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Abstract

Sequential recommendation has become an increasingly prominent subject both in

academia and industrial sectors, particularly within the e-commerce domain. Its

primary aim is to extract user preference from a user’s historical item list and

predict the subsequent items the user might purchase based on that history. Recent

trends show a surge in the application of using contrastive learning and graph-based

neural network to extract more expressive representation from user’s historical item

list, where graph contains information of relationship between nodes while ID based

representation contains more specific information. However, researchers have not

paid attention on multi view contrastive learning between the ID and graph to

further improve quality of user and item representation learning. Therefore, in

this study, we propose a novel framework called MultiView Contrastive learning

for sequential recommendation (MVCrec). This framework is designed to combine

information from both sequential and graph views. It incorporates three facets of

contrastive learning: one for sequential view, another one for graph view and the

other one for cross-view. To leverage the representations derived from the contrastive

learning, we propose a multi-view attention fusion module, which integrates both

global and local attentions and measures how likely a target user will purchase a

target item. Comprehensive experiments underscore the superiority of our model,

as evidenced by its performance on four real-world benchmark datasets and ablation

study. Our code and datasets are available at https://anonymous.4open.science/

r/MMCrec-06BA.
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Chapter 1

Introduction

Sequential recommendation has gotten increasing attention from both industry and

academic, with the primary focus being on recommending items based on users’

chronologically ordered purchase histories as shown in Figure 1.1 [1]–[7]. In the

early stage, researchers applied recurrent neural network (RNN) and convolutional

neural network (CNN) to sequential recommendation (e.g., GRU4Rec [8], Caser [9],

and SAS4Rec [10]). Additionally, self-supervised methods have been employed in

sequential recommendation; for example, BERT4Rec [11] utilizes BERT[12] as an en-

coder for sequential lists. More recently, contrastive learning and related techniques

have been widely adopted in sequential recommendation to enhance the effectiveness

of learned representations (e.g., CL4rec [13], Duorec[14] and MCLrec[15]).

However, the utilization of contrastive learning (CL)[16]–[19] to effectively cap-

ture the information of historical sequences remains a challenging research area.

Contrastive learning aims to maximize the dissimilarity between different categories

of individuals (e.g., users or items) while minimizing the dissimilarity within the

same category. The first obstacle often lies in selecting suitable augmentation op-

erations for generating similar instances. To date, three classes of augmentation
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CHAPTER 1. INTRODUCTION

？

？
Figure 1.1: A toy example of sequential recommendation. The first user purchased
football shoes, football and football t-shirt, and the second user purchased pot,
spatula, knife. The goal of sequential recommendation is to predict what item each
user will purchase next given the user’s historical sequence.

operations have been established. The first class generates different views of the

same sequence through random operations like ‘masking’, ‘cropping’, or ‘reordering’

items [20], [21]. The second class uses variable dropout probabilities at the model

level to create different views of the same sequential data [14]. The third class com-

bines ‘neural mask’, ‘layer drop’, and ‘encoder complement’ with data augmentation

techniques for constructing positive and negative view pairs [22].

Most of the prior works leverage sequence information to perform contrastive

learning on individual sequences. They employ data augmentation or model-level

augmentation techniques to augment the historical sequences. Subsequently, the In-

foNCE objective function [17] is utilized to compute the contrastive loss. This objec-

tive function aims to minimize the distance between augmented sequences generated

from the same original sequence, while maximizing the distance between augmented

sequences generated from different original sequences.

Although these methods have achieved some effectiveness in sequential recom-

mendation, they are suboptimal because of the neglect of structural information

2



CHAPTER 1. INTRODUCTION

which can be obtained/learned from graph-based methods. Graph-based recom-

mendation systems provide a more comprehensive representation of users and items

by fully exploiting graph structures, thereby making significant contributions to the

field of recommendation systems. In basic recommendation approaches, NGCF and

LightGCN [23], [24] integrate graph convolutional networks into the recommenda-

tion systems. UltraGCN [25] simplifies GCNs for collaborative filtering by omitting

feature transformations and nonlinear activations. As contrastive learning has devel-

oped, VGCL [26] employs variational graph reconstruction to estimate the Gaussian

distribution of each node and generates multiple contrastive views through multiple

samplings from the estimated distributions. CGCL [27] explore a new way to build

contrastive pairs by using similar semantic embeddings. In the realm of sequential

recommendation, graph contrastive learning also plays a significant role; MAErec

[28] applies graph contrastive learning to adaptively and dynamically distill global

item transitional information in self-supervised augmentation scenarios with scarce

labels. However, cross-view contrastive learning[29] between graph and sequence

information remains an unexplored area in sequential recommendation, especially,

when given only interaction data without any auxiliary information.

To fill the gap, in this thesis, we propose a novel framework based on multi-

view contrastive learning, named MultiView Contrastive learning for sequential

recommendation (MVCrec). Initially, we use contrastive learning to learn each

user’s historical sequence representation. To make the most of graph structure

given the sequence information, we also build an item-based graph and apply con-

trastive learning to learn the structural representation from the historical sequence.

