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Abstract

In this work we consider an optimal design problem formulated on a two dimen-

sional domain filled with two isotropic dielectric materials. The objective is to find

a design that supports an electric field which is as close as possible to a target field,

under a constraint on the amount of the better dielectric. In the case of a zero

target field, the practical purpose of this problem is to avoid the so called dielectric

breakdown of the material caused due to a relatively large electric field.

In general, material layout problems of this type fail to have an optimal config-

uration of the two materials. Instead one must study the behavior of minimizing

sequences of configurations. From a practical perspective, optimal or nearly optimal

configurations of the two materials are of special interest since they provide the in-

formation needed for the manufacturing of optimal designs. Therefore in this work,

we develop theoretical and numerical means to support a tractable method for the

numerical computation of minimizing sequences of configurations and illustrate our

approach through numerical examples.

The same method applies if we were to replace the electric field by electric flux, in

our objective functional. Similar optimization design problems can be formulated

in the mathematically identical contexts of electrostatics and heat conduction.
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Chapter 1

Introduction

1.1 Formulation of the Optimal Design Problem

Consider a two dimensional design domain Ω, with Lipschitz boundary, containing

two isotropic dielectric materials. The dielectric permittivity is specified by ε and

is piece-wise constant taking the values α and β where 0 < α < β. For a prescribed

charge density f , the associated electric potential ϕ satisfies the Poisson equation

given by,

−div (ε∇ϕ) = f, (1.1)

and ϕ = 0 on the boundary of Ω. In order to include the broadest class of charge

densities we suppose that f lies in W−1,2(Ω), ε lies in L∞(Ω, {α, β}) and that ϕ

is a W 1,2
0 (Ω) solution of the Poisson equation. The associated electric field in the

domain is E = ∇ϕ. We introduce a target electric field Ê = ∇ϕ̂, where ϕ̂ is a

potential in W 1,2
0 (Ω). For a given charge density, our objective is to design a two

phase dielectric that supports an electric field ∇ϕ that is as close as possible to ∇ϕ̂.

Placing a constraint on the amount of the better dielectric β, the design problem is
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to minimize the difference,

∫
Ω

|∇ϕ−∇ϕ̂|2 dx, (1.2)

over all configurations of the two dielectrics.

In order to precisely formulate the problem, we introduce ω to be the subset of Ω

containing the β dielectric. The characteristic function of this set is written as χ,

and the dielectric permittivity associated with it is given by,

ε = ε(χ) ≡ βχ+ α(1− χ). (1.3)

The space of admissible configurations is denoted by adΘ, and expresses the con-

straint on the amount of the β material,

adΘ = {χ :

∫
Ω

χ dx ≤ Θ meas(Ω)}, (1.4)

where Θ is a constant, such that 0 < Θ < 1.

The objective functional is denoted by F (χ, ε(χ),∇ϕ̂), and is given by,

F (χ, ε(χ),∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|2 dx, (1.5)

where the state variable ϕ is a solution of (1.1).

As a result, we formulate our design problem as,

P = inf
χ∈adΘ

F (χ, ε(χ),∇ϕ̂). (1.6)

In general, material layout problems of this type fail to have an optimal design

given by a configuration of the two materials. Instead one must study the behavior
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of minimizing sequences of configurations. The purpose of the analysis given here

is to provide the methodology for the recovery of optimal configurations when they

exist and to identify minimizing sequences of configurations for (1.6) otherwise.

1.2 Prior Work

The issue of nonexistence of optimal configurations for problems of material layout

has been the object of much interest. The nonexistence of an optimal configuration

for the design problem coincides with the appearance of minimizing sequences con-

taining regions of finite measure where the dielectric permittivity becomes highly

oscillatory. As one follows these minimizing sequences, the dielectric permittivity

oscillates between the values α and β on progressively finer scales. The classic ex-

ample is illustrated in the problem of minimizing the energy dissipation associated

with configurations of two materials. Using the notation introduced in the previ-

ous section in the context of two dielectric materials, the energy dissipation for a

configuration is given by,

∫
Ω

ε∇ϕ · ∇ϕdx.

The problem of nonexistence is resolved in an elegant fashion in [5] and [9], by ex-

tending the design space to include all effective dielectric permittivities that could

be obtained through oscillation. The crucial connection between minimizing se-

quences of configurations and optimal designs in the extended design space is then

established through a continuity property of the energy dissipation in the context

of weakly convergent sequences in L2(Ω)2, given in [2]. Indeed, consider sequences

{εν∇ϕν}∞ν=1 and {∇ϕν}∞ν=1, such that −div (ε
ν∇ϕν) = f . According to the G-

convergence theory, see Appendix for definition, these sequences weakly converge to
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the limits ε∞∇ϕ∞ and ∇ϕ∞, where ε∞ is an effective tensor in the extended space

of designs satisfying, −div (ε∞∇ϕ∞) = f , with ϕ∞ in W 1,2
0 . As a result one has,

lim
ν→∞

∫
Ω

εν∇ϕν · ∇ϕν dx =

∫
Ω

ε∞∇ϕ∞ · ∇ϕ∞ dx.

For the design problem treated here, one can attempt to resolve the nonexistence

problem by extending the design space to include effective properties. However

unlike the energy dissipation and other continuous functionals treated earlier, the

objective functional given by (1.5) is not continuous with respect to the weak con-

vergence. Thus additional theoretical work is required to provide the connection

between an extended space of designs and minimizing sequences of configurations.

The goal of this thesis is to identify minimizing sequences of configurations for the

P problem stated in (1.6), for any target potential ϕ̂ ∈W 1,2
0 .

Earlier work provides a way to characterize minimizing sequences of configurations

for (1.6), but only for a special class of target potentials. This work is shown in [15],

and for completeness is described below. The class of target potentials for which

minimizing sequences of configurations can be found, is motivated by the following

theorem stated in [15].

Theorem 1. Let S be a non-empty strongly closed subset of a Hilbert space H.

Then there exists a dense Gδ subset K of H such that for any x ∈ K, the minimizing

sequences {cν}∞ν=1 ∈ S of the function c → ‖x − c‖ are Cauchy sequences. In

particular the subset of points of H with a unique projection on S contains a dense

Gδ subset, as it contains K.

In the context of optimal design, a relevant Hilbert space is W 1,2
0 (Ω) with the

inner product (φ, ψ) =
∫
Ω
∇φ ·∇ψ dx. We apply Theorem 1 for the strong W 1,2

0 (Ω)
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closure of the set SΘ given by,

SΘ =




ϕ | ϕ is a W 1,2
0 (Ω) solution of − div (ε(χ)∇ϕ) = f,

χ ∈ adΘ.
(1.7)

The strong W 1,2
0 (Ω) closure of the set SΘ, denoted by S̄Θ, is established in [15] and

[3], and is given by,

S̄Θ =




ϕ | ϕ is a W 1,2
0 (Ω) solution of − div (mθ∇ϕ) = f,

for some θ ∈ L∞(Ω, [0, 1]), such that mθ = α(1− θ) + βθ.
(1.8)

From the definition of S̄Θ and the application of Theorem 1, it follows that there

exists a dense Gδ subset K of target potentials ϕ̂ in W 1,2
0 (Ω), for which,

P = inf
χ∈adΘ

∫
Ω

|∇ϕ−∇ϕ̂ |2 dx = inf
ϕ∈SΘ

∫
Ω

|∇ϕ−∇ϕ̂ |2 dx =

= min
ϕ∈S̄Θ

∫
Ω

|∇ϕ−∇ϕ̂ |2 dx. (1.9)

As the above equalities suggest, the relaxation of the P problem for target potentials

ϕ̂ ∈ K, can be done by extending the design space to include the scalar coefficients

mθ. But even so, there is no explicit representation for the set of the target potentials

K, therefore the identification of the minimizing sequences of configurations for any

choice of target potentials ϕ̂ ∈ W 1,2
0 (Ω), still remains a problem and it is treated

here.

1.3 Abstract Results

With the final goal to identify minimizing sequences of configurations for the P

problem (1.6), we take our first step in Chapter 2 and relax the problem. In order
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to accomplish this, we relax the design space adΘ described in (1.4), and choose the

new objective functional to be a continuous extension of the original functional (1.5)

for piecewise oscillating sequences of layered designs. This relaxation is motivated

by oscillating sequences of layered designs and is explained below. We describe an

oscillatory sequence of layered material by χν(x) = µ(νx ·n), ν = 1, 2 . . . ,∞, where

µ(t) is a periodic function on the real line of period unity taking the values 1 for

0 ≤ t ≤ θ and 0 for θ < t ≤ 1. Here θ is a constant, 0 < θ < 1, representing the

relative thickness of the layers of the β material while n = (cos γ, sin γ) represents the

normal vector to the layers. The sequence of permittivities {ε(χν)}∞ν=1 G-converges

to an effective permittivity tensor ε(θ, γ), related to a composite material called a

rank one laminate, and expressed as,

ε(θ, γ) = R(γ)Λ(θ)RT (γ).

Here R(γ) is the rotation matrix with angle γ, Λ(θ) =


 hθ 0

0 mθ


, where hθ =

(1−θ
α
+ θ

β
)−1 and mθ = α (1− θ) + β θ are the harmonic and arithmetic means

of the two dielectric permittivities α and β. On the other hand, the corresponding

sequence of the potentials, {ϕν}∞ν=1 satisfying the equilibrium equation (1.1), weakly

converges to ϕ ∈W 1,2
0 , satisfying the homogenized equilibrium equation,

−div (ε(θ, γ)∇ϕ) = f.

