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ABSTRACT 

 Volatile organic compounds (VOC) have been contaminating lakes, streams and groundwater 

since the onset of the industrial era.  Methyl tert-butyl ether (MTBE), a component of gasoline, has been 

introduced to the environment in large quantities over the last past few decades.   It presents a hazard 

to the health and welfare of communities across the United States.  Several remediation techniques 

have been put into place; however, they are both inefficient and costly.  Hydrophobic media have been 

proven to offer selective filtering of MTBE from water.  A panel of hydrophobic polymer membranes was 

investigated for the ability to resist degradation when exposed to aggressive oxidizing solutions that can 

be used to decompose MTBE while fostering selective-permeation by MTBE.  These two properties 

propose new options for the remediation of MTBE contamination when taken in concert.   
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EXECUTIVE SUMMARY 

Background 

 In 1981, the Environmental Protection Agency authorized use of up to ten percent, by volume, 

Methyl tert-Butyl Ether (MTBE) in gasoline.  With this authorization came widespread use of MTBE in the 

United States.  The United States shifted away from lead based fuels in 1979 and began using MTBE as 

an oxygenate for gasoline, improving both gas mileage and emissions.   Accidental releases of gasoline 

from pipes and underground storage tanks have contaminated water aquifers in numerous communities 

across the United States.  In many cases, the contamination vastly exceeds the health standards by the 

Environmental Protection Agency.  MTBE is highly soluble in water and can easily pass through soil and 

contaminate groundwater.  The methods currently being used to remediate ground water are both 

inefficient and expensive.  Hydrophobic zeolites have shown a propensity for absorbing MTBE from 

solution.  Additionally, strong oxidizing reactions have proven to be able to degrade and mineralize 

MTBE.  Polymer membranes offer a medium for transporting MTBE, in much the same way as zeolites, 

but in a sustainable manner that can also allow direct remediation by oxidation.   

Methodology  

 A series of objectives were developed at the beginning of the project, each requiring a series of 

experiments for their realization.  The first objective of the project was to prove that the four 

membranes acquired, all of which were marketed as hydrophobic, could meet the basic requirements 

for use in the more involved experiments necessary to draw conclusions with regard to the project aim.    

The second objective of the project was to make solutions of MTBE mirroring those concentrations that 

appear in MTBE contaminated areas.  The third established objective of the project accomplished two 

aims.  Through experiments, the membranes were tested for the ability to pass MTBE and for 

information allowing a comparison of each membrane’s ability to transport MTBE.  The fourth objective 
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made use of the membrane providing the most rapid transport of MTBE in the second objective to 

remove MTBE from solution and transport it into a strong oxidizing solution for mineralization. 

 The first objective entailed three tests, each designed to address some aspect of membrane 

viability and the membrane design.  Teflon, Nylon, polypropylene, and PVDF membranes were gathered 

for testing.  Drop-wise testing, with drops of water and hydrogen peroxide being placed onto each 

membrane, was utilized to assess the apparent hydrophobic character of the membranes based on the 

shape taken on by the liquid s when in contact with the polymer surface.  The next test allowed the 

quantification of the hydrophobic character of the membranes.  A goniometer was used to measure the 

water contact angle for each membrane.  The final test for the first objective was to load the 

membranes into the full apparatus assembly and charge one of the reservoirs (Figure 4).  The membrane 

was tested with water, and then hydrogen peroxide, in one reservoir arm of the apparatus and air in the 

other arm of the apparatus.  The apparatus was then disassembled and inspected for any leaks or 

transport, a final check of the hydrophobic character of the membranes. 

 The second objective was reasonably straight forward.  Solutions were prepared in keeping with 

respective calculations.   

The third objective was centered on a single series of experiments.  Having proven the integrity 

of the apparatus in the first objective, the entire apparatus was assembled and then charged with a 

MTBE solution in one reservoir and water on the opposing side.  The concentrations were recorded over 

a thirty minute testing period to allow an analysis of the manner in which the concentration was 

reduced over time. 

 Completion of the fourth objective necessitated four experiments.  Tests were conducted to 

ensure that hydrogen peroxide and ferrous iron ions were not able to pass through the membrane 

tested.  The membrane was then tested with MTBE transport across its boundaries, into a strong 
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oxidizing solution.  The temperature rise in the individual reservoirs of the apparatus was measured to 

identify the progress and location of the reaction stemming from the heat of reaction for oxidation of 

the MTBE.  After the membrane had been used in a test involving the oxidation of MTBE at its surface, 

the water contact angle for the membrane was once again tested to identify any degradation. 

