
 

  



1 

 

CubeSat Introduction 

This is WPI’s first foray into CubeSat development; these reports are a baseline for a 

CubeSat mission designed to measure Greenhouse Gasses, similar to the CanX-2 mission 

launched in 2008. The purpose of this baseline is to build a basic knowledge base of 

CubeSat missions, and practices. Throughout the reports illusions to two simultaneous 

systems are developed, a lab option, and a flight option. Depending on the subsystem the 

two systems greatly vary, for example with ADCS there is a single sensor as opposed to the 

six or more components that are slated for the flight. The lab option in some cases is being 

developed in order to test novel concepts in nano-satellite development, such as in the 

propulsion system.  

Orbit Specification: 

Element Value 

semimajor axis  a (km) 7051 
eccentricity e 0.0 

inclination i (deg) 98.0 
RAAN   (deg) 0.0 

argument of latitude u (deg) 0.0 
Note: The above elements correspond to a circular orbit with altitude of 680 km and period of 

98.2 min. For a circular orbit, the argument of perigee  and true anomaly  are replaced by the 

argument of latitude u defined as u. The argument of latitude given corresponds to the 

value at time of orbit insertion. 

Scientific Payload: 

The primary scientific payload for this MQP is an infrared spectrometer which will 

be used to investigate greenhouse gases in the atmosphere. The Argus 1000 IR 

Spectrometer was selected for flight on the Canadian Advanced Nanospace eXperiment 2 

(CanX-2).  The CanX-2 mission was originally designed to use a 3U CubeSat with a launch in 

2008. 

Payload Operational Requirements: 

 A science “data set” consists of three observations, made along three distinct 

viewing angles as described below. 

1. 1 Instrument Orientation: Once per orbit, the instrument shall be oriented 
to collect data in three directions: Nadir and +/- 64.6 degrees from nadir in a 
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direction normal to the orbital plane. The latter two angles have been 
selected to allow limb observations from a nominal altitude of 680 km. 
1. 2 Pointing Precision and Duration: The instrument will maintain each of 
the three pointing orientations within a band of +/-  0.573 degrees (+/- 10 
milliradians) for a duration no less than 5 minutes. 
1. 3 Pointing Sequence and Rate: For a single data set, the instrument can be 
pointed along its three required directions in any order, but the time period 
between any two orientations shall not exceed 2 minutes.  

 

Reports: 

“Attitude Determination and Control, On Board Computing and Communication Subsystem 

Design for a CubeSat Mission,” MAD-CUBE, Andrew Bigelow, Cyle Hawkins 

"Mechanical, Power, and Propulsion Subsystem Design for a CubeSat Mission,” JB3-CBS1, 

Keith Cote, Jason Gabriel, Brijen Patel, Nicholas Ridley, Stephen Tetreault, Zachary 

Taillefer 

“Design and Analysis of Subsystems for a CubeSat Mission,” NAG-1002, Andrew Olvia, Greg 

Schaalman, Simone Staley  
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Abstract 

 This project describes the development of the attitude determination and control, on 

board computing, and communications subsystems for an Earth orbiting nano-satellite.  The goal 

of each subsystem is to enable the infrared spectrometer to collect data that can be used in 

tracking greenhouse gas concentrations.  Gyroscopes, sun sensors, a magnetometer, 

magnetorquers, and orbital environment models are employed to meet the pointing requirements 

of the scientific instrument.  The on board computer operates in conjunction will all other 

satellite subsystems as the main link between the software and hardware.  This system consists of 

a real time operating system and several MSP430 microcontrollers to fulfill computational 

requirements and acceptable redundancies.  Communication between the ground and the satellite 

is paramount for the transmission of scientific data back to Earth and simple commands to the 

spacecraft.  Two dipole UHF antennas and an S-band antenna serve the communication system’s 

transceivers. 

 

Transcript Abstract 

This project describes the development of the attitude determination and control, on 

board computing, and communications subsystems for an Earth orbiting nano-satellite.  The goal 

of each subsystem is to enable the infrared spectrometer to collect data that can be used in 

tracking greenhouse gas concentrations.  Gyroscopes, sun sensors, a magnetometer, 

magnetorquers, and orbital environment models are employed to meet the pointing requirements 

of the scientific instrument.  The on board computer operates in conjunction will all other 

satellite subsystems as the main link between the software and hardware. Communication 

between the ground and the satellite is paramount for the transmission of scientific data back to 

Earth and simple commands to the spacecraft. 
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1 Attitude Determination and Control System 

1.1 Introduction 

 The goal of the Attitude Determination and Control System (ADCS) is to orient the 

satellite in a desired direction during a specified time period for the optimal operation of the 

scientific instruments.  This goal will be accomplished through the combined and coordinated 

use of sensors and actuators.  The following is an excerpt describing the required attitude 

(instrument pointing) performance from the mission requirements document: 

 

1. 1 Instrument Orientation: Once per orbit, the instrument shall be oriented to collect 

data in three directions: Nadir and +/- 64.6 degrees from nadir in a direction normal to 

the orbital plane. The latter two angles have been selected to allow limb observations 

from a nominal altitude of 680 km. 

1. 2 Pointing Precision and Duration: The instrument will maintain each of the three 

pointing orientations within a band of +/-  0.573 degrees (+/- 10 milliradians) for a 

duration no less than 5 minutes. 

1. 3 Pointing Sequence and Rate: For a single data set, the instrument can be pointed 

along its three required directions in any order, but the time period between any two 

orientations shall not exceed 2 minutes.  

 

Various sensors that could be used were studied and the desired sensors chosen based on 

required performance and the satellite’s limited resources.  Similar considerations were used for 

analyzing and choosing the appropriate attitude actuators.  Specific devices were chosen for both 

a lab and flight option.  The lab option CubeSat will be constructed using low cost materials and 

components to demonstrate and evaluate the satellite system design.  The flight option will be 

designed using high performance and mostly space qualified elements.  The goal of this design is 

to provide a self-consistent platform for accomplishing the science objectives. 

 A simulation model for the attitude dynamics was created using a quaternion formulation. 

Torques applied from the chosen actuators were included into the model.  Utilizing the dynamics 

model and the Satellite Tool Kit (STK) software package, the chosen sensor types were modeled 
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in the simulation.  These tools were used in the development of the attitude determination and 

control software for both the lab and flight option. 

1.2 Background 

1.2.1 Attitude Sensors 

 There are many different sensor types that can be used in conjunction with the ADCS and 

the most commonly used in spacecraft applications were studied in detail.  A database of 

hardware flown on past CubeSats was compiled for system design reference.  A portion of this 

database is presented above.  From this database six potential sensor types were identified: 

magnetometer, sun sensor, gyro, accelerometer, Earth sensor, and star tracker.  

 A magnetometer measures the magnetic field strength along an axis.  When multiple 

magnetometers or multi-axis sensors are used the complete magnetic field vector can be 

measured (Acuna, 2001). Solid state magnetometers can be very small and use very low amounts 

of power making them feasible for the nano-satellite (PNI Corporation, 2005).  The sensor 

reading can be compiled with the position of the satellite and a model of Earth’s magnetic field 

to find a portion of the attitude of the spacecraft (NOAA, Geomagnetism, 2010).  Many 

magnetometers are also inexpensive and can easily be purchased for satellite testing.  These 

sensors are very important to the ADCS when using magnetorquers as control actuators. 

Magnetorquers rely on the Earth’s magnetic field to orient the satellite and will be discussed in 

detail later. 

 Sun sensors detect the sunlight shining on the spacecraft and more importantly the angle 

at which angle the sunlight is illuminating the surface.  A variety of electronic components can 

be used as a sun sensor such as photoresistors, cameras, or even the solar cells already on the 

spacecraft that allows for flexibility in there design and the possibility of being self-powered.  By 

using multiple sun sensors on different surfaces, the direction vector of the sun relative to the 

satellite can be determined. Using this vector a portion of the attitude can be determined.  

Although sun sensors can provide information about the attitude they only work when the craft 

has a line of sight with the sun (Winetraub, Bitan, Heller, & dd, 2005).  The orbit being 

considered for the satellite only allows for the line of sight to the sun during half of the orbit.  If 

sun sensors are to be used other data may be required in determining the attitude while the 

satellite is in the Earth’s eclipse. 
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 Gyro sensors and accelerometers measure angular velocity and translational acceleration 

respectively.  Small and low powered models of both sensor types can be purchased and can be 

inexpensive (Eterno, 1999) pp 375.  A benefit to using a gyro is that the spin rates around axes 

are known which can take the place of time derivatives of noise corrupted data from other 

sensors.  Measurements of the acceleration in three dimensions can be useful during orbit 

changes with the propulsion system, but the attitude information gathered would be redundant 

when paired with gyro sensors.  The accelerometer readings are coupled with its position 

onboard complicating the calculation for angular acceleration. 

 Earth sensors are often comprised of infrared cameras used to detect the radiation from 

Earth.  One way Earth orbiting satellites use these sensors for attitude is detecting Earth’s 

horizon to fix the orientation along an axis (Eterno, 1999) pp 374.  These sensors can be less 

accurate when used in Low Earth Orbit (LEO) because the Earth can encompass much of the 

sensor’s range of vision. 

 Star trackers use optical sensors to track multiple celestial bodies in determining the 

spacecraft’s orientation.  The bodies tracked are relatively fixed in space and therefore act as 

precise references enabling these sensors to be highly accurate.  They can however experience 

interference by larger and much close bodies such as the moon.  Star trackers require sensitive 

equipment for tracking the small appearing bodies and sufficient computational resources for 

processing the high resolution images rapidly.  These high requirements often cause accurate star 

trackers to be expensive, large in size and power consumption (Eterno, 1999) pp 373-4. 

 The magnetometer and sun sensor types were found to be used on many past CubeSat 

missions and are feasible for inclusion onboard the nano-satellite.  The magnetometer will be 

used for controlling the magnetourquer actuator that was chosen and calculating a portion of the 

spacecraft’s attitude.  Gyros will also be used because of their low space and power requirements 

and the valuable data that can be provided about the dynamic motion of the satellite.  