In general for a weakly converging sequence of potentials {ϕν}∞ν=1 to ϕ in W 1,2
0 , one

writes,

lim
ν→∞

∫
Ω

F (χν, ε(χν),∇ϕ̂) dx = lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̂|2 dx =
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=

∫
Ω

|∇ϕ−∇ϕ̂|2 dx+ lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ|2 dx.

However in this particular case, we are able to calculate the closed form expression

given by,

lim
ν→∞

F (χν, ε(χν),∇ϕ̂) = lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̂|2 dx =

=

∫
Ω

|∇ϕ−∇ϕ̂|2 dx+

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕ dx,

where H(θ) =


 ( 1

α
− 1

β
)2θ(1− θ)h2θ 0

0 0


 .

Motivated by this result, we extend our design space to include generalized designs

associated with rank one laminate materials,

DΘ = { (θ, γ, ε(θ, γ)) : θ ∈ L∞(Ω; [0, 1]); γ ∈ L∞(Ω; [0, 2π]);

ε(θ, γ) = R(γ)Λ(θ)RT (γ) ;

∫
Ω

θ dx ≤ Θ meas(Ω) }.

One easily sees that the extended space of designs DΘ contains the original space of

pure material designs adΘ. We also propose a new objective functional given by,

RF (θ, γ, ε(θ, γ),∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|2 dx+

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕ dx.

Here we point out that F (χ, ε(χ),∇ϕ̂) = RF (θ, γ, ε(θ, γ),∇ϕ̂) when θ = χ ∈ adΘ.

The relaxed design problem, referred to as the RP problem, is formulated as,

RP = inf
(θ,γ,ε(θ,γ))∈DΘ

RF (θ, γ, ε(θ, γ),∇ϕ̂).
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For a special class of target potentials, we show in Section 4.2 that the RP problem

has an optimal design attainable by minimizing sequences of configurations. How-

ever in general, we focus on identifying minimizing sequences for the RP problem.

We establish that for every ϕ̂ ∈W 1,2
0 (Ω) and f ∈W−1,2(Ω),

P = RP.

Our approach is to first identify a minimizing sequence of generalized designs in

DΘ for the RP problem, and next to apply the continuity property of the extended

functional to generate a minimizing sequence of pure material designs for the P

problem. We accomplish this in Chapters 3 and 4, by following the three steps

given below.

I) We consider a partition of Ω into disjoint subdomains of diameter less than κ

and introduce a discrete approximation of the design spaceDΘ, denoted byDκ
Θ. The

design space Dκ
Θ consists of designs of rank one laminates with constant effective

properties in each subdomain of the partition. We show that the design problem

given by,

RP κ = inf
(θκ,γκ,ε(θκ,γκ))∈DκΘ

RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂),

and referred to as theRP κ problem, has an optimal design denoted by (θ
κ
, γκ, ε(θ

κ
, γκ)).

Moreover, as indicated in Chapter 3, one can approach this design by a piecewise

oscillatory sequence of layered designs of α and β materials.

II) As we further refine the partitions of Ω, we show in Chapter 4 that the se-

quence of optimal designs {(θ
κ
, γκ, ε(θ̄κ, γ̄κ))}κ>0 for the discrete problems {RP κ}κ>0,

is a minimizing sequence for the RP problem.

8



III) Finally, by approaching each design (θ
κ
, γκ, ε(θ̄κ, γ̄κ)), by fine layers of α and

β materials, we construct a minimizing sequence for the P problem.

We point out that the discrete RP κ problem for a fixed κ, is of interest on its

own right. From a practical perspective there is a prohibitive manufacturing cost

incurred when attempting to make a material with possibly different anisotropic

dielectric properties at every point. Instead there is a smallest scale κ over which the

dielectric properties change. The scale is set by the manufacturing cost. Practically

speaking one partitions the design domain into subdomains of diameter κ and inside

these subdomains one optimizes the dielectric properties. This approach is naturally

incorporated in the formulation of the discrete problem given here and it is used in

the context of the numerical procedures and examples in Chapter 5.

As we numerically compute the optimal design of the discrete design problem for a

fine partition of Ω, we conclude that such a design, approached by fine layers of α

and β materials is a nearly optimal design for the P problem. In this way we provide

all the information needed for the manufacturing of nearly optimal designs made of

α and β materials. The numerical examples included in Chapter 5 provide optimal

designs for several settings and illustrate how electrostatic fields can be controlled

by using functionally graded materials.

Abstract results on other problems which can be solved by the same procedures

used to solve the P problem and the relaxed RP problem, as well as future work,

are given in Chapter 6. Finally in the Appendix we provide the definitions for the

concepts of weak convergence, G-convergence and its more generalized concept of

H-convergence.

9



Chapter 2

Relaxation of the Optimal Design

Problem

Our methodology to identify minimizing sequences of configurations is based on a

careful extension of the design space adΘ and the replacement of the objective func-

tional (1.5) by a suitable relaxed functional, associated with the extended design

space. As discussed in Section 1.2, any attempt to identify minimizing sequences

of configurations must account for the possibility of oscillations in the associated

sequence of gradients. We use the weak L∞(Ω) star convergence of the sequence of

characteristic functions {χν}∞ν=1 to describe the oscillation of the sequence of con-

figurations, and the weak L2(Ω)2 convergence to characterize the oscillation of the

associated sequence of gradients. To fix ideas, we denote by {χν}∞ν=1, the sequence

of characteristic functions weak L∞(Ω) star converging to some density θ in L∞(Ω)

where 0 ≤ θ ≤ 1. We denote by {∇ϕν}∞ν=1 the weakly converging sequence of gra-

dients related to the sequence of configurations through the equilibrium condition,

−div (ε(χν)∇ϕν) = f. (2.1)

10



The weak limit of the sequence of gradients, denoted by ∇ϕ̃, satisfies the homoge-

nized equilibrium equation given by,

−div (εe∇ϕ̃) = f. (2.2)

The tensor εe is called the effective tensor or the G-limit of the sequence of dielectric

tensors {ε(χν)}∞n=1. Related to the sequence of gradients, one can write the following,

lim
ν→∞

∫
Ω

F (χν, ε(χν),∇ϕ̂) = lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̂|2 dx =

= lim
ν→∞

∫
Ω

|(∇ϕν −∇ϕ̃) + (∇ϕ̃−∇ϕ̂)|2 dx =

= lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̃|2 dx+

+2 lim
ν→∞

∫
Ω

(∇ϕν −∇ϕ̃)(∇ϕ̃−∇ϕ̂) dx+

∫
Ω

|∇ϕ̃−∇ϕ̂|2 dx.

From the fact that ∇ϕ̃ is the weak limit of the sequence of gradients, it follows that,

lim
ν→∞

∫
Ω

(∇ϕν −∇ϕ̃)(∇ϕ̃−∇ϕ̂) dx = 0,

and therefore,

lim
ν→∞

∫
Ω

F (χν, ε(χν),∇ϕ̂) = lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̂|2 dx =

=

∫
Ω

|∇ϕ̃−∇ϕ̂|2 dx+ lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̃|2 dx. (2.3)

The oscillatory behavior of minimizing sequences is naturally linked to the depen-

dence of the limit,

lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̃|2 dx, (2.4)

11



on the weak limits ∇ϕ̃, θ, and on other weak limits of other geometric quantities.

Our methodology for identifying minimizing sequences is based upon writing (2.4)

as an explicit function of the relevant weak limits.

2.1 An Explicit Formula for Layered Material

Although at the present time we are unable to write a formula for every type of

oscillation, we show that,

Theorem 2. For the case of oscillating layers of two materials, with θ representing

the relative thickness of the β layer and γ representing the normal direction to the

layers, there exists a closed form expression for (2.4), given by,

lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̃|2 dx =

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ̃ · ∇ϕ̃ dx. (2.5)

Here R(γ) is the rotation matrix with angle γ, while the matrix H(θ) is a function

of the density θ given by,

H(θ) =


 ( 1

α
− 1

β
)2θ(1− θ)h2θ 0

0 0


 , (2.6)

where hθ = (
1−θ
α
+ θ

β
)−1 is the harmonic mean of the two dielectric permittivities α

and β.

Proof. The theorem follows from the corrector theory of homogenization given

in [1] and [8]. We describe an oscillatory sequence of layered material by χν(x) =

µ(νx ·n), ν = 1, 2 . . . ,∞, where µ(t) is a periodic function on the real line of period

unity taking the values 1 for 0 ≤ t ≤ θ and 0 for θ < t ≤ 1. Here θ is a constant,

0 < θ < 1, representing the relative thickness of the layers of the β material while
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n = (cos γ, sin γ) represents the normal vector to the layers. The oscillatory sequence

{χν}∞ν=1 described this way, weak L∞(Ω) star converges to the density θ in L∞(Ω).

In this case, the effective tensor appearing in the homogenized equation (2.2) and

related to the sequence of dielectric tensors {ε(χν)}∞ν=1, represents a so-called rank

one laminate material and is given by the following formula,

ε(θ, γ) = R(γ)Λ(θ)RT (γ), (2.7)

where R(γ) is the the rotation matrix with a rotation angle of γ radians, 0 ≤ γ ≤ 2π,

Λ(θ) is the diagonal tensor Λ(θ) =


 hθ 0

0 mθ


 , while hθ = (1−θ

α
+ θ

β
)−1 and

mθ = α (1− θ)+β θ are the harmonic and the arithmetic means of the two dielectric

permittivities. Applying the corrector theory of homogenization given in [8], one

has that ∇ϕν = P ν∇ϕ̃ + zν , where P ν is the corrector matrix associated with χν

and is given by,

P ν = R(γ)




hθ
[ α(1−χν)+βχν ]

0

0 1


RT (γ).

