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Abstract 
The purpose of this Interactive Qualifying Project (IQP) was to explore the development 

of a system of trading systems in combination with machine learning techniques. This project 
covers the entire development process from the base strategies that compose the individual 
trading systems to the grouping of those strategies into a system of trading systems.  

 
 Among the most notable of the report’s findings are that it is possible for retail traders to 
develop strategies with positive returns. The report also proves that it is possible to develop and 
implement an artificial intelligence-driven system of trading systems which is predictive with 
several algorithms. Neural networks in particular are useful for the detection of market patterns 
in trading systems.  
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1. Overview and Introduction 

1.1 Motivation to Invest 

Investment is a key tool to generate and maintain wealth. Investing provides an alternate 
source of income that can help fund expenses, cover education costs or most commonly reduce 
your retirement age. In the United States, according to the Economic Policy Institute, the average 
savings for retirement of the 50th percentile is just $5,000 [1]. Assuming that the monthly living 
expenses of a single person in Worcester is approximately $1,250 such low savings would allow 
a person to survive for four months out of the 15-20 years of retirement. It is thus advisable to 
invest early to begin building wealth that can cover the costs of living during retirement.  
 

Whereas the returns of individual trading strategies will fluctuate based on market 
conditions and the validity of the market edges (systematic ways to beat the market) that they 
exploit, a system of trading systems should produce more constant returns throughout any type 
of market. While some of the strategies in the system of systems may produce losses, in a well-
balanced system, the remaining strategies should produce balancing profits. The goal of the 
system of systems is to reduce the likelihood of producing overall losses. The possibility of a 
more stable stream of profit justifies the slightly larger time investment demanded by the 
development of systems of trading systems. 

 
 There is a large supply of financial data available to help develop and execute trading 
strategies. However, a human or group of humans would need an absurd amount of time to 
process and to arrive at conclusions from such a large body of data. Machine learning allows 
efficient analysis that derives conclusions from these large volumes of data. These findings can 
then be leveraged to construct strategies and algorithms that achieve a higher level of 
performance than those built solely by humans. Another advantage of machine learning for 
trading is that it decreases the human bias in decision making, which can be influenced by a 
trader’s mood or personality. By eliminating the potential mistakes caused by these biases, 
machine learning can help construct strategies that yield better results. 
 

This report covers the basics of investing and introduces the reader to all the necessary 
background knowledge to begin to comfortably develop his own trading strategies. Sample 
strategies are also presented and thoroughly analyzed to give the reader an example of how to 
approach the development. The report finally covers the basics of machine learning and the 
implementation of a complex system of trading systems with machine learning algorithms. 
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1.2 Our Project 

Our project centers on the development of trading strategies and their execution via a 
system of systems with an overall goal of systematically beating the market. There is value in the 
development of algorithmic trading because it allows individuals to participate in markets 
typically dominated by large institutional players. Furthermore, artificial intelligence is an 
emerging technology whose applications to finance have not been fully realized. We determined 
that the development of trading algorithms under an AI-driven system of systems would provide 
novel work to the field of finance and potentially influence positive externalities in society.  

 
To execute our goals, we first gathered detailed knowledge on both trading system 

development and neural networks as a technology. We explored market patterns, types of 
trading, and optimization and analysis techniques to inform our own strategy design process. To 
build the system of systems, we examined artificial intelligence as a whole, focusing our study 
on the architecture and implementation techniques for neural networks. We also did a review of 
financial technology to determine how to implement the supersystem. 

 
 The remainder of this section presents an introduction to trading systems. We also 
provide a set of motivations explaining why investment is a useful tool to accrue wealth. 

1.3 An Overview of the Financial Markets 

Before the nature of investing and trading is introduced to the reader, it is necessary to 
know about financial markets and what each type of financial market is composed of. 

 
A financial market is any activity where there is an entity that supplies funds and an 

entity that acquires the funds. Wherever transactions exist, there are financial instruments. The 
types of financial markets are capital markets, money markets, cash markets, derivative markets, 
and currency and interbank markets [2]. 

 
The capital market is where individuals and institutions trade securities. It can be divided 

into the stock market and the bond market. The stock market allows investors to buy and sell 
shares of publicly traded companies and derivatives. The primary stock market is where initial 
public offerings of stocks are first offered. The secondary market is where the buying and selling 
of shares occurs between the investors rather than the entities that initially issue the shares in the 
primary market. There are many stock exchanges around the world. The largest are the New 
York Stock Exchange (NYSE), the National Association of Securities Dealers Automated 
Quotations (NASDAQ), the Tokyo Stock Exchange, the London Stock Exchange, the Shanghai 
Stock Exchange and the Euronext [2]. 
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The bond market allows investments in which an investor loans money to an entity for a 
defined period and interest rate. Bonds are issued by states, federal governments, corporations, 
and municipalities mainly to raise funds and fund projects [2]. 

 
The cash market is a market in which financial instruments are sold for cash and are 

delivered immediately. This is different from other markets because the price is determined at 
the spot and if the market is very liquid (high volume of transactions) the price can vary from 
second to second [2]. 

 
The money market deals with short-term loans. It trades certificates of deposit, banker’s 

acceptances, certain bills, notes and commercial papers. It is mainly used for short-term 
borrowing and lending, ranging from days up to a year [2]. 

 
The derivatives market is a financial market that trades entities that get their value from 

an underlying asset or assets. It is mainly used to formulate risk management strategies. 
Derivatives markets are highly complex and thus not recommended for inexperienced traders [2]. 

The interbank market is a financial market where banks and financial institutions trade 
amongst themselves and where currencies are traded. The most prominent currency market is the 
Foreign exchange market (FOREX). It is the largest market in the world and anyone can 
participate in it. It is open 24 hours a day, 5 days a week [2]. 

 
Now that background knowledge of financial markets has been introduced, we can talk 

about our project.  
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2 Trading and Investing 
The previous section gave a high-level overview of financial markets and provided a set 

of motivations for why people should invest. There are clear social benefits when people are 
financially independent, and investing in financial markets is a way for anyone to reliably build 
their wealth. What is more, investment and trading spurns economic growth, which benefits 
society as a whole. There is an onus for market experience to be adopted as common knowledge. 
This section presents methods of investment and trading in financial markets, which is requisite 
knowledge for anyone who wants to operate in those markets.   

2.1 Retail Trading and Investing 

Retail traders are typically individuals who trade securities for personal gain rather than 
for an institution’s gain. Traders who trade for an institution are known as Institutional Traders 
[3]. Retail traders often trade smaller accounts and are limited in the complexity of the trades in 
which they may engage. Institutional traders, for example, may have access to IPOs while retail 
traders do not. Retail traders, however, can trade most securities available in the exchanges: 
stocks, bonds, options and currencies. Given that they are limited in the size of their account, 
retail traders will often engage in small volume trades that have a minimal impact on the market 
price. While institutional traders may control the market when placing their positions, retail 
traders will follow the market. Retail traders are also more likely to trade low cost securities 
given their limited capital. 

 
One of the key disadvantages to retail traders is that they are at the mercy of their broker 

in the speed at which their trade is executed. This means that retail traders will suffer more from 
slippage than institutional traders as well as from higher transaction costs. Retail traders may 
find that trading often and scalping are both rather unprofitable strategies due to slow order 
execution and high transaction costs. 

2.1.1 The Trading Personalities 

In The Art and Science of Technical Analysis, Adam Grimes writes about the importance 
for the individual discretionary trader to understand and to adapt his trading strategies to his 
personality type. Individuals who are extremely risk averse may only trade during the day when 
they have complete control of their position and never enter overnight trades. Traders who are 
less risk averse may enter overnight gap positions before the market closes. The trader’s 
personality, as well as his trading style, will partially determine the trader’s success in the 
market. A trader who uses a strategy that is not suitable for his personality, is more likely to fail 
to follow through with strategy’s rules, and thus has a higher likelihood of failure.  
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The personality of the trader will also determine the length of the positions that he enters 
and thus the type of market participant that he is. A trader, by definition, is someone who is 
looking for short term gains while an investor is someone who places long term bets on the 
market. The trader opens and closes positions with a higher frequency than the investor. The 
length of the positions of the trader may last anywhere from sub second to months.  It is 
imperative for every individual to engage in honest reflection about his personality and his 
ability to resist the temptation to make abrupt decisions. Only then will the individual have the 
ability to make an informed decision about his approach to the market. 

 
These abrupt decisions, can also be minimized with the use of machine learning, which 

the paper will review extensively further on. There is more background information on trading 
and investing within financial markets that needs to be addressed before approaching the idea of 
developing strategies and machine learning. 

2.2 The Four Asset Classes 

2.2.1 Currencies and the Foreign Exchange Market 

According to the tenets of Modern Monetary Theory, sovereign currencies are the unit of 
account of sovereign nations. A sovereign currency is one which is issued by a single country, 
for example, the US Dollar (USD) and the Japanese Yen (JPY). A sovereign nation has absolute 
control over its currency and, as the sole issuer of the currency, the government is infinitely 
wealthy in its own currency [4]. 

 
Modern Monetary Theory suggests that since fiat, or government-issued paper currencies, 

do not have any material backing, that is they are not exchangeable for anything, the taxes levied 
by the government on its people are the drivers of the currency. The reason why US citizens 
accept the US Dollar in the United States is that they have to pay taxes in US Dollars to the US 
Government [2]. Since taxes are paid in dollars and the government is the issuer of the dollar 
then the government has to spend dollars before it can tax. The following is thus concluded: The 
sovereign government does not need to collect taxes in order to spend. Taxes are collected in 
order to force the inhabitants of the nation to use the currency. Now with the existence of a 
widely accepted unit of account, the nation can develop complex economic systems where 
people may trade goods and services. 

 
 The Foreign Exchange exists as a result of the need to exchange one currency for another 
in order to purchase goods and services from a different country. Since exporters pay taxes in 
their country’s currency, they prefer to accept their country’s currency as a form of payment. 
Thus, the buyer must first obtain the seller’s currency, in the Foreign Exchange market, in order 
to trade. The value of one currency against another is set by the typical market forces of supply 
and demand. The USD stands out among currencies in that it is widely accepted in exchange for 
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goods and services around the world given its status as the most stable currency in the world. 
Sellers worldwide will accept US Dollars over their own currency in exchange for goods and 
services [4]. 

2.2.2 Bonds 

A bond is a form of debt issued by an entity to raise money to finance its operations. 
Bonds are issued by governments, municipalities, states, and corporations. Similar to a loan 
obtained from a bank, the issuer of the bond agrees on an interest rate paid over the duration of 
the loan. The full face value of the bond is returned to the debtholder upon the maturity of the 
bond [5]. 

 
 Should the bondholder need to recover the face value of the bond before it reaches its 
maturity, he may trade the bond in an exchange. In doing so, the bondholder forfeits the 
remaining interest earnings on the bond, but keeps any that were accumulated during the period 
that it was held. As a result of selling the bond past its release date, the reseller may have to 
forfeit part of the face value of the bond as well since the new holder will no longer receive the 
full interest that the bond accrued since its creation. 
 

Lastly, it is important to consider the credit rating of the bond because it represents the 
likelihood that the debtor will pay the loan when the bond matures. The most creditworthy bonds 
are those issued by the United States Treasury. Treasury Bills are considered default free because 
they are backed by the Federal Reserve of the United States. Since they are considered risk free, 
T-Bonds typically carry low yields compared to bonds issued by companies. Bonds are rated by 
credit rating agencies, such as Moody’s and Standard and Poor’s, on a scale where the most 
trustworthy are rated “AAA” and the least trustworthy are rated “D” [6]. 

2.2.3 Equities 

Equities, otherwise known as stocks, represent part ownership of a company and may 
grant access to a small portion of the company’s profit through dividend payments. Preferred 
stock, in contrast to common stock, grant voting rights as well as preference during the 
liquidation of a company’s assets following bankruptcy. Common stock carry no rights aside 
from dividend payments if the company offers them. Investors will typically trade equities 
through the stock market, but they may be traded over the counter as well. Over the counter 
trades carry higher risk because the stocks traded in these markets do not meet the strict financial 
requirements of the stock exchanges. These companies are typically young and volatile and may 
cease to exist without notice [7]. 

2.2.4 Commodities 

Commodities are goods used for the creation of other goods and services. These are the 
four categories of commodities traded in the Commodity Exchanges: 
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● Metals (Gold, Silver, Palladium…) 
● Energy (Crude oil, heating oil, natural gas…) 
● Agricultural (Corn, Coffee, Sugar) 
● Livestock and Meat (Live cattle, hog, pork bellies…) 

 
Most traders do not trade commodities because their trade is not as straightforward as trading 
bonds or equities. Commodities are typically traded using Futures Contracts. Futures Contracts  
are agreements to buy the commodity at a later date at an agreed upon price. Futures Contracts 
allow companies to plan their expenses ahead of time by securing a price regardless of the future 
actions of the market. For example, should the Organization of the Petroleum Exporting 
Countries (OPEC) decide to cut the supply of oil, the current price of oil may rise to $70 per 
barrel. A company that holds a Futures Contract stating a price of $50 per barrel would not have 
to pay the current market price of $70 per barrel even though the final transaction takes place 
when the price is $70 per barrel. Another way to engage in the commodities market is through 
ETFs (Exchange Traded Funds) that invest in commodities. Since ETFs trade in the stock 
exchange, the investor can get exposure to a commodity without having to deal with the 
mechanics of futures contracts [8]. 

2.2.5 Derivatives 

Derivatives are financial instruments that represent groups securities. The value of the 
derivative is dependent on the value of the underlying securities. Common derivatives include 
futures contracts, forward contracts, swaps, options, mortgage backed securities and credit 
derivatives.  

Futures contracts are used by producers of raw materials and by those who purchase them 
to protect themselves against fluctuations in prices of raw materials due to the natural market 
forces. When a bread producer enters a futures contract for wheat, he will purchase a set amount 
of wheat with a set delivery date at a set price. If the price of wheat goes up, then the bread 
producer gets a bargain for the wheat and if the price of wheat goes down then he is overpaying 
for the wheat. In either case, the producer knows exactly how much he will pay and how much 
he will get. This allows the company to plan months or years in advance without worrying about 
fluctuating prices. Speculators enter the market by purchasing futures contracts when they 
believe that the market consensus for the behavior of the price is incorrect. If, for example, a 
speculator believes that the price of oil will rise rather than fall he may buy a futures contract 
which will be worth a lot when the price of oil does rise. The speculator is not interested in 
receiving the barrels of oil rather he is interested in reselling the futures contract at a profit 
before it expires because the contract locked a set amount of oil at a lower price than the current 
market price.  
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Forward contracts, unlike futures contracts, are only traded over the counter (OTC). This 
is as a result of their greater customizability allowing for any date, commodity and amount. They 
incur a higher default risk because they are traded OTC [9]. 

 
Swaps are commonly used to allow for two parties to trade loan obligations. For example, 

two individuals may trade a variable interest rate loan and a fixed interest rate loan if they are 
better off with the other. The loans are still written to the name of the original owner, but the 
swap contract states that each party must pay for each other’s loan at an agreed rate. Swaps are 
risky because if one party defaults, the party that is left is forced back into the original loan [9]. 

 
Options are similar to futures contracts in that they are an agreement to trade in the future 

at a predetermined price. The key difference, however, is that in an options contract the buyer is 
not obligated to execute the trade if he does not desire to do so. In a futures contract both parties 
have the obligation to fulfil the agreement. The buyer of the options contract has the option to 
execute the contract [9]. 

 
Mortgage Backed Securities (MBS) are a way for the banks to free up their capital and to 

provide a way for investors to buy into mortgages. When an investor purchases a MBS, he 
receives the principal payments as well as the interest payments made by the holder of the loan 
towards the mortgage. MBS provide a semi constant stream of money since the MBS is made up 
of hundreds, if not thousands, of mortgages. If a mortgage defaults, there are many others that 
will not and will continue to make their payments [9]. 

 
Credit Derivatives (CDs) allow two parties to transfer credit risk [10]. For example, a 

bank who wishes to reduce exposure to credit risk may buy Credit Default Swaps (CDS) from an 
institutional investor who is willing to take on the risk of default. Should the debtor default on 
the payment, the seller of the CDS has the obligation to compensate the bank that bought the 
CDS for the full amount of the defaulted loan. If the debtor does not default then the seller of the 
CDS keeps the interest payments made by the buyer of the CDS in exchange for transferring the 
credit risk. In other words, if the bank thinks that the debtor will default, then the bank will seek 
to buy a CDS to ensure that it gets paid the full amount one way or another. The seller of the 
CDS is betting that the bank is misjudging the risk of default. If the seller is correct, he will 
receive interest payments from the bank for taking on the bank’s credit risk [11]. 

 
Now that all of the background for financial markets, their components and their 

relationships has been introduced, the reader is ready to start learning how to analyze that 
information to start developing strategies. 
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2.3 Intermarket Analysis 

Intermarket analysis refers to the analysis of the correlations between asset classes in 
order to predict the movements of the markets. Investors typically look at the relationships 
between the four main asset classes: equities, currencies, bonds and commodities. 

 
According to John Murphy, the father of intermarket analysis, intermarket relationships 

are dependent on the inflationary environment [12]. During an inflationary period stocks and 
bonds have a positive correlation, while bonds and commodities as well as the US Dollar and 
commodities have an inverse correlation. In a deflationary environment these relationships are 
inverted. Stocks and commodities also develop a positive correlation because deflation is 
negative for both stocks and commodities, but positive for some types of bonds. US Treasury 
bonds are more attractive during deflation because the prospect of a fixed payment is more 
attractive than the dwindling value of the stocks. Corporate bonds may suffer, however, since 
companies find it harder to pay their loans as their profits decrease with the drop in prices [13]. 

 
Although intermarket relationships often last for long periods of time, there are periods 

during which these relationships break down. It is important to verify these assumptions while 
performing intermarket analysis.  

2.4 Equity Sector Rotation and the Economic Cycle 

Investors in the equity markets engage in sector rotation because different sectors 
perform better at different stages of the economic cycle. The economic cycle resembles a sine 
wave and is composed of four phases: Market Bottom, Bull Market, Market Top and Bear 
Market. 

 
Before delving into the different cycles, it is important to understand the concept of the 

yield curve since it is one of the most important tools for investors to determine the stage of the 
economy. The yield curve is the plot of the bond interest rate vs time to maturity.  

 

 

Fig. 1 - Yield Curve 
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The interest rate has a direct correlation to investors’ fear of default. The shape of the 

yield curve is a reflection of the market’s confidence in the fulfillment of debt obligations. 
During a bull market, the yield curve will slope upwards as investors feel confident about debt 
repayments in the short term. As the market begins to approach a recession investor confidence 
in repayment in the short term decreases and the yield curve begins to flatten. Naturally, the yield 
curve inverts during a recession since rising unemployment and falling profits increase the 
difficulty of the fulfillment of debt obligations; investors are not confident of debtors’ ability to 
repay [14]. 

 
At the Market Bottom, the economy is considered to be at full recession. During this time 

businesses are struggling and unemployment rates are high. This means that it is difficult for 
businesses and individuals to fulfill their debt obligations and so the yield curve is flat or 
possibly inverted since all loans carry a high risk of default. The three sectors that have 
performed best during this stage are Cyclicals and Transport, Technology and Industrials. 

 
During the Bull Market stage, the market begins to recover, production picks up, and 

unemployment decreases. Since the economy is in recovery, investors begin to trust debtor’s 
ability to fulfill their debt obligations and short-term loans begin to carry less risk. The yield 
curve now begins to slope upwards. The best performing sectors during this period are 
Industrials, Basic Materials, and Energy.  

 
During the Market Top, interest rates rise rapidly as investors begin to fear a recession, 

the yield curve flattens and so does industrial production. The sectors that perform best during 
this stage are Energy, Staples, and Services. 

 
Finally, during the Bear Market, the economy enters the recession and interest rates peak, 

and industrial production begins to fall. At this stage, the yield curve inverts as investors lose 
confidence in the ability of debtors to fulfill their debt obligations. Investors begin to demand 
higher interest rates to account for the increased risk of default. The Services, Utilities and 
Cyclicals sectors perform best during this period. 

 
Since different sectors perform best during each period of the economic cycle, investors 

rotate sectors in their quest for the highest possible returns. In order to gauge the stage of the 
economy investors will typically watch the yield curve with care as it is considered one of the 
best indicators for the stage of the economy [14]. 
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2.5 Breadth of the Market 

The Breadth of the Market refers to the direction of the market as a whole. Is the market 
in the hands of the bears or in the hands of the bulls? Traders use a series of Market Breadth 
indicators in order to gauge how much control each side has on the market at any given time. 
With this information traders are able to determine how to best enter their next position. The 
market is considered to be in the hands of the bulls when the ratio of securities increasing in 
price compared to those decreasing in price is greater than one. A bear market occurs when the 
opposite is true [15]. 

 
Traders have access to a variety of indicators and techniques, which predict the direction 

of major financial markets, in order to determine the breadth of the market. Some of the most 
common indicators are volume and price based indicators. Volume-based indicators look at the 
volume stock trades in each direction. If the volume up is greater than the volume down then the 
market is in the hands of the bulls and vice versa. Price based indicators use moving averages to 
determine the percentage of stocks making new record highs. Typical record highs include the 52 
week average and the 200 day average. The SPXA200R index shows the percentage of stocks in 
the SP500 that are trading above their 200 day average. This gives traders an idea of the strength 
of the market as well as a way to determine overbought and oversold conditions based on the 
extreme readings of the indicator. Table 1 lists a few indexes/indicators for determining the 
breadth of the market [15]. 
 

Table 1 – Volume and Price Based Indicators 

Volume Based Indicators Price Based Indicators 

Cumulative Volume Index Advance Decline Index 

On Balance Volume New Highs-Lows Index 

Up/Down Volume Spread SPXA200R 

Up/Down Volume Ratio Arms Index (TRIN) 

Force Index McClellan Oscillator 

2.6 Systematically Beating the Market  

As mentioned in section 1, the purpose of the research presented in this paper is to 
develop a system of trading systems to systematically beat the market. The alternative, more 
suitable for traders who are unwilling or unable to dedicate a large amount of time to trading, is 
to ride the market with an investment in an Exchange Traded Fund (ETF). ETFs exist in many 
forms to suit most investment strategies. They typically hold a number of positions in multiple 
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assets which sometimes span multiple markets. Their nature allows investors to easily diversify 
without the need to monitor multiple positions. Unlike mutual funds, ETFs tend to be passively 
managed meaning that they do not adjust to the changing market conditions and may thus 
perform poorly in changing market conditions [16]. This approach, is commonly referenced as 
the “buy and hold” approach. 

 
Systematically beating the market, as opposed to riding the market, is more attractive 

given the possibility of higher returns. It does, however, require active development of new 
trading strategies as well as active monitoring of the market. The time commitment required to 
systematically beat the market is the main barrier to entry. The key to systematically beating the 
market is to develop a number of trading systems. Although individual trading systems will not 
necessarily outperform the market, when the trading systems are combined into a system of 
trading systems their compounded individual success will create the possibility of outperforming 
the market. (Radzicki.) 

2.7 Manual and Algorithmic Trading 

Individual traders typically engage in manual trading given the lower barrier to entry in 
comparison to algorithmic trading for which the trader must learn how to program. The greatest 
advantage of algorithmic trading is the removal of the human aspect from trading. As discussed 
in Section 2.1.1 each trader must develop a strategy suited to his personality and must adhere to 
his trading rules. A trader who has difficulties following his own rules can delegate the 
management of the trades to an algorithm that will follow the rules without exception. 
Since trading algorithms run continuously in real time, they grant the trader access to the entire 
trading session rather than the portions of the day where he is free from other responsibilities. 
This is especially helpful for non-professional traders who may be otherwise unable to trade 
outside of a very limited timeframe.  
 