Accelerometers will not be used because of their redundant measurements when paired with 

gyros.  Earth sensors will not be used because of the image processing requirements and the need 

to be pointed towards Earth to function.  Star trackers will also not be used because of the 

required highly sensitive image capture and processing equipment that will be complex and 

difficult to integrate into the nano-satellite. 
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1.2.2 Actuators 

 Actuators are used to control the attitude of the satellite and can either be passive or 

active.  Passive actuators have no power or fuel requirements but can restrict control over the 

spacecraft’s attitude.  Conversely, active devices require energy but allow for greater control.  

Researching past CubeSat missions and available actuator technologies five potential actuators 

were identified: reaction wheels, magnetorquers, permanent magnets, hysteresis rods, and gravity 

gradient booms. 

 Reaction wheels are an active actuator and are comprised of radial weights that are spun 

using electric motors.  Changing the weight’s angular velocity changes the satellite’s 

proportionally but in the opposite direction.  To ensure complete attitude control in three 

dimensions three reaction wheels aligned orthogonally must be used (Rayman, 2010).  Benefits 

of this actuator include internal torques that don’t rely on interactions with external fields and 

they can be fast acting if sized well.  Through the use of the actuators and counteracting 

disturbance torques the wheels can become saturated, requiring a momentum dumping maneuver 

to decrease the stored momentum and required energy.  This maneuver will then require a second 

actuator system (Weisstein, 2007). 

 Magnetorquers are active electromagnets that create torques as they interact with the 

Earth’s magnetic field.  The applied torques act to align the electromagnet with the external field.  

Magnetorquers are solid state devices having no moving parts which increase their reliability 

(Eterno, 1999) pp 369.  This type of actuator is generally slower acting than reaction wheels and 

the applied torques vary with magnetic field strength and attitude. 

 Permanent magnets are similar to magnetorquers except are passive and can only align an 

axis of the satellite in one orientation relative to the external magnetic field.  They are passive so 

no power is required and the actual device is simply a magnet.  Because the actuator is always 

present the satellite will oscillate about the magnetic field direction without any other system to 

dampen the motion.  Because of this permanent magnets are generally paired with another 

passive actuator, hysteresis rods. 

 Hysteresis rods act to passively dampen satellite spin.  They accomplish this from the 

hysteresis effect.  The Earth’s magnetic field partially magnetizes the rods and when the satellite 

spins the magnetic field in the rods tries to align itself acting against the spinning motion.  As he 

spacecraft spins the rods are in a state of being magnetized that lags behind the current magnetic 
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field vector.  It therefore will always counteract spin and act towards stabilizing the craft.  The 

actuator itself is very simple, just ferrous rods.   

 Gravity gradient booms use gravity to align towards the Earth.  The boom consists of a 

support rod with a mass at the end.  The gravitational force will be greater on the main satellite 

body than the mass at the end of the boom and will orient the boom axis with the center of the 

Earth.  This passive system, like the permanent magnet, requires a damping system to stabilize 

the spacecraft from oscillations. 

 The chosen actuators are magnetorquers for their ability to control the attitude of the 

spacecraft, low mass, and reliability.  One issue that exists for magnetorquers is that only control 

torques perpendicular to the magnetic field can be generated.  This complication has been 

studied in detail and a number of control laws have been developed for the specific use of 

magnetorquers.  These findings will be examined later.  Three magnetorquers must be used to 

ensure the highest possible controllability. Using the compiled database of CubeSat missions, 

magnetorquers were found to be the most commonly used actuators and shows flight heritage. 

1.2.3 Disturbances 

 The satellite’s objectives require certain attitudes during its mission to be successful.  In 

the environment of Low Earth Orbit (LEO) there exist sources of external forces that can provide 

torques and perturb the satellite’s attitude.  Identifying these potential disturbances is important 

because the attitude actuators must be able to counteract them and meet the pointing 

requirements.  Three probable disturbance sources are gravity gradients, solar radiation, and 

atmospheric drag.   

 The satellite’s configuration is a 3U CubeSat and the mass distribution isn’t completely 

symmetric.  This asymmetry close to the Earth causes gravity gradient torques trying to align the 

long axis of the spacecraft with the Earth’s center of mass.  While facing the sun any spacecraft 

will experience a slight pressure from the solar radiation.  If the center of pressure is offset with 

the center of mass then the pressure will cause a torque.  The final disturbance source is 

atmospheric drag.  Because the satellite is in a LEO the density of the atmosphere is high enough 

to cause some forces on the craft.  This source is similar to the solar radiation where a pressure is 

applied to the surface area facing in the direction of the velocity vector.  A torque is likely to be 

produced by the offset of the center of pressure and the center of mass. 
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1.3 Hardware Selection and Design 

 The design of the ADCS requires components for both the sensors for attitude 

determination and actuators for attitude control.  There will also be two distinct sets of hardware 

components because a lab option is to be developed for ground testing before the flight model 

will be constructed.  The lab option will contain less expensive parts and have limited 

capabilities.  The testing environment will allow for a single degree of freedom for satellite 

rotation inside a vacuum chamber. 

1.3.1 Lab Option IMU 

 An Inertial Measuring Unit (IMU) with nine degrees of freedom was selected as the 

sensor package for the lab option.  This unit measures angular velocity, the local magnetic field 

vector, and acceleration all in three dimensions.  The IMU was mainly chosen based on cost, 

size, utility, and ease of use.  At $124.95 it is affordable for providing three axis measurements 

of three inertial states.  There is limited space in the CubeSat and therefore the sensors chosen 

must be small and able to easily fit inside.  The IMU’s board size is 4.953 x 2.794 cm and will be 

able to fit comfortably inside the test satellite.   

 One of the good features of the IMU is that is contains all the sensors that are to be used 

on the lab option on one board.  It also communicates using a single serial connection.  Other 

sensor options include obtaining individual sensors that each need their own digital connection, 

power source, and structure mounting.  This also allows the IMU to be easily connected to a 

computer to record and analyze the sensor data directly in addition to test the board without the 

use of the On Board Computer (OBC).  This will allow initial board testing to progress quicker 

and enable the communications with the OBC to be verified. 

 Included on the IMU board are four individual sensors and a microprocessor to collect 

the data and send it over a single serial communication interface.  The following is table 

containing the sensors and basic specifications. 

Table 1: IMU Sensors 

Sensor Name Sensor Type Specifications 

LY530ALH Gyroscope Single axis measurement with limit of ±300
o
/s 

LPR530ALH Gyroscope Dual axis measurement with limits of ±300
o
/s 

ADXL345 Accelerometer Triple axis measurement with limits of ±16g 

HMC5843 Magnetometer Triple axis measurement with limits of ±4 gauss 
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1.3.2 Lab Option Magnetorquers 

 Many previous CubeSats that have used magnetorquers in their designs constructed 

custom devices by wrapping thin magnet wire into a rectangular frame.  Two such satellites 

include the SwissCube and AAU CubeSat.  These magnetorquers are often light, simple, and low 

cost.  There are few commercially available magnetorquers and are expensive.  For these reasons 

a custom magnetorquer will be used for the lab option.   

The simple design will be magnet wire wrapped around a square frame.  It was decided to 

use the same voltage as the flight option (5V) to reduce the change in power requirements.  To 

easily fit within the satellite, the average side length of the wire coil will be 8cm.  The next 

selection was the wire gauge.  SwissCube and AAU CubeSat used wire with diameters .15mm 

and 0.13mm respectively.  A wire diameter of 0.16mm (34 AWG) was chosen because the 

magnetorquer will be similar and the slightly larger diameter is to increase the allowable current 

through the wire.  Below is a table with properties for a 34AWG magnet wire from Belden. 

Table 2: Magnet wire properties 

Product 

Number 

Resistance Max. Recommended 

Current 

Density Overall Diameter 

8057 857.325 Ohm/km 0.057 A 0.179 Kg/km 0.18288 mm 

 

 From this data the magnetorquer specifications can be designed.  For safety, the 

maximum current will be 70% of the recommended, or about 40mA.  The following are 

calculations for the performance and physical properties of the magnetorquer. 

Table 3: Symbols for lab option magnetorquer 

Symbol Description Symbol Description 

V Voltage across coil R Total coil resistance 

r Wire resistance density I Maximum current 

s Length of a side of the coil n Number of wire turns in the coil 

μ Magnetic moment dw Wire diameter 

dc Coil diameter ρw Linear wire density 

A Area of coil L Total wire length 

m Mass of the coil   

      

     
 

 
       

  
 

 
         

              

            



18 

 

  ⌈
 

  
⌉      

      
   

  
 
  

  
            

      √
 

 
          

1.3.3 Flight Option Gyroscope  

 The selection process for the flight option gyroscope was primarily based on performance 

but also considered flight heritage and power consumption.  Gyroscope research resulted in 

companies that could potentially provide adequate devices for the satellite.  Three such 

companies are Memsense, Analog Devices, and InvenSense and each produces small, low power 

gyroscopes.  The products offered are reviewed below and one is selected to be implemented in 

the CubeSat.   

Specific gyroscope selections for many flown CubeSats are not available making locating 

sensors with flight heritage difficult.  The data that was collected indicated that past CubeSats 

have used Commercial off the shelf (COTS) low cost sensors.  The Cute 1.7 CubeSat by the 

Tokyo Institute of Technology utilized the ADXRS150 gyro from Analog Devices and was also 

considered in gyro selection of the SwissCube satellite.  Swiss Cube used the IDG300 by 

InvenSense and considered the TR0150S050 from Memsense.  The following is a table listing a 

number of gyroscopes and their specifications. 