According to common sense, embedding of item IDs provides more item-specific

information, whereas utilizing a graph structure to represent items captures more

information about their relationships with other items. To further enhance our

3



CHAPTER 1. INTRODUCTION

understanding of structural and sequential representations, we introduce and imple-

ment a cross-view contrastive learning strategy. This strategy is designed to pull out

more detailed features, generating extra contrastive pairs, which are compared with

data-augmented views during the training. Finally, given the two different sequence

representations (i.e., item-based sequence representation and graph-based sequence

representation) which are created by the contrastive learning, we run our proposed

multi-view attention fusion module to combine structural and sequential features.

In summary, the major contributions of MVCrec are as follows:

To the best our knowledge, we are the first to attempt to propose a novel

multi-view contrastive learning approach in the sequential recommendation do-

main.

• The proposed model proficiently extracts pertinent information from both posi-

tive and negative samples, using sequence and graph views extracted from users’

historical item lists (i.e., prior interaction data).

• A multi-view attention fusion module is seamlessly integrated within MVCrec

to calculate the recommendation score, drawing upon representations from dis-

parate views.

• Via comprehensive experiments across four public benchmark datasets, we sub-

stantiate that MVCrec outperforms ten state-of-the-art baselines.
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Chapter 2

Related work

2.1 Sequential recommendation

Sequential recommendation is deployed to forecast user preferences based on their

historical purchases. In the initial phase of sequential recommendation development,

the Markov chain was utilized to formulate predictions by modeling stochastic tran-

sitions and uncovering sequential patterns [30], [31].

With the growth of deep learning in many areas, RNN and Transformer-based

methods have been used in sequential recommendation and have achieved good

results. They are good at understanding both the long-term and short-term infor-

mation in users’ historical sequences. For example, GRU4rec [8] uses Gated Re-

current Units (GRU) to learn sequential information from the previously consumed

items. Caser [9] uses both horizontal and vertical CNNs to understand sequential

behaviors. SASRec [10] was the first to use the attention mechanism in sequential

recommendation. In terms of Transformer, BERT4Rec [11] uses deep bidirectional

self-attention to understand the possible relationships between items and sequences.

LinRec [32] introduces a novel method that enhances efficiency while retaining the
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learning capabilities of traditional dot-product attention through a linear attention

module. MELT [33] mutually enhance user and item bilateral branches to deal with

long-tailed problem.

Recently, contrastive learning has been used in sequential recommendation to

handle issues like not having enough data and having data that’s noisy. CL4rec [13]

learns about users by comparing different views of the same sequence data. It uses

random actions like ‘mask’, ‘crop’, or ‘reorder’ items to create these different views.

DuoRec [14] makes pairs to compare by using ”dropout” at the model level and

suggests using sequences with the same next interaction as matching pairs instead of

comparing different data views. MCLrec [15] offers a meta-learning strategy to train

contrastive learning with the goal to address the problem of sparse data and create

more meaningful representations. EMKD [34] proposes knowledge distillation which

use contrastive learning to facilitate knowledge transfer between parallel networks,

and use the ensemble of different models as the final prediction. Lastly, DCrec [35]

introduces a new global learning strategy to deal with popularity bias in sequential

recommendation.

While these methodologies have made some advancements in the field of sequen-

tial recommendation, most of them have not incorporated structured information,

such as graph structures, into their considerations. Unlike the prior works, our

approach concurrently uses information derived from both graphs and sequences.

2.2 Contrastive learning

To enable deep learning models to more accurately differentiate instances pertain-

ing to distinct individuals, contrastive learning was introduced in [16]. The core

concept of contrastive learning is to maximize the dissimilarity between varying
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individuals, and it has witnessed substantial advancements in recent years. The

work of [17] introduced the use of mutual information to quantify the similarity

between two individuals, considering different views of the same individual as posi-

tive pairs. Subsequently, [18] employed a queue to manage the extensive dictionary

associated with contrastive learning, while [19] leveraged the remaining pairs in the

batch as the negative pairs for the positive pair, introducing a projector to enhance

the performance of contrastive learning further. Additionally, [36] explored the ex-

ecution of contrastive learning tasks without the incorporation of negative samples.

In multi-view contrastive learning, MSM4SR [37] proposes the fusion of text and

image views prior to contrastive learning. However, this approach overlooks the

interrelationship of cross-view contrastive learning. On the other hand, MMSSL

[38] suggests using GCN for cross-view contrastive learning, but it doesn’t account

for sequential data. In this thesis, the principle of contrastive learning is adapted

to extract superior representations of historical interaction sequences, and a new

multi-view contrastive learning approach is proposed.

2.3 Graph-based recommendation

User and item interactions in the recommendation task naturally form a graph

structure; thus, the incorporation of graph structures is prevalent in recommenda-

tion systems. Foundational recommendations like NGCF and LightGCN [23], [24]

have advanced the field of recommendation by integrating GCN structures, thus, en-

hancing the developmental trajectory of recommendation systems. UltraGCN [25]

further refines the approach by streamlining GCNs for collaborative filtering and

omitting unnecessary feature transformations and nonlinear activations. Addition-

ally, works like CGCL [27] and VGCL [26] have applied graph structures to con-
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trastive learning, utilizing auto-encoders to optimize the process. At 2019, SRGNN

[39] is proposed to use GNN structure to train the sequential recommendation.

Within the realm of sequential recommendation, MAErec [28] ingeniously employs

graph data in contrastive learning to address issues related to label scarcity. In

this thesis, we also construct a graph for items to learn their embeddings and user

preference representation from the historical sequence via multi-view contrastive

learning.
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Chapter 3

Proposed Method

3.1 Problem definition

The primary objective of this thesis is to predict the next item, cn+1, which a

user u is likely to purchase based on the user’s historical sequence, denoted as

Su = [c1, c2, . . . , cn]. In this notation, ci represents the i-th item that the user has

purchased, and n is the length of the user’s purchasing history.