Here P ν ⇀ I weakly in L2(Ω)2×2, where I represents the 2-by-2 identity matrix.

Since P ν ∈ L∞(Ω)2×2, the corrector theorem given in [8], implies that zν → 0

strongly in L2(Ω)2 as ν → ∞. As a consequence we obtain the following sequence

of equalities,

lim
ν→∞

∫
Ω

|∇ϕν −∇ϕ̃|2 dx = lim
ν→∞

∫
Ω

|(P ν − I)∇ϕ̃+ zν |2 dx = (2.8)
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= lim
ν→∞

∫
Ω

R(γ)



( hθ
[ α(1−χν)+βχν ] − 1)

2 0

0 0


RT (γ)∇ϕ̃ · ∇ϕ̃ dx = (2.9)

=

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ̃ · ∇ϕ̃ dx, (2.10)

and the theorem follows.

2.2 Formulation of the Relaxed Optimal Design

Problem

The methodology presented here uses the explicit formula given by (2.5). Motivated

by the layer case, our approach is to replace χ and ε(χ) with the new design variables

θ, γ, and ε(θ, γ) given by (2.7). The admissible space of designs for the new design

problem is given by,

DΘ = { (θ, γ, ε(θ, γ)) | θ ∈ L∞(Ω; [0, 1]); γ ∈ L∞(Ω; [0, 2π]);

ε(θ, γ) = R(γ)Λ(θ)RT (γ) ;

∫
Ω

θ dx ≤ Θ measΩ }. (2.11)

In addition we introduce the new objective functional given by,

RF (θ, γ, ε(θ, γ),∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|2 dx +

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕ dx,

(2.12)

where the state variable ϕ is the W 1,2
0 solution of,

−div (ε(θ, γ)∇ϕ) = f. (2.13)
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We formulate the relaxed design problem as,

RP = inf
(θ,γ,ε(θ,γ))∈DΘ

RF (θ, γ, ε(θ, γ),∇ϕ̂). (2.14)

Remark 1. The extended space of designs DΘ contains the original space adΘ of

the pure material designs.

Remark 2. P ≥ RP.

The above remarks follow from the fact that for θ = χ, we have ε(θ, γ) = ε(χ),

H(θ) = 0, and F (χ, ε(χ),∇ϕ̂) = RF (θ, γ, ε(θ, γ),∇ϕ̂). Later in Chapter 4, we show

that in fact P = RP .
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Chapter 3

Discretization of the Relaxed

Optimal Design Problem

In this chapter we pose the relaxed design problem (2.14), on a discrete approxima-

tion of the design space DΘ. We first establish in the discretized space the existence

of an optimal design, then we apply the corrector theory in [8], to approach such

design by a piecewise oscillatory sequence of layered designs of α and β materials.

We consider any partition T κ of Ω consisting of a finite number of pair-wise disjoint

subdomains Ωi ⊂ Ω, i = 1, . . . , N(κ), such that,

Ω =

N(κ)⋃
i=1

Ωi and max
i=1,...N(κ)

(diam(Ωi)) ≤ κ. (3.1)

For a fixed partition T κ, the discretized space of designs denoted by Dκ
Θ, is given in

terms of piece-wise constant functions as follows,
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Dκ
Θ = { (θ

κ, γκ, ε(θκ, γκ)) | θκ|Ωi = θκi = constant; 0 ≤ θκi ≤ 1; (3.2)

γκ|Ωi
= γκi = constant; 0 ≤ γκi ≤ 2π; (3.3)

ε(θκ, γκ)|Ωi = R(γκ)Λ(θκ)RT (γκ)|Ωi = R(γκi )Λ(θ
κ
i )R

T (γκi ); (3.4)

Σ
N(κ)
i=1 θκi meas(Ωi) = Θmeas(Ω) }. (3.5)

It is clear that Dκ
Θ is contained in DΘ and the relaxed design problem posed on this

smaller set of designs is written as,

RP κ = inf
(θκ,γκ,ε(θκ,γκ))∈DκΘ

RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂), (3.6)

where the state variable ϕκ associated with the piece-wise constant dielectric per-

mittivity tensor ε(θκ, γκ), solves the Poisson equation,

−div (ε(θκ, γκ)∇ϕκ) = f. (3.7)

We establish the existence of an optimal design for theRP κ problem, by using the di-

rect method of the calculus of variations. We start by introducing the type of conver-

gence relevant to the discrete problem. Based on (3.2-3.3), a design (θκ, γκ, ε(θκ, γκ))

in Dκ
Θ can be identified with the vector (θ

κ
1 , γ

κ
1 , . . . θ

κ
i , γ

κ
i , . . . θ

κ
N(κ), γ

κ
N(κ)) in R2N(κ).

Thus Dκ
Θ can be identified with a compact subset of R2N(κ) and convergence of

designs in Dκ
Θ is given by sequential convergence in R2N(κ). The existence of an op-

timal design will follow once we show that the functional RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂)

is continuous with respect to sequential convergence in R2N(κ).

Theorem 3. For a given a sequence of designs {(θκ,ν, γκ,ν , ε(θκ,ν, γκ,ν))}∞ν=1 in Dκ
Θ,
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there exists a design (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ)) in Dκ
Θ, for which,

lim
ν→∞

(θκ,ν , γκ,ν) = (θ̄κ, γ̄κ), as elements of R2N(κ), (3.8)

lim
ν→∞

ε(θκ,ν , γκ,ν) = ε(θ̄κ, γ̄κ), pointwise in Ω, (3.9)

and,

lim
ν→∞

RF (θκ,ν , γκ,ν, ε(θκ,ν , γκ,ν),∇ϕ̂) = RF (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ),∇ϕ̂). (3.10)

Proof. The convergence of the sequence given by (3.8) follows from the com-

pactness property in R2N(κ) and it further implies the pointwise convergence of

the sequences {ε(θκ,ν, γκ,ν)}∞ν=1 and {R(γ
κ,ν)H(θκ,ν)RT (γκ,ν)}∞ν=1 to ε(θ̄κ, γ̄κ) and

R(γ̄κ)H(θ̄κ)RT (γ̄κ) respectively, as ν →∞, establishing this way (3.9). From here,

the continuity property given by (3.10), will be established once we show that as

ν →∞, the sequence of potentials {ϕκ,ν}∞ν=1 converges strongly in W 1,2
0 (Ω). In-

deed, using the theory of G-convergence , one derives that the sequence of tensors

{ε(θκ,ν , γκ,ν)}∞ν=1 G-converges to ε(θ̄κ, γ̄κ), and therefore the associated sequence of

potentials {ϕκ,ν}∞ν=1 converges weakly inW 1,2
0 (Ω) to the state variable ϕ̄κ, associated

with ε(θ̄κ, γ̄κ) through the homogenized equilibrium equation,

−div
(
ε(θ̄κ, γ̄κ)∇ϕ̄κ

)
= f. (3.11)

With these facts in mind and the following estimate,

0 < αI ≤ ε(θκ,ν, γκ,ν) ≤ βI,
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where I is the 2-by-2 identity matrix, we write,

∫
Ω

α|∇ϕκ,ν −∇ϕ̄κ|2dx ≤

∫
Ω

ε(θκ,ν , γκ,ν)(∇ϕκ,ν −∇ϕ̄κ) · (∇ϕκ,ν −∇ϕ̄κ)dx = (3.12)

=

∫
Ω

ε(θκ,ν, γκ,ν)∇ϕκ,ν · ∇ϕκ,νdx− 2

∫
Ω

ε(θκ,ν , γκ,ν)∇ϕκ,ν · ∇ϕ̄κdx+

+

∫
Ω

ε(θκ,ν , γκ,ν)∇ϕ̄κ · ∇ϕ̄κdx. (3.13)

Passing to the limit as ν →∞ in (3.12-3.13), we apply the well known properties

of G-convergence together with the pointwise convergence of {ε(θκ,ν , γκ,ν)}∞ν=1 and

the Lebesgue convergence theorem to find that,

lim
ν→∞

‖ ∇ϕκ,ν −∇ϕ̄κ ‖2L2= 0, (3.14)

and strong convergence of ϕκ,ν to ϕ̄κ in W 1,2
0 follows.

From (2.6) we easily obtain the following estimate,

∀η ∈ R2, R(γ)H(θ)RT (γ)η · η ≤
β2

4
(
1

α
−
1

β
)2|η|2. (3.15)

Finally we put everything together, and we apply (3.15) and the Lebesgue conver-

gence theorem to conclude that,

lim
ν→∞

RF (θκ,ν , γκ,ν , ε(θκ,ν, γκ,ν),∇ϕ̂) =

= lim
ν→∞

( ∫
Ω

|∇ϕκ,ν −∇ϕ̂|2 dx+

∫
Ω

R(γκ,ν)H(θκ,ν)RT (γκ,ν) ∇ϕκ,ν · ∇ϕκ,ν dx

)

=

∫
Ω

|∇ϕ̄κ −∇ϕ̂|2 dx+

∫
Ω

R(γ̄κ)H(θ̄κ)RT (γ̄κ) ∇ϕ̄κ · ∇ϕ̄κ dx =

= RF (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ),∇ϕ̂), (3.16)

which proves the theorem.
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Applying Theorem 3 for a minimizing sequence of designs, it follows that,

Theorem 4. There exists an optimal design (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ)) in Dκ
Θ for the discrete

problem, i.e.,

RP κ = RF (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ),∇ϕ̂) =

= min
(θκ,γκ,ε(θκ,γκ))∈DκΘ

RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂). (3.17)

Now we show how to construct a sequence of configurations which approaches

an optimal design, i.e. a sequence of configurations described by the sequence of

characteristic functions {χν}∞ν=1, which satisfies,

lim
ν→∞

F (χν, ε(χν),∇ϕ̂) = RP κ. (3.18)

In view of Theorem 4, it is sufficient to consider any design in Dκ
Θ given by

(θκ, γκ, ε(θκ, γκ)), and show how to construct a sequence {χκ,ν}∞ν=1 for which,

lim
ν→∞

F (χκ,ν, ε(χκ,ν),∇ϕ̂) = RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂). (3.19)

We start by observing that for θ = 0 or θ = 1 that ε(θ, γ) = αI or βI respectively.