In contrast, manual trading gives the trader complete control over the trades that are 
executed. On the one hand, while the trading system adheres to the rules, it may not consider 
external sources of information that could provide an indication that the rules no longer apply. 
On the other hand, the trader would immediately recognize these conditions and cease to apply 
the strategy. A properly designed trading system should recognize when the strategies that it 
follows no longer carry an edge. 

2.8 Fundamental vs Technical Trading 

Trading properly requires research in order to determine whether to trade and when to 
trade. The two prominent trading analysis techniques are fundamental and technical trading. 
Fundamental trading encompasses the research of what is known as the fundamentals of a 
company. Fundamental traders are typically divided into two camps: Value and Growth 
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investors. Value investors will research the financials of a company in order to determine 
whether it is fairly priced by the market. The indicators used by value investors include Price to 
Earnings Ratio (PE Ratio), Dividend Payouts, Corporate History, Research and Development, 
and the state of the market. Growth investors also look at the fundamentals of the company, but 
they focus on the rate of earnings and revenue growth. They look for “rockets ready for takeoff.” 
These are companies that are on the verge of dramatically increasing their share price [17]. 

 
Technical analysis focuses solely on reading the charts and price movement indicators in 

order to recognize patterns that predict the future movements of the price. In theory, a technical 
trader does not need to know the name of the company in order to successfully trade its stock. 
The chart and its indicators is all that a technical trader needs in order to successfully trade a 
stock. Typical indicators applied to technical analysis include moving averages and ranges.  

 
In reality, most traders use a combination of fundamental and technical analysis in order 

to maximize the potential to win. Fundamental analysis will tell the trader which stocks to trade 
and technical analysis will tell him when to trade [17]. 

 
Before we list various well-known trading strategies and the ones we created as part of 

the project, it is necessary to introduce the tools which can used to develop those strategies. 
Furthermore, we give a brief introduction to the trading platforms which enable a system to place 
its trades. The following section provides this introduction, and specifically enumerates the 
platforms and tools we used to build our own strategies. 
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3 Trading Systems  
There is a lot trading systems-specific knowledge and methodology which must be 

understood before implementing such a system. This section will introduce the reader to the 
aspects of trading systems which are requisite to their development. Section 3.1 provides a 
summary of trading accounts, and Section 3.2 briefly reviews the capabilities of various trading 
sources. Sections 3.3 and 3.4 study several trading techniques and time periods respectively 
which are the foundation of any successful trading strategy. Finally, Section 3.5 introduces the 
different parts of a trading strategy which we took into consideration with our own designs. 

3.1 Trading Platforms and Brokerage Accounts 

A brokerage is a company that acts as a middleman between buyers and sellers of 
financial assets. Brokerage companies demand a compensation for providing the service to 
connect both parties and for offering a platform on which to perform the trade. The trading 
platform is the software on which the buyers and sellers connect. This report covers the 
development of systems of trading systems on one of the most popular online brokerages: 
TradeStation. Other popular brokerages and trading platforms include Interactive Brokers, 
E*trade and Robinhood. Robinhood is increasingly popular since, at the time of writing, it allows 
traders to trade with no transaction costs. The company instead makes money from the 
customer’s cash balance and through margin lending.  
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3.2 Data Sources 

Traders may obtain market data through several online sources. Below, we list several 
popular data sources, some of which were consulted for the purpose of this research.  
 

Table 2 – Data Sources 

Data Source Assets Free 

Oanda Forex Yes 

Quandl All No 

TradeStation All No 

Yahoo! Finance Equity Yes 

AlphaVantage FX, Equity, Crypto Yes 

Google Finance Equity Yes 

Quantopian Equity Yes 

SimFin Equity Yes 

3.3 Trading Styles 

Trend trading involves the use of technical analysis to identify temporary trends in price 
data and to exploit those trends for profit. Many trend trading strategies make use of different 
averaging schemes and analyze the behavior of those averages to identify signals for trading. 

 
Support and Resistance is another form of technical trading where temporary floors and 

ceilings are identified in the price data. These floors and ceilings may be the result of the average 
trader finding comfort in those prices. For example, the average trader has a preference for round 
numbers and so it is likely that many trailing stops will be placed at an even price slightly lower 
than the current price. As the price approaches that floor the triggering of the trailing stops 
pushes the price back up giving the impression that a band of support exists at that price. 
Ceilings result from traders taking profits and short sellers buying to cover [18]. 

 
The validity of support and resistance is often questioned because any random price was 

a support or resistance at some point in the history of the instrument. If any random point can 
appear to be a support/resistance at some point in time then how can a trader be sure that a 
particular price is actually a support/resistance level and not just a random event? 
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 Institutional traders sometimes sweep the stops meaning that they push the price down 
until the trailing stops placed by traders are triggered thus giving the impression of a new runup 
in price and creating a new opportunity to profit for the institutional trader.  
 

Gap Trading describes the trading of the naturally occurring gaps in price over time. 
There exist multiple types of gaps in the stock market: 

1. Breakaway Gaps: Signal the beginning of a new trend. 
2. Exhaustion Gaps: Signal that a price pattern is coming to an end. 
3. Continuation Gaps: Occur when traders are rushing to take advantage of price pattern.  
4. Common Gaps: Do not form part of a price pattern. These gaps include the overnight gap 

and small gaps throughout the trading day outside a price pattern.  
 

Before approaching gap trading, it is important to understand why gaps occur in the 
market. Breakaway gaps signal the beginning of a new trend. They are the result of a sudden 
surge in demand following an event such as the publication of a strong earnings report. In a 
breakaway gap, the price breaks through an area of support/resistance. The move is often 
followed by increased trading volume resulting from a combination of traders on the wrong side 
of the move seeking to cover or to sell their position and from enthusiastic traders attempting to 
ride the new trend.  

 
Breakaway gaps are followed by runaway gaps which take place in the middle of a trend. 

Runaway gaps are created by a new surge in traders who were initially wary about the formation 
of the trend but are not convinced that the trend is strong and safe to ride.  

 
Exhaustion gaps occur near the end of a trend. The price begins to slow down and traders 

who cannot get enough of the stock see this as another opportunity to profit from the trend. The 
new sudden increase in demand creates a gap in the price and soon after the stock finds itself at 
an unsustainable valuation where all demand has dried up. A quick drop in price follows and a 
new trend is formed on the downside. Since both runaway gaps and exhaustion gaps are so 
similar it is difficult to differentiate them as they happen. It is often easier to identify them in 
hindsight. Examples of the four types of gaps are available in the appendix.  

3.4 Time Frames 

Defining the time frame of a trade, both before, during, and after execution, is vital for a 
successful strategy. 

 
While performing technical analysis traders have access to price data at multiple time 

frames depending on the trading platform used. TradeStation offers data ranging from monthly 
down to five-minute ticks. A trader may benefit from observing the price data at different time 
frames because larger trends are not visible in the smaller time frames. Even though the market 
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may look like it is in a downtrend in the 15-minute candlestick bars, the daily candlestick bars 
may reveal that the price is in an uptrend. Since the price will typically align with the larger 
trend, the trader may decide to wait for the price to start climbing before entering a long position. 
Typical time frames include 5 Min, 15 Min, 1 Hour, 4 Hour, Daily, Weekly, and Monthly. 

 
Short time frame trading styles include swing trading and scalping. Scalping is a trading 

style characterized for its extremely short duration. Scalpers may hold a position from seconds 
up to a few minutes. These trades are typically large in size since scalpers attempt to profit from 
many small price movements. Scalping requires access to near real-time data and constant 
monitoring of the price. 

 
In day trading all positions are closed by the end of the day. Traders who engage in day 

trading may wish to avoid the volatility of overnight positions. Unlike day trading, swing trading 
involves positions that do not necessarily close overnight and may last up to several months but 
typically last a few days. Swing traders utilize technical analysis to identify and take advantage 
of short-term momentum in stocks.  

3.5 Components of the Trading System 

An effective trading system must possess certain components in order to maximize the 
possibility of having a positive expectancy. Properly designed and optimized entry and exit rules 
monitor the market for the optimal conditions in which to trade a particular strategy. Properly 
designed rules should never miss a signal for which they were designed to detect. Trading system 
designers should be aware that entry rules are the least important part of the trading system and 
should not dedicate a disproportionate amount of time into their development. Position sizing 
and exit rules are comparatively more important. 

 
Position Sizing and Position Management tools determine what percentage of the pot of 

money available to the strategy should be risked in a particular trade. Position sizing rules may 
alter the amount of money to bet following the Kelly Criterion, for example. The Kelly Criterion 
was developed as a method for gamblers to optimize their bets in order to attempt to guarantee a 
profitable session. The Kelly Criterion alters the position size based on the past success of the 
strategy. Should the strategy encounter a period of low success the impact on the account would 
be minimized with the progressively decreasing bets. The opposite is true when a period of high 
success is encountered. Position sizing tools are extremely important as they minimize the 
incurred risk. 

 
System Monitoring Rules monitor the performance of the system as a whole in order to 

determine whether the system is apt to continue trading. 
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Asset Allocation rules determine what portion of the total available money supply to 
assign to each strategy within the system. The most successful strategies would receive a larger 
percentage of the pot as the least effective ones get phased out.  

 
A successful trading strategy is defined not only by its components but also by how it is 

optimized and tested. It follows that at least a cursory knowledge of trading system analysis must 
be applied to a successful trading system. The next section will expand on these methods and 
provide explanations on how to implement them. This knowledge was enough for us to develop 
the individual strategies that comprise our system. 
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4 Optimizing and Analyzing Trading Systems 
Successful trading strategies must be optimized and tested properly to sufficiently fit the 

markets they are designed for. A good trading strategy which has not been properly will perform 
as poorly as a bad trading strategy, if not worse. Of course, it is necessary to analyze a trading 
system to see when it must be updated, and to gauge its performance in a larger portfolio. Thus, 
we present a review of optimization and analysis techniques for trading systems. Section 4.1 
studies optimization techniques for trading systems, with Sections 4.2 and 4.3 describing specific 
techniques in greater detail. Section 4.4 shows how those optimization techniques can be 
accessed in TradeStation. Finally, Sections 4.5, 4.6, and 4.7 describe analysis techniques to 
assess the performance of a strategy. 

4.1 Optimization 

Trading systems often implement mathematical calculations with variables whose 
optimal values are uncertain and thus require iterating through many possibilities, far too many 
to try manually. The TradeStation Optimizer performs this process automatically. The designer 
specifies the range of values over which to iterate and over what steps and the optimizer finds the 
optimal combination that yields the highest value for the selected objective function. The 
objective function describes the goal of the optimization. For example, find the highest profit, the 
lowest intraday drawdown or the highest expectancy score. 

 
TradeStation offers two forms of optimization: Standard and Walk Forward 

Optimization. Standard optimization will iterate through all of the possible combinations to find 
the values that best fit the objective function. In this form of optimization, the values that are 
found are those that yield the best results over the entire dataset. This assumes that the future 
price data will behave very similarly to past price data. This is not necessarily the case meaning 
that a set of values that was optimal for one period of time is not necessarily optimal for the next. 
The Walk Forward optimizer separates the data into periods to find multiple sets of values that 
best fit each period. This type of optimization often yields better results.  

4.2 Walk Forward Optimization 

 There exist two approaches to Walk Forward Optimization within TradeStation: Rolling 
Walk Forward and Anchored Walk Forward Optimization. In a rolling walk forward 
optimization the period over which the optimization occurs is selected starting from the most 
recent available bar and back until enough bars are included. The anchored optimization begins 
at a fixed bar and moves forward until the most recent bar. This means that each period 
progressively includes more data although the data is older in comparison to that in the rolling 
optimization.  
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4.3 Overfitting and Choosing Data for Optimization 

 Optimizing can result in overfitting meaning that the selected values perfectly fit the data 
in the given period, but hold no predictive power over future price data. Overfitting will typically 
occur when the entire dataset is included and a large set of variables are available for 
optimization. In order to reduce the possibility of overfitting, a portion of the dataset is excluded 
from the optimization. Another way to reduce the chance of overfitting is to include a large 
enough dataset relative to the number of parameters available for optimization.  
 

In order to determine whether the optimization resulted in overfitting, the dataset may be 
split into two sets one for training and one for validation. The results of the training are applied 
to the verification dataset. If the performance with the verification dataset is comparable to that 
of the validation set then the strategy is not overfitted. If the performance decreases significantly 
then it is likely that the strategy was overfitted to the training dataset.  

4.4 TradeStation Performance Report 

The TradeStation Performance Report provides an overview of the performance of a 
strategy over the selected trading period. The report consists of seven sections, which provide 
data on the execution of the trades as well as on the overall performance of the strategy. A 
summary of the most important sections for the purposes of this research is provided below: 
Performance Summary:  
 Total Net Profit, Gross Profit, Gross Loss, Profit Factor, Total Number of Trades, Percent 
Profitable, Ratio Avg Win:Avg Loss, Annual Rate of Return, Sharpe Ratio, K Ratio, Trading 
Period, Maximum Drawdown (Intra-Day) and Max Trade Drawdown.  
Trade Analysis: 
 Time Averages, Outliers, Efficiency Analysis. 
Performance Graphs: 
 Equity Curve Line 
Trade Graphs: 
 Entry and Exit Efficiency, Maximum Adverse/Favorable Excursion Percent.  

4.5 Expectancy, Expectunity and System Quality 

Expectancy, as described by Van Tharp, is simply how much a trader can expect to make 
on average over many trades. The best way to visualize the expectancy of a system is to look at 
the expected earnings per dollar risked. 
 

	
∑ 	 	 ∗ ∑ 	 	 ∗

	
 (1) 
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Expectunity is the result of the combination of expectancy and opportunity of a system. 
Opportunity is simply the frequency with which the system trades. The expectunity is defined 
below. Note that Opportunities is the number of trades over the time period for which the 
expectunity is calculated.  
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∗   (2) 

 
It is extremely important to consider the expectunity of a trading system in order to ensure that 
the system is truly profitable and that the trader is not falling for the trap of prediction. Consider 
a system that is accurate 90% of the time, has an Average Winning Trade of $275, 10% Losing 
Trades and Average Losing Trade of $2700.  
 

Expectancy = -$0.008 per Dollar Risked 
 

The result of the expectancy calculation reveals that over time this system will result in negative 
profits even though the system is correct 90% of the time. 
 

The System Quality describes the total profit/loss per dollar risked relatively to the total 
variability of the profit/loss per dollar risked. The system quality may be used to compare the 
performance of trading systems. 

	 	 	
/

∗ #	 	   (3) 

 

/  = Standard Deviation of the Profit/Loss 

4.6 Monte Carlo Analysis 

Monte Carlo Analysis creates a statistical distribution of possible outcomes using past 
data. When applied to trading, Monte Carlo analysis may be used to predict the likelihood of 
obtaining a particular trade sequence. The analysis takes historical trade data for a strategy, 
randomizes the order of the trades, analyzes the sequence and finally sorts its outcome by 
likelihood with a confidence level. Following a Monte Carlo analysis, although the trader does 
not know how the price will move in the future, the trader gains some certainty over the 
performance of the strategy in the future. For example, the trader may be confident that the 
strategy will result in overall profits over $10K with 85% confidence.  
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At the same time, he may find that a system that traded spectacularly in the past will 
result in negligible profits with 99% confidence meaning that the current results are extremely 
unlikely to continue.  

4.7 Market System Analyzer (MSA) 

 For the purpose of this report, Market System Analyzer (MSA) was used to conduct the 
Monte Carlo Analysis of the developed strategies. MSA accepts TradeStation trade data and 
quickly performs Monte Carlo analysis on the given data. Sample results of using MSA are 
available for each strategy presented in the report.  
 
 All of the information necessary to develop a traditional system has been introduced. 
However, as we explain in our objectives, we also intended to use artificial intelligence, and 
specifically neural networks, to drive our strategies. Therefore, we provide an in-depth review of 
artificial intelligence as a discipline and its application to financial markets. The next section will 
introduce the reader to the basics of machine learning and will explain their applications to 
trading systems. 
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5 Artificial Intelligence and Machine Learning 
We aimed to not only implement traditional strategies, but to also leverage artificial 

intelligence techniques to develop strategies and a system of systems. As a requisite, we needed 
to investigate the field of artificial intelligence as a whole and review how it as a discipline has 
intersected with financial research in the past. This section details our background research on 
artificial intelligence, and specifically the kinds of neural network techniques that guide our 
system of systems. Section 5.1 provides basic definitions on artificial intelligence, machine 
learning, and neural networks. Section 5.2 further clarifies the different types of machine 
learning, with specific time spent on tree search algorithms in Section 5.5. Sections 5.3 and 5.4 
analyze the techniques to tune and test machine learning problems, with specific emphasis on 
feature selection. The remaining sections focus on neural networks. Section 5.6 introduces neural 
networks as a concept, while Section 5.7 features a discussion on sources of network error. 
Section 5.8 describes in depth how to counteract that error. Finally, Section 5.9 discusses 
different implementations of the basic neural network architecture, and Section 5.10 provides a 
small literature review on the financial applications of neural networks in the past.  

5.1 Machine Learning Overview 

Many applications in prior literature have proven the potential benefits of applying 
machine learning strategies to financial data. Machine learning as a discipline is “a field of 
computer science that uses statistical techniques to give computer systems the ability to "learn" 
data, without being explicitly programmed." [19] In this case, “learning” describes the 
computer’s ability to find predictive patterns within the data. [19] Since the first papers on 
machine learning were released in the late 1950s, an abundance of successful projects have 
proven the validity of machine learning. For example, machine learning has been used to 
determine the numbers represented in the MINST database, a set of handwritten digits from 
American high school students, released in 1998. [20] In 2011, IBM’s “Watson” computer won 
the TV game Jeopardy using machine learning techniques. [21] Within the last year, academia 
and the industry have reported major advancements in natural language processing, computer 
vision, audio generation, and autonomous vehicles using machine learning techniques. [22] 
These accomplishments speak to two points: first, that machine learning is one of the fastest 
growing fields in computer science, with many developments still in store over the coming years, 
and second, that machine learning has applications in a diverse set of fields where it may be 
useful to detect patterns in data. This widespread success speaks to the applicability of machine 
learning techniques with financial data.  
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5.2 Machine Learning Categories 

Machine learning can be subdivided into two categories: Supervised and unsupervised 
learning. An algorithm performs supervised learning when it is trained on a set of X attributes or 
features, and a set of Y responses over N observations or samples. The goal for the model is to 
learn the underlying relationship between the X predictors and the Y response variable over N 
training observations and then be able to predict the value of the response Y when given new, 
unseen observations of the X predictors. An example of when these types of algorithms can be 
used for trading is when a trader has data on X indicators for a set of stocks and is interested in 
predicting the price Y of these stocks over a period of time when given new observations of the 
X attributes [23]. 

 
Supervised learning can be further divided into two types: Regression and Classification. 

Regression models are models whose Y response variable is a continuous or ordered variable. 
For example, an algorithm that tries to predict the price Y of a stock is a regression algorithm. 
On the other hand, Classification models are models whose Y variable is a categorical variable 
and their goal is to correctly assign new observations to defined classes Y. An example of this 
type of model would be a model that assigns each stock to either the class of stocks that “go up” 
or to the class of stocks that “go down”. In this algorithm, there are two classes: the class that 
goes up, and the class that goes down. So rather than predicting the exact price of a stock, the 
algorithm is only predicting the direction of the stock’s price in the future [23]. 

 
A model performs unsupervised learning when it trains only on a set of X features over N 

observations. There is no response variable Y. The goal of this type of algorithm is to find 
relationships between the X features, not predictions. It is typically used to find ways to visualize 
data and to discover groups among the data. An example of when a trader might use these types 
of algorithms is when the trader has a set of stocks and a set of X attributes for those stocks over 
N observations and is interested in discovering groups of “similar” stocks that have similar 
values for their X attributes [23]. 

 
The machine learning algorithms that are used to form strategies in this project are: Tree 

Based Classification Algorithms, Principal Components Analysis, and Neural Networks. Before 
algorithms are explained, an explanation of how to correctly implement these algorithms needs 
to be made. 
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5.3 Training and Testing  

Training and testing an algorithm generally involves separating the dataset into a training 
set and a testing set where the algorithm is allowed to see the response variable Y during the 
training set and to “learn” the relationship it has with the X factors. After the algorithm has 
trained over the training data, it is then given the X factor data in the testing set and the algorithm 
uses the X factor test data to predict the Y response variable. To test the algorithm’s 
performance, the algorithm’s predicted response variable is compared to the actual response 
values in the testing set, which are the ones that the algorithm did not see.  

 
The metric used to test a regression algorithm is the test mean-squared error (MSE):   

 

∑ ,  (4) 

 

Where  is the prediction that the model outputs, yi is the actual value, and n is the total 
number of test observations. The goal is to minimize this quantity [24]. 
 

On the other hand, classification algorithms are tested using a variety of different metrics. 
The most common one is the test error rate: 

 

,  (5) 
 

Where  is the predicted class label. We look for the model with the lowest test error rate [25]. 
 
However, the best way to evaluate a classification algorithm is by using a confusion matrix, as 
shown in Fig. 2. The confusion matrix is a table with 4 different combinations of predicted 
values. This method is particularly effective because it gives insight on more than just “right” 
predictions. It gives insight on the model’s performance for predicting specific classes. It does so 
by displaying the true positives, true negatives, false positives, and false negatives. 
 

 

Fig. 2 Confusion Matrix 
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It is easier to understand true positives, negatives, and false positives and negatives if an 
example is used to do it. The example used here is the context of a classification algorithm that 
assigns stocks to the class that goes “up” and the class that goes “down” in the next 5 days. A 
true positive (TP) would be the instance when the model predicted that the stock would go up, 
and the stock went up. A true negative (TN) would be the instance in which the model predicted 
that the stock would go down, and the stock went down. A false positive (FP) would be an 
instance where the model predicted that the stock would go up, but in reality, it went down. 
Lastly, a false negative (FN) would be an instance when the algorithm predicted that the stock 
would go down, and it went up [26]. 
 

Based on these calculations, a couple of good performance measures can be derived. 
These measures are accuracy, misclassification rate, true positive rate, false positive rate, 
specificity, and precision. The explanations and the formulas for these measures are: 
 

- Accuracy - a measure of how often the classifier is correct.  
 (TP + TN)/total observations 

- Misclassification rate -how often the classifier is wrong.  
 (FP + FN)/total 

- True positive rate -how often the model predicts stock that goes up when it actually 
goes up.  

 TP/actual “up” 
- False positive rate -how often the model predicts that a stock goes up and it actually 

does down. 
FP/actual “down”  

- Specificity - how often the classifier predicts that a stock goes down, and it actually goes 
down.  

 TN/actual “no” 
- Precision - how often the model is correct whenever it predicts that a stock goes up. 

 TP/predicted “up” 
 
These measures are valuable to assess the behavior of the model and adjust parameters 
accordingly [26]. 
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5.3.1 Training and Testing Splits 

There are many ways in which a dataset set can be split for training and testing. However, 
the best way to be certain about an algorithm’s performance is to have multiple training and 
testing instances which are independent of each other. Having each testing and training 
observation set be independent of each other is important because it ensures the robustness of the 
algorithm and avoids overfitting. There are a couple of techniques that achieve both the aspect of 
having multiple tests and having the tests be independent of each other. These techniques are 
cross-validation and bootstrap [27]. 

 
 There are various types of cross-validation. Leave-one-out cross-validation (LOOCV) 
works by splitting the dataset into two parts. It uses a single observation as the test set and the 
rest of the observations are the training set. We iteratively train and test the data always picking a 
random observation to be the test set, until all of the observations have been tested. Drawbacks 
with this approach are that it is expensive and time-consuming to implement if the dataset is very 
large, and if the observations are in chronological order, future observations can be used to feed 
information to the algorithm and hence “cheat” its way to accurate predictions. A way to work 
around this issue is to make sure that each random observation is only trained with data in the 
past [27]. 
 
