.3 Cyclical Models Perform Classification

The final result on the benchmarking contribution of thesis is the demonstration
that cyclical models do not just improve on baseline generative models. The encod-
ing component of each of the cycle models CAEGAN, ICAEGAN, and CCAEGAN
perform the multiple attention task of encoding samples to the variation and code
spaces: therefore we expect some degree of accuracy when we interpret the encoders
as a solely predictive model. To validate this claim, 4 experiments were run with a
comparable design to those in 3.2: a designated set of the CIFAR-10 training dataset
was taken as the training data, then each row indicates a model trained from scratch
on this subset. Instead of training a predictive model, however, the three GAN mod-
els each use the encoding portions of their architectures to encode the testing sam-
ples. It is important to note there have been no changes to the models nor training
algorithms: each must still manage the tripartite loss given by reconstruction, en-
coding, and the adversarial generative loss. Rather, the same trained models sets
from 3.5 are analyzed. The class space-encodings of this test set are taken as the
class predictions, and the top-1 accuracy is taken.

75% Real 25% Real 10% Real 5% Real
Predictor 69.87± 0.23 59.12± 0.06 47.09± 0.07 32.60± 0.12
CAEGAN 68.55± 0.04 56.34± 0.08 45.78± 0.07 41.07± 0.17
ICAEGAN 18.60± 0.80 20.71± 0.56 15.30± 0.89 14.05± 0.41
CCAEGAN 65.25± 0.25 50.86± 0.25 41.21± 0.18 34.30± 0.13

TABLE 3.6: Top-1 test accuracy without regard for generation. Higher
is better.

Table 3.6 demonstrates that the complexity of handling autoencoding, genera-
tive, and supervised tasks is a weight for the models for the first three experimental
designs. Though the CAEGAN and CCAEGAN testing accuracy is in stride with
the simple predictor for 75% and 25% of the training set, the results fall off for
the CCAEGAN somewhat when using 5000 samples. However, a turning point ex-
ists somewhere between 5000 and 2500 samples: the regularization imparted upon
the encoder by managing the generative, reconstructive, and predictive tripartite
loss dramatically improves the model’s testing accuracy, as both the CAEGAN and
CCAEGAN pull ahead of the simple supervised learner.
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Chapter 4

Application

4.1 Chemical Sensing

The US Army DEVCOM Soldier Center is an Army research laboratory in Natick,
Massachusetts. As part of the research assistantship funded by this laboratory, in
this chapter we explore the use of conditional models for a chemical sensing task.
Contemporary research on chemical sensing detects the exposure of chemical ana-
lytes using label prediction or regression given sensor resistance responses.

A physical box of eight sensors with unique polymer coatings is used to detect
chemical anayltes in a vapor exposure. The detection device runs an electric cur-
rent through each polymer-coated sensor which records a resistances through time.
The scientists coat the platelets with diverse polymers such that the variation of
resistances measured by the device should respond differently to different analyte
compounds. In Figure 4.1, an example of experiment composed of eight sensor’s
concurrent exposure to 20 units of analyte A borne in vapor. From this 8-channel
signal the machine must regress the composition of the analyte exposure. The con-
sidered set of analytes of interest to the stakeholder are analyte A, analyte B, analyte
C, analyte D, and analyte E.

(A) One full experiment: eight polymer coatings
are exposed to analyte A borne in vapor.

(B) One coated platelet’s resistance during the ex-
posure.

FIGURE 4.1

In the laboratory, the experiments are highly controlled. The sensors rest with
typical air present for a baseline ten seconds. This time can be used to calculate the
mean shift in sensor resistance to standardize the data, as well as capture large sam-
ples of the omnipresent sensor noise, one direction for future research in utilizing
the noise distribution as a potential augmentation. Then a controlled flow of ana-
lyte vapor is exposed for a response time of thirty seconds, before a valve is shut.
The exposure window can be seen in Figure 4.1 as the period of rapid increase in
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resistance as the sensors are coated in the analyte. Then a desorption recovery time
begins and lasts forty seconds in which the sensor resistances are recorded but no
further analyte is exposed, indicated in 4.1 by the lengthy period of gradual decline
in resistance. The analyte exposures are quantified by a molecular density in the
exposed vapor, and accordingly the problem may be treated as a multiple classifi-
cation (multiple analyte exposure), multiple regression (multiple analyte exposure
magnitude), or a binary classification: the presence or non-presence of a particular
agent. For the purposes of conditioning and prediction in this work, the multiple
regression task is chosen.

