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Abstract

Advances in hardware, software and communication networks have enabled

applications to generate data at unprecedented volume and velocity. An im-

portant type of this data are event streams generated from financial transac-

tions, health sensors, web logs, social media, mobile devices, and vehicles.

The world is thus poised for a sea-change in time-critical applications from

financial fraud detection to healthcare analytics empowered by inferring in-

sights from event streams in real time. Event processing systems continu-

ously evaluate massive query workloads to detect and aggregate event trends

of interest. Examples of these trends include check kites in financial fraud

detection, irregular heartbeat in healthcare analytics, and vehicle trajectories

in traffic control. These trends can be of any length. Worst yet, their number

may grow exponentially in the number of events. State-of-the-art systems

do not offer practical solutions for trend analytics and thus suffer from long

delays and high memory costs.

In this dissertation, we first propose the Complete Event Trend detection

(CET) approach. Due to common event sub-sequences in CETs, either the

responsiveness is delayed by repeated computations or an exorbitant amount

of memory is required to store partial results. To overcome these limitations,

we define the CET graph to compactly encode all matched CETs. Based on

the graph, we define the spectrum of CET-detection algorithms from time-

optimized to space-optimized. We find the middle ground between these two



extremes by partitioning the graph into time-centric graphlets and caching

partial CETs per graphlet to enable effective reuse of these intermediate re-

sults. We reveal cost monotonicity properties of the search space of graph

partitioning plans. Our CET optimizer leverages these properties to prune

significant portions of the search to produce a partitioning plan with minimal

latency yet within the available memory.

Second, we propose the Graph-based Real-time Event Trend Aggregation

(GRETA) approach that dynamically computes event trend aggregation with-

out first constructing these trends. We define the GRETA graph to compactly

encode all trends. Our GRETA runtime incrementally maintains the graph,

while dynamically propagating aggregates along its edges. Based on the

graph, the final aggregate is incrementally updated and instantaneously re-

turned at the end of each query window. Our GRETA runtime represents

a win-win solution, reducing both the time complexity from exponential to

quadratic and the space complexity from exponential to linear in the number

of events compared to state-of-the-art techniques. Beyond computing aggre-

gates at the fine granularity of each matched event, we design an optimized

strategy that maintains aggregates at the coarse granularity levels – per event

type or even per pattern. This strategy minimizes the number of aggregates

and is shown to further reduce time and space complexity for event trend

aggregation.

Third, our Shared Online Event Sequence Aggregation (SHARON) approach

shares intermediate aggregates among multiple queries while avoiding the ex-

pensive construction of event sequences. Our SHARON optimizer faces two

challenges. One, a sharing decision is not always beneficial. Two, a shar-

ing decision may prevent other sharing opportunities. To guide our SHARON



optimizer, we compactly encode sharing candidates, their benefits, and con-

flicts among candidates into the SHARON graph. Based on the graph, we

map our problem of finding an optimal sharing plan to the Maximum Weight

Independent Set (MWIS) problem. We then use the guaranteed weight of a

greedy algorithm for the MWIS problem to prune the search of our sharing

plan finder without sacrificing its optimality.

In several comprehensive experimental studies, namely, one for each part of

this dissertation, we demonstrate the superiority of the proposed strategies

over the state-of-the-art techniques with respect to latency, throughput, and

memory costs.
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Introduction

Complex Event Processing (CEP) is a technology for supporting streaming applications

such as healthcare analytics, financial fraud detection, and urban transportation services.

CEP systems continuously evaluate event queries against high-rate streams of primitive

events to detect higher-level event trends. In contrast to traditional event sequences of

fixed length [4], event trends have an arbitrary length [5, 6]. They are expressed by Kleene

patterns. Various event matching semantics were defined in the CEP literature [3, 7, 8] to

determine the contiguity of event trends. For example, phases of contiguously increasing

heartbeat are detected in healthcare analytics, while non-contiguous check kites are of

interest for financial fraud detection. Aggregation functions may be applied to these event

trends to provide summarized insights about them. For example, the count of trips on a

route serves as a measure of route popularity. CEP applications must react to critical

changes of these aggregates in real time.
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1.1 MOTIVATING EXAMPLES

Figure 1.1: Circular check kiting

1.1 Motivating Examples

We now describe three use case scenarios of time-critical event trend analytics that require

alternative event matching semantics.

• Financial fraud detection. Circular check kiting is an example of event-trend de-

tection for financial fraud. In a simple case, it involves writing a check for a value greater

than the account balance from an account in Bank A, then writing a check from another

account in Bank B, also with insufficient funds, with the second check serving to cover

the non-existent funds from the first account. Fraudsters take advantage of the float and

withdraw funds from the account before the banks can detect the scheme (Figure 1.1).

Complex versions of this scheme have occurred involving multiple fraudsters posing

as large businesses, thereby masking their activity as normal business transactions. In this

way they coax banks to waive the limit of available funds [9]. To implement this scheme,

fraudsters transfer millions among banks using complex webs of worthless checks. As

just one example, in 2014, 12 people were charged in a large-scale “bustout” scheme,

costing banks over $15 million [10].

Query q detects a chain (or circle) of any length formed by uncovered check deposits

during a time window of 1 day that slides every 10 minutes. The pattern of the query is

the Kleene closure on check deposit events, denoted Check C+. The predicates require
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Figure 1.2: Three check kite trends detected by query q

the checks in a chain to be uncovered. The destination of a check C must be the same as

the source of the next check NEXT(C) to form a chain.

q : PATTERN Check C+

WHERE C.type = “uncovered” AND C.destination = NEXT(C).source

SEMANTICS skip-till-any-match

WITHIN 1 day SLIDE 10 minutes

Since arbitrary many fraudsters, financial transactions and banks worldwide can be

involved in this scheme, detection of circular check kites is a computationally expensive

problem. To prevent cash withdrawal from an account that is involved in at least one check

kiting scheme, the query continuously analyzes high-rate event streams with thousands of

financial transactions per second and detects all complete check kiting trends in real time.

In Figure 1.2, (c1 : A → B) denotes an uncovered check deposit event from Bank

A into Bank B at time 1 and (w3 : A) denotes a cash withdrawal event from Bank A

at time 3. Three check kiting trends are detected in this example. They are shown as

black lines above the event stream: (c1, c2, c7), (c1, c4, c5, c7) and (c1, c4, c6). Note that

check c2 is part of the first trend but is skipped to detect the second and third event trends.

Such flexible way of finding all matches is called skip-till-any-match event matching

semantics [7].

• Healthcare analytics. Cardiac arrhythmia is a serious heart disease in which the

heartbeat is too fast, too slow, or irregular. It can lead to life-threatening complications
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causing about 325K sudden cardiac deaths in US per year [11]. Thus, an abnormal heart-

beat must be promptly detected to enable immediate lifesaving measures.

q′ : RETURN patient, MIN(M.rate), MAX(M.rate)

PATTERN Measurement M+

SEMANTICS contiguous

WHERE [patient] AND M.rate < NEXT(M).rate AND M.activity = passive

GROUP-BY patient

WITHIN 10 minutes SLIDE 30 seconds

Query q′ detects extreme differences in heartbeat during passive physical activities

(e.g., reading, watching TV). The query consumes a stream of heart rate measurements of

intensive care patients. Each event carries a time stamp in seconds, a patient identifier, an

activity identifier, and a heart rate. For each patient, q′ detects phases of a contiguously

increasing heart rate despite passive physical activity during a time window of 10 minutes

that slides every 30 seconds. The query computes the minimal and the maximal heart rate

measurements during such phases. No measurements may be skipped in between matched

events per patient, as expressed by the contiguous semantics.

• Urban transportation services. With the growing popularity of ridesharing services

such as Uber and Lyft, their systems face multiple challenges including real-time anal-

ysis of vehicle trajectories, geospatial prediction, and alerting. These systems evaluate

massive workloads of event queries against high-rate streams of drivers’ position reports

and riders’ requests to infer the current supply and demand situation on each route. They

incorporate traffic conditions to compute the best route for each trip. They then instan-

taneously react to critical changes to prevent time waste, reduce costs and pollution, and

increase riders’ satisfaction and drivers’ profit. With thousands of drivers and over 150

requests per minute in New York City [12, 13, 14], real-time traffic analytics and ride

management is a challenging task.
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Figure 1.3: Traffic monitoring workload Q

Queries q1–q7 in Figure 1.3 compute the count of trips on a route as a measure of route

popularity. They consume a stream of vehicle position reports. Each report carries such

attribute values as a time stamp in seconds, a car identifier and its position. Here, event

type corresponds to a vehicle position. For example, a vehicle on Main Street sends a

position report of type MainSt. Each trip corresponds to a sequence of position reports

from the same vehicle (as required by the predicate [vehicle]) during a 10-minute-long

time window that slides every minute. The predicates and window parameters of q2–q7 are

identical to q1 and thus are not shown for compactness. The sub-pattern (OakSt,MainSt)

appears in queries q1–q4. Sharing the aggregation of common patterns among multiple

similar queries is vital to speed up the system responsiveness.

1.2 State-of-the-Art Approaches

We first describe the relationship of this dissertation to the broader class of data manage-

ment approaches. We then summarize the shortcomings of existing streaming approaches.

Chapters 9, 20, and 26 discuss related work for each part of this dissertation in more de-

tail.
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1.2.1 Broader Context

The optimization techniques of Kleene closure and event sequence queries proposed in

this dissertation loosely relate to static databases and recursive queries.

• Static Databases. Traditional SQL queries [15, 16, 17] do not support streaming

operators such as event sequence and Kleene closure that treat the order of events by their

time stamps as first-class citizen. While static sequence data bases extend traditional SQL

queries by order-aware join operators [18, 19], these approaches work with data that is

statically stored and indexed prior to processing. Thus, they do not tackle the challenges

of dynamically streaming data such as event expiration and real-time reactions.

• Recursive Queries. Kleene closure can be considered as a special class of recur-

sive queries [20, 21, 22, 23, 24, 25, 26, 27]. However, these approaches have a different

focus. Namely, extending expressive power for recursive queries [26] or ensuring correct-

ness of such queries [20, 23]. These approaches do not support multiple event matching

semantics [3, 7, 8] that are required to express diverse streaming application scenarios

(Section 1.1).

1.2.2 Event Trend Detection

While existing event processing approaches recognize the importance of Kleene closure

computation over event streams [3, 7, 8, 28, 29], some of them, namely, Cayuga [28]

and ZStream [29] do not support the skip-till-any-match semantics required to express

the use cases above. While SASE [3] supports Kleene closure computation under the

skip-till-any-match semantics, it stores single events and forms matches at the end of each

window. Since an event sub-sequence can be part of multiple matches, SASE re-computes

a common event sub-sequence for each match that contains it. This approach suffers

from repeated computations. For example, our experiments in Chapter 8 demonstrate that
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Event sequences Event trends

Two-step Flink [30], Esper [31], Or-
acle Stream Analytics [32]

SASE [3], Cayuga [28],
ZStream [29]

Online A-Seq [2] GRETA, COGRA

Table 1.1: Event sequence versus event trend aggregation approaches

the CPU processing time of SASE is 38 minutes when the event rate is 50k per second

and the query window is 30 minutes. Such a long processing delay is unacceptable for

time-critical applications that require high responsiveness, such as within a minute. In

summary, the existing approaches do not fully address the challenges of real-time event

trend detection over high-rate event streams.

1.2.3 Event Trend Aggregation

State-of-the-art approaches to event aggregation can be divided into the following groups

(Table 1.1).

• CEP approaches such as SASE [3], Cayuga [28], and ZStream [29] support Kleene

closure. However, Cayuga and ZStream do not consider event matching semantics de-

fined in the literature [3, 7, 8]. While their languages include aggregation, they do not

provide any optimization techniques to compute aggregation on top of Kleene patterns.

They utilize the two-step approach that constructs all trends prior to their aggregation.

This approach suffers from long delays or even fails to terminate due to the exponential

cost of event trend construction (Chapters 13 and 19). A-Seq [2] computes aggregation

of fixed-length event sequences without constructing these sequences. However, A-Seq

supports neither Kleene closure nor event matching semantics. Thus, it does not tackle

the exponential complexity of event trends – which now is the focus of our work.

• Streaming systems. Industrial streaming systems such as Flink [30], Esper [31], and

Oracle Stream Analytics [32] only support fixed-length event sequences aka sequential
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Non-Shared Shared

Two-step Flink [30], SASE [3],
Cayuga [28], ZStream [29]

SPASS [38], ECube [4]

Online A-Seq [2] SHARON

Table 1.2: Shared versus non-shared event sequence aggregation approaches

join. They do not support Kleene closure queries. They construct all sequences prior to

their aggregation and thus follow the prohibitively expensive two-step approach.

Streaming approaches [33, 34, 35, 36, 37] evaluate Select-Project-Join queries with

windows, i.e., their execution paradigm is set-based. They support neither event sequence

nor Kleene closure. These approaches require the construction of join results prior to their

aggregation. Thus, they define incremental aggregation of single raw events.

1.2.4 Shared Event Sequence Aggregation

State-of-the-art approaches to event sequence aggregation can be divided into the follow-

ing groups (Table 1.2):

• Non-shared two-step approaches, including Flink [30], SASE [3], Cayuga [28],

and ZStream [29], evaluate each query independently from other queries in the workload.

Furthermore, these approaches do not offer optimization strategies specific for event se-

quence aggregation queries. Without special optimization techniques, these approaches

first construct event sequences and then aggregate them. Since the number of event se-

quences is polynomial in the number of events [2, 3], event sequence construction is an

expensive step. Our experiments in Chapter 25 confirm that such a non-shared, two-step

approach implemented by the popular open-source streaming system Flink [30] does not

terminate, even for low-rate streams of a few hundred events per second.

• Shared two-step approaches such as SPASS [38] and ECube [4] focus on shared

event sequence construction, not on sequence aggregation. If these approaches are ap-
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plied to aggregate event sequences, they would construct all sequences prior to their ag-

gregation. This event sequence construction step degrades system performance. Our ex-

periments in Chapter 25 confirm that such a shared, two-step approach implemented by

SPASS [3] requires 41 minutes per query window, even for low-rate streams of a few hun-

dred events per second. Such long delays are not acceptable for time-critical applications

that require a system response within a few seconds [39].

• Non-shared online approaches such as A-Seq [2] compute event sequence aggre-

gation online, i.e., without constructing the sequences. A-Seq incrementally maintains

a set of aggregates for each pattern and instantaneously discards each event once it has

updated the aggregates. A-Seq does not tackle the sharing optimization problem to de-

termine which queries should share the aggregation of which sub-patterns such that the

latency of a workload is minimized – which is now the focus of our work. Without an

optimizer, A-Seq does not share computations among multiple queries.

1.3 Research Challenges

In this dissertation, we focus on the following open problems.

Event Trend Detection.

• Exponentially many trends of unbounded length. Not only is each event trend of

statically unknown and potentially unbounded length, but also the number of trends can

be exponential in the number of relevant events in the worst case (Chapter 3). Without a

clever design, this complexity may jeopardize real-time trend detection in high-rate event

streams.

• CPU versus memory trade-off of trend detection. Due to the occurrence of many

common event sub-sequences in trends, either repeated computations are invoked or an

exorbitant amount of memory is required to store partial trends during trend detection.
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Consequently, the system may either fail to deliver the results with low latency or run out

of memory due to high-rate event streams.

• Exponential stream-partitioning problem. The divide and conquer principle is a

common solution to the problem above of trading between CPU and memory. Namely,

we could partition the stream, cache results per partition and reuse them for final re-

sult construction. However, with the search space being exponential [40], an effective

lightweight stream-partitioning algorithm must be developed to guarantee prompt system

responses.

Event Trend Aggregation.

• Real-time event trend aggregation. Kleene closure matches an exponential number

of arbitrarily long event trends in the number of events in the worst case [3]. Thus, any

practical solution must aim to aggregate event trends without first constructing them to

enable real-time in-memory execution. At the same time, correctness must be guaranteed.

That is, the same aggregates must be returned as by the two-step approach.

• Nested Kleene patterns. Kleene closure detects event trends of arbitrary length.

Worse yet, Kleene closure, event sequence, and negation may be arbitrarily nested in a

pattern, introducing complex interdependencies between events in an event trend. Incre-

mental aggregation of such arbitrarily long and complex event trends is an open problem.

• Rich event matching semantics were defined in the CEP literature [3, 7, 8] to enable

expressive event queries required for different applications. These semantics range from

the most restrictive contiguous semantics (query q′ above) to the most flexible skip-till-

any-match semantics (query q). Their execution strategies differ significantly, making the

seamless support of online event trend aggregation on top of these diverse semantics a

challenging task.

Shared Event Sequence Aggregation.

• Online yet shared event sequence aggregation. Unfortunately, these optimization
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techniques (that allow computing event sequence aggregation online and at the same time

share the intermediate results) cannot be simply combined with each other because they

impose contradictory constraints on the underlying execution strategy. For example, if

query q4 in Figure 1.3 shares the aggregation results of patterns p = (ParkAve,OakSt)

and p′ = (MainSt,WestSt) with other queries, the aggregates for p and p′ must be

combined to form the final results for q4. To ensure correctness, this result combination

must be aware of the temporal order between sequences matched by p and p′ and their

expiration. To be able to analyze these temporal relationships, event sequences must be

constructed. This requirement contradicts the key idea of the online approaches that avoid

the expensive event sequence construction step.

• Benefit of sharing. Sharing the aggregation computation for a pattern p by a set

of queries Qp containing p is not always beneficial, since this sharing may introduce

considerable CPU overhead of combining shared intermediate aggregates to form the

final results for each query in Qp. Thus, an accurate sharing benefit model is required to

assess the quality of a sharing plan.

• Intractable sharing plan search space. The search space for a high-quality sharing

plan is exponential in the number of sharing candidates. Since the event rate may fluc-

tuate, the benefit of sharing a pattern may change over time. To achieve a high sharing

benefit, the sharing plan may have to be dynamically adjusted. Hence, an effective yet

efficient optimization algorithm for sharing plan selection is required.

1.4 Proposed Solutions

To tackle the open challenges above, we extend state-of-the-art techniques with event

trend analytics capabilities. In particular, we focus on event query optimizer and runtime

stream analytics (Figure 1.4). Our proposed techniques are compatible with the existing
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Figure 1.4: Event stream analytics framework

streaming engines such as Flink [30], Esper [31], Microsoft SreamInsight [41], Oracle

Stream Analytics [32]. Our contributions include:

Event Trend Detection. We focus on detecting Complete Event Trends (CETs), i.e.,

trends that are not part of other trends. Given an event query with a Kleene pattern, our

CET processing paradigm first extracts events matched by the query from a stream. It

then encodes their CET relationships in a compact data structure, called the CET graph.

Based on the graph, we propose a family of CET detection algorithms ranging from the

memory-optimized M-CET to the CPU-time-optimized T-CET solution. M-CET avoids

excessive storage of intermediate results and thus invokes repeated computations. T-CET

accelerates CET detection by incrementally maintaining intermediate results but unfortu-

nately requires an exorbitant amount of memory.

To trade off between CPU and memory costs, we develop the Hybrid CET detection

algorithm H-CET which is a middle ground between these two extremes. Namely, we par-

tition the CET graph into smaller graphlets. Based on the partitioned graph, H-CET caches

partial CETs per graphlet using T-CET, and then stitches these partial CETs together to

form the final CET results using M-CET. Partitioning faces the trade off that fine-grained

partitioning plans reduce the memory consumption (since CETs are stored per graphlet)

while increasing the execution time due to the overhead of partial result combination. On

12
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the other hand, coarse-grained partitioning plans have high memory costs while the over-

head of partial result combination is low. We thus design a cost-driven CET optimizer

that finds an optimal partitioning plan with minimal CPU execution costs yet within the

available memory limit. Our key innovations are the following:

1) We define the problem of real-time CET detection over high-rate event streams un-

der memory constraints. We prove that the number of CETs is exponential in the number

of relevant events in the worst case.

2) We introduce a compact data structure, called a CET graph, to encode relevant

events and their CET relationships. The spectrum of CET detection algorithms ranging

from the CPU-time-optimized algorithm T-CET to the memory-optimized algorithm M-

CET is introduced.

3) To trade-off between CPU and memory costs, we develop the Hybrid CET-detection

algorithm H-CET. We first partition the CET graph into time-centric graphlets. Then, H-

CET computes CETs per graphlet using T-CET and reuses these partial results to detect all

CETs using M-CET.

4) We establish a cost model for CET detection. Our analysis reveals cost monotonic-

ity properties of the search space of candidate partitioning plans. We then design a CET

optimizer that leverages these properties to effectively prune sub-optimal plans. Our op-

timizer is guaranteed to produce a graph-partitioning plan with minimal execution time

within a given memory bound.

5) We conduct an extensive performance evaluation of our CET approach using both

synthetic and real data sets [42, 43]. Our CET solution achieves up to a 42–fold speed-up

compared to the state-of-the-art strategies including Flink [30] and SASE [3].

Event Trend Aggregation. Given an event trend aggregation query q and a stream

I , our Graph-based Real-time Event Trend Aggregation (GRETA) approach compactly

encodes all event trends matched by the query q in the stream I into a GRETA graph. Dur-
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ing graph construction, aggregates are propagated from previous events to newly arrived

events along the edges of the graph following the dynamic programming principle. This

propagation assures incremental aggregation computation without first constructing the

trends. The final aggregate is also computed incrementally, such that it can be instanta-

neously returned at the end of each window of q.

Furthermore, we propose to optimize GRETA by maintaining Coarse-Granular ag-

gregates, called the COGRA approach. COGRA is the first technique that defines online

event trend aggregation under rich event matching semantics at multiple granularity lev-

els. Depending on the event matching semantics and other query features, COGRA adap-

tively selects the coarsest possible granularity level at which it incrementally computes

event trend aggregation. These granularity levels range from fine (per matched event), to

medium (per event type), to coarse (per pattern). Thus, COGRA minimizes the number of

aggregates and discards all events once they have updated the aggregates. Our COGRA

approach represents a win-win solution that reduces both time and space complexity of

trend aggregation compared to state-of-the-art approaches. Our key innovations include:

1) We translate a nested Kleene pattern P into a GRETA template. Based on this tem-

plate, we construct a GRETA graph that compactly captures all trends matched by pattern

P in the stream. During graph construction, the aggregates are dynamically propagated

along the edges of the graph. We prove the correctness of the GRETA graph and the

graph-based aggregation computation.

2) To handle nested patterns with negative sub-patterns, we split the pattern into pos-

itive and negative sub-patterns. We maintain a separate GRETA graph for each resulting

sub-pattern and invalidate certain events if a match of a negative sub-pattern is found.

3) To avoid sub-graph replication between overlapping sliding windows, we share

one GRETA graph between all windows. Each event that falls into k windows maintains

k aggregates. A final aggregate is computed per window.

14
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4) To ensure low-latency lightweight query processing, we design the GRETA runtime

data structure to support dynamic insertion of newly arriving events, batch deletion of ex-

pired events, incremental propagation of aggregates, and efficient evaluation of expressive

predicates.

5) We define the problem of real-time event trend aggregation under rich event match-

ing semantics. Based on these event matching semantics and other query features, we

identify the coarsest possible granularity level at which trend aggregates are maintained.

6) For each granularity level, we propose efficient data structures and processing

strategies to compute event trend aggregation. We also prove the correctness of these

strategies.

7) The strategies are shown to reduce both time and space complexity compared to

state-of-the-art approaches.

8) Our experiments using both synthetic and real data sets [42, 43] demonstrate that

our techniques achieve up to four orders of magnitude speed-up and use up to eight orders

of magnitude less memory compared to the state-of-the-art strategies including Flink [30],

SASE [3], and A-Seq [2] (Table 1.1).

Shared Event Sequence Aggregation. We propose the following Shared Online

Event Sequence Aggregation (SHARON) optimization techniques. Since sharing a pat-

tern p by a set of queries Qp is not always beneficial, we develop a sharing benefit model

to assess the quality of a sharing candidate (p,Qp). The model compares the gain of shar-

ing p among queries Qp to the overhead of combining shared aggregates of p to form the

final results for each query in Qp. Non-beneficial candidates are pruned. Since a decision

to share a pattern may prevent the sharing of another pattern by the same query, we define

the notion of sharing conflicts among sharing candidates. We compactly encode shar-

ing candidates as vertices and conflicts among these candidates as edges of the SHARON

graph (Figure 5.1). Each vertex is assigned a weight that corresponds to the benefit of
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sharing the respective candidate.

Based on the graph, we map our Multi-query Event Sequence Aggregation problem

to the Maximum Weight Independent Set (MWIS) problem. We then utilize the guaran-

teed minimal weight of the approximate algorithm GWMIN [44] for the MWIS problem

to prune conflict-ridden candidates. Since conflict-free candidates always belong to an

optimal sharing plan, they can also be excluded from the search early on. Based on the

reduced graph, our sharing plan finder further prunes sharing plans with conflicts and re-

turns an optimal plan (i.e., plan with minimal estimated latency) to guide our executor

at runtime. In summary, SHARON seamlessly combines two optimization strategies into

one integrated solution. Namely, it shares sequence aggregation among multiple queries,

while computing sequence aggregation online. Our key innovations are:

1) We design the sharing benefit model to assess the quality of a sharing candidate.

Non-beneficial candidates are pruned.

2) We identify sharing conflicts among candidates and encode candidates, their bene-

fits, and conflicts among them into the SHARON graph.

3) We map our Multi-query Event Sequence Aggregation problem to the Maximum

Weight Independent Set (MWIS) problem and utilize the guaranteed weight of the ap-

proximate algorithm for MWIS to prune conflict-ridden candidates.

4) Based on the reduced SHARON graph, we introduce the sharing plan finder that

prunes sharing plans with conflicts and returns an optimal sharing plan.

5) Our performance study using real data sets [12, 39] demonstrates that sharing plans

produced by the SHARON optimizer achieve up to 18-fold speed-up and use up to two

orders of magnitude less memory compared to the state-of-the-art approaches including

Flink [30], SPASS [38], and A-Seq [2] (Table 1.2).
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1.5 Impact of This Dissertation

Our event trend analytics techniques derive valuable summarized insights about high-rate

event streams in real-time. They support expressive event queries and thus are applicable

to a wide range of use cases from financial fraud detection to algorithmic trading.

While the state-of-the-art industrial systems such as Microsoft Stream-Insight [41],

Flink [30], Esper [31], and Oracle Stream Analytics [32] do not yet explicitly support

Kleene closure computation over event streams, first steps in this direction have already

been made in Flink [45] and Oracle Stream Analytics [46, 47]. Our optimization tech-

niques can be plugged into these systems to enable scalable event trend analytics. These

systems can greatly benefit from these ideas with respect to expressive power and perfor-

mance optimization.

1.6 Dissertation Outline

This dissertation is organized as follows. We propose event trend detection and aggrega-

tion techniques in Parts I and II respectively. In Part III, we describe shared online event

sequence aggregation methodology. Part IV concludes this dissertation and proposes fu-

ture research directions.
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2

Data and Query Model

In this chapter, we first define a pattern (Section 2.1). We then statically analyze a pattern

to guide runtime execution (Sections 2.2 and 2.3). We define the event matching seman-

tics and event query (Sections 2.4 and 2.5). Lastly, we summarize the assumptions of this

dissertation (Section 2.6).

2.1 Pattern

Time. Time is represented by a linearly ordered set of time points (T,≤), where T ⊆ Q+

(the non-negative rational numbers).

Event. An event is a message indicating that something of interest happened in the

real world. An event e has a time stamp e.time ∈ T assigned by the event source. An

event e belongs to a particular event type E, denoted e.type = E and described by a

schema which specifies the set of event attributes and the domains of their values.

Example 2.1 In the check kiting example, a check deposit event carries a status (covered

or not), a source bank and a destination bank. Other attributes (such as account owner,

balance, amount) are ignored here for simplicity.
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2.2 TEMPLATE FOR A POSITIVE PATTERN

Event Stream. An event stream I is a sequence of events arriving in-order by their

time stamps. Multiple events may have the same time stamp. Events are sent by event

producers (e.g., ATM machines). An event consumer (e.g., financial fraud detection sys-

tem) continuously monitors the stream with event queries. We borrow the query syntax

and semantics from SASE [3, 7, 8]. Our example queries in Section 1.1 are expressed

using this syntax.

Definition 2.1 (Raw Pattern) A raw pattern is recursively defined as follows:

• An event type E is a pattern.

• A Kleene plus operator P+ applied to a pattern P is a pattern.

• An event sequence operator SEQ(P1, P2) applied to patterns P1 and P2 is a pattern.

• A negation operator NOT P applied to a pattern P is a pattern.

A Kleene pattern is a pattern with at least one Kleene plus operator. A pattern with-

out a Kleene plus operator is called an event sequence pattern. A pattern is positive if

it contains no negation. If an operator in a pattern is applied to the result of another

operator, the pattern is nested. Otherwise, it is flat. The length of pattern is the number

of event types and operators in it.

Pattern. While Definition 2.1 allows arbitrarily nested patterns, we assume that a

negation operator always appears within an event sequence operator and is applied either

to an event sequence operator or an event type. In particular, negation may not be the

outer most operator in a pattern. If a negative sub-pattern is preceded or followed by a

pattern P ′ (as described in more details in Section 2.3), P ′ must be positive.

2.2 Template for a Positive Pattern

We first translate a positive pattern P into a Finite State Automaton that is then used as a

template during event analytics at runtime. For example, the pattern P = (SEQ(A+, B))+
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2.2 TEMPLATE FOR A POSITIVE PATTERN

Figure 2.1: Template for the pattern P=(SEQ(A+,B))+

is translated into the template in Figure 2.1.

States correspond to event types in P . The initial state is labeled by the start type in P ,

denoted start(P ). The final state has label end(P ), i.e., the end type in P . All other states

are labeled by middle types mid(P ). In Figure 2.1, start(P ) = A, end(P ) = B, and

mid(P ) = ∅. Since an event type may appear in a pattern at most once, state labels are

distinct. Since the is no disjunction, conjunction, Kleene star, and optional sub-patterns

in P , there is one start(P ) and one end(P ) event type per pattern P 1 There can be any

number of event types in the set mid(P ). start(P ) 6∈ mid(P ) and end(P ) 6∈ mid(P ).

An event type may be both start(P ) and end(P ), for example, in the pattern A+.

Transitions correspond to operators in P . They connect types of events that may be

adjacent in a match of P . If a transition connects an event type E1 with an event type

E2, then E1 is a predecessor event type of E2, denoted E1 ∈ P.predTypes(E2). In

Figure 2.1, P.predTypes(A) = {A,B} and P.predTypes(B) = {A}.

Template Construction Algorithm. Algorithm 1 consumes a positive pattern P and

returns the automaton-based representation of P , called template T = (S, T ). The states

S correspond to the event types in P (Line 2), while the transitions T correspond to the op-

erators in P . Initially, the set T is empty (Line 2). For each event sequence SEQ(P1, P2)

in P , there is a transition from end(P1) to start(P2) with label “SEQ” (Lines 3–5). Anal-

ogously, for each Kleene plus P1+ in P , there is a transition from end(P1) to start(P1)

with label “+” (Lines 6–8). Start and end event types of a pattern are computed by the

auxiliary methods in Lines 10–19.

1We discuss how to drop these simplifying assumptions in Chapter 12.
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2.3 TEMPLATE FOR A PATTERN WITH NEGATIVE SUB-PATTERNS

Algorithm 1 Template construction algorithm
Input: Positive pattern P
Output: Template T

1: generate(P ) {
2: S ← event types in P, T ← ∅, T = (S, T )
3: for all SEQ(P1, P2) in P do
4: t← (end(P1), start(P2)), t.label← “SEQ”
5: T ← T ∪ {t}
6: for all P1+ in P do
7: t← (end(P1), start(P1)), t.label← “ + ”
8: T ← T ∪ {t}
9: return T }

10: start(P ) {
11: switch P do
12: case E return E
13: case P1+ return start(P1)

14: case SEQ(P1, P2) return start(P1) }
15: end(P ) {
16: switch P do
17: case E return E
18: case P1+ return end(P1)

19: case SEQ(P1, P2) return end(P2) }

Complexity Analysis. Let P be a pattern of length l (Definition 2.1). To extract all

event types and operators from P , P is parsed once in Θ(l) time. For each operator, we

determine its start and event types in O(l) time. Thus, the time complexity is quadratic

O(l2). The space complexity is linear in the size of the template Θ(|S|+ |T |) = Θ(l).

2.3 Template for a Pattern with Negative Sub-Patterns

We assume that negation appears within a sequence preceded and followed by positive

sub-patterns. Furthermore, negation is applied either to an event sequence or a single

event type. Thus, we classify patterns containing a negative sub-pattern N into the fol-

lowing three cases:
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2.3 TEMPLATE FOR A PATTERN WITH NEGATIVE SUB-PATTERNS

(a) (SEQ(A+,NOT SEQ(C,
NOT E,D), B))+

(b) SEQ(A+,NOT E) (c) SEQ(NOT E,A+)

Figure 2.2: Template for patterns with negative sub-patterns

Case 1. A negative sub-pattern is preceded and followed by positive sub-patterns. A

pattern of the form P1 = SEQ(Pi,NOT N,Pj) means that no trends detected by N may

occur between the trends detected by Pi and Pj . A trend matched by N marks all events

in the graph of the previous event type end(Pi) as invalid to connect to any future event of

the following event type start(Pj). Only valid events of type end(Pi) connect to events

of type start(Pj).