 Another type of cross validation is k-fold cross validation. This method randomly divides 
the data set into k groups of approximately equal size. The first group is treated as a test set, then 
the rest of the groups are used to train the data. This is done iteratively until all groups have been 
the test set. This method is far less expensive from a computational power standpoint and 
consistently yields better estimates of error than LOOCV.  Recalling from what is mentioned in 
the bias-variance tradeoff, LOOCV has a very high variance compared to k-fold because it 
averages the outcome of models trained on an almost identical dataset. This causes high variance 
because it means that the average of each of the predictions is highly correlated, therefore a 
minor change in the data can skew the predictions. On the other hand, k-fold cross-validation 
averages the predictions of datasets that are less correlated with each other because the training 
sets are not as similar. This means that the test set prediction estimates that k-fold outputs are 
more consistent than the ones output by LOOCV. In addition to all of these implications, it is 
recommended to use k-fold using 5 to 10 partitions because these splits are the ones that have 
been shown, empirically, to yield the best test error rate [27]. 
 
 Bootstrap is a very powerful method that can be applied in many areas. It is useful 
because it allows us to use computing power to emulate the process of obtaining new sample 
datasets, so that we can obtain more robust estimates without the need for more data. Instead of 
obtaining different, independent datasets, we get distinct datasets by iteratively sampling 
observations from the original dataset. This sampling is done with replacement, which means 
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that the same observation may appear more than once in the bootstrap data set. The illustration 
below helps to visualize the bootstrap approach. [27]  
 

 

 

Fig. 3 - Bootstrap 

 

In the illustration above, bootstrap is performed on a dataset containing 3 observations. Each 
bootstrap dataset contains the same amount of observations in the original dataset, sampled with 
replacement. 

5.3.1 Training and Testing in Time Series Data 

Financial data is overwhelmingly time series data. This means that the observations are in 
chronological order. The implications this has on training and testing algorithms are one of the 
reasons for which machine learning methods in finance are quite challenging to both develop and 
to test. Methods like bootstrapping and cross-validation do not work because they ignore the fact 
that the observations are in chronological order, so a portion of future data can be used to train 
and “predict” an observation in the past. This is problematic not only because it can give the 
algorithm a false measure of good accuracy, but because the predictive power of features can 
change over time, and thus different splits can yield very different measures of accuracy just 
because the most predictive predictor in some of the observations holds absolutely no predictive 
power in another set of the observations. 
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There are ways to work around this predicament. It requires the algorithm creator to be 
conscious of what parts of the algorithm, the training and the testing process are sensitive to the 
time index. For example, it is wise to be sure that whenever creating testing and training splits, 
the training set is always composed of data that is prior to the observations in the test set. That 
way the algorithm is only being tested with “future” data. 

5.4 Feature Selection and Feature Engineering 
 

Feature Selection is the action of selecting the most predictive predictors or features (x) 
from the set of predictors and to use those select predictors for the training and testing process of 
the algorithm. The amount of features used in an algorithm is important because it is directly 
associated with the performance of the algorithm. 

 
With enough data, there should not be a limit on how many features can be used. 

However, there is not an infinite supply of data, and thus having too many features can hinder 
the performance of the model because they feed unnecessary noise to the data that the model has 
to be trained on. When this happens, the model finds insignificant patterns and overfits the data. 
This causes the model to have poor performance when it is tested on unseen data. There are 
various ways to deal with this. 

 
Some machine learning algorithms are already designed to perform feature selection by 

themselves. Some algorithms, however, require that only the most predictive features be used to 
train them and require that the algorithm designer perform feature selection. The feature 
selection methods that were used in this project are recurrent neural networks, principal 
components analysis, random forest classification, and boosting tree classification. 

 
Feature engineering is the action of doing computations or calculations with the already 

existing predictors to “create” more predictors or features (x). The goal is to create features that 
hold more predictive power than the original predictors and improve the performance of the 
algorithm on testing data. It is recommended to perform feature selection before performing 
feature engineering. 

 
This process of feature selection and engineering requires domain knowledge, creativity, 

and is often the most important step to ensure that the algorithm can actually predict unseen 
observations. An example of when a trader might use feature selection and engineering is when 
the trader is looking for indicators (RSI, MACD etc) or creating new indicators to increase 
predictive power on the movement of a stock price. 
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5.5 Tree Based Classification Algorithms 

5.5.1 Decision Trees 

Decision trees can be applied to both regression and classification problems. A decision 
tree involves segmenting the predictor space into a number of regions. The segmenting rules are 
easily represented as nodes in a tree where each node separates the regions in different branches. 
In the example shown in Fig. 4, a decision tree is being used for classification.  Each node 
represents a segmenting rule and the outcome of each rule is a branch that either goes to another 
segmenting rule or to the ending region or class. These trees are typically drawn upside down, in 
the sense that the leaves or segmented regions are at the bottom of the tree [28]. 
 

  

 

Fig. 4 - Decision Tree 

 
 

5.5.2 Classification Trees 

In the classification setting, the trees use segmenting rules to assign data to different 
classes. So instead of predicting a quantitative response, it predicts a qualitative one. A common 
example of this is when a trader uses a classification tree to attempt to classify stocks whose 
future returns are either the class that goes “up” or the class that goes “down”. The image below 
shows the splits for a classification tree where each split assigns the points to either the points in 
the red class or the points in the green class [28]. Note that axes X1 and X2 are arbitrary, and 
could signify any two features. 
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Fig. 5 - Split Classification Tree 

 

5.5.3 Advantages and Disadvantages of Trees 

In general, it is easy to visualize and interpret the output of a decision tree algorithm, and 
it can also handle qualitative predictors without the need to convert them to numbers. However, 
trees tend to overfit predictions too much. As such, a small change in the data can cause a 
significant change in the model’s behavior. This is because the tree only goes through the data 
once, so it will pick up any random patterns along the way to help it make its splits. Another 
disadvantage of tree-based methods is that compared to other methods, their level of predictive 
accuracy is lower [28]. 

 
However, when many trees are combined and used for predictions in a single algorithm, 

the prediction accuracy improves. These practices of combining many “weak” algorithms to 
form more a more accurate algorithm are called ensemble methods. For tree-based methods, 
ensemble methods are bagging, random forests, and boosting. Although these ensemble methods 
can be applied to other algorithms, they are particularly useful for decision trees because they 
combine many “overfit” trees and combine their results to average out the underlying pattern in 
the data [28]. 

 
Bagging works by taking multiple samples of the dataset and training a decision tree on 

each sample. After that, the average of the predictions is taken as the prediction output of the 
algorithm. For the classification setting, a “majority vote” among the predictions and the most 
commonly occurring prediction is taken as the prediction output [28]. 
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The random forest algorithm consists of randomly sampling a number of observations, a 
number of n predictors from the full set of predictors and making a tree go through that data set. 
At each sampling, a new set of predictors is chosen. This is the main difference between this 
algorithm and bagging. This allows the algorithm to be more robust because it forces the 
algorithm to train itself on predictors that are different, most of the time, and decorrelates the 
predictions that each tree has and thus the average of their predictions is more reliable [28]. 

 
In boosting, each tree is grown sequentially by using information from previously grown 

trees. Boosting does not involve getting multiple random samples of the data. Instead, it fits 
every tree on a modified version of the original dataset. Another thing that distinguishes this 
approach from the rest is that it fits each tree to the residuals (actual y response value minus 
predicted y response value), instead of the response Y. Each of these trees has a small number of 
nodes. Iteratively fitting these small trees to the residuals from the previous tree will improve the 
underlying function in areas where it is not performing accurately. One potential drawback of 
this ensemble method is that if the number of trees fitted is too large, the model can overfit. The 
best way of avoiding this is by using cross-validation [28]. 

5.5.4 Principal Components Analysis 

Principal Components Analysis (PCA) is an unsupervised learning method that aims to 
create linear combinations of the predictors to summarize the data set with a smaller set of 
predictors that together explain most of the variability in the data set. This method is often used 
to visualize data or used in conjunction with a supervised learning model where the predictors 
are the principal components calculated in PCA. If the latter approach is used, it is important to 
exclude the target variable from the set of predictors that PCA can use to make the linear 
combinations and to exclude the principal components that do not attribute any variability to the 
data set as this will only make the algorithm more complex and defeat the purpose of reducing 
the number of predictors. These components can be screened out by computing their Proportion 
of Variance Explained (PVE). Only the components with the highest PVE should be 
selected [29]. 

5.6 Neural Networks 

Artificial neural networks (ANNs) are a specific implementation of supervised learning 
that have seen extensive use in the realm of financial data [30]. Neural networks are designed to 
mimic the acquisition and organization of knowledge in the human brain [30]. In doing so, the 
design of an ANN reflects the assembly of neurons found in the brain which function as both 
processing and memory units [31]. The basic architecture of an ANN thus consists of layers of 
artificial neurons. Each artificial neuron takes a series of weighted input signals, combines them, 
and applies a non-linear “activation function” to the resulting signal [31]. Fig. 6 provides an 
illustration of this design: 
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Fig. 6 - Activation Function 

 
 

Note that X0 is a bias value which does not originate from a neuron. The nonlinear activation 
function is essential to mimic the learning capabilities of the brain; otherwise, a chain of these 
neurons would be equivalent to a single linear transformation [31]. 
 

Neural networks are most popular in cases where data with many features needs to be 
classified; for example, in the case of the MINST database where input images composed of 
hundreds of pixels needed to be classified into numbers [20]. Applications in finance ranging 
from “pattern matching, classification, and prediction, such as bankruptcy prediction, loan 
evaluation, credit scoring, and bond rating” are potential candidates for neural network 
technology [30].  
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The activation functions typically map negative inputs to -1 and positive inputs to 1 [31]. 

This is not always the case; often, activation functions can scale to infinity, or between 0 and 1. 
The pictures below show some sample activation functions used in ANNs: 
 

 
Fig. 7 - Activation Function Examples - Examples of the sigmoid, tanh, and ReLU activation functions. Note that each function outputs values 

between -1 and 1; these functions can be considered as filters that accept large positive and negative values and reject values near 0. (18) 
 
Since each neuron takes a bundle of input signals and produces a single output, artificial neurons 
can be chained together in layers, where a previous layer of neurons provides the input signals 
for all the neurons in the next layer [31]. The figure below demonstrates this principle: 
 

 
Fig. 8 - Illustration of a neural network with multiple hidden layers. Each node sums the weighted inputs of the nodes from the previous layer and 

applies an activation function. [21] 

 

By combining these artificial neurons into layers, and connecting the layers together, a neural 
network can be trained to mimic any decision function. As seen in the diagram, the input layer 
here would consist of predictive features from which the network would drive patterns, and the 
output layer would be a representation of the predictive output, whether a binary classification or 
a numerical regression [31]. 
 

The training procedure of a neural network adjusts two elements of each neuron: the 
input weights and the activation bias. The input weights are the weights described previously 
which are applied to each input entering a given neuron. The activation bias pertains to the 
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activation function described previously. The bias applies a horizontal translation to a neuron’s 
activation function, setting a shifted range for what is classified in the -1 to 1 range. In adjusting 
these two features, a neural network may adapt itself to any decision boundary [31]. 

 
For a given neural network to learn a decision boundary, the network must train itself 

with data that has been previously classified. This process, thus requires the network designer to 
have previous examples of the data of interest that have been classified [31]. For example, in the 
case of the MINST set, the neural network would train with example images that have already 
been tagged with the proper digit [20]. Training data is released in batches to the neural network, 
which incrementally updates its input weights and activation bias to minimize the error between 
its predicted classification and the pre-marked classification of the training data. Training stops 
when error improvements are marginally small, resulting in a trained neural network [31]. 
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5.7 Sources of Error in Algorithms 
 

When designing and training a neural network, many potential sources of error must be 
accounted for to achieve satisfactory accuracy. A substantial portion of the error in neural 
networks is caused by the network “overfitting” and “underfitting” its training data. For a model 
M and a set of data L, we say that M overfits L when M learns the model it trained with too well, 
and cannot generalize to examples in L. While it is essential for a neural network to find patterns 
in the training data which can be extrapolated to the data set as a whole, if given enough time and 
power, the network will only memorize each of the training examples, and neglect to find 
general trends in the data itself. A typical sign of overfitting is if small changes in L cause large 
changes in the accuracy of M [32]. 

 
Given the same model M and dataset L, we say that M underfits L if there is “too much 

behavior” that is accepted by M that is not in L. Whereas in the case of overfitting, where M 
learned the training data too well, in underfitting, M learned the training data too generally, i.e. 
without finding enough patterns in the training data [32]. Fig. 9 contains graphical 
representations of an overfit dataset and an underfit dataset: 
 

  
Fig. 9 - Dataset Fit - a. An underfit dataset. b. A well-fit dataset. c. An overfit dataset. (11)  
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As seen in Fig. 9, the underfit model failed to find a general pattern in the training data, while the 
overfit data oversampled individual examples in the training data. An important task of neural 
network engineers is to balance between overfitting and underfitting to achieve a well-fit 
example [32]. This phenomenon of balancing between overfitting and underfitting to achieve a 
well-fit model is referred to as the “Bias Variance Tradeoff”. 

 

 

Fig. 10 - Model Error Relationship to Bias and Variance 

 

The graph above gives us a representation of the relationship between the error in a model’s 
predictions due to bias and the error due to variance. When a model has a high bias, it is said to 
underfit, have low complexity, and its predictions are consistently misrepresenting the real 
world. When a model has high variance, it is overfitting, more complex than necessary, and its 
predictions are not consistent every time the model is replicated because it is learning random 
patterns in the data rather than learning the underlying information. This makes the model’s 
predictions exhibit high variance. The last source of error is called “irreducible error”. This error, 
as its name suggests, cannot be reduced because it is caused by the inherent randomness of the 
real world. The rule of thumb is that as a model’s complexity increases, its bias decreases and its 
variance increases. The optimal model is the one with a level of complexity that achieves the 
lowest combination of error due to bias and variance. Despite there being an “optimal model”, 
there will always be error in the model. 
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5.8. Solutions to Overfitting and Underfitting 

Many different factors may contribute to both bias and variance. For example, a decision 
tree with too many nodes will have a lot of variance, however a decision tree with too few nodes 
will have too much bias. One such factor is the size of the neural network, i.e. the number of 
nodes and layers in the network [33]. Typically, a neural network with too many layers and 
nodes will overfit a dataset, while a neural network with too few nodes and layers will underfit a 
dataset [33]. The effects of network size on overfitting is especially pronounced in cases where 
the number of weights exceeds the data samples in the dataset [34]. Some subsets of the dataset 
however may be more tolerant to overfitting than others, especially in cases where 
backpropagation is the error minimizing method [34]. Since the architecture of the network is set 
upon implementation, manual tweaking of the architecture can reduce overfitting and 
underfitting. In cases of overfitting, the number of hidden layers and nodes per hidden layer can 
be reduced; in cases of underfitting, they can be increased. Additionally, techniques can be 
applied to a given architecture to reduce its overfitting via penalizing the weights of the network 
[35], [36]. One common method involves L1 and L2 regularization of both the input weights and 
the bias of each node [35]. In this technique, inhibitive terms are added to the error minimizing 
functions for each node, limiting the effectiveness of error reduction at each round of network 
training. By preventing patterns from being learned “too well”, overfitting is reduced [35]. Other 
variations of regularization exist; in soft-weight sharing, for example, weights in a given layer 
are given an averaging term based on the weights of neighboring nodes [35]. In some cases, 
dropout may even be implemented, where nodes deemed excessive or unnecessary by an 
evaluation algorithm will be disconnected from the network [36]. 
  

Yet another cause for overfitting comes from a high ratio between input features and data 
samples. If there are not enough data samples to cover each input feature, a model may learn to 
discriminate patterns based on frequencies in different dimensions, rather than finding a pattern 
between all dimensions [37]. For example, in the case where there are N samples and N features, 
where each sample is uniquely present in a given feature, the model could learn to make binary 
classifications based on merely the presence those features or lack thereof, since there is not 
enough data for the model to find a pattern amongst all dimensions [37]. It is important that each 
input feature adds relevant, linearly independent data to the model, and that enough data exists to 
provide a non-trivial classification for the feature. Furthermore, it is important that the dataset is 
representative of the system being modeled [37]. 

 
While there is no simple remedy for high dimensionality of input features, there are 

techniques which serve as dimensionality heuristics [38]. Once such technique is Principal 
Component Analysis (PCA), which finds the directions of greatest variance over the input 
dimensions and plots each data point by its coordinates along those directions. By iteratively 
modifying the dimensionality of the set and applying PCA, a balance between dimensionality 
and variance can be achieved [38]. Various techniques exist which implement PCA; we used 
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Multi-Dimensional Scaling, ISO Map, and t-SNE throughout the project [39]. Other more 
advanced techniques exist which reduce dimensionality in a deterministic way; adversarial 
networks can be trained, for example, to scale a feature set between high dimensionality and low 
dimensionality. These are called autoencoders [39]. 

 
 Finally, there are techniques beyond the design of the neural network itself which provide 
a holistic representation of the model’s accuracy. Since the input weights and activation bias of 
each node are randomly initialized (typically over some distribution), the local error minima they 
reach during training may vary, even when the dataset training the network is the same. The 
performance of a single instance of a model is not enough to assess the accuracy of the modeling 
as a whole. Cross validation methods are typically employed to avoid these cases where 
abnormal training performance dictates the overall accuracy of the model [40]. In k-fold cross 
validation, for example, the dataset is split into a number of “folds”, which are evenly sized 
buckets of training data. For N folds, N networks are trained; one fold is used to test the accuracy 
of each model, while the rest of the folds are used as training data. With N unique training and 
test set combinations, assessments about the model accuracy as a whole are reasonable [40].  

5.9 Neural Network Implementations 

While the architecture detailed above presents the fundamental design of neurons in a 
neural network, most implementations will add other features to the underlying design. Below, 
two implementations of neural networks are presented; both are used to implement the system of 
systems.  

5.9.1 Convolutional Neural Networks 

Convolutional neural networks (CNNs) perform well with image processing and 
categorization problems. The central principle of the CNN is that through encoding assumptions 
about the locality and density of objects in image classification, training with very large datasets 
can avoid being prohibitively expensive while exhibiting only slightly worse performance than 
the regular feed-forward network [41]. CNNs have two additional types of layers beyond the 
neuron layers described above (called fully-connected layers in the context of the CNN): 
convolutional layers and pooling layers [41]. Convolutional layers apply “convolutions” to tiled 
areas of an image to extract features; given an N by N pixel tile, a convolution can be considered 
a filter that generates a feature from those pixels [42]. Pooling layers reduce dimensionality by 
aggregating values among neighboring pixels into a single node; for example, a pooling layer 
could reduce 2x2 pixel chunks to a single value [42]. Finally, the manipulated layer is passed to 
“fully-connected layers”, serving as the feed-forward neural network described above. 

 
 Convolutional neural networks are of particular interest because their convolutional and 

pooling layers, which have great applicability to images, could be used to derive features from 
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long periods of raw time data. This is especially relevant because typical feed-forward networks 
are not explicitly designed to handle time-series data; the best that can be done is mapping each 
time-series element to a feature [43]. The convolutional and pooling layers which enable CNNs 
to extract locality-independent features from pixels could be used to find time-independent 
features from time-series data [44].  

5.9.2 Long-Term Short-Term Networks 

Some neural network architectures are explicitly designed to handle time-series data. One 
broad class of these architectures are recurrent neural networks, or RNNs. Whereas in a feed-
forward network, the inputs for each round of training include only the input features of the data, 
in an RNN, the outputs of the hidden layers from one round of training are fed back as additional 
inputs for subsequent rounds of learning [26]. 

5.10 Advances in Financial Applications of Machine Learning 

Machine learning, and particularly neural networks have been the vehicle for substantial 
advancements in financial technology. Countless pieces of literature have been written on the 
financial applications of machine learning, and AI-driven finance is shaping the entire financial 
services industry today. 

 
 Financial applications on neural networks can be broken down into categories. In some 
cases, the applications involve sentiment or risk analysis for banking or risk forecasting [30]. In 
other cases, the applications involve the selection of assets through the prediction of their future 
values [30]. The latter category best describes the research in this report. There has been an 
evident lack of neural networks with the purpose of strategic planning since networks blindly 
find patterns and cannot “explain” their results. In general, most applications operate at the level 
of pattern detection whose results supplement a holistic financial system [30]. 
  

Several major advancements define the progress of neural networks for stock market 
prediction. Kimto, et al. (1990) found that modular neural networks could predict the pricing of 
the Tokyo Stock Exchange using a variety of different learning algorithms. Kryzanowski, et al. 
(1993) proved that neural networks could determine which stocks would outperform the market. 
Refenes et al (1995) used artificial intelligence with pricing models to rank the performance of 
different stocks. Han, et al. (2014) found that genetic algorithms could be used to reduce the 
complexity of the input feature space of neural network algorithms. These advancements, along 
with countless others, speak to the predictive capabilities of artificial intelligence when applied 
to financial times. Recently, research has focused on applying large-scale data to enhance the 
predictive capabilities of these networks. As explained in Walczak (2001), the quantity of data 
available for training is a deciding factor for the accuracy of neural networks working with time 
series data. For example, Bollen et. al (2011) has explored farming Twitter data to generate 
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sentiment analysis features to apply to neural networks. A key challenge facing AI engineers 
working with financial datasets involves balancing the requirement for greater amounts of data 
with the risks of error like overfitting and underfitting. 

 
While an overwhelming amount of research has been done on the financial applications 

of neural networks, much of that work has been relegated to immediate stock or fund price 
prediction. Artificial intelligence configured this way generates a single trading strategy. Less 
has been done in academia to develop a neural network system of systems, i.e. an AI-driven 
system that would manage a set of discrete trading algorithms and strategies. This motivates the 
research described in this paper, as we believe it is novel in this field. Given the context of AI-
driven research in the past, we were motivated to pursue machine learning as a technique of both 
our individual strategies and our eventual system of trading systems, described in the following 
sections.  
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6 Overview of Work Achieved 
Sections 2 through 5 of this report detail the research we did during first half of this IQP. 

While we knew from the outset that we wanted to design a set of trading algorithms and balance 
them with a system of systems, we had no clear direction about how we would achieve those 
goals, other than a hobbyist’s intuition that machine learning would prove effective. Our 
background research informed us of both the individual techniques that would yield our 
algorithmic trading and the data science techniques which would likewise yield the system of 
systems. We thus felt adequately equipped to pursue our goal. 

 
Our tasks naturally split into two major components; some of us would have to develop 

trading algorithms themselves, while others would need to build the system of systems to 
balance and trade them. The algorithm design methods would be similar to the algorithm design 
done by both researchers and industry. As a result, it is heavily informed by the background 
sections detailed above. For example, the general principles of the market described in Section 2 
would inform the design of the algorithms themselves, and the TradeStation testing methods in 
Section 4 would be directly applied to test those algorithms. Alan and Roberto led the effort to 
design individual trading algorithms. In doing so, they followed the process of designing and 
implementing trading strategies with entry and exit rules, build position sizes with various assets, 
and testing those algorithms with Monte Carlo analysis. Their work is described in Section 7. 

 
The second component is the creation of a system of systems which brings all of the 

strategies together and allocates funds to each strategy based on performance. The effort to 
develop this system was led by Remy and Zoraver. This component of our work is very code 
intensive, as the entire system of systems framework had to be written from scratch. 
Construction of the system of systems also provided an exercise in neural network architecture 
and optimization. While time did not permit us to implement the strategies from Section 7 into 
the system, we still succeeded in proving that the system is predictive with several networks. The 
work to develop the system of systems, load it with strategies, and test its performance is in 
Section 8.  