(A) Mean absolute error, lower is better. (B) Mean squared error, lower is better.

FIGURE 4.2: Baseline regression task results given variable exposure
windows.

In an experiment on baseline results summarized in Figures 4.2a and 4.2b, data
with only a minimal zero-mean preprocessing translation are used to train a variety
of classic machine learning models. Models are selected by cross-validation over a
hyperparameter grid search. Scores given as testing mean squared error and L1 loss
(mean absolute error) on a holdout test set. K-neighbors outperforms parametric
models fairly consistently across exposure window sizes, taken as the number of
seconds after the exposure begins. Though research has been done explicitly on
learning meaningful preprocessing for sensor data, these models serve as baselines
for naive approaches to the multiple regression task Weiss et al., 2018.

For this thesis, the multiple regression task can be considered the highest degree
of granularity, as it is a super-task to the multiple classification. Extensions to the
disjoint conditioning used in 3 include non-disjoint conditioning for multi-class pre-
diction tasks and sensitivity analysis which analyzes changes in sensor resistances
as well as trained models to varying exposure magnitudes. Sensitivity analyses such
as these would be crucial to the generalizability of a chemical sensing tool at testing
time, as the stakeholder chemists cannot perform every combination of analytes at
every exposure magnitude.

Investigation of this sensitivity problem takes two paths for this thesis. The first
is to analyze the performance of a trained machine on a testing set with a diverse
set of dangerous analyte exposures. These exposures could vary in magnitude from
high to low concentrations, as the magnitude of exposure is important. However,
the chemists can only supply a discrete set of experiments of harmful exposures. In
addition, the sensor resistance response is not a linear relationship with exposure
magnitude - experiment 26 uses double the exposure magnitude as experiment 14,
sensor 5 responds at a significantly higher level relative to the low-exposure experi-
ment than the differently-coated sensor 1, as illustrated in demonstrated in 4.3.
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FIGURE 4.3: Sensor responses are not linear with exposure magni-
tude.

Making a model which is robust to these changes in signal magnitude is a vital
inclusion to achieve the desired generalizability. In addition, this sensitivity problem
poses some unique questions for developing models which incorporate additional
information. Additionally a chemical exposure at a variable place in the chemical
window is a practical task for a deployed tool. Data augmentation via generative
models is one avenue towards developing models which are robust to the challenges
of this task. A generative model maybe be able to exploit conditioning to generate
samples which approximate the distribution of sample types not present in the train-
ing data, of which there are two types:

1. Magnitude Interpolation: given a set of exposures to one analyte at concentra-
tion a and concentration c, generate samples estimating exposure to b where
a < b < c.

2. Condition Combination: given a set of exposures to analyte x and analyte y,
generate samples estimating simultaneous exposure to x + y.

The second challenge which defines the chemical sensing task is the low-data
paradigm. These experiments require intensive experimental design and supervi-
sion by a professional chemist, in addition to challenges with hardware and experi-
mental integrity. For this reason, the research produces around 1000 usable samples
per year. Research has been done to address complications of supervised tasks for
chemical sensing, including pretraining an autoencoder with a latent Kalman Fil-
ter which estimates the first derivative of the signal (Weiss et al., 2018). Pretraining
on random data is one approach which marked success in early detection. Another
promising approach specific to generative models is differentiable augmentation of
samples input to the discriminator in a conditional GAN (Karras et al., 2020b). Kar-
ras et al., 2020b further demonstrates that even tasks such as CIFAR-10 with 50,000
training samples can be categorized as low-data paradigms and benefit from adap-
tive augmentation. All established and proposed models employed in Section 3.1
could utilize this technique which introduces structured augmentations to samples
evaluated by the discriminator, which is to be employed in implemented in future
research.

4.2 GANs for Chemical Sensing

Little distinction is needed from the space of natural images when discussing the
assumptions behind generation for chemical sensing. Just as in natural images the
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generative assumption assumes the existence of some latent representation space
V describing the meaningful semantic variation in the natural image space X, the
same assumption is taken to describe the variation in the space of chemical sensing
experiments.