Table 4: Gyroscopes 

Sensor Name # of Axes Power Req. Range Typical 

Bandwidth 

Noise Density 

ADXRS150 1 5V, 6mA ±150
 o
/s 40Hz 0.05 

o
/s/√Hz 

ADXRS450 1 3.3V or 5V, 6mA ±300
 o
/s 80Hz 0.015

 o
/s/√Hz 

ADIS16265 1 5V,41mA ±80,160,or 320
 

o
/s 

50 or 330 Hz 0.044
 o
/s/√Hz 

ADIS16135 1 5V,88mA ±300
 o
/s 335Hz 0.0122

o
/s/√Hz 

TR0150S050 3 4.75-5.25V, 18mA ±150
 o
/s 50Hz 0.04 

o
/s/√Hz 

IDG-300B 2 2.7-3.3V,7-9.5mA ±500
 o
/s 140Hz 0.017 

o
/s/√Hz 

ITG-3200 3 2.1-3.6V, 6.5mA ±2000
 o
/s 100Hz 0.03

 o
/s/√Hz 

 

 From this selection of gyroscopes the ADXRS450 was chosen for the satellite.  It has 

very low power requirements, moderate sensor range and bandwidth, and low noise density.  The 

ADIS16135 has various selectable ranges, higher bandwidth, but consumes much more power 

which is a concern for the resource limited CubeSat.  The IDG-300B is a similar sensor with two 
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measured axes but a lower range is preferred because the satellite will be rotating slowly 

throughout its mission. 

1.3.4 Flight Option Sun Sensors 

 Similar to the review of the available gyroscopes, sun sensors, preferably with flight 

heritage, from reputable companies were reviewed.  Because sun sensors are more frequently 

employed on CubeSats and spacecraft in general is more information and flight proven products 

available.  Three companies that sell such sun sensors are Comtech AeroAstro, Optical Energy 

Technologies, and ISIS.   

 Many previously developed CubeSats have used the attached solar panels and in-house 

developed devices to measure the sun vector. An alternate option used by the Cute 1.7 CubeSat 

previously mentioned and the Chasqui I CubeSat by the Universidad Nacional de Ingenieria, 

Peru is a light angle sensor.  This sensor, the S6560 from Hamamatsu, detects the light angle 

over only one axis with a ±50
o
 range and has relatively low accuracy.  The sun sensors 

considered for use in this report likely have higher accuracies and measure the sun angle in two 

axes. 

 California Polytechnic State University’s CP1 CubeSat used a sun sensor donated from 

Optical Energy Technologies.  Sun sensors from Comtech AeroAstro flew on multiple spacecraft 

including ALEXIS, HETE, and MOST.  The developers of the product from ISIS have flown 

hardware on PROBA-2 and the International Space Station.  The following is a table of the 

possible sun sensors for the satellite. 

Table 5: Sun Sensors 

Sensor Name Mass Size Power Field of View Accuracy 

Model 0.5 40g N/A <50mW 100
o
 0.5

o
  

Miniaturized Analog 

Fin Sun Sensor 

50g 46x45x14mm N/A Nominal:128x128
o 

Unobstructed: 

160x160
o
 

0.5
o
 over 

120
o 
FoV 

Coarse Sun Sensor 20g 12.7mm dia x 

9mm 

N/A 120
o
 5

o
 

Medium Sun Sensor 36g 24.3mm dia x 

34.9mm 

N/A 60
o
 1

o
 

 

 The coarse and medium sun sensors from Comtech AeroAstro are both small and light 

making them good candidates, however they have lower accuracy and field of view respectively 

than the others.  From the images available on Optical Energy Technologies’s website Model 0.5 
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is comparable in size to the miniaturized sun sensor from ISIS.  The miniaturized sun sensor was 

chosen for its accuracy, large field of view, and no power consumption.   

1.3.5 Flight Option Magnetorquers 

 Two magnetorquers were considered for the flight option.  Only one viable COTS 

product was considered because of the limited availability of such devices.  This is likely the 

result of most satellites using custom developed magnetorquers.  They are simple to produce as 

described for the lab option and are therefore considered for the flight option.  A heavier grade 

magnet wire would be used in a custom magnetorquer because of its higher durability.  This 

would cause the actuator to be heavier than the lab option.  Clyde Space sells a magnetorquer rod 

( with specification listed below) specifically for CubeSats and is also considered.  

Table 6: Clyde Space magnetorquer 

Magnetic Moment Power Mass Size Lifetime 

0.2 Am
2
 5V, 40mA 27g Length: 7cm 

Diameter: <9mm 

>10 years 

 

 This rod has the same power requirements and similar mass to the lab option coil.  One 

advantage is that it has a significantly higher magnetic moment and therefore can provide more 

torque.  Based on this and the fact that it is space qualified, it was selected for use in the satellite. 

1.4 ADCS Design 

1.4.1 Attitude Dynamics Model 

 A simulation of the attitude dynamics was created to research the optimal ADCS 

algorithms.  A quaternion based description of the dynamics was used to avoid singularities 

present with Euler rotation angles.  The current model assumes torque free rotational motion.  

The table below gives the set of symbols used in the model’s equations. 

Table 7: Symbols for quaternion attitude dynamics model 

Symbol Description Symbol Description 

i One of the three magnetorquers (1,2,3) τi Applied torque from the magnetorquers 

B The Earth’s magnetic field μi The magnetic moment of a magnetorquer 

Ω Angular velocity of the body frame about 

its axes 
α The angular acceleration of the body 

frame about its axes 

αi Angular acceleration due to a magnetorquer q The inertial quaternion for describing the 

body frame attitude 

Ii The inertia tensor about a magnetorquer I The inertia tensor about the center of 

mass 
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 The following equations show the basic relationship between torque and angular 

acceleration (time derivative of angular velocity) and the applied torque from a magnetorquer. 

        
Equation 11 

          
Equation 22 

Using these two equations the total angular acceleration for the satellite can be solved for. 

     
       

  (      ) 
Equation 3 

  ∑  
  (      )

 

   

 

Equation 4 

By integrating this equation the angular velocity of the satellite can be determined.  The 

torques that arise from a rotating spacecraft described in Euler’s equation needs to be added to 

the dynamics.  The following equation results from this addition. 

  ∑  
  (      )

 

   

    (      ) 

Equation 5 

Similarly for the angular velocity, differential equations for the quaternion describing the 

satellite’s attitude are needed to model the dynamics completely.  The following equations 

describe the quaternion and its derivative. 

  [
 ̂
  
] 

Equation 6 

Where  ̂ is the vector part of the quaternion and q4 is the scalar part. 

 

  
  

 

 
[ ]  

Equation 73 

[ ]  

[
 
 
 
 
        
        
        
          ]

 
 
 
 

 

Equation 84 

 The time derivatives of the angular velocity and quaternion need to be integrate 

simultaneously.  This is done using the software package MATLAB.  The magnetic field B is 

                                                 
1
 Formulated using equations 10.28-29 (Young & Freedman, 2008) p.332 

2
 Equation 27.26 (Young & Freedman, 2008) p.937 

3
 Equation 9.151a (Curtis, 2010) p.556 

4
 Equation 9.151b (Curtis, 2010) p.556 
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time variant because the spacecraft orbits around Earth.  To include this into the model a table 

containing the magnetic field vector with a time interval of ten seconds along the satellite’s orbit 

was generated.  The Satellite Tool Kit software was used to generate this table with the 

International Geomagnetic Reference Field (IGRF) model.  The table is then interpolated by 

MATLAB to obtain the magnetic field vector during the simulation. 

 The simulation also includes models of the sensors.  Gaussian noise was optionally added 

to all sensors to increase the simulation’s accuracy.  The magnetometer readings are interpolated 

from the IGRF table.  Similar tables were also generated using STK for the center of mass 

position and the sunlight vector to simulate the GPS and sun sensors respectively.  Data for the 

gyro sensors is taken from the dynamics model. 

1.4.2 Attitude Determination 

 Measurements collected with the spacecraft’s onboard sensors are used to determine the 

attitude of the satellite.  There are a number ways of accomplishing this such as direct and 

recursive methods.  Direct methods use the instantaneous readings from the sensors in 

combination with other known data to calculate the attitude.  This method is often 

computationally simple but may contain significant sensor error.  Recursive methods are more 

complex and use current sensor measurements to modify the previously calculated attitude.  This 

method often consists of filters to reduce noise generated by the sensors. 

1.4.2.1 TRIAD Method 

 The TRIAD method is very simple and well used algorithm.  Two vector pairs are used 

as inputs with each pair measuring similar values in separate coordinate systems.  A pair of 

composite vector sets is generated and a coordinate transformation (direction cosine matrix) is 

calculated.  In this case the first vector pair will be the measured magnetic field and sun vector in 

the body axis frame.  The second pair is the calculated values from the position of the satellite 

provided by the GPS and software models of the sun’s position relative to earth and the 

geomagnetic field.  The following are equations for calculating the DCM (Benet, 2007) pp 10-

11. 

Table 8: Symbols for TRIAD method 

Symbol Description Symbol Description 

Bs Magnetic field vector from sensor Ss Sun vector from sensors 

Bm Magnetic field vector from model Sm Sun vector from model 

α1,2,3 First set of composite vectors β1,2,3 Second set of composite vectors 
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1.4.2.2 Extended Kalman Filter 

 The Extended Kalman Filter (EKF) is a recursive algorithm used to filter out sensor noise 

with Gaussian distributions.  This algorithm has two distinct cycles, predict and update (or 

filtered) cycles.  The purpose of the predict cycle is to use the nonlinear dynamics equations with 

the previous estimated state to predict the current state.  The filtered cycle then uses the sensor 

data to modify the output from the predict cycle.  The following are the equations in the EKF 

algorithm (Ribeiro, 2004) pp 31-33. 

Table 9: Symbols for the EKF 

Symbol Description Symbol Description 

x System state f Nonlinear dynamics equations 

u Control input w Process noise 

y Output from sensor measurements h Output state 

v Output noise Q Process noise covariance matrix 

R Output noise covariance matrix F Jacobian matrix of f 

H Jacobiam matrix of h P Estimate covariance matrix 

K Kalman gain k, k+1 Indicates the discrete index of iteration 

I Identity matrix   

Input and Output Equations 

       (     )      

     (  )      

Jacobian Matricies 

 ( )     | ̂( | ) 
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 (   )    | ̂(   | ) 

Predict Cycle 

 ̂(   | )    ( ̂( | )) 

 (   | )   ( ) ( | )  ( )   ( ) 

Filtered Cycle 

 ̂(   |   )   ̂(   | )   (   )[         ( ̂(   | ))] 

 (   )   (   | )  (   )[ (   ) (   | )  (   )   (   )]   

 (   |   )  [   (   ) (   )] (   | ) 

 

1.4.3 Attitude Control 

1.4.3.1 Stabilizing Controller 

The purpose of this control is to stabilize the spacecraft when tumbling is an issue.  This can 

occur when the spacecraft separates from the P-POD.  To find the control law a Lyapunov 

stability analysis is performed. 