Results and Discussion 

When we started, we had four membranes for which were run through a series of tests to 

properly determine the membrane which would eventually be used in Fenton’s oxidation testing. During 

the dropwise testing, Polyvinylidene difluoride was removed as a potential candidate because of the 

lack of hydrophobic nature it exuded. During the flux testing, the Teflon membrane was the membrane 

that best approached half of the original concentration of MTBE.  From this test, the Teflon membrane 

was chosen. Although, when the Teflon membrane was tested using the goniometer. The Teflon 

membrane was not the membrane that gave the highest contact angle. We remained with the Teflon 

membrane because the flux testing was the most important experiment that had been run to this point. 

From there, we began the Fenton’s oxidation testing using the Teflon membrane.   

 The effective removal of the MTBE was proven in the full scale test combining the use of 

Fenton’s oxidation reagents and Teflon membranes.  The oxidizing reagents acted quickly upon contact 

with the MTBE with most of the removal taking place within the first 5 minutes.  Within 30 minutes of 

the experiment, the MTBE concentration within the reservoir had effectively removed close to 80 

percent of the initial concentration for two trial runs.  

Conclusions and Recommendation 

 The Teflon, Nylon and polypropylene membranes all fostered MTBE transport, and so other 

membranes resistant to strong solutions should be tested for the ability to rapidly transport MTBE, 

possibly outpacing the transport through Teflon.  Independent of the which hydrophobic polymer is 
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ultimately found to have the greatest capability to rapidly transport MTBE, various industrial scale 

remediation systems should be investigated to identify the best way to implement a scheme involving 

MTBE transport through a hydrophobic membrane into an oxidizing solution. 
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BACKGROUND 

Methyl Tert-Butyl Ether 

Methyl tert-Butyl Ether (MTBE) is an additive to gasoline that allows a cleaner and more efficient 

combustion in common gasoline burning engines.  Use of MTBE began in 1979, displacing lead-based 

additives that were used throughout the industry.  In 1990, the Clean Air Act Amendments (CAAA) were 

passed into law requiring that gasoline oxygenates be used in any urban area where there are unhealthy 

levels of smog and pollution (Environmental Protection Agency, Gasoline, 2007).   

The synthetic molecule was initially used in low concentrations, from 0.5 to 3.5 percent by 

volume (Napoli, Kaiser, Bern & Associates, 2000). In 1981, the Environmental Protection Agency 

authorized use of up to ten percent by volume MTBE in gasoline and in 1988, two years before use of 

oxygenates were mandated, the acceptable level of MTBE in gasoline was increased to 15 percent 

(Napoli, Kaiser, Bern & Associates, A History of MTBE, 2000).  In 1993, “MTBE was the second most 

produced organic compound (second only to gasoline) in the U.S.” (McCaulou, D.R. & Slater, J.C., MTBE 

in Groundwater: Physical Properties and Regulatory Outlook , 2002). 

The oxygen in MTBE reduces the amount of pollution rendered by the combustion of gasoline, 

by increasing the oxygen-to-fuel ratio and enhancing the octane rating of the gasoline.  A study 

prepared by Systems Application International, Inc., has shown that the use of oxygenated fuels in the 

concentrations made available to consumers reduces the carbon monoxide production by up to 14 

percent (Howard, C. J., Russell, A., Atkinson, R., & Calvert, J., AIr Quality Effects of the Winter Oxyfuel 

Program,  1996).  Given the stoichiometry of combustion, the oxygen enrichment of the mixture 
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improves gas mileage, and reduces the amount of hydrocarbon contained carbon that is converted into 

carbon monoxide (Howard, C. J., Russell, A., Atkinson, R., & Calvert, J., AIr Quality Effects of the Winter 

Oxyfuel Program , 1996).   

Many oil refineries across the United States continue to rely on MTBE to help achieve the 

standards set-forth by the Federal Clean Air Act, which, since 1963, has limited various types of 

atmospheric emissions throughout the United States in an effort to protect the environment.  Eighty-

seven percent of the gasoline that is reformulated includes oxygenates containing MTBE (Environmental 

Protection Agency, Gasoline, 2007).  Because of the high concentrations of MTBE in gasoline and the 

large quantities of gasoline distributed, stored and sold across the country, tremendous volumes of 

MTBE are at large.   