The extension to conditioning in chemical sensing parallels that of the natural
image generation task. Conditioning a latent space or class of models corresponds
to including some labelled information to alter the latent space used for generative
sampling. In the same manner, all models discussed in Chapter 1 may be extended
to the chemical sensing task.

The model architectures may again be held constant, though the convolutional
layers have been replaced with fully-connected layers as the extension from an RGB
3-channel problem to an 8-channel sensor problem is not well-established.

Further extensions to the conditional generation discussed in this thesis must be
made to account for the dramatically different application task. Whereas the labels
taken from the CIFAR-10 training images were sufficient to distinguish condition-
ing by classes for conditional generation in 3, the space of chemical sensing exper-
iments is substantially more complicated than the ten disjoint image classes. The
array of eight sensors could be potentially exposed to any combination of five an-
alytes, each of some scalar exposure. These potential analyte combinations, called
mixtures, could be any vector in R5, as opposed to one of ten disjoint classes, though
the experiments provided by the stakeholder represent a tiny subset of these possi-
bilities potentially spanning some bounded subset of R5, as there are five analytes
of interest, often provided only single-analyte exposures. This sparse manifold has
the potential to be fleshed-out with conditional generation. Thankfully, the mod-
els discussed and proposed in Chapters 1 and 2 may all be adapted, though some
corresponding theoretical interpretations have been altered.

4.2.1 Leaking Augmentations

The complications and volatility of training GANs is made significantly worse by
increasingly low-data paradigms, as discussed in 3.1.1. In this application, there are
a mere 90 training samples divided across a multiple regression task with four la-
bels (in the considered batch of experiments, no trials were performed with analyte
E). Of these 90 samples, 24 are controls where no analyte was exposed, making an
additional task for the regression model as these were kept in the dataset as a poten-
tial task of interest: the model is not always incentivized to predict the presence of
an analyte. A further 11 samples are a conditioning control exposure of analyte A
which stagger the otherwise uniform distribution over classes.

A partial remedy to this problematic number of samples is the inclusion of data
augmentation which was not presently in the previous conditional model results in
Chapter 3. Data augmentation is a well-established process in supervised learning
in which training data are transformed in such a way that the meaning important to
the label is preserved, but the pixels have been perturbed such as to prevent overfit-
ting of the supervised learner (He et al., 2019). Augmentations in GANs, however,
encourage the generator to generate augmented samples - an undesirable property
which lowers quality considering augmentations are often rotations, noising, block-
ing, and sheering - a corruption called augmentation leaking (Zhang et al., 2019).
This does not mean that augmentations are inappropriate for the chemical sensing
task. Rather, the kinds of augmentations this thesis specifies are entirely acceptable
to leak into the generated samples.
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When an augmentation is performed to both training samples and generated
samples before being input into the discriminator, it is said that there is a "lens"
being placed in front of the camera of the discriminator. Through this potentially
warping or destructive lens, the discriminator must infer from prediction of training
and generated samples about the training distribution. Augmentations performed
on inputs to the discriminator are considered "leaking" if the generator can learn to
apply these augmentations itself as part of the adversarial learning process. This
means that rather than learning an approximation of the training distribution, the
generator learns to approximate the augmented distribution. This is often a problem
for natural image tasks in which rotated, color-jittered, or sheered samples would be
undesirable and unrealistic generated images. However, for the chemical sensing
task, the transforms this thesis proposes are acceptable leaks, as the information
content of the signal should remain unchanged under the following transforms:

1. Signal scaling: all sensor resistances in the sample are scaled by a value 0.5 <
q < 1.5. It would be desireable for a supervised learner to predict the same
class for a signal and the same signal of some slightly higher or lower magni-
tude. For the multiple regression task, this transform loses some appeal as the
magnitude of the signal is vital to infer the analyte exposure magnitude.

2. Signal translation: all sensor channels in the sample are translated by some
number of sampling steps 0 < t < 100. This corresponds to alternating the mo-
ment of chemical introduction to the system, and robust predictors according
to this transform are a large benefit for applications involving higher variance
in testing data.