Table 10: Symbols for stability controller 

Symbol Description Symbol Description 

V Lyapunov function μ Combined magnetic moment of the 

magnetorquers 

ω Angular velocity B Magnetic field 

I Inertia tensor τ Applied torque 

C Controller gain   

 

  
 

 
     

 ̇      ̇ 

 ̇          (      ) 

 

 ̇        (      )        

        

 ̇    (     )    (     ) 

    (     ) 

 ̇    (     ) (     )            
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1.5 ADCS Testing 

1.5.1 Attitude Determination 

1.5.1.1 TRIAD Method 

The TRIAD method described in the previous section is tested by the MATLAB simulation 

program that was developed.  Predicted Gaussian noise is added to the simulated sensors based 

on the components chosen for the flight option.  The angular velocity values are directly from the 

simulated gyroscopes and the angles are determined from the direction cosine matrix produced 

from the TRIAD algorithm.  Below is a plot of the estimation error for the yaw, pitch, and roll 

angles and the angular velocity components.  For this simulation the initial conditions of the 

satellite state are the body frame coincides with the inertial frame and the angular velocities in 

the x, y, and z directions in radians per second are 0.5, 3, and 1 respectively. 

 

 From the graph it can be seen that the angle error is mostly better than 0.3 degrees and 

the angular velocity error is mostly better than 5 miliradians per second.  The standard deviation 

of the yaw, pitch, and roll angles are 0.1359, 0.1381, and 0.1352 respectively.  The standard 

Figure 1: TRIAD Determination Test 
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deviation of the x, y, and z angular velocities are approximately the same as the chosen 

gyroscope deviation at 2.36 miliradians per second.  This test provides a baseline to use during 

other tests for attitude determination.  

1.5.1.2 Extended Kalman Filter 

Similarly to the test of the TRIAD algorithm the extended Kalman filter is tested using the 

same initial conditions.  The expected sensor noise is calculated from the TRIAD test because 

this will provide the Kalman filter with the raw data.  Below is a plot of the estimation error in 

the Euler angles and angular rates of the satellite. 

   The results for the extended Kalman filter are much better than only using the TRIAD 

method.  The standard deviations for the yaw, pitch, and roll errors are 0.0309, 0.0309, and 

Figure 2: Extended Kalman Filter Test 
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0.0285 degrees respectively.  For the x, y, and z components of the angular velocity the standard 

deviations are 0.540, 0.539, and 0.497 miliradians per second respectively. 

1.5.2 Attitude Control 

1.5.2.1 Stabilizing Controller 

The stabilizing controller slows the rate or angular rotation using the control law that was 

developed.  To evaluate the performance of the controller a test was completed.  The 

simulation’s initial conditions are given as the satellite’s body frame coincides with the inertial 

frame and each component of the angular velocity is 5 degrees per second.  These initial 

conditions are to simulate the possible situation when ejected from the launch vehicle.  Below is 

a plot of the angular velocity components vs. time. 
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Figure 3: Stabilizing Controller Test 
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The graph above shows that the within the first 2000 seconds the angular velocities drop 

significantly and after 5000 seconds the satellite has almost stopped.  At that point all 

components are less than 0.4 miliradians per second (or 0.023 degrees per second).  This amount 

of time is less than the orbital period of 98.2 minutes (or 5892 seconds) and therefore shows the 

satellite has the ability to stabilize itself within one orbit with these initial conditions.  Power is a 

premium on the CubeSat and knowing the power consumption of each subsystem is important.  

For this reason calculations for the power required for a maneuver were added to the simulation.  

The estimated power cost for this stabilization maneuver is 323.75 Joules.   
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2 On Board Computer 

2.1 Introduction 

The onboard computer in any spacecraft is responsible for a multitude of tasks and is the 

principle means of controlling the craft from the ground.  The onboard computer is closely tied 

to all subsystems and thus requires a level of system integration much unlike many others.  In a 

CubeSat where space, power and processing are all at a premium, the onboard computer 

maintains a vast majority of all computing responsibilities for the craft, albeit propulsion 

calculations, communications, or data storage and management in situ.  Coupled with the various 

sensors throughout the craft, measuring anything from propulsion tank temperature to Euler 

angles, the onboard computer’s primary purpose is to use all that data and calculate the necessary 

corrections to maximize the possibility for mission success.  

The onboard computer is being designed in a top-down approach, where major system 

functions dictate the need and design of the embedded system.  Due to the overwhelming lack of 

power and other resources, it is clear that a minimalist design in terms of power consumption is 

necessary, this further dictates early design choices with respect to the choice of processor and 

thus a potential operating system.  Note that many of the calculations that need to take place are 

continual and in real-time which also means that all calculations made on the fly are time 

dependent and have short lifespan, due to ever-changing deadlines. 

2.1.1 On Board Computer Design Methodology 

 Using a top-down approach to the design of the onboard computer is desired in this 

situation.  Very specific functions are needed in order to control the craft, (i.e. “turn on thruster 

for xx seconds”), these functions can be written in such a way that the skeleton of the code is 

modular and easier to debug/ adapt to the future needs of a subsystem.  The top-down approach 

also temporary resolves problems with the design of the hardware components of the board as 

well.  Instead of designing hardware and hoping for the best, designing the software then 

knowing exactly the needs and adding a safety buffer allows for better engineering practices and 

allows for additional research to be done on hardware components space heritage.  

 The bottom-up design approach is slowing become more of a relic as systems become 

ever complex, where the seed if you will doesn’t know where the ground is let alone how to 

connect with other seeds and create layout that is quick and efficient.  The bottom-up design 
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controls application sizes and other memory concerns due to strictly knowing exactly the 

limitations, however this does not always mean the best hardware/ software combination is 

created.  An example choosing a microcontroller for the CubeSat that will satisfy the 

requirements, from looking into many other CubeSats and options commercially of the self it is 

clear that the Texas Instruments MSP 430 is a solid choice. However there are over two hundred 

choices within the MSP 430 platform, with options including the number of bits in the analog to 

digital converter, clock speeds, the amount of flash memory, etc. The soundest decision is to first 

assess the needs of the mission the fidelity of the measurements and from there make a selection. 

2.1.1.1 General On-board Computer Design Requirements 

 Using the top-down approach, a hard set of design requirements are necessary to 

propagate through the project and steer toward an end goal. The design requirements for the 

onboard computer of the CubeSat are to: 

 Store data collected from the science mission and ensure transmission to ground station 

 Contain a majority of the processing power for all subsystems 

 Be the median between the subsystems and the ground station 

 Provide telemetry to the ground station 

Noting each of the requirements scope, there are still quite a few necessities that are required in 

order to begin designing a system.  The beauty of a top-down design through is that by knowing 

the end goal skeletons are able to be created.  For example a mission requirement is pointing the 

aperture of the infrared camera toward both the limbs and nadir during each pass.  There are 

additional requirements such as the pointing accuracy, but a block like this gives the Attitude 

Control and Determination subsystem access to the computational resources necessary as well as 

a connection to the power management and distribution system that actuates the magnetorquers. 

2.2 Literature Review 

2.2.1 Command and Data Handling in CubeSats 

There are many typical considerations taken into account for CubeSat on-board 

computers a subset of all satellite computers.  With power consumption and mass being a major 

driver of the CubeSat design there is continual check of allocations for everything being done.  

For embedded applications there is routinely the power consumption issue, thus multiple lines of 

low-power microcontrollers and high power density batteries.  Another critical issue is the 

environment, ground based systems do not have to deal with high-energy particles that can cause 
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bit-flops, latch-ups and burn-outs.  For larger satellites it is routine for the processor be 

developed for the mission with redundant processors that are radiation hardened, and designed to 

meet the needs of the mission.  However with a principle of CubeSats being an affordable 

methods for states and educational institutions (where space was once out of reach) to create 

space worthy craft; we must consider a commercial-of-the-shelf (COTS) microcontroller that 

meets all of our requirements. 

2.2.2 CubeSat Hardware Overview 

With over sixty CubeSats that were launched or are currently developing many solutions 

to the on-board computer exist.  Currently there are commercially available CubeSat on-board 

computer kits that are pre-assembled and use either PICs or MSP430s for their primary 

microcontroller.  Below is a breakdown of existing CubeSats and their processor selections. 

Table 11 AAUSat-I OBC Specs 

Specification Data 

Operating Voltage 5 Volts 

Processor Siemans C161-R1 

Clock Frequency 10 MHz 

Memory RAM: 512 kB 

ROM: 512 kB 

Flash: 256 kB 

Bus DMA and I2C 

Operating System RTX166 

Programming Language C 
 

Table 12 AAUSat-II OBC Specs 

Specification Data 

Operating Voltage 3.3Volts (<300 mW @ 40 MHz; <80 mW @ 8 MHz) 

Processor Atmel AT915AM7A1 

Clock Frequency 8 and 40 MHz 

Memory RAM: 2 MB SRAM 

Flash: 2+4 MB 

Bus CAN 

Operating System  

Programming Language  
 

Table 13 CanX-I OBC Specs 

Specification Data 

Operating Voltage 3.3 Volts (0.4 W) 

Processor Atmel ARM7 

Clock Frequency 40 MHz 

Memory RAM: 128 kB 

ROM: 32 MB 

Bus One-wire; serial RS232 
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Operating System None 

Programming Language C 
 

Table 14 CanX-2 OBC Specs 

Specification Data 

Operating Voltage 3.3 Volts 

Processor ARM7 

Clock Frequency 15 MHz 

Memory RAM: 2 MB 

Flash: 16 MB 

Bus I2C 

Operating System CANOE  Canadian Advanced Nanospace Operating Environment 

Programming Language C 
 

Table 15 CP1 and CP2 OBC Specs 

Specification Data 

Operating Voltage 3 Volts 

Processor PIC18LF6720 

Clock Frequency 4 MHz 

Memory RAM: 4kB 

ROM: at least 1kB 

Flash: 128 kB 

Bus I2C 

Operating System  

Programming Language  
 

Table 16 CubeSat Kit OBC Specs 

Specification Data 

Operating Voltage 3.3 and 5 Volts (<100 mW) 