3.2 Overview

As depicted in Figure 3.1, MVCrec learns two types of item embedding (typical

item embedding and graph-based item embedding), and integrates two contrastive

learning approaches: graph-based and sequence-based contrastive learning. Each ap-

proach consists of a stochastic data augmentation module, a sequence encoder, and

a contrastive loss function [13]. To optimally leverage information from both graph

and sequence data, MVCrec employs a cross-view contrastive loss, complementing

the two contrastive learning approaches. Additionally, a multi-view attention fu-

sion module is formulated to amalgamate item-based sequence representation and

9



CHAPTER 3. PROPOSED METHOD

𝑆!

𝑆!" 𝑆!#

g/I embedding g/I embedding

Transformer 
encoder(𝑓!/𝑓")

Transformer 
encoder (𝑓!/𝑓")

ℎ$"/ℎ%"
ℎ$#/ℎ%#

ℎ$& ℎ%&

ℒ!""#$

ℒ%$&''

𝑆!

item embedding graph embedding

Transformer 
encoder(𝑓!)

Transformer 
encoder(𝑓")

Attention-based multi-
view fusion module

𝑓'!%()*

Embedding layer

Multi view contrastive learning View fusion

Graph 
encoder

Graph-based embedding

Item id
Item embedding

…

Figure 3.1: Our proposed framework, MVCrec, consists of multi-view contrastive
learning and multi-view attention fusion module.

graph-based sequence representation from both views. In essence, MVCrec consists

of five components: (1) stochastic data augmentation module, (2) item embeddings,

(3) Transformer-based sequence encoder, (4) multi-view contrastive learning, and

(5) multi-view attention fusion module. Detailed information about these modules

are described in the following subsections.

3.3 Stochastic data augmentation

This module aims to generate two positive views for each historical sequence. In-

spired by CL4rec [13], we apply three stochastic data augmentations — ‘masking’,

‘cropping’, and ‘reordering’ — to the historical sequence. The procedure for gener-

ating two augmented sequences is as follows:

S̃u
1 = g1 (S

u) , S̃u
2 = g2 (S

u) (3.1)

10
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where g1 and g2 are a pair of different stochastic data augmentation methods (i.e.,

randomly select two of ‘mask’, ‘crop’ and ‘reorder’), and S̃u
1 and S̃u

2 are a pair of

positive samples.

3.4 Two types of item embedding

𝑐!

𝑐"

𝑐#

𝑐$

𝑐%

𝑐&

𝑐'
𝑐(

𝑐)

Figure 3.2: Illustration of the GCN-based graph encoder.

Initially, we project all items into a common embedding space [10]. In this

thesis, two types of item embedding are used and learned: one is the typical item

embedding, and the other one is graph-based embedding. For the typical item

embedding, we project all items into Ms ∈ R|I|×d via an embedding layer, where |I|

denotes the total number of items, and d represents the dimension of the embedding.

For the graph-based item embedding, we use a GCN-based graph encoder to project

all items into an embedding space.

In particular, for the GCN-based graph encoder, we draw upon the concepts

presented in [23], [40]. The structure of the GCN is shown in Figure 3.2. To build

the graph for items, each item within a dataset is viewed as a node. If two items are

co-located in less than z distance in a historical sequence, we add an edge between

them. Here, z represents a predetermined maximum distance. Initially, we project

all items into a common embedding space, M0
g ∈ R|I|×d, where |I| is the number

11
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of items and d is the dimension of embedding, and we treat this as the first layer’s

item embedding in the graph. Then the computation within the GCN-based graph

encoder proceeds as follows:

ml+1
i = ml

i +
∑
i′∈Ni

ml
i′ ; m̃i =

L∑
l=0

ml
i (3.2)

where L denotes the total number of layers, and Ni represents one-hop neighbor

nodes of mi. ml
i,m

l
i′ represent the embedding of items i, i′ ∈ |I| in the l-th layer.

Specifically, we sum up the representations from all layers to obtain the final em-

bedding of an item i, denoted as m̃i. We call it graph-based (item) embedding, and

all items’ graph-based embeddings are represented as a matrix Mg ∈ R|I|×d. The

graph encoder is designed to convert items into expressive representations based on

the structural information in the graph.

3.5 Transformer-based sequence encoder

Transformer-based sequence encoder is a vital step in the sequential recommenda-

tion. It aims to extract the representation from the sequence list. First of all, we

describe input to the sequence encoder.

Input to the sequence encoder. Given the input as an interaction history se-

quence Su = [c1, c2, ..., cn], the Transformer takes into account the positions of items

by initializing the history item list Su to eu ∈ Rn×d by:

eus = [ms1 + p1,ms2 + p2, ...,msn + pn].

eug = [mg1 + p1,mg2 + p2, ...,mgn + pn].

(3.3)

where msi ∈ Rd represents an item’s typical item embedding at the i-th position in

12
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the sequence, mgi ∈ Rd represents the item’s graph-based embedding at i-th position

in the sequence, pi ∈ Rd denotes the positional embedding, and n is the sequence

length. We note that msi and mgi are extracted from embedding matrices Ms and

Mg, respectively, described in the previous subsection.