 
The individual strategies and the AI-driven system of systems together comprise the work 

we completed during this IQP. Both components utilized the information presented in Sections 2 
through 5 to produce systems which navigate the market. The next section provides details on the 
individual strategies we implemented.  
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7 Trading Systems Developed 

7.1 Roberto Esquivel’s Trading Systems 
Long-Short Ensemble Machine Learning System Versions 1 - 4  
 
Description 
 

These systems use an ensemble learning algorithm to predict the direction of each stock 
in a large sample (up to 1500) and ranks the stocks based on the random forest’s assigned 
probability of each stock to either go “up” or “down” in the next 5 days. Once the stocks are 
ranked, the algorithm shorts the bottom 20% of the stocks and buys the top 20% of the 
probabilities. 
  
Finding Alpha 
 

The goal of this system is to maximize alpha by using a machine learning algorithm to 
predict future returns and to allocate funds to the equities that the algorithm believes are either 
going to have the least (short) or most (long) profitability. 

 
Before writing trade execution and risk allocation for the algorithm, there had to be an 

iterative research process to design the machine learning pipeline and attempt to find the actual 
predictive features. 
  
Data Exploration 
 

A dataset indexed by days and containing a high, low, open, close, volume, and 5-day 
returns value for each stock on each day was explored and tinkered with to attempt to use 
machine learning methods to find a trading signal within it. 
  
Machine Learning Model Creation 
 

Stock price data sets have a characteristic known as non-stationarity. It means that over 
time, the mean and variance of the data set is shifted [54]. In order for supervised learning to 
work, a dataset must have stationary features [54]. The rule of thumb is to make the data 
stationary by engineering features that proportionally normalize the information in the data. 
These feature engineering methods range from calculating percent changes to less orthodox ways 
of quantifying information for each observation. 
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A problem with this approach is that a lot of the information in the data is eliminated by 
the process of making the data stationary. This is because there is a trade-off between stationarity 
and memory. Memory is the combination of the historical trends that shift the data’s mean and 
variance [54]. The features that are created remove all of the memory from the data. However, 
that memory is the basis for a model’s predictive power because it contains the raw information 
on the trends that have shaped the data in the past. To deal with this dilemma, the feature 
engineering process must do the bare minimum to make the data stationary in order to preserve 
as much memory as possible. 

 
The approach taken in the feature engineering process for this algorithm is an approach 

proposed by Dr. Marcos López de Prado in his book “Advances in Financial Machine Learning”. 
He proposes that a method he called “fractional differentiation” be used to adjust the features in 
order to make them stationary by differentiating only by the bare minimum in only to retain 
maximize memory preservation [54]. 

 
Aside from being non-stationary, the market itself has different conditions that change 

over time. This means that certain predictors can be predictive only for a specific time-frames 
and lose their edge on other timeframes. This algorithm can try to adjust for this in various ways. 
One is to attempt to find an “all-powerful” predictive feature or way of uncovering that feature 
every time the algorithm is retrained when the portfolio rebalancing occurs. The other way is to 
feed the algorithm all of the features and to use an algorithm that does feature selection by itself. 

 
The last characteristic of most financial data that violates the assumptions of machine 

learning-ready datasets is that the time-series formatted data for equities is undersampling 
information from highly active trading periods. First, markets process information at a constant 
time interval. This is problematic because there are time periods which contain more information 
than others, however all time periods are treated as though they all provide the same amount of 
information. Some examples are that, the hour following the open is much more active than the 
hour around noon (or the hour around midnight in the case of futures); or that there are days 
where there is a lot more trading volume than the rest. A solution to this problem is to use data 
indexed by dollar-changes as opposed to a constant time interval. This solution was also 
proposed by Dr. Marcos López de Prado. Unfortunately, the platform in which this algorithm 
was created (Quantopian) does not offer data that is indexed by dollar changes and thus the 
algorithms will always be susceptible to this undersampling for periods with higher trading 
activity. 

 
The feature creation rationale was developed by observing that the market operates in 

cycles of momentum and mean-reversion. Because of this, the main features created are mostly 
momentum-based. The thought is that if the market is in a momentum phase, then the features 
will be predictive of stock trends; and if the market is in a mean-reversion phase, then the 
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momentum features will also be predictive of stock trends because the data will specify a 
negative correlation between these and the target variable. 
 
The features created are can be divided into fundamental factors and into technical ones. 
The technical factors: 

1. Returns for the past 2, 5, 10, 15, 20, and 30 days 
a. These let the algorithm know the context of the momentum of the returns 

2. Rate of change for the money-flow index for 2, 5, 10, 20 days 
a. Aside from letting the algorithm know the context of price changes, these 

indicators adjust for volume as well. 
b. This indicator is calculated by multiplying price and volume over a couple of 

days, comparing those amounts for consecutive time periods, and computing a 
ratio of the highest amount to the lowest amount of price time volume over the 
selected time periods. 

3. Rate of change of the RSI for 2, 5, 10, 15, 20 days 
a. This factor can allow the algorithm to learn the relationship between the changes 

in buying and selling pressure and the future returns of a stock. 
b. The calculation of the RSI is broken down into the calculation of its four 

components: the average gain, average loss, first rs and smoothed rs. 
c. The average gain or loss is computed by summing all of the gains or losses during 

a specified time period and dividing them by the number of time periods. 
d. The first rs is calculated by dividing the average gain by the average loss; the rest 

of the rs calculations use the previous period’s average gain and average loss to 
smooth the data. 

e. After that, a single RSI data point can be calculated by subtracting 100/(1+rs) 
from 100. 

f. The rate of change of these data points is calculated by getting the rsi unit change 
per time period of choice. 

4. Percent of positive return days to total days in the last 5, 10, 15, 20 and 30 days 
a. These were also designed because returns and momentum information can be 

influenced by a larger price swing in a short period of time. The percent of 
positive return days offer a better picture of the overall trend of the price. 

b. These indicator is calculated by counting the days where the closing price was 
higher than the opening price in the specified time period and dividing that 
number by the total number of days in the time period. 

 
These let the algorithm know the relative degree to which the buying and selling pressure of the 
stock change over time and were designed because returns and momentum information can be 
influenced by a larger price swing in a short period of time. For example, if the 10-day returns of 
a stock are being calculated, there could be a day where the stock price rises 5 percent, but every 
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subsequent day, the stock has negative returns. If the negative returns do not outweigh the initial 
5 percent price upswing, the calculated returns will still be positive, which is not an accurate 
representation of momentum. These features overcome this by allowing the change in buying 
and selling pressure of the stock to be recorded. 
 

The purpose of the algorithm is to use the change in the value of this indicator, not the 
value itself, as an indicator of future price direction. 
 
The fundamental factors: 
Quantopian provides a dataset for the following measures: 

1. EBITDA Yield 
a. This number is calculated by dividing a company's earnings before interest, taxes, 

depreciation and amortization (EBITDA) by the company's enterprise value. 
EBITDA describes profitability before interest, taxes, etc. are factored in.  

b. There are various ways in which this number can be calculated. Generally, the 
goal is to get a ratio of profits to capital that the company allocates under its own 
judgement. 

2. Net income margin 
a. This number is the ratio of revenue compared to all of the expenses that a 

company incurs 
3. Operating Cashflows to assets 

a. This is a measure of a company’s operations efficiency. It is a ratio of the return 
on investment for each asset compared to the cost of the assets. 

4. Asset Growth 
a. This is a measure of the rate at which a company’s assets grow in size. 

5. Asset to Equity Ratio 
a. This is a good measure to quantify the debt that a company has used to finance its 

operations. It is calculated by computing a ratio of how much of the company’s 
money is used in each asset to the amount of money in each asset that is coming 
from shareholders (equity) 

  
These let the algorithm know the relative change in the inner workings of a company through 
time and allow the algorithm to learn the relationship between them and the company’s change 
in stock price. 
 

There are various ways of assessing the predictability of a feature. One of them is by 
using an algorithm to filter the features that add more noise than predictive value. Another way is 
to graphically display a scatter plot of a feature and the target value and check for patterns. For 
example, Pearson correlation coefficient-based elimination can be done by only selecting the 
highest scoring features. The last way is by using a machine learning model that can let the 
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algorithm designer know what features are used the most for prediction. The latter approach does 
not necessarily mean that the feature is especially predictive, just that it holds more information 
relative to the others and thus the algorithm uses it the most to assign predictions. The most 
predictive features for the fundamental algorithm are EBITDA yield and return on invested 
capital. The most predictive features for technical factors are a trendline of past returns and the 
money flow indexes. 

 
Once all features are chosen, there needs to be an assessment of how much the features 

are correlated with each other. If features exhibit a high correlation to each other, that means that 
one of them adds no value to the information learned by the algorithm and is unnecessary so one 
of the correlated features needs to be removed. 
  
Trade Execution 
 

The algorithm will execute trades every Monday as soon as the markets open. Before the 
market opens, the algorithm runs the machine learning algorithm on six months of data to output 
a ranking of stocks based on their calculated probability of having positive five-day returns. This 
way, the output will be ready for the algorithm to use in its trading as soon as the market opens. 
After that, the algorithm does not execute any trades for the rest of the week. 
  
Risk Allocation/Portfolio Construction 
  

The platform used to develop this algorithm offers an optimization feature that 
allows the algorithm author to specify a high-level objective, constraints, and the universe of 
equities that the algorithm will trade and letting the optimization feature do all of the dirty work.  
This feature will automatically calculate the set of portfolio weights that optimize the objective 
while still respecting constraints. After that, it computes the difference between the optimal 
calculated portfolio weights and the actual weights and places orders to move the current 
portfolio’s state to the optimal state. 
 
A portfolio optimization problem is a mathematical problem of the following form: 
  
“Given an objective function, F, and a list of inequality constraints, Ci ≤ hi, find a vector w of 
portfolio weights that maximizes F while satisfying each of the constraints.” 
 
This problem can be expressed as follows: 
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The parameters for the optimization are: 
Objective: To maximize alpha, or returns which beat the standard deviations of the market. 
Constraints: 

1. The algorithm must constrain gross leverage to 1.0 or less. This means that the absolute 
value of our long and short positions should not exceed the value of the portfolio. This is 
to avoid the risk of overdrafting and losing capital that we do not have. 

2. Any given position cannot exceed over 2% of total portfolio value 
a. This constraint will allow risk of non-diversification of assets to be minimized. 

3. The algorithm must be market neutral: Long and Short positions must compose equal 
parts of the portfolio value 

4. The algorithm must be sector neutral: All positions must be weighted equally among all 
market sectors 

  
Universe 
 

The stock universe that the algorithm will trade on is any stock that is on the Fortune 500 
group. The rationale behind picking this universe is that this universe minimizes risk factors in 
areas of lack of liquidity and excessive volatility. 
  
Position Sizing 
 
         Handled by the optimization features. 
 
Entry Rules 
 
         Aside from the rebalancing calculations done by the optimization, the main way in which 
the algorithm decides whether to short or long a stock is based on the output of the machine 
learning algorithm. The algorithm will output a ranking for the top and bottom 20% of the 
equities where the higher the ranking, the higher the calculated probability of the stock having 
positive returns in 5 trading days. This way, the algorithm will go long on the top 20% ranked 
equities and short on the bottom 20% of the equities and rebalance accordingly every time the 
algorithm is run. 
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Exit Rules 
 
         Other than the rebalancing done by the optimization feature, the main ways in which the 
algorithm decides when to exit a position are when the equity does not show up in its ranking 
group, or if the equity moved to another ranking group. This makes the algorithm vulnerable to 
losing profits from high transaction costs if there is a lot of turnover among the weekly rankings 
of equities. However, the turnover among the weekly rankings is directly linked to the robustness 
of the machine learning algorithm, so if the machine learning algorithm is robust, this should not 
be a problem. Another way to limit this, is to elongate the holding period of the stocks and widen 
the prediction range of the machine learning algorithm. 
  
Versions and Variations 
 

Each different version of the algorithm is a different approach in terms of the type of 
ensemble method used and the factors that each of those methods used to predict. The two types 
of ensemble methods that were tried are a random forest and a boosting method. The factors used 
for each of those methods to predict were either a combination of fundamental factors, or a 
combination of technical factors.  
  
Analysis of the Results of each Version 
  
Ensemble methods Prediction Performance on 5-day Future Returns 
 

Before analyzing the performance of the trading algorithm that utilizes each of the 
ensemble methods, it is helpful and necessary to assess the prediction performance of each of the 
methods to have a better idea of how they contribute to the profitability of the actual trading 
algorithm. 
  
Random Forest Classifier with technical analysis factors 
Prediction Performance of Random Forest Classifier with technical analysis factors 
ꞏ      58% prediction accuracy 
 
Performance Report Analysis 
 

The algorithm has returns of 10% over the 2 year back test period and fails to outperform 
the market (the market had 35% returns). The Sharpe ratio is low at 0.80 and the max drawdown 
is 19%. The returns attributed to common risk factors of the market (the returns that are not 
specific to the actual stock) are 45%, which means that the algorithm by itself would actually 
have negative returns. 
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System Quality 
 

 

Fig. 11 - System Quality Report - Random Forest Technicals Stock Selection Algorithm 

 
The system’s expectunity and expectancy of 0.32 and 0.05 and annualized values of 

10.99 and 1.90 indicate that the system is not worth implementing. These low measures and a 
high standard deviation of profit over average losses (2.33) tell us that the system’s profit is not 
enough to offset the volatility and the risk is too high for the expected profits. 
  
Monte Carlo Analysis 
 

The 95% confidence interval spread is very large because the predictive performance of 
the model is close to chance (58%). The returns over two years for every scenario range between 
-75% and 100%. 
 
Random Forest Classifier with Fundamental analysis factors 
Prediction Performance of Random Forest Classifier with Fundamental analysis factors 
ꞏ      55% prediction accuracy 
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Performance Report Analysis 
 

This model is not worth implementing because despite its positive returns, it fails to beat 
the market over the past 2 years. It only returns 10%, compared to the 35% of the whole market. 
The Sharpe ratio is quite low at 0.25 and it has a maximum drawdown of 20% of the portfolio. 
The last metric that provides insight into the performance of this strategy is that its common 
returns, or returns that are attributable to common risk factors, account for 44% of the returns of 
the system. This means that close to half of the algorithm’s results are due to chance, which 
makes sense given that the prediction performance of the random forest is only 55%, which is 
very close to chance. 
  
System Quality 
 

 

Fig. 12 - System Quality Report - Random Forest Fundamentals Selection Algorithm 

 
The system quality report shows the expectancy and expectunity of the trading system. 

The report shows that this system is not ready being in the market. The expected return per dollar 
risked is extremely low 0.32-0.05. It is better to invest in the market as a whole than to trade with 
this system. The annualized expectancy is similarly low at 11.21 per dollar risked. 
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Monte Carlo Analysis 
 

Due to the fact that the random forest used to make buying and selling decisions has an 
accuracy that is close to chance, the Monte Carlo analysis has a large spread and the 95% 
confidence interval consists of returns ranging between -75% to 100%. This further shows that 
the algorithm is not ready for deployment because it does not have consistent performance. 
  
ADA Boost Classifier with technical analysis factors 
Prediction Performance of ADA Boost Classifier with technical analysis factors 
ꞏ      61% prediction accuracy 
 
Performance Report Analysis 
 

This system, despite having better prediction accuracy, does not improve returns 
compared to the last systems. It still only manages to have 10% returns, has a bigger maximum 
drawdown of 20%. The frequency of winning trades is 50%. 
 
System Quality 

 

Fig. 13 - System Quality Report - ADABOOST Technicals Stock Selection Algorithm 

 
This system is a low 1.59 because the profit or loss per dollar risked per trade ranges only 

from 0.32 to 0.05. The standard deviation of the profit over average losses is high at 2.33 given 
the average potential profit per trade ($0.05). These metrics further show that the system is not 
ready for implementation. The Sharpe ratio is a low 1.04. 
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Monte Carlo Analysis 
 

The spread of the potential scenarios under suitable confidence intervals like 70% or 95% 
is equally large as the other system’s Monte Carlo’s analysis, despite the fact that the predictive 
model’s performance is a little higher at 61%. 
   
ADA Boost Classifier with Fundamental analysis factors 
Prediction Performance of ADA Boost Classifier with Fundamental analysis factors 
ꞏ      55% prediction accuracy 
 
Performance Report Analysis 
 

This system did not beat the market either and had returns of 8% over the two year 
backtest period. Its max drawdown was less than the rest of 18% percent and it had a higher 
frequency of winning trades at 57%. 
 
System Quality 

 

 

Fig. 14 - System Quality Report - ADABOOST Fundamentals Stock Selection Algorithm 

 
The system quality is very similar to the system quality of the random forest with 

fundamental analysis factors. The only difference in between these systems is that the annualized 
expectancy of this algorithm is a little lower at 10.99 compared to the 11.21 of the random forest 
indicator.  
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Monte Carlo Analysis 
 

The spread of the confidence intervals for the Monte Carlo analysis of this system is 
equally large as the spread for the confidence intervals of the other versions of the system. The 
main reason is still the fact that the predictive algorithm’s accuracy is close to 50%. 
 
Compiling all of the strategies and Simulating over Time 
 

The following figure is a plot compiling the Monte Carlo simulation’s spread of results 
for all of the ensemble algorithms. It can be seen that the spread of positive returns and negative 
returns is very large for the 95% confidence interval. A couple of useful metrics computed from 
the analysis are that 40% of the scenarios show positive returns, the worse and best case 
scenarios range from returns of -80% to 150%, and that the median returns for all scenarios are -
8%. 

 

Fig. 15 - Monte Carlo Simulation Spread 

 

      
Conclusions and Future Improvements 
 

The most influential component of a system that uses machine learning to make trading 
decisions is the predictive performance of the underlying machine learning algorithm in the 
trading system. It is key to ensure that the machine learning algorithm has satisfactory 
performance before designing the trading algorithm around it. Otherwise, it does not matter how 
well-designed or optimized the trading algorithm is because it will be making trading decisions 
based on a faulty machine learning algorithm. 
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The possible reasons as to why both the random forest and the adaboost algorithms used 
to predict future stock price directions fail to have a good performance are because the features 
fed to the algorithm are not predictive enough, there was not enough data to train the algorithm 
given the scope of the stock universe, and feature engineering was not done correctly. The 
similarity of the performance of the algorithms shows that performance depends more on the 
features used for prediction than the algorithms used. 

 
The features of the algorithm are not predictive enough because they fail to provide a 

clear class distinction of the stocks that go “up” versus the stocks that go “down”. This was clear 
after using principal component analysis to see if any linear combination of the features could 
map the data points to different clusters; because there was no linear combination of the features 
that could separate the two stock classes. The proportion of explained variance by the principal 
components was only 25%, while a satisfactory set of features should explain at least 60%. A 
good set of features would also allow the plot to display two distinct groups with different colors 
identifying their class. However, as seen below, there is no clear distinction. 

 

 

Fig. 16 - PCA Analysis  

 
There was not enough data to train the algorithm given the scope of the stock universe for 

two reasons. Trying to generalize a set of features that can predict movements for every type of 
stock requires a vast amount of data that not only samples open, low, high, and close for each 
stock, it needs to sample data every time that there is a price movement; similar to what Dr. 
Lopez de Prado suggests. The problem is that quantopian does not support getting data in this 
format and the only platform we could find that supports it does not support machine learning 
packages (TradeStation). The other constraint is that there is a computational limit to the amount 
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of data that quantopian can stream and thus including too many stocks leads to having a lot of 
data but very little data for each individual stock. Something that can be done to accommodate 
for this is to reduce the scope of the stocks that we are trying to predict to one common sector or 
cyclicality. 

 
The last reason for which the random forest and boosting algorithms failed to have good 

predictive accuracy is because feature engineering was not done properly. Rather than finding 
semi-predictive features and then moving on to building a trading system around them, there 
should have been more time spent finding the best possible features and only until the features 
can ensure predictive performance should the trading system be designed around them. Feature 
engineering is the most difficult and time consuming part of the process and requires creativity 
and a high degree of domain knowledge in both finance and machine learning. Aside from 
spending more time creating features and acquiring domain knowledge, something that can be 
tried in the future is automated feature engineering. 

 
In addition, other approaches to using machine learning for trading systems can be 

explored. Some ideas can be clustering and unsupervised learning to identify groups of stock that 
move together based on a variety of criteria and formulate pairs trading strategies around them, 
using anomaly detection algorithms to detect and learn features of big stock price swings, and 
using the machine learning algorithms for the trading execution part of the system rather than the 
alpha detection phase. The last thing can be to find a way to complement fundamental and 
technical factors in the algorithm, even if they have different time periods. 
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7.2 Alan Fernandez’ Trading Systems 

7.2.1 Forex Correlation Divergence 

Description 

The Forex Correlation Divergence Trading Strategy attempts to predict the direction of a 
particular currency pair, in this case, the USDJPY, and to trade divergences between the 
prediction and the current direction of the price. The direction is predicted using a set of 
securities that have an established relationship to the currency pair.  

Selected Securities 

USDJPY - US Dollar Japanese Yen 

The USDJPY pair was chosen because it is considered a safe haven currency meaning 
that there are multiple securities that move with the pair. Most of the chosen securities are also 
considered safe haven assets or indicators of investors moving towards safe haven assets. Since 
in times of financial turmoil investors shift their assets to safe havens, a rise in the demand for 
any safe haven asset should correlate to similar increases in other safe havens. 

HKDJPY 

 According to the Observatory for Economic Complexity (OEC), Hong Kong is one of the 
main trading partners of Japan. Thus, the exchange rate between the currencies of the two 
countries should reflect the strength of the respective economies. If the Hong Kong dollar 
strengthens in comparison to the Yen, then there will be an increase in the demand for Japanese 
products followed by a strengthening of the Japanese economy and a strengthening of the Yen.  

USDCHF  

 The Swiss Franc is considered the default safe haven asset. Switzerland adheres to its 
self-imposed conflict neutrality policies adding to the perceived stability of its government and 
economy. According to the Heritage Foundation’s Index of Economic Freedom, Switzerland’s 
extremely developed economy is the fourth freest in the world. Since the Japanese Yen is also a 
safe haven asset, it is expected that following a surge in the strength of the Swiss Franc relative 
to the US Dollar, a similar surge should follow in the Japanese Yen. The strategy is naive in that 
it assumes that any surge in the demand for CHF is the result of investors seeking a safe haven 
for their assets. This is partially accounted for by looking at the moving average of the 
correlation between the two currencies.  

DXJ 

 In order to obtain a better sense of the economy of Japan, the strategy follows the 
WisdomTree Japan Hedged Equity Fund. Japan is the world’s largest exporter of vehicles. 
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According to the OEC, the automotive industry represents 26% of Japan’s worldwide exports. 
DXJ’s majority holdings are in Japan’s major automotive manufacturers: Toyota, Mitsubishi, 
Nissan and Honda. The rest of the holdings are spread out across all sectors of the Japanese 
economy. The performance of these major automotive manufacturers has a direct impact in the 
health of the Japanese economy, which is to an extent represented by the performance of this 
hedge fund. It is acknowledged that the hedge fund could simply rebalance its portfolio should 
these manufacturers start to underperform. This would make the hedge fund less representative 
of the weakening economy.  

SPY 

Since the base pair traded is the US Dollar, the strategy attempts to gauge the 
performance of the US economy by looking at the S&P 500 index. If the index is on a downturn, 
it is expected that the Japanese Yen will strengthen as investors tend to flee in times of economic 
distress. During periods of growth, the relationship between the two is not clearly defined and 
left to the direction of the correlation between the two. Positive growth in the US economy could 
correlate to strengthening Yen as demand for Japanese products increases. It could also translate 
to a weakening Yen as investors who were previously escaping a falling market exit their Yen 
positions and return to stocks. 

PowerShares US Dollar Bear and Bull 

 These two indexes are used in combination as a replacement for the Dollar Index, which 
is not freely offered in TradeStation. The Dollar Index measures the strength of the US Dollar 
against a basket of major currencies.  

SPDR Gold Shares 

 Building on the idea that safe haven assets should move together when investors flee 
insecurity, rising gold prices should reflect rising CHF and JPY. 