Processor TI MSP430 

Clock Frequency  

Memory SD/MMC external memory 

Bus I2C, SPI, UART 

Operating System Salvo Pro RTOS 

Programming Language MSP430 C Compiler 
 

Table 17 CubeSat XI-IV OBC Specs 

Specification Data 

Operating Voltage 2.0 and 5.5 Volts 

Processor PIC16F877 

Clock Frequency 4 MHz 

Memory RAM: 368 bytes 

ROM: 32 kB 

Bus I2C 

Operating System  

Programming Language  
 

Table 18 CUTE-I OBC Specs 

Specification Data 
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Operating Voltage  

Processor H8/300 

Clock Frequency  

Memory RAM: 1 kB internal, 512 kB external SRAM 

ROM: 256 kB EEPROM 

Flash: 4MB AT45DB321B 

Bus  

Operating System  

Programming Language  
 

Table 19 DTUSat OBC Specs 

Specification Data 

Operating Voltage 3.3 Volts (3 mW/MHz) 

Processor Atmel AT91M40800 

Clock Frequency 16 MHz 

Memory RAM: 1 MB 

ROM: 16 kB 

Flash: 2 MB 

Bus SPI 

Operating System  

Programming Language  
  

Table 20 HAUSAT-1 OBC Specs 

Specification Data 

Operating Voltage 3.3 and 5Volts (60 mW) 

Processor AT91LS8535 

Clock Frequency 4 MHz 

Memory RAM: 512 bytes internal SRAM 

ROM: 512 bytes EEPROM 

Flash: 4 MB AT45DB321B 

Bus SPI 

Operating System  

Programming Language IAR C Compiler 
 

Table 21 KUTEsat OBC Specs 

Specification Data 

Operating Voltage 3.3 Volts 

Processor PIC18F4220 

Clock Frequency  

Memory SDRAM: 8 MB 

Flash: 4 MB 

Bus  

Operating System  

Programming Language  
 

Table 22 Mea Huaka’i OBC Specs 

Specification Data 

Operating Voltage 5 ± 0.25 Volts 

RCM2000: High 0.65 W; Med 0.3 W; Sleep 1.4 mW 
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EEPROM: Write 165 mW; Read 2.2 mW; Standby 0.55 μW 

Processor Z-World RabbitCore RCM2000 and 23000 (x2 for redundancy) 

Clock Frequency 1.8 – 30 MHz; 32 kHz in sleep mode 

Memory  

Bus I2C 

Operating System  

Programming Language Dynamic C 
 

Table 23 MEROPE OBC Specs 

Specification Data 

Operating Voltage  

Processor Motorola MC68HC812A4 

Clock Frequency  

Memory 128 kB Supersync FIFO IDT72291 

Bus  

Operating System  

Programming Language  
 

Table 24 NCUBE OBC Specs 

Specification Data 

Operating Voltage 3.6 Volts 

Processor Atmel AVR ARmega32L and PIC microcontrollers 

Clock Frequency  

Memory ROM: 4 kB 

Bus I2C 

Operating System  

Programming Language  
 

Table 25 Sacred and Rincon OBC Specs 

Specification Data 

Operating Voltage  

Processor PIC16C77 

Clock Frequency 4 MHz 

Memory RAM: 368 on chip; 64 kB FRAM 

Bus I2C 

Operating System  

Programming Language C 
 

Table 26 SwissCube OBC Specs 

Specification Data 

Operating Voltage 3.3 Volts (Stand-by: 1mW; Nominal: 150 mW; Peak: 250 mW) 

Processor AT91M55800A and MSP430F1611 

Clock Frequency 32 MHz 

Memory RAM: 512 kB SRAM 

ROM: 512 kB EPROM 

Flash: 2 MB 

Bus I2C 

Operating System  
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Programming Language C 
 

Although the above is not an all-inclusive list of CubeSat processors and missions it does 

show the wide range of options for processors, memory, programming language or anything else. 

The hardware selection process is strictly driven by the payload and the communication ability of 

the satellite. 

2.2.2.1 On-board Computer Functional Overview 

Many CubeSats have broken the processing down into separate microcontrollers for 

individual subsystems and left the command and principle on-board computer tasked with 

command and data management; a primary focus of the software is housekeeping. 

Housekeeping allows the satellite to minimize the storage resources necessary as well as 

reduce the fragmented data held in the memory bank. Housekeeping runs diagnostics on all the 

key systems in the CubeSat to improve survival, this is also reduces the duty load on the 

microcontroller and collects the status of each subsystem. The CubeSat on-board computer has 

another responsibility to manage as much of the daily survival tasks as possible, albeit subsystem 

reset, or complete isolation. 

The requirements of this CubeSat require a different approach. A vast majority of logic is 

being handled at the onboard computer via software.  The design of an all-inclusive on-board 

computer simplifies several concerns, including communication issues through between 

subsystems and also a reduction of physical connections to other boards. A detractor of the single 

motherboard design is that all software at a central location which has a potential for high energy 

particle radiation bit flops. One consideration that needs to be addressed in design though is the 

lack of redundancy, failure of the microcontroller would render the CubeSat useless. The 

possibility exists to have several microcontrollers on a single board; however more research 

needs to be done into the feasibility of that design. 

2.2.3 Real Time Operating System Overview 

All operating systems serve a common purpose, control hardware and provide a set of 

services for applications to use. A Real Time Operating System (RTOS) is optimized to yield 

results in real time; real time being a length of time that allows the information to still be 

pertinent and accurate. A simple time sensitive problem conceptually is attitude determination. It 



36 

 

is time critical to know the orientation of the spacecraft during a positioning maneuver nearly 

instantaneously in order to meet the pointing requirements of the science payload. 

Options for the RTOS vary greatly in expense, size, and complexity. An overview of 

previous CubeSat RTOS shows the variety of choices. 

Table 27 FreeRTOS (Real Time Engineers Ltd., 2010) 

Characteristics Memory Requirements MSP430 Support 

FreeRTOS is a scale-able real time kernel 

designed specifically for small embedded 

systems.  

 No software restriction on the 

number of priorities that can be 

used. 

 No restrictions imposed on priority 

assignment - more than one task 

can be assigned the same priority. 

 Free Development Tools 

 Free embedded software source 

code 

 Free 

Typically a kernel binary image 

will be in the region of 4K to 9K 

bytes. 

YES 

 

Table 28 Salvo Professional RTOS (Pumpkin Inc., 2010) 

Characteristics Memory Requirements MSP430 Support 

Salvo™ is the first Real-Time Operating 

System (RTOS) designed expressly for 

very-low-cost embedded systems with 

severely limited program and data 

memory. With Salvo, you can quickly 

create low-cost, smart and sophisticated 

embedded products.  

 Three versions (Free – Limited 

number of tasks(3); LE – Unlimited 

number of tasks; Pro – Unlimited 

number of tasks 

 Free version limited to number of 

events (5) 

 Cost (Free- Free; LE - $900; Pro-

$1500) 

 Restricted to IAR Embedded 

Workbench Integrate Development 

Environment 

 Only Pro version allows advanced 

configuration, and the source code 

 Developed to work with CubeSat 

kit 

Varies with functions used, up to 

500 kB. 

YES 
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The two RTOS above are the two possibilities for the CubeSat design, this will be 

determined in the coming weeks to finalize flight software structure, and capabilities. Upon 

examination of several other CubeSats it is a common for the CubeSat to have a custom 

operating system written completely in house. Due to limited resources and experience the 

CubeSat will use a COTS RTOS.  

2.3 Design Considerations 

2.3.1 Operating Environment 

The operating environment of the CubeSat is typically considered a hostile at best, 

temperatures varying from lower than -40 degrees Celsius in eclipse to upwards of 45 degrees 

Celsius in full solar exposure which is within industrial standard temperature range. Along with 

these greatly varying temperatures within estimated 90 minute orbital period, the fear of highly 

energized particles (HEP) is also a constant fear of electronic components and specifically logic 

gates and microcontrollers/ processors. When designing the on board computer, there were many 

considerations that were explored; the issue of HEPs was deemed a non-issue partially due to the 

particle density in low Earth orbit, and more importantly the ability to account for any software 

issues of particle based bit flips through routine validation software. The greater fear occurs 

when there are HEPs that embed themselves in the logic gate, thus either shorting the gate and 

thereby reducing functionality or potentially draining power.  

In order to accommodate the issues above, we determined that any it is necessary that any 

hardware used needs to have a very extensive power management module that allows either the 

peripheral chain to be switched off or that there is method of detecting a short and attempting to 

clear the error. Another possibility would be a radiation hardened package that would reduce the 

HEP penetration. Rarely is there the availability of powerful package that enables the use of 

many new and upcoming technologies at the microcontroller level and that have space heritage 

that commits corporations in developing this line of products. Texas Instruments® has a line that 

does fit many of the other design requirements, however there costs far outweighs the gains 

obtained with the hardened shell. This line would also reduce the available peripherals and 

increase the power requirement, in a system where mass and power are the principle drivers. 

However all MSP430s are considered low power microcontrollers that allow for the peripherals 

to be independently controlled and correct any issue. In speaking with the environmental teams 

only during a solar storm conditions are these even HEPs a consideration, and the potential/ 
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warning available for a solar storm would allow the on-board computer to be powered down with 

enough time that everything would be safe and in a protected state.  

The final environmental concern is spacecraft charging where there is the potential for 

the bus to short to the internal structure/ electronics. In order to design for this issue we consulted 

with biomedical engineers that have to conquer a similar issue on a daily basis. By using shunts 

that were commonly used to reduce high frequency noise, we are also able to deal with spikes in 

power coming from any external peripherals, and also act a decoupling capacitors for those 

braches coming into the system. 