Example 2.2 The pattern (SEQ(A+,NOT SEQ(C,NOT E,D), B))+ is split into one

positive sub-pattern (SEQ(A+, B))+ and two negative sub-patterns SEQ(C,D) and E.

Figure 2.2(a) illustrates the previous and following links between the template for the

negative sub-pattern and the event types in the template for its parent pattern.

Case 2. A negative sub-pattern is preceded but not followed by a positive sub-pattern.

A pattern of the form P2 = SEQ(Pi,NOT N) means that no trends matched by N may

occur after the trends detected by Pi until the end of I . A trend matched by N marks all

previous events in the graph of Pi as invalid.

Case 3. A negative sub-pattern is followed but not preceded by a positive sub-pattern.

A pattern of the form P3 = SEQ(NOT N,Pj) means that no trends matched by N may
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2.3 TEMPLATE FOR A PATTERN WITH NEGATIVE SUB-PATTERNS

Algorithm 2 Pattern split algorithm
Input: Pattern P with negative sub-patterns
Output: Set S of sub-patterns of P

1: S ← {P}
2: split(P ) {
3: switch P do
4: case Pi+ : S ← S ∪ split(Pi)
5: case SEQ(Pi, Pj) : S ← S ∪ split(Pi) ∪ split(Pj)
6: case NOT Pi :
7: Parent ← S .getPatternContaining(P)
8: Pi.previous ← Parent .getPrevious(P)
9: Pi.following ← Parent .getFollowing(P)

10: S.replace(Parent ,Parent − P )
11: S ← S ∪ {Pi} ∪ split(Pi)
12: return S }

occur after the start of I and before the trends detected by Pj . A trend matched by N

marks all subsequent events in the graph of Pj as invalid until the end of I .

Example 2.3 Figures 2.2(b) and 2.2(c) illustrate the templates for the patterns SEQ(

A+,NOT E) and SEQ(NOT E,A+) respectively. The first template has only a previous

link, while the second template has only a following link between the template for the

negative sub-pattern E and the event type A.

Pattern Split Algorithm. Algorithm 2 consumes a pattern P , splits it into positive

and negative sub-patterns, and returns the set S of these sub-patterns. Each sub-pattern in

the set S has links to its previous and/or following event types in the parent pattern. At

the beginning, S contains the pattern P (Line 1). The algorithm traverses P top-down.

If it encounters a negative sub-pattern P = NOT Pi, it finds the sub-pattern containing

P , called Parent pattern, using the auxiliary method S.getPatternContaining(P). Then,

the algorithm computes the previous and following event types of Pi using the auxiliary

methods Parent.getPrevious(P) and Parent.getFollowing(P). The algorithm removes P

from Parent (Lines 7–10). The pattern Pi is added to S and the algorithm is called
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2.4 EVENT MATCHING SEMANTICS

recursively on Pi (Line 11). Since the algorithm traverses the pattern P top-down once,

the time and space complexity are linear in the length of the pattern l, i.e., Θ(l).

There is always only one positive sub-pattern P from which negative sub-patterns

are removed (Line 10). There can be any number of negative sub-patterns. Negative

sub-patterns can be nested (Figure 2.2(a)). A pattern can have any number of children.

For example, the patterns in Figure 2.2 have zero or one child. However, the pattern

SEQ(A,NOT B,C,NOT D,E) is split into one positive P = SEQ(A,C,E) and two

negative sub-patterns B and E such that B and E are children of P .

2.4 Event Matching Semantics

Event matching semantics are commonly used in the CEP literature [3, 7, 8] to express

event queries for diverse streaming applications (Section 1.1). Informally speaking, these

semantics differentiate between relevant events, i.e., events that can extend an existing

(partial) match under the most flexible skip-till-any-match semantics (see below), and

irrelevant events that cannot. Relevant events either must extend existing matches or

can be skipped to preserve opportunities for alternative matches. Irrelevant events either

invalidate current incomplete matches or can be skipped.

Example 2.4 In Figure 2.3, the pattern P = (SEQ(A+,B))+ is evaluated under various

event matching semantics against the stream I . In the stream, letters denote types, while

numbers represent time stamps, e.g., a1 is an event of type A with time stamp 1. Matches

are depicted above the stream. They range from the shortest contiguous match (a1, b2) to

the longest non-contiguous match (a1, b2, a3, a4, b6, a7, b8).

Skip-Till-Any-Match Semantics (ANY for short) is the most flexible semantics that

detects all possible matches by skipping any event in the stream as follows. For each event
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2.4 EVENT MATCHING SEMANTICS

Figure 2.3: Matches of the pattern P = (SEQ(A+, B))+ in the stream I = {a1, b2, a3, a4, b6,
a7, b8} under various event matching semantics

e and each match tr that can be extended by e, two possibilities are considered: (1) e is

appended to the match tr to form a longer match tr′ = (tr, e), and (2) e is skipped and the

match tr remains unchanged to preserve opportunities for alternative longer matches. If

an event e can extend all matches, then the event e doubles the number of matches. Thus,

the number of matches grows exponentially in the number of events in the worst case.

Skip-till-any-match skips irrelevant events. Query q in Section 1.1 is evaluated under this

semantics.

Example 2.5 In Figure 2.3, when a7 arrives, the match (a3, b6) is extended to (a3, b6, a7)

and the original match (a3, b6) is also kept. Based on only 8 events in the stream, 43

matches are detected. Only some of them are shown for compactness. Irrelevant events

are ignored, e.g., c5.

Definition 2.2 (Pattern Match Under Skip-Till-Any-Match) • Event Type. If e ∈ I

and e.type = E, then the event type E has a match e, denoted e ∈ matchesany(E, I).

• Positive Event Sequence. If P1 and P2 are patterns, (e1, . . . , em) ∈ matchesany(P1,

I), (em+1, . . . , ek) ∈ matchesany(P2, I), and em.time < em+1.time, then the event
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sequence operator SEQ(P1, P2) has a match s = (e1, . . . , em, em+1, . . . , ek), denoted

s ∈ matchesany(SEQ(P1, P2), I). We define the START event s.start = e1, the MID

events s.mid = {e2, . . . , ek−1}, and the END event s.end = ek of s.

• Event Sequence with a Negative Sub-Pattern. If P1, N, and P2 are patterns,

(e1, . . . , em) ∈ matchesany(P1, I), (em+1, . . . , ek) ∈ matchesany(P2, I), em.time <

em+1.time, @n ∈ matchesany(N, I) with em.time < n.start.time and n.end.time <

em+1.time, then the event sequence operator SEQ(P1, NOT N,P2) has a match s =

(e1, . . . , em, em+1, . . . , ek), denoted s ∈ matchesany(SEQ(P1,NOT N,P2), I).

If P and N are patterns, s = (e1, . . . , em) ∈ matchesany(P, I), @n ∈ matchesany(N,

I) with em.time < n.start.time, then the event sequence operator SEQ(P, NOT N) has

a match s, denoted s ∈ matchesany(SEQ(P,NOT N), I).

If N and P are patterns, s = (e1, . . . , em) ∈ matchesany(P, I), @n ∈ matchesany(N,

I) with n.end.time < e1.time, then the event sequence operator SEQ(NOT N,P ) has a

match s, denoted s ∈ matchesany(SEQ(NOT N,P ), I).

START events, MID events, and END events of s are defined analogously to above.

• Kleene Plus. If P is a pattern, ∀sl ∈ {s1, . . . , sk}. sl ∈ matchesany(P, I) and

sl.end.time < sl+1.start.time, then the Kleene plus operator P+ has a match tr =

(s1, . . . , sk), denoted tr ∈ matchesany(P+, I). We define the START event tr.start =

s1.start and the END event tr.end = sk.end of tr. All other events in tr are called MID

events.

Skip-Till-Next-Match Semantics (NEXT for short) is more restrictive than ANY be-

cause NEXT skips only irrelevant events, while all relevant events must be matched.

Example 2.6 In Figure 2.3, the match (a3, b6) does not conform to this semantics since

it skipped over the relevant event a4. In contrast, the match (a3, a4, b6) is valid since it

skips no relevant events in between matched events.
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Semantics Event sequence pattern Kleene pattern
ANY Polynomial Exponential

NEXT, CONT Linear Polynomial

Table 2.1: Number of matches in the number of events [2, 3]

Definition 2.3 (Pattern Match Under Skip-Till-Next-Match) If tr ∈ matchesany(P, I)

(Definition 2.2), @tr′ ∈ matchesany(P, I) with tr.start = tr′start, tr.end = tr′.end,

and tr.mid ⊆ tr′.mid, then tr is a match of P under the skip-till-next-match semantics,

denoted tr ∈ matchesnext(P, I).

Contiguous Semantics (CONT for short) is the most restrictive semantics since it

does not skip events. Query q′ in Section 1.1 is evaluated under the contiguous semantics.

Example 2.7 In Figure 2.3, (a1, b2) and (a7, b8) are the only contiguous matches. Since

the irrelevant event c5 cannot be ignored, a1, b2, a3, and a4 cannot form contiguous

matches with later events.

Definition 2.4 (Pattern Match Under Contiguous Semantics) If tr ∈ matchesnext(P, I)

(Definition 2.3) and @e ∈ I such that tr.start.time < e.time < tr.end.time, then tr is a

match of P under the contiguous semantics, denoted tr ∈ matchescont(P, I).

Figure 2.3 illustrates the containment relationships among the sets of matches of P

under different semantics.

The number of matches is determined by the following two factors (Table 2.1): (1) The

presence of Kleene closure in a pattern P , which allows expressing arbitrarily long matches.

(2) The event matching semantics under which the pattern P is evaluated. The number of

matches of P ranges from linear to exponential in the number of matched events. While

the number of matches can be exponential in the worst case, a query constrains its matches

by predicates, grouping, and windows.
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2.5 Event Query

Definition 2.5 (Event Query) An event query q consists of six clauses:

• Aggregation result specification (optional RETURN clause),

• Pattern P (PATTERN clause),

• Event matching semantics S (SEMANTICS clause),

• Predicates θ (optional WHERE clause),

• Grouping G (optional GROUP-BY clause), and

• Window w (WITHIN and SLIDE clause).

Predicates. We handle different classes of predicates differently. We distinguish

between the following classes of predicates:

Predicates on single events either filter or partition the stream [2]. For example, the

local predicate (M.activity = passive) in query q′ in Section 1.1 selects only those heart-

beat measurements that were taken during passive activities. The equivalence predicate

[patient] in query q′ requires all events in a match to have the same value of patient iden-

tifier. Thus, it partitions the stream by patient.

Predicates on adjacent events restrict the adjacency relation between events in a

match (Definition 2.7). For example, the predicate (M.rate < NEXT(M).rate) requires

heartbeat measurements to increase from one event to the next in a match of query q′.

Match Grouping and Aggregation. Within each window of query q, the matches of

q are grouped by the values of grouping attributesG. Aggregates are computed per group.

We focus on distributive (such as COUNT, MIN, MAX, SUM) and algebraic aggregation

functions (such as AVG) since they can be computed incrementally [48]. COUNT(∗) re-

turns the number of matches per group. Let tr be a match and tr.COUNT(E) be the num-

ber of events of type E in it. COUNT(E) corresponds to the sum of tr.COUNT(E) of all

matches tr per group. Let tr.MIN(E.attr) be the minimal value of an attribute attr of events

28



2.5 EVENT QUERY

Figure 2.4: Aggregation of matches of the pattern P = (SEQ(A+,B))+ in the stream I = {a1,
b2, a3, a4, b7} under the skip-till-any-match semantics

of type E in tr. MIN(E.attr) returns the minimal value of tr.MIN(E.attr) of all matches tr

per group. MAX(E.attr) is defined analogously to MIN(E.attr). Let tr.SUM(E.attr) be the

sum of values of an attribute attr of events of type E in tr. SUM(E.attr) corresponds to

the sum of tr.SUM(E.attr) of all matches tr per group. Lastly, AVG(E.attr) = SUM(E.attr)

/ COUNT(E) per group.

Example 2.8 In Figure 2.4, the pattern P = (SEQ(A+,B))+ detects COUNT(*) = 11

matches in the stream I with five events under the skip-till-any-match semantics. There

are COUNT(A) = 20 occurrences of a’s in these matches.

Let attr be an attribute of events of type A. Assuming that a1.attr = 5, a3.attr = 6, and

a4.attr = 4, the minimal value of attribute attr in these matches is MIN(A.attr) = 4, while

the maximal value of attr is MAX(A.attr) = 6. MAX(A.attr) is computed analogously to

MIN(A.attr). MAX(a.attr) is not shown in Figure 2.4 for compactness.

The summation of all values of attr in all matches corresponds to SUM(A.attr) = 100.

Lastly, the average value of attr in all matches is AVG(A.attr) = SUM(A.attr) / COUNT(A)

= 5.
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Definition 2.6 (Query Match, Event Trend, Event Sequence) If m = (e1, . . . , ek) is

a match of the pattern P (Definition 2.1) under the event matching semantics S (Sec-

tion 2.4), all events in the match m satisfy the predicates θ, carry the same values of the

grouping attributes G, and are within one window w, then m is a match of q. We define

s = (ei, . . . , ej), 1 ≤ i ≤ j ≤ k, as a sub-match of P and p = (e1, . . . , el), l < k, as a

prefix of m of length l.

If P is a Kleene pattern, m is called an event trend and s is called an event sub-trend.

If P is an event sequence pattern, m is called an event sequence and s is called an event

sub-sequence.

Definition 2.7 (Adjacent Events, Predecessor Event, Successor Event) Let e ∈ I be

an event in a match of query q and e′ ∈ I be a new event. If q is evaluated under the

skip-till-any-match semantics, the events e and e′ are adjacent in a window w of q if the

following conditions hold:

• e.time < e′.time,

• e.type ∈ P.predTypes(e′.type) where P is the pattern of q,

• if there is a negated sub-pattern NOT N that is preceded by e.type and followed by

e′.type in the pattern P , then @m ∈ matchesany(N, I) with e.time < m.start.time

and m.end.time < e′.time,

• e and e′ satisfy the predicates θ of q,

• e and e′ have the same values of grouping attributes G of q, and

• e and e′ belong to the window w.

If q is evaluated under the skip-till-next-match semantics, the events e and e′ are

adjacent in a window w of q if they are adjacent in w under skip-till-any-match and
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@e′′ ∈ I such that e′′.time < e′.time and e and e′′ are adjacent in w under skip-till-any-

match.

If q is evaluated under the contiguous semantics, the events e and e′ are adjacent in a

window w of q if they are adjacent in w under skip-till-next-match and @e′′ ∈ I such that

e.time < e′′.time < e′.time.

If e and e′ are adjacent in w, then e is called a predecessor event of e′, and e′ is called

a successor event of e in w.

2.6 Assumptions

Data. For simplicity, we assume that complete and precise events arrive in-order by time

stamps. Uncertain [49, 50] and out-of-order [51, 52, 53, 54] event streams are orthogonal

problems that are out of the scope of this dissertation. Multiple events may have the same

time stamp.

Query. We assume that:

1) A negation operator always appears within an event sequence operator and is ap-

plied either to an event sequence operator or an event type. In particular, negation may not

be the outer most operator in a pattern. If a negative sub-pattern is preceded or followed

by a pattern P , P must be positive.

2) A pattern does not contain Kleene star, optional sub-patterns, conjunction, nor

disjunction. However, our techniques could be extended to support these pattern operators

(Chapter 12).

3) An event type may appear at most once in a pattern. A straightforward extension

of our approach allows dropping this assumption (Chapter 12 and Section 24.3).

4) An event query is evaluated under one of the event matching semantics defined in

Section 2.4. However, other semantics are possible. They are subject to future research
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described in Section 28.3.1.

5) We focus on predicates on single events and predicates on a pair of adjacent events

in a match. Predicates on non-adjacent events in a match are subject for future research

(Section 28.3.2). Constraints on event trend length can be supported as discussed in

Chapter 12.

6) In Parts I and II, we propose optimization strategies for a single event query. Multi-

query optimization techniques are left for future research (Section 28.2).

Resources. We evaluate our approach on a single multi-core machine. However,

several distribution strategies are possible to further improve scalability. They are subject

to future research described in Section 28.1.
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Part I

Event Trend Detection
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3

CET Approach Overview

In this chapter, we focus on the detection of the subset of all possible matches, namely,

Complete Event Trends (CETs). Informally speaking, an event trend is complete if it

is not part of another trend. Expeditious CET detection is required by many streaming

applications such as financial fraud detection (query q in Section 1.1).

We assume that an event query has a flat positive Kleene pattern (Definition 2.1) and

is evaluated under the most flexible skip-till-any-match semantics (Section 2.4). Such a

query is called a CET query in the following.

3.1 Complete Event Trend

Definition 3.1 (Complete Event Trend (CET)) An event trend tr matched by a query q

in the window w (Definition 2.6) is complete if there is no other trend tr′ matched by q in

w such that each event in tr is also in tr′. Otherwise, tr is called incomplete.

Example 3.1 In Figure 1.2, two trends tr1 = (c1, c2) and tr2 = (c1, c4, c5) have been de-

tected by query q in Section 1.1 when c6 arrives. The event c6 cannot be appended to these

trends since the predicates of the query q (Section 1.1) would be violated (c2.destination
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3.2 CET DETECTION OPTIMIZATION PROBLEM

Figure 3.1: Number of CETs y for n events and the size of event groups x = 2 versus x = 3

= c5.destination = A 6= c6.source = C.

However, c6 can be appended to the prefix of tr2 to form a new trend tr3 = (c1, c2, c6).

Indeed, c6 is matched by the pattern of q (c6.type = Check), satisfies the predicate of q

(c4.destination = c6.source = C), and is within the window of q. The trends tr1–tr3 are

complete since none of them is part of another trend.

3.2 CET Detection Optimization Problem

Many CET detection applications are time-critical (Section 1.1). Thus, our goal is to

minimize the CPU processing time for CET detection.

Problem Statement. Given a CET query q, an event stream I , and an available mem-

ory limitM , the CET detection optimization problem is to detect all CETs matched by the

query q in the stream I while minimizing the CPU costs and staying within the memory

limit M .

This problem is prohibitively expensive with respect to both CPU processing time and

memory consumption since the number of CETs is exponential. Below we will show that

the problem of determining the maximal number of CETs that can be constructed from

n events is equivalent to the problem of dividing n elements into groups such that the

product of all group sizes is maximal. In particular, we will show that to maximize the

product, all groups must have the same size x = 3.
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3.2 CET DETECTION OPTIMIZATION PROBLEM

Theorem 3.1 (Maximal Number of CETs) An event query (Definition 2.5) detects 3
n
3

CETs from n events in the worst case.

Proof: Let xi ∈ N be the number of successor events of one matched event ei

(Definition 2.6). We first show that the number of CETs to be constructed for a given set

I of n events is maximal when xi is identical for all events ei ∈ I . Then the maximum

number of CETs is given by maximize
∏
xi, subject to

∑
xi = n. The method of

Lagrange multiplier in mathematical optimization [55] introduces an auxiliary function

L(xi, λ) =
∏
xi + λ ·

∑
xi. Solving the following equation5xi,λL(xi, λ) = 0, we have

x1 = · · · = xi = xi+1 = · · · = xn/x = x. Thus, the maximum number of CETs that can

be constructed from n events is y = x
n
x .

Now our goal is to determine the global maximum of this continuous function on

the interval [1, n]. Below we derive the critical value of x following the standard ap-

proach [55]. First we take the logarithm of both sides:

ln y = lnx
n
x =

n

x
lnx.

We then differentiate both sides:

yt

y
= (

n

x
)′ lnx+ (lnx)′

n

x
=

0 · x− n · 1
x2

lnx+
n

x2
=

n

x2
(1− lnx).

Lastly, we multiply by y and substitute y with n
x

lnx.

yt = y
n

x2
(1− lnx) = x

n
x
n

x2
(1− lnx) = x

n
x
−2n(1− lnx).

We have yt = 0 if x = e (e is Euler’s number here). Since x ∈ N, we round x to its

closest natural number 3. Indeed, ∀n ∈ N, n > 1, 3
n
3 > 2

n
2 (Figure 3.1). Thus, y = 3

n
3

is the absolute maximum value of the function.
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3.3 CET FRAMEWORK

(a) (b)

Figure 3.2: Number of CETs y for n = 12 events and the size of event groups x

Example 3.2 In Figure 3.2(a), we consider three scenarios with the same number of

events n = 12. These events are divided into dn
x
e groups with at most x events in each

group where n, x ∈ N, 1 ≤ x ≤ n. Events in one group are not adjacent to each other.

Each event in a group is adjacent to each event in the preceding and following groups. A

pair of adjacent events is connected by an edge. Then the number of CETs corresponds

to the product of all group sizes: y =
∏n

x
i=1 x = x

n
x .

Given n = 12 events, Figure 3.2(b) shows the number of CETs y = x
n
x on the y-axis

while varying the size of event groups x on the x-axis. If x = 3, y = 3
n
3 = 81 is maximal.

The same observation holds for any n ∈ N.

3.3 CET Framework

Given a CET query, our CET framework (Figure 3.3) extracts events matched by the query

from an event stream and encodes their CET relationships in a compact data structure,

called CET Graph.

Based on the graph, we propose a family of CET Detection algorithms ranging from

the memory-optimized M-CET to the CPU-time-optimized T-CET solution. To trade off

between CPU and memory costs, we develop the Hybrid CET detection algorithm H-CET.
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3.3 CET FRAMEWORK

Figure 3.3: CET framework

Namely, we partition the CET graph into smaller graphlets. Based on the partitioned

graph, H-CET caches partial CETs per graphlet and then stitches these partial CETs to-

gether to form the final CET results.

CET graph partitioning faces the trade-off that finer-grained partitioning plans reduce

the memory consumption since CETs across graphlets are not stored while increasing the

execution time, and vice versa. We thus design a cost-driven CET Optimizer that finds

an optimal partitioning plan with minimal CPU execution costs yet within the available

memory limit.
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4

Baseline CET Detection

Our baseline CET detection algorithm (Algorithm 3) consumes a CET query q and a

stream I . As new events arrive, it incrementally constructs and stores all CETs per win-

dow. For each event e ∈ I , the following cases are possible.

Case 1: The event e starts a new CET if e is matched by the pattern P and satisfies

the predicates θ of the query q, it can be appended neither to an existing CET nor to its

prefix (Lines 3 and 11 in Algorithm 3).

Case 2: The event e extends an existing CET t if the last event el in t is adjacent to e

(Definition 2.6, Lines 5–7). The auxiliary method isAdjacent(q, el, e) determines whether

el and e are adjacent.

Case 3: The event e extends the longest compatible prefix p of an existing CET t

(Lines 8–9).

Definition 4.1 (Longest Compatible Prefix.) Let q be a CET query, t = (e1, . . . , ek) be

a CET matched by q, and e ∈ I be an event. Then, p = (e1, . . . , el), l < k, is the longest

prefix of t that is compatible with e if el and e are adjacent and @ei ∈ {el+1, . . . , ek}

such that ei and e are adjacent.

Appending e to all compatible prefixes of t (instead of only the longest compatible
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Event Event trends Explanation
c1 : A→ B (c1) Case 1: Create a new CET
c2 : B → C (c1, c2) Case 2: Append to a CET
c3 : B → D (c1, c2), (c1, c3) Case 3: Append to the longest com-

patible prefix of a CET
c4 : D → E (c1, c2), (c4), (c1, c3, c4) Eliminate incomplete trends

Table 4.1: Three cases of the baseline algorithm

prefix p) would produce incomplete trends (contained in (p, e)). Analogously, if an event

e is appended to a CET t to form a longer CET (t, e) (Case 2), e is not appended to a

prefix p of t (Case 3) because the trend (p, e) in contained in (t, e) and thus is not a CET.

Lastly, if e is appended to a CET or its prefix (Case 2 or 3), e cannot start a new CET

(Case 1). In other words, only one of the above cases applies to an event and a trend.

The longest compatible prefix p is computed by the auxiliary method getLongest-

CompatiblePrefix(q, t, e) (Lines 15–22). The auxiliary method eliminateIncomplete-

Trends(Tnew) eliminates the incomplete trends from the set of newly formed trends Tnew

(Lines 23–29). We now illustrate this baseline algorithm using Example 4.1.

Example 4.1 Assume query q in Section 1.1 is evaluated against the events c1–c4 in Ta-

ble 4.1. At the beginning, the set of CETs is empty. When c1 arrives, a new CET tr1 = (c1)

is started (Case 1). When c2 arrives, it is adjacent to c1 and thus extends tr1 (Case 2).

When c3 arrives, it is adjacent to c1 but not c2. In other words, c1 is the longest prefix of

tr1 that is compatible with c3. The newly formed trend is tr2 = (c1, c3) (Case 3). Lastly,

when c4 arrives it is compared to the existing CETs tr1 = (c1, c2) and tr2 = (c1, c3).

Since c4 can be appended neither to tr1 nor to its prefix, it starts a new trend tr3 = (c4)

(Case 1). However, c4 can extend tr2 = (c1, c3) which makes the trend tr3 incomplete.

Thus, tr3 is eliminated.

Theorem 4.1 (Correctness of Baseline CET Detection) Baseline CET detection algo-

rithm is correct.
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Proof: We prove the correctness of Algorithm 3 by induction over the number of

events per window n.

Base case: n = 1. In this case, the set of CETs T is empty and an event e is inserted

into it if e is matched by the pattern P and satisfies the predicates θ (Case 1, Line 11).

Since we assumed that the query q has a positive flat Kleene pattern (Chapter 3), e is both

a START and an END event. In other words, (e) is the only CET. This result is correct.

Induction assumption: T is correct after processing n events.

Induction step: n → n + 1. According to the induction assumption, the set of CETs

T contains all CETs that are detected from n events. A new event e arrives. Assume that

after processing e, the set T is not correct. The following cases are possible.

1) There is a trend t ∈ T which is not a CET. By Definition 3.1, there must be another

trend t′ ∈ T such that each event in t appears in t′. However, incomplete trends are

eliminated in Line 13. Thus, T contains only CETs.

2) A CET t is missing in T . By induction assumption, T is correct after processing

n events. Thus, the trend t must have the from (t′, e) where t′ is either empty, or a CET

detected from n events, or a longest compatible prefix of a CET detected from n events.

However, these three cases are covered by Algorithm 3. Thus, no CET is missing in T .

Theorem 4.2 (Complexity of Baseline CET Detection) Baseline CET detection has ex-

ponential time and space complexity in the number of events per window.

Proof: Let n be the number of events in the query window, y be the number of CETs,

l be the maximal length of a CET, and r be the number of predicates in the query q. The

for-loop in Lines 2–13 is called n times. The for-loop in Lines 5–12 is executed for each

CET, y times. The isAdjacent(q, el, e) method has the CPU costO(r) since each predicate

needs to be executed to conclude event adjacency. The getLongestCompatiblePrefix(q, t,

e) method has the CPU cost O(lr) since in the worst case the adjacency is checked for

41



each possible prefix of the trend t. Finally, the eliminateIncompleteTrends(Tnew) method

has the CPU cost O(y2l) since each event trend is compared to all other event trends and

the cost of one comparison is O(l). Altogether, the CPU cost is O(nyr2l + ny2l).

According to Theorem 3.1, y = 3
n
3 in the worst case and thus y is the dominant factor

in the overall CPU complexity. Thus, the execution time of Algorithm 3 is exponential in

the number of events n in the window:

CPUBL = O(n(yr2l + y2l)) = O(n(3
n
3 r2l + 3

2n
3 l)).

The memory consumption of Algorithm 3 is also exponential in n since all CETs are

stored:

MemBL = O(yl) = O(3
n
3 l).

Drawbacks of the Baseline CET Detection Algorithm. Algorithm 3 has exponential

CPU and memory costs because an event sub-trend can be part of several CETs. For

example, the event c1 is part of all CETs in Table 4.1. The baseline approach replicates

such sub-trends for each CET that contains them. Worse yet, when a new event arrives

and is compared to the previously constructed CETs, repeated computations arise since

the new event may need to be compared to a common sub-trend within each CET that

contains this sub-trend.
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Algorithm 3 Baseline CET detection algorithm
Input: CET query q with pattern P and predicates θ, event stream I
Output: CETs Tprev

1: Tprev ← ∅
2: for all e ∈ I do Tnew ← ∅
3: if Tprev = ∅ then Tnew ← (e) // Case 1
4: else
5: for all t ∈ Tprev do
6: el ← last event in t
7: if isAdjacent(q, el, e) then Tnew ← Tnew ∪ (t, e) // Case 2
8: else p← getLongestCompatiblePrefix (q, t, e)
9: if p.length > 0 then Tnew ← Tnew ∪ t ∪ (p, e) // Case 3

10: else
11: if e is matched by P and satisfies θ then
12: Tnew ← Tnew ∪ t ∪ (e) // Case 1
13: Tprev ← eliminateIncompleteTrends(Tnew)

14: return Tprev
15: getLongestCompatiblePrefix (q, t, e) {
16: i← t.length− 1; ei ← event at ith position in t
17: while i ≥ 0 and !isAdjacent(q, ei, e) do
18: i← i− 1
19: if i ≥ 0 then ei ← event at ith position in t
20: if i ≥ 0 then return trend with all events in t till ith position
21: else return empty trend
22: }
23: eliminateIncompleteTrends(T ) {
24: D ← ∅
25: for all tr1 ∈ T do
26: for all tr2 ∈ T with tr1 6= tr2 do
27: if each event in tr1 is in tr2 then D ← D ∪ tr1
28: return T \D
29: }
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5

Graph-Based CET Detection

5.1 Compact CET Graph Encoding

The baseline algorithm is inefficient because it does not exploit sharing opportunities due

to common event sub-trends in CETs. To overcome this limitation, we propose a compact

data structure, called a CET graph. The graph prevents event duplication by storing each

matched event exactly once. It avoids repeated computations since each new event is

compared to a common event sub-trend at most once.

Given a CET query and an event stream, the vertices of the graph correspond to events

in the stream that are matched by the query, while the edges connect events that are

adjacent in a CET. Thus, a path in the CET graph from a vertex without ingoing edges

(called first event) to a vertex without outgoing edges (called last event) corresponds to

one CET.

Definition 5.1 (CET Graph) Given a CET query q and an event stream I , the CET graph

G = (V,E) is a directed acyclic graph with a set of vertices V and a set of edges E.

The vertices V ⊆ I are events matched by q. For two events e1, e2 ∈ V , there is an edge

(e1, e2) ∈ E if e1 and e2 are adjacent in a CET matched by q.
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Figure 5.1: CET graph for Example 4.1

Algorithm 4 CET graph construction algorithm
Input: CET query q with pattern P and predicates θ, event stream I
Output: CET graph G

1: sec← 0; V ← ∅; E ← ∅; G← (V,E)
2: for all e ∈ I do
3: if e.time > sec then sec← e.time
4: Pr ← G.getPredecessorEvents(sec, q, e)
5: if e is matched by P and satisfies θ then V ← V ∪ e
6: for all el ∈ Pr do E ← E ∪ (el, e)

7: return G
8: getPredecessorEvents(sec, q, e) {
9: Pr ← ∅; L← events in G with time stamp sec

10: while V.hasWhiteVertices() do
11: for all el ∈ L do
12: if el.hasBlackSuccessorEvent() then el.color ← black
13: else
14: if isAdjacent(q, el, e) then Pr ← Pr ∪ el; el.color ← black
15: else el.color ← gray

16: sec← sec− 1; L← events in G with time stamp sec
17: return Pr
18: }

Example 5.1 The CET graph for Example 4.1 is depicted in Figure 5.1. The paths from

the first event c1 to the last events c2 and c4 correspond to two CETs.

The CET graph construction algorithm (Algorithm 4) is analogous to the baseline

algorithm (Algorithm 3), except that it updates the CET graph instead of CETs.

We assume that event time stamps are in seconds and events arrive in order by time

stamps (Section 2.6). For each event e in the stream, the auxiliary method getPredeces-

sorEvents(sec, q, e) returns the set of predecessor events Pr of e (Line 4). To this end,

we visit all vertices in the graph G in reverse order by time stamps. Initially, all vertices
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in the graph are while. We color an event el in black if el (or a successor event of el)

and e are adjacent (Lines 12–14). We color an event el in gray if el (and all its successor

events) and e are not adjacent, e.g., due to violated predicates of the query q (Line 15).

Only an event el without black successor events may be a predecessor event of e to ensure

that the graph G captures only CETs (Line 14). If an event e starts a new CET or has

predecessor events, e is inserted into the graph G and all its predecessor events connect

to e (Lines 5–6). The graph G is returned (Line 7).

Theorem 5.1 (Correctness of a CET Graph) LetG be the CET graph for a query q and

a stream I . Let P be the set of paths from a first to a last event in G. Let T be the set of

CETs detected by q in I . Then, the set of paths P and the set of CETs T are equivalent.

That is, for each path p ∈ P there is a CET tr ∈ T with the same events in the same order,

and vice versa.

Proof: Correctness. For each path p ∈ P, there is a CET tr ∈ T with same events

in the same order, i.e., P ⊆ T. We prove this statements by induction over the number of

events per window n.