$SPGSCLTR  

 Japan is located in a small island which means that it must import the majority of the 
energy that is required to power its industries. This makes Japan’s economy extremely dependent 
on the price of Oil. According to Statista, Japan receives approximately 71% of oil from Saudi 
Arabia. Europe, Africa and the Middle East use the Brent benchmark for the oil prices thus the 
strategy uses an index for Brent Oil. As the price of Brent rises, it is expected that the Japanese 
economy slow down and the price of its exports will increase. This should then lead to lower 
demand for its exports and lower demand for the Japanese Yen. An increase in the price of Brent 
then results in a decrease in the purchasing power of the Japanese Yen.  
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Position Sizing 

The strategy uses a volatility adjusted position sizing approach similar to that used by the 
Turtle Traders. The volatility of the underlying security is calculated using the Average True 
Range over a certain number of bars.  
 

N = AvgTrueRange(N_ATR_L); 
DV = N*BigPointValue; 
 
accountSize = STARTING_ACCOUNT_SIZE + NetProfit; 
 
dollarRisk = (accountSize) * .05;  
Cts = IntPortion(dollarRisk/DV);  

 
This approach risks a maximum of 5% of the total account size in any trade. The total number of 
units purchased is then dependent on both the volatility of the security and the account size. The 
Turtle Traders used a notional account size in their position sizing strategy. This meant that the 
size of their account did not change until the end of the month when it was updated based on 
their performance. Unlike the Turtle Traders, this strategy does not use a notional account size 
and always risks a maximum of 5% of the current size of the account. Should it use a notional 
account size then it could risk more than 5% of the real account if it were to enter a losing streak.  

Entry Rules 

The strategy enters a position when it identifies a divergence between the predicted 
direction of the price with the actual direction of the price. The predicted direction is calculated 
in the following manner: 
 

	 	 1 ∗ 1 ∗ _1	 	…	 		 ∗ ∗ _ 	 (6) 
 
The result of the sum is a number whose value is not as important as its sign. A negative number 
indicates that the price is falling and a positive number indicates the price will rise. This 
direction is compared to a fast moving average of the actual price of the pair. If they do not 
coincide then the strategy opens a position against the current movement of the price and in favor 
of the prediction. 
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Exit Rules 

Trailing Stops  

Once a profit floor is crossed, the strategy begins to place trailing stops to maximize the 
profits of the position. The Average True Range is used to adjust the placement of the trailing 
stops such that they are not tripped by normal price volatility. 

 
It is important to note that the strategy uses two different trailing stops depending on 

whether the position was increased as a result of the optimization through Maximum Favorable 
Excursion. The larger trailing stops allow the position to profit from the increase in the position 
size.  

Maximum Adverse Excursion 

The optimal position of the stops for the strategy is obtained through Maximum Adverse 
Excursion (MAE) analysis. This analysis is done following the optimization of the strategy. 
MAE compares percentage drawdown to percentage profit/loss. This allows the trader to identify 
the amount of drawdown after which the trade is most likely a losing trade. A stop loss placed at 
this level of drawdown reduces the maximum drawdown of the strategy. It is evident from the 
following MAE graph that positions that incur a drawdown greater than ~0.3% are more likely to 
result in overall loses.  
 
These positions are eliminated with the addition of the following conditions to the strategy: 

//For Long Positions 
If (MarketPosition = 1) and (C <= EntryPrice*(1.003)) then begin 
... 
//For Short Positions 
If (MarketPosition = -1) and (C >= EntryPrice*(0.997)) then begin 
... 

 
With the addition of these stop orders the maximum drawdown of the strategy was 

reduced from $465 to $197. This decrease in drawdown however, resulted in a sacrifice of the 
overall profits since some winning positions were eliminated. The choice between higher profits 
and lower drawdown depends on the trader and his goals. Given that clients typically scare away 
from large drawdowns, a fund manager may choose to sacrifice part of the profits to keep his 
clients calm.   
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Position Timeout 

Following an analysis of the trades it was determined that positions that lasted more than 
a certain number of bars usually resulted in losses. As a result, a condition was added to close 
these positions to avoid further loses.  

Position Adjustment 

Position Re-Evaluation and Re-Entry 

The nature of the strategy is to enter long trades that may last several days. In order to 
quickly exit losing positions, the strategy evaluates the OpenPositionProfit as well as the 
direction of the price. If it finds that the predicted direction of the price has reversed and that the 
current position is a loser, the strategy then reverses the position. The strategy allows the trade to 
develop for a day before evaluating the accuracy of the position.  

Maximum Favorable Excursion 

 Using Maximum Favorable Excursion Analysis, it is possible to improve the strategy by 
determining the type of trades that have a high likelihood of profit. These trades are identified by 
their run-up. As seen on the Maximum Favorable Excursion Graph, the trades with a run-up 
above 0.4% are mostly profitable. Since there are also some large losing positions past this 
percentage of run-up, the trader may wish to exclude increasing the positions based on the MAE 
as these losses will also increase. In a more ideal scenario, the losses would be concentrated 
towards the origin such that there are no losing positions past a certain percentage of runup. The 
trader could then increase the size of these positions to increase profits with little added risk.  
 
The increase of the position is achieved as follows: 

//For Long Positions 
If Close >= 1.004*EntryPrice and pIncreased = false then 
... 
//For Short Positions 
If Close <= 0.996*EntryPrice and pIncreased = false then 
... 
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Bad Entries 

The strategy will quickly exit any position where within the first 24 hours after entry the 
actual direction of the pair and the predicted direction match. Positions where this is true are 
most likely improper entries given the length of the exponential moving averages used to 
determine the direction.   

Optimization 

 The optimization of the strategy was performed using the TradeStation backtesting 
optimizer. The optimized values for the inputs of the strategies were obtained using the genetic 
optimizer given the extremely high number of combinations to test.  

Performance Report Analysis 

It is evident from the Strategy Performance Report that this particular strategy is not 
great; an informed trader would not make use of this strategy. Over the 6 year trading period 
over which the strategy was optimized, it only managed to generate an annual return rate of 
0.50% Furthermore, the Profit Factor and the Win/Loss Ratio of the strategy are extremely low 
at a mere 1.22 and 1.00 respectively. Even though the strategy wins more often that it loses, the 
size of the winners is practically the same as that of the losers. This results in low returns since 
only 54.2% of the trades are profitable.  
 

The Equity Curve shows that the strategy made most of its profits in the last two years. 
Prior to this period the strategy did not generate constant returns. It is likely that a fund manager 
would have disabled this system long before 2016 given that it did not produce significant profits 
for the first four years.  
 

On a positive note, the strategy has an entry and exit efficiency slightly higher than 50%. 
Given that more than 50% of the entries are efficient, it may be deduced that the strategy has an 
edge that could be exploited with a better exit strategy.  

 
Out of the 1,323 trades performed by the strategy over the 6 years during which it traded, 

only $115.55 resulted from outlier trades. This means that the bulk of the profits is obtained from 
the average trade rather than from unlikely trades.  
 

The average time spent within trades was reduced to 1 hour as a result of the tight stops 
placed by the MAE analysis. This means that some of the exit conditions such as the position 
timeout will never be met. This is not a problem, however, because the addition of the MAE 
stops improved the strategy.  
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System Quality Report 

 

Fig. 17 - Forex Correlation Divergence Strategy  

 
The System Quality Report provides the Expectancy for the system, which is the 

expected return per dollar risked. The Expectancy of this particular strategy is between $0.02 and 
$0.09 per dollar risked. With such low expected returns it would be extremely difficult to 
convince any trader to trade this system. The Expectunity tells a similar story with expected 
annual returns between $3.56 and $21.09 per year per dollar risked. Based on these results the 
system is not yet ready for trading; further development is required.  

Monte Carlo Analysis 

 

Fig. 18 - Monte Carlo Analysis - Forex Correlation Divergence Strategy 
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Fig. 19 - Trade Profit - Forex Correlation Divergence Strategy  

The Monte Carlo analysis graph plots the 5% confidence and 95% confidence equity 
curves. It is clear from the graph that the analysis is not very accurate since the current sequence 
falls outside of the range outlined by the two lines. A larger sample of trades is required in order 
to generate a more accurate prediction. The analysis presents the following conclusion: The 
trader may assume with 95% confidence that this strategy will generate profit. This does not 
mean that the strategy will not fail. At a 95% confidence interval the remaining 5% represents 
the possibility of the prediction being incorrect.  

A prediction for the equity curve over the last 134 trades is also provided and is based on 
a Monte Carlo analysis as well. It is observed from this prediction that the current sequence is a 
better outcome than the expected results with a 95% confidence interval. This suggests that the 
results of the last 134 trades were unlikely to occur.  

Finally, Market System Analyzer allows the trader to randomize the order of the trades in 
order to generate other possible equity curves should the same trading opportunities had occurred 
in a different order. Two of the most extreme alternate equity curves are shown. 

7.2.2 Overnight Gap Trading 

Description 

The overnight gap trading strategy attempts to exploit the overnight gaps in the stock 
market. On average, using a trend following approach it should be possible to predict the 
direction of the overnight gap. Since the overnight gap tends to be significant in some stocks, 
accurate prediction of the movement could be highly profitable. The strategy was inspired by 
studies such as those conducted by Cliff et al which show that the “US equity premium over the 
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last decade is solely due to overnight returns.” The overnight returns are consistently higher than 
those during the day. In their study, [55] conclude that the traditional explanations for this 
phenomenon such as risk, overnight earnings announcements and liquidity are not enough to 
explain the extent of the gap. They suggest that algorithmic trading might have a sizeable 
contribution to the overnight gap. Regardless of the reason behind the gaps, overnight trading is 
significantly more profitable than day trading.  

Position Sizing 

Kelly Criterion 
 The initial position sizing technique utilized in this strategy was the Kelly Criterion. The 
Kelly Criterion allows the trader to modify the size of the next bet based on the success of 
previous bets. The Kelly Criterion was originally used by gamblers to determine the percentage 
of their pot of money to risk on the next bet.  
 

	 ∗ 	   (7) 

 
The Kelly Criterion is a percentage, which is multiplied by the size of the account to 

obtain the amount to bet. This amount is then divided by the price of the security to determine 
how many units to buy. For a highly successful trading system, the Kelly Criterion could suggest 
to bet an extremely large percentage of the account. In order to eliminate the possibility of 
betting the entire account, the criterion percentage is multiplied by the maximum risk that the 
trader is willing to take. This caps the criterion percentage to the trader’s maximum risk. When 
this position sizing strategy was implemented, the trading system ceased to trade within the first 
few days because of the low ratio of winning to losing trades. 

  
It was found that the strategy performed best when a notional account size was used. This 

approach is similar to that used by the Turtle Traders whose account size was updated, according 
to their performance, once a month. This method allows the strategy to risk a larger percentage 
of the account than the trader may be comfortable with. 

 
A trader with a notional account size of $10,000 can place a $300 bet that represents 3% 

of the account (the actual account size is also $10,000). Following a losing streak, the actual 
account may be reduced to $5,000, but the notional account remains at $10,000. The next $300 
bet still represents 3% of the notional account, but it represents 6% of the actual account. The bet 
is now much larger than what the trader may be willing to risk per trade. Although this approach 
may lead to larger trade risk, it allows the strategy to recover from losing streaks by increasing 
the bet size. If the strategy used a fractional approach, the bet size would decrease in tandem 
with the account size. Eventually the bets may be very small and the account would not recover 
from the small profitable trades. By maintaining the size of the trades the potential profit from 
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winning trades remains high and the account could more easily recover. This is an extremely 
dangerous approach since a large enough losing streak would easily wipe out the account 
because the potential losses also increase in size. 

Entry 

The entries are determined using a sum of indicators multiplied by a weight that is 
assigned through optimization. The developed strategy weighed the following: 

1. The direction of the price in the last hour 
2. The direction of the price in the last day 
3. The direction of the price in the last week 
4. The direction of the price in the last six hours 
5. Direction of the first bar of the day 
6. Direction of the related commodity in the last hour 
7. Value of the TRIN (Arms Index) 

Since the sign of each indicator represents the direction of the price, the sign of the sum is 
assumed to represent the most likely direction of the price. If the sum is negative then it is likely 
that the price would gap down and vice versa. This prediction is cross checked with the 
exponential moving average crossover of the price of the traded security.  

Exit 

The strategy will exit the position as soon as the market opens if the position is not 
profitable. If the position is profitable then it will attempt to capture extra profits using a trailing 
stop that is adjusted for the price volatility using the Average True Range. Should the trailing 
stop not get triggered during the trading day, the strategy closes the position at 3PM before 
deciding in which direction to enter the market for the following gap.  

Position Adjustment 

 Since the strategy predicts the direction of the overnight gap there is no place for position 
adjustment because the market is closed. The position size could be increased if the position was 
profitable, however the strategy only predicts the direction of the overnight gap, not the direction 
of the price throughout the day.  

Optimization 

The weights as well as the lengths of the exponential moving averages were optimized 
using the TradeStation backtesting optimizer.  

Performance Report Analysis 

The Strategy Performance report reveals that this particular strategy, although seemingly 
profitable, is not good enough to use for real trading. Both the profit factor and the Win/Loss 
ratio are very close to one meaning that overall the strategy will generate very small profits. This 
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is due to the fact that it loses almost as often as it wins and the size of the wins are almost the 
same as the losses. 

 
The Equity Curve shows that the returns of the strategy are somewhat consistent, with the 

best performance taking place in the last three years of trading. Interestingly, the bulk of the 
profits is made between the months of March and September suggesting that a possible step 
towards increasing the success of the strategy may be limiting trading to this part of the year. A 
quick look at the Underwater Equity Curve, which shows the monthly drawdown, paints a scary 
picture for a hedge fund manager. Between 2013 and 2015 the strategy topped 20% drawdown, a 
figure that would scare away most investors. Had this strategy traded between those years, a 
manager would have disabled it soon after it began to hit 10% drawdown in 2013.  

 
The entry and exit efficiency graphs reveal that both entry and exit are slightly above 

50% efficiency. Immediate improvements could be made to the exit strategy to increase the 
efficiency slightly and closer to that of the entries. 

 
Analysis of the trades reveals that only a small percentage of the overall profit is the 

result of outlier trades. This result is positive in that it shows that the returns from the strategy 
are consistent between trades. Consistency is key for a hedge fund manager since investors tend 
to be risk averse and appreciative of consistent returns. Having large unpredictable losses is not 
an attractive quality for most investors. 

 
The maximum drawdown of the strategy is quite large compared to the average size of 

the winning trade as well as compared to the overall profit over the trading period. Although the 
intraday drawdown is an unrealized loss, the possibility of having large losses many times bigger 
than the average profit is a good indicator that the strategy needs further development. Overall, 
even though the annual rate of return is 17.72%, the low profit factor, win/loss ratio and large 
drawdown make the strategy unsuitable for trading. 
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System Quality Report 

 

Fig. 20 - Overnight Gap Trading Strategy 

 
The system quality report shows the expectancy and expectunity of the trading system. 

The report confirms that this particular trading system is not ready for deployment in the market. 
The expected return per dollar risked is extremely low $0.15-$0.03. With such a low expected 
return the investor is better off collecting interest payments from deposits in a savings account. 
The annualized expectancy is similarly low at $34.68 per dollar risked.  

Monte Carlo Analysis 

 

Fig. 21 - Monte Carlo Analysis - Overnight Gap Trading Strategy 
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Fig. 22 - Equity Curve - Overnight Gap Trading Strategy 

 
The Monte Carlo report produced by Market System Analyzer suggests that toward the 

end of the trading period the strategy began trading better than expected. This is not concerning, 
however, because at the 95% confidence level the strategy is still expected to produce a profit 
and the equity is expected to continue rising. A prediction over the last 60 trades shows that at 
the 95% confidence level the strategy was expected to perform worse than it did. This signals 
that it is possible that if the strategy continues trading it may produce losses.  

7.2.3 Forex and Stock Market Breadth 

Description 

It is expected that a correlation exists between the market breadth indicators and the safe 
haven currencies in large timeframes greater than a day. This strategy, however, attempts to 
determine if there exists a correlation in a much smaller time frame: five minutes. The 
motivation behind exploring such a small time frame is the possibility that given the use of high 
speed trading algorithms by the major players in the market, there may exist the possibility that 
these algorithms are able to exploit even small movements in these timeframes and to trade 
between markets.  

 
A strategy developed to determine whether a short term relationship between a set of 

market breadth indicators and safe haven currencies exists. The Market Breadth indicators used 
in the study are TRIN and TRINQ while the safe haven currency pairs used are USDJPY and 
USDCHF. 



70 

Position Sizing 

The strategy uses a volatility adjusted position sizing approach similar to that used by the 
Turtle Traders. The volatility of the underlying security is calculated using the Average True 
Range over a certain number of bars. Refer to the Forex Correlation Divergence Strategy for a 
more detailed description of this position sizing strategy.  

Entry 

The strategy makes use of moving average crossovers to determine that the market 
conditions are ideal for a long entry. The inclusion of a market choppiness indicator stops the 
placement of trades when the market is choppy. Since the strategy looks to exploit short term 
trends, it is essential to avoid the placement of trades during a choppy market. Trend following 
strategies perform their worst during choppy markets.  

Exit 

 The strategy will exit the trade when the exponential crossover indicates that the quote 
currency is depreciating. Once again trades are only executed when the market is not choppy. 
The strategy will not exit the trade until the market is not choppy.  
Losing positions are eliminated after an optimized number of bars.  

Position Adjustment 

 Positions are not adjusted given the short timeframe in which this strategy trades.  

Optimization 

 Optimization was achieved using the TradeStation backtesting optimizer.  
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Performance Report Analysis 

 

Fig. 23 - System Quality Report - Market Breadth Strategy 

 
 As shown by the performance report, this strategy fails to produce a profit. One 
concerning aspect of this strategy is the extremely low number of trades executed over four 
years. For a strategy that trades using a small timeframe it was expected that there would be a 
larger number of trades over such an extensive trading period. Perhaps the conditions specified 
for trading are too stringent apart from not optimal. 
 
 In contrast to the failure for the strategy at the five minute time frame, the same strategy 
optimized over a daily time frame resulted in profit. The Monte Carlo Analysis and System 
Quality Reports were not carried out for the strategy using the five minute timeframe given the 
failure of the strategy to produce a profit. The results presented in the appendix are for the 
strategy using the daily time frame. 
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Fig. 24 - Monte Carlo Analysis - Market Breadth Strategy (5 Minutes) 

 

 

Fig. 25 - Trade Profit - Market Breadth Strategy (5 Minutes) 
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Fig. 26 - Monte Carlo Analysis - Market Breadth Strategy (Daily) X-Axis: Trades. Y-
Axis: Equity ($) 

 

 

Fig. 27 - Trade Profit - Market Breadth Strategy (Daily). X-Axis: Trades. Y-Axis: 
Equity ($) 

 
As evidenced by these reports, the market breadth strategy applied to a daily time frame 

has a positive expectunity higher than one and comparable to the success of the Forex 
Correlation Divergence Strategy. However, the expectunity is not good enough to merit real 
trading with the strategy. Trade analysis further reveals that the strategy is only successful in 
40.7% of trades in average. Immediate improvements may be achieved by removing the long 
trades as only 24.32% of these are successful while short trades are successful 56.52% of the 
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time. Furthermore, the maximum drawdown is exceedingly high at $7,573. Drawdown this high 
do not elicit a sense of confidence in traders, especially in combination with the low success rate 
of the strategy. The unrealized max drawdown is worse still at $19,768 given that this represents 
approximately 23% of the profit over the four year trading period. In summary neither market 
breadth strategy is ready for real trading. The strategy using daily bars requires improvements to 
reduce the drawdown, which may be achieved by either correcting the long trades or removing 
them completely.  

7.2.4 Market Sentiment Indicator 

Description 

A Python script was developed to scrape headlines from Investing.com, and to perform 
sentiment analysis on the headlines. The use of news sentiment analysis is a well-documented 
approach to trading. In this sentiment indicator however, the headlines are analyzed rather than 
the body of the article. The motivation behind this approach is that the headlines are a short 
summary of the body of the article and may thus contain enough information to make an accurate 
prediction regarding the sentiment of the article. The site Investing.com was chosen because it is 
an aggregator of news articles from multiple sources and it provides no restrictions regarding 
scraping of the site unlike WSJ and Bloomberg. 

 
The Python script also generated bigrams from the database of headlines scraped from 

Investing.com. Bigrams are every combination of word pairs in a sentence. For the purpose of 
this analysis, the collected bigrams are those that occur with higher frequency than usual. The 
NLTK library was used for the generation of the bigrams. Refer to the appendix for a list of 
bigrams collected from the headlines. The bigrams were classified as either negative or positive 
by the author. Given that the classification was done by the author it is possible that some of the 
bigrams may be misclassified due to confirmation bias. Of all the bigrams produced by the 
NLTK library only those that did not contain words present in either of the Loughran & 
McDonald (L&M) lists were selected. This is because the sentiment of a word is assumed to be 
constant except under the presence of the negator. None of the bigrams contained the negator, so 
the inclusion of a bigram with a word already present in the L&M list would only result in the 
double counting of that word and thus introducing more noise into the analysis. The sentiment 
indicator searches for the word ‘not’ in order to account for the negation of words. For example, 
the bigram ‘not good’ does not have a positive sentiment as suggested by the lexicon rather it has 
a negative value due to the presence of ‘not’. The algorithm will assign the opposite sentiment to 
any word included in the lexicon that is preceded by the word ‘not’. The overall sentiment of a 
headline is calculated by subtracting the count of positive words with the count of negative 
words in the headline. The resulting sentiment corresponds to the sign of the result. 
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A simple trading strategy was developed to test the ability of the sentiment indicator to 
predict the movement of the price. The strategy uses exponential moving average crossovers to 
trigger trades. The strategy was also optimized using maximum adverse excursion analysis to 
reduce the maximum drawdown. The performance of the strategy was compared over multiple 
forex pairs and indexes, for each of which a database of headlines was built by scraping 
Investing.com. Since some of the symbols were less popular and generated less news articles, the 
sizes of the databases were not identical.  

Indicator Analysis  

 As evidenced by the pie charts included in the appendix, more headlines were classified 
as negative when the bigrams and negations were taken into account. The results were not 
consistent throughout forex pair, however, as evidenced by the analysis of EURUSD where there 
was no change in the number of headlines per category. The accuracy of the prediction was 
tested by comparing the prediction to the actual movement of the market for the same day. A 
table summarizing the results is available in the appendix. The results varied and the top 
predictions were USDJPY and DXJ while the worst predictions were USDCHF and EURUSD. 
These results were reflected by the performance of the trading strategy using the corresponding 
assets. The strategy performed best with USDJPY and worst with USDCHF. Naturally the assets 
for which the database of headlines was larger resulted in a larger number of trades. This is 
evidenced by comparing USDCHF, for which there was few headlines, with USDJPY or 
EURUSD which had thousands more. It is recommended that the indicator is used only with 
assets for which there are many headlines since a larger number of headlines per day will result 
in a higher likelihood of accurate prediction and more trades.  

Position Sizing 

To simplify the strategy and to facilitate the comparison of the performance of the 
strategy with different forex pairs, the position size was fixed to one mini lot.  

Entry & Exit 

The entry strategy uses moving average crossovers to signal entry and exit conditions.  