3. Signal noising: the signal matrix is perturbed by some small-variance random
normal noise. This transform should be a minimally invasive way to mitigate
pixel-level overfitting of the supervised models, as there is substantial noise in
the dataset. One alternative to random normal noise is using samples of the
noise present in sensors when there is no analyte present. This type of "sensor
noise" is easy to gather as the laboratory may run the sensor array at any time
with no need to expose analytes into the device.

These transforms are considered an acceptable form of leaking, though ongoing
investigation will be required if there are undesirable effects related to downstream
supervised models. These are acceptable leaks as the distribution of augmented
training data should contain the same semantic content as the training distribution
- which should be beneficial to supervised learners, which are trained to mitigate
overfitting to non-augmentation samples.

4.3 Application Results

The first result is the qualitative evaluation of conditional generation on the chemi-
cal sensing task. There is presently a lack of quantitative methods for the evaluation
of conditional and unconditional generation of chemical sensor signals as there is
FID and FJD for natural images. One work in progress beyond the scope of this
thesis is the utilization of adsorption isotherm equations (Bazan et al., 2008). These
closed-form equations may give theoretical platelet resistance responses as a func-
tion of the exposed analyte. This means given a condition exposure and signal, it
may be possible to take the earthmover distance between the theoretical response
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and a generated one as a distance from the generated to known target distribution
(Arjovsky, Chintala, and Bottou, 2017).

FIGURE 4.4: A training sample and an approximated sample at the
moment of chemical exposure.

We compare an example training sample to a generated sample in 4.4. The real
sample is one exposure to analyte B at magnitude 17.5 in the training set, and one
generated sample by a trained model made by decoding one random factor of varia-
tion on the 17.5-unit analyte B condition. The generated sample displays symptoms
of leaking augmentations by the level of noise present in sensors which should be
fairly stable as judged by the training sample. In addition, some scales of some
channels differ due to the scaling augmentation. However, this sample is a feasible
exposures in the chemical sensing task and could lead to improved downstream per-
formance as it shows increased resistance in the primary sensors of interest notable
by qualitative analysis of the real signal.

4.3.1 Comparing Stochastic Augmentation to GAN Augmentation

This section quantifies if data set augmentation with conditional GANs are a mean-
ingful upgrade to a supervised learner or a learner with training data augmenta-
tions. These experiments use the multi-class regression design in which no induc-
tive assumptions are made to match the knowledge that the classes for this data set
have disjoint single-analyte exposures - simply a ‘relu‘ activation on the predictor
outputs. In order to systematically quantify the improvement offered by transforma-
tive augmentations and dataset augmentations by conditional GANs while control-
ling for hyperparameters such as training epochs and learning rate, an exhaustive
grid search is used. Table 4.1 shows testing MSE by training with hyperparameters
learned by 10-fold cross validation for each combination of using stochastic augmen-
tations and dataset augmentations with a conditional GAN:

No Augmentation With Augmentation
No CGAN 23.11± 0.23 29.46± 0.32
With CGAN 24.05± 0.22 18.42± 0.22

TABLE 4.1: Testing loss given by ten trials using the optimal hyper-
parameters from the validation stage.
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Table 4.2 quantifies the certainty in the experimental results from Table 4.1. The
hypothesis test returns the probability that the hypothesis that the mean of the test-
ing losses between two pairs of experiments is equal. By calculating the probability
that the two means are equal, it is demonstrated with a high degree of certainty that
for four of the six combinations of CGAN data set augmentation and data augmen-
tations, the difference between GAN augmentation and stochastic augmentation did
alter the mean of the testing loss distribution. This demonstrates that with statisti-
cal certainty the combination of CGAN augmentation and stochastic augmentation
meaningfully lowered the testing loss in a greater manner than using either or nei-
ther. Vitally, this thesis’s hypotheses on the utility of data set augmentation with
conditional generation are vindicated as with a level of statistical certainty the mean
of the CGAN and Aug distribution is lower than the other options - demonstrating
the utility of conditional generation even in extremely low-data paradigms.

