
1

A Heterogeneous Swarm Solution for

Disaster Reconnaissance

Feasibility Study

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Robotics Engineering, Mechanical Engineering, and Computer Science

by

Carolyn M. Lowe

Turner J. Robbins

Jarrett A. Sarnell

Mathew C. Schwartzman

Lucy G. Stuehrmann

2

Abstract

The disaster mitigation process is dangerous to search-and-rescue (S&R) personnel.

Organizations work to develop robotic technologies for disaster response. However, disaster

robotics is often characterized by large, bulky, and expensive systems. The goal of this MQP is

to analyze the feasibility of a simple, cost-effective heterogeneous robot swarm to map a disaster

location for on-site S&R personnel. We designed a ground robot prototype that can be dropped

by a drone. We tested collaborative algorithms to perform mapping of cluttered environments by

both the ground robot and the drone. Our study also involves tests on durability and disposability

of the droppable robot and scalability tests of the mapping algorithms.

3

Abstract 2

1.0 Introduction 4

2.0 Background 6

2.1 Increasing Disasters 6

2.2 Disaster Robotic Systems 7

3.0 Methodology 9

3.1 System Simulation 10

3.2 Building the UGV 11

3.3 Sensing and Electrical 15

3.4 Computer Vision for UGV Recognition 16

4.0 Results 20

4.1 Computer Vision for UGV Recognition 20

4.2 SLAM 24

4.3 UGV 25

4.1 Simulating the System 28

5.0 Conclusion 31

Work Cited 33

4

1.0 Introduction

As disaster scenarios become increasingly more common, the threat of injuries posed to

search and rescue personnel by unstable or unmapped areas also increases (Garrett, 2018). In

order to reduce the danger to human life caused by hazardous areas, known as hot zones, disaster

robotics systems are being developed to give on-site experts situational awareness (Murphy,

2014). Unfortunately most of these systems are slow, expensive, or heavy. In order to address

these issues, we propose the development of a heterogeneous swarm system to map an unknown

room consisting of three types of robots: an unmanned aerial vehicle (UAV), an unmanned

ground vehicle (UGV), and a remote computational unit (RCU). This system provides an

autonomous, scalable swarm that reduces the need for expert training and human interaction as

well as an alternative low-cost option using inexpensive parts that could be bought in bulk to

reduce the overhead of tooling and manufacturing costs.

Through our feasibility study, we determined how best to implement a heterogeneous

robotic swarm for use in disaster scenarios. The goals we set for this study are divided into two

different research branches: a simulation branch and a physical component branch. For the

simulation branch, we implemented the UAV and UGV in a simulation environment that would

allow us to test code and the capabilities of the swarm in a dynamic setting without having the

physical robots ready to use. For the second branch of our research, we focused on physical

implementation of UAVs and UGVs. For the UAV, we specifically wanted to test the

capabilities of the sensors, particularly the camera. For the UGV, we created a robot that would

be able to withstand the hazards of operating in a disaster area, namely the ability to be dropped

and still be able to operate and sense correctly, while maintaining a low-cost and low-weight.

5

We created simulations for the UGV showing the integration of the major components of

the full scalable system. Additionally, we created a UGV prototype that shows the durability of

its components and usability after drop testing. Finally, we integrated image processing software

and a monocular simultaneous localization and mapping (SLAM) framework to have the UAV

survey and be able to locate the UGV on the ground.

6

2.0 Background

2.1 Increasing Disasters

Over the past two decades, climate-based disasters have increased in severity. As global

urbanization steadily increases, more and more of these climate-based disasters occur in urban

areas where larger structures are being built with the potential to become large-scale hazardous

disaster areas.

Figure 1: Disasters and Economic Damage per Year

 A major contributing factor to the increased disaster rate has been an increase in global

warming. As seen in Figure 1 (above), there is a direct upward trend of climate-related disasters

correlating with high economic damage. The year 2011, which had the least disasters in over a

decade, still had at least fifty more disasters than any year predating 1998. The year 2011

additionally saw the highest economic damage of any year, at over 350 billion dollars. One of the

major contributing factors was the 2011 Japan earthquake and tsunami. The disaster resulted in

the destruction or damage of 128 thousand houses (Ijba et al, February 2013). While this was an

7

uncommonly severe disaster, as we can see from the graph above, catastrophes in general are

happening more frequently, which means that the cumulative costs of disasters will increase

accordingly.

Figure 2: World Population

As we can see from Figure 2, more people are living in urban environments. As more

disasters occur, and as the world population living in urban environments increases, more

disasters occur in an urban environment. Due to the growth of urban infrastructure necessary to

accommodate increasing population, the total cost of disasters will also increase dramatically.

2.2 Disaster Robotic Systems

In a disaster scenario, disaster robotic systems are deployed to assess the situation of the

areas and work in SAR operations. Most of these units are single robots that are designed to be

8

all-in-one systems. They come fully equipped with sophisticated sensor suites and large, rugged

chassis designed to traverse rubble and unstable terrain. These robotic systems have many

complex subsystems and sensors, which causes these units to be expensive, some costing up to

$200,000. Some common disaster robotic systems used are the Wolverine V2, the iRobot

PackBot, and the Inuktun VGTV Xtreme. These systems are commonly used in mines for mine

recovery and in various natural disasters to aid in cleanup and search and rescue (Murphy, 2014).