Base case: n = 1. In this case, the graph G is empty and an event e is inserted into

the graph if e is matched by the pattern P and satisfies the predicates θ (Line 5). Since we

assumed that the query q has a positive flat Kleene pattern (Chapter 3), e is both a START

and an END event. The event e is the only path in G and the only CET matched by q.

Induction assumption: The graph G is correct after processing n events.

Induction step: n → n + 1. According to the induction assumption, for each path

p ∈ P in the graph, there is a CET tr ∈ T with same events in the same order. A new

event e arrives. Assume that after processing e, the graph G is not correct. The following

cases are possible.

1) There is a path p ∈ P in the graph G that does not correspond to a CET. The path

p corresponds to an incomplete trend t. By Definition 3.1, there must be another trend t′
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such that each event in t appears in t′. Since t′ is also encoded into the graph G, assume

the CET t′ corresponds to a path p′. Each event in p appears in p′. Since only CETs are

extracted from the graph G, t is not extracted. Thus, each path corresponds to a CET.

2) A CET t is not encoded into the graph G, i.e., there is no path p that corresponds

to t. By induction assumption, G is correct after processing n events. Thus, the trend t

must have the from (t′, e) where t′ is either empty, or a CET detected from n events, or

a longest compatible prefix of a CET detected from n events. However, these three cases

are covered by Algorithm 4. Thus, no CET is missing in G.

Completeness. For each CET tr ∈ T, there is a path p ∈ P with same events in the

same order, i.e., T ⊆ P. Let tr ∈ T be a CET. We first prove that all events in tr are

inserted into the graph G. Then we prove that these events are connected by directed

edges such that there is a path p that visits these events in the order in which they appear

in the CET tr. An event e is inserted into the graph if e is matched by the pattern P

and satisfies the predicates θ. Thus, all events of the CET tr are inserted into the graph

G. The first statement is proven. All events in the graph that are adjacent to e in a CET

are connected to e. An event el is adjacent if all conditions in Definition 2.7 hold and, in

addition, there is no successor event of el that is adjacent to e to ensure that only CETs are

encoded into the graph. Since events are processed in order by their time stamps, edges

connect previous events with more recent events. The second statement is proven.

Theorem 5.2 (Complexity of CET Graph Construction) The CET graph construction

algorithm has quadratic time and space complexity in the number of events.

Proof: Let q be a CET query, n be the number of events in the window of q, and r be

the number of predicates in q. The outermost for-loop is called for each event, i.e., O(n)

times. The event e is compared to all previous events in the graph to find predecessor

events. Since all predicates have to be evaluated, the CPU costs are O(nr). Altogether,
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the CPU costs are quadratic in n: O(n2r) where n is the dominating factor since r < n

for high-rate event streams and meaningful queries. The memory costs are also quadratic

in n because the number of vertices is O(n), while the number of edges is O(n2) if each

event is adjacent to all other events in the graph.

Our cost model in Table 5.1 and experiments in Section 8.2 demonstrate that the CET

graph considerably accelerates CET detection compared to the baseline algorithm and

state-of-the-art techniques, while the graph-maintenance costs are negligible compared to

the overall costs of CET detection.

5.2 Spectrum of Graph-based CET Detection

Based on the CET graph, the traditional graph traversal algorithms such as Depth First

Search (DFS) and Breadth First Search (BFS) can be applied to extract all CETs. These

algorithms optimize the usage of critical resources such as memory and CPU. We dis-

tinguish between the following two algorithms at the extreme ends of the CPU versus

memory trade-off spectrum:

The M-CET algorithm is memory-optimized since it stores only one CET during the

DFS traversal. For example, Figure 5.2(a) shows the CET that was constructed after the

colored edges had been traversed. Since no intermediate results are stored, the algorithm

applies backtracking to find alternative paths through the graph. Thus, an edge is re-

traversed for each CET.

The T-CET algorithm is CPU-time-optimized since it traverses each edge exactly

once. To this end, it stores all CETs found so far during the BFS traversal. Thus, no

backtracking is necessary. For example, Figure 5.2(b) shows all CETs when events c5

and c6 are reached.

Complexity Analysis. In terms of memory utilization, both algorithms store the CET
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(a) M-CET (b) T-CET (c) H-CET

Figure 5.2: Approaches to CET detection

M-CET T-CET H-CET
Space complexity =
Graph + Θ(|V |+ |E|)+ Θ(|V |+ |E|)+ Θ(|V |+ |E|)+

CET number * CET
length

O(|V |) O(3
|V |
3 |V |) O(

k∑
i=1

3
|Vi|
3 |Vi|) +O(|V |)

Time complexity =
Graph construction + O(|V |2)+ O(|V |2)+ O(|V |2)+

Graph traversal + O(3
|V |
3 |V |)+ Θ(|E|)+ Θ(

k∑
i=1

|Ei|)+O(
k∑
i=1

3
|Vi|
3 )+

CET update O(3
|V |
3 |V |) O(3

|V |
3 ) O(3

|V |
3 k) +O(3

|V |
3 k)

Table 5.1: Cost model

graph itself, that is, |V | vertexes and |E| edges. Storing one CET requires at most |V |

space since in an extreme case all events build one CET. Thus, the memory cost of the

M-CET algorithm is:

memM−CET = Θ(|V |+ |E|) +O(|V |).

The memory requirement for all CETs in the extreme case can be bounded by multi-

plying the maximal number of CETs 3
|V |
3 by the maximal length of a CET |V |. Hence,
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the memory cost of the T-CET algorithm is:

memT−CET = Θ(|V |+ |E|) +O(3
|V |
3 |V |).

Both algorithms construct the CET graph in O(|V |2) time (Theorem 5.2). The M-CET

algorithm stores only one CET and thus performs at most 3
|V |
3 |V | edge traversals and at

most 3
|V |
3 |V | CET updates. Altogether, the CPU cost of the M-CET algorithm is thus:

cpuM−CET = O(|V |2) +O(3
|V |
3 |V |) +O(3

|V |
3 |V |).

In contrast, the T-CET algorithm stores all CETs found so far and thus traverses an

edge exactly once. In addition, it updates all CETs detected so far (Figure 5.2(b)). Ac-

cording to Theorem 3.1, the number of CETs is maximal if there are |V |
3

groups with 3

events at each group. Thus, the T-CET algorithm performs O(

|V |
3∑
i=1

3i) = O(3
|V |
3 ) CET

updates in total. Its CPU costs are:

cpuT−CET = O(|V |2) + Θ(|E|) +O(3
|V |
3 ).

In a nutshell, by storing all CETs detected so far, T-CET reduces the CPU costs for

graph traversal from exponential to linear and the CPU costs of CET updates by the

multiplicative factor |V |. On the down side, the memory requirement of T-CET degrades

from linear to exponential. Thus, it risks exceeding the available memory when event

queries with long windows are evaluated against high-rate event streams.
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5.3 Hybrid CET Detection Algorithm

To achieve our goal of minimizing the CPU costs without running out of memory, our

CET optimizer partitions the CET graph into smaller graphlets as defined in Chapters 6–

7. Based on the partitioned graph, we now propose the H-CET algorithm (H for hybrid)

that exploits the best of both M-CET and T-CET approaches in a dynamic programming

fashion. The H-CET algorithm takes two steps: (1) The T-CET algorithm is applied to each

graphlet to extract and cache CETs per graphlet. (2) The M-CET algorithm is applied to

stitch these partial CETs within graphlets into final CETs across graphlets.

Complexity Analysis. Figure 5.2(c) illustrates that every edge in the cut between two

graphlets requires concatenating the respective CETs within these graphlets to construct

final results. This concatenation provokes additional CPU overhead. In other words, the

smaller the graphlets, the fewer CETs per graphlet are computed and stored but the higher

the CPU overhead of constructing the final CETs from these partial results becomes.

The memory (CPU) costs of H-CET correspond to the sum of the memory requirement

to store the CET graph itself (CPU time to construct CET graph), the memory (CPU)

costs of T-CET within graphlets, and the memory (CPU) cost of M-CET across graphlets.

In Table 5.1, k denotes the number of graphlets. The cost of graph partitioning, ignored

here, will be determined in Section 7.1.

The memory costs of H-CET are exponential in the number of events per graphlet,

not in the number of events per query window as for T-CET. Thus, H-CET can achieve in

several orders of magnitude memory costs reduction for high-rate event streams compared

to T-CET as demonstrated by our experiments in Section 8.2.

Example 5.2 Partitioning even the small graph in Figure 5.2(c) reduces the memory

costs almost 3-fold. The memory requirement of T-CET is 8 + 10 + 3
8
3 ∗ 8 ≈ 168, while

for H-CET it is 8 + 10 + 3
4
3 ∗ 4 + 3

4
3 ∗ 4 + 8 ≈ 61.
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The CPU costs increase by 1.5% due to partitioning. The CPU cost of T-CET is 84 +

10 + 3
8
3 ≈ 4125, while for H-CET it is 84 + 3 + 3 + 3

4
3 + 3

4
3 + 3

8
3 ∗ 2 + 3

8
3 ∗ 2 ≈ 4186.
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6

Foundations of CET-Graph

Partitioning Problem

In this chapter, we study the properties of the graph partitioning search space to efficiently

find an optimal CET-graph partitioning plan (Chapter 7).

Definition 6.1 (Optimal CET-Graph Partitioning Plan.) Let G = (V,E) be a CET

graph. A partitioning plan p of G into k graphlets is a set of k sub-graphs p = {g1 =

(V1, E1) . . . , gk = (Vk, Ek)} such that k ∈ N, 1 ≤ k ≤ |V |, V = V1 ∪· ... ∪· Vk and

E = E1 ∪· ... ∪· Ek ∪· Ec where Ec is the set of cut edges that connect events in different

graphlets.

LetM be a memory limit,G be a CET graph, and P be the set of all partitioning plans

ofG. For a partitioning plan p ∈ P , let cpu(p) andmem(p) denote the CPU and memory

costs of H-CET for the graphG partitioned by p, respectively. An optimal partitioning plan

of G is popt ∈ P such that mem(popt) ≤ M and @p ∈ P with cpu(p) < cpu(popt) and

mem(p) ≤M .
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6.1 CET-GRAPH PARTITIONING SEARCH SPACE

Figure 6.1: Search space of event-centric partitioning plans

6.1 CET-Graph Partitioning Search Space

Event-Centric Partitioning Plans. Figure 6.1 shows the search space of all partitioning

plans for the CET graph in Figure 5.1. Each node in the search space is a partitioning

plan. Events in different graphlets are separated by slashes. The number of graphlets

per plan increases top to bottom in the search space. That is, the top node has only one

graphlet with all events in it. The bottom node has as many graphlets as there are events,

since each event belongs to a separate graphlet. Generally, the size of the search space

is exponential, described by the Bell number, which represents the number of different

partitions of a set of elements [40].

Time-Centric Partitioning Plans. Fortunately, we are not interested in all partition-

ing plans shown in Figure 6.1. We aim to partition a CET graph in such a way that we

achieve the following goals: (1) Correct CET detection: The H-CET algorithm can ex-

tract all CETs from the partitioned graph. (2) Expeditious CET detection: Each final

CET can be constructed after visiting each graphlet at most once. (3) Feasible memory

requirement: The memory cost of all graphlets satisfies the memory constraint.

Correct and Expeditious CET Detection. To achieve the first two goals, we consider

only those partitioning plans that respect the order of events in a CET. We call such

partitioning plans effective. A partitioning plan p = {g1 = (V1, E1), . . . , gk = (Vk, Ek)}

of a CET graph G is effective if for each CET tr in G that contains a pair of adjacent

events v1 and v2 it holds that if v1 ∈ Vi, v2 ∈ Vj then i ≤ j. Effective partitioning plans are
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Figure 6.2: Search space of time-centric partitioning plans

indicated by rectangular frames in Figure 6.1 in contrast to ineffective plans with round

frames. An ineffective partitioning plan requires visiting the same graphlet multiple times

to construct one final CET. Such multiple graphlet accesses diminish the gain of sharing

intermediate results and introduces CPU overhead as illustrated by Example 6.1.

Example 6.1 Consider the partitioning into graphlets g1 and g2 with nodes {c1, c2} and

{c3, c4} respectively. This plan is effective since the CET tr1 = (c1, c2) is extracted from

g1 and the CET tr2 = (c1, c3, c4) results by concatenating c1 from g1 with (c3, c4) from g2.

In contrast, consider the partitioning into graphlets g′1 and g′2 with nodes {c1, c2, c4}

and {c3} respectively. This plan is ineffective because the CET tr2 = (c1, c3, c4) requires

visiting g′1 twice: Once to extract c1 and once to get c4.

We can exclude ineffective partitioning plans by traversing the CET graph to deter-

mine the order of events in all CETs. However, this process is expensive (Table 5.1).

Instead, we partition the CET graph into non-overlapping consecutive time intervals.

All events within a time interval are assigned to the same graphlet (similar to Chunk-

ing [56]). Since consecutive time intervals contain consecutive sub-sequences of CETs,

a time-centric partitioning plan is guaranteed to be effective. The search space remains
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Figure 6.3: Cut of a CET graph

exponential, however, now in the number of time intervals (Figure 6.2), not in the num-

ber of events in the window (Figure 6.1). Such graph partitioning enables a substantial

memory reduction for high-rate event streams in which multiple events fall into the same

time interval.

Feasible Memory Requirement. To achieve the third goal, we differentiate between

first, middle, and last events in a graphlet. An event e is called the last (first) in its graphlet

g if there are no outgoing (incoming) edges from (to) e in the same graphlet g. An event

that is neither first nor last is called a middle event. For example, events c3 and c4 are

the last events in graphlet g1 while events c5 and c6 are the first events in graphlet g2 in

Figure 5.2(c).

To reduce the memory consumption, we store complete event trends per graphlet, i.e.,

an event trend from a first to a last event in the graphlet. No intermediate event trends

per graphlet are stored. To guarantee correctness, cut edges may connect only a first and

a last event in their respective graphlets (Figure 6.3). The dashed edges are prohibited

since they would require storing incomplete event trends per graphlet. To construct final

results, for each edge from a last event el in a graphlet g1 to a first event ef in another

graphlet g2, we concatenate all CETs that end with el in g1 with all CETs that start with

ef in g2 (Figure 5.2(c)).

Definition 6.2 (Cut of a CET Graph) A time point t ∈ T partitions a CET graph G =
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(V,E) into two graphlets g1 and g2 such that events are assigned to these graphlets by

their time stamps. That is, ∀e ∈ V if e.time ≤ t then e ∈ g1. Otherwise e ∈ g2. The time

point t is called a cut of the graph G if the following conditions hold:

• If a last event in the graphlet g1 has an outgoing edge to an event e, then e must be a

first event in its graphlet g2.

• If a first event in the graphlet g2 has an ingoing edge from an event e, then e must be a

last event in its graphlet g1.

• If a middle event in the graphlet g2 (g1) has an ingoing (outgoing) edge from (to) an

event e, then e must belong to the graphlet g2 (g1).

A graphlet is called atomic if it cannot be cut into smaller non-empty graphlets.

For example, a graphlet is atomic if all events in it have the same time stamp. Other-

wise, a graphlet is not-atomic and can be partitioned into smaller graphlets.

6.2 Cost Monotonicity Across Levels

We now reveal the cost monotonicity properties across different levels and within the

same level of the search space. We use these properties in Section 7.1 to design the

branch-and-bound algorithm that effectively prunes the search space to find an optimal

CET-graph partitioning plan.

Figure 6.2 illustrates the cost variations across levels of the search space. There are

two extreme cases represented by the top and the bottom nodes. In the top node, all events

are in one graphlet. Thus, CET detection takes place only in this graphlet. In other words,

H-CET coincides with T-CET. In the bottom node, each event is in a separate graphlet.

Thus, CET detection takes place across graphlets only. That is, H-CET coincides with

M-CET. To further study the cost variations across levels of the search space, we define

the parent-child relationship between nodes.
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Figure 6.4: Cost monotonicity across levels

Definition 6.3 (Parent Partitioning Plan) Let p be a partitioning plan of a CET graph

G. Let p′ be a partitioning plan of G that is the same as p except that a graphlet g ∈ p is

further partitioned into two graphlets g1, g2 ∈ p′. Then p is called a parent of p′ and p′ is

called a child of p.

Partitioning a graphlet g into two smaller graphlets g1 and g2 reduces the memory

requirement because fewer and shorter CETs are stored in the smaller graphlets g1 and g2

than in the original graphlet g (Figure 6.4). In other words, memory costs monotonically

decrease from parent to child in the search space (Theorem 6.1).

Theorem 6.1 (Memory Cost Monotonicity) Let p and p′ be partitioning plans of a CET

graph G such that p is a parent of p′. The H-CET algorithm in G partitioned according to

p′ has the same or lower memory costs than in G partitioned according to p.

Proof: Since the memory costs for storing the CET graph (Table 5.1) are indepen-

dent of a partitioning plan, we ignore this cost factor in the following.

Let (v1, v2) be an edge that is not cut in the plan p, i.e., the vertices v1 and v2 belong

to the same graphlet g in p. Assume this edge (v1, v2) is cut in the plan p′, i.e., the vertices

v1 and v2 belong to the graphlets g1 and g2 in p′ respectively. According to Definition 6.2,

v1 is the last vertex in g1 and v2 is the first vertex in g2.
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Let y1 be the number of CETs and n1 be the number event occurrences in CETs1 that

end at the vertex v1 in the graphlet g1. Analogously, let y2 be the number of CETs and n2

be the number of event occurrences in CETs that start at v2 in g2. Then, the memory costs

for storing CETs containing the vertices v1 or v2 in the graph G partitioned according to

the plan p are computed as follows:

memp = y1 ∗ n2 + y2 ∗ n1.

In other words, all CETs in g1 are replicated y2 times and all CETs in g2 are replicated y1

times. In contrast, the memory costs for storing CETs containing v1 or v2 in G partitioned

according to p′ are

memp′ = n1 + n2.

Obviously, memp = memp′ only in the special case when y1 = y2 = 1. However,

∀n1, y1, n2, y2 ∈ N, y1, y2 > 1. memp > memp′ .

Partitioning a graphlet g into two smaller graphlets g1 and g2 introduces additional

CPU overhead because CETs in the smaller graphlets g1 and g2 have to be combined to

final results (Figure 6.4). In other words, CPU cost monotonically increases from parent

to child in the search space (Theorem 6.2).

Theorem 6.2 (CPU Cost Monotonicity) Let p and p′ be partitioning plans of a CET

graph G such that p is a parent of p′. The H-CET algorithm in G partitioned according to

p′ has higher CPU costs than in G partitioned according to p.

Proof: Since the CPU time for constructing the CET graph (Table 5.1) is indepen-

dent from a partitioning plan, we ignore this cost factor in the following.

Let (v1, v2) be an edge that is not cut in the plan p, i.e., the vertices v1 and v2 belong

to the same graphlet g in p. Assume this edge (v1, v2) is cut in the plan p′, i.e., the vertices
1An event that occurs in k CETs it is counted k times.
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v1 and v2 belong to the graphlets g1 and g2 in p′ respectively. According to Definition 6.2,

v1 is the last vertex in g1 and v2 is the first vertex in g2.

Let y1 be the number of CETs that end at the vertex v1 in the graphlet g1 and y2 be

the number of CETs that start at v2 in g2. Then, the CPU time costs for connecting CETs

containing the vertices v1 or v2 in the graph G partitioned according to the plan p′ are

computed as follows:

cpup′ = y1 ∗ y2.

In other words, each CET that ends at v1 in g1 is connected to each CET that starts at v2

in g2. In contrast, no such costs arise in G partitioned according to p. The edge (v1, v2) is

traversed once.

6.3 Cost Monotonicity Within One Level

The number of partitioning plans at one level of the search space is exponential, described

by the Stirling number that represents the number of ways to partition n elements into k

partitions [40]. To restrict the search at one level, we differentiate between balanced,

nearly balanced, and unbalanced graph partitioning plans and compare their costs.

A balanced partitioning plan divides a CET graph into graphlets such that the number

of events in any two graphlets differs by at most 1. However, such a perfect partitioning

plan is not always possible since an atomic graphlet cannot be divided (Definition 6.2).

Thus, we define the notion of a nearly balanced partitioning plan that allows a graphlet

to exceed the ideal size by less than the size of its first or last atomic graphlet. Otherwise

a partitioning plan is unbalanced.

Definition 6.4 (Balanced, Nearly Balanced and Unbalanced CET-Graph Partitioning

Plans) A partitioning plan p of a CET graph G = (V,E) into k graphlets is called

balanced if ∀i ∈ N, 1 ≤ i ≤ k, |Vi| ≤ d |V |k e holds.
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Figure 6.5: Nearly balanced versus unbalanced partitioning plans

Let gi = (Vi, Ei) be a graphlet in a partitioning plan p such that |Vi| > d |V |k e. Let gf =

(Vf , Ef ) be the first and gl = (Vl, El) be the last atomic graphlet in gi. A partitioning

plan p is called nearly balanced if two conditions hold:

• If i > 1 then |Vi| < d |V |k e+ |Vf | and

• If i < k then |Vi| < d |V |k e+ |Vl|.

Otherwise, a partitioning plan p is called unbalanced.

Example 6.2 Assume a CET graph consists of atomic graphlets g1–g5 with equal number

of events for the sake of simplicity (Figure 6.5). Assume we want to partition it into 2

graphlets. Obviously, no balanced partitioning plan exists since the atomic graphlet g3

cannot be divided. However, 2 nearly balanced partitioning plans are possible. One of

them assigns g3 to the first graphlet and the other one assigns g3 to the second graphlet.

Note that the size of these nearly balanced graphlets exceeds the ideal size by less than

the size of one atomic graphlet g3. In contrast to that, if the graphlets are unbalanced,

their size exceeds the ideal size by the size of more than one atomic graphlet.

In the following, we will focus on homogeneous CET graphs (Definition 6.5). Cost

monotonicity within one level of the search space for arbitrary graphs is subject for future

work.

Definition 6.5 (Homogeneous CET Graph) A CET graph is called homogeneous if the
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Figure 6.6: Cost monotonicity within one level

following two conditions hold: (1) All atomic graphlets in it have the same number of

events. (2) The number of ingoing and outgoing edges of events is the same.

For example, the CET graph in Figure 6.6 is homogeneous. Each atomic graphlet

contains two events. Each event has two ingoing and outgoing edges, except START and

END events which do not have ingoing and outgoing edges respectively by definition

(Section 5.1).

The closer a partitioned homogeneous CET graph is to balanced, the lower the mem-

ory costs of CET detection are. Intuitively, if a partitioned graph is unbalanced, many

long CETs are stored in its large graphlets. Hence, the memory costs of large graphlets

dominate the overall memory usage. In contrast, a balanced partitioning plan has the min-

imal memory costs among all partitioning plans with the same number of graphlets while

CPU costs are the same for balanced, nearly balanced, or unbalanced partitioning plans

with the same number of graphlets (Theorem 6.3).

Theorem 6.3 (Costs of Balanced Partitioning Plan) If a balanced graph partitioning

plan pb with k graphlets exists for a homogeneous CET graph G, the memory costs of

CET detection in G partitioned according to pb are minimal compared to all other plans
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with k graphlets. Otherwise, a nearly balanced plan pnb has this property. CPU costs are

the same for all partitioning plans of G with the same number of graphlets k.

Proof: Since the CPU and memory cost for CET graph construction and storage

(Table 5.1) are independent from the quality of a partitioning plan, we ignore these costs

below.

Let a be the number of atomic graphlets in G. Then, a
k

atomic graphlets belong to

one graphlet. We assume that a is divisible by k, i.e., a balanced partitioning plan pb of

G exists. We assume that k = 2 below. The proof for arbitrary k ∈ N is analogous. Let

y be the number of CETs in an atomic graphlet that are combined with CETs in other

graphlets to form final results. Let n be the number of event occurrences in CETs per

atomic graphlet. We now prove the first statement above by induction over a.

Induction begin: a = 4. Then, the memory costs of CET detection in G partitioned

according to a balanced plan pb is memb = 2yn + 2yn = 4yn. Namely, each of 2

graphlets stores 2 atomic graphlets. Each of atomic graphlets replicates n events in CETs

y times. In contrast, the memory costs of CET detection in G partitioned according to an

unbalanced plan pub is memub = y+ 3∗2yn = y+ 6yn. Namely, one graphlet stores one

atomic graphlet and another graphlet contains 3 atomic graphlets. In the larger graphlet,

n events in CETs are replicated 2y times. Obviously, memb < memub.

Induction assumption: We assume that the first statement is true for any number a ∈ N

of atomic graphlets.

Induction step: a → a + 2. Let x = a
2

for readability. Then, the memory costs of

CET detection in G partitioned according to a balanced plan pb is memb = 2(x+ 1)ynx.

Namely, each of 2 graphlets contains (x + 1) atomic graphlets. n events in CETs are

replicated yx times in each graphlet. In contrast, the memory costs of CET detection in G

partitioned according to an unbalanced plan pub ismemub = xyn(x−1)+(x+2)yn(x+1).

Namely, one graphlet stores x atomic graphlets and another graphlet contains (x + 2)
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6.3 COST MONOTONICITY WITHIN ONE LEVEL

atomic graphlets.

memb < memub

2(x+ 1)ynx < xyn(x− 1) + (x+ 2)yn(x+ 1)

2(x+ 1)x < x(x− 1) + (x+ 2)(x+ 1)

2x2 + x < x2 − x+ x2 + x+ 2x+ 2

2x2 + x < 2x2 + 2x+ 2

The first statement holds for other unbalanced plans. If a is not divisible by k, then

balanced plan does not exist. The proof of second statement is analogous to above.

Since the number of vertices and edges is the same for all atomic graphlets in a homo-

geneous graph, the number of traversed edges within graphlets and the number of connect

operations across graphlets are the same for all partitioning plans with k graphlets. Thus,

the last statement holds.
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7

CET Detection Optimization

7.1 Branch-and-Bound Partitioning Algorithm

As explained in Section 6.1, the search space of partitioning plans is exponential in the

number of atomic graphlets. Thus, we now utilize the cost monotonicity properties iden-

tified in Sections 6.2 and 6.3 to define an efficient branch-and-bound CET-graph parti-

tioning algorithm (B&B). This algorithm works for homogeneous CET graphs (Defini-

tion 6.5).

The search space is depicted in Figure 6.2. Each node in it is a CET-graph partitioning

plan that is connected to its parents and children (Definition 23.10). Our B&B algorithm

(Algorithm 5) traverses the search space top down. Since memory costs decrease and

CPU costs increase from parent to child in the search space, B&B prunes top levels with

too high memory costs and branches with too high CPU costs (Figure 7.1). In addition,

the algorithm disregards unbalanced partitioning plans at each level. B&B consists of the

following two phases:

1. Level Search Algorithm. Since the memory requirement is high at the top levels,

we skip infeasible levels that are guaranteed to contain no partitioning plan that fits into
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Figure 7.1: Search space for an optimal CET graph partitioning

memory. To achieve this goal, the auxiliary method atomicGraphletNumber(G) returns

the number of automic graphlets n the graph G. For each possible number of graphlets i,

the auxiliary method balanced(G, i) computes a hypothetical balanced partitioning plan b

of the input CET graph G at level i. The algorithm then compares the estimated memory

cost of this balanced plan b to the memory limit M . The memory cost of this balanced

plan b with i graphlets is the lower bound of the actual minimal memory cost at level i

(Theorem 6.3).

Infeasible level pruning principle: If a balanced partitioning plan with i graphlets

does not fit into memory, then no other partitioning plan with i graphlets will. Thus, level

i can be safely purged.

The algorithm returns the highest level that satisfies the memory constraint M with i

balanced graphlets (Lines 1–9).

2. Node Search Algorithm. Knowing the minimal number i of required graphlets,

this algorithm aims to find an optimal partitioning plan with at least i graphlets. To this

end, the algorithm keeps track of the (nearly) balanced nodes to consider in a heap. It

disregards all other (unbalanced) partitioning plans since according to Theorem 6.3 they

are less efficient.

Unbalanced node pruning principle: If a (nearly) balanced partitioning plan with i
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Algorithm 5 Branch-and-bound CET graph partitioning algorithm
Input: Graph G, Memory limit M , Heap heap, List pruned
Output: Node solution

1: s = 1, e = atomicGraphletNumber(G) // Level search
2: while s ≤ e do
3: i = s+ (e− s)/2
4: Node b = balanced(G, i)
5: if mem(b) ≤M then
6: level = i
7: e = i− 1
8: else
9: s = i+ 1

10: minCPU =+∞ // Node search
11: Node[ ] nodes = nearlyBalanced(G, level, pruned)
12: PushAll(heap, nodes)
13: while !isEmpty(heap) do
14: temp = Pop(heap)
15: if temp.isPruned(pruned) then
16: continue
17: if memory(temp) < M then
18: if cpu(temp) < minCPU then
19: solution = temp
20: minCPU = cpu(temp)

21: pruned.add(temp.cuts)

22: if temp.level = level then
23: level++
24: nodes = nearlyBalanced(G, level, pruned)
25: PushAll(heap, nodes)

26: return solution

graphlets exists at a level i, then any other (unbalanced) partitioning plans with i graphlets

will have higher CPU and memory costs. Thus, all other nodes at level i can be safely

purged.

Starting from the highest feasible level i, in every step the algorithm reduces the mem-

ory utilization (Theorem 6.1) at the expense of increased CPU time (Theorem 6.2). As

soon as a feasible solution is found, we can disregard the descendants of this feasible node

since these descendants will have higher CPU costs than their ancestor (Lines 11, 15–16,
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21, 24).

Inefficient branch pruning principle: If a graph partitioning plan p that satisfies the

memory constraint is found, then p’s descendants will have higher CPU cost than p. Thus,

they can be safely purged.

Since CPU cost increases from parent to child (not from level i to level i − 1), it

is possible that a node at level i has lower CPU than a node at level i − 1. Thus, the

algorithm considers all nearly balanced not-pruned nodes. They are computed by the

auxiliary method nearlyBalanced(G,level,pruned). These nodes are shown as white area

in Figure 7.1. The figure conveys that the number of such nodes decreases top down.

Node search terminates when it either reaches the lowest level or a level at which all

nearly balanced nodes are pruned.

All descendants of a node n will have the cuts that are present in the node n (Fig-

ure 6.2). The cuts of feasible nodes are maintained in the list pruned. In Lines 11 and 24,

we avoid generating nearly balanced nodes from pruned branches. In Lines 15–16, we

disregard pruned nodes since a node may be pruned after it is added to the heap.

B&B keeps track of the best partitioning plan found so far (Lines 18–20) and returns

it at the end of the node search (Line 26). H-CET in the graph partitioned by this plan is

guaranteed to be optimal, i.e., have the minimal CPU processing time and stay within the

memory limit (Definition 6.1).

Theorem 7.1 (Partitioning Plan Optimality.) B&B returns an optimal CET-graph par-

titioning plan.

Theorem 7.1 follows from Theorems 6.1–6.3. Details are omitted here to keep the

discussion brief.

Complexity Analysis. Let k be the number of levels in the search space, i.e., the

number of atomic graphlets in the input CET graph. Then, level search has logarithmic
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CPU cost in k. It utilizes binary search and computes the memory cost of exactly one

perfectly balanced partitioning plan at each level. Thus, the CPU time is O(log k).

The node search algorithm has exponential CPU cost in k. The while-loop in Lines 13–

25 is called at most for every nearly balanced node in the search space, i.e., O(2k) times.

Computing all nearly balanced not-pruned partitioning plans at a level i in Lines 11 and

24 has exponential CPU cost O(2i). Checking whether a node is pruned in Line 15 is also

exponential. All other auxiliary methods have constant CPU complexity. Thus, the CPU

cost is O(2k).

The memory cost of level search is constant. In contrast, the memory cost of node

search is exponential in k. It is determined by the size of the list pruned and the heap.

Both are bounded by the maximal number of nearly balanced nodes in one level of the

search space, namely, O(2k).

Despite three pruning principles, the CPU and memory costs of B&B are exponential

in the number of atomic graphlets in the worst case.

7.2 Greedy Partitioning Algorithm

In this section, we thus propose a greedy search algorithm for high efficiency. It reuses

the level search strategy from Algorithm 5 without change while node search is simpli-

fied. Namely, the greedy search considers only one greedily constructed, nearly balanced

partitioning plan at level i. If it satisfies the memory constraint, the algorithm returns it

as a result. Otherwise, a nearly balanced partitioning plan at level i − 1 is considered.

Thus, the result of the greedy search is guaranteed to be a nearly balanced partitioning

plan. However, this result might not be optimal since it might have more graphlets than

necessary to satisfy the memory constraint. In other words, the greedy search algorithm

does not utilize the entire available memory to speed up CET detection.
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Figure 7.2: Graphlet sharing technique

Complexity Analysis. Since the greedy search algorithm considers only one (nearly)

balanced partitioning plan at a level, its memory cost is constant and its CPU complexity

is linear O(k) in the number of atomic graphlets k.

7.3 Graphlet Sharing Across Windows

Our CET executor effectively shares graphlets between overlapping sliding windows.