Optimization 

Each strategy was optimized using the TradeStation backtesting optimizer.  
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Performance Report Analysis 

 

 

Fig. 28 - Sentiment Indicator - Selected Measures Comparison 

 
Analysis of the performance reports revealed that the strategy performed best when it was 

fed with the indicator that did not account for ngrams and negation. This is especially evident for 
USDCHF where the strategy with ngram produced a total profit of $877 while without ngrams it 
produced $3,175. A comparison of the profit factors again confirms that the use of the ngram 
decreases the success of the strategy.  
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System Quality Analysis 

 

 

Fig. 29 - Sentiment Trader: USDJPY  

 
 

 

Fig. 30 - Sentiment Trader: USDCHF 

 
The quality of the strategy trading USDJPY and USDCHF was compared since these were two 
contrasting cases in terms of other success metrics. While USDCHF reports a higher expectunity, 
the system quality is higher for USDJPY given the lower variability of earnings in trades. 
Compare the standard deviation of 0.51 for USDJPY with 2.09 for USDCHF. Neither 
expectunity is high enough to merit real trading, but it may be concluded that the system works 
better with USDCHF. The win/loss ratio and average profit factor are also both also higher for 
USDCHF.  
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Monte Carlo Analysis 

 

 

Fig. 31 - Monte Carlo Analysis - Sentiment Trader Strategy: USDCHF 

 

 

Fig. 32 - Monte Carlo Prediction - Sentiment Trader Strategy: USDCHF 
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Fig. 33 - Monte Carlo Analysis - Sentiment Trader Strategy: USDCHF (ngram) 

 
 The majority of the Monte Carlo Simulations showed that the trade data extended beyond 
the 5% confidence boundary. This suggests that there was not enough data for the simulation to 
provide accurate results. Regardless, all but one of the simulations suggested that the strategy 
would not continue to deliver some level of profit in the near future. USDCHF with ngram was 
the only simulation where it was obvious that the results would remain slightly flat. Furthermore, 
in predictions using the last 50 trades where the actual data did not cross de prediction 
boundaries, most predictions suggested that the strategy would produce flat results or losses with 
a 95% confidence. The Monte Carlo analysis graphs are available in the appendix.  
 
Strategy Analysis 

The trading strategy devised to test the indicator was applied to all forex pairs twice: once 
accounting for bigrams and negation and once without accounting for these two characteristics.  
The results of the strategy under each condition are listed in the appendix. A comparison of the 
results of the application of the strategy for the past four years (2014-2018) shows that the 
strategy performs best when it does not account for the bigrams. The deterioration of 
performance with the addition of bigrams is likely due either to the misclassification of the 
bigrams or to the incorrect assumption that the bigrams contain a sentimental value. Bigrams that 
were incorrectly included in the analysis would have resulted in the addition of noise into the 
prediction. Interestingly enough, the addition of the ngram to the analysis results in a larger 
number of trades in comparison to the strategy that uses the indicator without the ngrams.  
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Fig. 34 - Sentiment Indicator - Percentage Accuracy Comparison 

 

8. System of Trading Systems 

8.1. Rationalization 

As explained in the overview of this report, one of the major goals of this research is to 
produce an AI-driven “system of systems” which manages trading with the algorithms described 
above. The development of this system is driven by the central idea that both manually generated 
trading algorithms and AI-based pattern detection have unique strengths and weaknesses.  

On the one hand, manual trading algorithms can take into account various trade-by-trade 
intricacies, including stop losses, margin trading rules, commission costs, and profit targets. 
Manual trading algorithms can be contoured to consistently make money when specific patterns 
are present. Their weakness, however, is designing suitable entry and exit conditions that 
properly identify and fully profit from the patterns they are designed to exploit. Manually 
generated algorithms can run into cases of false positives where their target pattern is 
misidentified, upon which there is a high risk that money will be lost. 

 
On the other hand, artificial intelligence excels at finding patterns in data. A neural 

network’s layered perceptrons allow for the system to extract non-trivial predictive relationships. 
As described in the literature above, abundant research has been done to demonstrate the ability 
of neural networks to predict the future value of stocks. It is plausible that neural networks have 
the predictive capacity to discover the sorts of patterns that manual algorithms could trade well. 
However, as explained above, there is no way to directly input the rules inherent to individual 
trades, like stop losses, margin trading rules, etc. Neural networks can take a set of features and 
produce predictions; this is a far cry from a robust trading algorithm that manages each trade.  
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 Work has been done to reduce the weaknesses of both of these implementations. In the 
case of manually-generated trading algorithms, each algorithm can be manually bundled into a 
system that minimizes variance of return, thus insulating against cases where one algorithm’s 
mispredictions dominate the portfolio. In the case of AI-driven indicators, excess work must be 
done to translate raw predictions into a workable trading system, and often the raw predictions of 
the indicator itself are rendered meaningless when factors like commission cost and slippage are 
taken into account. 
 
 The solution presented by the system of systems approach is to allow both a manually-
generated component and an AI-driven component control complementary parts of the system. 
In this way, each component may buffer the other’s weaknesses, leading to a robust and 
consistent trading system. At its fundamental level, the system of systems uses manually-
generated algorithms to generate the actual trades of the system. They can best handle the 
minutiae of each trade and ensure that the system makes money on a profitable pattern. For each 
algorithm, the system generates a neural network that decides how heavily to rely on that 
algorithm for a given trading period. The network thus has two functions: first, it implicitly 
discovers the patterns for which the underlying algorithm performs best, and second, it tries to 
predict future market patterns to determine how well the algorithm will perform. The critical 
feature of this design is that the neural network component only has to focus on pattern 
prediction, and the manually generated algorithms can be designed to maximize trade by trade 
profit on specific patterns. This is a system of systems, because each manually-generated sub-
system is being managed by a central AI-generated super-system. 
 
 It is under this central design principle that we rationalized the construction of the system 
of systems to manage our trades. By feeding the algorithms listed above into the system, and 
generating a network for each, the system may optimize performance for the algorithms as a 
whole. 
 

The following sections will describe the implementation of the system of systems and 
present results on its performance. Section 8.2 provides a high-level overview of the design 
decisions taken at the outset of implementation. Section 8.3 through 8.5 describe the 
implementation of each component of the system. Finally, Section 8.6 analyzes the performance 
of the system of systems, and Section 8.7 presents conclusions and offers some reflections. 

  



82 

8.2 Design Overview 

8.2.1 High-Level Breakdown of Design Goals 

Since the individual manually traded algorithms are borrowed directly from the 
algorithms described above, the rest of this section will discuss the development of the AI 
supersystem that manages these algorithms. Supersystem development can be broken down into 
three major components: 
 

1. A backtest data generator, which farms and organizes data to generate examples for 
supervised learning. 

2. A neural network framework which can train various network architectures and visualize 
predictive accuracy. 

3. A trading platform which actuates trades based on predictions from the trained neural 
network and displays basic performance metrics of the system as a whole.  

 
This design structure makes sense since it accommodates the general features of a 

successful AI-driven application. First, raw data must be accumulated and organized into a 
training set for the neural network. The platform that generates the training set will make 
decisions on the format of each training example. This includes things like input data size and 
the format of the network’s predictions. Most importantly, this component will decide on the 
kinds of data that are represented in the input features; it is therefore responsible for transforming 
raw data into each category of input feature. An API would be used here to simulate trading with 
historical datasets. This component should return generated training sets with fully-calculated 
training examples. 

 
These examples must be ingested by the second component to build and train actual 

neural network instances. This component must process the examples into training, testing, and 
validation sets; it should also provide preliminary metrics on data variance and predictability. It 
then needs to interface with any number of neural network APIs to construct the networks 
themselves. Finally, the component should house a set of rigorous testing applications and data 
visualization tools to accurately assess the predictability of the networks. This component 
produces a fully generated set of weights and biases which hold the state of a trained network. In 
a sentence, this is the generic neural network training set that almost any AI project must have. 

 
Finally, the third component uses the generated neural network to balance trading 

algorithms and conduct trading. An API should be employed to generate trading strategies and 
simulate a trading session. A lot of code is therefore shared between the first and third 
components, since both need to simulate trading sessions with different algorithms. Just like in 
the second section, a set of testing applications should be employed to test profitability of the 
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system, along with variance, expectancy, etc. This system should be able to both trade using 
historical data and trade in real time. 

 
Our implementation of the supersystem follows the design paradigm described above. 

We focused on building a working version of each component before moving on to the next one, 
since each component relies on outputs from the last one. As we were building the system, our 
design perspective was to sequentially transform raw financial data into an informed trading 
platform; this helped guide the order in which we implemented code. As described later in this 
report, we understood from the beginning that we reasonable only had enough to present a 
“Proof of Concept” for the supersystem design; therefore, we only did as much as we needed to 
finish each component and generate presentable results. In any time that remained, we returned 
to each section to add additional features, error checking, and unit tests.  

8.2.2 Implementation-Wide Coding Decisions 

Language Choice: Python 

 
From the outset of the project, we were behooved to make decisions on the tools we 

would use to implement the system. The first and most fundamental choice we made was on the 
programming language of our implementation. As important as this choice is, it was not a 
difficult one to make; we knew almost immediately that Python would be our language of 
choice. Python is very well known for its neural network libraries, including Tensorflow and its 
API wrapper, Keras. We understood that we could quickly generate trained neural networks 
using these libraries because they abstract away a lot of the technicality themselves. Python also 
has many data analysis and visualization tools, like matplotlib and scikit, which would ease our 
burden of reporting the predictive capabilities of our networks. On top of this, many APIs exist 
in Python that can run trading simulations with historical financial data. We understood from the 
start that this project would be infeasible if we needed to make an algorithm backtesting API 
from scratch; this made the API options afforded by Python very attractive. In general, we found 
that Python eased the requirement for us to build the large programs that are foundational to our 
system, allowing us to focus more on the system itself. 

 
Besides the API support Python offers, Python itself is a very good language for data 

manipulation. The language itself is designed to be simple and readable, so it is easy to connect 
together sections of code that implement different parts of the supersystem. Tools like numpy 
also make it easy to generate and manipulate training data. There is very little overhead to apply 
different APIs to the data. This allowed us to provide a robust and visual analysis of the system’s 
results. On top of all of this, Python has an active community of users, especially in the field of 
artificial intelligence. Community support is always useful when implementing a project that 
spans many different areas of the language.  
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Financial API Choice: Zipline 

 
While it was not difficult to choose a programming language for this project, the correct 

choice of finance API was not immediately obvious. Before continuing, the term “finance API” 
should be well defined. A finance API at its core is able to represent different trading algorithms 
and “backtest” those algorithms with historical financial data. It should operate on data sets from 
different sources and on different time scales. It must be adaptable enough to accurately 
represent the strategies described above, and must be detailed enough to accommodate for 
trading peculiarities like stop losses, profit targets, etc. There were other metrics we evaluated 
beyond the functionality of the finance API itself based on how easily we could integrate the API 
into our larger system. While we were not completely opposed to paying money for an API, we 
were heavily biased toward finding a free solution for the system. We also wanted to find an API 
that would separate itself from a Web service as much as possible. The reason for this was 
twofold- first, we wanted to make the system of systems as independent of other services as 
possible, and second, we knew that a Web-based API like Quantopian limits the number of 
libraries that can be used alongside the API. We were willing to accept the extra time and effort 
necessary to work with an open-source API. 

 
Bearing the above parameters in mind, we decided that Zipline would be a suitable 

finance API for the system of systems. Zipline is an offline implementation of the Quantopian 
Web API. As a result, a lot of functionality and documentation is similar between the two. The 
Zipline project repository is regularly maintained, which minimizes the risk of us relying on 
discontinued or deprecated code. Not only is Zipline free, but it also accepts datasets from 
arbitrary sources provided that they fit a specific data format. This is a very large benefit for us 
because Quantopian’s base data is insufficient for algorithms at small timescales. Zipline’s use of 
a main state object provides a centralized means to retrieve any data we need for backtest 
generation. We believe that the benefits outlined above make Zipline the best candidate for our 
application. 

 
Of course, Zipline does not come without its faults. Since Zipline is open source, it relies 

on free APIs to acquire basic information it needs to run simulations. It relied on the Google 
Finance API until that library became defunct in 2018; after that, we needed to find a substitute 
API (in our case, Yahoo Finance) and manually substitute the API in the Zipline source code. 
Also, Zipline’s documentation does not cover all that the library has to offer; this led to a lot of 
trial and failure as we dove deeper into using advanced functionality. As a result, we have found 
a lot of information which we believe would be beneficial to add to the documentation. We 
understood that these issues would be present when we decided on using the Zipline API. We 
accurately assessed that Zipline’s positives were worth taking extra time to work with an open-
source API.  
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Dataset Choice: TradeStation 
 

The final choice we made before beginning the implementation of the system was the 
historical data source we would use to run Zipline’s simulations. Thanks to Zipline’s abilities to 
ingest generic data sources, we were free to pick from a diverse set of dataset sources. We were 
mostly looking for two parameters: cost and data variety. As a common theme of this report, we 
were heavily biased towards finding free or open-source solutions. On top of this, we wanted to 
find sources that offered a variety of assets at different timescales, up to minute-bar data. With 
that being said, the following list below provides the pros and cons of some of the sources we 
considered: 
 

● eSignal: 
○ - API documentation webpage 404s 

● Interactive Brokers: 
○ + Available through the use of official libraries for Java, C++, Python, and C# 
○ - Convoluted pricing structure 

● TradeStation: 
○ + Minute-by-minute market data available going back 20+ years 
○ + Already available to students taking this IQP 
○ - Data has to be manually exported (CSV) from the TradeStation desktop client 

(Windows only!) under the plan available to WPI students. 
○ Web API available (JSON or XML) for a $21 / month fee after being  

 reviewed by TradeStation.  
● Quandl: 

○ + CSV, JSON, and XML formats 
○ + Libraries available for R, Python, and Excel 
○ + Free WIKI stock price dataset available – mirrored by Quantopian, bundled with 

Zipline by default 
■ Daily pricing data for 3000 publicly-traded American companies. 

○ + A large number of additional datasets are available for free (including daily pricing data 
for Bitcoin and Litecoin and daily pricing data from the Tokyo Stock Exchange) 

○ - A large number of more detailed paid datasets are available as well. 
○ - Esoteric “alternative data” is available for an undisclosed price. 

● Alpha Vantage: 
○ + Freely available API with intraday, daily, weekly, and monthly historical stock and 

cryptocurrency data. 
○ + CSV and JSON formats 
○ + Provides a wide variety of standard indicators on demand 
○ - Intraday data only spans the last 10 to 15 days 

 
We were most impressed with TradeStation’s ability to provide detailed minute-by-minute data 
for a very large variety of stock assets. We also liked Quandl’s ability to generate datasets for 
unconventional assets like cryptocurrencies. While TradeStation typically has a large fee, our 
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access to the TradeStation platform provided by the IQP allowed us to farm all the backtesting 
data we would need into CSVs for permanent use. We, therefore, decided to use TradeStation as 
our primary dataset source. For any specialized assets unavailable to TradeStation, we agreed 
that we would pay a fee for Quandl’s services.  
 
Neural Network API Choice: TensorFlow  
 

As explained in the design overview above, one of the goals of this project is to use 
neural networks to classify trading algorithms. To complete this task, we needed to find an API 
in Python to handle the underlying design and implementation of the networks themselves. We 
wanted to abstract away as much of the internal neural network architecture as possible, leaving 
us with a high-level API that could quickly build networks of varying architectures. Tensorflow 
was clearly the library of choice to implement our networks. Tensorflow enables the 
implementation, training, and testing of many diverse network architectures. It also has the 
capability of reporting advanced performance metrics which are key to diagnosing the factors of 
network error described in Section 5. Finally, Tensorflow has rich documentation and wide 
community support which we took advantage of throughout the project. 

 
The decisions detailed above were made before implementation began for the system of 

systems. The following three sections detail how each subsystem was designed and 
implemented, guided by these project-wide decisions.  

8.3 Implementation of the Backtest Data Generator 

The backtest data generator is the most important component of the system of systems, 
and by necessity the first to be completed. As a general rule of thumb, most time in any AI 
project will be spent writing code to generate and tune training samples. Our case was no 
exception, for this component of the code took half a year to reach a working state. As a result, 
this subsystem relies on many components which in turn use tools from a wide range of external 
libraries.  

8.3.1 Desired Behavior of the Backtest Data Generator 

As explained in Section 8.2, the backtest data generator must take raw historical financial 
data and manually-generated algorithms and produce a set of training examples with which a 
neural network could be trained. Each training example reflects the operation of the manually-
generated algorithm over a period of historical training data. It consequently represents both the 
financial context of that historical period and the performance of the algorithm. The backtest data 
generator must therefore collect financial behavior in whatever context is most fitting. It then 
must run an algorithm backtest API (in our case, Zipline) over the same historical period to 
process how the algorithm would have performed over that period. 
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Our training examples take past performance as input features and return future 

performance as the target for the network to predict. Therefore, two simulations are run for each 
example, with the second simulation starting when the first simulation ends. The first simulation 
is paired with financial data to generate the input features; the second simulation is converted to 
some metric for the output of the network. In this way, the neural network must predict the 
performance of an algorithm over the next n time periods, given the last m time periods of 
financial data and performance. Each training example varies based on the asset it is using and 
the reference point in time from which the two simulations are run. For instance, a training 
example could be generated for AAPL on 5/07/2005. The first simulation would run from 
05/01/2005 to 05/07/2005 to generate performance data for the input feature, and the second 
simulation would run from 05/07/2005 to 05/14/2005 to generate the performance metric that the 
network needs to predict. In this way, a stock can be used to generate many training examples by 
assigning each one a unique reference date. 

 
To achieve the goal of generating training sets, the backtest data generator needs several 

components. First, the generator needs a parser to transform raw historical data from arbitrary 
sources into data usable by our financial API. Code must be built to leverage Zipline’s 
backtesting abilities such that backtests can be arbitrarily defined and run with different 
parameters. Any algorithms written for TradeStation must be rewritten in Python so that Zipline 
can run backtests with them. This includes porting over indicators available in TradeStation as a 
custom external Python library. A system must exist that uses Zipline to measure historical data 
and algorithm performance. In turn, different performance indicators and financial indicators 
must be programmed manually into the system. Finally, a file I/O system should exist that loads 
training examples into .csv files and saves them for the neural network to train on. 

 
The following subsections detail how each component of the code was implemented. 

Reasons are also provided for why certain financial and performance metrics were used in the 
training examples. Whenever possible, code will be shown to illustrate how each component was 
implemented into the data generator. The majority of this section will describe training set 
generation for the convolutional networks; a subsection will be dedicated at the end to present 
the peculiarities of LSTM data generation. 

8.3.2 The Data Ingestion Pipeline 

Zipline represents sets of financial data internally in its own data bundle format. By 
default, it has access to the quantopian-quandl bundle, which encapsulates quandl’s WIKI dataset 
for use in Zipline. In order to achieve our goal of using TradeStation data, we created a Python 
module that can bundle financial data in CSV form for use with Zipline. 
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Our implementation of this is the FileCSVBundle class. The FileCSVBundle class utilizes 
the Pandas function read_csv() to represent a given csv as a Pandas DataFrame and the standard 
Zipline bundle api to package and ingest the data. 

8.3.3 Integrating Zipline into the Generator 

After transforming the data into a state that Zipline could accept, we began to apply 
Zipline’s API to the generator. Most importantly, we created Python classes with member 
functions that had Zipline functionality built into them, so that users of the system would not 
need to interface with Zipline directly. This helps maintain the implementation-agnostic design 
goals we had in mind. We knew that future maintainers of this project might want to replace 
Zipline with a more powerful backtesting API, which class encapsulation makes more feasible. 

 
The central class that implements Zipline functionality is the Strategy class. It maintains 

two types of information: first, it holds a strategy itself which Zipline can ingest, and second, it 
holds metadata which the backtester uses to test the strategy. In this way, each strategy is 
“bound” to a specific set of backtest parameters. While this limits how strategies can logically be 
organized, we felt it was useful in the context of how we were organizing the generator. An 
essential method of the Strategy class is the run_backtest function; this method instantiates and 
runs a Zipline simulation, returning the results of the simulation back to the data generator. Other 
member functions initiate, modify, and maintain the parameters that configure each Zipline 
backtest. This includes the data bundle to be used, the asset to trade with, and the start and end 
date of the simulation. 

 
The Strategy class is implemented in two subclasses: the DailyStrategy and the 

MinuteStrategy. As the titles imply, DailyStrategies are designed to operate on daily bar data, 
while MinuteStrategies operate on minute bar data. This distinction is necessary because Zipline 
follows the NYSE’s historic trading calendar to run its simulations. Work must explicitly be 
done by us to make sure our requested trading periods result in the same number of trading days 
or minutes. For example, our system needs to know if a trading period falls on a federal holiday 
and add one extra day of trading to compensate for the day lost. Trading parameters are 
encapsulated in a StrategyParameters class which handles the low-level work of transforming 
dates on the financial calendar to produce start and end times. 

 
Each Strategy class houses its own trading algorithm which Zipline runs in its backtest. 

Zipline adopts arbitrary algorithms by only requiring a function that can generate Zipline-defined 
buy and sell orders. This function gets called at each trading bar of the backtest. Zipline updates 
a context object with prior financial data which the algorithm uses to make its buy and sell 
decisions. For example, the algorithm may ask Zipline to give it the past ten days of open and 
close prices, from which the algorithm could make a buy order. Zipline simulates the process of 
ordering an asset as factually as possible. It factors for commission, slippage, and even taxes for 
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each order made. Orders can be made by absolute share number or by portfolio percentage. Each 
piece of Zipline’s order functionality has a wrapper method in the Strategy class for the hosted 
trading algorithm’s use. By utilizing both Zipline’s context data structure and order API, the 
Strategy class allows arbitrary trading algorithms to be implemented. 

 
Since Zipline is written in Python, its functionality is mutable at runtime. This means that 

while the code is running, a Zipline backtest can be reconfigured to include or omit arbitrary 
information. Zipline reports a day by day summary of a backtest simulation as a Pandas 
Dataframe. Since Python’s runtime mutability extends to class members, this dataframe can 
report any information desired at any time during backtest data generation.  
For example, we needed Zipline to report additional information to calculate performance 
metrics that we wanted to append to the input feature vector. 
 

The trading algorithms embedded within each Strategy class take advantage of Zipline’s 
mutability to record data necessary for training set generation. The Strategy class has a set of 
helper functions which must be called in each trading strategy to add this necessary data. These 
helpers also modify the behavior of the algorithms themselves. The central helper function, 
nn_record, is responsible for keeping track of the start and end dates of a trade, which Zipline 
does not do automatically. It also compensates for peculiarities in how Zipline interprets the 
trading calendar which make some orders execute a time unit after an order is placed. 

  
Another set of helper functions ensure that all trades have completed by the end of a 

simulation. This is important because the results of a backtest would be inaccurate if all positions 
were not liquidated by its end date. The helpers allow for two types of behavior: forcing total 
liquidation and preventing any new positions. In the former case, a strategy may be forced to 
cancel all orders, sell all positions, and essentially stop trading. In the latter case, a strategy may 
only be told to stop initiating new orders after a specific date. While forcing total liquidation 
guarantees that no positions will remain when the simulation ends, it may force a trade to 
complete prematurely, skewing the performance of the algorithm. Our general technique adds 
extra “sell time” beyond the desired time frame of a backtest, during which no new positions can 
be made but positions may be sold. After that sell time, the strategy is forced to liquidate all 
positions. This technique makes an effort to preserve the true behavior of the algorithm, but also 
ensures that all positions are liquidated. 

 
Zipline is not just used in the backtest data generator for the assembly of strategies and 

the operations of simulations. We also use Zipline as a generic tool for farming financial data 
that we want to add to our training examples. This is done by creating and running a special 
Zipline strategy called the Generator in parallel with each backtested strategy. The generator 
never actually makes trades; all it does is populate its DataFrame of results with lots of financial 
data and calculated indicators that can be used for the input feature vector. Zipline backtests 
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support a Pipeline feature which calculates different indicators and maintains their current value 
for any strategy to use. For example, an exponential moving average indicator could be loaded 
into the pipeline so that a strategy is always made aware of the n-day EMA of its asset when it 
generates orders. We were able to farm arbitrary financial data from Zipline by loading the 
pipeline with the various indicators we wanted and running a dummy strategy that simply reports 
those indicators in the DataFrame. By running both the Generator strategy together with the 
actual algorithm strategy that we wanted to backtest, we had enough raw information to 
construct our training examples. 