 These complex single-unit systems are highly useful for SAR efforts. Their complex and

sophisticated sensor systems alone can generate a variety of information for on-site experts to

use, such as images of areas where personnel cannot traverse. They can also move rubble that

might obscure rescue workers’ paths. In a disaster area, the environment frequently has uneven

ground and small obstacles the robots must traverse, so these robots are built to be powerful and

rugged enough to travel through these areas. These robots therefore have powerful motors and

all-terrain tires or tank treads. Many of these robots also have an arm apparatus that is used to

move objects or retrieve samples in the field.

 Just as these robots have many uses in SAR situations for surveying and exploring

disaster areas, they also have many drawbacks. As these machines carry complex sensors and

need powerful motors to move easily through rubble, they need to be large enough to house all

the components they use. This also means that these robot can weight over 1000 lbs, which

makes them unsuitable for areas that cannot support their weight, such as unstable higher floors

in a damaged area.

9

3.0 Methodology

The large-scale operations involved in urban search-and-rescue call for multi-robot

systems capable of autonomous exploration and mapping. To realize this vision, we focused on

the integration of two types of robots - a UGV and a UAV, which we simulated in ARGoS.

For the UGV, we decided to focus on three main aspects: the weight, the cost, and the

durability. First, since we intend for the UGV to work in hazardous environments, the UGV must

survive moving in hazardous terrain, so it needs to be durable. Next, since the UGVs are meant

to work in swarms, and a high production cost would make it difficult to deploy a large multitude

of robots, we need to UGV to be cost-effective. Finally, since the UAV must carry the UGV, the

UGV must be light. We focused on these areas above others because implementing all three

aspects simultaneously is challenging.

 To best generate a 3-dimensional representation of the environment efficiently and with

minimal uncertainty, our system uses an UAV equipped with a single camera to generate a point

cloud through a monocular SLAM algorithm. This algorithm is run on the RCU that

simultaneously merges the UAV output point cloud with one generated by the UGV. This

merging process is characterized by a computer-vision-based subsystem that helps localize the

UGV in a global frame of reference.

Our proposed solution for exploring an unknown room in a safe and distributed manner

involves two phases. In the first phase, any number of UAVs will be deployed into an unknown

room. The UAVs begin to explore the unknown room by relaying scan data to the RCU. The

RCU uses these scans to construct a 3D occupancy grid. Then, the RCU determines the locations

of all frontiers, and assigns frontiers to each of the UAVs. The UAVs then navigate to the

frontiers while continuously transmitting sensor data to the RCU. This repeats until no more

10

frontiers remain. At this point the RCU generates a 2.5D occupancy grid from the 3D occupancy

grid, and the first phase ends. In the second phase the UAV drones carry the UGV drones into an

open space, deploy them on the floor, and then begin exploring frontiers that were unreachable

from the air. One particularly applicable use case is that of Once no more frontiers remain, the

exploration phase is complete, and a final map is displayed for SAR personnel.

3.1 System Simulation

Due to the exploratory nature of our feasibility study, we determined that it would not be

possible, in the allotted time of this project, to develop a full simulation of the system, create

libraries for mapping, implement algorithms for exploration, and decentralize computation across

the swarm. In order to create a framework for future work, we instead focused on building all of

the individual components that will be required to create the full system in future iterations, so

that more time can be spent working on interesting research opportunities such as decentralizing

the system. However, in order to clarify the objectives of our project and a good milestone for

the system, we define a first full implementation of the system in simulation. For our simulation,

it is assumed that the UAVs can effectively navigate into the space without encountering any

obstacles. In addition, we assume that the UAVs position (with reference to the room) is known.

The UAV we consider has several other notable characteristics, as follows:

- It is able to hover and move around a 2D plane.

- It has a sensor which projects rays in a pyramid at a 45-degree angle below the plane that

the robot moves along. This sensor functions by relaying the distance the ray travels

before intersecting with an object. These rays have a maximum range which can be

11

changed prior to compilation. The goal of this sensor is to mimic how the monocular

camera on the parrot AR drone is used in a real-life scenario.

- It has a sensor which will determine the relative range and bearing of a UGV, if said

UGV is within the field of view of the sensor. This mimics another use of the monocular

camera, to locate the UGV.

The room that the UAV explores also has the following characteristics:

- It is composed of mostly flat surfaces with additional obstacles scattered along the floor.

- It does not contain objects that would impede the UAVs motion, besides bounding

surfaces (walls). This project does not focus on obstacle avoidance implementations.

- The UAV’s plane of movement is not obstructed (with the exception of the walls that

bound the room).