No CGAN, No Aug Aug, No CGAN CGAN, No Aug
Aug, No CGAN 0.026
CGAN, No Aug 0.680 0.054
CGAN and Aug 0.040 0.000 0.012

TABLE 4.2: Probability of retaining the null hypothesis given the dis-
tribution of test performances. Low values indicate higher certainty
that the mean of the distributions is unequal. Bold results indicate a

certainty below the heuristic threshold of p = 0.05.

Though this result demonstrates the synergy in using both augmentation tech-
niques to mitigate overfitting in the ultra-low data paradigm, by returning to 4.2a
it may be observed that the classical models had comparatively low testing MSE
scores.

FIGURE 4.5: Testing loss with a variable number of generated sam-
ples.

Lastly, Table 4.5 demonstrates how testing losses for one experimental design
can be both improved and regularized with the addition of CGAN data set augmen-
tation. In this instance, a K-Neighbors model with fixed hyperparameters is trained
using the training distribution as well as a variable number of additional samples
made by a trained CGAN. For each point, 50 experiments are performed. It is ap-
parent from inspection of the testing loss curve that a limit to the testing loss exists
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where adding more testing samples decreases the testing loss and standard error of
the estimate. This demonstration serves to highlight how even a model optimized
on cross-validation can be improved by the addition of augmented samples - even
in extremely low data paradigms where GANs notoriously struggle.
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Appendix A

Appendix A

A.1 Factors of Variation

Both the established and proposed models for data generation include sampling of
some latent space Z, samples of which contribute degrees of freedom and a learned
semantic meaning in the decoded space. All proposed models must learn a genera-
tive function from standard normal independent samples of this low-dimensional
space such that the adversarial loss returned by the discriminator is minimized.
However, this models impart no design biases on how this latent space should be
learned.enforce some structure on the latent space by penalizing that some points be
decoded to particular training signals.

Autoencoding models CAEGAN and ICAEGAN use two methods of weakly
structuring the latent space: one penalty which imparts that the C space is learned
to match the training labels under encoding, and the reconstruction penalty which
requires the model to decode both random normal samples, as well as training sam-
ples of a distribution learned by the encoder.

In this section, we analyze the tripartite decomposition of the source of variation
in all data. As assumed in Section 1.1, the manifold hypothesis describes the mean-
ingful variation in data lying on a significantly lower-dimensional surface than the
data space. In this paradigm, all meaningful variations in data can be attributed
to movement along some vector in the latent space. However, the types of varia-
tion present can be broken down further. As in Section 1.3.6, the data space can be
described as a conditional distribution P(x|z, c) via semantic meaning of the latent
space z and class-conditioning c. In this distinction, we enforce a joint distribution
where variations of z or c induce variations in the decoded samples.

The decomposition to a joint distribution using class labels is not the last step to
understanding the latent dimension. A further decomposition can be made on the
latent Z space, in which we specify the difference between known and unknown
factors of variation. Known factors of variation need not be entirely labelled in the
training data, but are simply known to be present and might have some known
examples. This assumption comes from the observation that there are stylistic sim-
ilarities between multiple samples of natural data. However, disentangled learning
Locatello et al., 2019 does not allow for partial supervision of the latent space, as the
semantic meaning attributed to each dimension must be inferred, not specified.

In the CIFAR-10 data set, the class ’Plane’ might include propeller planes, jets,
and commercial aircraft. The differences between these known-but-unlabelled sub-
classes are not explicit in an unregularized latent space, and must be inferred if they
are present in a disentangled latent representation. However by decomposing the
latent space z into explicit factors of variation v and degrees of freedom , the latent
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space is imbued with greater expressivity. Now the condition space c and varia-
tion space v may be held constant with explicit semantic meaning, and the unex-
plained variation space z̃ maybe be randomly sampled. This variation-controlled
conditioning gives ’anchoring’ to the latent space such that more meaning can be
easily encoded, and generated samples have more known factors than the class la-
bel condition.

A.2 Model Architectures

A.2.1 Encoding Architecture

Encoders are a family of function mapping an input point to some lower-dimension
representation. For this thesis, there are three task-specific encoders with similar
architecture.