8.3.4 Refactoring Algorithms into Zipline Strategies 

Having acquainted ourselves with Zipline’s tools and integrating relevant elements of its 
API into our code, our next task was to build a suite of helpers to implement EasyLanguage 
algorithms into Zipline. The main challenge here was to learn the underlying math behind 
various EasyLanguage indicators and replicate them in Python code. Additionally, by adding a 
wrapper to each indicator we implemented, that indicator could serve as a pipeline factor and be 
queued in the Generator pipeline. By extension, our decisions here also affect the input feature 
vector of the produced training examples. If incorporating the Zipline API to our code built the 
framework for the data generator, then writing indicators in Python outlined the financial 
calculations for that Zipline framework to implement. 

 
Each indicator extends the Zipline’s CustomFactor class to make custom Zipline pipeline 

factors. Each class holds a wrapper function that makes the class compatible with the Zipline 
pipeline and a central function which holds the actual means to calculate the indicator. Within 
the class, an input array holds Zipline keywords that direct Zipline on the kind of data it should 
provide the indicator (i.e. open/close price, high/low price, etc.). The main function usually takes 
a set of financial data of the past n days and returns an array of outputs from which the wrapper 
can select and report an individual “indicator” value. For example, the PercentK indicator takes 
the high and low prices for the last n days and the closing price for a given day. It outputs a 
single value representing the difference between the closing price and the lowest low of the past 
n days divided by the difference between the highest high and lowest low of the past n days. By 
building one indicator class for each desired indicator, we populated a library of indicators for 
use by both the trading algorithms and the generator pipeline. 

 
It is important to remember here that we intended the system of systems to be a proof of 

concept, and not a fully optimized system. We prioritized having the major components of the 
system implemented, and then spent our remaining time improving that implementation. It 
follows that we did not have enough time to consider what indicators we should use as input 
features, and instead tried to find a distribution of indices that each represented a unique piece of 
information. We believe that this is sufficient for generating a proof of concept, but we also 
acknowledge that more work should be done in the future to refine our indicator selection. 
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With that being said, our main consideration when selecting indicators was the amount of 

predictability they would add to the network. Recall that each training example centers on a 
single point in time. The input features take financial data and algorithm performance before that 
moment in time, and the output feature represents performance of the algorithm after that 
moment in time. This means that indicators help the neural network make decisions about the 
performance of an algorithm by better clarifying the future performance of the asset it is trading. 
It follows that the indicators we pick should each represent unique market trends that help inform 
the network of how the market will behave in the future. Indicators should never be expressly 
used to represent how the algorithms make orders. We selected our indicators under this main 
principle. 

 
We also made an effort to gather indicators of varying complexity. We reasoned that 

since these indicators would be ingested as input features into a neural network, the complexity 
of those indicators would be a deciding factor in how useful they would be for the network to 
make decisions. On the one hand, simple indicators provide values based on relatively few inputs 
and simple calculations, making it easy for the network to infer financial behavior. On the other 
hand, complex indicators may represent information that the network would not have easily 
created on its own. We wanted to see what types of indicators would be best suited for the 
network, so we generated both simple and complex ones. A detailed description of each indicator 
we used is given in the results of this paper.   

8.3.5 The Data Generation Pipeline 

Having fully implemented both Zipline functionality and the algorithms, we felt prepared 
to build the fundamental code of the system, which runs subsequent backtests and generates 
training examples. This code receives a desired range of time and selection of stocks to use for 
building all the training samples. It also allows adjustments for the number of time periods each 
training examples’ prior and future performance backtest should take. Users can also specify the 
kinds of indicators to use in the input feature vector. The training set outputs can be either 
categorical or regression, but both are based on the future performance of the algorithm. If 
categorical, each output will be assigned a numeric class based on percent gained or lost; if 
regression, each output will be the raw percent gained or lost. For example, a training set could 
be generated that runs backtests for a daily bar strategy from 2005 to 2015 for three different 
stocks, with four weeks reserved for each backtest (two to learn prior performance, and two to 
create the output feature). This code is housed in the datagen function; its wrapper, 
datagen_pipeline, is the calling function for running the backtest data generator. 

 
Within the datagen function, the internal process of running a backtest is repeated many 

times. For each asset, the pair of backtests required to create a training example is repeated, 
incrementing their start times until the range of time from the desired start date and end date are 
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covered. For example, if the user has specified that three assets should be used, the pair of 
backtests take two weeks, and the user decides to use one year (52 weeks) of historical data per 
asset, then 78 training examples will be generated. The datagen function is responsible for 
iterating the asset and backtest start time to achieve the user-specified parameters as described 
above. 

 
Within each iteration, the datagen function, known henceforth as the data generator, must 

run the desired strategy twice. The data generator maintains a “current time” which is 
incremented as it completes backtests and dictates the start date of each backtest. It is the data 
generator’s responsibility to adjust the current time so that all backtests begin and end when they 
are supposed to. As explained in Section 8.3.4, the data generator appends extra time beyond the 
desired time of the strategy to allow trades to sell naturally. As a result, the data generator must 
decrement the current time after a backtest so that the next backtest starts immediately after the 
last one logically ended. The data generator thus uses the current time to run the pair of backtests 
necessary to make a training example. 

 
As explained in Section 8.3.3, we created a Generator strategy whose only purpose is to 

farm raw financial data and indicator signals. To get relevant historical data, the Generator 
strategy’s backtests run in parallel with the algorithm’s backtests, i.e. over the same assets and 
time periods. By combining raw financial data from the Generator strategy with performance 
data from the algorithm’s strategy, we could generate our input features. The data generator thus 
runs the Generator strategy once, and then runs the algorithm strategy twice upon each iteration. 

 
Our strategy implementation returns dataframes with backtest results, so the data 

generator has the responsibility of parsing those frames and pulling the raw data that it needs. 
Since Zipline handles the calculation of indicators and financial data internally, the data 
generator does not need to do any postprocessing on the data from the Generator strategy to 
prepare it for the training example. However, we configured Zipline to only report basic 
information about the trades a strategy made, with information including start/end dates and the 
amount made/lost. The data generator must accumulate and analyze that data to make indicator 
performance metrics for the training strategies. The data generator will produce performance 
features for the input of the training sample and a target performance for the output, which the 
neural network will try to predict. The methodology for how this is done is described in the next 
section. Upon completing this step, the generator has transformed the raw output from the 
backtests into data suitable for a training example. 

 
The construction of the training example itself is fairly straightforward. First, the data 

generator records some metadata in the example, including the asset associated with it, the start 
and end date of the backtest, and its creation number. Next, raw price data over the duration of 
the backtest is appended. Price data can be optionally pooled by averaging together neighboring 
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price units to limit dimensionality of the input features. The data generator appends indicator 
data from the Generator strategy and performance data of the algorithm over its first backtest. 
Together, this information builds the input feature vector of the example. Finally, the data 
generator appends the performance of the second backtest. This complete training example is 
appended to a CSV file holding the training set for the network. After all the training examples 
are constructed, the data generator normalizes each feature on a -1 to 1 scale so that the neural 
network does not overcompensate for the features at the largest scale.  

8.3.6 Calculation of Performance Metrics 

As mentioned in the previous section, it is the responsibility of the data generator to 
produce performance metrics for each training example. In doing so, the data generator must 
produce two things; first, it must generate a set of performance indicators from the first algorithm 
backtest that make up input features of the example. Second, it must use some heuristic to 
produce a performance value from the second backtest, which the neural network will have to 
predict. The process of how each of these things are done is described below. 

 
The generation of the heuristic-driven output value is the more straightforward process of 

the two. As mentioned in Section 8.3.5, the algorithmic strategy will release the overall 
performance of its underlying algorithm over the duration of the backtest directly. This value can 
easily be transformed into a percent change in portfolio value, which we decided was a suitable 
basis for the output value. The percent change can be released directly, if the user desires a 
regression problem, i.e. wants the network to predict a value over a continuous scale. 
Alternatively, users can specify the output value to be discretized and placed into a category 
ranking its performance. In this case, the neural network will solve a classification problem, 
where it tries to “classify” the future performance of an algorithm with a discrete value. To do 
this, the data generator creates classes that accept certain performances and sort the percentage 
values into those classes. For example, a 7% increase in portfolio value could be converted to a 
class which represents performance in a 5% to 10% range. The user sets the number of classes 
desired, and the data generator will create classes of equal width. 

 
The generation of the input features, on the other hand, take advantage of the statistical 

performance of individual trades over the backtest. The Strategy class is configured to return the 
start and end date of individual trades in the backtest. The data generator takes this information 
and extrapolates how much money was made or lost on each trade. From this set of data, many 
different performance metrics can be derived. First, the data generator tallies the percentage of 
trades that made money and the percentage of trades that lost money. The generator then 
calculates the average amount gained on a winning trade and the average amount lost on a losing 
trade. Finally, we decided to calculate two complex indicators that try to illustrate variability of 
the algorithm: average drawdown and the K-Ratio. Average drawdown measures the amount of 
variance experienced by an algorithm between the time when an asset was bought or sold. 
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Specifically, it looks for the largest drop in price during a long order that made money and the 
largest rise in price during a long order that lost money. The K-Ratio measures the deviance of 
an asset’s price chart from its linear regression. These performance indicators are designed to 
illustrate the amount of “risk” a trading algorithm took to make its trade. All of these indicators 
are calculated in helpers associated with the data generator, allowing the data generator itself to 
append the values to the input vector for each training example.  

8.3.7 Exporting Training Examples as CSV 

This is the final component of the backtest data generator. The components together form 
the backtest data generator, transforming raw data into an organized set of training examples. As 
mentioned in the introduction to this section, creating this section of the code took the most 
effort and consequently occupies the majority of the systems’ code space. In order to abstractly 
turn arbitrary datasets into training sets for supervised learning, the backtest data generator has to 
encapsulate the subcomponents outlined above to transform the data. The neural network 
framework accepts these output training sets; its behavior is described in detail in the next 
section. 

8.3.8 LSTM Backtest Data Generation 

Before moving on to a description of the neural network framework, it is worthwhile to 
briefly discuss the modifications we made to the backtest data generator to support LSTM 
training sets. The main modifications to the data generator lie in the datagen function, and 
specifically how it chooses to parse and run the algorithm backtests and Generator backtest. As 
explained in Section 5, the LSTM takes several input feature snapshots in sequential time order 
and produces a single output value associated to that sequence. In our case, the time snapshot for 
each day contains the price data of that day and an indicator value for the day. This information 
carries over directly from the CNN implementation, and only has to be called once for each time 
sequence, instead of once for each example. However, the performance metrics no longer make 
sense, since each element in the time sequence holds only one day of activity. Instead, 
performance can be replaced with a new, more primitive metric: on a given day, if a trade was 
initiated, how much did that trade win or lose? This allows each time step to represent its 
component of the algorithm’s performance. The output value for each example remains 
unchanged; it still measures the future performance of an algorithm, which the AI must predict. 

 
Since each input feature snapshot of an LSTM training example represents a single time 

step, each LSTM training example can represent much more data about a simulation. For 
example, in our implementation, each LSTM line holds the high, low, open, and close data of the 
asset. Furthermore, our market performance indicators can be calculated for each time step, 
instead of just once in the case of the CNN. While this additional information has its advantages 
in being able to inform the neural network, it also comes with an implementation price. Since so 
much more data is used in each training example, it takes far longer to an LSTM training set than 
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it takes to make a CNN training set on our local machines. What’s more, once the training sets 
are implemented, it takes more time to ingest and train the LSTM network with those datasets. In 
both cases, our lack of access to AI-specific hardware or even high-end graphics cards limits the 
amount that we can do and test. As a result, our testing for the LSTM networks are much less 
extensive than for the CNNs. If we had more time to spend on the LSTMs, we could have 
parallelized the data generation process over each time slice of the input to speed the process. 
Generally, there is a lot that could be done to improve the LSTM process as a whole.  

8.4 Implementation of the Neural Network Framework 

With the backtest data generator producing full training sets, our next task was to build 
the framework that would actually train and test the neural networks. This section, known 
henceforth as the neural network framework, As explained in Section 8.2, we used TensorFlow 
with the Keras wrappers to handle the actual implementation of the networks themselves; 
therefore, all we needed to do was prepare the training sets for Tensorflow and analyze the 
performance of the networks. This section of the code only took one month to implement, but 
took longer to refine and fine-tune, as there are many tunable parameters in a neural network. 

 
The remaining subsections follow the details of the neural network implementation. In 

Section 8.4.1, details are given on how the training sets are transformed from a .csv file into 
Tensorflow-compatible training, test, and validation sets. In Section 8.4.2, a brief summary is 
given on how Tensorflow works and how we used Tensorflow to build our networks. In Section 
8.4.3, we explain the techniques we used to analyze the predictability of the training sets. In 
Section 8.4.4, we describe our methods for assessing the accuracy of the trained neural networks. 
Finally, in Section 8.4.5, we explain how the framework was modified to train with LSTM 
networks.  

8.4.1 Parsing the Training Sets for Tensorflow 

 Since Tensorflow and Keras abstract away the low-level implementation of a neural 
network, most of our job involved preparing our training sets for Tensorflow to use. The final 
task of the backtest data generator is to output its generated training samples in a .csv file. It is 
the responsibility of the neural network framework to reingest those training examples and parse 
them into numpy arrays that Tensorflow accepts to run its backtests. 
 

At the center of this task is creating a training set, a test set, and a validation set. The 
training set is used to actually train the network; as explained in Section 5, the network 
continuously adjusts its weights and bias values to reduce its predictive error on that set. The test 
set is used to see how the trained neural network performs with fresh data. If the network 
performs poorly with the test data, it is a sign that the neural network has underfit or overfit the 
training data. Tensorflow uses its training and test data in “rounds” of training, where the 
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performance results of the test set in each round updates the parameters of the network in all 
subsequent rounds. Furthermore, we use the k-fold cross-validation technique to train the 
networks, so n completely trained neural networks are produced for n folds. The validation set is 
applied on each model after all training and testing is complete to gain a final understanding of 
the model’s true performance. The accuracy of the networks on the validation set can be 
averaged to produce the approximate predictability of the model as a whole. 

 
To produce these sets, each training example is split into its input features and output 

feature, and each is appended to a separate matrix. Once all training examples have been sorted 
into the input matrix and output matrix, these matrices can be partitioned into the training, test, 
and validation sets. In order to avoid oversampling a specific subsection of time or a specific 
asset in any of the sets, stratified sampling is used to divide the sets. Once a validation set has 
been extracted, the remaining examples are partitioned into n subsections. These subsections, or 
folds, are used for k-fold cross-validation. For each round of the cross-validation, one of the 
folds is the test set, and the remaining folds compose the training set. Tensorflow itself ingests 
four arrays: two which represent the input and output array of the training set, and two which 
represent the input and output array of the test set.  

8.4.2 Implementing Tensorflow into the Framework 

 To actually represent and maintain trainable neural network architectures, we decided to 
use Keras with a TensorFlow backend. TensorFlow abstracts away almost all of the training and 
testing of the networks themselves. Users need only model the neural network architecture and 
provide properly formed training data, and Tensorflow will returned a trained and tested network 
that can be used to make predictions. Therefore, we did not need to add substantial framework to 
implement Tensorflow into our neural network framework. However, we did spend some time 
standardizing the construction and organization of the networks. 
 
 We decided to encapsulate each individual network architecture with a Python class. 
These classes fall under a hierarchy, in which the highest class is the Network class. Underneath 
this class, subclasses are constructed for different architecture classes, like the CNNNetwork and 
the LSTMNetwork. The next level of subclass indicates the type of prediction, i.e. between 
classification and regression. The final class has a concrete implementation of a specific network 
architecture, specifying the number of columns in the network and the number of neurons in each 
column. Each of these class implementations maintains a few key functions: first, it offers a 
Tensorflow wrapper to train the network with a training and test set. Second, it maintains yet 
another wrapper to generate predictions from a trained network given an arbitrary set of inputs 
(for example, a validation set). Finally, each implementation has rules on how to evaluate the 
accuracy of the network on the validation set. 
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 Within each neural network implementation, actual Tensorflow calls are produced to 
generate the network architecture. Tensorflow maintains a network architecture layer by layer, 
with separate configurable options for each one. Most obviously, the width of each column can 
be specified. On top of this, the initial values for the weights and biases of the nodes can be 
configured to map some distribution. The activation functions of a layer can be set to a preset 
function or a custom-defined one. To help combat overfitting, regularization can be applied to 
the weight and bias calculations during each error-reduction iteration. Parameters for the training 
of the network, including an optimization function and an error calculation metric, are also 
specified with the implementation. All of these Tensorflow function calls are encapsulated 
within the build_model method which generates and stores an untrained network.  

8.4.3 Evaluation of Network Accuracy 

 We implemented several heuristics to evaluate the predictive capabilities of a trained 
neural network. To start, we measure the raw accuracy of the network on our previously-
generated validation sets. This is a good one-number overview of the performance of the 
network, but it in no way illustrates the full performance of the network. Specifically, it is useful 
to understand the circumstances in which the network does well and poorly. To start, we 
calculate the F-score of the network’s performance. The F-score measures the ratio between the 
precision and recall of the network. Precision here measures the number of correct classifications 
out of all positive classifications, and recall measures the number of correct classifications out of 
all classifications that should have been registered positive. As a general heuristic, the network 
achieves better performance when the F-score approaches 1, and a worse performance when it 
approaches 0. 
 

On top of this, we also use the Area Under Receiver Operator Characteristic (AUROC) 
technique to measure the classes in which a neural network performs best. ROC curves measure 
predictive strength against truly random prediction. Represented in the false-positive/true-
positive plane, truly random prediction creates a ‘y = x’ line bisecting that plane. We generate a 
ROC for each class that the neural network predicts. By measuring the area between the ROC 
curve of the network and that random prediction line, we can produce a metric for the predictive 
capability of the network. The larger the difference in area is for a class’ ROC curve, the better 
the network is performing for that class. 

 
Finally, we employ confusion tables to illustrate how well the network predicts each 

class. A confusion table maps the predicted class of a given example against its actual class. To 
do this, rows of the table represent what class the neural network predicted for the example, and 
the columns of the table represent that example’s actual class. If the network performs optimally, 
the diagonal elements of the table should be the only populated ones; i.e. the network correctly 
predicted the true class of each example. If elements populate cells in the table that deviate from 
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the diagonal, they signal the network’s error. The confusion tables are the most informative 
element of our accuracy analysis because they show the network’s performance for each class.  

 
Fig. 35 - An example of a confusion table. Notice here that most elements populate the diagonal. 

 

8.4.4 Measuring Predictive Nature of the Network 

There are methods to assess the success of a model beyond only analyzing the 
performance of a network after it has been trained. The training set itself can be analyzed using 
various techniques to test its “predictiveness”. Here, predictiveness references to the separations 
between different classes. If each output class in the set falls into an isolated input feature range, 
then it should be easy for the network to build a decision boundary. To determine the separation 
of each class, several dimension reduction techniques are applied to the input features of each 
example, allowing the example to be plotted in 2-D space. We generally used these techniques as 
a brief check on the predictability of the set, without quantifying any values or relationships for 
later analysis. 

 
We decided to use four dimension reducing techniques and examine their results in 

parallel: MDS, ISOMAP, TSNE, and PCA. Each of these techniques has its own method of 
reducing down the n-dimension input feature vector down to two features. For each technique, a 
plot is given of all the transformed training examples. Each training example is given a marker 
on the plot based on the output class it belongs to. That way, it is easy to examine the potential 
divisions between different classes. Below is an example of PCA applied to a dataset: 
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Fig. 36 - An example of PCA applied to a dataset. Here, each color represents a separate class. 

8.5 Implementation of the Trading Platform 

 The trading platform (otherwise known as the trader) was created in order to allow 
trained neural networks to be used to trade assets in simulated real time. Given a given amount of 
starting capital, a set of strategies, and a corresponding set of trained neural networks which 
predict the performance of the strategies over a specific time period, the trading platform will 
allocate capital to each strategy weighted by its predicted performance. After one trading period 
has passed, the trading platform halts strategy execution, extracts the capital stored by each 
strategy, selling assets as needed, and repeats the process. 
 

In order for trained neural networks to be used by the trader, they needed to be able to be 
saved and loaded from the file system. In order to do this, after each neural network was trained, 
the weights of its nodes were exported as an h5 file and metadata about the network was saved 
using a pickled1 Manifest object. Currently, a Manifest object contains metadata that includes the 
strategy the network corresponds to, what indicators were included in the training set (and will 
serve as inputs to the neural network), which network class was used, and the path to the training 
set itself. Using the metadata and weights stored in these files, the trading platform is able to 
reconstruct the trained neural network so that it can be used to predict strategy performance. 

 

                                                 
1 In Python, objects can be saved to and loaded from pickle files. When an object is saved to a pickle file, 

we say that the object has been pickled. 
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Once the trained neural networks have been reconstructed, an input vector for each needs 
to be generated. Each neural network expects an input vector that consists of the daily prices of 
the asset being traded, the corresponding indicator values, and the performance evaluation of the 
strategy over the course of the historical period. 

 
To generate these values, a child class of the GeneratorStrategy class originally created 

for the backtest data generation process, AdaptableGeneratorStrategy, is used. The key 
difference between the GeneratorStrategy and the AdaptableGeneratorStrategy is that the latter 
stores the price data in FixedSideSelfPruningQueue, which is a queue of fixed size that prunes 
the oldest value when a value is being enqueued and the rest of the queue is full. This allows the 
AdaptableGeneratorStrategy to be more efficiently used in cases where the backtest data 
generation period is different from the trading period, the interval of time in which strategies are 
run with a given set of weights. 

 
Using the input vectors populated using the data from AdaptableGeneratorStrategy, the 

performance rating for each strategy being balanced by the trader is estimated by the neural 
networks. Since each neural network can potentially have a different number of categories (and 
therefore performance estimations) than the rest, each performance estimation is normalized to a 
between 0.0 and 1.0, which represent the worst and best performance estimations, respectively. 

 
The normalized performance estimations are used to allocate capital to each strategy 

using the following equation: 
 

1 	 	
,  (8) 

 
where pi is the capital assigned to strategy i, wi is the normalized performance estimation of 
strategy i, P is the total capital possessed by the trader, and n is the total number of strategies. 
There are a few notable things about this equation. For one, you may notice that the trader 
always allocates at least $1 to every strategy. This is because Zipline refuses to allow a strategy 
with a principal of $0 to be run. Another notable thing about this equation is that if every strategy 
has a performance estimation of 1 (a very rare event), the trader goes all in and allocates P / n 
dollars to each strategy. In the future, options for different position sizing approaches will be 
added to the trader. 
 

Once capital is allocated to each strategy, they are allowed to run for one trading period. 
Once the trading period is finished, each strategy is forced to sell any positions it may still have 
and relinquish its capital to the trader. After this is done, the process begins again, with the input 
vectors for the next set of estimations being generated. 
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The trader itself, whose development started at the end of D-term last year, is still in a 
very early state, with a lot of room for improvement. One thing that we plan to add in the future 
is a better way of handling the reclaiming of capital from the strategies at the end of the trading 
period. Right now, the strategies are forcibly stopped at the end of the trading period and are 
restarted without any context from the previous trading period. Ideally, we could find a way of 
“pausing” each strategy between trading periods so that longer-running algorithms are not 
impacted in the way they are currently. 

8.6 System of Systems Performance 

 To test our system of systems, we wanted to gather a fundamental understanding of the 
system’s ability to predict the behavior of its trading algorithms. We needed to understand how 
each component of the system contributes to its accuracy (or lack thereof). Given the scope of 
this project as a proof of concept, we decided to restrict our testing to several daily-bar 
algorithms. As explained in Section 8.3, our selection of market indicators, performance 
indicators, and assets were based off of a simple heuristic, and we used a fixed four-week period 
of trade data for each training example. Doing so gave us enough information to assess the 
success of the system of systems and provide insight as a proof of concept. We acknowledge that 
much more work can be done to test our system which extends past the scope of this IQP. 
 