MTBE is highly soluble in water and so MTBE 

released into the environment associates with ground water 

to a large extent.  “At 25 degrees Celsius the water solubility 

of MTBE is about 5,000 milligrams per liter for a gasoline that is 10 percent MTBE by weight” (Paul J. 

Squillace, Environmental Behavior and fate of Methyl tert-Butyl Ether(MTBE), 1998).  This means that 

any time there is a leak of MTBE, a significant portion of it dissolves into the aqueous environment. The 

high water-solubility and low sorption of MTBE also results in a significantly faster spread of the 

compound when compared to other organic components of gasoline when released.  This differential in 

speed of dissemination is depicted in Figure 1, with the movement of MTBE over a given time being 

compared to that of BTEX, a combination of volatile organic compounds. 

Figure 1: MTBE Spill and Expansion from LUST.  
MTBE spread compared to BTEX 
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Underground Storage of MTBE 

Gasoline is stored in liquid underground storage tanks (LUSTs) at gas stations across the United 

States.  For decades, these tanks were constructed out of steel that was not resistant to corrosion. 

While the addition of MTBE does not make stored fuels more corrosive (California Environmental 

Protection Agency, Compatibility and Permeability of Oxygentated Fuels to Materials in Underground 

Storage and Dispensing Equipment), many of these tanks are not properly maintained and, over the 

course of decades of neglect, they deteriorate.    

The storage tanks leak their contents into the ground water in the areas around gas stations.    

In California, “more than twenty public drinking water wells…have ceased water production for this 

reason” (Happel, A., Sleuthing MTBE with Statistical Data, 1999).  Even those tanks that are not in a 

state of disrepair may leak gasoline due to improper installation, hardware malfunction or tank 

overflows or spills.   

Storage tank leaks have been identified across the country.  “In the United States alone, releases of 

gasoline containing MTBE may have occurred from more than 250,000 leaking underground storage 

tanks, potentially threatening over 9000 community water supply wells” (Nada Al Ananzeh et. al., 

Kinetic Model for the Degradation of MTBE by Fenton’s Oxidation, 2005) Another report puts the 

number of confirmed leaking UST sites at 539,623.  Of the half-million sites recognized by that report, it 

is estimated that twenty-five percent of the sites include the release of MTBE (Sweet, F., Kauffman et 

Al., An Estimate of the National Cost for Remediation of MTBE Releases…, 2005).   
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MTBE Releases 

Pascoag, Rhode Island 

In Pascoag, Rhode Island, the rock aquifer that the town sits upon and which permeates the 

town’s water supply is completely contaminated by MTBE.  Since 2001, MTBE levels in the town’s 

ground water have exceeded the maximum allowable MTBE level set in Rhode Island by a dramatic 

margin.  The limit of 40 μg/L was established by the state branch of the Department of Health.  In some 

cases, tests have yielded concentrations up to 15,000 μg/L.  The MTBE level is measured in terms of 

grams per liter because the measurement is taken as the water is pumped from the subterranean 

reservoir beneath the town.   

Pascoag’s drinking water is drawn from a single well and so, with the contamination of that well, 

the people of Pascoag have been cut off from a “water source of their own” (Allen, J., & Boving, T.,  

MTBE Drinking Water Contamination in Pascoag, RI , 2006).  The town is being driven toward 

bankruptcy because the situation with their ground water has forced the townspeople to ship in bottled 

water and to purchase water from a neighboring town.  The purchase of water represents a financial 

burden of more than $1,000,000.00 a year.  

 The source of the contamination in Pascoag was a single abandoned gas station.  The leak 

spread gasoline from beneath the gas station and contaminated an area covering nearly twenty acres 

and over 100 feet into the ground. Since the problem was identified, the EPA – New England Region has 

appropriated almost two and a half million dollars to the cleanup of MTBE at the Pascoag site.  The 

money has been devoted, in large part, to the installation of on- and off-site remediation equipment.  A 
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pilot-scale Biomass Concentrate Reactor (BCR) has been installed in Pascoag as a proof of concept 

(Environmental Protection Agency, Underground Storage Tanks, 2004).  The reactor is capable of 

treating a flow of five gallons-per-minute and reducing the MTBE levels to within the RI EPA standard of 

20-40 parts per billion.   

Over the course of the cleanup and remediation efforts, the EPA and the Department of 

Environmental Management have removed the source of the leak and several thousand yards of heavily 

contaminated soil.  More than eight million gallons of contaminated groundwater have been pumped 

through the remediation system, which operated almost constantly from 2003 to October 2007. The 

MTBE from 3,000 gallons of gasoline have been extracted from contaminated groundwater (Department 

of Environmental Management, Pascoag Fact Sheet 2007, 2007). 