When the window slides, graphlets are categorized into the following three groups (Fig-

ure 7.2): (1) Partially expired graphlet, (2) Shared graphlets among previous and new

window, and (3) (Partially) new graphlets. Since graphlets store consecutive stream por-

tions, there can be at most one partially expired graphlet (I2 in Figure 7.2) and at most one

partially new graphlet (I5). There can be however any number of (completely) expired,

shared, or new graphlets. The shared graphlets can be reused across overlapping windows

such that repeated CET graph partitioning, construction, traversal, and CET detection in

the shared graphlets can be avoided. The construction of partially expired graphlets can

be shared between several windows by ignoring expired events. A partially new graphlet

must be updated by new events.

Analogously to sharing graphlets between overlapping windows of the same CET

query, the execution of a workload of multiple CET queries can be optimized by shar-

ing the processing of common graphlets across sub-queries. However, sharing graphlets

may not always be beneficial due to different window parameters or predicates associated
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with each CET query. Hence, multi-CET-query optimization is left as subject for future

research.
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Performance Evaluation

8.1 Experimental Setup and Methodology

Experimental Infrastructure. We have implemented our CET detection approach in

Java with JRE 1.7.0 25. We run our experiments on a cluster machine with Ubuntu 14.04,

16-core 3.4GHz QEMU Virtual CPU, and 128GB of RAM. We execute each experiment

three times and report their average results here.

Data Sets. We evaluate our CET approach using the following data sets.

• PA: Physical Activity Real Data Set. The physical activity monitoring real data

set [42] (1.6GB) contains physical activity reports for 14 people during 1 hour 15 minutes.

There are 20 physical activities which can be classified into active (e.g., running, soccer

playing) and passive (e.g., watching TV, working on computer). Other attributes are time

stamp, heart rate, temperature and person identifier.

• ST: Stock Real Data Set. The NYSE data set [43] contains 225k transaction records

of 10 companies in 1 sector during 12 hours. Each event carries company, sector, and

transaction identifiers, volume, price, time stamp, and type (sell or buy). We replicate

this data set 10 times with adjusted company, sector, and transaction identifiers such that
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the resulting data set contains transactions for 110 companies in 11 sectors. No other

attributes except identifiers were changed in the replicas compared to the original.

• FT: Financial Transaction Data Set. We developed an event stream generator that

creates check deposit events for 3 days. Each event carries time stamp in seconds, source

bank, destination bank, and status (covered or not). The generator allows us to vary event

rate per second R, event compatibility C, and predicate selectivity S. Given these 3

parameters, each of R ∗ S events with time stamp t is compatible with C events with

earlier time stamps than t. Unless stated otherwise, the default event rate is 3.5k events

per second and the default event compatibility is 3.

CET Queries. We evaluate the workload of 10 appropriate CET queries against each

of these event streams. These queries are variations of queries Q1, Q2, and Q3 in [5].

They differ by event patterns and predicates.

Methodology. To show the efficiency of our CET approach, we compare it to the

baseline algorithm (BL, Chapter 4) and SASE [3] because both approaches support Kleene

closure computation over event streams under the skip-till-any-match semantics. To

achieve fair comparison, we have implemented SASE [3] including its optimization tech-

niques [7, 8] on top of our platform. In a nutshell, SASE stores each matched event e in a

stack and computes pointers to e’s previous events in a CET. At the end of each window,

DFS-based CET extraction is applied to these stacks. Chapter 9 contains a more detailed

discussion.

We also compare our approach to the open-source streaming system Apache Flink [30]

that supports event pattern matching under skip-till-any-match. We express our CET

queries using Flink operators. Flink guarantees that events are processed in parallel but

in-order by their time stamps. Each event is processed exactly once. However, like most

industrial streaming systems [31, 41, 57], the Kleene operator is not explicitly supported

by Flink. It is currently being developed for the next release [45]. To express our CET
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queries in Flink, each CET query q with a Kleene operator is flattened into a set of event

sequence queries that cover all possible lengths of event trends matched by the query q.

We vary the event rate, event compatibility, window length, and window overlap size in

these experiments.

To demonstrate the effectiveness of our branch-and-bound graph partitioning (B&B,

Section 7.1), we compare it to the exhaustive (Exh) and greedy search (Greedy, Sec-

tion 7.2) by varying the event rate, window length, memory limit, and event compatibility.

Under certain parameter settings, Flink, BL, SASE, and Exh are unable to produce

results within several hours. Thus, the results are either discontinued in the line charts or

highlighted by bars with maximal height in the bar charts.

Since event rate and event compatibility cannot be varied for the real data sets, we ran

these experiments on the FT data set. We vary window length and window overlap size

on the PA and ST real data sets.

Metrics. We measure two metrics common for streaming systems, namely, average

CPU time and memory requirement per window [3, 4, 7, 38, 58]. Average CPU time

is measured in milliseconds as the sum of total elapsed time in all windows divided by

the number of windows. Average memory requirement is measured as the sum of peak

memory costs in all windows divided by the number of windows. For CET (or SASE),

memory costs include all stored CET, all vertices and edges in a CET graph (or all events

and pointers between them in a SASE stack [3]). For Baseline and Flink, all stored CETs

contribute to memory costs. For CET graph partitioning algorithms, all nodes in the

search space that are stored at a time contribute to memory costs.

8.2 CET Detection Algorithms

In Figures 8.1–8.2, we compare our CET approach to other CET detection solutions.
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(a) Event rate (Financial transac-
tion data set)

(b) Window length (Stock real
data set)

(c) Window overlap (Stock real
data set)

(d) Event compatibility (Finan-
cial transaction data set)

Figure 8.1: CPU costs of CET detection algorithms

Varying Number of Events per Window. CPU costs of all approaches grow expo-

nentially with an increasing stream rate and window length (Figures 8.1(a)–8.1(b)). For

large numbers of events per window, Flink, BL, and SASE do not terminate within sev-

eral hours. These approaches do not scale because they construct all CETs from scratch

– provoking repeated computations. In contrast, our CET approach stores partial CETs

and reuses them while constructing final CETs. Thus, CET is 42–fold faster than SASE

at a stream rate of 50k events per second and two orders of magnitude faster than Flink

at a stream rate of 3k events per second. Flink is even slower than BL in all experiments

because we express each Kleene query as a set of event sequence queries in Flink. Thus,

the workload of Flink is considerably higher than other approaches tailored for Kleene

computation.

Figure 8.2 demonstrates that the CET approach adapts to the available memory. That
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(a) Event rate (Financial transac-
tion data set)

(b) Window length (Stock real
data set)

Figure 8.2: Memory costs of CET detection algorithms

is, it partitions the graph in such a way that CET detection in the partitioned graph is

guaranteed to stay within the given memory limit. If the stream rate is below 50k events

per second or the window is shorter than 50 minutes, H-CET coincides with T-CET (Sec-

tion 5.3). Otherwise, T-CET would run out of memory since it stores CETs for the whole

graph. Instead, our CET approach partitions the graph into smaller graphlets and stores

CETs per each graphlet.

CET and BL have almost the same memory cost (Figure 8.2). Thus, the amount of

memory required for the CET graph is negligible compared to the amount of memory

required for CET storage. We thus conclude that CET graph is worth maintaining to

compactly capture all CETs.

SASE requires 5 orders of magnitude less memory than the CET approach if event

rate is 50k events per second since SASE stores events in stacks and pointers to their

previous events. When the window ends, these pointers are traversed using DFS to extract

all CETs. Hence, SASE is conceptually close to the M-CET algorithm, namely, it is

lightweight but slow (Figures 8.1 and 8.2).

Flink requires two orders of magnitude more memory than CET at a stream rate of 3k

events per second, because Flink stores all trends of all possible lengths, since it expresses

Kleene closure by a set of sequence queries.

76



8.2 CET DETECTION ALGORITHMS

(a) Event rate (Financial transac-
tion data set)

(b) Window length (Physical ac-
tivity monitoring real data set)

Figure 8.3: CPU costs of CET graph partitioning algorithms

We also ran the experiment on the PA data set varying window lengths. These charts

have similar trends as in Figures 8.1(b) and 8.2(b). Thus, they are omitted here.

Varying Window Overlap. Figure 8.1(c) measures the effect of the graphlet shar-

ing technique. As the window overlap increases, the CPU time of the CET approach

decreases exponentially. This performance is explained by the fact that CET graph con-

struction, partitioning and CET detection within graphlets is shared between overlapping

windows. The larger the overlap, the more the gain of sharing. In contrast, the average

CPU time per window of SASE remains fairly constant, since no intermediate results are

shared among overlapping windows. Our CET approach outperforms SASE 13–fold if

the window overlap is 50 minutes. Since Flink and BL do not keep up with such long

windows, they are omitted in Figure 8.1(c).

Varying Event Compatibility. Figure 8.1(d) experimentally confirms Theorem 3.1.

Namely, the number of CETs (and thus the cost of CET detection) is maximal if event

compatibility is 3. When event compatibility increases, the CPU time of all algorithms de-

creases exponentially. When event compatibility is 3, our CET approach is up to 5.4–fold

faster than SASE since it avoids repeated computations by caching and reusing interme-

diate results. Neither Flink nor BL can produce any results in this worst case scenario.
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(a) Event rate (Financial transac-
tion data set)

(b) Window length (Physical ac-
tivity monitoring real data set)

Figure 8.4: Memory costs of CET graph partitioning algorithms

8.3 CET-Graph Partitioning Algorithms

Varying the Number of Events per Window. In Figures 8.3–8.4, we compare the per-

formance of the CET graph partitioning algorithms used by our optimizer.

The search space for an optimal CET graph partitioning plan has a lattice shape (Fig-

ure 6.2). Thus, the B&B optimizer performs best if it searches the top or the bottom of the

search space where the number of nodes is relatively small. The top or the bottom of the

search space is traversed if the memory constraint is loose or tight for the given number

of events (first and last cases on the X-axis). Otherwise, B&B searches the middle of the

search space where the number of nodes is large. This search causes higher CPU and

memory costs (middle cases on the X-axis).

The CPU and memory costs of the exhaustive algorithm grow exponentially with an

increasing event rate or window length. Due to three effective pruning principles, our

B&B is up to two orders of magnitude faster at a stream rate of 40k events per second and

requires up to 12–fold less memory when window length is 20 minutes than the exhaustive

optimizer. Yet B&B returns an optimal CET graph partitioning plan.

The greedy optimizer has fairly constant CPU and memory costs. It is up to three

times faster and requires up to three orders of magnitude less memory than B&B if the

stream rate is 40k events per second.
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(a) CPU time (b) Memory costs

Figure 8.5: Partitioned graph quality (Financial transaction data set)

(a) Memory limit (Physical activ-
ity monitoring real data set)

(b) Event compatibility (Finan-
cial transaction data set)

Figure 8.6: CPU costs of CET graph partitioning algorithms

Partitioned Graph Quality. The greedy optimizer tends to return a sub-optimal CET

graph partitioning plan because it considers only one nearly balanced partitioning plan per

level until it finds a plan that satisfies the memory constraint. Thus, greedy search tends

to partition a CET graph more than necessary. In other words, it does not utilize the

entire memory resources to speed up CET detection. Figure 8.5 compares the CPU and

memory costs of CET detection in an optimally-partitioned versus a greedily-partitioned

CET graph. A greedy partitioning plan is 2.8–fold slower than an optimal partitioning

solution at an event rate of 20k events per second.

Varying Memory Limit. As Figure 8.6(a) illustrates, the exhaustive optimizer is

indifferent to the memory limit. It traverses the entire search space to find an optimal

partitioning plan. In contrast, both B&B and greedy algorithms utilize the memory con-
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straint to skip infeasible levels. Thus, B&B is two orders of magnitude faster and requires

12–fold less memory than the exhaustive optimizer for a tight memory limit of 3MB.

When the memory constraint is loose, a few cuts are enough to satisfy the memory

constraint. Thus, the B&B and greedy algorithms perform almost equally well. However,

when the memory constraint is tight, a CET graph has to be partitioned more to avoid an

out-of-memory error. While our B&B optimizer considers all nearly balanced partitioning

plans at a level to find an optimal partitioning plan, the greedy optimizer considers only

one per level. Thus, the greedy optimizer is up to four times faster than B&B for a tight

memory limit of 3MB, at the expense of finding a sub-optimal partitioning plan.

Varying Event Compatibility. With the increasing number of compatible events, the

size of graphlets increases and their number decreases (Figure 8.6(b)). Thus, the size of

the search space also decreases. Consequently, the CPU time of the algorithms rapidly

decreases as well until it becomes almost constant if more than 10 events are compatible.

If three events are compatible, our B&B optimizer is two orders of magnitude faster than

the exhaustive optimizer thanks to our effective pruning principles.

8.4 Properties of Partitioning Search Space

In Figure 8.7, we experimentally confirm the cost monotonicity properties of the CET

graph partitioning search space (Sections 6.2 and 6.3) while varying the number of graphlets

and their size ratio.

Varying Graphlet Number. The goal of this experiment is to confirm the properties

across levels of the search space (Theorems 6.1 and 6.2) which support the infeasible

level and inefficient branch pruning by our B&B optimizer.

In Figure 8.7(a), we observe monotonic CPU and memory cost variation while varying

the number of graphlets. The first case on the X-axis (one graphlet) corresponds to T-CET
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(a) Cost variation across levels (b) Cost variation at one level

Figure 8.7: Search space properties (Physical activity monitoring real data set)

since all events belong to one graphlet. The last case on the X-axis (69 graphlets) corre-

sponds to M-CET, since each relevant event is a separate graphlet. In all other cases, H-

CET is applied to an optimally-partitioned CET graph into the given number of graphlets.

As the number of graphlets increases, the memory requirement decreases exponen-

tially (5 orders of magnitude comparing 1 and 69 graphlets) and CPU time increases ex-

ponentially (7–fold comparing 1 and 69 graphlets). Such cost variation is expected since

the larger the number of graphlets, the smaller their size, the fewer CETs are stored per

graphlet and the more CPU overhead is provoked while computing CETs across graphlets.

Varying Graphlet Size Ratio. The goal of this experiment is to confirm the properties

at one level of the search space (Theorem 6.3) which lead to the unbalanced node pruning

by our B&B optimizer.

In Figure 8.7(b), we observe the monotonic cost variation while varying the graphlet

size ratio. The first case on the X-axis (the ratio is 1) corresponds to CET detection in a

CET graph that is partitioned in a balanced way. The last case on the X-axis (the ratio is

13) shows the costs of CET detection in a CET graph that is partitioned in an unbalanced

way, namely, one graphlet has 13 times more events than another.

As the graphlet size ratio increases, the memory requirement increases exponentially

(two orders of magnitude comparing the balanced and the unbalanced partitioning plans).

Such memory increase is expected since the larger the size of graphlets the more CETs
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are stored in them. In contrast, CPU time stays stable since the same number of graphlets

causes the same CPU costs for CET construction within and across graphlets.
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Related Work

Complex Event Processing. Most existing approaches either compute event sequences

of a fixed length [4, 38, 58] or assume a known upper bound on the length of event

sequences [59]. They do not support event queries with Kleene patterns. Thus, their

expressive power is limited.

Several approaches [3, 7, 8, 28, 29] support Kleene closure computation over event

streams. However, ZStream [29] and Cayuga [28] do not support Kleene closure compu-

tation under the skip-till-any-match semantics. In contrast, SASE [7, 8] optimizes Kleene

queries under various semantics. SASE adapts a Finite State Automaton (FSA) based

execution paradigm. Each event query is translated into an FSA. Each state of an FSA is

associated with a stack with single events stored in each stack. To speed up stack traversal,

each event is augmented with a pointer to its previous event in a match.

SASE++ [3] further optimizes query evaluation by breaking it into pattern matching

and result construction phases. Pattern matching computes the main runs of an FSA

(equivalent to CETs) with certain predicates postponed. Result construction derives all

matches of the Kleene pattern by applying the postponed predicates to remove non-viable

runs. The pattern matching phase in SASE++ simply reuses the FSA-based approach
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from SASE [7, 8] without any optimization. Computing matches for the main runs incurs

repeated computations since the same common event sub-sequence is re-traversed for

each match that contains it. In contrast, we introduce a compact CET graph to capture

all CETs and partition the graph to trade off between CPU and memory costs of CET

detection.

Recursive Queries. Kleene closure computation has been studied in recursive query

processing as well [20, 21, 22, 23, 24, 25, 26, 27]. However, most existing solutions

either focus on achieving high expressive power for recursive queries [26] or ensuring

correctness of such queries [20, 23]. These approaches incur additional execution costs

for supporting more expressive queries than CEP queries. The optimization techniques

proposed in [21, 22, 24, 25] neither support the skip-till-any-match semantics nor take

memory constraints into consideration. Therefore, none of the existing solutions fully

tackles the challenges of event queries with Kleene closure we target.

Static Databases. Traditional SQL queries [15, 16, 17] do not support streaming

operators such as event sequence, Kleene closure, and windows that treat the order of

events by their time stamps as first-class citizen. While static sequence data bases extend

traditional SQL queries by order-aware join operators [18, 19], they still do not support

Kleene closure computation under the skip-till-any-match semantics. Worse yet, these ap-

proaches assume that the data is statically stored and indexed prior to processing. Hence,

they do not tackle challenges that arise due to dynamically streaming data such as event

expiration and real-time execution.

Streaming Graph Partitioning approaches [56, 60, 61] consider dynamic graphs in

which vertexes or edges or both change over time. These approaches aim at a balanced

one-pass dynamic graph partitioning algorithm. Since the problem is NP-hard [62], sev-

eral approximation algorithms [62, 63] and heuristics [64, 65, 66] have been developed.

While these strategies also aim to find a balanced graph partitioning, they focus on
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optimization criteria that are distinct from our problem. Namely, they minimize the total

number [56, 61, 65, 66] or weight [62] of cut edges. If we were to apply their method

and minimize the number of cut edges, it would not necessarily reduce the cost of CET

detection since one cut edge may need to be traversed multiple times. Potentially, we

could address this problem by defining an edge weight as the number of edge traversals.

However, CETs within and across graphlets would have to be computed to determine the

number of edge traversals. This risks making our CET-graph partitioning algorithm more

expensive than the CET detection algorithm itself.

Furthermore, existing graph partitioning approaches do not take the order of events

in a CET into consideration – which is crucial to CET detection. Indeed, if a graph

partitioning algorithm is oblivious to the event order, then correct CET detection that

visits each graphlet at most once for each CET would not be possible (Section 6.1). Also,

graphlets could not be shared between overlapping sliding windows (Section 7.3). Lastly,

the properties of the graph partitioning search space we uncover are specific to the cost

model for CET detection, and thus lead us to unique pruning principles of our B&B

algorithm.
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Event Trend Aggregation
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GRETA Approach Overview

In Chapters 10–13, we focus on the aggregation of event trends matched by nested Kleene

patterns (Definition 2.1) with expressive predicates under the most flexible skip-till-any-

match semantics (Section 2.4). Other semantics are considered in Chapters 14–19.

Our Event Trend Aggregation Problem to compute event trend aggregation results

of a query q against an event stream I with minimal latency. Figure 10.1 provides an

overview of our GRETA framework. The GRETA Query Analyzer statically encodes the

query into a GRETA configuration. In particular, the pattern is split into positive and

negative sub-patterns (Section 2.3). Each sub-pattern is translated into a GRETA template

(Section 2.2). Predicates are classified into vertex and edge predicates (Section 11.3).

Guided by the GRETA configuration, the GRETA Runtime first filters and partitions

the stream based on the vertex predicates and grouping attributes of the query. Then, the

GRETA runtime encodes matched event trends into a GRETA graph. During the graph

construction, aggregates are propagated along the edges of the graph in a dynamic pro-

gramming fashion. The final aggregate is updated incrementally, and thus is returned

immediately at the end of each window (Sections 11.1–11.3).
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Figure 10.1: GRETA framework

88



11

Graph-Based Event Trend Aggregation

In Sections 11.1 and 11.2, we assume that the stream I is finite, the query has neither

predicates, nor grouping. We will describe how GRETA works with windows, predicates,

and grouping in Section 11.3. In the examples below, we compute event trend count

COUNT(*) (Definition 2.5). The same principles apply to other aggregation functions

(Chapter 12).

11.1 Positive Nested Patterns

At compile time, we translate a positive pattern (Definition 2.1) into a template (Sec-

tion 2.2) As events arrive at runtime, the GRETA graph is maintained according to this

template.

The GRETA graph is a runtime instantiation of the template. The graph is constructed

on-the-fly as events arrive. The graph compactly captures all matched trends and en-

ables their incremental aggregation. We now informally describe the graph construction

and aggregate propagation using our running example. Afterwards, Algorithm 6 defines

graph-based trend aggregation. We also prove its correctness and analyze the complexity.
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(a) A+ (b) SEQ(A+, B) (c) (SEQ(A+, B))+

(d) (SEQ(A+,NOT SEQ(C,NOT E,D), B))+

Figure 11.1: Count of trends matched by the pattern P in the stream I = {a1, b2, c2, a3, e3,
a4, c5, d6, b7, a8, b9}

Compact Event Trend Encoding. The graph encodes all trends and thus avoids their

construction.

Vertices represent events in the stream I matched by the pattern P . Each state with

label E in the template is associated with the sub-graph of events of type E in the graph.

We highlight each sub-graph by a rectangle frame. If E is an end state, the frame is

depicted as a double rectangle. Otherwise, the frame is a single rectangle. An event is

labeled by its event type, time stamp, and intermediate aggregate (see below). Each event

is stored once. Figure 11.1(c) illustrates the template and the graph for the stream I .
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Edges connect adjacent events in a trend matched by the pattern P in a stream I (Def-

inition 2.2). While transitions in the template express predecessor relationships between

event types in the pattern (Section 2.2), edges in the graph capture predecessor relation-

ships between events in a trend (Definition 2.2). In Figure 11.1(c), we depict a transition

in the template and its respective edges in the graph in the same way. A path from a

START to an END event in the graph corresponds to a trend. The length of these trends

ranges from the shortest (a1, b2) to the longest (a1, b2, a3, a4, b7, a8, b9).

In summary, the GRETA graph in Figure 11.1(c) compactly captures all 43 event trends

matched by the pattern P in the stream I . In contrast to the two-step approach, the

graph avoids repeated computations and replicated storage of common sub-trends such as

(a1, b2).

Dynamic Aggregation Propagation. Intermediate aggregates are propagated through

the graph from previous events to new events in dynamic programming fashion. Final ag-

gregate is incrementally computed based on intermediate aggregates. In the examples

below, we compute event trend count COUNT(*) (Definition 2.5). Same principles apply

to other aggregation functions (Chapter 12).

Intermediate Count e.count of an event e corresponds to the number of (sub-)trends

in G that begin with a START event in G and end at e. When e is inserted into the graph,

all predecessor events of e connect to e. That is, e extends all trends that ended at a

predecessor event of e. To accumulate the number of trends extended by e, e.count is set

to the sum of counts of the predecessor events of e. In addition, if e is a START event, it

starts a new trend. Thus, e.count is incremented by 1. In Figure 11.1(c), the count of the

START event a4 is set to 1 plus the sum of the counts of its predecessor events a1, b2, and

a3.

a4.count = 1 + (a1.count+ b2.count+ a3.count) = 6

a4.count is computed once, stored, and reused to compute the counts of b7, a8, and
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b9 that a4 connects to. For example, the count of b7 is set to the sum of the counts of all

predecessor events of b7.

b7.count = a1.count+ a3.count+ a4.count = 10

Final Count corresponds to the sum of the counts of all END events in the graph.

final count = b2.count+ b7.count+ b9.count = 43

In summary, the count of a new event is computed based on the counts of previous

events in the graph following the dynamic programming principle. Each intermediate

count is computed once. The final count is incrementally updated by each END event and

instantaneously returned at the end of each window.

Definition 11.1 (GRETA Graph.) The GRETA graph G = (V,E, final count) for a

query q and a stream I is a directed acyclic graph with a set of vertices V , a set of edges

E, and a final count. Each vertex v ∈ V corresponds to an event e ∈ I matched by

q. A vertex v has the label (e.type e.time : e.count) (Theorem 11.2). For two vertices

vi, vj ∈ V , there is an edge (vi, vj) ∈ E if their respective events ei and ej are adjacent

in a trend matched by q. Event vi is called a predecessor event of vj .

GRETA graphs have different shapes depending on the pattern and the stream. Fig-

ure 11.1(a) shows the graph for the pattern A+. Events of type B are not relevant for

it. Events of type A are both START and END events. Figure 11.1(b) depicts the GRETA

graph for the pattern SEQ(A+, B). There are no dashed edges since b’s may not precede

a’s.

Theorems 11.1 and 11.2 prove the correctness of the event trend count computation

based on the GRETA graph.
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Theorem 11.1 (Correctness of a GRETA Graph) LetG be the GRETA graph for a query

q and a stream I . Let P be the set of paths from a START to an END event in G. Let T

be the set of trends detected by q in I . Then, the set of paths P and the set of trends T are

equivalent. That is, for each path p ∈ P there is a trend tr ∈ T with the same events in

the same order, and vice versa.

Proof: Correctness. For each path p ∈ P, there is a trend tr ∈ T with same events

in the same order, i.e., P ⊆ T. Let p ∈ P be a path. By definition, p has one START

event, one END event, and any number of MID events. Edges between these events are

determined by the query q such that a pair of adjacent events in a trend is connected by

an edge. Thus, the path p corresponds to a trend tr ∈ T matched by the query q in the

stream I .

Completeness. For each trend tr ∈ T, there is a path p ∈ P with same events in

the same order, i.e., T ⊆ P. Let tr ∈ T be a trend. We first prove that all events in tr

are inserted into the graph G. Then we prove that these events are connected by directed

edges such that there is a path p that visits these events in the order in which they appear

in the trend tr. A START event is always inserted, while a MID or an END event is inserted

if it has predecessor events since otherwise there is no trend to extend. Thus, all events

of the trend tr are inserted into the graph G. The first statement is proven. All previous

events that satisfy the query q connect to a new event. Since events are processed in order

by time stamps, edges connect previous events with more recent events. The second

statement is proven.

Theorem 11.2 (Event Trend Count Computation) Let G be the GRETA graph for a

query q and a stream I , e ∈ I be an event with predecessor events Pr in G, and End be

the END events in G. Then the following statements hold:

(1) The intermediate count e.count is the number of (sub) trends in G that start at a
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START event and end at e.

e.count =
∑
p∈Pr

p.count.

If e is a START event, e.count is incremented by one.

(2) The final count is the number of trends captured by G.

final count =
∑

end∈End

end.count.

Proof: (1) We prove the first statement by induction on the number of events in G.

Induction Basis: n = 1. If there is only one event e in the graph G, e is the only

(sub-)trend captured by G. Since e is the only event in G, e has no predecessor events.

The event e can be inserted into the graph only if e is a START event. Thus, e.count = 1.

Induction Assumption: The statement is true for n events in the graph G.

Induction Step: n → n + 1. Assume a new event e is inserted into the graph G

with n events and the predecessor events Pred of e are connected to e. According to

the induction assumption, each of the predecessor events p ∈ Pred has a count that

corresponds to the number of sub-trends in G that end at the event p. The new event e

continues all these trends. Thus, the number of these trends is the sum of counts of all

p ∈ Pred. In addition, each START event initiates a new trend. Thus, 1 is added to the

count of e if e is a START event. The first statement is proven.

(2) By definition only END events may finish trends. We are interested in the number

of finished trends only. Since the count of an END event end corresponds to the number

of trends that finish at the event end, the total number of trends captured by the graph G

is the sum of counts of all END events in G. The second statement is proven.

Event Trend Count Algorithm for Positive Patterns (Algorithm 6) computes the

number of trends matched by the pattern P in the stream I . The set of vertices V in the
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11.1 POSITIVE NESTED PATTERNS

Algorithm 6 Event trend count algorithm for positive patterns
Input: Positive pattern P , stream I
Output: Count of trends matched by P in I

1: process pos pattern(P, I) {
2: V ← ∅, final count← 0
3: for all e ∈ I of type E do
4: Pr ← V.predEvents(e)
5: if E = start(P ) or Pr 6= ∅ then
6: V ← V ∪ e, e.count← (E = start(P )) ? 1 : 0
7: for all p ∈ Pr do e.count += p.count

8: if E = end(P ) then final count += e.count

9: return final count }

GRETA graph is initially empty (Line 2). Since each edge is traversed exactly once, edges

are not stored. When an event e of type E arrives, the auxiliary method V.predEvents(e)

returns the predecessor events of e in the graph (Line 4). A START event is always inserted

into the graph since it always starts a new trend, while a MID or an END event is inserted

only if it has predecessor events (Lines 5–6). The count of e is increased by the counts

of its predecessor events (Line 7). If e is a START event, its count is incremented by 1

(Line 6). If e is an END event, the final count is increased by the count of e (Line 8). This

final count is returned (Line 9).

Theorem 11.3 (Correctness of the Event Trend Count Algorithm) Given a positive pat-

tern P and a stream I , Algorithm 6 constructs the GRETA graph for P and I (Defini-

tion 23.5) and computes the intermediate and final counts (Theorem 11.2).

Proof: Graph Construction. Each event e ∈ I is processed (Line 3). A START

event is always inserted, while a MID or an END event is inserted if it has predecessor

events (Lines 4–6). Thus, the set of vertices V of the graph corresponds to events in the

stream I that are matched by the pattern P . Each predecessor event p of a new event

e is connected to e (Lines 8–9). Therefore, the edges E of the graph capture adjacency

relationships between events in trends matched by the pattern P .
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11.2 PATTERNS WITH NESTED NEGATION

Count Computation. Initially, the intermediate count e.count of an event e is either

1 if e is a START event or 0 otherwise (Line 7). e.count is then incremented by p.count

of each predecessor event p of e (Lines 8, 10). Thus, e.count is correct. Initially, the final

count is 0 (Line 2). Then, it is incremented by e.count of each END event e in the graph.

Since e.count is correct, the final count is correct too.

We analyze complexity of Algorithm 6 in Section 11.5.

11.2 Patterns with Nested Negation

To handle nested patterns with negation, we split the pattern into positive and negative

sub-patterns at compile time (Section 2.3). At runtime, we then maintain the GRETA

graph for each of these sub-patterns.

Definition 11.2 (Dependent GRETA Graph.) Let GN and GP be GRETA graphs that

are constructed according to templates TN and TP respectively. The GRETA graph GP is

dependent on the graph GN if there is a previous or following link from TN to an event

type in TP .

Definition 11.3 (Invalid Event.) Let GP and GN be GRETA graphs such that GP is

dependent on GN . Let tr = (e1, . . . , en) be a finished trend captured by GN , i.e., en is an

END event. The trend tr marks all events of the previous event type that arrived before

e1.time as invalid to connect to any event of the following event type that will arrive after

en.time.

Example 11.1 Figure 11.1(d) depicts the graphs for the sub-patterns from Example 2.2.

The match e3 of the negative sub-pattern E marks c2 as invalid to connect to any future d.

Invalid events are highlighted by a darker background. Analogously, the match (c5, d6)

of the negative sub-pattern SEQ(C,D) marks all a’s before c5 (in this example they are
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11.2 PATTERNS WITH NESTED NEGATION

(a) SEQ(A+,NOT E) (b) SEQ(NOT E,A+)

Figure 11.2: Count of trends matched by the pattern P in the stream I = {a1, b2, c2, a3, e3,
a4, c5, d6, b7, a8, b9}

a1, a3, a4) as invalid to connect to any b after d6. The event b7 has no valid predecessor

events and thus cannot be inserted. The event a8 is inserted and all previous a’s are

connected to it. The marked a’s are valid to connect to new a’s. The event b9 is inserted

and its valid predecessor event a8 is connected to it. The marked a’s may not connect to

b9.

Figures 11.2(a) and 11.2(b) depict the graphs for the patterns from Example 2.3. The

trend e3 of the negative sub-pattern E marks all previous a’s as invalid in Figure 11.2(a).

In contrast, in Figure 11.2(b), e3 invalidates all following a’s.

Event Pruning. Negation allows us to purge events from the graph to speed-up inser-

tion of new events and aggregation propagation. The following events can be deleted:

• Finished Trend Pruning. A finished trend that is matched by a negative sub-pattern

can be deleted once it has invalidated all respective events.

• Invalid Event Pruning. An invalid event of type end(Pi) will never connect to any

new event if events of type end(Pi) may precede only events of type start(Pj). The

aggregates of such invalid events will not be propagated. Thus, such events may be safely

purged from the graph.
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Example 11.2 Continuing Example 11.1 in Figure 11.1(d), the invalid c2 will not connect

to any new event since c’s may connect only to d’s. Thus, c2 is purged. e3 is also deleted.

Once a’s before c5 are marked, c5 and d6 are purged. In contrast, the marked events

a1, a3, and a4 may not be removed since they are valid to connect to future a’s. In

Figures 11.2(a) and 11.2(b), e3 and all marked a’s are deleted.

Theorem 11.4 (Correctness of Event Pruning.) Let GP and GN be GRETA graphs

such that GP is dependent on GN . Let G′P be the same as GP but without invalid

events of type end(Pi) if end(Pi) is the only predecessor type of start(Pj) in P , i.e.,

P.predTypes(start(Pj)) = {end(Pi)}. Let G′N be the same as GN but without finished

event trends. Then, G′P returns the same aggregation results as GP .