For a design specified by (θκ, γκ) we proceed to construct the sequence {χκ,ν}∞ν=1

as an oscillatory sequence of locally layered material. Thus in the subdomains Ωi

for which θκi = 0, we set χκ,ν = 0, ν = 1, 2 . . .∞ and in the subdomains Ωi for

which θκi = 1, we set χκ,ν = 1, ν = 1, 2 . . .∞. Next we consider the subdomains Ωi

where 0 < θκi < 1. In these subdomains, as previously described in Chapter 2, we set

χκ,ν = µ(νx ·n(γκi )), where µ(t) is a periodic function on the real line of period unity

taking the values 1 for 0 ≤ t ≤ θκi and 0 for θκi < t ≤ 1 and n(γκi ) = (cos γ
k
i , sin γki )
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where 0 ≤ γki ≤ 2π. Summarizing our construction we write,

χκ,ν =




0, in Ωi for which θκi = 0,

1, in Ωi for which θκi = 1,

µ(νx · n(γκi )), in Ωi for which 0 < θκi < 1.

(3.20)

We point out the following facts related with the construction:

- The associated dielectric permittivity ε(χκ,ν) corresponds to pure α dielectric in

the subdomains Ωi where θκi = 0, pure β dielectric in the subdomains Ωi where

θκi = 1, and layers of α and β dielectric with layer normal in the direction n(γκi ) =

(cos γki , sin γki ) in the subdomains Ωi where 0 < θκi < 1.

- The sequence {ε(χκ,ν)}∞ν=1 G-converges to ε(θκ, γκ), hence the sequence of the

associated state variables ϕκ,ν in W 1,2
0 (Ω) satisfying the equilibrium equation,

−div (ε(χκ,ν)∇ϕκ,ν) = f, (3.21)

converges weakly in W 1,2
0 (Ω) to the state variable ϕκ associated with ε(θκ, γκ)

through the homogenized equilibrium equation,

−div (ε(θκ, γκ)∇ϕκ,ν) = f. (3.22)

With the construction (3.20) in mind, we state the following theorem that guarantees

the existence of a recovery sequence of configurations.

Theorem 5. For a given design (θκ, γκ, ε(θκ, γκ)) in Dκ
Θ, the sequence of configu-

rations given by {χκ,ν}∞ν=1 in (3.20), is a recovery sequence, i.e.,

lim
ν→∞

F (χκ,ν, ε(χκ,ν),∇ϕ̂) = RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂). (3.23)
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Proof. Indeed, in general one can write,

lim
ν→∞

F (χκ,ν, ε(χκ,ν),∇ϕ̂) = lim
ν→∞
|∇ϕκ,ν −∇ϕ̂|2 dx =

=

∫
Ω

|∇ϕκ −∇ϕ̂|2 dx+ lim
ν→∞

∫
Ω

|∇ϕκ,ν −∇ϕκ|2 dx. (3.24)

Taking similar steps as in the proof of Theorem 2, we further apply the corrector

theory of homogenization given in [8], and derive that,

lim
ν→∞

∫
Ω

|∇ϕκ,ν −∇ϕκ|2 dx = lim
ν→∞

∫
Ω

|(P κ,ν − I)∇ϕκ + zκ,ν|2 dx =

= lim
ν→∞

N(κ)∑
i=1

∫
Ωi

|(P κ,ν
i − I)∇ϕκ + zκ,νi |

2 dx. (3.25)

Here P κ,ν is the corrector matrix associated with χκ,ν, while P κ,ν
i is the corrector

matrix related to the layered material in the subdomain Ωi, given by,

P κ,ν
i = R(γκi )




hθκ
i

[ α(1−χκ,ν)+βχκ,ν ] 0

0 1


RT (γκi ).

Moreover P κ,ν
i ⇀ I weakly in L2(Ωi)2×2 as ν → ∞, and since P κ,ν

i ∈ L∞(Ωi)2×2,

it follows from the corrector theorem given in [8] that zκ,νi → 0 strongly in L2(Ωi)2.

As a consequence, the sequence of equalities in (3.25) continues as follows,

lim
ν→∞

N(κ)∑
i=1

∫
Ωi

|(P κ,ν
i − I)∇ϕκ + zκ,νi |

2 dx =
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= lim
ν→∞

N(κ)∑
i=1



∫
Ωi

R(γκi )



(

hθκ
i

[ α(1−χκ,ν)+βχκ,ν ] − 1)
2 0

0 0


RT (γκi )∇ϕκ · ∇ϕκ dx


 =

=

N(κ)∑
i=1

∫
Ωi

R(γκi )H(θ
κ
i )R

T (γκi )∇ϕκ · ∇ϕκ dx =

∫
Ω

R(γκ)H(θκ)RT (γκ)∇ϕκ · ∇ϕκ dx,

where the matrices R(γ) and H(θ), are given as before. By substituting the latest

result back into (3.24), we obtain that,

lim
ν→∞

F (χκ,ν, ε(χκ,ν),∇ϕ̂) =

∫
Ω

|∇ϕκ−∇ϕ̂|2 dx+

∫
Ω

R(γκ)H(θκ)RT (γκ)∇ϕκ · ∇ϕκdx

= RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂),

and the theorem follows.
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Chapter 4

Optimal Designs

For an arbitrary initial partition Tκ̄ we consider its further refinements, i.e. the

nested family of partitions {T κ}κ≤κ̄ that Tκ̄ includes. In this chapter we show

that the optimal designs associated with these refinements represent a minimizing

sequence of designs for the RP problem and then by approaching each optimal

design on the sequence by fine layers of α and β materials, we construct a minimizing

sequence of configurations for the P problem. A discussion on optimal designs of

the RP -problem attainable by minimizing sequences of configurations for a special

class of target potentials, is given in Section 4.2.

4.1 Minimizing Sequences of Configurations

We call a nested family of partitions {T κ}κ≤ε of Ω the one satisfying,

κ1 < κ2 ≤ ε ⇒ ∀Ωκ1i ∈ Tκ1 ∃Ω
κ2
j ∈ Tκ2 : Ω

κ1
i ⊂ Ω

κ2
j . (4.1)

For any given partition Tκ̃ the sequence of refinements of this partition is denoted

by {Tκ}κ≤κ̃ and is a nested family of partitions as described by (4.1).
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Theorem 6. The system of the discrete design spaces {Dκ
Θ}κ≤κ̃ associated with the

refinements of Tκ̃, is dense in DΘ, i.e., for every (θ, γ, ε(θ, γ)) ∈ DΘ, there exists a

sequence of {(θκ, γκ, ε(θκ, γκ))}κ≤κ̃ ∈ {Dκ
Θ}κ≤κ̃, for which,

lim
κ→0+

(θκ, γκ) = (θ, γ) a.e. in Ω, (4.2)

lim
κ→0+

ε(θκ, γκ) = ε(θ, γ) a.e. in Ω, (4.3)

and,

lim
κ→0+

RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂) = RF (θ, γ, ε(θ, γ),∇ϕ̂). (4.4)

Proof. For a given design (θ, γ, ε(θ, γ)) ∈ DΘ, we choose any partition Tκ̃ of

Ω and consider its refinements {T κ}κ≤κ̃. For every refinement T κ, we construct

(θκ, γκ, ε(θκ, γκ)) ∈ Dκ
Θ, described for each subdomain Ω

κ
i of Ω as follows,

θκ|Ωκ
i

=
1

meas Ωκi

∫
Ωκi

θ(x) dx = θκi ,

γκ|Ωκ
i

=
1

meas Ωκi

∫
Ωκi

γ(x) dx = γκi ,

ε(θκ, γκ)|Ωκi
= ε(θκi , γ

κ
i ) = R(γκi )Λ(θ

κ
i )R

T (γκi ).

On the set of the intersection of the Lebesgue points of the functions θ and γ, we

have that (θκ, γκ) → (θ, γ) almost everywhere in Ω, as κ → 0+. This delivers the

convergence in (4.2), and the followings,

ε(θκ, γκ)→ ε(θ, γ) a.e. in Ω as κ→ 0+,

R(γκ)H(θκ)RT (γκ)→ R(γ)H(θ)RT (γ) a.e. in Ω as κ→ 0+.
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From the theory of G-convergence, ε(θκ, γκ) G-converges to ε(θ, γ), which further

implies that the sequence of state variables ϕκ ∈W 1,2
0 (Ω), satisfying the equilibrium

equation,

−div (ε(θκ, γκ)∇ϕκ) = f, (4.5)

converges weakly in W 1,2
0 (Ω) to the W 1,2

0 (Ω) solution ϕ of the homogenized equilib-

rium equation,

−div (ε(θ, γ)∇ϕ) = f. (4.6)

Following the same arguments given in the proof of Theorem 3, we find that the

sequence {ϕκ}κ≤κ̃ converges strongly in W 1,2
0 (Ω) to ϕ. Proceeding along the same

lines as in the proof of Theorem 3 and using the Lebesgue convergence theorem and

the estimate (3.15), one can easily show that (4.4) holds.