Santa Monica, California; Charnock Sub-basin 

In addition to the large-scale release of MTBE in Pascoag, Rhode Island another large spill of 

MTBE has contaminated wells in Santa Monica, California.  The city receives its drinking water from well-

fields which are supplemented by water from the Colorado River.  Leaks from underground gasoline 

storage tanks, above ground storage tanks, and pipelines have contaminated seven of the wells in two 

of these well-fields.  The contamination was discovered in the Arcadia Well-field and the Charnock Sub-

basin in 1995 during water sampling by the city.   

The concentrations of MTBE in the well-water in the Acadia Well-field are much lower than in 

the Pascoag groundwater, ranging from levels between 20 ppb to 86.5 ppb (Environmental Protection 

Agency, MTBE Project, 1998).  The regional branch of the EPA directed Mobil Oil, the proprietors of the 
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USTs, the above ground tanks, and pipelines, to fund and lead a cleanup of the contaminated area.  The 

gas station to which the leaking tanks and pipelines were connected was removed, along with several 

thousand cubic yards of contaminated soil.  An activated carbon bed remediation system began 

pumping MTBE laced groundwater in October, 1997.   The water containing MTBE passes through three 

beds of activated carbon before being reintroduced to the public water system, meeting EPA standards.   

The Charnock Sub-basin experienced significantly more contamination, around 610 ppb within 

the wells.  Twenty-six leaking USTs and two leaking pipelines have been removed in connection with 

MTBE contamination of the Charnock Sub-basin.  Contaminated soil was also removed from the site. 

 

Dallas Texas; Lake Tawakoni 

Dallas, Texas has also suffered from the effects of MTBE being introduced into the environment 

in large quantities.   In March of 2000, a gasoline pipeline, the Explorer Pipeline, was found to have a 

rupture 50 inches long that was leaking into East Caddo Creek.  East Caddo Creek is a tributary for Lake 

Tawakoni, running twenty-eight miles from the site of the gasoline pipe rupture to the lake inlet.  Steps 

were immediately taken to limit the spread and impact of the spill; floating and cofferdams were used in 

conjunction with vacuums to staunch the flow of the gasoline and remove it from the watershed.  

However, runoff rainwater served as a driving force to disseminate the spilled gasoline.  Within three 

days of the discharge, the gasoline had traveled almost thirty miles.   

Lake Tawakoni was used as a source of water for the Dallas Water Utilities (DWU) which is 

responsible for distributing water to millions of people within the limits of the City of Dallas 
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(Odencrantz, J. E. , Environmental Impacts from Largest MTBE Release in History, 2004).  The gasoline 

contained MTBE and upon discovery of that fact, the lines pumping water from the lake were turned off.  

The best estimate offered by the DWU for the volume released from the pipe rupture is a half-million 

gallons of gasoline, which left the DWU a deficit of 190 million gallons each day.  The problem was 

solved at significant expense through the construction of an underground pipeline to another lake, Lake 

Ray Hubbard (Odencrantz, J. E. , Environmental Impacts from Largest MTBE Release in History, 2004.)   

 

Health Effects 

The health effects of MTBE are not yet completely understood and it is not yet certain whether 

or not it should be classified as an imminent human health risk.  It is categorized by the EPA as a 

possible carcinogen to humans.  Prolonged exposure to highly concentrated MTBE vapors has resulted 

in cancerous polyp formation on the kidneys in rats as well as displaying other, non-cancerous, 

complications.  MTBE has a number of less severe effects on humans, ranging from nose and throat 

irritation to headaches to nausea and vomiting.  In Pascoag, RI many of these symptoms were exhibited 

throughout the community.  Individuals suffered from migraine-grade headaches.  Other denizens 

began to develop respiratory problems, wheezing heavily and often.  In some of the worst cases of 

exposure, victims developed open sores and blisters on their lips. 

MTBE contamination of soil and ground water is occurring throughout the country.  The issue is 

being addressed in an effort to assuage the problems that a good portion of the population is 

experiencing with regard to one of their basic needs, drinking water.  Degradation of MTBE by advanced 
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oxidation offers a means of rectifying the problem.  Fenton’s oxidation has proven to be very effective in 

breaking down MTBE into a number of different products.    

Remediation  

Unfortunately, the problem of MTBE contamination in ground water and wells across the United 

States will not rectify itself.  MTBE is resistant to biodegradation and does not break down to a large 

extent over time.  MTBE is also highly soluble in water and so does not readily precipitate out of 

solution.   