Sequence encoder. The sequence encoder derives the representation of eu using

a deep neural network (e.g., BERT4Rec) [11]. We use two sequence encoders: one

for the sequence of item-based embeddings (eus ) and the other one for the same

sequence of graph-based embeddings (eug ). The sequence encoders are defined as fθ

and fϕ, respectively, where θ and ϕ represent each model’s parameters. The output

representation Hu
s ∈ Rn×d and Hu

g ∈ Rn×d are calculated as follows:

Hu
s = fθ(e

u
s )

Hu
g = fϕ(e

u
g )

(3.4)

Since our main task is to predict the next item, we employ the final vectors hsn in

Hu
s = [hs1 , hs2 , ..., hsn ] and hgn in Hu

g = [hg1 , hg2 , ..., hgn ] as the item-based sequence

representation hs and graph-based sequence representation hg of the historical se-

quence, respectively. We can interpret them as two types of user representation.

3.6 Multi-view contrastive learning

Inner view contrastive learning. Inspired by CL4rec [13] and MCLrec [15],

we utilize InfoNCE as the objective function to optimize features extracted from

contrastive learning. We denote the number of historical sequences in each batch by

B. Given B historical sequences in the batch, each historical sequence goes through

the stochastic data augmentation module and returns two augmented sequences,

so totally there are 2B augmented sequences. Since contrastive learning requires

13
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positive pairs and negative pairs, given a user’s historical sequence (i.e., one of B

historical sequences in the batch), we create a positive pair of the sequence via the

stochastic data augmentation module. We use the remaining 2(B − 1) augmented

sequences as negative samples for the positive pair.

For each positive pair, contrastive loss is calculated by:

Lcon

(
h1
n, h

2
n

)
=− log

exps(h
1
n,h

2
n)

exps(h1
n,h

2
n) +

∑
hn∈ neg exps(h1

n,hn)

− log
exps(h

2
n,h

1
n)

exps(h2
n,h

1
n) +

∑
hn∈ neg exps(h2

n,hn)

(3.5)

where h1
n and h2

n are the positive pair’s sequence representations learned from

the same Transformer-based sequence encoder (i.e., either fθ or fϕ). s(, ) rep-

resents the inner product, and neg indicates the set of negative sample embed-

dings/representations. Since we can create 2(B − 1) negative pairs for each of h1
n

and h2
n, the loss function consists of two terms.

Then, the objective function for optimizing the contrastive learning over the two

different views (i.e., item-based sequence representation and graph-based sequence

representation via the sequence encoders) is as follows:

LInner = Lcon

(
h1
sn , h

2
sn

)
+ Lcon

(
h1
gn , h

2
gn

)
(3.6)

Where h1
sn and h2

sn are item-based sequence representations of the positive pair, and

h1
gn and h2

gn are graph-based sequence representations of the positive pair.

Cross-view contrastive learning. In addition to the inner view contrastive learn-

ing, we propose a cross view contrastive learning, which learns discriminative fea-

tures that capture the correspondence between the item-based sequence representa-

tion and graph-based sequence representation.

14
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Firstly, the mean of the h1
sn and h2

sn obtained from a positive pair is calculated as

hm
sn , and the mean of the h1

gn and h2
gn obtained from the same positive pair is calcu-

lated as hm
gn . Likewise, given 2(B-1) negative samples in the batch, each two negative

samples were originated from the same historical sequence (i.e., B-1 negative sam-

ple pairs). Therefore, we also get each negative sample pair’s mean of item-based

sequence representations and mean of graph-based sequence representations.

Given the positive pair’s mean representations hm
sn and hm

gn , cross-view contrastive

loss is calculated as follows:

Lcross =− log
exps(h

m
sn

,hm
gn)

exps(h
m
sn

,hm
gn) +

∑
h∈ neg2 exps(h

m
sn

,h)

− log
exps(h

m
gn

,hm
sn)

exps(h
m
gn

,hm
sn) +

∑
h∈ neg2 exps(h

m
gn

,h)

(3.7)

where neg2 is the set containing negative sample pair’s mean representations. Lcross

is designed to maximize the similarity between hm
gn and hm

sn . This approach compels

the model to learn similar item-based and graph-based representations of the same

historical sequence (or augmented sequences originated from the same sequence),

yielding enhanced representation capability.

Consequently, we combine the aforementioned two contrastive loss functions as

follows:

LMM = Lcross + LInner (3.8)
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3.7 Multi-view attention fusion module & recom-

mendation prediction

To further utilize the extracted representations, we propose multi-view attention

fusion module, which is aimed at amalgamating information from two disparate

view, namely item-based sequence and graph-based sequence.

The multi-view attention fusion module is executed through an interactive cross-

view attention mechanism, which is devised to uncover multi-view global and local

dependencies. Given a user’s two different view representations, hg ∈ R1×d and

hs ∈ R1×d, as depicted in Figure 3.1 (the rightmost figure) and Figure 3.3, we

initially calculate the global attention score, sattentionglobal , and the local attention score,

sattentionlocal :

sattentionglobal = σ ((hg + hs)⊗Wg)

sattentionlocal = σ ((hg + hs)⊗Wl)

(3.9)

where Wg ∈ Rd×d and Wl ∈ Rd×d represent global and local weight matrices, respec-

tively. d is the dimension of a view’s sequence representation, and ⊗ denotes matrix

product. σ represents an activation function. In this thesis, we employ ReLU as the

activation function.