The UGV is designed to have minimal computational capabilities; the UGV is not intended to

maintain a map and in simulation is functionally a mobile sensor. Due to this limitation, the

UGV’s movement while navigating to frontiers is aided by the UAV. The UAV maintains the

current position and orientation of the UGV with respect to its local coordinate system and

periodically course-corrects the UGV. The UGV has basic object-avoidance capabilities (since

these are not computationally expensive) and the UAV will update the UGV with a goal vector

(e.g. turn left 30 degrees and move 2 meters).

3.2 Building the UGV

For the Mechanical portion of the MQP, the work breaks down into three major phases:

the initial design phase, the intermediate design phase, and the testing phase.

12

During the Initial Design Phase, the team started by creating a list of all of the necessary

parts, generally speaking, for the UGV to run. For example, the UGV needs a PCB, motors, a

motor controller, a distance sensor, batteries, wheels. From there, using the most available parts

to the team, the group took the maximal measurements of the parts and constructed 3D models of

each part in as little space as possible (See Figure 3).

Figure 3: Internal Component Design

Figure 4: Initial UGV Casing Design

Then, using this internal cube design, the team designed a body to fit around the robot

(See Figure 4). This allowed the team to determine the rough size of the robot, which assisted in

deciding the material for the casing and acted as a basis for new designs.

The intermediate design phase began after the group decided to work on making the robot

droppable and decided to use another robot for map making and SLAM. The first part of the

intermediate design phase started with establishing how to add more shock absorption into the

design. After a meeting with Prof. Stabile, who offered useful insight into how to add specific

design features to make the robot more resilient, we brainstormed and chose several specific

design features to implement in the final design.

13

First, the team decided on making the robot symmetrical in two planes. Since forcing the

robot to fall in a specific orientation would be difficult to implement, the team decided to design

the robot such that, if it were to fall, it would not matter how it fell.

The second design choice was the hemispherical wheels and a back omniwheel. This

wheel design would allow the robot to be unstable on its side and thus less likely to be stuck on

one of its sides. The wheels would also be far forward on the UGV so that, if it fell on front face,

the robot would roll on to its top or bottom. Additionally, the back omniwheel would allow the

UGV to be more maneuverable and lighter while only being slightly less stable compared to a

four-wheeled design.

For the third part of the design (See Figure 5), we decided to have sectional parts: two

motors sections and a main body. Both motor parts would be attached to the body section by a

single shaft located in the center of the motor sections. This design choice benefitted the robot in

many ways. Firstly, this allowed the motor sections to rotate with respect to the body.

Additionally, the team decided to add a compressive material between the two motors such that,

when the motor sections did rotate after hitting the ground, they would compress the material

between them, which would act like shock absorption in a car and put less stress on the

components. A second benefit to the design is that, if

any of the individual components did break, we could

then redesign and manufacture those individual

components without having the reconstruct the whole

UGV, which would also hold true for any damaged

UGVs which were deployed in the field.

Figure 5: UGV Final Concept Top Plane
Orientation

14

After the design phases, we opted to use rapid prototyping as the manufacturing

technique, since it would keep the UGV cheap and easy to manufacture. For the first print, we

opted to make the UGV entirely out of ABS because it would be much faster and cheaper than

the other options, namely nylon. After the initial components finished printing, we needed to

properly weigh the robot. The battery in the robot weights about 275g and each motor weights

roughly 200g, however we did not want to risk damaging any of the components, so we used

weight-analogous components, since we mainly wanted to test the casing to see how durable it is

and how strong the bond between separate components were. For the adhesion between

individual components, we used acetone to chemically weld the ABS together, since acetone

melts ABS.

After assembling the robot, we performed initial drop tests. The drop tests consisted of

several parts. The first variable was the drop height. As a reasonable metric, we used one meter

since one floor is typically three meters and the UGV would easily survive any accidental falls

from uneven surfaces if it could survive a meter drop. Next, we decided on a reasonable surface

to drop onto. We chose a carpet because it is a common material in most buildings and would be

a good benchmark for testing. As an analogy to carpet the team used a blanket. The team created

several standard testing conditions. Several folds of the blanket would simulate a padded surface,

much like the thick mats that gymnasts use to cushion their falls, two or three folds would

simulate a thick carpet, and one fold would be a regular carpet. This allowed us to steadily

decrease impulse and increase shock onto different orientations of the robot.

After the initial drop tests, we redesigned the UGV to fix several issues. The first fix was

to increase the diameter of the shafts for the various axles. Second, we added more distance for

the back omniwheel to rotate, since it would occasionally hit the body. Finally, we expanded the

15

space for the components. After printing, we used a dye to recolor the nylon before assembling

the final UGV and performing the final tests.

 In order to determine how effective the UGV design was, namely material choice,

sectional design, and use of buffer material, we attached an accelerometer to the UGV and

plotted the data. In conjunction with the data, we also did a visual assessment of the UGV to

determine whether there was any physical damage to the printed parts or the internals.