We now identify minimizing sequences of designs for the RP problem. We consider

any nested family of partitions denoted by {Tκ}κ>0. For each value of κ we consider

the optimal design for the discrete RP κ problem denoted by (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ)).

Theorem 7. The sequence {(θ
κ
, γκ, ε(θ̄κ, γ̄κ))}κ>0, satisfies the non-increasing mono-

tonicity condition,

for κ < κ′, RP κ = RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ),∇ϕ̂) ≤ RP κ′ = RF (θ

κ′

, γκ
′
, ε(θ̄κ

′
, γ̄κ

′
),∇ϕ̂),

26



and is a minimizing sequence for the RP problem, i.e.

lim
κ→0+

RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ),∇ϕ̂) = RP,

or equivalently

{RP κ}κ>0 ↘ RP as κ→ 0+.

Proof. The monotonicity follows immediately from the fact that κ < κ′ implies

that Dκ′

Θ ⊂ Dκ
Θ. We note that the monotonicity property and the zero lower bound,

imply the existence of the limit,

lim
κ→0+

RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ),∇ϕ̂).

Since for every κ > 0, Dκ
Θ ⊂ DΘ, RP is a lower bound for the monotonically

decreasing sequence of RF (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ),∇ϕ̂), and as a result,

RP ≤ lim
κ→0+

RF (θ̄κ, γ̄κ, ε(θ̄κ, γ̄κ),∇ϕ̂). (4.7)

On the other hand, for the nested family of partitions {T κ}κ>0 and for any given

(θ, γ, ε(θ, γ)) in DΘ, it follows from Theorem 6 that there exists a sequence

{(θκ, γκ, ε(θκ, γκ))}κ>0 for which the followings hold,

RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ),∇ϕ̂) ≤ RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂), (4.8)

and

lim
κ→0+

RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ),∇ϕ̂) ≤ lim

κ→0+
RF (θκ, γκ, ε(θκ, γκ),∇ϕ̂) =

= RF (θ, γ, ε(θ, γ),∇ϕ̂). (4.9)
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It is now evident that,

lim
κ→0+

RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ),∇ϕ̂) ≤ inf

(θ,γ,ε(θ,γ))∈DΘ
RF (θ, γ, ε(θ, γ),∇ϕ̂) = RP (4.10)

and from (4.7) and (4.10), the theorem follows .

With Theorems 5 and 6 in hand, it is possible to identify a sequence of configurations

specified by χj for which,

RP = lim
j→∞

F (χj, ε(χj),∇ϕ̂). (4.11)

Indeed we consider a minimizing sequence for RP as given by Theorem 6. To each

element (θ
κ
, γκ, ε(θ̄κ, γ̄κ)) of the sequence we apply Theorem 5 to find a recovery

sequence of configurations {χκ,ν}∞ν=1. In this way we see that,

RP = lim
κ→0+

RF (θ
κ
, γκ, ε(θ̄κ, γ̄κ)) = lim

κ→0+
lim
ν→∞

F (χκ,ν, ε(χκ,ν),∇ϕ̂) =

= lim
κ→0+

F (χκ,ν(κ), ε(χκ,ν(κ)),∇ϕ̂), (4.12)

from where it follows that we can extract a sequence of configurations {χκj ,νj}∞j=1

for which,

RP = lim
j→∞

F (χκj,νj , ε(χκj ,νj ),∇ϕ̂), (4.13)

which proves (4.11). We now establish the following result.

Theorem 8.

P = RP
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i.e.,

inf
χ∈adΘ

F (χ, ε(χ),∇ϕ̂) = inf
(θ,γ,ε(θ,γ))∈DΘ

RF (θ, γ, ε(θ, γ),∇ϕ̂). (4.14)

Proof. From Remark 2 in Chapter 2, we have that P ≥ RP . On the other hand

(4.11) and the fact that,

∀j = 1 . . .∞, F (χκj,νj , ε(χκj,νj ),∇ϕ̂) ≥ P, (4.15)

imply that RP ≥ P , and we conclude that RP = P .

4.2 Optimal Designs of the Relaxed Problem

For a special set of target potentials we characterize in this section optimal designs

of the relaxed RP problem attainable by minimizing sequences of configurations.

To accomplish this we recall Theorem 1 and the related discussion in Section 1.2,

as well as the representation of the relaxed functional given earlier in (2.12) as,

RF (θ, γ, ε(θ, γ),∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|2 dx+

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕ dx.

It is instructive to write the second term of the above representation, in a form

where ε(θ, γ) appears explicitly. Manipulation gives,

R(γ)H(θ)RT (γ) =
(mθI − ε(θ, γ))2

(1− θ)β(β − α)
+
(mθI − ε(θ, γ))

β
. (4.16)
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It now becomes clear that,

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕdx = 0 iff ε(θ, γ)∇ϕ = mθ∇ϕ. (4.17)

With this fact in mind and the results of [15] given in Section 2.1, we state the

following theorem which accounts for oscillations appearing in minimizing sequences

of configurations.

Theorem 9. There exists a dense Gδ subset K of W 1,2
0 (Ω) such that for ϕ̂ in K:

(1) There exists a minimizer in DΘ for the RP problem.

(2) At a minimizer (θ̄, γ̄, ε(θ̄, γ̄)) of the RP problem,

RF (θ̄, γ̄, ε(θ̄, γ̄),∇ϕ̂) =

∫
Ω

|∇ϕ̄−∇ϕ̂|2 dx and ε(θ̄, γ̄)∇ϕ̄ = mθ̄∇ϕ̄,

where ϕ̄ is the potential associated with the design.

(3) P = RP .

(4) Any cluster point of any minimizing sequence in adΘ of the P problem is a

minimizer of the RP problem and any minimizer of the RP problem in DΘ is

a limit of a minimizing sequence for the P problem.

Here the convergence of sequences of designs is with respect to the G-convergence .

Proof. From the results [15] given in Section 2.1, for a target potential ϕ̂ ∈ K,

and for any minimizing sequence {(χν, ε(χν))}∞ν=1 of the P problem, its associated

sequence of state variables {ϕν}∞ν=1 solving the equilibrium equation,

−div (ε(χν)∇ϕν) = f, (4.18)
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is Cauchy in theW 1,2
0 (Ω) norm given by ‖u‖

2 =
∫
Ω
|∇u |2 dx. From the completeness

of W 1,2
0 (Ω), there exists a potential ϕ̄ ∈ W 1,2

0 (Ω) such that ϕν → ϕ̄ strongly in

W 1,2
0 (Ω). Passing to subsequences if necessary, the sequence {(χ

ν, ε(χν))}∞ν=1 weak

L∞(Ω) star converges to (θ̄, mθ̄), while the compactness property of G-convergence

implies that the sequence {ε(χν)}∞ν=1 G-converges to an effective tensor ε̄e where,

−div (ε̄e∇ϕ̄) = f. (4.19)

In this context we mention that the work in [15] and [3], show that the condition,

ε̄e∇ϕ̄ = mθ̄∇ϕ̄, a.e. in Ω, (4.20)

is necessary and sufficient for the strong convergence of gradients associated with

sequences {εe(χν)}∞ν=0 G-converging to ε̄e and weak L∞ star converging to mθ̄. This

implies that mθ̄ is an eigenvalue of ε̄
e.

To establish Theorem 9, we take advantage of the geometry of the set of effective

tensors for two dimensional problems. As given in [5] and [13], the effective tensors

associated with the density θ̄(x) are all 2-by-2 symmetric matrices with eigenvalues

λ1, λ2, lying for almost all x in Ω, in the set given by the inequalities,

2∑
k=1

1

λj − α
≤

1

hθ̄ − α
+

1

mθ̄ − α
,

2∑
k=1

1

β − λj
≤

1

β − hθ̄
+

1

β −mθ̄

. (4.21)

31



The constraints on the eigenvalues of ε̄e given by (4.21) together with (4.20), allow

us to uniquely identify ε̄e as the effective tensor given by,

ε̄e = ε(θ, γ) = R(γ)Λ(θ)RT (γ), (4.22)

where the angle γ̄ is chosen according to the requirement given by (4.20). For this

choice of the angle, from (4.17), we also have the local relation,

R(γ)H(θ)RT (γ)∇ϕ̄ = 0, a.e. in Ω, (4.23)

and we conclude that

P =

∫
Ω

|∇ϕ̄−∇ϕ̂|2 dx = RF (θ̄, γ̄, ε(θ̄, γ̄),∇ϕ̂). (4.24)

In view of Theorem 8 we deduce that the design (θ̄, γ̄, ε(θ̄, γ̄)) is the optimal design

for the RP problem. This establishes parts (1), (2), and (3) of Theorem 9.

To proceed with part (4) of the theorem, we recall the notion of a cluster point

(θ, εe) for a sequence of configurations {(χν, ε(χν)}∞ν=1. The definition of a cluster

point (θ, εe) implies the existence of a subsequence such that {χν}∞ν=1 weak L∞(Ω)

star converges to θ and {ε(χν)}∞ν=1 G-converges to εe. Arguments identical to those

given above show that any cluster point of any minimizing sequence for the P

problem is a minimizing design for the RP problem. This establishes one side of the

implication in (4). The other side of the implication in (4) follows immediately from

the construction of a recovery sequence of configurations based upon Theorems 5

and 6, and equation (4.13).