Given the global and local attention scores, a new fusion task arises as follows:

sattention = sigmoid
(
sattentionglobal ⊕ sattentionlocal

)
(3.10)

where ⊕ represents the summation between the two vectors. We employ the sigmoid

function to normalize the scores. These scores are considered as weights for different

view representations.
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Figure 3.3: Multi-view attention fusion module which consists of two parts: learn
(1) attention weights for two representations hg and hs, and (2) a new representation
based on the attention weights.

Finally, fused representation ffusion (hs, hg) ∈ R1×dis calculated as follows:

ffusion (hs, hg) =
(
sattention ◦ hg

)
⊕
((
1− sattention

)
◦ hs

)
(3.11)

where ◦ represents elements-wise product.

Since our final goal is to use this representation for recommendation, we propose

a novel strategy to leverage the generated representation:

ŷ = ffusion (hs, hg)M
T
s + ffusion (hg, hs)M

T
g

(3.12)

where hs and hg are a target user’s item-based sequence representation and graph-

based sequence representation, respectively. Ms and Mg are the typical item em-

bedding matrix and graph-based item embedding matrix, respectively, described in

Section 3.4.

In this thesis, we utilize cross-entropy loss as the objective function, optimizing

17
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to improve prediction accuracy.

Lrec = H(y, ŷ) = −
∑
i

yi log(ŷi) (3.13)

where y represents the ground truth label for the user’s true preference scores to

items.

3.8 Overall Objective

Finally, the total loss function during the training stage can be represented as:

L = Lrec + λLMM (3.14)

where Lrec is the recommendation objective function in Eq. 3.13, LMM represents

multi-view contrastive loss, which consists of the inner-view contrastive loss and

cross-view contrastive loss, as defined in Eq. 3.8, and λ is a hyperparameter.

18



Chapter 4

Experiment

In this section, we conduct extensive experiments using four real-world datasets to

investigate the following research questions (RQs):

• RQ1: How is the performance of our MVCrec compared with existing baselines?

• RQ2: How effective are the key components of MVCrec in terms of enhancing

the model’s performance?

• RQ3: How do hyperparameters (i.e., the weight of the multi-view contrative

loss λ, a batch size, and an embbeding size) affect the performance of MVCrec?

4.1 Experimental settings

Dataset

To verify the effectiveness of our model, we evaluate its performance using four real-

world benchmark datasets: Amazon (Beauty, Sports and Home & Kitchen)1 and

Yelp2. The Amazon datasets contain a series of Amazon product reviews. In our

1https://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset
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experiments, we use three sub-categories of the Amazon: Beauty, Sports, and Home

& Kitchen. The Yelp dataset, containing reviews of businesses listed on Yelp, serves

a similar purpose as the Amazon datasets. In the following experiments, we only

use interaction data without any auxiliary data (e.g., text, image). Following the

preprocessing steps described in [21], [41], we removed users and items with fewer

than five interactions. The statistics of the datasets are summarized in Table 4.1.

To be specific, sparsity means the ratio of user and item pair do not appear in data.

Table 4.1: The statistics of datasets.
Dataset #users #items #interactions avg.length SD sparsity
Sports 33.6K 18.3K 296.3K 8.3 6.06 99.95%
Beauty 22.3K 12.1K 198.5K 8.8 8.16 99.93%
Yelp 30.4K 20.0K 316.3K 10.4 10.38 99.95%

Home & Kitchen 66.5K 28.2K 551.6K 8.3 6.81 99.97%

Baselines

We compare our model with ten state-of-the-art recommendation models, which can

be divided into three parts:

Non-sequential models. These baselines are based on collaborative learning and

graph convolutional network:

• BPRMF [42] uses Bayesian Personalized Ranking (BPR) loss to optimize the

matrix factorization model.

• LightGCN [23] simplifies the design of GCN to make it more concise and appro-

priate for recommendation.

General sequential models. These baselines are based on RNN, attention-based

neural networks, memory neural networks, GCN-based networks:
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• SRGNN [39] models the history item sequence as a graph-structured data to

deal with sequential recommendation.

• GRU4rec [8] uses Gated Recurrent Unit (GRU) to model for the sequential

recommendation.

• Caser [9] embeds a sequence of recent items into an “image” in the time and

latent spaces, and learns sequential patterns as local features of the image using

convolutional filters.

• SASRec [10] proposes the first self-attention based sequential model to capture

long-term dependencies.

Self-supervised sequential models. These baselines are based on Transformer

and collaborative learning:

• BERT4Rec [11] trains the bidirectional model using the Cloze task, predicting

the masked items in the sequence by jointly conditioning on their left and right

context.

• CL4rec [13] leverages contrastive learning on the sequential recommendation.

• MCLrec [15] innovates the standard contrastive learning framework by contrast-

ing data, and models augmented views for adaptively capturing the informative

features hidden in stochastic data augmentation.

• DCrec [35] proposes a global collaborative learning strategy to tackle with the

popularity bias for sequential recommendation, considering dependencies be-

tween users across sequences.

We note that other existing methods (e.g., UltraGCN, VGCL, CGCL, MAErec,

MMSSL [38], MSM4SR [37]) which are not aimed for sequential recommendation or

require auxiliary data, are excluded in the baseline list except well-known BPRMF

and LightGCN because their performance would be much lower than sequential
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Table 4.2: Overall performance where bold means the best performance and under-
line means the second-best performance.