Conditional Encoders

Conditional encoders are the big-to-small portion of the conditional autoencoder ar-
chitecture. Though reconstruction and adversarial losses may be backpropogated to
the conditional encoders, the primary component of their optimization is the condi-
tional encoding of c given by f (x) = (v, c). This conditional encoding is a supervised
task for labelled training data where the loss is taken between the conditional encod-
ing and the target encoding given by the class label. For input sample x, conditional
encoders return representation (v, c)|x given by:

rgb_32_Conditional_Encoder(
(conv1): Conv2d(3, 128, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2): Conv2d(128, 256, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1),

bias=False)
(conv2_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(256, 512, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1),

bias=False)
(conv3_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv4): Conv2d(512, 1024, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1),

bias=False)
(conv4_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv5v): Conv2d(1024, 100, kernel_size=(2, 2) , stride =(1, 1))
(conv5c): Conv2d(1024, 10, kernel_size=(2, 2) , stride =(1, 1))

)

It may be observed the input to the conditional encoder is a 3-channel image. This
will differ from the conditional big-to-small discriminator architectures, which do
have access to the condition of the input sample when learning the corresponding
representation. Whereas established conditional autoencoders return a latent rep-
resentation conditioning on the input class f (x|c) = v, these conditional encoders
double as predictive models: they both predict the condition in a supervised man-
ner, as well as assign a latent representation such that the sample maybe be more
easily decoded, enforced by the reconstruction error.
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Discriminator Architecture

The discriminator architecture maps from a square 32*32 RGB image to a probability,
defined by the composition of functions:

rgb_32_Discriminator(
(conv1): Conv2d(3, 128, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2): Conv2d(128, 256, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(256, 512, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv3_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv4): Conv2d(512, 1024, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv4_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv5): Conv2d(1024, 1, kernel_size=(2, 2) , stride =(1, 1))

)

The conditional discriminator employed by CGAN 1.3.8 utilize one learned lin-
ear embedding from the code dimension to one channel of the image dimension,
then stacks the two into an ’information’ point in R324

:

rgb_32_Conditional_Discriminator(
(fc1) : Linear(in_features=10, out_features=1024, bias=False)
(conv1): Conv2d(4, 128, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2): Conv2d(128, 256, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(256, 512, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv3_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv4): Conv2d(512, 1024, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv4_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv5): Conv2d(1024, 1, kernel_size=(2, 2) , stride =(1, 1))

)

Further, the ACGAN 1.3.9 discriminator is a conditional discriminator, but with-
out the 1.3.8 information stack. The model must instead perform a multi-headed
prediction and classification task given by f cadv and f caux respectively:

rgb_32_Auxiliary_Classifier_Discriminator(
(conv1): Conv2d(3, 128, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2): Conv2d(128, 256, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(256, 512, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv3_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv4): Conv2d(512, 1024, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv4_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv5): Conv2d(1024, 1, kernel_size=(4, 4) , stride =(1, 1))
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(fc_adv): Linear(in_features=4096, out_features=1, bias=True)
(fc_aux): Linear(in_features=4096, out_features=10, bias=True)

)

Predictor Architecture

The predictor architecture used as a baseline supervised classification model is stan-
dard across all experiments. The predictor uses identical convolutional layers to
other big-to-small models, with the exception of the classification output:

rgb_32_P(
(conv1): Conv2d(3, 128, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1))
(conv2): Conv2d(128, 256, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1),

bias=False)
(conv2_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(256, 512, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1),

bias=False)
(conv3_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv4): Conv2d(512, 1024, kernel_size=(4, 4) , stride =(2, 2) , padding=(1, 1),

bias=False)
(conv4_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(conv5c): Conv2d(1024, 10, kernel_size=(2, 2) , stride =(1, 1))

)

It may be observed that the predictor is identical to the discriminator with a 10-
channel output representing a probability distribution over the predicted classes
rather than a probability of being sampled from the training distribution.

A.2.2 Decoding Architecture

Decoding architectures are a general term for small-to-big models, which map either
encoded points or latent samples to the data space. How this function is learned
differs by model.