Remark 3. When the minimizing sequences of configurations of the P problem with

target potentials in the set K, oscillate locally in the form of layers of the two
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dielectrics, the layers are asymptotically parallel to the optimal (limit) gradient ∇ϕ̄.

Such configurations allow for the best effective conductivity properties to be

aligned with the direction of the gradient which is consistent with the physical

intuition.
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Chapter 5

Numerical Approach

In Section 5.1 of this chapter, we provide an outline of the method used for the nu-

merical solution of the discrete design problem. The numerical examples included

in Section 5.2 provide optimal designs for several settings and illustrate how elec-

trostatics fields can be controlled by using functionally graded materials.

5.1 Numerical Procedure

As described in Chapter 3, for a given partition T κ of the design domain Ω, the

number of subdomains is N(κ) and the design variable (θ, γ, ε(θ)) ∈ Dκ
Θ can be

represented by a vector in R2N(κ), with components (θ1, γ1, . . . θi, γi, . . . θN(κ), γN(κ)).

These components are the constant values (θi, γi) that (θ, γ) takes in each subdomain

Ωi, and are subject to the box constraints,

0 ≤ θi ≤ 1, i = 1 . . . , N(κ),

0 ≤ γi ≤ 2π, i = 1 . . . , N(κ). (5.1)
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Recall the relaxed objective functional,

RF (θ, γ, ε(θ, γ),∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|2 dx+

+

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕ dx,

where the state variable ϕ solves the equilibrium equation (2.13).

We include the resource constraint
∑N(κ)
i=1 θimeas(Ωi) ≤ Θmeas(Ω), by adding to

the relaxed objective functional the penalty term,

<×

(∫
Ω

θ dx−Θmeas(Ω)

)
, for < > 0.

The discrete design problem becomes,

min
(θ,γ)

L(θ, γ) = min
(θ,γ)

[ RF (θ, γ, ε(θ, γ),∇ϕ̂) + <×

(∫
Ω

θ dx−Θmeas(Ω)

)
], (5.2)

where (θ, γ) are subject to the constraints given by (5.1). The numerical procedure

is a straight forward application of the steepest decent method , given in [11], and

carried out in what follows. We consider changes in (θ, γ) and correspondingly in ϕ

and ε, as

(θ, γ) → (θ + εθ̃, γ + εγ̃)

ϕ(θ, γ) → ϕ(θ + εθ̃, γ + εγ̃) = ϕ+ εϕ̃+O(ε2)

ε(θ, γ) → ε(θ + εθ̃, γ + εγ̃) = ε(θ, γ) + ε ( ε′θθ̃ + ε′γγ̃ )︸ ︷︷ ︸
ε̃

+O(ε2).

Here ε̃ and ϕ̃ are related through the equation,

∇ · (ε̃∇ϕ+ ε∇ϕ̃) = 0, (5.3)
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which is a linearization of the equilibrium equation (2.13), and therefore one can

write,

∫
Ω

(ε̃∇ϕ+ ε∇ϕ̃) · ∇λ dx = 0, ∀λ ∈W 1,2
0 . (5.4)

We calculate next the change in the functional L. By T (θ, γ) we will denote

T (θ, γ) = R(γ)H(θ)RT (γ), and we use the prime superscript signs to indicate (par-

tial) differentiation with respect to the subscript variable.

δL = L(θ + εθ̃, γ + εγ̃)− L(θ, γ) =

=

∫
Ω

( |∇ϕ−∇ϕ̂|2
(θ+εθ̃,γ+εγ̃)

− |∇ϕ−∇ϕ̂|2(θ,γ) ) dx+ εl∗
∫
Ω

θ̃ dx +

+

∫
Ω

( T∇ϕ · ∇ϕ |(θ+εθ̃,γ+εγ̃)
− T∇ϕ · ∇ϕ |(θ,γ) ) dx =

= ε [ 2

∫
Ω

( ∇ϕ−∇ϕ̂ ) · ∇ϕ̃ dx+ l

∫
Ω

θ̃ dx ] +

+

∫
Ω

[ T (θ, γ) + ε ( T ′θθ̃ + T ′γγ̃ )︸ ︷︷ ︸
T̃

] (∇ϕ+ ε∇ϕ̃) · (∇ϕ+ ε∇ϕ̃) dx−

−

∫
Ω

T (θ, γ)∇ϕ · ∇ϕ dx +O(ε2) =

= ε [ 2

∫
Ω

( ∇ϕ−∇ϕ̂ ) · ∇ϕ̃ dx+ l

∫
Ω

θ̃ dx+

+

∫
Ω

( ( T ′θθ̃ + T ′γγ̃ )∇ϕ · ∇ϕ+ 2T (θ, γ)∇ϕ · ∇ϕ̃ ) dx ] +O(ε2).

Reorganizing the terms in the last equality gives,

δL = ε [

∫
Ω

2( ∇ϕ−∇ϕ̂+ T (θ, γ)∇ϕ ) · ∇ϕ̃ dx+

∫
Ω

(T ′θ∇ϕ · ∇ϕ+ l) θ̃dx+

+

∫
Ω

T ′γ∇ϕ · ∇ϕ γ̃dx ] +O(ε2).
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According to the adjoint method, our plan is to add the zero-term in (5.4) to our

expression for the variation of the functional δL and by using a proper choice for λ,

simplifying δL so that it does not depend on ϕ̃. Clearly,

δL = ε [

∫
Ω

( ∇ϕ−∇ϕ̂+ 2T (θ, γ)∇ϕ ) · ∇ϕ̃ dx+

∫
Ω

(T ′θ + l)∇ϕ · ∇ϕ θ̃dx+

+

∫
Ω

T ′γ∇ϕ · ∇ϕ γ̃dx ] + ε [

∫
Ω

( ( ε′θθ̃ + ε′γγ̃ )︸ ︷︷ ︸
ε̃

∇ϕ+ ε∇ϕ̃ ) · ∇λ dx ] +O(ε2).

and after reorganizing terms,

δL = ε

∫
Ω

[ 2(∇ϕ−∇ϕ̂) + 2T (θ, γ)∇ϕ+ ε∇λ ] · ∇ϕ̃ dx+

+ ε

∫
Ω

[ ε′θ∇ϕ · ∇λ+ T ′θ∇ϕ · ∇ϕ+ l ] θ̃ dx+

+ ε

∫
Ω

[ ε′γ∇ϕ · ∇λ+ T ′γ∇ϕ · ∇ϕ ] γ̃ dx +O(ε2).

For the choice of λ ∈W 1,2
0 , satisfying the so-called adjoint equation,

−∇ · ( ε(θ, γ)∇λ ) = 2∇ · ( (∇ϕ−∇ϕ̂) + T (θ, γ)∇ϕ ), (5.5)

the choice (θ̃, γ̃) given by,




θ̃ = −( ε′θ∇ϕ · ∇λ+ T ′θ∇ϕ · ∇ϕ+ l )

γ̃ = −( ε′γ∇ϕ · ∇λ+ T ′γ∇ϕ · ∇ϕ ),
(5.6)

is a direction of descent for the functional L, since,

δL = −ε

∫
Ω

|(θ̃, γ̃)|2 dx+O(ε2).
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This direction is called the steepest descent direction, and the method based on

it is called the steepest descent method. At a minimum (θ̃, γ̃) = 0, gives us the

optimality necessary conditions,




ε′θ∇ϕ · ∇λ+ T ′θ∇ϕ · ∇ϕ+ l = 0

ε′γ∇ϕ · ∇λ+ T ′γ∇ϕ · ∇ϕ = 0.
(5.7)

From the second equation above, one can easily derive the optimality condition for

the rotation angle γ,

tan(2γ) =
V sin(2γ1) + sin(γ1 + γ2)

V cos(2γ1) + cos(γ1 + γ2)
, (5.8)

where∇ϕ = |∇ϕ|(cosγ1, sin γ1),∇λ = |∇λ|(cos γ2, sin γ2) and V = ( 1
α
− 1
β
)2
θ(1−θ)h2θ |∇ϕ|

(hθ−mθ)|∇λ|
.

The Adjoint Method Algorithm. The algorithm is a repeated application

until convergence of the following steps,

• Given (θ, γ) solve for ϕ and λ in W 1,2
0 ,

−∇ ·







ε(θ, γ) 0

2(I + T (θ, γ)) ε(θ, γ)






∇ϕ

∇λ





 =




f

−∆ϕ̂


 (5.9)

• Evaluate the functional,

L(θ, γ) =‖ ∇ϕ−∇ϕ̂ ‖2L2 +

∫
Ω

T (θ, γ)∇ϕ · ∇ϕ dx+ l

∫
Ω

(θ −Θ0) dx.

38



• Update (θ, γ) as,




θ ← θ−( ε′θ∇ϕ · ∇λ+ T ′θ∇ϕ · ∇ϕ+ l )︸ ︷︷ ︸
θ̃

ε

γ ← γ−( ε′γ∇ϕ · ∇λ+ T ′γ∇ϕ · ∇ϕ )︸ ︷︷ ︸
γ̃

ε.
(5.10)

unless 0 ≤ −∆L ≤ Tolerance.

Descendence of the functional L assures convergence of the algorithm.