Proof: We first prove that all invalid events are marked in GP despite finished trend

pruning in G′N . We then prove that G′P returns the same aggregation result as GP despite

invalid event pruning.

All invalid events are marked in GP . Let tr = (e1, . . . , en) be a finished trend in

GN . Let Inv be the set of events that are invalidated by tr in GP . By Definition 11.3,

all events in Inv arrive before e1.time. According to Chapter 2, events arrive in-order by

time stamps. Thus, no event with time stamp less than e1.time will arrive after e1. Hence,

even if an event ei ∈ {e1, . . . , en−1} connects to future events in GN , no event e 6∈ Inv in

GP can be marked as invalid.

GP and G′P return the same aggregate. Let e be an event of type end(Pi) that is

marked as invalid to connect to events of type start(Pj) that arrive after en.time. Before

en.time, e is valid and its count is correct by Theorem 11.2. Since events arrive in-order

by time stamps, no event with time stamp less than en.time will arrive after en. After

en.time, e will not connect to any event and the count of e will not be propagated if

P.predTypes(start(Pj)) = {end(Pi)}. Hence, deletion of e does not affect the final

aggregate of GP .
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(a) GRETA sub-graph replication (b) GRETA sub-graph sharing

Figure 11.3: Sliding window WITHIN 10 seconds SLIDE 3 seconds

GRETA Algorithm for Patterns with Negation. Algorithm 6 is called on each event

sub-pattern with the following modifications. First, only valid predecessor events are

returned in Line 4. Second, if the algorithm is called on a negative sub-pattern N and a

match is found in Line 12, then all previous events of the previous event type of N are

either deleted or marked as incompatible with any future event of the following event type

of N . Afterwards, the match of N is purged from the graph. GRETA concurrency control

is described in Section 11.4.

11.3 Other Query Clauses

We now expand our GRETA approach to handle sliding windows, predicates, and group-

ing. Thus, we can support all clauses of an event query (Definition 2.5) except the event

matching semantics that will be handled in Chapters 14–19. We will describe the possible

extensions of the language in Chapter 12.

Sliding Windows. Due to the continuous nature of streaming, an event may con-

tribute to the aggregation results of several overlapping windows. Furthermore, events

may expire in some windows but remain valid in other windows.

• GRETA Sub-Graph Replication. A naive solution would build a GRETA graph for

each window independently from other windows. Thus, it would replicate an event e
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across all windows that e falls into. Worse yet, this solution introduces repeated compu-

tations, since an event p may be predecessor event of e in multiple windows.

Example 11.3 In Figure 11.3(a), we count the number of trends matched by the pat-

tern (SEQ(A+, B))+ within a 10-seconds-long window that slides every 3 seconds. The

events a1–b9 fall into window W1, while the events a4–b9 fall into window W2. If a

GRETA graph is constructed for each window, the events a4–b9 are replicated in both

windows and their predecessor events are recomputed for each window.

• GRETA Sub-Graph Sharing. To avoid these drawbacks, we share a sub-graph G

across all windows to which G belongs. Let e be an event that falls into k windows.

The event e is stored once and its predecessor events are computed once across all k

windows. The event e maintains a count for each window. To differentiate between

k counts maintained by e, each window is assigned an identifier wid [67]. The count

with identifier wid of e (e.countwid) is computed based on the counts with identifier wid

of e’s predecessor events (Line 10 in Algorithm 6). The final count for a window wid

(final countwid) is computed based on the counts with identifier wid of the END events

in the graph (Line 12). In Example 11.3, the events a4–b9 fall into two windows and thus

maintain two counts in Figure 11.3(b). The first count is for W1, the second one for W2.

Predicates on vertices and edges of the GRETA graph are handled differently by the

GRETA runtime.

• Vertex Predicates restrict the vertices in the GRETA graph. They are evaluated on

single events (Section 2.5). Local predicates purge irrelevant events early. We asso-

ciate each local predicate with its respective state in the GRETA template. Equivalence

predicates partition the stream by event attribute values. Thereafter, GRETA queries are

evaluated against each sub-stream in a divide and conquer fashion.

• Edge Predicates restrict the edges in the graph (Line 4 of Algorithm 6). They are
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Figure 11.4: Edge predicate A.attr < NEXT(A).attr

evaluated on a pair of adjacent events in a trend (Section 2.5). We associate each edge

predicate with its respective transition in the GRETA template.

Example 11.4 The edge predicate A.attr < NEXT(A).attr in Figure 19.3 requires the

value of attribute attr of events of type A to increase from one event to the next in a trend.

The attribute value is shown in the bottom left corner of a vertex. Only two dotted edges

satisfy this predicate.

Event Trend Grouping. As illustrated by our motivating examples in Section 1.1,

event trend aggregation often requires event trend grouping. Analogously to A-Seq [2],

our GRETA runtime first partitions the event stream into sub-streams by the values of

grouping attributes. A GRETA graph is then maintained separately for each sub-stream.

Final aggregates are output per sub-stream.

11.4 Implementation

Putting Sections 11.1–11.3 together, we now describe the GRETA runtime data structures

and parallel processing.

Data Structure for a Single GRETA Graph. Edges logically capture the paths for

aggregation propagation in the graph. Each edge is traversed exactly once to compute the
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aggregate of the event to which the edge connects (Lines 8–10 in Algorithm 6). Hence,

edges are not stored.

Vertices must be stored in such a way that the predecessor events of a new event can

be efficiently determined (Line 4). To this end, we leverage the following data structures.

To quickly locate previous events, we divide the stream into non-overlapping consecutive

time intervals, called Time Panes [36]. Each pane contains all vertices that fall into it

based on their time stamps. These panes are stored in a time-stamped array in increasing

order by time (Figure 11.5). The size of a pane depends on the window specifications

and stream rate such that each query window is composed of several panes – allowing

panes to be shared between overlapping windows [33, 36]. To efficiently find vertices of

predecessor event types, each pane contains an Event Type Hash Table that maps event

types to vertices of this type.

To support edge predicates, we utilize a tree index that enables efficient range queries.

The overhead of maintaining Vertex Trees is reduced by event sorting and a pane purge

mechanism. An event is inserted into the Vertex Tree for its respective pane and event

type. This sorting by time and event type reduces the number of events in each tree.

Furthermore, instead of removing single expired events from the Vertex Trees, a whole

pane with its associated data structures is deleted after the pane has contributed to all

windows to which it belongs. To support sliding windows, each vertex e maintains a

Window Hash Table storing an aggregate per window that e falls into. Similarly, we store

final aggregates per window in the Results Hash Table.

Data Structure for GRETA Graph Dependencies. To support negative sub-patterns,

we maintain a Graph Dependencies Hash Table that maps a graph identifier G to the

identifiers of graphs upon whichG depends. Below we describe how such interdependent

graphs are processed concurrently.

Parallel Processing. The grouping clause partitions the stream into sub-streams that
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Figure 11.5: Data structure for a single GRETA graph

are processed in parallel independently from each other. Such stream partitioning enables

a highly scalable execution as demonstrated in Section 19.4.

In contrast, negative sub-patterns require concurrent maintenance of interdependent

GRETA graphs. To avoid race conditions, we deploy the time-based transaction model [68].

A stream transaction is a sequence of operations triggered by all events with the same time

stamp on the same GRETA graph. The application time stamp of a transaction (and all its

operations) coincides with the application time stamp of the triggering events. For each

time stamp t and each GRETA graphG, our time-driven scheduler waits till the processing

of all transactions with time stamps smaller than t on the graph G and other graphs that G

depends upon is completed. Then, the scheduler extracts all events with the time stamp t,

wraps their processing into transactions, and submits them for execution.

11.5 Complexity Analysis

We now analyze the complexity of GRETA. Since a negative sub-pattern is processed

analogously to a positive sub-pattern (Section 11.2), we focus on positive patterns below.
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Theorem 11.5 (Complexity) Let q be a query with edge predicates, I be a stream, G be

the GRETA graph for q and I , n be the number of events per window, and k be the number

of windows into which an event falls. The time complexity of GRETA is O(n2k), while its

space complexity is O(nk).

Proof: Time Complexity. Let e be an event of type E. The following steps are

taken to process e. Since events arrive in-order by time stamps (Chapter 2), the Time Pane

to which e belongs is always the latest one. It is accessed in constant time. The Vertex

Tree in which e will be inserted is found in the Event Type Hash Table mapping the event

type E to the tree in constant time. Depending on the attribute values of e, e is inserted

into its Vertex Tree in logarithmic time O(logbm) where b is the order of the tree and m

is the number of elements in the tree, m ≤ n.

The event e has n predecessor events in the worst case, since each vertex connects to

each following vertex under the skip-till-any-match semantics. Let x be the number of

Vertex Trees storing previous vertices that are of predecessor event types of E and fall

into a sliding window wid ∈ windows(e), x ≤ n. Then, the predecessor events of e are

found in O(logbm + m) time by a range query in one Vertex Tree with m elements. The

time complexity of range queries in x Vertex Trees is computed as follows:

x∑
i=1

O(logbmi +mi) =
x∑
i=1

O(mi) = O(n).

If e falls into k windows, a predecessor event of e updates at most k aggregates of e.

If e is an END event, it also updates k final aggregates. Since these aggregates are main-

tained in hash tables, updating one aggregate takes constant time. GRETA concurrency

control ensures that all graphs this graph G depends upon finishing processing all events

with time stamps less than t before G may process events with time stamp t. Therefore,

all invalid events are marked or purged before aggregates are updated in G at time t. Con-
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sequently, an aggregate is updated at most once by the same event. Putting it all together,

the time complexity is:

O(n(logbm+ nk)) = O(n2k).

Space Complexity. The space complexity is determined by x Vertex Trees and k

counts maintained by each vertex.

x∑
i=1

O(mik) = O(nk).
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Extensions of the GRETA Approach

So far, we have described how the query clauses (Definition 2.5) are handled by GRETA.

In this chapter, we sketch how our GRETA approach can be extended to support additional

language features.

Other Aggregation Functions. While Theorem 11.2 defines event trend count com-

putation, i.e., COUNT(*), we now sketch how the principles of incremental event trend

aggregation proposed by our GRETA approach apply to other aggregation functions (Def-

inition 2.5).

Theorem 12.1 (Event Trend Aggregation Computation) Let G be the GRETA graph

for a query q and a stream I , e, e′ ∈ I be events in G such that e.type = E, e′.type 6= E,

attr is an attribute of e, Pr and Pr′ be the predecessor events of e and e′ respectively in

G, and End be the END events in G.

e.countE = e.count+
∑

p∈Pr p.countE

e′.countE =
∑

p′∈Pr′ p
′.countE

COUNT(E) =
∑

end∈End end.countE
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(a) COUNT(A) (b) MIN(A.attr) (c) SUM(A.attr)

Figure 12.1: Aggregation of trends matched by the pattern P=(SEQ(A+,B))+ in the stream
I = {a1, b2, a3, a4, b7} where a1.attr=5, a3.attr=6, and a4.attr=4

e.min = minp∈Pr(e.attr, p.min)

e′.min = minp′∈Pr′(p
′.min)

MIN(E.attr) = minend∈End(end.min)

e.max = maxp∈Pr(e.attr, p.max)

e′.max = maxp′∈Pr′(p
′.max)

MAX(E.attr) = maxend∈End(end.max)

e.sum = e.attr ∗ e.count+
∑

p∈Pr p.sum

e′.sum =
∑

p′∈Pr′ p
′.sum

SUM(E.attr) =
∑

end∈End end.sum

AVG(E.attr) = SUM(E.attr)/COUNT(E)

Analogously to Theorem 11.2, Theorem 12.1 can be proven by induction on the num-

ber of events in the graph G.

Example 12.1 In Figure 12.1, we compute COUNT(A), MIN(A.attr), and SUM(A.attr)

based on the GRETA graph for the pattern P and the stream I . Compare the aggregation

results with Example 2.8. MAX(A.attr) = 6 is computed analogously to MIN(A.attr).

AVG(A.attr) is computed based on SUM(A.attr) and COUNT(A).
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Disjunction and Conjunction can be supported by our GRETA approach without

changing its complexity because the count for a disjunctive or a conjunctive pattern P

can be computed based on the counts for the sub-patterns of P as defined below. Let Pi

and Pj be patterns (Definition 2.1). Let Pij be the pattern that detects trends matched

by both Pi and Pj . Pij can be obtained from its DFA representation that corresponds to

the intersection of the DFAs for Pi and Pj [69]. Let COUNT(P ) denote the number of

trends matched by a pattern P . Let Cij = COUNT(Pij), Ci = COUNT(Pi) − Cij , and

Cj = COUNT(Pj)− Cij .

In contrast to event sequence and Kleene plus (Definition 2.1), disjunctive and con-

junctive patterns do not impose a time order constraint upon trends matched by their

sub-patterns.

Disjunction (Pi∨Pj) matches a trend that is a match of Pi or Pj . COUNT(Pi∨Pj) =

Ci + Cj − Cij . Cij is subtracted to avoid counting trends matched by Pij twice.

Conjunction (Pi ∧ Pj) matches a pair of trends tri and trj where tri is a match of Pi

and trj is a match of Pj . COUNT(Pi ∧ Pj) = Ci ∗Cj +Ci ∗Cij +Cj ∗Cij +
(
Cij

2

)
since

each trend detected only by Pi (not by Pj) is combined with each trend detected only by

Pj (not by Pi). In addition, each trend detected by Pij is combined with each other trend

detected only by Pi, only by Pj , or by Pij .

Kleene Star and Optional Sub-patterns can also be supported without changing

the complexity because they are syntactic sugar operators. Indeed, SEQ(Pi∗, Pj) =

SEQ(Pi+, Pj) ∨ Pj and SEQ(Pi?, Pj) = SEQ(Pi, Pj) ∨ Pj .

Constraints on Minimal Trend Length. While our language does not have an ex-

plicit constraint on the minimal length of a trend, one way to model this constraint in

GRETA is to unroll a pattern to its minimal length. For example, assume we want to de-

tect trends matched by the pattern A+ and with minimal length 3. Then, we unroll the

pattern A+ to length 3 as follows: SEQ(A,A,A+).
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Figure 12.2: Count of trends matched by the pattern P in the stream I = {a1 ,b2, a3, a4, b5}

Any correct trend processing strategy must keep all current trends, including those

which did not reach the minimal length yet. Thus, these constraints do not change the

complexity of trend detection. They could be added to our language as syntactic sugar.

Multiple Event Type Occurrences in a Pattern. While in Chapters 10–11 we as-

sumed for simplicity that an event type may occur in a pattern at most once, we now sketch

a few modifications of our GRETA approach allowing to drop this assumption. First, we

assign a unique identifier to each event type. For example, SEQ(A+, B,A,A+, B+)

is translated into P = SEQ(A1+, B2, A3, A4+, B5+). Then, each state in a GRETA

template has a unique label (Figure 12.2). Our GRETA approach still applies with the

following modifications. (1) Events in the first sub-graph are START events, while events

in the last sub-graph are END events. (2) An event e may not be its own predecessor

event since an event may occur at most once in a trend. (3) An event e may be inserted

into several sub-graphs. Namely, e is inserted into a sub-graph for e.type if e is a START

event or e has predecessor events. For example, a4 is inserted into the sub-graphs for A1,

A3, and A4 in Figure 12.2. a4 is a START event in the sub-graph for A1. b5 is inserted

into the sub-graphs for B2 and B5. b5 is an END event in the sub-graph for B5.

Since an event is compared to each previous event in the graph in the worst case,

our GRETA approach still has quadratic time complexity O(n2k) where n is the number

109



of events per window and k is the number of windows into which an event falls (Theo-

rem 11.5). Let t be the number of occurrences of an event type in a pattern. Then, each

event is inserted into t sub-graphs in the worst case. Thus, the space complexity increases

by the multiplicative factor t, i.e., O(tnk), where n remains the dominating cost factor

for high-rate streams and meaningful patterns (Theorem 11.5).
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Performance Evaluation

13.1 Experimental Setup

Infrastructure. We have implemented our GRETA approach in Java with JRE 1.7.0 25

running on Ubuntu 14.04 with 16-core 3.4GHz CPU and 128GB of RAM. We execute

each experiment three times and report their average.

Data Sets. We evaluate the performance of our GRETA approach using the following

data sets.

• Stock Real Data Set. We use the real NYSE data set [43] with 225k transaction

records of 10 companies. Each event carries volume, price, time stamp in seconds, type

(sell or buy), company, sector, and transaction identifiers. We replicate this data set 10

times.

• Linear Road Benchmark Data Set. We use the traffic simulator of the Linear Road

benchmark [39] for streaming systems to generate a stream of position reports from vehi-

cles for 3 hours. Each position report carries a time stamp in seconds, a vehicle identifier,

its current position, and speed. Event rate gradually increases during 3 hours until it

reaches 4k events per second.
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Attribute Distribution min–max
Mapper id, job id Uniform 0–10
CPU, memory Uniform 0–1k
Load Poisson with λ = 100 0–10k

Table 13.1: Attribute values

• Cluster Monitoring Data Set. Our stream generator creates cluster performance

measurements for 3 hours. Each event carries a time stamp in seconds, mapper and job

identifiers, CPU, memory, and load measurements. The distribution of attribute values is

summarized in Table 13.1. The stream rate is 3k events per second.

Event Queries. Unless stated otherwise, we evaluate query Q1 [6] and its nine vari-

ations against the stock data set. These query variations differ by the predicate S.price ∗

X < NEXT(S).price that requires the price to increase (or decrease with >) by X ∈

{1, 1.05, 1.1, 1.15, 1.2} percent from one event to the next in a trend. Similarly, we evalu-

ate queriesQ2 andQ3 [6] and their nine variations against the cluster and the Linear Road

data sets respectively. We have chosen these queries because they contain all clauses (Def-

inition 2.5) and allow us to measure the effect of each clause on the number of matched

trends. The number of matched trends ranges from few hundreds to trillions. In particular,

we vary the number of events per window, presence of negative sub-patterns, predicate

selectivity, and number of event trend groups.

Methodology. We compare GRETA to CET [5], SASE [3], and Flink [30]. To achieve

a fair comparison, we have implemented CET and SASE on top of our platform. We

execute Flink on the same hardware as our platform. While Chapter 20 is devoted to a

detailed discussion of these approaches, we briefly sketch their main ideas below.

• CET [5] is the state-of-the-art approach to event trend detection. It stores and

reuses partial event trends while constructing the final event trends. Thus, it avoids the re-

computation of common sub-trends. While CET does not explicitly support aggregation,
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(a) Latency (b) Memory (c) Throughput

Figure 13.1: Positive patterns (Stock real data set)

we extended this approach to aggregate event trends upon their construction.

• SASE [3] supports aggregation, nested Kleene patterns, predicates, and windows.

It implements the two-step approach as follows. (1) Each event e is stored in a stack

and pointers to e’s previous events in a trend are stored. For each window, a DFS-based

algorithm traverses these pointers to construct all trends. (2) These trends are aggregated.

• Flink [30] is an open-source streaming platform that supports event pattern match-

ing. We express our queries using Flink operators. Like other industrial systems [31, 41,

70], Flink does not explicitly support Kleene closure. Thus, we flatten our queries, i.e.,

for each Kleene query q we determine the length l of the longest match of q. We specify

a set of fixed-length event sequence queries that cover all possible lengths from 1 to l.

Flink is a two-step approach.

Metrics. We measure common metrics for streaming systems, namely, latency, through-

put, and memory. Latency measured in milliseconds corresponds to the peak time differ-

ence between the time of the aggregation result output and the arrival time of the latest

event that contributes to the respective result. Throughput corresponds to the average

number of events processed by all queries per second. Memory consumption measured in

bytes is the peak memory for storing the GRETA graph for GRETA, the CET graph and

trends for CET, events in stacks, pointers between them, and trends for SASE, and trends

for Flink.
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13.2 Number of Events per Window

Positive Patterns. In Figure 13.1, we evaluate positive patterns against the stock real data

set while varying the number of events per window.

Flink does not terminate within several hours if the number of events exceeds 100k

because Flink is a two-step approach that evaluates a set of event sequence queries for

each Kleene query. Both the unnecessary event sequence construction and the increased

query workload degrade the performance of Flink. For 100k events per window, Flink

requires 82 minutes to terminate, while its memory requirement for storing all event se-

quences is close to 1GB. Thus, Flink is neither real time nor lightweight.

SASE. The latency of SASE grows exponentially in the number of events until it fails

to terminate for more than 500k events. Its throughput degrades exponentially. Delayed

responsiveness of SASE is explained by the DFS-based stack traversal which re-computes

each sub-trend tr for each longer trend containing tr. The memory requirement of SASE

exceeds the memory consumption of GRETA 50–fold because DFS stores the trend that is

currently being constructed. Since the length of a trend is unbounded, the peak memory

consumption of SASE is significant.

CET. Similarly to SASE, the latency of CET grows exponentially in the number of

events until it fails to terminate for more than 700k events. Its throughput degrades ex-

ponentially until it becomes negligible for over 500k events. In contrast to SASE, CET

utilizes the available memory to store and reuse common sub-trends instead of recomput-

ing them. To achieve almost double speed-up compared to SASE, CET requires 3 orders

of magnitude more memory than SASE for 500k events.

GRETA consistently outperforms all two-step approaches above regarding all three

metrics because it does not waste computational resources to construct and store expo-

nentially many event trends. Instead, GRETA incrementally computes event trend ag-
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(a) Latency (b) Memory (c) Throughput

Figure 13.2: Patterns with negative sub-patterns (Stock real data set)

gregation. Thus, it achieves 4 orders of magnitude speed-up compared to all approaches

above. GRETA also requires 4 orders of magnitude less memory than Flink and CET since

these approaches store event trends. The memory requirement of GRETA is comparable

to SASE because SASE stores only one trend at a time. Nevertheless, GRETA requires

50–fold less memory than SASE for 500k events.

Patterns with Negative Sub-Patterns. In Figure 13.2, we evaluate the same pat-

terns as in Figure 13.1 but with negative sub-patterns against the stock real data set while

varying the number of events. Compared to Figure 13.1, the latency and memory con-

sumption of all approaches except Flink significantly decreased, while their throughput

increased. Negative sub-patterns have no significant effect on the performance of Flink

because Flink evaluates multiple event sequence queries instead of one Kleene query and

constructs all matched event sequences. In contrast, negation reduces the GRETA graph,

the CET graph, and the SASE stacks before event trends are constructed and aggregated

based on these data structures. Thus, both CPU and memory costs reduce. Despite this

reduction, SASE and CET fail to terminate for over 700k events.

115



13.3 SELECTIVITY OF EDGE PREDICATES

(a) Latency (b) Memory (c) Throughput

Figure 13.3: Selectivity of edge predicates (Linear Road benchmark data set)

13.3 Selectivity of Edge Predicates

In Figure 13.3, we evaluate positive patterns against the Linear Road benchmark data

set while varying the selectivity of edge predicates. We focus on the selectivity of edge

predicates because vertex predicates determine the number of trend groups (Section 11.3)

that is varied in Section 19.4. To ensure that the two-step approaches terminate in most

cases, we set the number of events per window to 100k.

The latency of Flink, SASE, and CET grows exponentially with the increasing predi-

cate selectivity until they fail to terminate when the predicate selectivity exceeds 50%. In

contrast, the performance of GRETA remains fairly stable regardless of the predicate se-

lectivity. GRETA achieves 2 orders of magnitude speed-up and throughput improvement

compared to CET for 50% predicate selectivity.

The memory requirement of Flink and CET grows exponentially (these lines coincide

in Figure 13.3(b)). The memory requirement of SASE remains fairly stable but almost

22–fold higher than for GRETA for 50% predicate selectivity.

13.4 Number of Event Trend Groups

In Figure 13.4, we evaluate positive patterns against the cluster monitoring data set while

varying the number of trend groups. The number of events per window is 100k.
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(a) Latency (b) Memory (c) Throughput

Figure 13.4: Number of event trend groups (Cluster monitoring data set)

The latency and memory consumption of Flink, SASE, and CET decrease exponen-

tially with the increasing number of event trend groups, while their throughput increases

exponentially. Since trends are constructed per group, their number and length decrease

with the growing number of groups. Thus, both CPU and memory costs reduce. In con-

trast, GRETA performs equally well independently from the number of groups since event

trends are never constructed. Thus, GRETA achieves 4 orders of magnitude speed-up

compared to Flink for 10 groups and 2 orders of magnitude speed-up compared to CET

and SASE for 5 groups.
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Cogra Approach Overview

In this chapter, we propose our COGRA approach that extends GRETA to support rich

event matching semantics (Section 2.4) and further optimizes event trend aggregation.

Similarly to GRETA, COGRA pushes aggregation inside Kleene closure computation. This

way, it avoids trend construction with exponential costs. In contrast to GRETA, COGRA

maintains aggregates at the coarsest possible granularity level. Thus, it minimizes the

number of aggregates and reduces both time and space complexity.

To support time-critical streaming applications (Section 1.1), we solve the following

Event Trend Aggregation Problem. Given an event trend aggregation query q (Defini-

tion 2.5) evaluated under any of the event matching semantics (Definitions 2.2, 2.3, and

2.4) over an event stream I , our goal is to compute the aggregation results of q with

minimal latency.

Figure 14.1 illustrates our COGRA framework. The Static Query Analyzer selects

the granularity level at which the aggregates are maintained for a query q. This choice

is determined by event types, predicates, and event matching semantics of q. Thus, we

analyze the pattern (Section 2.2), classify the predicates (Section 2.5), and select the

granularity level as described below. The results of this query analysis are encoded into
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Figure 14.1: COGRA framework

Semantics Without predicates With predicates
on adjacent events on adjacent events

ANY Type Mixed
NEXT, CONT Pattern

Table 14.1: Granularity selection

the COGRA configuration to guide our Runtime Executor (Chapters 15 and 16).

The granularity selector determines the coarsest granularity level at which aggregates

can be maintained for a query q (Table 14.1).

Type-grained aggregator. If the query q is evaluated under the skip-till-any-match

semantics and has no predicates on adjacent events, our executor maintains an aggregate

per each event type in the pattern (Section 15.1).

Mixed-grained aggregator. If the query q is evaluated under the skip-till-any-match

semantics and has predicates on adjacent events θ, our executor maintains the aggregates

at mixed granularity levels, namely, either per event e if e is required to evaluate the

predicates θ or per event type e.type otherwise (Section 15.2).

Pattern-grained aggregator. If the query q is evaluated under the skip-till-next-match

or contiguous semantics, our executor adapts the pattern-grained aggregation strategy.

Namely, only the final aggregate of q and the intermediate aggregate of the last event

matched by q are maintained (Section 16.2).
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Skip-Till-Any-Match Semantics

In this chapter, we define coarse-grained event trend aggregation under the skip-till-any-

match semantics. In this case, aggregates are maintained either at type granularity level

(Section 15.1) or at mixed granularity levels (Section 15.2).

15.1 Type-Grained Aggregator

We now propose maintaining aggregates at the type granularity level and discard all

events once they have updated the aggregates. Thus, we minimize the number of ag-

gregates and further reduce the costs. Type-grained event trend aggregation applies if

no predicates on adjacent events exist in the query. Indeed, without such predicates, the

adjacency relation between events is determined by event types, event time stamps, and

predicates on single events (Definition 2.2).

Let e be an event of typeE and T = P.predTypes(E) be predecessor types ofE in the

pattern P (Section 2.2). When e arrives, all previously matched events of types E ′ ∈ T

are adjacent to e (Figure 15.1(a)). Thus, a count can be assigned to each type in the FSA

representation of P (Figure 15.1(b)). An event e updates the count of its type E and is
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15.1 TYPE-GRAINED AGGREGATOR

Figure 15.1: Baseline approach vs. our COGRA approach for the pattern P=(SEQ(A+,B))+
and the stream I={a1,b2,a3,a4,c5,b6,a7,b8}

discarded thereafter. The final count corresponds to the count of the end type of P .

Example 15.1 According to our predecessor relationship analysis in Section 2.2, all pre-

viously matched a’s and b’s are adjacent to a7 in Figure 15.1(a). Thus, a7.count is set to

the sum of the counts of all preciously matched a’s and b’s. We further increment a7.count

by one since a7 is a START event. The count of type A is increased by a7.count since a7

is of type A. The count of B is the final count.

a7.count = 1 + A.count+B.count = 1 + 10 + 11 = 22.

A.count = A.count+ a7.count = 10 + 22 = 32.

b8.count = A.count = 32.

B.count = B.count+ b8.count = 11 + 32 = 43.

Theorem 15.1 (Type-Grained Trend Count). Let query q be evaluated under the skip-

till-any-match semantics and have no predicates on adjacent events. Let P be its pattern.

Let e ∈ I be an event of type E and T = P.predTypes(E). Then, the type-grained event
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Algorithm 7 Type-grained trend count algorithm for the skip-till-any-match semantics
Input: Query q with pattern P , event stream I
Output: Count of event trends matched by q in I

1: H ← empty hash table
2: for all event type E in P do H.put(E, 0)

3: for all e ∈ I of type E do
4: e.count ← (E = start(P )) ? 1 : 0
5: for all E ′ ∈ P.predTypes(E) do e.count += H.get(E ′)

6: E.count ← H.get(E) + e.count ; H.put(E,E.count)

7: return H.get(end(P ))

trend count is computed as follows:

e.count =
∑

E′∈T E
′.count .

E.count =
∑

e.type=E e.count .

final count = end(P ).count .

If e is a START event, e.count is incremented by one.

Proof: An event-grained trend count e.count computed under the skip-till-any-

match semantics is correct (Theorem 11.2). Without predicates on adjacent events, e.count

is set to the sum of event-grained trend counts of all previously matched events e′ of a

predecessor type E ′ of E under the skip-till-any-match semantics (Section 11.1), i.e., the

sum of type-grained trend counts of all predecessor types E ′ of E. The first equation is

proven.

A type-grained trend count E.count for type E is computed based on event-grained

trend counts of all matched events e of type E. Thus, E.count is correct under the skip-

till-any-match semantics. The second equation is proven.

In particular, a type-grained trend count for the end type of P is correct. The third

equation is proven.

The Type-Grained Trend Count Algorithm consumes a query q and a stream I and
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returns the number of trends matched by q in I . Algorithm 7 maintains a hash table H

that maps each type E in the pattern P to the count for E. Initially, all counts are set to 0

(Lines 1–2). For each event e of type E, e.count = 1 if E is a start type of P . Otherwise,

e.count = 0 (Lines 3–4). For each predecessor type E ′ of E, e.count is incremented by

E ′.count (Line 5). E.count is incremented by e.count in the table H (Line 6). The count

of the end type of P is returned (Line 7).

Theorem 15.2 (Complexity). Let q be a query with pattern P of length l. Let n by the

number of events per window of q. Algorithm 7 has linear time O(nl) and space Θ(l)

complexity.

Proof: For each matched event of type E, the type-grained trend counts of all

predecessor types of E are accessed. In the worst case, the counts of all types in P are

accessed. Since n > l for high-rate streams and meaningful patterns, the time complexity

is linear in n: Θ(n) ∗ O(l) = O(nl). The space complexity is determined by the number

of counts. Since one count is stored per type, the space costs are linear in l: Θ(l).

15.2 Mixed-Grained Aggregator

In this section, we extend our coarse-grained trend aggregation techniques to a more

general class of queries with predicates on adjacent events θ. To this end, we now propose

to maintain aggregates at mixed granularity levels. Namely, we divide the event types TP

in the pattern P into two disjoint sets Te and Tt. Events of types Te must be stored

to evaluate the predicates θ as new events arrive. Thus, an event-grained aggregate is

computed for each event of type in Te. In contrast, events of types Tt do not have to be

kept. Thus, type-grained aggregates are maintained for each type in Tt.

Example 15.2 There are two sub-graphs for types A and B in Figure 15.1(a). If pred-

icates θ restrict the adjacency relations between b’s and a’s, event-grained aggregates
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Figure 15.2: The type-granular count for type A and the event-granular counts for events of
type B

must be maintained for b’s. Indeed, when an a arrives, we have to compare it to each

previously matched b to select those b’s that satisfy the predicates θ, denoted (b, a)θ = >.

In contrast, a type-grained count is maintained for type A. Assuming that a7 is adjacent

to b2 and b6, a7.count is computed based on the mixed-grained counts as follows:

a7.count = A.count+
∑

(b,a7)θ=> b.count

= A.count+ b2.count+ b6.count = 22.

Analogously, if predicates θ restrict the adjacency relation between a’s and a’s (or be-

tween a’s and b’s), a type-grained count is maintained for B, while event-grained counts

are computed for a’s.

Theorem 15.3 (Mixed-Grained Trend Count). Let query q be evaluated under the skip-

till-any-match semantics, θ be its predicates on adjacent events, P be its pattern, attr and

attr’ be attributes of types E and E ′ in P respectively, and ◦ ∈ {>,≥, <,≤, =, 6=} be a

comparison operator. A type-grained trend count is maintained for a typeE if either there

is no predicate of the form (E.attr ◦ E ′.attr ′) in θ or E /∈ P.predTypes(E ′). Otherwise,

an event-grained trend count is computed for each matched event of type E.