2.3.2 Power Consumption 

To combat the problem of severe lack of power and the ability to complete all the tasks 

necessary, including communication, low power solutions were solely explored. Based on 

previous research and the need for a simple and redundant system, the focus immediately began 

on microcontrollers. Although the benefits of a microprocessor based system such as improved 

computation and full 32-bit software, the need to power the processor, as well as the memory and 

finally the layout of 32-bit busses connecting the memory processor and all other peripherals 

reduced the allure of a microprocessor, similarly with 16-bit processors.  Next, looking into 

Digital Signal Processors (DSP), the arithmetic workhorses they are, it was clear that the need 

for so many peripherals, and the power to clock cycle ratio was not as good as Mixed Signal 

Processor (MSP).  MSPs have very similar traits to both a DSP and a microcontroller, although 

normally considered a microcontroller.  

 All MSP430 lines manufactured by Texas Instruments are capable of extremely low 

power states in the standby modes, and just microseconds to go from the lowest power states all 

the way to full power, and back again. When properly implemented, then the MSP will be in a 

low power state for a majority of the time. Specifically the primary MSP selected for the 

CubeSat lab option has four timers that are able to run independently of one another, and thereby 

can initialize separate interrupts a that will force the an application to begin the next command, 

whether it be opening a propulsion valve, or beginning communications with the ground station. 

This ability reduces the power consumed by the microcontroller significantly, and this is 

compounded with the multi MSP design in the lab option OBC. By using multiple smaller MSPs 

that each draw less power, and using the primary MSP to interrupt the low power state, in order 

to run a specialized task allows the primary MSP to stay at lower state. Just as important though 
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it allows for a multi-tiered priority configuration where the primary MSP would essentially 

continuously run if this did not exist. 

2.4 Hardware and Software Selection 

2.4.1 Component Selection 

2.4.1.1 Primary MSP430F5438 

Many hours went into pouring over datasheets, ensuring all the necessary peripherals are 

available to all the subsystems in the CubeSat, specifically necessary were sixteen analogue-to-

digital converters (ADC), four-timers, communications (including I
2
C and SPI), as well as the 

ability to program it with JTAG. The MSP430F5438 granted the team with a high enough 

frequency that it could debug the system using USB through a UART/SPI-USB bridge. The 

MSP430F5438 offers a 25 MHz core, and a 32-bit hardware multiplier that is especially needed 

in Attitude Determination and Control. The F5438 also offers the utility of having a Unified 

Clock System (UTS) including a Real-Time Clock (RTC) which can also trip interrupts, even if 

the MSP is in a lower power state.  

2.4.1.2 Secondary MSP430F2012 

The need for the secondary MSP430 was not evident until the need for multiple thruster 

control and so many ADC channels were fixed due to other subsystems. For example the power 

subsystem needed independent channels for each battery to system determine health and further 

to determine the illumination levels on each face. This coupled with independent control of every 

subsystem from the on board computer, quickly meant that there was a need for a less powerful 

but similar microcontroller, similar to what the SwissCube determined. 

This MSP430 needs only to have I
2
C and multiple ADC, this is a very easy task, however 

finding another MSP430 that will be able to reduce the load and the power consumption is 

difficult.  During the initial development stages using the MSP430F2012 allowed the teams to 

identify many of the features that are necessary for the final product. Using this experience and 

determining that it was a suitable match, the MSP430F2012 was selected for the secondary 

MSP430.  
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2.4.1.3 UART/SPI-USB Bridge TUSB3410 

While this component only has purpose in the developmental stages of the onboard 

computer, the value of having it far exceeds the resources that it takes, during the flight 

configuration, this component will be unpowered. The power for this component as well as the 

rest of the OBC during ground operations is supplied through the USB port. This allows multiple 

things to occur; the OBC can be debugged independently of the power subsystem, as well as 

saving power if the lab option board was to be used as the flight option board, and during 

simulations we are able to feed information into the on-board computer for sensor readings, that 

are more similar to flight conditions.  

2.4.2 Lab OBC – Flight OBC Hardware Comparison 

We selected a commercial OBC option for the flight option over continuing the 

development of the lab option OBC, for a few reasons, including continuing development costs. 

The TI MSP430 based OBC designed for the lab has many features that are not present on the 

commercial OBC, such as redundant microcontrollers for key watchdog features and survival. 

This is important where if a specific branch of the system failed due to a software error the board 

would be able to reload the initial flight software, or even be able to receive software updates 

while in flight. This functionality was explored and although it would increase the survivability 

of the satellite, it may be considered unnecessary in a short term mission, as well as the proposed 

scientific payload. However if an additional payload, or a payload that requires computation on 

board were to be added to the mission, a multi-MSP design would be much more efficient and 

allow for additional functionality, as well as greater flexibility and customization. 

The flight option on board computer (OBC) is at commercially available CubeSat 

motherboard with an MSP430 processing unit. This product has a 3 week lead time that will is 

readily available from Clyde Space a UK based company, also the retailer of many other flight 

option components, such as PMAD, batteries, solar panels, and both communication 

transceivers. Features of the Clyde Space OBC include a USB ground tether, as well as a 

separate power supply, this along with the CubeSat Kit standard PC 104 connector. The 

commercial OBC has an extensive flight history with several microcontrollers, including many 

TI MSP 430s. The commercial OBC provides a fixed pathway for software as well where the 

RTOS, which may be purchased, is a higher version of the test software being used for the lab 

option.  
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2.5 Software 

2.5.1 MSP430 Development Environment 

There are many options for developing software for the MSP430 microcontroller. Texas 

Instruments supplies two options, Code Composer Studio (CCStudio) and IAR Embedded 

Workbench (IAR EW). The both of the software included have constraints for the free versions, 

however CCStudio does allow greater flexibility, additionally the CCStudio connects with all 

Texas Instrument development tools. Further the CCStudio has a familiar layout for anyone who 

has used any Eclipse based IDE. However these are all the advantages of CCStudio, IAR EW is 

the industry standard for MSP430 software development. Salvo the planned flight and lab RTOS, 

comes with instructions to compile and flash MSP430s via IAR EW. Therefore all flight 

software will be written in IAR EW. One point that needs to be emphasized, despite IAR being 

used for the RTOS, and primary MSP430, in the lab option, the CCStudio is more than adequate 

to develop a subsystem, and because all the code is written in C then there already is a high level 

of interoperability. Furthermore, there is third option that has no such limitation, however lacks 

any company backed support, using a base Eclipse IDE, and installing mspgcc. Both Eclipse and 

gcc are free, open sources alternatives, however the set-up of the system is much more difficult 

than CCStudio or IAR.  

Table 29 MSP430 Integrated Development Environment Comparison 

MSP430 IDE Pro Cons 

Code Composer Studio v4 

Microcontroller Edition 

Simplest to implement 

Eclipse Based GUI 

Code Optimizer 

1-Locked User: $495 

1-Floating User: $795 

IAR Embedded Workbench 

MSP430 

Salvo RTOS 

Technical Support 

Code Optimizer 

1-Locked User starts at $795 

No Educational Pricing 

Lowest price: limited code size 

Eclipse + mspgcc Free 

Updated Frequently 

Eclipse GUI 

No Code limits 

Difficult to setup 

No Technical Support 

2.5.2 Printed Circuit Board Layout Software 

Similarly there are hundreds of options for the development of the motherboard in the 

case of the lab option. The key to selecting the software for the motherboard development boils 

down to knowing the requirements for the components and the ability of the board manufacture. 

In the CubeSat there are very stringent dimensions for printed circuit boards (PCB), and thus is a 
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driver for the selection of the software. Other drivers include minimal cost, the ability to have 

four-layers, meeting the 6mil spacing of the MSP430 component leads, and lastly easy to learn 

and use. Researching this lead to many hobby shop applications that lacked a professional 

quality in many regards, such as an inability to export the files to industry standard Gerber files, 

or other issues such as the inability to import stencils for key components, such as the 100-pin 

MSP430F5438. After consulting with Electrical and Computer Engineering students, the focus 

shifted to three primary software packages: ExpressPCB, EAGLE Layout Software, and 

DesignSpark. All of the software packages listed were free or had a “freemium” that allows 

students to design freely as long as there is not a commercial application.  

Table 30 Layout Software Comparison 

Layout Software Comments 

ExpressPCB Simple 

Unable to import components 

Unable to export Gerber Files 

EAGLE Layout Software Convoluted to use 

“Freemium” license 

De facto industry standard 

Component importation 

Meets all requirements 

Design Spark EAGLE Compatible 

2 Free licenses per person 

Meets all requirements 

Easy to learn 

2.6 Flight Software 

Every subsystem is responsible for developing the primary algorithm for their operations, 

ranging from ADCS, where there is a constant reading from the sensors, and continual 

adjustments in order to maintain the point requirement, or in order to maximize solar recharging. 

The algorithms are first derived from a set of high level commands that are being determined as 

more of the mission is frozen. The sooner these are frozen the higher likeliness of a successful 

mission because there is additional time to develop the software algorithms and time to optimize 

the sequencing of these to optimize power consumption in both lab options and flight option. 

2.6.1 High Level Functions  

As this is a baseline for the CubeSat mission, there many holes with regards to specific 

details, such as the exact schedule of communications, and the number of sensors available to a 
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given subsystem. However, below is the first batch of high level commands submitted by the 

subsystems. 

Table 31 ADCS High Level Commands 

Command Action 

Read IMU  

1. Initialize IMU 

2. Wait 100ns 

3. Read data 

Turn IMU On 
1. Turn IMU Power Circuit On 

2. Send Initialization Data 

Turn IMU Off 1. Turn IMU Power Circuit Off 

Rotate XX degrees about  XX axis 

1. Determine magnetic field vector 

2. Determine sun vector 

3. Initialize IMU 

4. Calculate time of power on for magentorquer XX 

5. Turn on magnetorquer XX for XX seconds 

6. Evaluate Change 

7. Repeat Steps 4-6 until proper orientation 

Read Magnetometer 
1. Open Magnetometer Port 

2. Read Data 

 

  

Table 32 Payload High Level Commands 

Command Action 

Initialize Payload 1. Turn on Payload (Send PMAD on signal) 

2. Initiate DMA to SD card 

3. Read data 

Turn Off Payload 1. Wait for last data packet 

2. Close DMA to SD Card 

3. Turn off Payload (Send PMAD off signal) 
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Table 33 Propulsion High Level Commands 

Maneuver Inputs Operations Outputs 

CCW Rotation 

1. Propellant tank temperature [K] 1. Valve Open time [sec]: ZZ  1. Open solenoid valves 1 and 3 for ZZ seconds (initiates). 