5.2 Numerical Examples

We provide numerical examples that illustrate how electrostatic fields can be con-

trolled using functionally graded materials. For all examples the design domain is

chosen to be the square centered at the origin given by Ω = (−1, 1)× (−1, 1) and we

choose the target field to be zero, i.e.,∇ϕ̂ = (0, 0). The discrete design is associated

with a partition of Ω into 20, 000 subdomains of diameter on the order of 10−2.

For the first two examples the charge distribution is taken to be uniform in Ω

and given by f = 1. We choose α = 1 and β = 2 and constrain the amount of

good dielectric to be 40% of the design domain. The density distribution θ of the

better dielectric material in the optimized discrete design is given in Figure 5.1: a.

Here the darkest regions consist of pure β dielectric, the white regions are occupied

by pure α dielectric and the regions of graded conductivity properties are given

by the intermediate shades. The layer normals in the graded parts of the design

are given by the arrows in Figure 5.1: a. The contours are the level lines of the

electric potential. Note that the layer normals are tangential to the level lines,

hence perpendicular to the electric field. We emphasize that Figure 5.1: a, gives the

necessary geometric information for manufacturing graded materials. Furthermore,
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the continuity property expressed in Theorem 5, guarantees that we can construct

a two phase configuration that is nearly optimal.
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For the second example we consider a subdomain W of the design domain Ω.

Here we take W = Ω\ {(−1/2, 1/2) × (−1/2, 1/2)}. We consider the problem,

P = inf
χ∈adΘ

∫
W

|∇ϕ|2 dx. (5.11)

The theory presented in this paper easily generalizes to this case and the relaxed

problem is,

RP = inf
(θ,γ,ε(θ,γ))∈DΘ

{∫
W

|∇ϕ|2 dx +

∫
W

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕ dx

}
, (5.12)

and P = RP .

Here the goal is to screen as much electric field away from the domain W as

possible. The good dielectric is constrained to occupy 40% of Ω. The density

distribution of the good dielectric in the optimal design is given in Figure 5.1: b.

We point out that we allow the two dielectrics to be placed anywhere in Ω, however

the algorithm automatically uses the good dielectric only in W . This is consistent
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with intuition.

For the next example we take the charge distribution to be 1 everywhere outside

of W and zero inside W . As before we take α = 1 and β = 2.
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Figure 5.3

The good dielectric is constrained to occupy 15% of the design domain. The

density distribution for the optimal design is given in Figure 5.2: a. In Figure 5.2:

b, we plot the level lines of the potential and the electric field associated with the

design. Last we consider the same layout as in Figure 5.2: a, but with α = 1 and
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β = 1000 and we plot the electric field for this case in Figure 5.3. For this layout

and choice of β we see that the electric field has been screened away from W .
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Chapter 6

Abstract Results on Related

Problems and Future Work

In the first two sections of this chapter we give abstract results on problems which

can be solved by the same procedures used to solve the P problem and the relaxed

RP problem earlier in Chapters 2-5. The formulation of an open problem to be

treated in the future is given in the last section of the chapter.

6.1 Optimal Design Problem on Flux Fields

A problem analogous to the P problem (1.6) can be formulated in the same space

adΘ of admissible designs of pure materials, for the flux field D = ε∇ϕ, as shown

below,

P1 = inf
χ∈adΘ

F1(χ, ε(χ), D̂), (6.1)
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where the objective functional denoted by F1(χ, ε(χ), D̂) is given by,

F1(χ, ε(χ), D̂) =

∫
Ω

|D − D̂|2 dx. (6.2)

Here D = ε(χ)∇ϕ is a solution of,

−divD = f, D = ε(χ)∇ϕ, (6.3)

for ϕ ∈ W 1,2
0 (Ω). In the context of dielectric materials, D = ε∇ϕ represents the

polarization field, E = ∇ϕ represents the electric field, while ϕ represents the electric

potential.

The procedure to solve the P1 problem (6.1) is identical to that of solving the P

problem (1.6) described in Chapters 2-4, while the numerical experiments for the

P1 problem are to be completed in the near future.

We highlight here only some adjustments to be made on some of the statements

related to the P problem (1.6), in Chapters 2-4 as we go along and solve the P1

problem.

On the way to relaxing the P1 problem, we investigate a weakly convergent sequence

{Dν}∞ν=1, with the weak limit D̃, related to a piecewise oscillating sequence of designs

given by χν(x) = χ(x, νx · n), ν = 1, 2 . . . ,∞. In general one writes,

lim
ν→∞

∫
Ω

F1(χ
ν , ε(χν), D̂) dx = lim

ν→∞

∫
Ω

|Dν − D̂|2 dx =

= lim
ν→∞

∫
Ω

|Dν − D̃|2 dx+

∫
Ω

|D̃ − D̂|2 dx. (6.4)

However, for this particular case, one can find the closed form expression for (6.4),

given by,
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lim
ν→∞

∫
Ω

|Dν − D̂|2 dx =

∫
Ω

ε−1(θ, γ)R(γ)H1(θ)R
T (γ)ε−1(θ, γ)D̃ · D̃ dx+

+

∫
Ω

|D̃ − D̂|2 dx. (6.5)

Here as before θ shows the relative thickness of the β layer, γ shows the direction of

the normal to the layers, R(γ) is the rotation matrix with angle γ while the matrix

H1(θ) is a function of the density θ given by,

H1(θ) =


 0 0

0 (β − α)2θ(1− θ)


 . (6.6)

The following equilibrium conditions hold,

−divDν = f, Dν = ε(χν)∇ϕν, (6.7)

−div D̃ = f, D̃ = ε(θ, γ)∇ϕ̃, (6.8)

where as before, the effective tensor ε(θ, γ) given in (2.7), is the G-limit of the

sequence of dielectric tensors {ε(χν)}∞ν=1.

Motivated by this case, we pose in the relaxed space DΘ given in (2.11), the relaxed

design problem formulated as,

RP1 = inf
(θ,γ,ε(θ,γ))∈DΘ

RF1(θ, γ, ε(θ, γ), D̂), (6.9)

where the new objective functional denoted by RF1(θ, γ, ε(θ, γ), D̂) is given by,
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RF1(θ, γ, ε(θ, γ), D̂) =

∫
Ω

|D − D̂|2 dx+

+

∫
Ω

ε−1(θ, γ)R(γ)H1(θ)R
T (γ)ε−1(θ, γ)D ·D dx, (6.10)

and for ϕ ∈W 1,2
0 (Ω),

−divD = f, D = ε(θ, γ)∇ϕ. (6.11)

We recall that the extended space of designs DΘ contains the original space of

designs adΘ, and as we choose θ = χ we have ε(θ, γ) = ε(χ), H1(θ) = 0 and,

F1(χ, ε(χ), D̂) = RF1(θ, γ, ε(θ, γ), D̂). (6.12)

The statements of Section 4.2, related to the characterization of the minimizers of

the RP problem for a special class of target potentials are equivalently given below

for the RP1 problem. The special class of target fluxes for the RP1 problem, follows

from Theorem 1 applied for the strong L2(Ω) closure of the set SDΘ, defined as,

SDΘ =




D | − divD = f, D = ε(χ)∇ϕ, ϕ ∈W 1,2
0 (Ω),

χ ∈ adΘ.
(6.13)

The strong L2(Ω) closure of the set SDΘ, denoted by S̄DΘ, is established in [3], and

is given by,

S̄DΘ =




D | − divD = f, D = hΘ∇ϕ, ϕ ∈W 1,2
0 (Ω),

for some θ ∈ L∞(Ω, [0, 1]), such that hθ = ( (1− θ)α−1 + θβ−1 )−1.
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From the definition of S̄DΘ and the application of Theorem 1 it follows that there

exists a dense Gδ subset K1 of target flux D̂ in L2(Ω), for which,

P1 = inf
χ∈adΘ

∫
Ω

|D − D̂ |2 dx = inf
D∈SDΘ

∫
Ω

|D − D̂ |2 dx =

= min
D∈S̄DΘ

∫
Ω

|D − D̂ |2 dx. (6.14)

We can now characterize the minimizers of the RP1 problem, the same way as we

did in Theorem 9 for the RP problem. We close our discussion with the equivalent

statement of Theorem 9, for the flux problem. Its proof goes along the same lines

as that of Theorem 9, having in mind the following,

∫
Ω

ε−1(θ, γ)R(γ)H1(θ)R
T (γ)ε−1(θ, γ)D ·D dx = 0 iff ε(θ, γ)D = hθD, (6.15)

which can be easily derived from the fact that,

R(γ)H1(θ)R
T (γ) = (β − (β − α)θ) · [ ε(θ, γ)− hθI ]. (6.16)

Theorem 10. There exists a dense Gδ subset K1 of L2(Ω) such that for D̂ in K1,

(1) There exists a minimizer in DΘ for the RP1 problem.

(2) At a minimizer (θ̄, γ̄, ε(θ̄, γ̄)) of the RP1 problem,

RF1(θ̄, γ̄, ε(θ̄, γ̄),∇ϕ̂) =

∫
Ω

|D̄ − D̂|2 dx and ε(θ̄, γ̄)D̄ = hθ̄D̄,

where D̄ and ϕ̄ are respectively the flux (polarization field) and the potential

associated with the design.

(3) P1 = RP1.
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(4) Any cluster point of any minimizing sequence in adΘ of the P1 problem is a

minimizer of the RP1 problem and any minimizer of the RP1 problem in DΘ

is a limit of a minimizing sequence for the P1 problem.

Here the convergence of sequences of designs is with respect to the G-convergence.