3.3 Sensing and Electrical

 The custom-made ground robot is powered by a Raspberry Pi Version 3 Model B with an

RRB3 shield for controlling the two 6 volt motors. This shield also allows the Pi to be powered

by the 7.2V battery pack included in the robot casing. This single-board computer has commonly

been used for simple beginner’s robotics projects using python and can even be equipped with

ROS. For the purposes of our feasibility study, we equipped the Raspberry Pi with a standard of

the shelf Ultrasonic Rangefinder and two high-voltage DC motors equipped with magnetic

encoders. This simple robot is programmed with basic obstacle avoidance capabilities for

demonstration, and will use a socket to relay rangefinder values to the RCU server.

The AR-Drone 2.0 is equipped with a 1GB board that runs a version of Red Hat along

with a proprietary software that uses mavlinks to control messages and flight data to and from a

smartphone controller. It uses a 720p HD camera and 3-axis magnetometers, gyroscopes and

accelerometers for navigation and pose estimation, as well as a downward facing camera that is

used to measure airspeed. This drone is a cost-effective alternative to some of the more complex

and heavy-duty systems currently popular in the operation of SLAM frameworks. Additionally,

with rotor guards, it is well slated for indoor use. By adding a simple 1-DOF gimbal to the neck

16

of the drone, we modified it for multiple angles in SLAM use. While this choice of drone is not

capable of handling payloads as heavy as the prototype UGV, it remains an effective alternative

for the SLAM feasibility test.

In order to test the practical benefits of our proposed framework, we extensively

researched packages and libraries already implemented for monocular SLAM systems. Such a

Drone-compatible package would be configured to output a point cloud to be processed by the

OctoMap algorithm and merged with the point cloud output by the UGV. In 2007, the well-

known publication of Parallel Tracking and Mapping (PTAM) generalized SLAM to ordinary

environments around single-camera sensor suites, paving the way for systems capable of AR

overlay, pose estimation, etc (Klein & Murray). Among the most popular frameworks we

researched was ORM-SLAM, and its successor, ORB-SLAM2. The ORB-SLAM family of

visual SLAM systems is feature-based, recognizing edges for reliable closed-loop maps. It

addresses issues with the original PTAM implementation such as occlusion handling and overall

scale.

3.4 Computer Vision for UGV Recognition

As part of the feasibility study, it was important to determine if we could use the UAV’s

camera to identify UGVs on the ground for use in SLAM and navigation. In order to do this, we

decided on using a combination of a neural net for UGV identification, OpenCV, and some

custom Python scripts. We began by testing out several frameworks for custom-designing a

Convolutional Neural Network, or CNN. We tested Keras, pure TensorFlow, and SciKitLearn,

but we determined that it was too complex to try to create a neural net architecture from scratch

when we could train an open-source implementation to do this with a higher level of accuracy.

17

For this purpose we used a modified implementation of the Darknet framework with the

YOLOv2 architecture created by Joseph Redmon, whose website can be found here1. We used

this framework because it had a high level of associated documentation, which would assist in

implementation, it was open-source, and it had a reasonable level of accuracy for our project. For

training this neural net, we collated approximately 1800 images to use for training data, and

tagged them by hand to create a label library. In order to increase our library size, we then used

resizing functions to generate over 1000 new images for use in the neural net. We then trained

the YOLOv2 architecture on our dataset using a GTX 1070 graphics card.

 After training the neural net to recognize and put a bounding box around the UGV, we

took the bounding box results and used them to find the x and y coordinates of the UGV. We

assumed that the UGV would have a constant z, or height, of half of the UGV’s total height. In

order to get the x-coordinate, we obtained the x-distance between the UAV and the UGV by

using the following formula:

Distance = (Actual Width * Camera Focal Length)/Pixel Width

Focal length of the UAV’s camera was determined to be 962.82 mm. After this, in order to get

the y-coordinate of the UGV, we measured the distance from the center of the bounding box to

the center axis of the image in pixels, then converted that pixel distance into feet using the

following formula:

Actual Width = (Distance * Pixel Width)/Camera Focal Length

From here we then began calculating the orientation of the UGV. In order to get the

orientation of the UGV with respect to the UAV, we experimented with several differing

approaches. The first we tried involved use of the Khepera IV and the trained neural net. We

1 Full Link: https://pjreddie.com/darknet/

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/

18

attached colored targets to the Khepera’s LIDAR sensor. Unfortunately we were unable to

consistently identify them due to the limitations of the AR Drone’s camera, as the targets were

frequently not bright enough to contrast with the Khepera. In addition, the targets were often

obscured or difficult to see from the AR drone due to their small size, which made this initial

approach unviable. Our second and final approach used the large hemispherical wheels on the

UGV as targets to be detected by the neural net. Once they were detected, a vector was drawn

between the centroids of the bounding boxes around the two wheels and the perpendicular of that

vector was constructed to give the orientation of the UGV, as seen in Figure 6.