Dataset Metric BPRMF LightGCN GRU4rec Caser SASRec BERT4Rec SRGNN CL4rec MCLrec DCrec MVCrec Improv.(%)
Sport HIT@5 0.0144 0.0171 0.0113 0.0060 0.0242 0.0222 0.0214 0.0258 0.0281 0.0333 0.0352 5.71

NDCG@5 0.0092 0.0107 0.0073 0.0043 0.0158 0.0147 0.0144 0.0171 0.0191 0.0231 0.0238 3.03
HIT@10 0.0255 0.0289 0.0182 0.0092 0.0369 0.0351 0.0330 0.0403 0.0428 0.0481 0.0523 8.73

NDCG@10 0.0127 0.0146 0.0095 0.0053 0.0199 0.0189 0.0181 0.0218 0.0239 0.0278 0.0293 5.4
HIT@20 0.0414 0.0471 0.0317 0.0138 0.0550 0.0527 0.0508 0.0607 0.0662 0.0683 0.0760 11.27

NDCG@20 0.0168 0.0191 0.0129 0.0065 0.0245 0.0233 0.0226 0.0269 0.0297 0.0329 0.0352 6.99
Beauty HIT@5 0.0235 0.0262 0.0166 0.0107 0.0466 0.0439 0.0433 0.0516 0.0564 0.0614 0.0647 5.37

NDCG@5 0.0143 0.0165 0.0108 0.0068 0.0311 0.0291 0.0304 0.0354 0.0388 0.0439 0.0460 4.78
HIT@10 0.0397 0.0433 0.0273 0.0174 0.0656 0.0643 0.0620 0.0749 0.0837 0.0846 0.0924 9.22

NDCG@10 0.0195 0.0220 0.0142 0.0089 0.0372 0.0356 0.0364 0.0428 0.0476 0.0513 0.0548 6.82
HIT@20 0.0614 0.0695 0.0446 0.0267 0.0944 0.0935 0.0910 0.1068 0.1166 0.1145 0.1275 11.35

NDCG@20 0.0250 0.0286 0.0186 0.0113 0.0444 0.0430 0.0437 0.0509 0.0560 0.0588 0.0637 8.33
Yelp HIT@5 0.0336 0.0502 0.0134 0.0060 0.0409 0.0419 0.0269 0.0447 0.0531 0.0478 0.0597 12.43

NDCG@5 0.0223 0.0357 0.0082 0.0043 0.0331 0.0337 0.0180 0.0328 0.0380 0.0374 0.0447 17.63
HIT@10 0.0512 0.0730 0.0218 0.0092 0.0551 0.0562 0.0431 0.0642 0.0751 0.0654 0.0811 7.99

NDCG@10 0.0280 0.0430 0.0109 0.0053 0.0377 0.0383 0.0232 0.0391 0.0450 0.0431 0.0515 14.44
HIT@20 0.0812 0.1060 0.0371 0.0138 0.0778 0.0800 0.0673 0.0938 0.1076 0.0913 0.1107 2.88

NDCG@20 0.0355 0.0513 0.0147 0.0065 0.0434 0.0443 0.0293 0.0466 0.0532 0.0496 0.0589 10.71
Home & Kitchen HIT@5 0.0054 0.0073 0.0039 0.0042 0.0113 0.0116 0.0066 0.0141 0.0153 0.0198 0.0207 4.55

NDCG@5 0.0035 0.0046 0.0024 0.0026 0.0074 0.0076 0.004 0.0096 0.0106 0.0146 0.0147 0.68
HIT@10 0.0094 0.0122 0.0066 0.0072 0.0180 0.0172 0.0116 0.0211 0.0227 0.0269 0.0288 7.06

NDCG@10 0.0048 0.0061 0.0032 0.0036 0.0096 0.0094 0.0057 0.0118 0.0129 0.0169 0.0171 1.18
HIT@20 0.0158 0.0202 0.0127 0.0129 0.0275 0.0265 0.0196 0.0307 0.0331 0.0362 0.0407 12.43

NDCG@20 0.0064 0.0082 0.0048 0.0050 0.0120 0.0117 0.0077 0.0142 0.0156 0.0193 0.0201 4.15

recommendation models or sometimes it is hard to run some of their models without

auxiliary data.

Evaluation metric

In accordance with [13], [43]–[46], we employ the leave-one-out strategy to split each

dataset into training, validation, and test sets based on the timestamp provided by

the dataset. Specifically, we use the last interaction of every user for the test set,

and the second-to-last interaction for every user is allocated for the validation set;

all remaining interactions are used in the training set. Following the procedure in

[47]–[50], we rank the entire item set.