Remark 4. When the minimizing sequences of configurations of the P1 problem

with target fluxes in the set K1, oscillate locally in the form of layers of the two

dielectrics, the normal to the layers is asymptotically parallel to the optimal (limit)

polarization field D̄ = ε(θ̄, γ̄)∇ϕ̄ and the optimal (limit) electric field Ē = ∇ϕ̄.

6.2 Optimal Design Problem on Gradient Fields-

General Design Space Formulation

In this section we pose the P problem (1.6) on a larger design space containing

adΘ, which includes all effective dielectric tensors representing composite materials

of the α and β dielectrics, under the constraint in the amount of the β material.

This extended space of designs can be parametrically characterized by the density

function θ of the β material in Ω, and the effective permittivity tensor ε, belonging

respectively to the sets AdΘ and Gθ described below.

AdΘ = {θ ∈ L∞(Ω, [0, 1]) :

∫
Ω

θ dx ≤ Θ} (6.17)

Gθ = {ε ∈ L∞(Ω, Sθ) : θ ∈ AdΘ}, (6.18)

where Sθ(x) represents the set of effective tensors for a density θ(x) for x a.e. in Ω,

and it is given explicitly in [5] and [9].
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We formulate our optimal design problem as,

GP = inf
θ∈AdΘ

inf
εθ∈Gθ

GF (θ, ε,∇ϕ̂), (6.19)

with the objective functional given as before by,

GF (θ, ε,∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|2 dx, (6.20)

and with ϕ ∈W 1,2
0 (Ω) satisfying the equilibrium equation,

−div (ε∇ϕ) = f. (6.21)

One can easily see the relationGP ≤ P = RP among the three introduced problems.

Our goal for the GP problem (6.19), is to identify an optimal design or a minimizing

sequence of designs, and since we can characterize an optimal design of the GP

problem as a rank one laminate design, we can next reformulate the problem in the

relevant space of rank one laminate designs DΘ only. This fact and the nature of

objective functional (6.20), enable us to identify minimizing sequences of designs of

the GP problem through refinements, in the same way we did for the RP problem

previously posed on the design space DΘ with objective functional given by (2.12).

This approach is summarized in the following discussion.

One can easily establish the existence of an optimal design for the GP problem by

using the direct method of the calculus of variations and the fact that our admissible

space of designs is G-closed. We are then able to characterize optimal designs for

the GP problem, by first writing the problem in a variational form and eliminating

the equilibrium equation (6.21) through the introduction of the Lagrange multiplier

49



λ ∈W 1,2
0 (Ω), as shown below,

GP = min
θ∈AdΘ

min
ε∈Gθ

min
ϕ∈W 1,2

0

sup
λ∈W 1,2

0

[

∫
Ω

|∇ϕ−∇ϕ̂|2dx+

∫
Ω

ε∇ϕ · ∇λdx−

∫
Ω

fλdx ].

We then switch some of the above operations based on saddle point arguments, and

obtain,

GP = min
θ∈AdΘ

min
ϕ∈W 1,2

0

sup
λ∈W 1,2

0

inf
ε∈Gθ

[

∫
Ω

|∇ϕ−∇ϕ̂|2dx+

∫
Ω

ε∇ϕ · ∇λdx−

∫
Ω

fλdx ].

Finally for fixed θ inAdΘ, ϕ and λ inW 1,2
0 , we find the necessary optimality condition

for the effective tensor ε, expressed as,

εopt∇ϕ · ∇λ = min
e∈Gθ

(ε∇ϕ · ∇λ), a.e. in Ω.

From the extremal property of the effective tensors for rank one laminates and

Mirsky’s Lemma, the existence of an optimal design with effective tensor ε(θ, γ) ∈

DΘ now follows. In order to further identify a minimizing sequence of designs, we

use the same procedure as for the RP problem, explained in detail in Chapters 3

and 4 and briefly described in the next two steps.

I) We consider a partition of Ω into disjoint subdomains of diameter less than κ

and introduce a discrete approximation of the design spaceDΘ, denoted byDκ
Θ. The

design space Dκ
Θ consists of designs of rank one laminates with constant effective

properties in each subdomain of the partition. We show that the design problem

given by,

GP κ = inf
(θκ,γκ,ε(θκ,γκ))∈DκΘ

GF (θκ, γκ, ε(θκ, γκ),∇ϕ̂),

50



has an optimal design denoted by (θ
κ
, γκ, ε(θ

κ
, γκ)).

II) As we further refine the partitions of Ω, the sequence of optimal designs

{(θ
κ
, γκ, ε(θ̄κ, γ̄κ))}κ>0 for the discrete problems {GP κ}κ>0, is a minimizing sequence

for the GP problem.

We emphasize here that the continuity property of the GF functional, equivalently

stated in Theorems 3 and 6 for the RF functional, follows from the strong L2(Ω)

convergence of the sequence of gradients associated with the sequence of designs.

The numerical procedure when solving the discrete problem GP κ, provides us with

a design of piece-wise constant effective permittivities corresponding to rank one

laminate materials. Notice that the functionals of the RP and GP problems change

only by the term,

∫
Ω

R(γ)H(θ)RT (γ)∇ϕ · ∇ϕdx,

which for the parameters of the numerical examples given in Section 5.2, is a high

order term and can be ignored. Therefore the pictures and the numerical results

shown in Section 5.2 are valid for the GP problem as well. At this point the question

if GP = RP or if there is a strict inequality, even for the special class K of target

potentials, remains unanswered and needs to be explored.

6.3 Future Work

An interesting problem to be considered in the future is the P problem (1.6) formu-

lated in the Lp(Ω) space of gradient fields. The goal of the problem still remains to

find configurations of the two α and β dielectric materials that support an electric

field which is as close as possible to a target field, but in terms of the Lp norm,
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where 2 < p ≤ ∞. The problem is formulated as follows,

Pp = inf
χ∈adΘ

Fp(χ, ε(χ),∇ϕ̂), (6.22)

with an objective functional given by,

Fp(χ, ε(χ),∇ϕ̂) =

∫
Ω

|∇ϕ−∇ϕ̂|p dx. (6.23)

The variable ϕ ∈ W 1,p
0 is a solution of the equilibrium equation (1.1), the target

potential ϕ̂ ∈W 1,p
0 , while the admissible space of designs adΘ is described in (1.4).
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Appendix A

Weak Convergence and

G-Convergence

In this Appendix we provide the definitions of the weak convergence, G-convergence

and its more generalized concept of H-convergence.

A.1 Weak Convergence

Assume that 1 ≤ p <∞, and p′ = p
p−1 .

Definition 1. A sequence {fν}∞ν=1 ⊂ Lp(Ω) converges weakly to f ∈ Lp(Ω), pro-

vided that for each g ∈ Lp
′
(Ω),

∫
Ω

fνgdx→

∫
Ω

fgdx as ν →∞.

Remark 5. Extending this terminology to the Sobolev space W 1,p(Ω), we say that

{fν}∞ν=1 ⊂ W 1,p(Ω) converges weakly to f in W 1,p(Ω), provided that {fν}∞ν=1 con-

verges weakly to f in Lp(Ω), and {Dfν}∞ν=1 converges weakly to Df in Lp(Ω), on

each component.
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Remark 6. Weak compactness property. For any bounded sequence in Lp(Ω), 1 <

p < ∞, there exists a subsequence which weakly converges to an element of that

space.

Definition 2. A sequence {fν}∞ν=1 ⊂ L∞(Ω) converges weakly star to f ∈ L∞(Ω),

provided that for each g ∈ L1(Ω),

∫
Ω

fνgdx→

∫
Ω

fgdx as ν →∞.

Remark 7. Weak star compactness property. For any bounded sequence in L∞(Ω),

there exists a subsequence which weakly star converges to an element of that space.

A.2 G-Convergence

Let M(α, β,Ω), be the set of tensors described as,

M(α, β,Ω) = { A ∈ L∞(Ω)4 : α|λ|2 ≤ Aλ · λ ≤ β|λ|2, ∀λ ∈ R2 },

where 0 < α < β.

Definition 3. A sequence {Aν}∞ν=1 of elements of M(α, β,Ω), G-converges to an

element A of M(α′, β ′,Ω), if and only if, for any f ∈W−1,2(Ω), the solution ϕν of,



−div (Aν∇ϕν) = f inΩ,

ϕν ∈W 1,2
0 (Ω),

(A.1)
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is such that,




ϕν → ϕ weakly in W 1,2
0 (Ω),

Aν∇ϕν → A∇ϕ weakly in L2(Ω),
(A.2)

where ϕ is the solution of,



−div (A∇ϕ) = f inΩ,

ϕ ∈W 1,2
0 (Ω).

(A.3)

Remark 8. For any sequence Aν , ν = 1 . . .∞ of symmetric matrices in M(α, β,Ω),

there is always a G-convergent subsequence converging to a matrix A, which is also

symmetric and is an element of M(α, β,Ω).

Remark 9. If equation (A.1) is interpreted as the equation for the electrostatic

potential ϕν, Aν as the tensor of dielectric permittivity, Eν = ∇ϕ as the electric field,

and Dν = Aν∇ϕν as the polarization field, then convergence (A.2) is a statement

about the weak convergence of the fields Eν and Dν . Moreover the electrostatic energy

eν = (Dν , Eν) =
∫
Ω

Aν∇ϕν · ∇ϕνdx, weakly converges to (D,E) =
∫
Ω

A∇ϕ · ∇ϕdx.

Remark 10. The generalized concept of G-convergence is the concept of H-convergence,

for which conditions (A.1)-(A.3), apply locally for any ω ⊂⊂ Ω.

For more information on G-convergence and H-convergence, see [12] and [8].
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