Several techniques are currently being used to cleanse MTBE contamination from ground water 

and soil.  Soil vaporization extraction (SVE) forces air through contaminated aquifers, volatizing the 

contaminants.  The vaporized MTBE is then collected by a vacuum for treatment by air stripping and 

disposal.  When MTBE is dissolved in water, it must be pumped out of the wells for treatment.  Granular 

activated carbon (GAC) beds can be used to remove MTBE from solution, however, MTBE does not have 

much affinity for organic compounds, and so must be flushed through the bed numerous times to yield 

sufficiently low concentrations (Environmental Protection Agency, Clean Up and Treatment, 2007.)   

Advanced oxidation processes have been shown to oxidize up to 99% of MTBE within five 

minutes of the onset of treatment (Nada Al Ananzeh, J. A.,  Kinetic Model for the Degradation of MTBE 

by Fenton's Oxidation, 2005.)  This method is one of the more promising means of dealing with and 

destroying MTBE, but it requires the separation of MTBE from the water supply so that the oxidizing 

agents and the products of oxidation do not remain in the water stream.   
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Zeolite Separation 

New technologies are being developed and investigated in an effort to deal with the problem of 

MTBE contamination.  Zeolites, which are “nano-porous, crystalline alumino-silicates with framework 

structures containing silica and alumina tetrahedra, “(N. Koryabkina et Al., Adsorption of Disinfection 

Byproducts on Hydrophobic Zeolites…, 2007) have been explored as a means of selectively removing 

MTBE from a water stream.  Hydrophobic and organophillic zeolites repel water while allowing the 

transport of MTBE.  The hydrophobic nature of the compounds comes from the particular arrangement 

of the silica tetrahedra, relative position to alumina, and the amount of alumina tetrahedra in the 

structure.  Silicate structures are comprised of two types of groups, silanol sites, which is a silicon group 

bonded to an hydroxyl group (ΞSiOH,) and a pair of silicon atoms bonded to an oxygen atom(Ξ Si – O – 

Si Ξ.)   The silicon-oxygen-silicon bonds are not polarized and so should repel polarized water molecules.  

This repulsion of water molecules from the surface of the crystalline silicates creates hydrophobic 

zeolite particles.  The rigid crystalline structure of the zeolites offers pores that can adsorb organic 

compounds, such as MTBE.  In experiments, hydrophobic zeolites have performed better in terms of 

MTBE adsorption and removal than granular activated carbon beds (Adsorption of disinfection…, Feb 

2007).  Once saturated with organic MTBE, the zeolite bed can be cleansed through advanced oxidation 

by hydroxyl radicals, extracting and mineralizing the targeted compound (N. Koryabkina et Al., 

Adsorption of Disinfection Byproducts on Hydrophobic Zeolites…, 2007).  

This zeolite technology is not, however, the direct answer to the problem of cleansing MTBE 

contaminated water.  The transition from laboratory experiments to industrial scale use of zeolites 

belies a major flaw in the technology.  The same nano-porous structure and small particle size which 
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allows a bed of hydrophobic zeolite to selectively attract MTBE prevents the passage of a stripping agent 

during remediation.  Prohibitively large pressure drops are experienced across these beds, due to 

energetic demands and other inefficient operating parameters.  Pressure drop in a packed tower is 

determined by Equation 1: 

Equation 1: Pressure Drop in a Packed Tower 
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dp/dL defines the pressure drop per unit length.  μ represents the viscosity of the filtrate 

through the zeolite particle bed.  U represents the linear velocity of the filtrate based on the area of the 

filter.  ε is the porosity of the  zeolite particles, dependent upon the ratio of alumina to silica.   The 

factors determined relating to sphericity or shape and particle size are Фs and Dp.  Because the particle 

size is accounted for in the denominator as a squared term, the very small size of the zeolite particles 

offers a tremendous pressure drop across a scaled-up bed for the removal of MTBE from a water supply.  

Pumps must be operated at a sufficiently high rate to overcome this pressure drop, yielding the 

aforementioned prohibitive energetic demands of such a large-scale effort.  