We adopt Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG)

as evaluation metrics. HR@k measures whether the positive item appears in the

top-k recommendation list, and NDCG@k additionally considers its position in the

ranking list, where k ∈ {10, 20}.
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Implementation Details

We implement our method using PyTorch, aligning the implementation of BPRMF,

LightGCN, FPMC, GRU4rec, Case, SASRec, CL4rec, and BERT4Rec with the

methodologies described in their respective papers. A graph for the graph encoder

is constructed based on the training set. To maintain fairness, we employ BERT as

the representation encoder for CL4rec, MCLrec, DCrec, and our MVCrec, setting

the number of self-attention blocks and attention heads to 2, and we set the distance

z as 3. All parameters are consistent with those reported in the original papers, and

optimal settings are chosen based on model performance on the validation set. We

set the embedding size d as 64 and the maximum length of recently consumed

items in each user’s historical sequence n as 50, selecting a hyperparameter λ from

{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The learning rate lr is chosen from

{1e − 3, 1e − 4}, and weight decay is selected from {0, 1e − 1, 1e − 2, 1e − 3, 1e −

4, 1e − 5, 1e − 6}. For fairness, we standardize the batch size B to 256 for all

models. The models are optimized using the Adam optimizer [26] and are trained

with an early stopping strategy based on the performance of the validation set,

with the maximum step set to 100. Cause our model use some different setting and

representation encoder, we have different result with it in [15]. All experiments are

conducted on a Tesla T4 GPU.

4.2 RQ1: overall performance

To elucidate the contributions made by MVCrec, we compare its performance with

the baselines. The results presented in Table 4.2 lead us to several insights:

• Self-supervised models exhibit pronounced efficacy, markedly surpassing classical

models such as BPRMF, LightGCN, GRU4rec and Caser. Fundamental Transformer-
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based methods like SASRec and BERT4Rec excel beyond the classical models, es-

tablishing themselves as the secondary tier in sequential recommendation and em-

phasizing the power of Transformer methods in this realm. In contrast to SASRec

and BERT4Rec, models like CL4rec, MCLrec, DCrec, and MVCrec integrate con-

trastive learning and data augmentation methods for training in the recommenda-

tion tasks. This indicates the capability of contrastive learning to harness more

intricate representations from historical sequences by learning features that discern

between distinct instances. Interestingly, LightGCN manifests substantial prowess

on the Yelp dataset, aligning closely with CL4rec and underscoring the proficiency

of graph networks in recommendation systems.

• In comparison to CL4rec, our findings substantiate that a graph structure tai-

lored for sequential recommendation can notably enhance performance. LightGCN

also eclipses BPRMF substantially, elevating the graph structure; the graph convo-

lutional network unveils connections between users and items as their interaction is

inherently graphical. Concurrently, the results show that our sequence-based graph

construction method adeptly discern interactions between varied items by weighing

the positioning of items within the sequence.

• Compared to graph-based sequential methods or general recommendation meth-

ods like SRGNN and LightGCN, our model demonstrates superior performance. In-

terestingly, SRGNN tends to outperform LightGCN in most datasets. These results

underscore the efficacy of graph-based sequential methods. Crucially, the enhanced

performance of our model can be attributed to the multi-view strategy, effectively

integrating relationship information with ID-specific data.

• Our method outperforms the baselines, attributed to the graph view and the

multi-view fusion strategy. For instance, our model surpasses the best baseline by

1.18%∼14.44% on NDCG@10 over the four datasets. This superior performance
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can be explained as follows: (1) The multi-view contrastive learning strategy in-

corporating both sequence and graph information facilitates the generation of more

expressive representations; and (2) The multi-view attention fusion strategy effec-

tively amalgamates item-based sequence representation and graph-based sequence

representation. These results confirm the effectiveness of our multi-view contrastive

recommendation model, learning more accurate and better representations.

4.3 RQ2: ablation study

Next, we conduct quantitative and qualitative ablation study to test whether each

proposed component positively contribute to the performance improvement or not.

Table 4.3: Ablation study at HR@20 and NDCG@20.
Model MVCrec MVCrec(s) MVCrec(g) MVCrec(mlp)

Beauty
HR 0.1275 0.1068 0.1183 0.1017

NDCG 0.0637 0.0509 0.0559 0.0489

Sport
HR 0.0760 0.0607 0.0705 0.0590

NDCG 0.0352 0.0269 0.0319 0.0271

Yelp
HR 0.1107 0.0938 0.1020 0.0923

NDCG 0.0589 0.0466 0.0523 0.0449

Home & Kitchen
HR 0.0407 0.0307 0.0362 0.0349

NDCG 0.0201 0.0142 0.0164 0.0160

Quantitative Analysis

To further comprehend the efficacy of our proposed model MVCrec, we compare

it with three variants of our model: MVCrec(s), MVCrec(g) and MVCrec(mlp).

MVCrec(s) employs a single contrastive learning approach based on only item-based

sequence information. MVCrec(g) denotes utilization of contrastive learning solely

on the graph-based sequence information. MVCrec(mlp) denotes the use of multi-

layer perceptron (MLP) instead of multi-view attention fusion module to fuse repre-
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sentations of two views (concatenate them and go through neural layers). Following

[15], we adopt Hit Ratio@20 and NDCG@20 as evaluation metrics in the ablation

study for simplification.

The results are presented in Table 4.3. Analyzing the comparison between our

model and three variants yields the following insights:

• A comparison between MVCrec(s) and MVCrec(g) reveals that the graph con-

volutional layer is more pivotal in terms of representing the history sequence. The

information in the graph, constructed by the sequence data, encapsulates extensive

user preference. The performance of MVCrec(g) even surpasses or is competitive

with MCLrec (the second best baseline) on the Beauty and Sport datasets.