2.Target rotation [deg]  2. System standby time [sec]: YY 2. System standby for YY seconds. 

 3. Valve open time [sec]: AA 3. Open solenoid valves 2 and 4 for AA seconds (rotation). 

CW Rotation 

1. Propellant tank temperature [K] 1. Valve Open time [sec]: ZZ  1. Open solenoid valves 1 and 3 for ZZ seconds (rotation). 

2.Target rotation [deg]  2. System standby time [sec]: YY 2. System standby for YY seconds. 

  3. Valve open time [sec]: AA 3. Open solenoid valves 2 and 4 for AA seconds (rotation). 

Drag 

compensation 

(DC) 

1. Propellant tank temperature [K] 1. Valve Open time [sec]: ZZ  1. Open solenoid valves 1/2 and 4/3 for ZZ seconds (translation). 

2. Target compensation [m]  2. System standby time [sec]: YY 2. System standby for YY seconds. 

  3. Valve open time [sec]: AA 3. Open solenoid valves 2/1 and 3/4 for AA seconds (translation). 

Orbit 

raising/shaping 

1. Propellant tank temperature [K] 1. Valve Open time [sec]: ZZ  1. Open solenoid valves 1/2 and 4/3 for ZZ seconds (translation). 

2. Target raise/shape [m] 2. System standby time [sec]: YY 2. System standby for YY seconds. 

  3. Valve open time [sec]: AA 3. Open solenoid valves 2/1 and 3/4 for AA seconds (translation). 

Notes: 

 1. This command list assumes a propulsion system with two thruster couples. 

2. Commands assume ωo = 0 and ωf = 0. 

3. DC and orbit raising/shaping may need to be performed in conjunction with a CCW or CW rotation maneuver. 
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2.7 System Integration 

2.7.1 Power Subsystem 

The power subsystem and the OBC need to work hand in hand in order to control the 

satellite. The OBC is useless without power, however the power subsystem is lacks the logic to 

dictate which components are supposed to stay on during eclipse. Furthermore the power 

subsystem sends more signals back to the OBC than any other subsystem, because it handles all 

power amplification for analog signals, in addition to all the telemetry information being passed. 

Lastly, the power subsystem is the only system that can completely reset the OBC in case of a 

latch up error. 

2.7.2 Attitude Determination and Control Subsystem 

 The ADCS subsystem is a mathematical workhorse, without the logic all of the 

calculations that are necessary to control the CubeSat, would be impossible. Many of the 

processing capabilities were driven with active ADCS in mind; an example is the hardware 32-

bit multiplier that reduces the clock cycles used to work with high precision numbers. ADCS is 

also a principle reason for the investigation of the lab option board versus the existing COTS 

flight option motherboard. 

2.7.3 Payload 

The payload is the driver of the mission, and thus knowing that there is a high data 

output, it drove the OBC to integrate a larger amount of storage, via onboard Secure Digital (SD) 

card, and making sure that the primary MSP430 was capable of Direct Memory Access (DMA).  

2.7.4 Propulsion 

 Propulsion has a larger part of the OBC design than many realize. The propulsion system 

is responsible for the need of a RTC on the microcontroller. All of the propulsion equations are 

based on time, whether they are derivatives of time or otherwise. 

2.7.5 Communication 

 Communication allows the CubeSat to serve a purpose, the interoperability of the OBC 

and Communications subsystems need to demonstrate this, the Communications subsystem is the 

only system that can reset the CubeSat remotely, or more importantly receive commands from 

the ground station, and lastly potentially update malfunctioning software. The other DMA 
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channel belongs to the communication system, where it is able to place files in to the storage, as 

well as downlink them to the ground. This is addition to the telemetry that it is constantly 

sending out and the last watchdog for the OBC. 
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3 Communications 

3.1 Introduction 

The communications subsystem in a CubeSat can mean a lot of things; in some cases the 

Communications system is the primary payload, where the mission is to test a new method of 

communication. Most commonly the communications system is used to relay data, telemetry and 

commands from the craft to the ground. The ability for satellite to communicate is nothing new 

and dates as far back as Sputnik. The advancement of communications to the point of 

transmitting many gigabits per second of data at ranges of over 10,000 km, has managed to make 

these communications systems smaller and more capable. Currently the accepted norm for 

communication subsystems on a CubeSat is to have two independent transceivers, one to 

accommodate the Tracking, Telemetry and Command (TT&C) data, and a second transmitter for 

the payload data, as well as other high data rate operations, such as a software update. The 

CubeSat will mimic this two transceiver communications scheme, and have a single command 

ground station. However, continually transmitted data from the CubeSat and global amateur 

radio operators there is a highly likelihood of continual beacon reception, if we supplied a 

method to retrieve the data. In order to meet federal regulations on amateur radio frequencies, the 

CubeSat is limited to unencrypted transmission due to the prohibitive cost of other frequency 

ranges. Furthermore if the CubeSat were to use a global network of amateur radio operators the 

need for easily accessible frequencies is a key to success.   

3.2 Design Considerations 

 In order to develop a communication subsystem for a satellite, primary considerations of 

power, utility, mass, and volume must be considered. Keep in mind this is in addition to the 

ongoing environmental concerns that are present in space such as the greatly varying temperature 

range and spacecraft charging. Continuing with the sample payload of the Argus spectrometer, 

the need for a high bandwidth communications system is necessary as well as a lower power 

beacon, for telemetry, command reception and tracking. 

 The absolute maximum amount of data that is generated by the Argus spectrometer in an 

orbital period is approximately 22.4 megabytes as provided by the Payload subsystem, this 

amount of data needs to be combined with continuous global positioning satellite tracking data, 

and potentially any software updates coming from the ground. With an estimated maximum data 
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transmission of 36 Megabytes per orbit, there is a need for higher bandwidth technologies, and 

frequencies. 

3.3 Literature Review 

The need for a communications system for a CubeSat let alone all other satellites dictates 

that our CubeSat is not the first to have a system. Below is a table of several CubeSats and their 

respective communication systems. 

Table 34 CubeSat Communication Systems (Klofas, Anderson, & Leveque, 2008) 

Satellite Size Frequency License Power Antenna 

AAU1 CubeSat 1U 437.475 MHz Amateur 500 mW Dipole 

DTUsat-1 1U 437.475 MHz Amateur 400 mW Canted Turnstile 

CanX-1 1U 437.880 MHz Amateur 500 mW Canted Turnstile 

Cute-1 1U 436.8375 MHz 

437.470 MHz 

Amateur 

Amateur 

100 mW 

350 mW 

Monopole 

Monopole 

QuakeSat-1 3U 436.675 MHz Amateur 2W Turnstile 

XI-VI 1U 437.8475 MHz 

437.490 MHz 

Amateur 

Amateur 

80 mW 

1 W 

Dipole 

Dipole 

XI-V 1U 437.465 MHz 

437.345 MHz 

Amateur 

Amateur 

80 mW 

1W 

Dipole 

Dipole 

NCUBE-2 1U 437.505 MHz Amateur  Monopole 

UWE-1 1U 437.505 MHz Amateur 1 W End-Fed Dipole 

Cute-1.7+APD 2U 437.385 MHz 

437.505 MHz 

Amateur 

Amateur 

100 mW 

300 mW 

Dipole 

Dipole 

GeneSat-1 3U+ 437.067 MHz 

2.4 GHz 

Amateur 

ISM 

500 mW 

1 W 

Monopole 

Patch 

CSTB1 1U 400.0375 MHz Experimental <1 W Dipole 

AeroCube-2 1U 902-928 MHz ISM 2 W Patch 

CP4 1U 437.405 MHz Amateur 1 W Dipole 

Libertad-1 1U 437.405 MHz Amateur 400 mW Monopole 

CAPE1 1U 435.345 MHz Amateur 1 W Dipole 

CP3 1U 436.845 MHz Experimental 1 W Dipole 

MAST 3U 2.4 GHz ISM 1 W Monopole 

Delfi-C3 3U 145.870 MHz 

143.9-435.55 MHz 

Amateur 

Amateur 

400 mW 

200 mW 

Turnstile 

Turnstile 

Seeds-2 1U 437.485 MHz 

437.485 MHz 

Amateur 

Amateur 

90 mW 

450 mW 

Monopole 

Monopole 

CanX-2 3U 2.2 GHz Space Research 500 mW Patch 

AAUSAT-II 1U 437.425 MHz Amateur 610 mW Dipole 

Cute 1.7+APD II 3U+ 437.275 MHz 

437.475 MHz 

Amateur 

Amateur 

100 mW 

300 mW 

Monopole 

Monopole 

Compass-1 1U 437.275 MHz 

437.405 MHz 

Amateur 

Amateur 

200 mW 

300 mW 

Dipole 

Dipole 

In addition to this Klofas, Anderson, and Leveque identify Communications Subsystem 

Recommendations in there paper. Key factors in a good communications design are: 
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 Include a long beacon 
 Use common amateur modes 
 Include a simple reset in case the satellite stops responding 
 Verify your ground station 
 Maintain your own ground station 
 Get an AMSAT mentor 

3.4 Communications Architecture 

The communications architecture for the CubeSat follows a sensor satellite model for the 

both types of communication. TT&C will be transmitted continuously, over UHF band 

transceiver through the usage of two dipole antennae at one end of the CubeSat. The data will be 

transmitted only during the day when in view of the ground station and will be controlled 

automatically upon the reception of the TT&C signal, the reason for this is the much higher 

power consumption of the S-Band transceiver. If the mission involved a constellation of a dozen 

or more CubeSat then there would be a great potential to use satellite crosslinking, thereby a 

increasing the amount of time data would be able to reach the ground station. Despite this, 

beacon data would still be available globally because of its continual broadcasting status. 