Figure 6: Visualization of Orientation Calculations

Here, the dashed line represents the line between the centroids of the black and red targets, and

the orange arrow represents the orientation vector of the robot as calculated using the

perpendicular bisector of the dashed line. The angle between this vector and the UAV’s front

was then calculated using the following code:

 diffx = pxfront - midpoint[0]

diffy = pyfront - midpoint[1]

theta = np.tan(diffy / diffx)

19

Where pxfront and pyfront are the x and y coordinates for a point along the

perpendicular of the wheel axis vector, midpoint[0] is the x coordinate for the midpoint of

the wheel axis vector, and midpoint[1] is the y coordinate for the midpoint of the wheel axis

vector. This approach allowed us to calculate the UGV’s pose with respect to the UAV, which is

integral for navigation and path planning.

20

4.0 Results

4.1 Computer Vision for UGV Recognition

The final iteration of the neural net was trained on a hand-tagged library of 1,800 images

for 15,000 iterations. This resulted in a loss of 0.09, which is a measurement representing total

error in the predictions, and a Region Average Intersection over Union (IOU) of approximately

76%. Region Average IOU was the metric used to determine accuracy of the neural net’s

predictions, and a value of 76% was expected given the use of three classes and a relatively small

data library. A loss value of 0.09 was determined to be a result of overfitting of the model, so we

used weights generated at the 9,000th iteration instead, which performed marginally better at not

showing false positives or negatives upon testing. We tested the neural net on a video we

gathered of the UGV using the UAV’s camera, the results of which can be seen here.2 Figure 7

shows a screenshot from the video, showing the neural net’s accuracy in boxing targets on the

robot.

Figure 7: UGV Recognition Example 2

2 Full Link: https://www.youtube.com/watch?v=jOwq4lS50_I

https://www.youtube.com/watch?v=jOwq4lS50_I

21

Although this system was robust when identifying the colored targets on the UGV, it did not

always locate targets with the high degree of accuracy necessary for distance calculations, as

seen in the following figure. This could be a result of several factors, including poor image

tagging when creating the training

library, overfitting of the network, or

unavoidable difficulties inherent in

identifying partially obscured

targets. These difficulties can be

seen in Figure 8. When a wheel was

obscured, as with the red wheel in

this image, the bounding box used

for calculation was frequently distorted and did not account for the part of the wheel hidden by

the rest of the robot. This introduced a percentage of error into subsequent orientation

calculations.

 X, Y, and Z distance approximation worked fairly well. Approximated X-distances were

usually representative of the distance from the camera to the UGV, and the y-distance

approximation was also close to the actual y-offset of the UGV. These calculations could be

improved through improved measurement of the camera’s focal length, as well as through

improvements to the precision of blue-target tagging for the neural net. The z-height was always

assumed to be constant, as the robot was on flat ground, however, this will not be the case for

future work. The z-distance calculations will need to be refined with a better mathematical model

in order to have a more accurate approximation on uneven terrain. Overall, approximating

position of the UGV using the camera output from the UAV was determined to be feasible, but

Figure 8: UGV Recognition Example 2

22

better mathematical models for position as well as generation of better data for the neural net

would improve performance for this section of the project.

 Orientation calculations had several issues due to aforementioned problems with the

neural net. Often, the orientation calculations would produce incorrect orientation results due to

the fact that one or both wheels were partially obscured. The obscuration of these targets led to

incorrect determination of the wheel axis vector, which led to imprecise calculation of the

perpendicular and compounded error. Some of this error could be mitigated using data

smoothing to reduce impact from poorly identified targets. Despite this error, the vector

mathematics and orientation code was straightforward and reliable when targets were identified

well, as seen in Figure 9.

Figure 9: UGV Distance and Orientation

23

A video of the completed pose calculations being displayed as well as the vector showing the

orientation of the robot can be seen here3. The code for this system can be found here.4

 Overall, the computer vision system had several important limitations. It was too

complex to run on the AR drone alone, as it required a high level of computational power to

perform in real-time. Instead, the identification system had to be run on a robust remote

computer. Furthermore, if the remote computer was not itself capable of high levels of

computational power as could be achieved with a GTX 1070 graphics card, it ran at far less than

real-time. To process one frame on a Surface Pro 3 with a quad-core Intel i7 CPU and Intel

integrated graphics, the computer took 4.4 seconds, which is an unacceptable level of latency.

Therefore it is necessary to increase the computational power of the drone significantly or

redesign the neural network to be more efficient at the expense of accuracy. In addition, this

system relied on Python, C++, and OpenCV to work, which made integration somewhat

challenging. The system also needed to be retrained every time targets changed or the robot’s

architecture changed, which was time-consuming. To run 1000 iterations of training on a GTX

1070 took approximately 1 hour, which meant it took 6 hours to train for the recommended

minimum 6,000 iterations. This could be improved using a dedicated computational cluster to

train. Orientation was also somewhat imprecise, so targets need to be carefully chosen and

designed to ensure accurate orientation data, and images need to be precisely tagged to reduce

error in calculations.