Let e ∈ I be an event of type E with P.predTypes(E) = Tt ∪· Te where Tt (Te) is

the set of event types for which type-grained (event-grained) trend counts are maintained.
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Algorithm 8 Mixed-grained trend count algorithm for the skip-till-any-match semantics
Input: Query q with pattern P and predicates θ, stream I
Output: Count of event trends matched by q in I

1: H ← empty hash table; V ← ∅; final count ← 0
2: for all event type E in P do H.put(E, 0)

3: for all (E.attr Op E ′.attr) ∈ θ do
4: if E ∈ P.predTypes(E ′) then H.remove(E)

5: for all e ∈ I of type E do
6: e.count ← (E = start(P )) ? 1 : 0
7: for all E ′ ∈ P.predTypes(E) do
8: if E ′ ∈ H then e.count += H.get(E ′)
9: else for each e′ ∈ V.predEvents(e) of type E ′ do

10: if e′ and e satisfy θ then
11: V ← V ∪ e; e.count += e′.count

12: if E ∈ H then
13: E.count← H.get(E) + e.count; H.put(E,E.count)
14: else if E = end(P ) then final count += e.count

15: if end(P ) ∈ H then return H.get(end(P ))
16: else return final count

Then, a mixed-grained trend count is computed as follows:

e.count =
∑

E′∈Tt E
′.count+∑

e”.type∈Te, (e”,e)θ=> e”.count.

If e is a START event, e.count is incremented by one. E.count and final count are

computed as defined in Theorem 15.1.

Proof: According to Theorems 15.1 and 11.3, both a type-grained trend count

E ′.count and an event-grained trend count e”.count and are correct under the skip-till-

any-match semantics. Since a mixed-grained trend count e.count is computed based on

these counts, e.count is also correct under the skip-till-any-match semantics.

The Mixed-Grained Trend Count Algorithm consists of two phases, namely, the

static analysis and the runtime execution.

During the static analysis (Lines 1–4), for each type E in P , Algorithm 8 decides
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whether to maintain a single type-grained count E.count or an event-grained count for

each matched event of type E. Type-grained counts are maintained in a hash table H .

Initially, counts for each type in P is set to 0 (Line 2). For each predicate that restricts the

adjacency relation between events of type E and events of type E ′, if E is a predecessor

type of E, then E is removed from the table H (Lines 3–4).

During the runtime execution (Lines 5–16), for each event e of type E, e.count = 1

if E is a start type of P . Otherwise, e.count = 0 (Lines 5–6). For each predecessor

type E ′ of E, if a type-grained count E ′.count is maintained, e.count is incremented

by E ′.count (Lines 7–8). If event-grained counts for events of type E ′ are computed,

e.count is incremented by the count of each predecessor event e′ of type E ′ that satisfies

the predicates θ (Lines 9–11). If a type-grained count E.count is maintained, E.count is

incremented by e.count in the table H (Lines 12–13). If event-grained counts for events

of type E are computed and E is an end type of P , then the final count is incremented by

e.count (Line 14). Lastly, if a type-grained count is maintained for the end type of P , it

is returned as a result. Otherwise, final count is returned (Lines 15–16).

Theorem 15.4 (Complexity). Let q be a query with pattern P of length l and n be the

number of events per window of q. Let Tt (Te) be the set of event types for which type-

grained (event-grained) trend counts are maintained. Let t ≤ l be the number of types in

Tt and ne ≤ n be the number of events of a type in Te per window of q. Algorithm 8 has

quadratic time O(n(t+ ne)) and linear space Θ(t+ ne) complexity.

Proof: The time complexity of the static analysis is linear in l and the number of

predicates θ. These values are negligible compared to the number of events n for high-

rate streams and meaningful queries. During runtime execution, for each matched event

O(t) type-grained and O(ne) event-grained trend counts are accessed. Thus, the time

complexity is quadratic in n: O(n(t + ne)). The space complexity corresponds to the

number of type-grained and event-grained trend counts: Θ(t+ ne).
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Skip-Till-Next-Match and Contiguous

Semantics

In this chapter, we define coarse-grained event trend aggregation under the skip-till-next-

match and contiguous semantics. We first define baseline event-grained trend aggregation

(Section 16.1). We then propose our COGRA approach that maintains aggregates at the

pattern granularity level (Section 16.2).

16.1 Baseline Event-Grained Aggregator

Skip-Till-Next-Match Semantics does not skip relevant events in a trend (Section 2.4).

Thus, only the last matched event el may connect to a new event e. Indeed, connecting an

event earlier than el to e would mean that el would be skipped in a trend. Such execution

strategy would produce wrong results by Definition 2.3.

Further, a new event trend can only start after the previous trend has ended. Otherwise,

an event considered relevant in one trend would be skipped in the other trend. However,

skipping relevant events is prohibited by Definition 2.3. Thus, a START event is matched
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only if the last event is not yet set or is an END event.

Example 16.1 If the pattern P is evaluated under the skip-till-next-match semantics, the

graph in Figure 15.1(c) is constructed. Now, only the last a or b connects to a new

a. Analogously, the last a connects to a new b. Since less edges are drawn than in

Figure 15.1(a), only eight trends are detected (Figure 2.3).

Contiguous Semantics skips no event between matched events in a trend. Thus, an

event e that cannot be matched discards all events matched so far from the graph. The

final aggregate is not reset, however since it corresponds to the number of contiguous

trends that had been matched before the event e arrived.

Example 16.2 If the pattern P is evaluated under the contiguous semantics, the graph

in Figure 15.1(e) is constructed. Since c5 cannot be matched, it disqualifies all previ-

ously matched events (a1–a4) from contributing to new contiguous trends to be formed

in the future. These events are deleted. They are highlighted by a dark background in

Figure 15.1(e). Since there is no trend that b6 can extend, b6 is not matched. Only two

trends are detected (Figure 2.3).

16.2 Pattern-Grained Aggregator

We now propose to compute trend aggregation at the coarsest possible pattern granularity

level. Only two aggregates have to be maintained, namely, the intermediate count of

the last matched event el and the final count (Figures 15.1(d) and 15.1(f)). Under these

event matching semantics, predicates on adjacent events to not require fine-grained trend

aggregation (Section 11.1 and Section 15.2). Indeed, since only el may connect to a new

event e, predicates on adjacent events are evaluated based on el and e. Each matched END

event e increments the final count by e.count.

128



16.2 PATTERN-GRAINED AGGREGATOR

Example 16.3 In Figure 15.1(d), a7 propagates the count of the last event b6, adds one

to it since a7 is a START event, and becomes the new last event. b6 is discarded. Since b6

is an END event, it increased the final count by b6.count = 3.

Theorem 16.1 (Pattern-Grained Trend Count). Let query q be evaluated under the skip-

till-next-match or under the contiguous semantics and P be its pattern. The pattern-

grained counts el.count and final count are maintained as follows.

If a new event e ∈ I a START event, e.count = 1. Otherwise, e.count = 0. If

the last matched event el and e are adjacent in a trend (Definitions 2.3 and 2.4), then

el.count += e.count. The event e becomes the new last event.

The final count accumulates the counts of all matched END events, i.e., final count =∑
el .type=end(P) el.count.

Proof: We prove the first equation by induction on the number of matched events n.

Induction Basis: n = 1. If only one event e is matched, e is a START event. Thus,

e.count = 1. The event e becomes the last matched event el.

Induction Assumption: These equations hold for n matched events.

Induction Step: n → n + 1. Assume a new event e is matched. According to the

induction assumption, el.count is correct, i.e., it corresponds to the number of sub-trends

that end at the event el. If el and e are adjacent, e continues all these trends. If e is a

START event, it begins a new trend and one is added to el.count. The event e becomes

the last matched event el. The first equation is proven.

We count the number of finished trends only. By definition only END events may

finish trends. Since the count of an END event end corresponds to the number of trends

that finish at the event end, the total number of trends is the sum of counts of all matched

END events. The second equation is proven.

The Pattern-Grained Trend Count Algorithm. Initially, the last matched event el

is null, while the final count is set to 0 (Line 1). For a new matched event e ∈ I of
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Algorithm 9 Pattern-grained trend count algorithm for the skip-till-next-match and con-
tiguous semantics
Input: Query q with pattern P , event stream I
Output: Count of event trends matched by q in I

1: el ← null; final count ← 0
2: for all e ∈ I of type E do
3: if isMatched(el, e) then
4: e.count← (E = start(P )) ? 1 : 0
5: if isAdjacent(el, e) then el.count += e.count
6: else el.count = e.count

7: el ← e
8: if E = end(P ) then final count += el.count

9: else if q.semantics = contiguous then el ← null

10: return final count

type E, e.count = 1 if e is a START event. Otherwise, e.count = 0 (Lines 2–4). An

event e is matched if one of the following conditions holds: (1) The events el and e are

adjacent (Definitions 2.3 and 2.4). In this case, the count of el is increased by the count

of e (Line 5). (2) The events el and e are not adjacent, e is a START event, and el is either

null or an END event. Then, the count of el is set to the count of e (Line 6). The event e

becomes the new last event (Line 7). If e is an END event, the final count is increased by

the count of el (Line 8). If e cannot be matched and the query q detects contiguous trends,

then el is set to null (Line 9). The final count is returned (Line 10).

Theorem 16.2 (Complexity). Let q be a query evaluated under the skip-till-next-match

or contiguous semantics and n be the number of events per window of q. Algorithm 9 has

linear time Θ(n) and constant space O(1) complexity.

Proof: The time complexity is determined by the number of matched events, i.e.,

Θ(n). The space complexity is constant since two aggregates are stored per pattern.
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Implementation

Cogra Runtime Data Structures must support event trend aggregation at different gran-

ularity levels.

Event-grained aggregator. If aggregates are maintained per event, we utilize the

GRETA the data structures described in Section 11.4.

Type-grained aggregator. If aggregates are maintained per event type (Section 15.1),

each type in the Type Hash Table is mapped directly to the Results Hash Table (Fig-

ure 17.1(b)) since the aggregate of the end type per window corresponds to the final result

for a window.

Mixed-grained aggregator. If mixed-grained aggregates are computed (Section 15.2),

each type E in the Type Hash Table is either mapped to its respective Event Tree if an

aggregate is maintained per each event of typeE (Figure 17.1(a)) or directly to the Results

Hash Table if a single aggregate is computed for the type E (Figure 17.1(b)).

Pattern-grained aggregator. If aggregates are computed at pattern level (Section 16.2),

each pane in the Time Pane Array is mapped directly to the Results Hash Table (Fig-

ure 17.1(c)) that stores the last matched event and the final aggregate per window.
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Figure 17.1: COGRA runtime data structures
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Other Aggregation Functions

While so far we have focused on event trend count computation, i.e., COUNT(*), we

now sketch how the principles of coarse-grained online trend aggregation apply to other

aggregation functions (Definition 2.5). Table 18.1 defines COUNT(E), MIN(E.attr), and

SUM(E.attr) at different granularity levels. In contrast to COUNT(∗), only matched

events e of type E update the aggregates. All other matched events x of type X 6= E

propagate the aggregates from previous to more recent events in a trend matched by a

pattern P (or event types in P ). MAX(E.attr) is maintained analogously to MIN(E.attr),

while AVG(E.attr) is computed based on SUM(E.attr) and COUNT(E) (Definition 2.5).
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Type-grained
aggregates

Mixed-grained
aggregates

Pattern-grained
aggregates

e.countE =
e.count+∑

E′∈T E
′.countE

x.countE =∑
X′∈YX

′.countE

e.countE =
e.count+∑

E′∈Tt E
′.countE+∑

e”.type∈Te, (e”,e)θ=> e”.countE
x.countE =∑

X′∈Yt
X ′.countE+∑

x”.type∈Ye, (x”,x)θ=> x”.countE

el.countE +=
e.count

T.countE =
∑

t.type=T t.countE COUNT(E) =

COUNT(E) = end(P ).countE
∑

el.type=end(P ) el.countE
e.min =
minE′∈T
(e.attr, E ′.min)
x.min =
minX′∈Y(X ′.min)

e.min =
minE′∈Tt, e”.type∈Te, (e”,e)θ=>
(e.attr, E ′.min, e”.min)
x.min =
minX′∈Yt, x”.type∈Ye, (x”,x)θ=>
(X ′.min, x”.min)

el.min =
min(e.attr, el.min)

T.min = mint.type=T (t.min) MIN(E.attr) =
MIN(E.attr) = end(P ).min minel.type=end(P )(el.min)

e.sum =
e.attr ∗ e.count+∑

E′∈T E
′.sum

x.sum =∑
X′∈YX

′.sum

e.sum =
e.attr ∗ e.count+∑

E′∈Tt E
′.sum+∑

e”.type∈Te, (e”,e)θ=> e”.sum
x.sum =∑

X′∈Yt
X ′.sum+∑

x”.type∈Ye, (x”,x)θ=> x”.sum

el.sum +=
e.attr ∗ e.count

T.sum =
∑

t.type=T t.sum SUM(E.attr) =

SUM(E.attr) = end(P ).sum
∑

el.type=end(P ) el.sum

Table 18.1: Coarse-grained event trend aggregation (e, x, e”, x”, t ∈ I are matched events,
e.type = E, x.type = X 6= E, T is any event type in P , P.predTypes(E) = T = Tt ∪̇ Te
(as defined in Theorem 15.3), and P.predTypes(X) = Y = Yt ∪̇ Ye)
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Performance Evaluation

19.1 Experimental Setup

Infrastructure. We have implemented our approach in Java with JRE 1.7.0 25 running

on Ubuntu 14.04 with 16-core 3.4GHz CPU and 128GB of RAM. We execute each ex-

periment three times and report their average results here.

Methodology. We demonstrate the effectiveness of COGRA by comparing it to Flink

[30], SASE [3], A-Seq [2], and GRETA [6] since they cover the spectrum of state-of-

the-art event aggregation approaches (Table 1.1). We run Flink on the same hardware as

our platform. To achieve a fair comparison, we implemented SASE, A-Seq, and GRETA

on top of our platform. While Chapter 20 is devoted to a detailed discussion of these

approaches, we summarize them in Table 19.1.

• Flink [30] is a popular open-source streaming platform that supports event pattern

matching. We express our queries using Flink operators such as event sequence, window,

grouping. Similarly to other industrial systems [31, 32], Flink does not explicitly support

Kleene closure. Thus, we flatten our queries as follows. For each Kleene pattern P , we

determine the length l of the longest match of P . We specify a set of fixed-length event
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19.1 EXPERIMENTAL SETUP

Approach
Kleene
closure

Event matching semantics Predicates on Event
trend
grouping

ANY NEXT CONT
single
events

adjacent
events

Two-
step

Flink − + − + + + +
SASE + + + + + + +

On-
line

GRETA + + − − + + +
A-Seq − + − − + − +

COGRA + + + + + + +

Table 19.1: Expressive power of the event aggregation approaches

sequence queries that cover all possible lengths up to l. Flink supports the skip-till-any-

match and contiguous semantics. It implements a two-step approach that constructs all

event sequences prior to their aggregation.

• SASE [3] supports Kleene closure and all event matching semantics. It implements

the two-step approach. Namely, it first stores each event e in a stack and computes the

pointers to e’s previous events in a trend. For each window, a DFS-based algorithm

traverses these pointers to construct all trends. Then, these trends are aggregated.

• GRETA [6] captures all matched events and the trend relationships among them

as a graph. Based on the graph, it computes event trend aggregation online, that is, it

avoids event trend construction (Chapters 10–13). It supports only the skip-till-any-match

semantics.

• A-Seq [2] avoids event sequence construction by dynamically maintaining a count

for each prefix of a pattern. Since A-Seq does not support Kleene closure, we flatten our

queries as described above. A-Seq supports only the skip-till-any-match semantics. It

does not support arbitrary predicates on adjacent events beyond equivalence predicates,

such as [patient] in query q′ in Section 1.1.

Data Sets. We compare our COGRA approach to the state-of-the-art techniques using

the following data sets.

• Physical Activity Monitoring Real Data Set [42] contains physical activity reports
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19.1 EXPERIMENTAL SETUP

for 14 people during 1 hour 15 minutes. 18 activities (e.g., walking, driving) are consid-

ered. A report carries time stamp in seconds, person identifier, activity identifier, heart

rate, etc. The size of the data set is 1.6GB.

• Stock Real Data Set [43] contains 225k transaction records of 19 companies in 10

sectors. Each event carries time stamp in seconds, company identifier, sector identifier,

transaction identifier, transaction type (sell or buy), volume, price, etc. We replicate this

data set 10 times.

• Public Transportation Synthetic Data Set. Our stream generator creates trips for 30

passengers using public transportation services in a metropolitan area with 100 stations.

Each event carries a time stamp in seconds, passenger identifier, station identifier, and

waiting time in seconds. Waiting durations are generated uniformly at random.

Event Queries. We evaluate queries Q1–Q3 [6] against the physical activity monitor-

ing, public transportation, and stock data sets respectively. We vary event matching se-

mantics, number of events per window, predicate selectivity, and number of trend groups.

Unless stated otherwise, we evaluate our queries under the skip-till-any-match semantics

since all state-of-the-art approaches support this semantics (Table 19.1). To ensure that

the two-step approaches terminate at least in some cases, the default number of events

per window is 50k. Since A-Seq does not support arbitrary predicates on adjacent events,

we evaluate our queries without such predicates by default. Unless stated otherwise, the

number of trend groups is 14 for the physical activity data set, 19 for the stock data set,

and 30 for the public transportation data set.

Metrics. We measure the common metrics for streaming systems, namely, latency,

throughput, and peak memory. Latency is measured in milliseconds as the average time

difference between the time of the aggregation result output and the arrival time of the lat-

est event that contributes to the respective result. Throughput corresponds to the average

number of events processed by all queries per second. Peak memory includes the mem-
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19.2 EVENT MATCHING SEMANTICS

(a) Latency of all approaches (b) Memory of all approaches (c) Throughput of all approaches

(d) Latency of online approaches (e) Memory of online approaches (f) Throughput of online appr.

Figure 19.1: Skip-till-any-match semantics (Stock real data set)

ory for storing the aggregates and sub-graphs for COGRA, the GRETA graph for GRETA,

prefix counters for A-Seq, events in stacks, pointers between them, and trends for SASE,

and trends for Flink.

19.2 Event Matching Semantics

In Figures 19.1–19.2(b), we compare the performance of COGRA to the state-of-the-art

approaches under diverse event matching semantics, while varying the number of events

per window. If an approach does not support a semantics (Table 19.1), the approach is

not shown in the chart for this semantics.

Two-Step Approaches perform well for high-rate streams only under the most restric-

tive contiguous semantics (Figure 19.2(b)) because the number and length of contiguous

trends are relatively small. Nevertheless, COGRA achieves 27–fold speed up compared to

Flink and 12–fold speed up compared to SASE when the number of events per window
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19.2 EVENT MATCHING SEMANTICS

(a) Skip-till-next-match seman-
tics (Public transport data set)

(b) Contiguous semantics (Phys-
ical activity real data set)

Figure 19.2: Skip-till-next-match and contiguous semantics

reaches 100 million.

Flink is not optimized for trend aggregation for two reasons. One, Flink must evaluate

a workload of event sequence queries for each Kleene query. Two, Flink first constructs

all event sequences and then aggregates them. Under the skip-till-any-match semantics,

the latency and memory of Flink grow exponentially in the number of events, while its

throughput decreases exponentially (Figures 19.1(a)–19.1(c)). Flink does not terminate

when the number of events exceeds 40k. For 40k events, COGRA achieves 4 orders of

magnitude speed-up and uses 8 orders of magnitude less memory than Flink.

SASE supports Kleene patterns but also implements a two-step approach. Under

skip-till-any-match, the latency and memory usage of SASE grow exponentially in the

number of events, while its throughput degrades exponentially (Figures 19.1(a)–19.1(c)).

SASE fails to terminate when the number of events exceeds 40k. For 40k events, COGRA

achieves 3 orders of magnitude speed-up and 4 orders of magnitude memory reduction

compared to SASE. Even under skip-till-next-match, SASE does not terminate if a win-

dow contains over 4 million events (Figure 19.2(a)). For 4 million events, SASE pro-

duces aggregation results with an over 3 hours long delay – which is unacceptable for

time-critical applications. COGRA achieves 4 orders of magnitude speed-up and 5 orders

of magnitude memory reduction compared to SASE in this case.

Online Approaches perform similarly for low-rate streams (Figures 19.1(a)–19.1(c)),
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19.2 EVENT MATCHING SEMANTICS

while high-rate streams reveal the difference between them (Figures 19.1(d)–19.1(f)).

GRETA captures all matched events and their trend relationships as a graph. While the

overhead of graph construction is negligible for low-rate streams, it becomes a bottleneck

when the stream rate increases. Under skip-till-any-match, GRETA does not terminate

if the stream rate is higher than 20 million events per window (Figure 19.1(d)). For 20

million events, GRETA suffers from over an hour long delay. Its latency is 4 orders of

magnitude higher compared to COGRA in this case.

A-Seq performs best among the state-of-the-art approaches. However, its expressive

power is limited (Table 19.1). Also, A-Seq must evaluate a workload of event sequence

queries for each Kleene pattern. The number of queries grows linearly in the number of

events. Due to this large workload, the latency of A-Seq is 3 orders of magnitude higher

compared to COGRA when the number of events reaches 100 million (Figure 19.1(d)).

Each event sequence query maintains a fixed number of aggregates [2]. Thus, the mem-

ory usage of A-Seq grows linearly with the number of queries (i.e., with the number of

events). A-Seq requires 4 orders of magnitude more memory than COGRA for 100 million

events (Figure 19.1(e)).

COGRA performs well for all semantics and stream rates because COGRA maintains

a fixed number of aggregates per Kleene pattern. Its memory usage is constant (Fig-

ures 19.1(b) and 19.1(e)). The latency of COGRA grows linearly in the number of events.

For 100 million events per window, the latency of COGRA stays within 3 seconds (Fig-

ure 19.1(d)), while its throughput is over 39 million events per second (Figure 19.1(f)).

COGRA enables real-time and in-memory trend aggregation.
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19.3 PREDICATE SELECTIVITY

(a) Latency (b) Memory

Figure 19.3: Predicate selectivity (Stock real data set)

19.3 Predicate Selectivity

In Figure 19.3, we focus on the selectivity of predicates on adjacent events, while pred-

icates on single events are evaluated when varying the number of trend groups (Sec-

tion 19.4) [2, 6]. To ensure that the two-step approaches terminate in most cases, we run

this experiment against a low-rate stream of 50k events per window. Since A-Seq does

not support expressive predicates on adjacent events, it is not evaluated here.

Two-Step Approaches. When the predicate selectivity increases, more and longer

trends are constructed and stored by Flink. In fact, its latency and memory usage grow

exponentially (Table 2.1, Figures 19.3(a)–19.3(b)). Flink fails to terminate once the pred-

icate selectivity exceeds 50%. When the predicate selectivity is 50%, COGRA achieves 3

orders of magnitude speed-up and 3 orders of magnitude memory reduction compared to

Flink.

SASE constructs all trends. Thus, its latency grows exponentially. Only the current

trend is stored however. The number of stored pointers between events increases when

the predicate selectivity grows. Thus, the memory costs grow linearly. The latency of

COGRA is 2 orders of magnitude lower, while it uses 13–fold less memory than SASE for

90% predicate selectivity.

Online Approaches perform well for such low-rate stream of 50k events per window.

When the predicate selectivity increases, GRETA stores the same events in the GRETA
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19.4 NUMBER OF EVENT TREND GROUPS

(a) Latency (b) Memory

Figure 19.4: Number of trend groups (Public transport data set)

graph but the number of edges between them increases. Thus, latency increases linearly

in the number of edges. Since edges are not stored, the memory consumption remains

stable.

Similarly, the number of aggregates maintained by COGRA stays the same with the

growing predicate selectivity. Since COGRA maintains aggregates per event type (not per

event), it achieves double speed-up and memory reduction compared to GRETA when the

predicate selectivity reaches 90%.

19.4 Number of Event Trend Groups

In Figure 19.4, we vary the number of trend groups. To ensure that the two-step ap-

proaches terminate in most cases, we run this experiment against a low-rate stream of

50k events per window. When the number of groups increases, less events fall into each

group. Thus, the latency of all approaches reduces with the increasing number of trend

groups.

Two-Step Approaches. Since trends are constructed per group, the number and

length of trends decrease with the growing number of groups. Thus, the latency and

memory costs of Flink decrease exponentially when the number of groups increases.

Flink fails to terminate when the number of groups is fewer than 15. For 15 groups,
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19.4 NUMBER OF EVENT TREND GROUPS

COGRA wins 5 orders of magnitude with respect to latency and 8 orders of magnitude

regarding memory usage compared to Flink.

SASE constructs all trends without storing them. Thus, its latency reduces expo-

nentially, while its memory consumption decreases linearly with the growing number of

groups. SASE does not terminate for fewer than 25 groups. For 25 groups, COGRA

achieves 4 orders of magnitude speed-up and 3 orders of magnitude memory reduction

compared to SASE.

Online Approaches performs well independently from the number of groups since

trends are not constructed. The latency of A-Seq reduces linearly when the number of

groups increases. Since A-Seq evaluates a workload of event sequence queries for each

Kleene query, its latency is 5–fold higher than the latency of COGRA for 5 groups. A-Seq

maintains aggregates per group. Thus, its memory costs increase linearly in the number

of groups. COGRA wins 2 orders of magnitude regarding memory compared to A-Seq for

30 groups.

The latency of GRETA decreases linearly with the increasing number of groups. Due

to the GRETA graph construction overhead, the latency of GRETA is 7–fold higher than

the latency of COGRA for 5 groups. The memory usage of GRETA remains stable when

varying the number of groups because the same number of events is stored in the GRETA

graphs. The memory costs of GRETA are 3 orders of magnitude higher compared to

COGRA in all cases.

143



20

Related Work

Complex Event Processing approaches such as SASE [3, 7], Cayuga [28], ZStream [29],

and E-Cube [4] support aggregation computation over streams. SASE and Cayuga deploy

a Finite State Automaton-based query execution paradigm. ZStream translates an event

query into an operator tree optimized using rewrite rules. E-Cube employs hierarchical

event stacks to share events across different event queries. However, the expressive power

of all these approaches is limited. Cayuga, ZStream, and E-Cube do not support rich

event matching semantics. Cayuga and ZStream do not support GROUP-BY clause, while

E-Cube does not support Kleene closure in their event query languages. Since these

approaches do not design any optimization techniques for trend aggregation, they require

trend construction prior to trend aggregation. Due to the exponential time complexity

of trend construction (Table 2.1), these two-step approaches fail to respond within a few

seconds (Chapter 19).

In contrast to these approaches, A-Seq [2] proposes online aggregation of fixed-length

event sequences under the skip-till-any-match semantics. However, it supports neither

Kleene closure, nor arbitrarily nested event patterns, nor other event matching semantics,

nor expressive predicates on adjacent events. Thus, A-Seq does not tackle the exponential
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complexity of event trends.

Traditional Data Streaming approaches [33, 34, 35, 36, 37, 67, 71, 72] support ag-

gregation over data streams. Some incrementally aggregate raw input events for single-

stream queries [36, 67]. Others share aggregation results among overlapping sliding win-

dows [33, 36] or multiple queries [35, 71, 72]. However, these approaches are restricted

to Select-Project-Join queries with window semantics. That is, their execution paradigm

is set-based. They support neither event matching semantics nor CEP-specific operators

such as event sequence and Kleene closure that treat the order of events as first-class citi-

zens. These approaches require the construction of join results prior to their aggregation.

Thus, they define incremental aggregation of single raw events but implement a two-step

approach for join results.

Industrial streaming systems such as Flink [30], Esper [31], and Oracle Stream Ana-

lytics [32] support fixed-length event sequences. They support neither Kleene closure nor

various event matching semantics. While Kleene closure computation can be simulated

by a set of event sequence queries covering all possible lengths of a trend, this approach

is possible only if the maximal length of a trend is known apriori. This is rarely the case

in practice. Furthermore, this approach is highly inefficient for two reasons. One, it must

execute a set of event sequence queries for each Kleene query. This increased workload

degrades the system performance. Two, since this approach requires trend construction

prior to their aggregation, it has exponential time complexity.

Static Sequence Databases extend traditional SQL queries by order-aware join op-

erations and support aggregation of their results [18, 19]. However, they do not support

Kleene closure. Instead, single data items are aggregated [18, 73, 74, 75]. They also do

not support event matching semantics. Lastly, these approaches assume that the data is

statically stored and indexed prior to processing. Hence, they do not tackle challenges that

arise due to dynamically streaming data such as event expiration and real-time execution.
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Part III

Shared Event Sequence Aggregation
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Sharon Approach Overview

In this chapter, we share online aggregation of event queries with event sequence patterns

(Definition 2.1) evaluated under the most flexible skip-till-any-match semantics (Sec-

tion 2.4). These queries do not support predicates on adjacent events (Section 2.5). To

simplify our discussion, we assume that: (1) All queries in the workload have the same

predicates, grouping, and windows. (2) A sub-pattern p is shared among all queries con-

taining p. In Chapter 24, we sketch straightforward extensions of our approach to relax

these assumptions.

We target time-critical applications that require event sequence aggregation results

within a few seconds (Section 1.1). Latency corresponds to the average time difference

between the time point of the aggregation result output by a query in the workload and the

arrival time of the latest event that contributed to this result. Given a query workload Q

and an event stream I , our Multi-query Event Sequence Aggregation (MESA) Problem

is to determine which queries share the aggregation of which patterns (i.e., a sharing plan

P) such that the latency of evaluating the workload Q according to the plan P against the

stream I is minimal.

To solve this problem, our SHARON framework deploys the following components
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Figure 21.1: SHARON framework

(Figure 21.1). For a given workload, our SHARON Optimizer identifies sharing candi-

dates of the form (p,Qp) where p is a pattern that could potentially be shared by a set of

queries Qp. It then estimates the benefit of each candidate (p,Qp) (Chapter 22), deter-

mines sharing conflicts among these candidates, and compactly encodes all candidates,

their benefits and conflicts into a SHARON graph (Section 23.1). Based on the graph, the

optimizer prunes large portions of the search space (Section 23.2) and returns an optimal

sharing plan (Section 23.3). Based on this plan, our SHARON Executor first computes the

aggregation results for each shared pattern and then combines these shared aggregations

to obtain the final results for each query in the workload (Chapter 22).
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Sharing Benefit Model

Our optimizer first identifies sharing candidates in a workload (Section 22.1). Our ex-

ecutor leverages A-Seq [2] to compute the aggregation results of each query using either

the Not-Shared method (Section 22.2) or the Shared method (Section 22.3). Lastly, the

optimizer estimates the benefit of sharing each candidate (Section 22.4).

22.1 Sharing Candidate

First, our optimizer identifies those patterns that could potentially be shared by queries in

a given workload.

Definition 22.1 (Sharable Pattern, Sharing Candidate.) Let Q be a workload and p be

a pattern that appears in queries Qp ⊆ Q. The pattern p is sharable in Q if p.length > 1

and |Qp| > 1. A sharable pattern p and queries Qp constitute a sharing candidate,

denoted as (p,Qp).

Existing pattern mining approaches can detect sharable patterns [76].

The pattern of a query qi ∈ Qp consists of three sub-patterns, namely, prefix i, p, and

suffix i (Figure 22.1).
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22.2 NOT-SHARED METHOD

Figure 22.1: Sub-patterns of qi

22.2 Not-Shared Method

While A-Seq considers grouping, predicates, negation, and various aggregation functions,

below we sketch only its key ideas, namely, online event sequence aggregation and event

sequence expiration. We use event sequence count as an example, i.e., COUNT(*) (Defi-

nition 2.5).

Online Event Sequence Aggregation A-Seq computes the count of event sequences

online, i.e., without constructing and storing these sequences. To this end, it maintains

a count for each prefix of a pattern. The count of a prefix of length j is incrementally

computed based on the count of the prefix of length j − 1 and the previous value of the

count of the prefix of length j.

Example 22.1 Let an event be described by its type and time stamp in seconds, e.g., a1

is an event of type A with time stamp 1. In Figure 22.2(a), we count event sequences

matched by the pattern (A,B), denoted count(A,B). A count is maintained for each

prefix of the pattern, i.e., for (A) and (A,B). The value of count(A,B) is updated ev-

ery time a b arrives by summing the previous values of count(A) and count(A,B). For

example, when b4 arrives, it is appended to each previously matched a to form new se-

quences (a1, b4) and (a2, b4) (Definition 2.1). The number of new sequences corresponds

to count(A) = 2. In addition, the previously formed sequence (a1, b2) is kept. The

number of previous sequences corresponds to count(A,B) = 1. In sum, the value of

count(A,B) is updated to 3.

Event Sequence Expiration. Due to the sliding window semantics of our queries
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22.2 NOT-SHARED METHOD

(a) Online sequence aggregation (b) Event sequence expiration

Figure 22.2: Not-Shared method

(Definition 2.5), event sequences expire over time. To avoid the re-computation of all

affected aggregates, we observe that a START event of a sequence (Definition 2.2) expires

sooner than any other event in it. Thus, we maintain the aggregates per each matched

START event. When a new event arrives, only the counts of not-expired START events

are updated. When an END event e arrives, it updates the final counts for all windows that

e falls into.

Example 22.2 In Figure 22.2(b), assume a window of length four seconds slides every

second. A count is now maintained per each matched a as described above. When b5 ar-

rives, a1 is expired. Thus, b5 disregards count(a1, B). The event b5 updates count(a2, B)

and count(A,B) for window w2.