Furthermore it is feasible to write software that would allow amateur radio enthusiast, to decode 

the data stream and forward it to the ground station thereby improving the situational awareness 

(SA) that the ground station has available to them. This architecture is very simple and easy to 

implement, the largest hurdles are signal acquisition, and error checking. 

3.5 Frequency Selection 

 The selection of S-Band and UHF frequencies are tied to a number of factors. Both of 

these bands have portions that are within amateur radio bands, thereby allowing for minimal 

licensing cost, and maximum coverage in terms of receive-ability. The selection of these bands is 

also directly tied to the extensive flight heritage for both bands. A frequency above 100 MHz is 

required in order to escape Earth’s ionosphere. The channel capacity referred throughout the 

report as bandwidth is dictated by Shannon–Hartley theorem, where a bit rate is proportionate to 

the pass band bandwidth, and the signal to noise ratio.        (     ) 5 Where C is the 

channel capacity in bits per second; B is the pass band bandwidth; S is the total received signal 

power measured in watts; and N is the total noise measured in watts. Based on this theorem and 

                                                 
5
 (Wertz & Larson, 1999) pp 563 
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the design requirements there were only two choices for the beacon and a single choice for 

primary data downlink. The beacon is able to use either VHF or UHF, both are available via 

COTS for a CubeSat, thus either one is permissible. However based on Hartley’s law, the UHF 

transmitter has higher data rates because the bandwidth channel is greater in UHF. Secondly the 

wave length and therefore antenna is much shorter (nearly half) in a UHF band as opposed to the 

VHF band. Lastly S-Band for the primary data downlink, and software uplink, is based on 

several logical assertions. Alternative transmitters are much larger, and thus would no longer 

meet the mass or volume budget, as well as a COTS S-Band transceiver, dictates that the 

CubeSat will use S-Band.  

3.5.1 Optical Communication Alternative 

 A more novel alternative is using optic based communications as discussed by Alluru, 

and McNair in there paper titled An Optical Payload for CubeSats. The paper analysis the 

concept of multi-hop high speed optical links as opposed to RF based communications. The 

utility of the technology in CubeSat applications is astonishing, with the reduction of component 

mass and volume, it is possible for CubeSats to implement optical crosslinks. These links would 

allow the CubeSat to switch to a relay based communications architecture which improves the 

robustness of the system, though reducing the possibility of RF interference, and reduce the 

power requirement of the communication subsystem. Another benefit of the laser based optic 

system is that, the information would be transmitted in a digital signal, thus a reduction in the 

need for digital to analog converters and multiplexers. Although this CubeSat will not be 

implementing this technology, it should be kept in mind. 

3.6 Hardware Selection 

For the baseline design all components for the communications subsystems are from 

Clyde Space Ltd. Specifically chosen are an S-Band transceiver, a UHF/VHF transceiver, and 

the two antennas. These components meet all the existing requirements, and are very modular in 

case a new driver changes the need for a part of the communications system. A custom S-Band 

patch antenna is necessary, in order to fit the dimensions of the CubeSat. The baseline 

components are: 
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Table 35 Communications Subsystem Hardware Selection 

Component Important Specification 

S-Band Transmitter 

Part number: TXS 

Cost:£7,759.34 ($12,468.4834 USD) 

ISIS 38400bps S-band Transmitter 

Data rates: Up to 384 kbps 

Mass: < 125 grams 

Form Factor: 90x96x40 mm (PC/104 compatible) 

Power Consumption: 2W 

Data: I2C 

PCB: PC/104 (CubeSat kit compatible) 

Thermal Range: -40° to +85° C 

UHF/VHF Transceiver 

Part number: TRXVUVARA 

Cost:£8,215.77($13,201.9208 USD) 

ISIS variable data rate UHF downlink / VHF uplink 

transceiver with AFSK uplink 

UHF transmitter 

Frequency range: 400-450MHz (Crystal controlled) 

Transmit power: 300mW PEP, 150mW average 

Data rate selectable: 1200, 2400, 4800, 9600 bit/s 

CW (Morse) beacon mode 

VHF Receiver 

Frequency range: 130-160MHz (Crystal controlled) 

Data rate: 300-1200 bit/s 

Mass: 85g 

Form factor: 90x96mm (PC/104 compatible) 

Power: <2.1W (transmit on), <0.2W (receiver only) 

PCB: PC/104 (CubeSat kit compatible) 

Data: I2C bus interface 

-20- +60 degrees Celsius 

Deployable Antenna System 

Part number: ANTSCDUV 

Cost:£3,651.45 ($5,867.515 USD) 

ISIS Deployable CubeSat Antenna System for 1 

UHF dipole antenna and 1VHF dipole antenna 

3.6.1 Antenna Selection 

Although there needs extensive research to be done on the mounting and location of the 

antennas, the baseline design calls for 2 dipole antennas for the UHF/VHF transmission, and a 

patch antenna for the S-Band system. Both Antenna systems are COTS, though Clyde Space, 

Ltd.  

3.6.2 Lab Communication System 

 The need for a diagnostic communications system became apparent as the first MSP430 

began to be coded. In order to perform any simulation that activate a subsystem such as 

propulsion or ADCS then we would need to provide a command signal. Similarly with the need 

to test the ADCS subsystem there is a need to initialize the simulation with variables and data 

from statistical models from MATLAB. In order to accomplish all of this there is a USB port that 

has direct access to the SD card, as well as receives diagnostics from the software. 
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3.7 Ground Station 

 The ground station will need to be able to receive all the data as well as process the data. 

This will need to be researched further to determine the specifications for all antennas, and 

transceivers within the ground operations component of the CubeSat mission. 
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5 Appendices  

5.1 Disturbance Calculations 

 While in orbit a spacecraft will experience disturbance forces and torques from a variety 

of potential sources.  Probable disturbances will come from gravity gradients, solar pressure, and 

atmospheric drag.  The following are calculations for the worst case disturbances.  The attitude 

actuators must be able to adequately counteract these disturbances and therefore must be 

determined and considered in their design.   

The first calculation is for the worst case gravity gradient.  In this case because the mass 

distribution of the satellite is not determined a uniform distribution for a 3U CubeSat is used.   

Table 36: Symbols for gravity gradient disturbance calculations 

Symbol Description Symbol Description 

m Mass of the satellite x,y,z Satellite side length along the x, y, and 

z axes 

Ik The moment of inertia along the k axis μ The Earth’s gravity constant 

θ Deviation angle of the Z-axis to the local 

vertical 
τg The gravity gradient torque 

R Distance from the mass center of the 

satellite to the center of the Earth 
  

 

                               

                ⁄                

Equation 9: Satellite Parameters and Constants 
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Equation 10: Moments of Inertia6 
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Equation 11: Worst-Case Gravity Gradient Torque7 

                                                 
6
 Equations in Figure 9.1c (Curtis, 2010) p. 504 

7
First formula in Table 11-9A (Eterno, 1999) p.366 
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 The second disturbance calculation is for solar radiation.  For the worst case a 3U 

CubeSat with a mass center offset of 2cm and perfect reflecting surface is used.  The mass center 

offset was chosen from the published CubeSat launch requirements.  

  
Table 37: Symbols for solar radiation disturbance calculations 

Symbol Description Symbol Description 

Fs Solar constant As Surface area exposed to solar radiation 

cps Location of the center of pressure Cg Center of gravity 

q Reflectance factor I Angle of incidence of the solar 

radiation 

c Speed of light τsp Solar radiation torque 

x, y, z Satellite side length along the x, y, and z 

axes 
  

 

                                  ⁄⁄  

                 (      )          

Equation 12: Satellite Parameters and Constants 

   (  )   √               
  

Equation 13: Maximum Illuminated Area 

    
  
 
  (   )(      )    ( )           

     

Equation 14: Worst Case Solar Radiation Torque8 

 

 The next disturbance comes from atmospheric drag.  For the worst case scenario a 3U 

CubeSat with a mass center offset of 2cm and high drag coefficient is used.  The maximum 

surface area in this case is the same as for solar radiation. 

 
Table 38: Symbols for Atmospheric drag disturbance calculations 

Symbol Description Symbol Description 

ρ Atmospheric density As Surface area 

cps Location of the center of pressure cg Center of gravity 

CD Coefficient of drag V Satellite’s orbital velocity 

τa Atmospheric torque   

 

 (         )              ⁄  

Equation 15: Atmospheric Density9 

(      )                        ⁄  

Equation 16: Satellite Parameters 

                                                 
8
 Second formula in Table 11-9A (Eterno, 1999) p. 366 

9
 Found in Table I (NOAA, NASA, & USAF, U.S. Standard Atmosphere 1976, 1976) p. 72 
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 (      )          
     

Equation 17: Worst Case Atmospheric Torque10 

5.2 Past CubeSat ADCS Design Review 

 Many CubeSats that have already been fully developed were reviewed to provide a 

starting point for the design of this project.  A few of these past missions with available materials 

detailing the satellites’ ADCS hardware and software are outlined below.  Many CubeSats have 

basic hardware descriptions published but the ADCS algorithms used are not readily available. 

 
Table 39: AAU CubeSat Specifications 

Specification Data 

Sensors Magnetometer, Sun Sensors 

Actuators Magnetorquers 

Determination Method Optimal two observation quaternion estimation method 

Control Method Constant gain controller with integral action 

 
Table 40: ION CubeSat Specifications 

Specification Data 

Sensors Magnetometer 

Actuators Magnetorquers 

Determination Method Extended Kalman filter 

Control Method Linear quadratic regulator  

 
Table 41: Swiss Cube Specifications 

Specification Data 

Sensors Magnetometer, Sun Sensors, and Gyro 

Actuators Magnetorquers 

Determination Method Optimal REQUEST algorithm 

Control Method PD control law for positioning and a separate de-spin algorithm 

 

  

                                                 
10

 Last formula in Table 11-9A (Eterno, 1999) p. 366 
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5.3 On Board Computer Datasheets 

Figure 4 MSP430F5438 Datasheet 
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Figure 5 MSP430F5438 User Guide 
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Figure 6 MSP430F2012 Datasheet 
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Figure 7MSP430F2012 User Guide 
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Figure 8 TUSB3410 Application Report 
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Figure 9 Salvo User Manual 

 