 Despite these limitations, the system did work reasonably well for determining UGV

position. It ran in real-time with low latency on a commercial desktop with a GTX 1070 and did

not require advanced computational clusters or parallel computing to run. It was capable of being

3 Full Link: https://www.youtube.com/watch?v=8aXHaqqSFmY
4 Full Link: https://github.com/lgstuehrmann/Darknet-modified

https://www.youtube.com/watch?v=8aXHaqqSFmY
https://github.com/lgstuehrmann/Darknet-modified

24

expanded and modified to account for changing mechanical design, and the innate robustness of

a well-trained neural net meant that the results obtained were generally good approximations of

pose. Position was straightforward to calculate using this method, and the Python scripts used to

generate pose data could be easily ported onto other UAV cameras if the focal width of the

camera is measured.

4.2 SLAM

 The first step in running the SLAM system on the drone was to run the ARdrone-

Autonomy package, a ROS package that runs on a laptop and acts as an indirect controller for the

drone. The laptop connects to the drone’s automatically-generated wifi network, and the user can

then publish and subscribe to UAV data. LSD-SLAM Core and LSD-SLAM Viewer are other

packages within the LSD-SLAM repository created by Kevin George. Typically, when starting

up the program through ROS, the Core system draws a depth map generated from a raw point

cloud. The Viewer allows the user to see this raw point cloud. Unfortunately, the depth map

created by the Core used an older version of Qt, causing runtime errors that prevented the entire

Core from working properly. We disabled the Depth map and instead relied on the Viewer to

visualize our robot’s viewpoint. An example is shown below (See Figure 10). Here, LSD-SLAM

operates well in a medium-light environment, using intensities and direct image alignment to

generate the point cloud on the right.

 In practice, this point cloud would be passed through to the octomap algorithm in order to

merge with the 2D point cloud generated by the UGV. The resulting output would be our

finished 2.5D map of the environment for use by onsite SAR personnel.

25

Figure 10: UAV Point Cloud Example

4.3 UGV

 The final UGV design (See Figure 11) had varying levels of success for all three

benchmarks—a low-cost for manufacturing, when compared to other SAR robots, a low weight

so that future UAVs could carry and deploy it, and finally durable up to a meter drop onto a

carpeted surface.

The UGV reached two of its benchmark with unmitigated success. In terms of cost, the

final UGV cost was under $500, with around $230 going toward the 3D printed material and

under $100 for the internal components. Since typical SAR robots cost on the order of $1,000 to

$100,000, we could conceivably manufacture two to two hundred UGVs for the same cost

(Mahmud, 2010).

The second benchmark, weight, also succeeded quite well.

At WPI, the Robotics department owns an octocopter, which has

been used in several MQPs. The carrying capacity for the drone is

roughly 8 lbs, which we used as our weight benchmark. The current

weight of the UGV is approximately 3.4 lbs, not including the 0.75
Figure 11: UGV Final Prototype

26

lb battery, which brings to total to around 4.1 lbs total, nearly half of the maximum weight. In

terms of durability of the UGV, the team performed a series of drop tests in various orientations.

Figure 12 (below) shows the baseline result that we used for the drop test. For this

baseline, the team took the accelerometer and dropped it without any buffering material. The two

main important factors are the acceleration numbers and the associated slopes on the graph.

From above, the accelerometer fell from t = 0 to t = 2.2, then it hit the ground and took a small

bounce. Thus we have a success parameter for the system. Since the relation to voltage and

acceleration is a linear

transformation, the information

presented by the voltage is

indicative of the acceleration, and

thus the information presented

using voltage to see the change in

acceleration is the same as the

acceleration data.

Figure 13 (right) has the results of the UGV dropped on our initial surface, which was

heavily padded. As we can see

from the graph, the UGV fell

and slowed down at a much

slower rate compared to the

baseline test. It then took a

large bounce and fell again,

then slipped on the unstable

Figure 12: UGV Drop Test Baseline Graph

Figure 13: UGV Initial Surface Drop Test Data

27

surface to its resting point. Upon inspection, the UGV hadn’t sustained any damage and the

gentler slope on the graph indicates that the UGV took less impact from the fall over a longer

period of time than the baseline. This indicates that the design effectively increased impulse and

the UGV would have sustained less damage overall. This data is reaffirmed by later drop tests.

As we can see from a drop test onto a thinner surface (see Figure 14), the same results occur, to a

similar degree.

Figure 14: UGV Secondary Surface Drop Test Data

Unfortunately, the UGV and accelerometer had issues with further drop tests. After the

accelerometer position was changed to accumulate data for a different drop orientation, the

accelerometer stopped outputting sensible data. Then, after dropping onto thinner surfaces, the

accelerometer stopped outputting any varying data at all and a wheel fell off. After the first series

of 3D prints for the wheels using ABS, the shaft for the wheel fit perfectly around the axle and

the motor rotated the wheel easily. However, after changing the wheel material to nylon for

strength purposes, the tolerances on the nylon rapid prototyping machine were slightly different

and resulted in wheels with shafts too large to have the motor turn the wheel. Due to time

constraints, the team could not order the wheels to be reprinted and instead opted to use an epoxy

to adhere the wheels on the motors. While this had various success, it also manage to jam one of

28

the motors, which had already been sealed into its casing. After performing the side face drop

tests onto the thinner carpet, the epoxy adhesion failed and one wheel fell off. Coupled with the

failure of the accelerometer, the team could no longer acquire accelerometer data from the drops

tests. The team then proceeded with purely visual tests for the remaining drops.