The remainder of this section will describe in detail the structure of the training sets we 
used and the performance of the system of systems. Section 8.6.1 summarizes the structure of the 
training sets and the parameters of each training set configuration with which we tested the 
neural network. Section 8.6.2 describes the configuration of the neural network that gets trained 
in the system. Section 8.6.3 describes the performance of the system of systems under each of 
those configurations, and Section 8.6.4 provides an analysis of that performance and a set of 
conclusions.  

8.6.1 Training Set Structure and Parameters 

 As explained in the introduction to this section, we only had the time to reasonably 
provide a proof of concept for the system of systems. Consequently, many of the parameters we 
used to build our training sets were set to arbitrary values, or values based on simple heuristics. 
Below, we describe how we set each parameter for the training set, and where possible, we 
provide an explanation for our design choices. 
 
 Each training example uses two adjacent four week periods, the first of which gathers the 
context of the trading algorithm performance, and the second of which reflects the subsequent 
performance of the algorithm. As explained in Section 8.4, the first backtest generates the input 
vector of each training example, and the second backtest generates the output value of the 
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training example. Each asset was given around ten years of data to generate training examples, 
ranging from 2007 to 2017. 70 training examples were produced from each asset. 
  
 The asset selection itself was driven by the desire to test assets with high variance in 
performance. While we did not employ modern portfolio techniques to build a portfolio of assets 
with high covariance, we did ensure that stocks which have both gained value and lost value 
were represented. 
 

For example, we use both Apple and General Electric in our portfolio of assets; while 
Apple has seen a meteoric rise in its share value, General Electric’s share price has been 
consistently devalued over the past few years. We also made sure that our assets reflected the 
market as a whole, and not just some specific sector. We believe that training the system on a 
portfolio of assets with varying performance is necessary for the system to properly understand 
how an algorithm does under all contexts. Below, we list the assets we used to build our training 
sets: 
 

● Apple 
● General Mills 
● United States Steel Corporation 
● Microsoft 
● Walmart 
● Intel  
● Advanced Micro Devices 
● Amazon 
● EBay 
● General Electric 
● NVidia 
● Mattel 
● Range Resources Corp. 
● Under Armor 
● Apache Corp. 
● Goldman Sachs 
● J.P. Morgan  
● Hess Corp. 
● Applied Materials Inc. 

 
Since we decided to have a four-week backtest period to build the input vector of each 

training example, the input vector has 40 price features, one per day. Each feature holds the 
closing price for the given day of trading. The next set of features in the input vector are 
indicators calculated at the trading day between the two backtests. These are the indicators 
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calculated by the Generator strategy as explained in Section 8.4. Our main heuristic for selecting 
indicators was to gather both relatively simple and complex indicators. We were curious about 
which kinds of indicators would provide better predictability to the network, as explained in 
Section 8.4. Some indicators, like the EMA and Percent D, find averages of the data, while other 
indicators, like the Commodity Channel Index, require multiple sub-indicators and are extremely 
complex to implement. We also wanted each indicator to provide unique information to the input 
vector. Our list of indicators, with a brief description of each, is provided below: 

 
● Exponential Moving Average (EMA) 

○ A moving average of the last 14 days which biases recent price changes more that 
price changes further in the past  

● Long EMA 
○ An EMA with a 42-day range, instead of 14 days 

● RSI 
○ A momentum oscillator which signals the speed and change of price movements. 

The RSI indicates when an asset is “overbought” or “oversold”. 
● Percent K 

○ An indicator which shows the ratio between the current price deviation from 
average and the highest price deviation from average over the last 14 days.  

● Percent D 
○ An average of PercentK indices calculated over the last 3 days. 

● Slow Percent D 
○ An average of PercentD indices calculated over the last 3 days. 

● Momentum 
○ An indicator which reports the difference in closing price over a 4-day period. 

● Rate of Change (ROC) 
○ An indicator which reports the percent change in closing price over a 4-day 

period. 
● Percent R 

○ An indicator which finds the percent difference between the current closing price 
and the difference between the highest high and lowest low over the last 14 days. 
The Percent R indicator shows volatility. 

● Accumulation Distribution 
○ Relates the price and volume of trades for an asset. Indicates momentum of an 

asset by gauging whether the asset is accumulating or distributing among buyers.  
● Chalkin Oscillator 

○ Takes the difference between the 3-day EMA of accumulation-distribution and 
the 10-day EMA of accumulation distribution. 

● Commodities Channel Index 
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○ Finds the difference between the “typical price” of a commodity and its current 
price. Indicates the stage of a cycle an asset is in.  

 
The final set of indicators in our training example are the performance metrics as described in 
Section 8.3.6.  
 

We decided to experiment with two types of outputs for the training examples: an 8-class 
categorization and a 2-class categorization. The 8-class category set classifies output 
performance at a 5% gradient. Any performance producing greater than 20% returns or losses are 
grouped into the highest and lowest classes, respectively. The 2-class categorization asserts if 
there has been positive or neutral performance, and de-asserts if there has been negative 
performance. 

 
We use two strategies to test the system of systems. Each strategy has its own generated 

dataset and neural network performance. The first strategy, an EMA strategy, buys if the current 
price is higher that an EMA of the last 10 trading day price highs, and sells when the share price 
has moved more than three dollars in either direction. The second strategy, a TurtleStratrgy, is a 
much more useful and applicable strategy which buys and sells based on the basic turtle strategy 
rules. The simpler and less applicable EMA strategy is useful to test and debug our system to 
make sure trades are properly executing, while the TurtleStrategy helps show how the system of 
systems balances a robust algorithm which could realistically be used on its own. We believe that 
a combination of the results from these two strategies helps indicate the predictive nature of the 
system of systems, and is enough to validate our proof of concept. 

8.6.2 Neural Network Structure and Parameters 

For the purposes of our proof of concept, we chose to test with relatively fixed network 
parameters. Since we were working mainly with classification problems, our input layer size is 
always the length of the input feature vector, and the output layer size is the number of classes. 
The final layer uses a softmax activation function to ensure that the final layer returns a single 
class. We always use SGD as the optimizing function, and we use categorical cross-entropy for 
our loss function. Both of these are fixed because they are applicable to classification problems. 

 
We did experiment with modifying several parameters to minimize overfitting and 

underfitting. The first and most prominent feature is the number of layers in the network. We 
also looked at regularization of the weight and bias correction in the network to minimize 
overfitting the data. Finally, we looked for the activation functions for each layer that produced 
the best output. However, we almost immediately settled on using layers with a tanh activation 
function following a single layer with a ReLu activation function, and experimentation with 
those parameters were limited. 

 



105 

We also chose to leave some parameters in their default state, namely the initialization 
functions for the weights and biases of each layer. The default random initialization and our k-
fold cross validation helps ensure that we can holistically understand the performance of the 
system without a bias for a particular test run.  

8.6.3 System of Systems Performance 

 We decided to test our system of systems under several of the configurations described in 
the prior two sections. Each test optimized a neural network for one strategy with one type of 
classification (2-class and 8-class). These networks are then tested in “real-time” to determine 
the amount of money they made/lost.  

8.6.3.1: EMA Strategy with 2-Class Classification 

We first balanced the neural network for our EMA strategy, the simplest one out of the 
free. We also tested with two-class classification. The first class, class 0, represents trading 
periods that lost money. The second class, Class 1, represents trading periods that made money. 
In general, we test whether the system of systems can make the fundamental determination on 
what trading periods are profitable and unprofitable before testing anything else. 

 
As explained in Section 8.6.3, we knew from the start that our network would be 

composed of alternating layers with ReLu and tanh activation functions. We also decided as a 
general principle that no single neural network should have more than ten layers, to ensure that 
training could be done efficiently. The first parameter we tuned was weight and bias 
regularization. It was almost immediately apparent that substantial regularization was forcing the 
network to underfit the dataset, so we decided to leave only minimal weight regularization in the 
network. The next parameter tuned was the length of each neuron layer. We tested several 
lengths, ranging from the length of the input vector to four times that length. It was found that 
the network did not experience significant differences in performance from its layer lengths, so 
we settled on setting the length of twice the size of the input feature vector. Finally, we tuned the 
number of layers in the network. After trying a four-layer, seven-layer, and nine-layer 
configuration, we determined that on average the nine-layer network performed the best while 
avoiding major overfitting of the dataset. 

 
The final, optimized network configuration has eight alternating ReLu and tanh layers, 

preceding a final softmax layer. Weight regularization of 0.001 is applied to all layers, and each 
layer has a length of twice the input feature vector. The weights are initialized in a uniform 
distribution. Since we use k-fold cross validation with 10 folds to test our network, we have ten 
samples which represent the accuracy of the network. We have chosen one of these samples to 
illustrate specific accuracy information on the network. Below is a sample AUROC curve of one 
of the folds: 
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 Fig. 37 - AUROC curves for both classes in the optimal configuration. 
 
 

In this case, Class 0 indicates a loss over the trading period, and Class 1 indicates a gain. 
Both Class 0 and Class 1 have an AUROC value greater than 0.5, we can confidently say that the 
neural network has at least some measure of predictability with the dataset. The following 
confusion illustrates the predictability of the network on each class: 
 

 
 

Fig. 38 - Each row illustrates the difference between correctly and mispredicted training examples for both 
classes. 
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 The network is most successful in determining what trading periods will be unsuccessful, 
with a precision of 67%. It is less successful in determining what trading periods will be 
successful, with a precision of merely 56%. In general, we are biased towards precision for lower 
classes against precision for higher classes. This is because we are more interested in stopping 
the trader from losing money than we are with the trader seizing every opportunity to gain 
money, since the former yields a loss while the latter yields only a lack of a gain. For this 
specific run of the k-fold cross validation, overall accuracy is 62%, and the unweighted F-score 
is 0.59. Of course, these two values only apply to one element of the k-fold, and cannot 
necessarily be used to judge the accuracy of the entire system. 
  

To better gauge the accuracy of the network as a whole, we averaged out the performance 
of each fold. As a whole, the network has 56% accuracy. This indicates a moderate degree of 
predictability. All folds had accuracies above 50%, which validates the predictability of the 
system. The AUROC curves and confusion tables for each testing fold are listed below in the 
appendices. 

 
 After being trained, the network was saved using the Manifest class and tested using the 
trader. Using the network and the SimpleEMAStrategy, the trader was run with the following 
parameters: 
 

● Trading began on or after January 1, 2017 
● Trading ended by January 1, 2018 
● Historical and trading periods of 40 days 
● AAPL was the asset to be traded 
● The principal balance was $1000 

 
At the end of the trading simulation, the final balance of the system was $983.59. This 
performance leaves a lot to be desired, especially considering that AAPL increased in price by 
about 46 percent between January 1, 2017 and January 1, 2018. We suspected that increasing the 
classes of our classifier would yield better results.  

8.6.3.2: EMA Strategy with 8-Class Classification 

 In addition to balancing a two-class neural network for our EMA strategy, we also 
balanced an eight-class neural network. Classes 0 through 3 represent trading periods which lost 
money, where the class number is inversely proportional to the amount of money lost. Classes 4 
through 7 represent trading periods which earned money, which the class number is directly 
proportional to the amount of money gained. Like the work we did for the two-class neural 
network, our primary goal was to test whether the network could predict trading period 
profitability, and beyond that, whether it could predict how profitable (or unprofitable) a trading 
period would be. 
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 Our starting point for the configuration of the eight-class neural network was that of the 
two-class neural network we tuned in section 8.6.3.1. Through experimentation, we found that a 
neuron layer length of 8 times the input length worked better than the original input layer length 
of 2 times the input length, and also performed better than input layer lengths of 4 and 16 times 
the input length. After we made this change, we noticed that the network was overfitting in some 
cases (the accuracy on the training set approached and hit 100%, whereas the accuracy on the 
validation set was stuck around 20%). This was mitigated by adding a Dropout layer after then 
input layer, which reduced the accuracy on the training set but increased the accuracy on the 
validation set. Finally, we tried varying the number of pre-output layers between 4, 8, and 10. 
Through our testing, we found that the best compromise between performance and training time 
was 8 layers. 
 
 After tuning, the configuration of our eight-class neural network consisted of an input 
layer with a tanh activation function, a Dropout layer, seven layers of with alternating ReLu and 
tanh activation functions, and a softmax output layer. The neuron layer length of the layers (other 
than the Dropout and output layers) was 8 times the input layer length. Like the two-class neural 
network, each neuron layer has its weights initialized using a uniform distribution and a weight 
regularization of 0.001. Since the network was tested over ten folds, there are ten samples 
available to determine the accuracy of the network. One of these samples was selected to 
exemplify the performance of the network, and the rest can be found in the appendix. Below is a 
sample AUROC curve of one of the folds: 
 

 
Fig. 39 - AUROC curves for both classes in the optimal configuration. 
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In this case, Classes 0, 1, 2, and 3 indicate a loss over the trading period, and Classes 4, 5, 

6, and 7 indicate a gain. Every class other than class 1 has an AUROC value greater than 0.5, so 
we can confidently say that the neural network has at least some measure of predictability with 
the dataset. The following confusion illustrates the predictability of the network on each class: 

 

Fig. 40 - Confusion Table 
 

Each row illustrates the difference between correctly and mispredicted training examples 
for both classes. The network is most successful in determining what trading periods will be 
wildly unsuccessful (class 0), with a precision of 42%. It is a bit less successful in determining 
what trading periods will be wildly successful (class 7), with a precision of 37%. For this specific 
run of the k-fold cross validation, overall accuracy is 27%, and the unweighted F-score is 0.20. 
Of course, these two values only apply to one element of the k-fold, and cannot necessarily be 
used to judge the accuracy of the entire system. 

 
 Looking at whether the network can determine whether a trading period will be profitable 
or not, these results look a bit better. The network is around 56.2% accurate at predicting that a 
trading period will be unprofitable and is 56.4% accurate at predicting that a trading period will 
be period will be profitable. This suggests that the system has some predictive ability, but is not 
great at determining exactly how profitable a trading period will be. 
 

To better gauge the accuracy of the network as a whole, we averaged out the performance 
of each fold. As a whole, the network has 26% accuracy. This indicates that it cannot accurately 
predict how profitable or unprofitable a given trading period will be. Most folds had accuracies 
above 50%, which validates the predictability of the system. The AUROC curves and confusion 
tables for each testing fold are listed below in the appendices. 
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After being trained, the network was saved using the Manifest class and tested using the 

trader. Using the network and the SimpleEMAStrategy, the trader was run with the same 
parameters as the two-class neural network: 

 
● Trading began on or after January 1, 2017 
● Trading ended by January 1, 2018 
● Historical and trading periods of 40 days 
● AAPL was the asset to be traded 
● The starting principle was $1000 

 
At the end of the trading simulation, the final principle of the system was $1026.20. While better 
than the performance of the two-class network (this network actually made money!), its 
performance is still worse than just running the SimpleEMAStrategy by itself, which ended with 
$1127.04 when run with the same parameters. Part of the reason why the strategy itself may have 
done better without the trader is that each time a strategy is run by the trader, it loses its context 
from previous runs. This is something we plan to fix in the future. 

8.6.4 Analysis of Performance and Conclusions 

The testing we have performed on the system of systems yields mixed results; while we 
can generate neural networks which are predictive with our datasets, we have yet to translate 
those networks into a successful trader. We therefore have a valid proof of concept for the first 
two components of the system of systems, but not the third. We believe that while we correctly 
calibrated the system’s artificial intelligence to adapt to our generated backtest data, our 
generated backtest data did not accurately capture the particularities of the algorithms they 
represented. Specifically, we neglected to tune features like the length of the backtest to build the 
input features and output value of each training example. This leads to a mismatch between the 
backtest data and the underlying algorithm it represents. In our opinion, this is a fundamental 
reason why the trader does not make money, despite the fact that the underlying neural networks 
are predictive.  

 
This leads to the most fundamental lesson from our proof of concept: that the system 

needs specific tuning for each algorithm that it wishes to balance. Any broad-brush techniques, 
especially when generating the backtest data, will invariably lead to the backtest data 
misrepresenting when the algorithm buys and sells. Most importantly, the time periods for both 
backtests must be tuned correctly to capture the amount of data the algorithm uses to make a 
decision. The use of daily closing price bars as input features may also not represent what the 
algorithm looks at when it makes a decision. Our backtest data generator should have subclass 
implementations per algorithm, similar to our neural network framework.  

 



111 

There are many things we would change about how we implemented our backtest 
generator. Discrete Zipline backtests with small trading periods for each training example are 
clunky, especially if the backtest period is shorter than the average life of a trade in the 
algorithm. This is despite our best efforts to let trades start and end naturally with selloff periods 
past the end of the backtest. Future work could involve running only one backtest over a range of 
many years and dividing that backtest into segments. This would allow each backtest to capture 
how the algorithm naturally trades. On top of this, the trading signals should be reworked to 
represent the entire period of trading, rather than a snapshot for one given point in time. This 
would lend credence to the LTSM approach, where an entire feature vector can be plotted for 
each time unit. Furthermore, it is clear that we will not get performance beyond mild 
predictiveness while we still use shallow networks which can be computed on CPUs. Future 
efforts should be made to train deep networks, and preferably data-rich LSTMs, on GPUs. 

 
Taking a step back, the system of systems fundamentally answers two questions. First, it 

predicts the performance of an algorithm given a discrete pattern. Second, it predicts what a 
stocks future patterns will hold. We suspect that a single neural network is not well suited to 
answer both questions at the same time. We perhaps should have prepared and trained two 
networks for each algorithm, one per question, and design a trader to make informed decisions 
with both. We are certain that our training sets were not large enough and our networks not deep 
enough to have the predictive capacity to drive the trader. 

 
 We were very satisfied with our choice of Python as a language and Tensorflow as our 

neural network library. We found excellent documentation and support from the Python 
community as we implemented the system. What’s more, we were able to borrow from existing 
finance APIs in Python to do the heavy lifting of our indicator calculations. Zipline in general 
was serviceable, but in some cases was not satisfactory for what we desired. The top-level API 
exposed via documentation is incomplete, requiring us to dig into the library itself and expose 
data and attributes we needed from the trader. Furthermore, Zipline’s metadata generation relies 
on deprecated Google Finance APIs which intermittently fail, thus crashing the entire library. 
We have some interest in merging the improvements we required back into the upstream branch.   
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9. Conclusions and Recommendations 
We were able to successfully implement trading strategies and a system of systems with 

predictive capability. Although our individual trading strategies were not successful, they 
provided us with great practice in the proper design of trading strategies with a scientific 
approach. Most of the strategies that we wrote show potential for real world trading if they are 
further developed to overcome their individual problems. We strongly believe that these 
strategies and the principles they outline form a good starting point for anyone interested in the 
development of trading strategies. Our system of systems showed mild predictability with a basic 
EMA trading strategy. We believe that this forms a proof of concept which validates our belief 
that neural networks can be used to balance a set of trading algorithms. We learned a lot about 
how artificial intelligence techniques inform financial technology; as our discussion in Section 8 
described, there are several architectural changes that could be made to the system to boost its 
ability to predict algorithm performance. The framework which we have designed could be 
expanded in future work to implement those suggested changes. 

 
 Our results indicate that the world of finance will irrevocably change as artificial 
intelligence is further applied to predict the markets. As we discussed in our introduction, 
investment, and especially trading, require the prediction of patterns which reliably produce 
profit. It is abundantly clear that neural networks excel at pattern prediction, in some cases more-
so than humans. Already, data science and machine learning have had a transformative effect on 
the financial system; as that influence grows, we may see markets becoming less volatile, as 
more traders in the system take advantage of and therefore nullify opportunities in the market. 
On the other hand, when these prediction schemes all make the same mistake, they can amplify 
the resulting effect on the market. Trading at its core revolves around the question of whether or 
not one could systematically beat the market. While we have shown that it is indeed possible, the 
mass adoption of artificial intelligence in the financial industry might very well change that 
answer. 
 
 We find the success of our system of systems particularly exciting because it shows that 
individual actors can play the markets in a more involved way than simply buying and selling 
shares. One could foreseeably construct their own trading strategies, load them into a system of 
systems, and eventually run a trading system more akin to that of a professional freelance trader 
than an amateur investor. Like we emphasized at the beginning of this paper, it is a social good 
for individuals to independently build and maintain their wealth. Often, a hegemon monopolizes 
wealth to become a de facto rule-setter in society. Our work offers a means for people to 
counteract those influences by maintaining their own wealth independent from any large 
institution. 
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More concretely, however, we recognize our work is merely a proof of concept, and 

realistically could not be fully deployed as a reliable trading system. That speaks to the time and 
work commitment which must be made to trade successfully on the markets. We hope at the very 
least that our work can be continued by IQPs in the future to turn our prototype into a fully-
fledged system. Our contributions to the Trading and Investment IQP can hopefully influence 
projects for years to come. This project was an invaluable learning experience for us; we leave it 
with seasoned trading experience and a better understanding of the mechanics one must employ 
to successfully invest.  
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Appendix 
 
Types of Gaps 
 

 

Fig. 41 - Adapted from StockCharts: Gaps and Gap Analysis  
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Monte Carlo Analysis and Equity Curves for Alan Fernandez’ Systems 

  

 

Fig. 42 - Monte Carlo Analysis - Sentiment Trader Strategy: USDJPY 

 

 

Fig. 43 - Monte Carlo Prediction - Sentiment Trader Strategy: USDJPY 
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Fig. 44 - Trade Profit - Sentiment Trader Strategy: USDJPY 

 

 

Fig. 45 - Monte Carlo Analysis - Sentiment Trader Strategy: USDJPY (ngram) 
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Fig. 46 - Monte Carlo Prediction - Sentiment Trader Strategy: USDJPY (ngram) 

 

 

Fig. 47 - Monte Carlo Analysis - Sentiment Trader Strategy: EURUSD  
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Fig. 48 - Monte Carlo Analysis - Sentiment Trader Strategy: EURUSD (ngram)  

 

 

Fig. 49 - Monte Carlo Analysis - Sentiment Trader Strategy: AUDUSD  
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Fig. 50 - Monte Carlo Analysis - Sentiment Trader Strategy: AUDUSD (ngram) 

 

 

Fig. 51 - Monte Carlo Analysis - Sentiment Trader Strategy: GBPUSD  
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Fig. 52 - Monte Carlo Analysis - Sentiment Trader Strategy: GBPUSD (ngram) 

System of Systems Performance Results 

EMA 2-Category Performance: 

 

Fig. 53 - Fold-1 AUROC Curve and Confusion Table 
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Fig. 54 - Fold-2 AUROC Curve and Confusion Table 

 

Fig. 55 - Fold-3 AUROC Curve and Confusion Table 

 

Fig. 56 - Fold-4 AUROC Curve and Confusion Table 
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Fig. 57 - Fold-5 AUROC Curve and Confusion Table 

 

Fig. 58 - Fold-6 AUROC Curve and Confusion Table 

 

Fig. 59 - Fold-7 AUROC Curve and Confusion Table 
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Fig. 60 - Fold-8 AUROC Curve and Confusion Table 

 

Fig. 61 - Fold-9 AUROC Curve and Confusion Table 

 

Fig. 62 - Fold-10 AUROC Curve and Confusion Table 
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EMA Strategy 8-Category Performance: 

 

Fig. 63 - Fold-1 AUROC Curve and Confusion Table 

 

Fig. 64 - Fold-2 AUROC Curve and Confusion Table 
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Fig. 65 - Fold-3 AUROC Curve and Confusion Table 

 

Fig. 66 - Fold-4 AUROC Curve and Confusion Table 
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Fig. 67 - Fold-5 AUROC Curve and Confusion Table 

 

Fig. 68 - Fold-6 AUROC Curve and Confusion Table 
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Fig. 69 - Fold-7 AUROC Curve and Confusion Table 

 

Fig. 70 - Fold-8 AUROC Curve and Confusion Table 
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Fig. 71 - Fold-9 AUROC Curve and Confusion Table 

 

Fig. 72 - Fold-10 AUROC Curve and Confusion Table 
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