Time Complexity. The query qi processes each event that it matches. The rate of

matched events is computed as the sum of rates of all event types in the pattern P i of qi

(Figure 22.1):

Rate(P i) =
n∑
j=1

Rate(Ei
j) (22.1)

Since counts are maintained per START event and an event type appears at most once

in a pattern, each matched event updates one count per each not-expired START event.
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There are Rate(Ei
1) START events. In summary, the time complexity of processing the

query qi by the Not-Shared method is:

NotShared(p, qi) = Rate(Ei
1)× Rate(P i) (22.2)

For the set of queries Qp, the time complexity corresponds to the summation of the

time complexity for each query qi.

NotShared(p,Qp) =
∑
qi∈Qp

NotShared(p, qi) (22.3)

The pattern p is computed once by each query qi ∈ Qp. The time complexity of the

re-computation caused by each query qi is determined as follows.

Recomp(p, qi) = Rate(Ei
1)× Rate(p) (22.4)

The overall re-computation overhead corresponds to the summation of overhead caused

by each query qi ∈ Qp.

Recomp(p,Qp) =
∑
qi∈Qp

Recomp(p, qi) (22.5)

22.3 Shared Method

Let p1 and p2 be patterns whose aggregates are shared. These aggregates are combined

to obtain the aggregate for the pattern (p1, p2). Due to event sequence semantics, the

executor must guarantee that the sequences matched by p1 appear before the sequences

matched by p2 in the event stream (Definition 2.1). To this end, the executor performs

two steps:
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22.3 SHARED METHOD

Figure 22.3: Shared method

1) Count computation. We compute the counts of p1 and p2 as defined in Section 22.2.

2) Count combination. We multiply count(p1) with the count for each START event

of p2. The resulting counts are summed to obtain count(p1, p2) that now can be combined

with counts of other patterns.

Example 22.3 In Figure 22.3, we compute the count of (A,B, C,D) based on the counts

of (A,B) and (C,D). Assuming that events a1–d8 belong to the same window, the count

for (A,B) is computed as shown in Figure 22.2(a). In addition, a count for each c

(i.e., c3 and c7) is maintained. When c3 arrives, count(A,B) = 1. We multiply it with

count(c3, D) = 2 to obtain count(A,B, c3, D) = 2. Analogously, when c7 arrives,

count(A,B) = 5. It is multiplied with count(c7, D) = 1 to get count(A,B, c7, D) = 5.

Lastly, we sum these counts to obtain count(A,B,C,D) = 7 and store it for further

reference.

Time Complexity. 1) Count computation. Counts are maintained per each START

event of prefix i, p, and suffix i. Since the shared sub-pattern p is processed once for all

queries in Qp, the time complexity of computing the count for each sub-pattern of qi by

the Shared method corresponds to the sum of the time complexity of processing prefix i

and suffix i.

Comp(p, qi) = Rate(Ei
1)× Rate(prefix i) + Rate(Ei

m+l+1)× Rate(suffix i) (22.6)
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2) Count combination. The time complexity of count multiplication is the product of

the number of counts.

Comb(p, qi) = Rate(Ei
1)× Rate(Em)× Rate(Ei

m+l+1) (22.7)

The time complexity of processing qi by the Shared method is the sum of the time

complexity of these two steps.

Shared(p, qi) = Comp(p, qi) + Comb(p, qi) (22.8)

For the set of queries Qp, the time complexity corresponds to the summation of time

complexity for each query qi. In contrast to the Not-Shared method (Equation 22.3), the

pattern p is computed once by the Shared method.

Shared(p,Qp) = Rate(Em)× Rate(p) +
∑
qi∈Qp

Shared(p, qi) (22.9)

On the down side, the CPU overhead caused by the count combination is considerable

if the number of counts is large.

Comb(p,Qp) =
∑
qi∈Qp

Comb(p, qi) (22.10)

22.4 Benefit of a Sharing Candidate

Definition 22.2 (Benefit of a Sharing Candidate.) The benefit of sharing a pattern p by

the set of queries Qp is computed as the difference between the time complexity of the
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Not-Shared and Shared methods (Equations 22.3 and 22.9):

BValue(p,Qp) = NotShared(p,Qp)− Shared(p,Qp) (22.11)

A sharing candidate (p,Qp) is called beneficial if BValue(p, Qp) > 0. It is called non-

beneficial otherwise.

Non-Beneficial Candidate Pruning. All non-beneficial candidates are pruned from

further analysis.

Based on this cost model, we conclude that the following three factors determine the

benefit of sharing: the number of queries, the length of their patterns, and the stream rate.

We experimentally study the effect of these factors in Chapter 25.
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Sharon Optimizer

23.1 Sharing Conflict Modeling

A decision to share a pattern p by a query q ∈ Qp may prevent sharing another pattern

p′ by the query q if the patterns p and p′ overlap in the query q. Such sharing candidates

are said to be in a sharing conflict. In this chapter, we encode sharing candidates, their

benefit, and conflicts among them into the SHARON graph. Based on the graph, we then

reduce the search space of our sharing plan finder (Sections 23.2–23.3).

Example 23.1 In Table 23.1, queries q3 and q4 contain the overlapping patterns p2 =

(ParkAve,OakSt) and p1 = (OakSt , MainSt). Since the executor computes and stores

the aggregates for a pattern as a whole (Chapter 22), queries q3 and q4 can either share

p1 or p2, but not both. Thus, the sharing candidates (p1, {q1, q2, q3, q4}) and (p2, {q3, q4})

give “contradictory instructions” for queries q3 and q4. These candidates are said to

be in a sharing conflict. However, if p1 were to be shared only by queries q1 and q2,

the sharing conflict between these candidates would be resolved. We sketch the sharing

conflict resolution techniques in Chapter 24.

Definition 23.1 (Sharing Conflict.) Let pA = (A0 . . . An) and pB = (B0 . . . Bm) be
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Pattern p Queries Qp ⊆
Q containing p

p1 = (OakSt ,MainSt) q1, q2, q3, q4
p2 = (ParkAve,OakSt) q3, q4
p3 = (ParkAve,OakSt ,MainSt) q3, q4
p4 = (MainSt ,WestSt) q2, q4
p5 = (OakSt ,MainSt ,WestSt) q2, q4
p6 = (MainSt , StateSt) q1, q5
p7 = (ElmSt ,ParkAve) q6, q7

Table 23.1: Sharing candidates of the form (p,Qp) in the workload Q

patterns, n,m ∈ N, and QA and QB be query sets. The sharing candidates (pA, QA) and

(pB, QB) are in sharing conflict if pA overlaps with pB in at least one query q ∈ QA∩QB,

i.e., ∃k ∈ N, 0 ≤ k ≤ n,m An−k . . . An = B0 . . . Bk in q. The query q causes the conflict

between (pA, QA) and (pB, QB).

Definition 23.2 (Valid Sharing Plan.) A sharing plan P is a set of sharing candidates.

P is called valid if it contains no candidates that are in a sharing conflict with each other.

P is called invalid otherwise.

Definition 23.3 (Score of a Sharing Plan.) The score of a sharing plan P = {(p1, Qp1),

. . . , (ps, Qps)} is:

Score(P) =
s∑
j=1

BValue(pj, Qpj) (23.1)

Definition 23.4 (Optimal Sharing Plan.) Let Pval be the set of all valid sharing plans.

Popt ∈ Pval is an optimal sharing plan if @P ∈ Pval with Score(P) > Score(Popt).

Example 23.2 Given the workload in Figure 1.3, the sharing plan P = {(p2, {q3, q4});

(p4, {q2, q4})} is valid. Its sharing candidates are not in conflict since the patterns p2 =

(ParkAve,OakSt) and p4 = (MainSt ,WestSt) do not overlap. However, P is not an
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Algorithm 10 SHARON graph construction algorithm
Input: A hash table H mapping each sharable pattern p to a set of queries Q that contain

p
Output: SHARON graph G = (V,E)

1: V ← ∅; E ← ∅; G← (V,E)
2: for all p in H do Qp ← H.get(p)
3: if BValue(p,Qp) > 0 and Qp.size > 1 then
4: v ← (p,Qp); v.weight ← BValue(p,Qp))
5: V ← V ∪ v
6: for all u in V do
7: if v and u are in sharing conflict then
8: E ← E ∪ (v, u)

9: return G

optimal plan because Score(P) = 24 is not maximal among all valid plans. Indeed,

another valid plan {(p1, {q1, q2, q3, q4})} has higher score 25.

Definition 23.5 (SHARON Graph.) Let S be the set of sharable patterns in a workloadQ.

The SHARON graph G = (V,E) has a set of weighted vertices V and a set of undirected

edges E. Each vertex v ∈ V represents a sharing candidate (p,Qp) where p ∈ S is a

pattern and Qp ⊆ Q is the set of queries containing p. Each vertex is assigned a weight

BValue(p,Qp) > 0 that corresponds to the benefit value of (p,Qp) (Equation 22.11).

Each edge (v, u) ∈ E represents a sharing conflict between the candidates v, u ∈ V .

Example 23.3 Figure 5.1 shows the SHARON graph for the traffic monitoring workload

in Figure 1.3 and Table 23.1.

SHARON Graph Construction Algorithm consumes a hash table H that maps each

sharable pattern p to the set of queries Q that contain p. If a pattern p is beneficial to

be shared by at least two queries, the vertex v = (p,Qp) with weight BValue(p,Qp)

is inserted into the graph (Lines 3–5 in Algorithm 10). Non-beneficial candidates are

pruned. The edges representing the sharing conflicts between v and other vertices in the

graph are inserted (Lines 6–8). The graph G is returned (Line 9).
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Complexity Analysis. The time complexity is determined by the nested for-loops

since all other operations take constant time, i.e., Θ(|H||V |). The space complexity cor-

responds to the size of the graph G, i.e., Θ(|V |+ |E|).

23.2 Sharing Candidate Pruning

Since the search space for an optimal plan is exponential in the number of candidates

(Section 23.3), we prune two classes of candidates from a SHARON graph. One, conflict-

ridden candidates are guaranteed not to be in the optimal plan because their benefit values

are too low to counterbalance the loss of benefit from the sharing opportunities they ex-

clude. Two, conflict-free candidates are guaranteed to be in the optimal plan since they

do not prevent any other sharing opportunities.

Conflict-Ridden Candidates. We now map our MESA problem to the problem of

finding a Maximum Weight Independent Set (MWIS) in a graph which is known to be

NP-hard [77]. The greedy algorithm GWMIN [44] for MWIS1 does not always return

a high-quality sharing plan as confirmed by our experiments in Section 25.3. However,

its guaranteed minimal weight can be used to prune conflict-ridden candidates from a

SHARON graph.

Definition 23.6 (Maximum Weight Independent Set (MWIS).) Let G = (V,E) be a

graph with a set of weighted vertices V and a set of edges E. For a set of vertices

V ′ ⊆ V , we denote the sum of the weights of the vertices in V ′ as Weight(V ′). IS ⊆ V is

said to be an independent set of G if for any vertices vi, vj ∈ IS , (vi, vj) /∈ E holds. Let

SIS be the set of all independent sets of G. IS ∈ SIS is a maximum weight independent

set of G if @IS ′ ∈ SIS with Weight(IS ′) > Weight(IS ).
1The GWMIN algorithm is described in [76].
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Lemma 23.1 Let Q be a query workload, G be the SHARON graph for Q, and Popt be

an optimal sharing plan for Q. Then, Popt is an MWIS of G.

Proof: By Definitions 23.2 and 23.4, Popt is valid. That is, it contains no conflicting

sharing candidates. By Definition 23.5, no vertices in Popt are connected by an edge in

G. By Definition 23.6, Popt is an independent set of G. By Definition 23.4, Popt has the

maximum score among all valid plans. By Definition 23.5, Popt has the maximum weight

among all independent sets of G. By Definition 23.6, Popt is an MWIS of G.

The GWMIN algorithm is proven in [44] to find an independent set IS with weight:

Weight(IS ) ≥
∑
u∈V

weight(u)

degree(u) + 1
(23.2)

To safely prune a conflict-ridden candidate v, we define the maximal score of a plan

containing v, denoted Scoremax (v). In the best case, a plan containing v includes all

other candidates that are not in conflict with v. Thus, Scoremax (v) corresponds to the

summation of benefit values of all sharing candidates that are not in conflict with v.

Definition 23.7 (Maximal Score of a Plan Containing a Sharing Candidate.) Let v ∈ V

be a sharing candidate in a SHARON graph G = (V,E) and N(v) ⊆ V be the neigh-

borhood of v, i.e., the set of candidates that are in conflict with v. Then, we define the

maximal score of a sharing plan containing v as follows:

Scoremax (v) =
∑

u∈V \N(v)

BValue(u) (23.3)

Lemma 23.2 For a valid sharing plan P and a sharing candidate v ∈ P, Score(P) ≤

Scoremax (v) holds.
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Proof: Let G = (V,E) be the SHARON graph such that P ⊆ V is an independent

set of G and v ∈ P. By Definition 23.2, P contains no conflicting sharing candidates.

By Definition 23.5, all neighbors of v, denoted N(v), are in conflict with v and thus

are not in P. Since P may need to remove additional vertices to avoid other conflicts,

P ⊆ V \ N(v). By Definition 23.7, Scoremax (v) corresponds to the sum of BValues

of all sharing candidates in V \ N(v). Since all BValues of vertices in V are positive

(Section 22.4), P ⊆ V \N(v) implies Score(P) ≤ Scoremax (v).

Definition 23.8 (Conflict-Ridden Sharing Candidate.) Let G = (V,E) be a SHARON

graph. A sharing candidate v ∈ V is conflict-ridden if the maximal score of a sharing

plan containing v is lower than the guaranteed weight of GWMIN.

Scoremax (v) <
∑
u∈V

BValue(u)

degree(u) + 1
(23.4)

Conflict-Ridden Candidate Pruning. All conflict-ridden candidates are pruned from

the SHARON graph without sacrificing the optimality of the resulting sharing plan.

Example 23.4 The guaranteed weight on the graph in Figure 5.1 is 25
6

+ 9
4

+ 12
5

+

15
4

+ 20
5

+ 8
2

+ 18
1
≈ 38.57. Since Scoremax (p3, {q3, q4}) = BValue(p3, {q3, q4}) +

BValue(p6, {q1, q5}) + BValue(p7, {q6, q7}) = 38 < 38.57, an optimal sharing plan

cannot contain (p3, {q3, q4}). Thus, this candidate and its conflicts can be pruned.

Conflict-Free Candidates do not exclude any other sharing opportunities and incre-

ment the score of a plan by their benefit values. Such candidates can be directly added to

an optimal plan and removed from further analysis.

Definition 23.9 (Conflict-Free Sharing Candidate.) A sharing candidate v ∈ V in a

SHARON graph G = (V,E) is conflict-free if 6 ∃u ∈ V with (v, u) ∈ E.
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Algorithm 11 SHARON graph reduction algorithm
Input: SHARON graph G, guaranteed weight min of GWMIN
Output: Reduced graph G, conflict-free candidates F

1: F ← ∅
2: while G can be reduced do
3: for all v in V do
4: if degree(v) = 0 then
5: F ← F ∪ v; G.remove(v)
6: else if Scoremax (v) < min then
7: G.remove(v)
8: return G,F

Example 23.5 The conflict-free candidate (p7, {q6, q7}) in Figure 5.1 increments the score

of a plan by its benefit 18.

SHARON Graph Reduction Algorithm consumes a SHARON graph G and the guar-

anteed weight of GWMIN. Algorithm 11 iterates over the vertices of G and removes

conflict-ridden or conflict-free candidates until the graph G cannot be reduced anymore.

The algorithm returns the reduced graph and the set of conflict-free candidates.

Complexity Analysis. The time complexity is determined by the nested loops that

iterate O(|V |) and Θ(|V |) times respectively. The time complexity of removing a candi-

date v from the graph in Line 7 is O(|E|) since all conflicts of v are also deleted. Thus,

the time complexity is quadratic O(|V |2|E|). The space complexity is determined by

the size of the graph G and the set F . Since |F | ≤ |V |, the space costs are linear, i.e.,

O(|V |+ |E|).

Example 23.6 Figure 23.1 depicts the search space for an optimal plan for our running

example. Since the conflict-ridden candidate (p3, {q3, q4}) is pruned (Example 23.4),

while the conflict-free candidate (p7, {q6, q7}) is added to the optimal plan (Example 23.5),

the search space is reduced by 27 − 25 = 96 plans. This reduced space is indicated by a

solid frame in Figure 23.1. It corresponds to 75.59% of the search space.
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Figure 23.1: Search space of the sharing plan finder algorithm

23.3 Sharing Plan Finder

Based on the reduced SHARON graph, we now propose the optimal sharing plan finder. In

addition to the non-beneficial and conflict-ridden candidate pruning principles, we define

the invalid branch pruning. It cuts off those branches of the search space that only contain

invalid plans early on.

Search Space for an Optimal Sharing Plan. The parent-child relationships between

sharing plans, depicted as lines in Figure 23.1, are defined next.

Definition 23.10 (Parent-Child Relationship between Sharing Plans.) Let P and P′ be

sharing plans. If P ⊂ P′, then we say that P is an ancestor of P′ (P′ is a descendant of

P). In addition, if |P| = |P′| − 1, then we say that P is a parent of P′ (P′ is a child of P).

The search space has a lattice shape. In Figure 23.1, the plans in the top level (Level 1)

correspond to the sharing candidates V in a SHARON graph (Figure 5.1). Level s contains

sharing plans of size s. The size of the search space is exponential in the number of

candidates, denoted |V |. It is computed as the sum of the number of plans at each level:

|V |∑
s=0

(
|V |
s

)
= 2|V | (23.5)

Lemma 23.3 If P is a parent plan of P′, then Score(P′) > Score(P).

Proof: By Definition 23.10, P ⊂ P′ and |P| = |P′| − 1. Let P′ \ P = (p,Qp). By

163



23.3 SHARING PLAN FINDER

Definition 23.5, only a beneficial candidate (p,Qp) is included into a SHARON graph, i.e.,

BValue(p,Qp) > 0. Thus, the candidate (p,Qp) increases the score of P′ compared to P.

A naive plan finder traverses all combinations of sharing candidates and keeps track

of a valid plan with the maximal score seen so far. However, this solution constructs many

invalid plans (Definition 23.2) that are subsequently discarded. To avoid such exhaustive

search, we prove the following properties of the search space.

Lemma 23.4 All descendants of an invalid plan are invalid.

Proof: Let P be an invalid sharing plan and Pd be its descendant. By Defini-

tion 23.10, P ⊂ Pd. Thus, Pd “inherits” all sharing conflicts from P which makes Pd

invalid.

Invalid Branch Pruning. Invalid plans of size two correspond to edges of a SHARON

graph (Figures 5.1 and 23.1). Thus, all ancestors of invalid plans of size two can be safely

pruned. Thus, our SHARON plan finder cuts off invalid branches of the search at their

roots.

Example 23.7 In Figure 23.1, only 7.87% of the search space is valid. It consists of 10

plans. This valid space is traversed to find the optimal plan {(p2, {q3, q4}); (p4, {q2, q4});

(p6, {q1, q5}); (p7, {q6, q7})} highlighted by a darker background.

16.54% of the search space is invalid. The invalid space consists of 21 plans = 25

not reduced plans – 10 valid plans – 1 empty plan. The invalid space is indicated by the

dashed frame. It is pruned by our plan finder.

The rest of the search space was reduced by pruning conflict-ridden and conflict-free

candidates in Example 23.6.

Valid Search Space Traversal. A plan of size one is valid by Definition 23.2. A plan
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of size two {v1, v2} is valid if there is no edge (v1, v2) in the SHARON graph. Validity of

a larger plan is determined as described next.

Lemma 23.5 A sharing plan P, |P| > 2, is valid, if all its parents are valid.

Proof: Let P be a valid plan and Pp be its parent. Assume Pp is invalid. By

Lemma 23.4, P is invalid which contradicts our assumption. Thus, Pp is valid.

By Definition 23.10, a plan of size s has s parents. Instead of accessing all parent

plans to generate one new valid plan, we prove that only two parents and one ancestor

of size two must be valid to guarantee validity of a sharing plan (similarly to Apriori

candidate generation [78]).

Lemma 23.6 Let G = (V,E) be a SHARON graph. Let P1 and P2 be any pair of valid

parents of a plan P, |P| > 2. For two candidates v1 = P1 \ P2 and v2 = P2 \ P1, if

(v1, v2) 6∈ E, then P is valid.

Proof: Assume all the conditions above hold but P is invalid. Then P contains at

least one pair of conflicting candidates. By Definition 23.10, P = P1 ∪ P2 and P has one

additional candidate compared to P1 (or P2). Since P1 and P2 are valid, there can be only

one pair of conflicting candidates v1 and v2 in P such that v1 = P1 \P2 and v2 = P2 \P1.

By Definition 23.5, (v1, v2) ∈ E which is a contradiction.

Level Generation Algorithm consumes a SHARON graph G and a set of sharing

plans of size s, called Parents . It returns level s + 1 of the search space, i.e., the set of

all sharing plans of size s + 1, called Children. Algorithm 12 iterates through all pairs

of parent plans of size s (Lines 3–4). In the base case, the Parents are the vertices of G

and the Children are non-adjacent pairs of vertices (Lines 5–6). In the inductive case, to

generate a valid plan of size s+ 1, the algorithm identifies two plans of size s, Pi and Pj ,

that begin with the same s − 1 decisions. If the plan containing the last decisions of Pi

and Pj (denoted Pi.vs and Pj.vs) is valid, the plan Pi ∪ Pj is also valid (Lines 7–8).
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Algorithm 12 Level generation algorithm
Input: SHARON graph G = (V,E), set of sharing plans of size s Parents = {P0, . . . ,

Ps−1}
Output: Set of sharing plans of size s+ 1 Children

1: getNextLevel(G,Parents) {
2: Children ← ∅
3: for all (i = 0; i < s; i++) do
4: for all (j = i+ 1; j < s; j++) do
5: if s = 1 and (Pi.v1, Pj.v1) not in E then
6: Children.add(Pi ∪ Pj)
7: if Pi.v1 = Pj.v1, . . . , Pi.vs−1 = Pj.vs−1 and (Pi.vs, Pj.vs) not in E then
8: Children.add(Pi ∪ Pj)
9: return Children }

Figure 23.2: SHARON graph

Figure 23.3: Generation of a new valid sharing plan

Complexity Analysis. The time complexity of Algorithm 12 is determined by the

number of plans at one level, namely, the binomial coefficient
(|V |
s

)
in Equation 23.5.

Due to two nested loops, the time complexity is O(
(|V |
s

)2
). The space complexity is also

determined by the number of plans at one level, i.e., O
(|V |
s

)
.

Example 23.8 Figure 23.3 shows a portion of a search space with six valid plans P1–P6

of size four. P7 is the only valid plan of size five. It is generated as follows. (1) We identify

two plans of size four that start with the same three candidates, e.g., P1 and P2 start with

{v1, v2, v3}. (2) We compute their symmetric difference P1∆P2 = {v4, v5}. (3) Since

there is no edge (v4, v5) in the SHARON graph in Figure 23.2, P7 is valid. There is no

need to check the other three parents of P7. In contrast, P8 is invalid since v5 and v6 are

in conflict.

Sharing Plan Finder Algorithm traverses valid search space level by level using Al-
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Algorithm 13 Sharing plan finder algorithm
Input: SHARON graph G = (V,E), set of conflict-free candidates F
Output: Optimal sharing plan opt ∪ F

1: opt ← ∅; max ← 0
2: for all v in V do
3: if BValue(v) > max then
4: opt ← {v}; max ← BValue(v)

5: Level ← getNextLevel(G, V )
6: while Level 6= ∅ do
7: for all P in Level do
8: if Score(P ) > max then
9: opt ← P ; max ← Score(P )

10: Level ← getNextLevel(G,Level)

11: return opt ∪ F

gorithm 12. Algorithm 13 effectively prunes invalid branches at their roots. It constructs

only valid plans and returns an optimal plan among them.

Correctness. We prove that Algorithm 13 considers all valid sharing plans, i.e., it

returns the optimal sharing plan.

Lemma 23.7 If a sharing plan is valid, then it is considered by the sharing plan finder

algorithm.

Proof: We prove Lemma 23.7 by induction. The base cases are s = 1 and s = 2.

First, V is the set of all valid sharing plans of size 1. It is considered by Algorithm 13. Sec-

ond, Algorithm 13 (Line 5) generates all plans of size 2 by considering all non-adjacent

vertex pairs in Algorithm 12 (Lines 5–6).

Now, we assume that all valid plans of up to and including size s, such that s ≥ 2,

are considered. We will prove that all valid plans of size s + 1 are also considered. Let

P = {v1, . . . , vs, vs+1} be a valid plan of size s + 1. Then P1 = {v1, . . . , vs−1, vs}, P2 =

{v1, . . . , vs−1, vs+1}, and P3 = {vs, vs+1} are ancestors of P. By Lemma 23.5, P1,P2,

and P3 are valid. By the induction assumption, they were considered by Algorithm 13.
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Algorithm 12 generates the plan P from P1,P2, and P3. Thus, Algorithm 13 considers P.

Complexity Analysis. Since the entire valid search space is traversed, the algorithm

has exponential time and space complexity in the worst case (Equation 23.5). However,

the SHARON optimizer is efficient on average thanks to its effective pruning principles

(Section 25.3).

Optimal versus Greedily Chosen Plan. While the greedy algorithm GWMIN is

useful to reduce the search space (Section 23.2), the score of a greedily chosen plan might

be considerably lower than the score of an optimal plan.

Example 23.9 Even in our small example in Figure 5.1, the greedily chosen plan Pgre

= {(p1, {q1, q2, q3, q4}); (p7, {q6, q7})} has score 43, while the optimal plan Popt = {(p2,

{q3, q4}); (p4, {q2, q4}; (p6, {q1, q5}); (p7, {q6, q7})} increases Score(Pgre) by more than

16% to 50.

168



24

Extensions of the Sharon Approach

In this chapter, we briefly describe the extensions of our approach to relax the simplifying

assumptions in Chapter 21.

24.1 Sharing Conflict Resolution

Our analysis in Section 23.1 reveals that promising sharing opportunities might be ex-

cluded by sharing conflicts. Generally, the more queries share a pattern the higher the

probability of sharing conflicts becomes (Definition 23.1). We now open up additional

sharing opportunities by resolving sharing conflicts as follows.

Given a SHARON graph G = (V,E), we expand each candidate v = (p,Qp) ∈ V

with conflicts Ev ⊆ E to a set of options Op. Each option v′ = (p,Q′p) ∈ Op resolves

a different subset of conflicts E ′v ⊆ Ev of the original candidate v with other candidates

u ∈ V \ Op. In contrast to the original candidate v, an option v′ considers sharing the

pattern p by a subset of queries containing p, i.e., Q′p ⊆ Qp, |Q′p| > 1.

Example 24.1 In Figure 5.1, the sharing candidate (p1, {q1, q2, q3, q4}) can be expanded

to a set of options. The option (p1, {q1, q3}) is not in sharing conflict with the candidates
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Algorithm 14 Sharing candidate expansion algorithm
Input: SHARON graph G = (V,E), v = (p,Qp) ∈ V
Output: Set Op of sharing candidate options for p

1: getSet(G, v) {
2: Lc, Ln ← empty stacks; Lc.push(v); Op ← {v}
3: while !Lc.isEmpty() do
4: v ← Lc.pop()
5: for all conflict (v, u) in E do
6: Qc ← queries in Qp that cause (v, u)
7: for all combination C of Qc that can resolve (v, u) do
8: Q′p ← Qp \ C
9: if |Q′p| > 1 and Q′p is new then

10: v′ ← (p,Q′p); Ln.push(v′);
11: Op ← Op ∪ {v′}
12: if Lc.isEmpty() then
13: Lc ← Ln; Ln ← empty stack
14: return Op }

(p4, {q2, q4}) and (p5, {q2, q4}). Thus, they could belong to the same sharing plan which

may have a higher score than a plan containing the original candidate (p1, {q1, q2, q3, q4}).

Definition 24.1 (Resolved Sharing Conflict.) Let the candidates v1 = (p1, Q1) and v2 =

(p2, Q2) ∈ V be in conflict (v1, v2) ∈ E caused by the queries Q = Q1 ∩ Q2 such that

Q = Q′1 ∪· Q′2.1 The conflict (v1, v2) is resolved by omitting Q′1 and Q′2 from Q1 and Q2

respectively.

By Definition 23.1, the sharing candidates v′1 = (p1, Q1 \Q′1) and v′2 = (p2, Q2 \Q′2)

are not in conflict since (Q1 \ Q′1) ∩ (Q2 \ Q′2) = ∅. The conflict (v1, v2) is resolved if

any query sets Q′1 and Q′2 that compose Q are omitted from Q1 and Q2 respectively. In

the worst case, all combinations of queries Q are included into the sets of options for v1

and v2.

Sharing Candidate Expansion Algorithm. For a SHARON graph G and a candidate

v = (p,Qp) ∈ V , Algorithm 14 builds a tree of options Op using Breadth First Search.

1∪· denotes disjoint set union, meaning that Q = Q′
1 ∪Q′

2 but Q′
1 ∩Q′

2 = ∅.
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24.1 SHARING CONFLICT RESOLUTION

Figure 24.1: Sharing candidate options for pattern p1

The root of this tree is the original candidate v. To generate a child of v, the algorithm

skips the queries from Qp that cause a conflict of v with another sharing candidate u ∈

V \ Op. We label an edge between v and its child by the sharing candidate u. The

algorithm terminates when no new option with at least two queries can be generated.

Complexity Analysis. The time and space complexity of Algorithm 14 are deter-

mined by the maximal size of a set |Omax
p |. Let d be the maximal degree of a candidate

v ∈ V and k be the maximal number of queries that cause a conflict. For each con-

flict (v, u) ∈ E, all combinations of queries causing this conflict are considered (nested

for-loops in Lines 5–10 and 7–10). Thus,

|Omax
p | =

d∑
i=0

(
d

i

) k−1∑
j=0

(
k

j

)
(24.1)

where i denotes the number of resolved conflicts, while j corresponds to the number of

skipped queries to resolve one conflict.

Example 24.2 Figure 24.1 illustrates the sharing candidate options for the candidate

v = (p1, {q1, q2, q3, q4}) in Figure 5.1. To resolve the conflict with u1 = (p2, {q3, q4}) and

u2 = (p3, {q3, q4}), queries q3 and q4 are dropped from the set of queries of v. The edge

between v and its child (p1, {q1, q2}) is labeled by u1, u2. Other conflicts of v are resolved

analogously.

Sharing Conflict Resolution Algorithm. For a SHARON graphG and each candidate

v = (p,Qp) ∈ V , (Algorithm 15) expands v to a set of options Op using Algorithm 14

171



24.1 SHARING CONFLICT RESOLUTION

Algorithm 15 Sharing conflict resolution algorithm
Input: SHARON graph G = (V,E)
Output: Expanded SHARON graph G

1: V ′ ← ∅; E ′ ← ∅
2: for all v = (p,Qp) in V do
3: Op ← getSet(G, v); V ′ ← V ′ ∪Op

4: for all v′ in Op do
5: for all u in V ′ do
6: if v′ and u are in sharing conflict then
7: E ′.add(v′, u)

8: return G← (V ′, E ′)

Figure 24.2: Expanded SHARON graph

to open up additional sharing opportunities. The algorithm updates the conflicts of these

options and returns the expended graph.

Complexity Analysis. The time complexity is determined by three nested for-loops

that are called Θ(|V |), |Omax
p | and Θ(|V ′|) times respectively where |Omax

p | denotes the

maximal size of a set (Equation 24.1). Since |V | ≤ |V ′| and |Omax
p | ≤ |V ′|, the time

complexity is cubic in the number of candidates in the expanded SHARON graph in the

worst case, i.e.,O(|V ′|3). The space complexity is determined by the size of the expanded

graph, i.e., Θ(|V ′|+ |E ′|).

Example 24.3 The SHARON graph in Figure 5.1 is expanded in Figure 24.2. The sharing

candidate for pattern p1 is expanded into a set of options and highlighted by a rectangle

frame. The sets for other candidates contain only the original candidate. Conflicts within

sets are omitted for readability.
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The expanded graph is then reduced (Section 23.2) and serves as input to our sharing

plan finder (Section 23.3).

24.2 Different Predicates, Grouping, and Windows

Our SHARON approach can share event sequence aggregation among queries with dif-

ferent predicates, grouping, and windows. These query clauses partition the stream into

sub-streams [2]. State-of-the-art shared event aggregation approaches [33, 35, 36] further

partition these sub-streams into disjoint segments and share the intermediate aggregates

per segment to compute the final results for each query. Our SHARON approach can be

applied within each segment to handle different patterns of the shared queries.

24.3 Multiple Occurrences of an Event Type in a Pattern

If an event type E occurs k times in a pattern (k > 1), an event of type E updates

the counts of k prefix patterns that end at E (Chapter 22). Then, the time complexity

of both the Not-Shared and the Shared methods increases by the multiplicative factor k

(Equations 22.2, 22.4, 22.6 and 22.9). Our SHARON optimizer is not affected by this

extension.
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Performance Evaluation

25.1 Experimental Setup

Infrastructure. We have implemented our SHARON approach in Java with JRE 1.7.0 25

running on Ubuntu 14.04 with 16-core 3.4GHz CPU and 128GB of RAM. We execute

each experiment three times and report the average here.