 After all of the drops had occurred on all orientations, the UGV had sustained no visual

damage and upon inspection of the internal components, the internals were in perfect working

order as well. However, since the team was unable to replace the motor and reattach the wheels,

they were not able to get the robot driving, but all sensors and outputs from the Raspberry Pi

indicate that everything was functioning correctly and would have driven under normal

circumstances. Thus the team concluded that the UGV did succeed for the durability benchmark

with the caveat that a final UGV would need a slight modification to correct for the shaft size.

4.1 Simulating the System

In order to simulate the phases of the experiment, we chose to use ARGoS (Autonomous

Robots Go Swarming), an open source application that specializes in simulating highly

parallelized experiments involving many robots (Pinciroli et al., 2011). ARGoS is easily

extended by generating shared object files which can be registered with the simulator to create

controllers, sensors, actuators, and loop functions to aid in simulation. For the purpose of our

study, we chose to use a readily-available Khepera IV robot controller instead of creating the

bespoke robot controller for the UGV.

During the first phase of the experiment the UAVs generate a 3D occupancy grid by

exploring the previously unexplored room. Although future researchers may choose to develop

an occupancy grid implementation that is more appropriate for distributed mapping, we chose to

29

use a well-known open-source probabilistic occupancy grid implementation called OctoMap that

uses octrees to store occupancy information. OctoMap is more lightweight than other 3D

occupancy grid implementations, and comes packaged with a visualization tool to display the

occupancy information, an example of which can be seen in Figure 15 below (Hornung et al,

2013).

During the second phase of the experiment the

UGV must navigate the previously explored room and

scan locations that the UAV could not scan from the air.

The UGV will maintain a map of local scans which will

be merged with other maps in order to update the full 3D

occupancy grid. We chose to use an open-source grid

map implementation developed by P. Fankhauser5. It has

a suite of tools to manipulate grid maps, and comes with tools to convert from an octomap to a

grid map.

In order to explore the floor-level of the room in the second phase of the experiment, we

require a method to guide robots to the edge between free space and unexplored space. To do this

we generate a 2D occupancy grid from the previously generated octomap, and then update the

2D occupancy grid so that all areas occluded by surfaces above the floor are marked as

5 Full link: https://github.com/ethz-asl/grid_map

Figure 15: Octomap Example

https://github.com/ethz-asl/grid_map

30

unexplored. With this new 2D occupancy grid, we can easily find all frontiers by searching for

cells with neighboring unexplored cells and marking all clusters larger than the robot as frontiers.

The frontiers must then be allocated to all available UGV/UAV pairs. As robotic exploration is a

large and active field of study, there exist a myriad of algorithms for frontier allocation. In order

to determine which was best for our use-case, we consulted a 2014 study by Faigl, which

explores the effectiveness of five different frontier allocation algorithms for multi-robot

exploration (Faigl, Simonin, & Charpillet,

2014). Two algorithms stuck out: Multiple

Traveling Salesman Assignment (MA) and

MinPos. The MA algorithms first clusters

frontiers and then assigns those clusters to

robots by distance. The MinPos algorithm

ranks all robots for a frontier by position

(not distance) and then assigns robots to

frontiers based on rank. Both of these algorithms performed well, with the MA algorithm

performing better across almost all conditions. However, the MinPos algorithm is

computationally simpler and easier to distribute; thus we chose to use the MinPos algorithm.

Unfortunately, due to development time constraints the system could not be built in its

entirety in ARGoS. We were, however, able to create a simple experiment to demonstrate how

octomap could be used in conjunction with ARGoS to map out an area (See Figure 16).6

6 Future development (and additional challenges) are discussed in the conclusion.

Figure 16: ARGoS Experiment

31

5.0 Conclusion

Overall, the design of the UGV is a feasible way to create a swarm robot. The multi-

sectioned design coupled with the buffer material drastically improved the shock absorption to

the UGV. Additionally, it succeeded in its weight and cost criteria quite well. For future work,

there are numerous steps to improving the final design including the materials used, the motor

mechanisms, the durability, and the overall structure. As the current UGV design was intended

for easily accessible, designable, and manufacturable material, the team used ABS and nylon as

the materials for the final design, but plastics have many drawbacks including low heat

resistance, they are easily chipped, and do not have good traction. Future works could redesign

the UGV so that it can be manufactured out of a less breakable material such as aluminum or

more durable plastics. A further issue with the design does not allow for easy access to its

internals once the UGV is fully constructed. Creating a fixture-based design or one with more

openings would allow for easier modifications to the internal components. Another issue with the

design includes the motor placement. Currently the motors are directly attached to the wheels,

which means that more stress is put on the motor than intended. Future students could add a gear

train or treads to decrease the forces applied on the motors as well as ball bearing for decreased

friction. Finally, the overall design of the current robot is only intended for use on relatively flat

surfaces, which is not typical for disaster scenarios. The body could be redesigned to be more

maneuverable in environments with uneven ground.