Unconditional Generation

Used by autoencoders and GANs, unconditional generation maps a low-dimensional
latent sample to the 32*32 RGB data space:

rgb_32_Decoder(
(deconv1): ConvTranspose2d(100, 1024, kernel_size=(4, 4), stride =(1, 1) , bias=

False)
(deconv1_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(deconv2): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride =(2, 2) ,

padding=(1, 1), bias=False)
(deconv2_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
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(deconv3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride =(2, 2) ,
padding=(1, 1), bias=False)

(deconv3_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,
track_running_stats=True)

(deconv4): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride =(2, 2) ,
padding=(1, 1), bias=False)

(deconv4_bn): BatchNorm2d(128, eps=1e−05, momentum=0.1, affine=True,
track_running_stats=True)

(deconv5): ConvTranspose2d(128, 3, kernel_size=(3, 3), stride =(1, 1) , padding
=(1, 1))

)

Conditional Generation

Conditional generators use two arguments: a latent or encoded sample (v, c), where
v is a random or encoded variation vector, and c is a random or encoded class label.
The c vector is embedded to the image dimension 32*32 and the two are stacked into
the ’information’ point:

rgb_32_Conditional_Decoder(
(deconv1v): ConvTranspose2d(100, 1024, kernel_size=(4, 4), stride=(1, 1) , bias=

False)
(deconv1c): ConvTranspose2d(10, 1024, kernel_size=(4, 4), stride =(1, 1) , bias=

False)
(deconv1_bn): BatchNorm2d(1024, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(deconv2): ConvTranspose2d(2048, 512, kernel_size=(4, 4), stride =(2, 2) ,

padding=(1, 1), bias=False)
(deconv2_bn): BatchNorm2d(512, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(deconv3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride =(2, 2) ,

padding=(1, 1), bias=False)
(deconv3_bn): BatchNorm2d(256, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(deconv4): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride =(2, 2) ,

padding=(1, 1), bias=False)
(deconv4_bn): BatchNorm2d(128, eps=1e−05, momentum=0.1, affine=True,

track_running_stats=True)
(deconv5): ConvTranspose2d(128, 3, kernel_size=(1, 1), stride =(1, 1))

)

A.3 Structuring

Structuring refers to inductive biases on the model on the nature of the distribution
of a space. For example, the Variational Autoencoder (VAE) Kingma and Welling,
2014 imparts a KL-divergence over the distribution of the encoded points with re-
spect to a multivariate standard normal distribution. A basic autoencoder imparts
no such assumptions on the distribution of the encoded training data as chosen by
the model, other than the choice of activation which bounds the encoding space.
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σ(z)i =
ezi

∑n=1 Nezn
(A.1)

A.4 Chemical Sensing

Table demonstrating the cross-validation selected hyperparameters:

Epochs Learning Rate
No CGAN, No Aug 45 1e− 4
No CGAN, with Aug 15 1e− 4
With CGAN, No Aug 35 5e− 5
With CGAN and Aug 35 1e− 4

TABLE A.1: Optimal hyperparameters for each paradigm by random
10-fold cross validation.

A.5 Generated samples per model

FIGURE A.1: Unconditional generation by the GAN.

A.6 Specific Model Architecture

A.6.1 GAN

A.6.2 Conditional GAN

A.6.3 Autoencoder

A.7 FID Extended

Borrowed from DeVries et al., 2019:

µ =
1
N

N

∑
i=0

f (x(i)), Σ =
1

N − 1

N

∑
i=0

( f (x(i))− µ)( f (x(i))− µ)T (A.2)
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FIGURE A.2: Conditional generation by the CGAN.

FIGURE A.3: Conditional generation by the ACGAN.

FIGURE A.4: Conditional generation by the CAEGAN.

µ̂ =
1
N

N

∑
i=0

f (x̂(i)), Σ̂ =
1

N − 1

N

∑
i=0

( f (x̂(i))− µ̂)( f (x̂(i))− µ̂)T (A.3)
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FIGURE A.5: Conditional generation by the ICAEGAN.

FIGURE A.6: Conditional generation by the Cycle-CAEGAN.

FIGURE A.7: Autoencoder Architecture, simplified
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FIGURE A.8: Hidden Conditional Autoencoder Architecture.

FIGURE A.9: Inverse Conditional Autoencoder Architecture.
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(A) Generator architecture. (B) Discriminator architecture.

FIGURE A.10: A minimal GAN architecture diagram.

(A) Generator architecture. (B) Discriminator architecture.

FIGURE A.11: A minimal CGAN architecture diagram.

FIGURE A.12: Non-conditional Autoencoder
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