Data Sets. We evaluate the performance our SHARON approach using the following

data sets.

• TX: New York City Taxi and Uber Real Data Set. We use the real New York City

taxi and Uber data set [12] (330GB) containing 1.3 billion taxi and Uber trips in New York

City in 2014–2015. Each event carries pick-up and drop-off locations and time stamps in

seconds, number of passengers, price, and payment method.

• LR: Linear Road Benchmark Data Set. We use the traffic simulator of the Linear

Road benchmark [39] for streaming systems to generate a stream of position reports from

vehicles for 3 hours. Each position report carries a time stamp in seconds, a vehicle

identifier, its location and speed. Event rate gradually increases during 3 hours from few

dozens to 4k events per second.
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25.1 EXPERIMENTAL SETUP

• EC: E-Commerce Synthetic Data Set. Our stream generator creates sequences of

items bought together for 3 hours. Each event carries a time stamp in seconds, item and

customer identifiers. We consider 50 items and 20 users. The values of item and customer

identifiers of an event are randomly generated. The stream rate is 3k events per second.

We ran each experiment on three data sets above. Similar charts are not shown here.

Event Queries. We evaluate a query workload similar to q1–q7 in Section 1.1 against

the taxi and Linear Road data sets and a workload similar to q8–q11 [76] against the e-

commerce data set. Based on our cost model (Chapter 22), we vary the major cost factors,

namely, number of queries from 20 to 120, the length of their patterns from 5 to 30, and

the number of events per window from 5k to 1200k. Unless stated otherwise, we evaluate

20 queries. The default length of their patterns is 10. The default number of events per

window is 200k.

Methodology. We run two sets of experiments.

1) Sharon Executor vs. State-of-the-Art Approaches (Section 25.2). We demonstrate

the effectiveness of our SHARON executor (Chapter 22) by comparing it to the state-

of-the-art techniques A-Seq [2], SPASS [38], and Flink [30] covering the spectrum of

approaches to event sequence aggregation (Table 1.2). While Chapter 26 is devoted to a

detailed discussion of these approaches, we briefly sketch their main ideas below.

• A-Seq [2] avoids sequence construction by incrementally maintaining a count for

each prefix of a pattern. However, it has no optimizer to determine which queries should

share the aggregation of which patterns. By default, it computes each query independently

from other queries and thus suffers from repeated computations (Section 22.2).

• SPASS [38] defines shared event sequence construction. Their aggregation is com-

puted afterwards and is not shared. Thus, SPASS is a two-step and only partially shared

approach.

• Flink [30] is a popular open-source streaming system that supports event pattern
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matching and aggregation. We express our queries using Flink operators. Flink con-

structs all event sequences prior their aggregation. It does not share computations among

different queries.

To achieve a fair comparison, we have implemented A-Seq and SPASS on top of our

platform. We execute Flink on the same hardware as our platform.

2) Sharon Optimizer (Section 25.3). We study the effectiveness of our SHARON op-

timizer (Chapters 23–24) by comparing it to the greedy algorithm GWMIN [44] and the

exhaustive search. We also compare the quality of a greedily chosen plan returned by

GWMIN to an optimal plan returned by our SHARON optimizer and the exhaustive search.

Metrics. We measure three metrics common for streaming systems, namely, latency,

throughput, and peak memory. We measure latency in milliseconds as the average time

difference between the time point of the aggregation result output by a query in the work-

load and the arrival time of the latest event that contributed to this result. Throughput

corresponds to the average number of events processed by all queries per second. Peak

memory consumption is measured in bytes. For event sequence aggregation algorithms,

it corresponds to the maximal memory for storing aggregated values, events, and event

sequences. For the optimizer algorithms, the peak memory is the maximal memory for

storing the SHARON graph and the sharing plans during the space traversal.

25.2 Sharon Executor versus State-of-the-Art Approaches

Two-step Approaches. In Figure 25.1, we vary the number of events per window and

measure latency and throughput of the event sequence aggregation approaches using

the Linear Road benchmark data set. Latency of the two-step approaches (SPASS and

Flink) increases exponentially, while throughput decreases exponentially in the number

of events.
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(a) Latency (b) Throughput

Figure 25.1: Two-step versus online approaches (Linear Road data set)

SPASS achieves 6–fold speed-up compared to Flink for 6k events per window because

SPASS shares event sequence construction. Despite this sharing, SPASS constructs all

event sequences and thus fails to terminate within several hours when the number of

events per window exceeds 7k. These measurements are not shown in Figure 25.1.

Flink not only constructs all event sequences but also computes each query indepen-

dently from other queries in the workload. Flink fails for more than 6k events per window.

The event sequence construction step has polynomial time complexity in the number

of events [2, 3] and may jeopardize real-time responsiveness for high-rate event streams

(Figure 25.1). Thus, these two-step approaches cannot be effective for time-critical pro-

cessing of high-rate streams.

Online Approaches. The online approaches (A-Seq and SHARON) perform similarly

for such low-rate streams. They achieve five orders of magnitude speed-up compared to

SPASS for 7k events per window because they aggregate event sequences without first

constructing these sequences.

Figures 25.2 and 25.3 evaluate the online approaches against high-rate streams. We

vary the number of events per window, the number of queries, and the length of their pat-

terns and measure latency, throughput and memory consumption of the online approaches

using the taxi (TX), Linear Road (LR), and e-commerce (EC) data sets.

Sharon Executor shares event sequences aggregation among all queries in the work-
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(a) Latency (TX) (b) Throughput (TX)

(c) Latency (LR) (d) Throughput (LR)

(e) Latency (EC) (f) Throughput (EC)

Figure 25.2: Latency and throughput of the online approaches (Taxi (TX), Linear Road (LR),
and e-commerce (EC) data sets)

load according to an optimal sharing plan. For low parameter values, SHARON defaults to

A-Seq since the available sharing opportunities have low benefit. For example, the latency

of SHARON increases linearly in the number of queries. SHARON achieves from 5–fold

to 18–fold speed-up compared to A-Seq when the number of queries increases from 20

to 120. Indeed, the more queries share their aggregation results, the fewer aggregates

are maintained and the more events can be processed by the system (Figures 25.2(c) and

25.2(d)). SHARON requires up to two orders of magnitude less memory than A-Seq for

120 queries (Figure 25.3(a)).
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(a) Memory (LR) (b) Memory (EC)

Figure 25.3: Memory of the online approaches (Linear Road (LR) and e-commerce (EC)
data sets)

While SHARON processes each event by each shared pattern exactly once, each event

can provoke repeated computations in A-Seq. Thus, the gain of SHARON grows linearly

in the number of events per window. SHARON wins from 5–fold to 7–fold with respect

to latency and throughput when the number of events increases from 200k to 1200k (Fig-

ures 25.2(a) and 25.2(b)). Similarly, the speed-up of SHARON grows linearly from 4–fold

to 6–fold with the increasing length of patterns (Figure 25.2(e)). SHARON requires 20-

fold less memory than A-Seq if the pattern length is 30 (Figure 25.3(b)).

Based on the experimental results in Figures 25.1, 25.2, and25.3, we conclude that the

latency, throughput and memory utilization of event sequence aggregation can be consid-

erably reduced by the seamless integration of shared and online optimization techniques

as proposed by our SHARON approach to enable real-time in-memory event sequence

aggregation.

25.3 Sharon Optimizer

In Figure 25.4 we compare three optimizer solutions, while varying the number of queries.

Each bar is segmented into phases as described below.

Greedy Optimizer consists of the following two phases: the SHARON graph construc-

tion (Section 23.1) followed by the GWMIN plan finder. In the worst case, both phases
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(a) Latency (b) Memory

Figure 25.4: SHARON optimizer (SO) versus greedy optimizer (GO) and exhaustive opti-
mizer (EO) (E-commerce query workload)

have polynomial latency and linear memory. However, our experiments show that on

average more time and space is required to construct the SHARON graph than to run the

GWMIN algorithm. For 70 queries, 90% of the total time is spent constructing the graph.

Exhaustive Optimizer consists of three phases, namely, SHARON graph construction,

graph expansion to open up additional sharing opportunities (Chapter 24) followed by the

exhaustive search that traverses the entire search space. Thus, its latency and memory

consumption grow exponentially in the number of queries. The exhaustive optimizer fails

to terminate for more than 20 queries. For 20 queries, its latency is 4 orders of magnitude

higher than the latency of the greedy optimizer.

Sharon Optimizer consists of four phases, namely, SHARON graph construction, graph

expansion to open up additional sharing opportunities, graph reduction followed by the

sharing plan finder (Chapters 23–24). While its complexity is exponential in the worst

case (Equation 23.5), its latency and memory usage are reduced by our pruning princi-

ples compared to the exhaustive optimizer. On average, 36% of the sharing candidates

are pruned from the expanded SHARON graph, which is 99% of the plan finder search

space. For 20 queries, SHARON outperforms the exhaustive optimizer by three orders

of magnitude with respect to latency and by two orders of magnitude regarding memory
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Figure 25.5: Sharing plan quality (Taxi data set)

usage.

Our SHARON plan finder traverses the entire valid space to find an optimal plan. In

contrast, GWMIN greedily selects one candidate with the highest benefit and eliminates

its adjacent candidates from further consideration. For example, for 70 queries, the la-

tency of SHARON is three orders of magnitude higher, while its memory usage is two

orders of magnitude larger compared to the greedy optimizer.

Sharing Plan Quality. The greedy optimizer tends to return a sub-optimal sharing

plan for two reasons. One, it greedily selects a candidate v with the maximal benefit in

each step. By deciding to share v it excludes all candidates adjacent to v even though

they may be more beneficial to share than v alone. Two, the greedy optimizer does not

resolve sharing conflicts (Chapter 24). However, the sharing opportunities in the original

SHARON graph may be rather limited (Figure 5.1).

In Figure 25.5, we vary the number of queries and compare the latency and the mem-

ory consumption of our SHARON executor when guided by a greedily chosen plan versus

an optimal plan. We run these experiments on the Taxi real data set. The latency of the

SHARON executor is reduced 2–fold and its memory consumption decreases 3–fold when

180 queries are processed according to an optimal plan compared to a greedily chosen

plan. Thus, an optimal plan ensures real-time light-weight event sequence aggregation.

181



26

Related Work

Complex Event Processing (CEP) approaches such as SASE [3, 7], Cayuga [28], and

ZStream [29] support both event aggregation and event sequence detection over streams.

SASE and Cayuga employ a Finite State Automaton (FSA)-based query execution paradigm,

meaning that each event query is translated into an FSA. Each run of an FSA corresponds

to a query match. In contrast, ZStream translates an event query into an operator tree

that is optimized based on rewrite rules. However, these approaches evaluate each query

independently from other queries in the workload – causing both repeated computations

and replicated storage in multi-query settings. Furthermore, they do not optimize event

sequence aggregation queries – which is the focus of our work. Thus, they require event

sequence construction prior to their aggregation. Since the number of event sequences is

polynomial in the number of events per window [2, 3], this two-step approach introduces

long delays for high-rate streams (Chapter 25). Thus, they do not guarantee real-time

responsiveness.

In contrast, A-Seq [2] defines online event sequence aggregation that eliminates the

event sequence construction step. It incrementally maintains a set of aggregates for each

pattern and discards an event once it updated the aggregates. We leverage this idea in
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our executor (Chapter 22). However, A-Seq has no optimizer to decide which patterns

should be shared by which queries in a workload. By default, A-Seq does not share

event sequence aggregation among multiple queries. GRETA [6] extends A-Seq by nested

Kleene patterns and expressive predicates at the cost of storing of all matched events and

their adjacency relationships in a match. Similarly to A-Seq, GRETA optimizes single

queries.

CEP Multi-Query Optimization (MQO) approaches such as SPASS [38], E-Cube [4],

and RUMOR [79] propose event sequence sharing techniques. SPASS exploits event

correlation in an event sequence to determine the benefit of shared event sequence con-

struction. E-Cube defines a concept and a pattern hierarchy of event sequence queries and

develop both top-down and bottom-up processing of patterns based on the results of other

patterns in the hierarchy. RUMOR proposes a rule-based MQO framework for traditional

RDBMS and stream processing systems. It defines a set of rules to merge NFAs represent-

ing different event queries. However, no optimization techniques for online aggregation

of event sequences are proposed by these approaches. By default, they construct all event

sequences prior to their aggregation. Event sequence construction introduces polynomial

time complexity and thus degrades system performance.

Data Streaming. Streaming systems typically support incremental aggregation [33,

34, 35, 36, 37, 67, 71, 72]. Some of them incrementally aggregate only raw input events

for single-stream queries [36, 67]. Others share aggregation results among overlapping

sliding windows [33, 36] or among multiple queries [35, 71, 72]. However, these ap-

proaches evaluate simple Select-Project-Join queries with window semantics over date

streams. They do not support CEP-specific operators such as event sequence that treat

the order of events as first-class citizens. Typically, they require the construction of join

results prior to their aggregation.

Multi-Query Optimization techniques include materialized views [80] and common
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sub-expression sharing [81, 82] in relational databases. However, these approaches do

not have the temporal aspect prevalent for CEP queries. Thus, they neither focus on event

sequence computation nor their aggregation. Furthermore, they assume that the data is

statically stored on disk prior to processing. They neither target in-memory execution nor

real-time responsiveness.
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Conclusions and Future Work
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Conclusions of This Dissertation

In this dissertation, we propose an event trend analytics methodology that enables real-

time yet lightweight detection and aggregation of event sequences of arbitrary length.

This functionality is required in a wide range of time-critical streaming applications from

financial fraud detection to healthcare analytics. It can be plugged in as a module into

existing streaming engines such as Microsoft Stream-Insight [41], Flink [30], Esper [31],

and Oracle Stream Analytics [32] to extend their expressive power and optimize their

performance. The key contributions of this dissertation can be summarized as follows.

First, we propose the Complete Event Trend (CET) detection approach with minimal

CPU time given limited memory. It finds the middle ground between the CPU overhead

caused by the re-computation of common sub-sequences in trends and the high memory

usage to store and reuse these common sub-sequences. We compactly encode all CETs

into the CET graph and find an optimal graph partitioning into time-centric graphlets.

We cache CETs per each graphlet and reuse them while constructing CETs within one

window and between overlapping sliding windows. Our experimental results demonstrate

that our CET approach is up to 42–fold faster than state-of-the-art techniques.

Second, our GRETA approach computes aggregation of event trends that are matched
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by nested Kleene patterns without constructing these trends. We achieve this goal by com-

pactly encoding all event trends into the GRETA graph and dynamically propagating the

aggregates along the edges of the graph during graph construction. We prove that our ap-

proach reduces time complexity form exponential to quadratic and space complexity from

exponential to linear in the number of events compared to state-of-the-art approaches. Our

experiments demonstrate that GRETA achieves up to four orders of magnitude speed-up

and requires up to 50–fold less memory than state-of-the-art solutions.

Third, our COGRA approach extends GRETA by rich event matching semantics and

further reduces time and space complexity of event trend aggregation. COGRA incremen-

tally maintains event trend aggregates at the coarsest possible granularity level. Thus, it

minimizes the number of aggregates and reduces both time and space complexity com-

pared to state-of-the-art approaches. Our experiments demonstrate that COGRA achieves

up to four orders of magnitude speed-up and up to eight orders of magnitude memory

reduction compared to state-of-the-art approaches.

Lastly, our SHARON approach enables shared online event sequence aggregation. The

SHARON optimizer encodes sharing candidates, their benefits and conflicts among them

into the SHARON graph. Based on the graph, we define three candidate pruning principles

to reduce the search space of sharing plans. Our sharing plan finder returns an optimal

plan to guide the executor at runtime. Our experiments demonstrate an 18–fold speed-up

of SHARON compared to state-of-the-art approaches in diverse scenarios.
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Future Research Directions

In this chapter, we briefly summarize possible future research directions towards a full-

fledged distributed multi-query event trend analytics system (Section 28.1) and 28.2). We

will also propose to extend the supported language features (Section 28.3).

28.1 Distributed Event Trend Analytics

The event trend techniques proposed in this dissertation form a solid foundation based

upon which distributed solutions could be designed. Indeed, the scalability of these

techniques can be further improved by leveraging modern distributed systems such as

Flink [30], Spark [83], or Storm [57]. However, additional challenges have to be ad-

dressed including how to partition the graph (Section 28.1.1) and how to propagate aggre-

gates in a partitioned graph (Section 28.1.2) to achieve balanced load distribution across

computation nodes on a cluster (Section 28.1.3) and reduce communication overhead

among the nodes (Section 28.1.4).
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Figure 28.1: Graph partitioning schemas

28.1.1 Graph Partitioning Schemas

Horizontal Graph Partitioning by Event Attribute Values. As described in Section 11.3,

a GROUP-BY clause and equivalence predicates partition the stream into non-overlapping

sub-streams and the graph is constructed for each sub-stream separately. Thus, one

straightforward solution is to partition the graph horizontally by constructing graphlets

within each sub-stream on a different cluster node (dashed line in Figure 28.1). Since

such graphlets are independent from each other, no communication between the nodes is

needed. However, this strategy is not applicable to all queries. Also, such graphlet distri-

bution may be highly unbalanced since different sub-streams rarely have similar rates.

Vertical Graph Partitioning by Time Intervals could leverage our graph partition-

ing strategy by time proposed in Chapters 6 and 7 (dotted line in Figure 28.1). These time

intervals may have different lengths to account for bursty streams. Each node would then

be responsible for computing results based on the assigned graphlets. This computation

could be done independently by each node. Thus, all nodes could be operating in parallel.

The final results could then be constructed using a distributed multi-way join combin-

ing partial results (Figure 5.2(c)). In this case, both load balancing and communication

overhead reduction would have to be incorporated into the cost model to guide the graph

partitioning strategy. The advantage of this solution is that it is query independent.
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Figure 28.2: Aggregate propagation in a partitioned graph

Diagonal Graph Partitioning by Graph Connectivity would combine both horizon-

tal and vertical graph partitioning. In contrast to them, the diagonal partitioning strategy

is not restricted to partition the graph based on event attribute values (like horizontal par-

titioning) or based on event time stamps (like vertical partitioning). Due to its flexibility

to cut the graph at any location, the diagonal partitioning strategy is expected to open up

additional optimization opportunities and perform best among these partitioning strate-

gies in various scenarios. For example, we could minimize the overhead of combining

partial results per graphlet to form final results across graphlets by cutting as few edges

as possible (solid line in Figure 28.1). This intuition must be confirmed by a cost model

and an experimental study.

28.1.2 Aggregate Propagation in a Partitioned Graph

As defined in Section 11.1, aggregates are propagated along the edges from previously

matched events to more recent events in a dynamic programming fashion. This idea

implies sequential propagation of aggregates in the order of events by time stamps. When

the graph is partitioned and distributed across machines, previous events may be “cut

off” from more recent events (Figure 28.2). Nevertheless, aggregates within different

graphlets can be computed in parallel as follows. First, we assign a variable to each last

event in graphlet g1, e.g., x and y in Figure 28.2. We then propagate these variables in all

following graphs g2 and g3 in parallel as defined in Section 11.1. Once the values of these

variables are available, they are plugged into the final aggregation results.
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This parallel aggregate propagation will further reduce the latency of event trend ag-

gregation at the cost of storing expressions in each vertex instead of single aggregation

values. To speed up the update of these expressions, each expression could be stored as a

hash table mapping each variable to its coefficient. For example, the expression 6x + 2y

corresponds to the mapping x 7→ 6 and y 7→ 2. If k is the number of input variables

per graphlet, each hash table has k entries. The time and space complexity of updating

and storing an expression in a vertex increases from one to k. Thus, the number of input

variables k per graphlet is the major cost factor of parallel aggregate propagation. Our

graph partitioning strategy should partition the graph such that k is minimized across all

graphlets as further discussed in Section 28.1.4.

28.1.3 Balanced Load Distribution

Event Trend Detection. Once the graph is constructed, the exact number of event trends

captured by the graph is known (Chapter 11). The graph-based event trend aggregation

has quadratic time complexity in the number of events (Section 11.5) which is negligible

compared to the exponential costs of event trend detection (Chapter 5). Based on the

number of event trends captured by each graphlet, we could partition the graph in such a

way that about the same number of trends is extracted from each graphlet by each node

to ensure balanced load distribution.

Event Trend Aggregation. The time complexity of event trend aggregation ranges

from linear to quadratic in the number of matched events depending on the granularity

level at which the aggregates are maintained (Chapters 11, 15, and 16). Based the aggre-

gate granularity level and the number of matched events, we can partition the stream in

such a way that roughly the same load is routed to each node on a cluster.
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28.1.4 Communication Overhead Reduction

After each node on a cluster completed its computations based on the assigned graphlets,

these partial results have to be combined to form the final results when the graph is par-

titioned vertically or diagonally (Section 28.1.1). This intermediate result combination

introduces the communication overhead among nodes. Generally, the more edges are cut

by the graph partitioning strategy and the more partial results have to be combined to form

final results, the higher the communication overhead becomes. Based on the number of

cut edges and the number of partial results, we need to develop a cost model and leverage

this model while selecting a plan that minimizes the communication overhead.

28.2 Multi-Query Event Trend Analytics

While we explored multi-query event sequence aggregation in Part III of this disserta-

tion, multi-query event trend analytics optimization techniques are still subject to future

research. Without them, a separate graph would be constructed for each query in the

workload. However, similar queries may match the same events or even whole graphlets.

The analytics and storage of such graphlets should be shared to reduce both the time and

space complexity of the workload.

To enable such shared graphlet processing, we propose to construct a single graph for

all queries in the workload and partition it in such a way that graphlets are shared across

multiple queries in the workload (Section 28.2.1). These shared graphlets can then be pro-

cessed in parallel by distributing them across machines as described in Section 28.1. The

time and space complexity of event trend aggregation are further reduced if the computa-

tion and storage of aggregates are also shared across multiple queries (Section 28.2.2).
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28.2.1 Graphlet Sharing

Event trend analytics queries in a workload can differ significantly (Chapter 2). For exam-

ple, queries q1 and q2 in Figure 28.5 have different event matching semantics, predicates,

aggregation functions, and patterns. Nevertheless, their graphlets can be shared. Below

we briefly sketch the scenarios when such graphlet sharing is possible.

Event Matching Semantics. Assume q1 and q2 are evaluated under the skip-till-any-

match and skip-till-next-match semantics respectively (Figure 28.5(a)). Events a1–b8 are

matched by both queries. However, only solid edges hold for both queries. Dashed edges

hold only for q1. Thus, each event must maintain a separate aggregate for each of these

queries. While edges and aggregates are saved per each query separately, events a1–b8 are

stored once and shared by queries q1 and q2. This event sharing can significantly reduce

the memory costs if a large query workload is evaluated against a high-rate event stream.

Predicates. Let attr be an attribute of events of typeA. Assume q2 has a predicate that

requires the values of attribute attr of adjacent a’s to increase, i.e., A.attr< NEXT(A).attr

(Figure 28.5(b)). The values of attribute attr are shown as numbers in the top left corner of

events of type A. Then, the events a3 and a4 do not satisfy this predicate. Consequently,

event a4 is not matched by query q2 and aggregates for query q2 go down compared to the

case without this predicate (Figure 28.5(a)).

Aggregation Functions. Since aggregates for queries q1 and q2 are maintained sepa-

rately by each event, any aggregation function that is supported by our language (Chap-

ter 2) could be computed by queries q1 and q2 (Figure 28.5(c)).

Patterns. The patterns of queries q1 and q2 may be different (Figure 28.5(d)). Nev-

ertheless, a large portion of the graph (events a1, b2, a3, b6, a7, and b8 highlighted by solid

frame) is matched by both queries.

Event Stream Partitioning. The queries q1 and q2 may have different GROUP-BY

clauses that partition the stream by the values of different attributes. Assume q1 partitions
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Figure 28.3: Hierarchical prefix sharing

the stream by the value of attributeA1, while q2 partitions it by the values of two attributes

A1 and A2. Then, the stream can be partitioned by the value of A1 (Partitioning 1).

Additionally, each resulting sub-stream is partitioned by the value of A2 (Partitioning

2). Then, query q1 could build edges between events that are in different sub-streams

according to Partitioning 2, while query q2 would ignore these edges.

Windows. Queries in the workload may also have different windows. Our goal is

to determine whether the state-of-the-art sharing techniques apply [35, 36] to graphlet

sharing or a tailored solution is required. Furthermore, we will develop a cost-based

sharing benefit model to guide our optimizer during the search for a high-quality graphlet

sharing plan for all queries in the workload.

28.2.2 Aggregate Sharing

Conditions for Aggregate Sharing. The benefit of sharing event trend aggregation

queries can be increased if each event matched by a set of queries Q maintains a sin-

gle aggregate for all queries Q. Then, the aggregate computation would be shared across

all queries Q – further reducing both time and space complexity. Such aggregate sharing

is possible if the following conditions hold: (1) Queries compute the same aggregation

function. (2) They have a common pattern prefix. (3) Queries are evaluated under the

same event matching semantics. (4) They have the same windows, GROUP-BY clauses,
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and predicates. We will prove that these conditions guarantee that a graph prefix of sev-

eral queries is exactly the same, i.e., it has same vertices and edges. Thus, the aggregates

will also have same values and can be shared.

We need to explore whether these strict conditions could be relaxed. For example,

queries may have overlapping windows and grouping attributes. Also, their predicates

may be not mutually exclusive.

Hierarchical Prefix Sharing. Since queries may have different patterns, we pro-

pose hierarchical prefix sharing that allows sharing maximal graph prefixes by different

queries. For example, the graphlet for the sub-pattern SEQ(A+, B) is highlighted by the

black frame in Figure 28.3. It is shared by the queries with patterns p1, p2, and p3. At

the same time, the graphlet for a longer sub-pattern SEQ(A+, B, C+), highlighted by the

red frame, is shared by queries with patterns p1 and p2.

Lazy Split of Aggregates. Since these queries may have different predicates, we

introduce the lazy split of aggregates that allows maximal sharing of aggregates. Assume

queries q1 and q2 have predicates θ1 and θ2 respectively. As soon as an event e arrives

that satisfies θ1 but not θ2, the aggregates of e and all following events are maintained per

each query q1 and q2 separately until the end of the current window.

Graph Sharing Optimizer. As descriptions above illustrate, in same cases the shar-

ing decisions are made statically (e.g., hierarchical graph prefix sharing) while in other

cases runtime decisions are necessary (e.g., lazy split of aggregates). We will develop

a cost model and a graph sharing optimizer that seamlessly supports both static and dy-

namic sharing decisions.
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28.3 Additional Language Features

In addition to the language features described in Chapters 2 and 12, we now briefly sketch

possible extensions of our event query language by other event matching semantics (Sec-

tion 28.3.1) and predicates of non-adjacent events in a trend (Section 28.3.2).

28.3.1 Alternative Event Matching Semantics

As described in Section 2.4, the skip-till-next-match and contiguous semantics are very

restrictive, while skip-till-any-match detects an exponential number of trends. To avoid

missing valuable trends, an application is forced to use skip-till-any-match and filter the

resulting set of all trends using windows, GROUP-BY, and predicates.

Example 28.1 Given the stream of price records I = {10, 2, 9, 8, 7, 1, 6, 5, 4, 3}, skip-

till-any-match is the only semantics that detects the down-trend (10, 9, 8, 7, 6, 5, 4, 3) by

ignoring local fluctuations 2 and 1. Since longer stock trends are considered to be more

reliable [84], this long trend can be more valuable to an algorithmic trading system than

three shorter trends (10, 2), (9, 8, 7, 1), and (6, 5, 4, 3) detected under the skip-till-next-

match semantics.

However, the skip-till-any-match semantics is prohibitively expensive [3, 5, 6]. It

detects many trends that are subsequently deleted – wasting valuable resources. Thus, a

possible future research direction is to define an alternative event matching semantics that

is more flexible than skip-till-next-match, yet less expensive than skip-till-any-match.

Context-Aware Event Matching Semantics. Alternatively, we could switch between

different semantics depending on the application context [85]. That is, once a situation of

interest to the application is detected under one semantics, we could switch the context

and process all events arriving during this context under a different semantics. In this
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Figure 28.4: Head and shoulders stock trend (figure is from [1])

way, we would minimize the number of queries and shorten the time intervals during

which these queries are evaluated under the skip-till-any-match semantics.

28.3.2 Predicates on Non-Adjacent Events in a Trend

In this dissertation, we focus on predicates on single events and predicates on adjacent

events (Section 2.5). We also sketch how predicates of minimal length of a trend could be

supported in Chapter 12. We left predicates on non-adjacent events for future research.

They are useful in many streaming applications.

Example 28.2 The query q′′ computes the number of head-and-shoulders stock trends per

sector during a time window of 1 hour that slides every minute. A head-and-shoulders

stock trend is a sequence of single transactions as well as up and down sub-trends illus-

trated in Figure 28.4 and spesified in the PATTERN clause of the query. These sub-trends

are of arbitrary length which is expressed by the Kleene closure operator. The query must

be flexible enough to ignore price fluctuations which is enabled by the skip-till-next-match

semantics. All events in the same head-and-shoulders trend must carry the same sector

and company identifiers, expressed by the predicate [sector, company]. Other predicates

specify the price variation in a trend. For example, the last 3 predicates require U to be

an up trend between the start S and the left shoulder L of a trend. Similar predicates
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are necessary to restrict other sub-trends. They are omitted in q′′ for compactness. The

complete query can be found in [59].

Query q′′ must ensure that the price measurement H representing the head of a trend

is higher than the price measurements L and R representing the left and right shoulders.

However, the events matched by H , L, and R respectively are not adjacent in a trend.

q′′ : RETURN sector, COUNT(∗)

PATTERN SEQ(S,U+, L,D+, X, U ′+, H,D′+, Y, U ′′+, R,D′′+, E)

SEMANTICS skip-till-next-match

WHERE [sector, company] AND S.price < U .price AND U .price < NEXT(U).price

AND U .price < L.price

GROUP-BY sector WITHIN 1 hour SLIDE 1 minute

Predicates on non-adjacent events are expensive to evaluate since they determine event

relevance relatively to previously matched events. Since these events can be anywhere in

the graph, the graph must be traversed for each new event in the worst case. This traversal

may significantly degrade system performance. Thus, special optimization techniques

have to be designed to enable efficient evaluation of such predicates.

Postponed Predicates on Non-Adjacent Events. One possible solution would be

to postpone predicates on non-adjacent events until event trend construction phase as fol-

lows. First, we break the pattern into sub-patterns such that each sub-pattern does not have

predicates on non-adjacent events. In our example, these sub-patterns are SEQ(S, U+, L),

SEQ(L,D+, X), SEQ(X,U ′+, H), etc. Then, we could maintain a separate graph for

each sub-pattern. Lastly, we evaluate the predicates on non-adjacent events while con-

necting these graphlets. However, generating many invalid sub-trends will waste valuable

computational resources. Also, events would be replicated across different graphlets pro-

voking significant CPU and memory overhead. Thus, more efficient solutions are have to

be developed.
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Pivotal Points. Another possible solution is to determine a set of pivotal points. In

our example, these points are the head H , the left and right shoulders L and R, the start

and end of a trend S and E, and the points X and Y defining the neckline. Then, several

trends may share the same set of pivotal points. When a new event e arrives, it is compared

to its pivotal points to conclude which existing event trends the event e will extend.

Since several events may be a pivotal point, the following challenges have to be tack-

led. On the one hand, selecting a set of pivotal points reduces the number of detected

event trends. On the other hand, considering all possible combinations of pivotal points

would introduce exponential time overhead. Thus, we need an expressive yet efficient

way of determining pivotal points and detecting event trends with respect to these points.

We will study the advantages and drawbacks of these (and other) possible solutions to

determine the most effective option.
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(a) Event matching semantics (b) Predicates

(c) Aggregation functions (d) Patterns

Figure 28.5: Graphlet sharing by queries q1 and q2 evaluated against the stream I = { d1, a1,
b2, a3, a4, b6, a7, b8 }
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[62] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In SPAA, pages

120–124, 2004. 84, 85

[63] Robert Krauthgamer, Joseph (Seffi) Naor, and Roy Schwartz. Partitioning graphs

into balanced components. In SODA, pages 942–949, 2009. 84

[64] Stephen T. Barnard. PMRSB: Parallel Multilevel Recursive Spectral Bisection. In

Supercomputing, 1995. 84

[65] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning

graphs. In Supercomputing, 1995. 84, 85

[66] George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In Paral-

lel Processing, pages 113–122. CRC Press, 1995. 84, 85

[67] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Seman-

tics and evaluation techniques for window aggregates in data streams. In SIGMOD,

pages 311–322, 2005. 100, 145, 183

[68] John Meehan, Nesime Tatbul, Stan Zdonik, Cansu Aslantas, Ugur Cetintemel, Jiang

Du, Tim Kraska, Samuel Madden, David Maier, Andrew Pavlo, Michael Stone-

braker, Kristin Tufte, and Hao Wang. S-Store: Streaming Meets Transaction Pro-

cessing. In VLDB, pages 2134–2145, 2015. 103
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