The simulated system, as previously delineated, is entirely feasible. Several outstanding

challenges include creating robots and sensors in ARGoS and getting the UAV and UGV to

work as a pair. Creating robots and sensors in ARGoS, while no small task, should be easy

enough given a sufficient knowledge of ARGoS and linux development. Getting the UAV and

32

UGV to work as a pair should be very manageable, but there are quite a few ways to handle the

issue of heterogeneous cooperation. For example, you could have UAVs directly manage UGVs,

or UAVs could drop small beacons near frontier areas, which the UGVs would randomly search

the area for. Alternatively, a many-to-one UGV to UAV structure could work, with one UAV

managing the localization of multiple UGVs.

In order to make the system properly decentralized, several steps need to be taken. We

can make these steps clear by hypothetically removing the RCU from the system and analyzing

what changes need to be made to keep the system functional. When the RCU is removed from

the system, the first problem that arises is the missing map. Once there is no centralized server to

maintain the 3D and 2.5D occupancy grid, a method for maintaining a distributed map must be

found. The second issue is that of updating the maps. Not only is there the issue of merging local

sensor scans across a distributed system, but additionally there is the question of where the

computation should take place to merge the sensor scans. Finally, the RCU can no longer

perform the clustering and distribution of frontiers to UAV/UGV pairs, so there must be a

distributed method to determine where the frontiers are and to allocate them to UAV/UGV pairs.

 Additional future work could include creating an attachment mechanism for the UAV.

Part of our research did include researching how the UAV could interact with the UGV and there

are several ways of accomplishing this task, but they also have their drawbacks. Some designs

we looked at include using two magnets as outlined in The Hand-bot, a Robot Design for

Simultaneous Climbing and Manipulation, or using simple actuators and hooks (Bonani et al,

2009).

33

Work Cited

● Bonani, M., Magnenat, S., Rétornaz, P., & Mondada, F. (2009, December). The Hand-

bot, a Robot Design for Simultaneous Climbing and Manipulation. In International

Conference on Intelligent Robotics and Applications (pp. 11-22). Springer, Berlin,

Heidelberg.

● Faigl, J., Simonin, O., & Charpillet, F. (2014). Comparison of Task-Allocation

Algorithms in Frontier-Based Multi-robot Exploration. In Multi-Agent Systems (pp. 101–

110). Springer, Cham. https://doi.org/10.1007/978-3-319-17130-2_7

● P. Fankhauser and M. Hutter, "A Universal Grid Map Library: Implementation and Use

Case for Rough Terrain Navigation", in Robot Operating System (ROS) – The Complete

Reference (Volume 1), A. Koubaa (Ed.), Springer, 2016.

● Garrett, S. (2018, January 11). Are Natural Disasters Increasing? Retrieved January 26,

2018, from https://borgenproject.org/natural-disasters-increasing/

● A. Hornung,. K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, "OctoMap: An

Efficient Probabilistic 3D Mapping Framework Based on Octrees" in Autonomous

Robots, 2013; DOI: 10.1007/s10514-012-9321-0.

● Iiba, M., Nishiyama, I., Fukuyama, H., Okawa, I., & Okuda, Y. (February 2013). Brief

Review of Building Damage by The 2011 Tohoku Japan Earthquake and Following

Activities for Disaster Mitigation (United States Japan Cooperative Program in Natural

Resources, United States Japan, National Earthquake Hazard Reduction Program).

Retrieved March 2, 2018.

● Mahmud, F., Hossain, S. G. M., & Bin, J. (2010). Low-Cost Rescue Robot for Disaster

Management in a Developing Country: Development of a Prototype Using Locally

Available Technology.

● Murphy, R. (2014). Disaster Robotics. The MIT Press.

● NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar

Weather and Climate Disasters (2018). https://www.ncdc.noaa.gov/billions/

● Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., … Dorigo,

M. (2011). ARGoS: A modular, multi-engine simulator for heterogeneous swarm

https://doi.org/10.1007/978-3-319-17130-2_7
https://doi.org/10.1007/978-3-319-17130-2_7
http://dx.doi.org/10.1007/s10514-012-9321-0
https://www.ncdc.noaa.gov/billions/

34

robotics. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems

(pp. 5027–5034). https://doi.org/10.1109/IROS.2011.6094829

● The United Nations. (2006, July). World Urbanization Prospects: The 2005 Revision.

Retrieved March 14, 2018, from

http://www.un.org/esa/population/publications/WUP2005/2005wup.htm

https://doi.org/10.1109/IROS.2011.6094829
https://doi.org/10.1109/IROS.2011.6094829
http://www.un.org/esa/population/publications/WUP2005/2005wup.htm
http://www.un.org/esa/population/publications/WUP2005/2005wup.htm