• Comparing MVCrec(s) and MVCrec shows that our proposed method signif-

icantly outperforms MVCrec(s) – analogous to CL4rec – attributed to our novel

multi-view attention fusion module that harnesses information from both graph

and sequence structures to generate more expressive representations. This is fur-

ther confirmed by comparing the performance of MVCrec(g) and MVCrec. While

MVCrec(g) attains robust results owing to the graph convolutional encoder, MVCrec

surpasses its performance, affirming the efficacy of our proposed framework.

• Comparing MVCrec(mlp) and MVCrec shows that our proposed multi-view at-

tention fusion module outperforms the MLP significantly, this is because the multi-

view attention fusion module utilizes attention to weigh the importance of different

views and their features dynamically.

Qualitative Analysis

To further elucidate the effectiveness of our model qualitatively, we visualize the

learned hs, hg, and ffusion(hg, hs) using T-SNE[51]. Within Figure 4.1, “only hs” rep-

resents user preference learned by MVCrec(s), “only hg” represents user preference
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Figure 4.1: T-SNE visualization of sequence representations of the six groups in
MVCrec(s), MVCrec(g), and MVCrec(H & K represents the result of Home &
Kitchen dataset.).
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learned by MVCrec(g), and “fusion” represents ffusion(hg, hs) learned by MVCrec

presented in Eq. 3.12. To draw the figure, we first randomly selected 6 histori-

cal sequences from each dataset, where each of them consists of recent 50 items so

that they can generate enough augmented samples. For each historical sequence,

the stochastic data augmentation module at Section 3.3 was used to generate 499

augmented sequences, setting the crop and mask ratios as 0.5 and the max reorder

length ratio as 0.8 in order to ensure the augmented sequences are similar to but

still different from the original historical sequence. We considered these 499 aug-

mented sequences and 1 original historical sequence as the same group, and the

other 2,500 sequences (2,495 augmented samples + 5 original historical sequences)

as negative samples. In total, there are six groups and each of which has different

color in Figure 4.1. We projected each sequence’s representation via T-SNE in the

figure. We observe that sequence representations of the different colors, learned by

MVCrec(s) and MVCrec(g), are relatively closer than ones learned from MVCrec.

In other words, the representations produced by the multi-view fusion module in the

different colors are more widely scattered. This indicates that our model is inclined

to generate more distinct representations for negative pairs. The figure underscores

that the proposed multi-view strategy and the multi-view attention fusion module

enhance the efficiency of collaborative learning. This improvement stems from the

incorporation of various views in collaborative learning, leading to the generation of

more informative representations.
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Figure 4.2: Performance at different λ under NDCG@20 on test dataset.

4.4 RQ3: hyperparameter analysis

Hyperparameter Analysis on λ

In this section, we examine the impact of varying λ, a hyperparameter in Eq. 3.14.

We assess the performance of MVCrec across four datasets using different values of

λ. For simplicity, we employ NDCG@20 as the evaluation metric, and the results are

illustrated in Figure 4.2. In the Amazon datasets (i.e., Beauty, Sports datasets, and

Home & Kitchen), optimal performance is achieved when λ is set at 0.01, while in

the Yelp dataset, performance increases as we increase λ (the highest performance is

achieved in 0.5). It means both recommendation loss and contrastive loss positively

contributed to correctly estimate user-item matching scores and learn better rep-

resentations. The discrepancy of optimal λ among the datasets can be potentially

explained that Amazon and Yelp have different user distribution and user behavior

patterns.
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Figure 4.3: Performance at different batch size and embedding size under NDCG@20
on test dataset.

Hyperparameter Analysis on a batch size and an embedding size

In this section, we explore how a batch size and an embedding size impact the

performance of our MVCrec model. We evaluate MVCrec across four datasets using

various batch and embedding sizes. NDCG@20 serves as the main metric, similar

to the previous section. The batch size ranges from 16 to 256, while the embedding

size ranges from 16 to 128. Results are illustrated in Figure 4.3. Optimal batch size

varies by each dataset: 32 for Beauty, 16 for Sports, 32 for Yelp, and 16 for Home

& Kitchen. We observe that larger embedding size generally enhances performance

across all datasets.

Time complexity analysis

In this section, we discuss time complexity of our model in the training and testing

phases. In the training phase, we jointly train the model for the contrastive learning

loss function and the recommendation loss function, aiming to optimize θ, ϕ and
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attention-based multi-view fusion module. The time complexity is O(|U |2d+ |U |d2),

where |U | represents the number of users and d represents an embedding size of

the model. In the testing phase, the time complexity of our model is similar to

basic sequential recommendation methods, as we only need to use the multi-view

attention fusion module, transformer methods and graph convolutional layer. The

time complexity is O(d|I|), where |I| represents the number of items. This analysis

shows that our MVCrec model attains time complexity on par with state-of-the-art

sequential recommendation methods [15], [20].
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Conclusion

In this thesis, we have proposed a novel contrastive learning framework. Our con-

trastive learning strategy integrated contrastive learning from two views (i.e., item-

based sequence and graph-based sequence), enabling our model to learn better se-

quence representations. To combine the representations extracted from the two

views, we employ the concept of multi-view attention fusion method, to gener-

ate/learn more expressive sequence representations. Extensive experiments across

four benchmark datasets demonstrated the superiority of our model. In this thesis,

we only used the sequence of consumed items without considering actual time span

between the consumed items. In the future, we will explore another possible con-

trastive learning based on the temporal sequence to learn even better user and item

representations.
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