 

Membrane Separation 

 Filtration on a molecular-scale, which is termed ultrafiltration, is possible through the use of 

semi-permeable membranes.  Membranes can effectively retain a particular solute or solvent while a 

free-energy disparity caused by concentration gradient drives another solute from one side of the 

barrier to the other.  Pore-size limits what molecules can actually pass through the membrane, along 
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with the chemical makeup of the membrane and the solute of interest.  Just as a molecule that is too 

large to pass through a membrane will be maintained on a particular side of the membrane, a molecule 

that is repelled by the surface chemistry will not pass through.  Hydrophobic membranes prevent the 

transmission of water molecules across the diaphragm of interest.  Organophillic membranes allow the 

passage of organic compounds.  Polymer membranes offer a platform where the properties of 

hydrophobicity and organophillicity can be combined.  Such a combination theoretically allows for the 

development of a means for selectively removing MTBE from a water source, while making use of 

materials that are chemical resistance to aggressive solutions.  

Hydrophobicity  

 The hydrophobic nature of a material is primarily governed by several factors.  The first of those 

factors is the chemical makeup of the membrane and the polarity of the bonds within the molecules.  

The molecular structure within the membrane also plays part in the determination of the 

hydrophobicity of a material.  Further hydrophobic nature is realized through the topography of the 

membrane surface (Lei Zhai, F. C. , Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers, 

2004).   

 The electronegativity difference between the oxygen and hydrogen in water molecules creates a 

pair of dipole moments and a molecule that is, overall, polar.  The positive hydrogen dipoles within 

water molecule tend to associate with the negative oxygen dipoles, forming what are termed hydrogen 

bonds (Zumdahl, S., & Zumdahl, S. , Chemistry, 2003).   The energetic stability derived from the 

formation of hydrogen bonds leads to a tendency for the maximum number of such bonds to form.  The 
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presence of non-polar molecules among 

polar molecules prevents the formation of 

hydrogen bonds, developing a repulsive 

force between two such phases.  It is 

partially this repulsive force that lends 

hydrophobic character to a material.  “The 

liquid will bead up on the surface to minimize the solid-liquid interfacial area” (Contact Angle 

Measurement, 2001).   

 If a molecule has polar as well as a non-polar portions, the structure must arrange and orient 

the molecules in a manner sufficient to prevent the interaction of water with the hydrophillic regions.  

Hydrophilic molecules on the membrane surface increase the wettability of the membrane as a 

substrate (Contact Angle Measurement, 2001).  Additionally, formation of hydrophilic channels through 

the membrane would foster the movement of water through the membrane, countering the effect of 

the hydrophobic regions.          

 The microscopic surface topography of a membrane can increase the hydrophobicity of a 

material by allowing further reduction in the size of the interfacial area between the liquid and the 

membrane.  Roughness is characterized by either “peaks” or “pillars” of varying size on the membrane.  

It is well known that increasing the roughness of a hydrophobic surface can increase its hydrophobicity 

dramatically” (Lei Zhai, F. C. , Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers, 2004).  

A water droplet will rest on top of the peaks or pillar tops of a rough surface, allowing air to fill the 

Figure 2: Contact Angle Measurement 
“Wafer Bumper” 
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valleys between the membrane surface and the water droplet.  The limited surface contact allows the 

formation of increasingly spherical beads of water.   

 The degree of hydrophobicity exhibited by a membrane can be measured in terms of water 

wetting contact angle between the surface and a line tangential to the drop, as can be seen in Figure 2.  

A hydrophilic surface yields a contact angle less than 90 degrees while hydrophobic surfaces display 

contact angles greater than 90 degrees (Contact Angle Measurement, 2001).  Surfaces with contact 

angles in excess of 150 degrees are considered to be superhydrophobic (Lei Zhai, F. C. , Stable 

Superhydrophobic Coatings from Polyelectrolyte Multilayers, 2004).   

Organophilicity  

 Organophilic character is a measure of how readily a material associates with organic 

compounds.  Hydrophobic compounds are also organophilic because of the non-polarity of the 

molecules and the organics (Mortland, Stephen A. Boyd and Max M., Enzyme Interactions with Clays and 

Clay-Organic Matter Complexes).  This characteristic is of significant import, because MTBE is an organic 

compound, and so, for it to permeate membrane a membrane that membrane must be organophilic. 

Polymer Membranes 

Teflon – Teflon, or polytetrafluoroethylene (PTFE), was developed in 1938 by Roy Plunkett in an 

attempt to develop a new refrigerant.  Plunkett was working for Kinetic Chemicals; a company absorbed 

by E. I. du Pont de Nemours & Co., Inc., in their Jackson Laboratory in New Jersey.  The substance was 
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used industrially throughout World War II and was released for commercial consumption by DuPont in 

1945.  Because of its rather unique characteristics, Teflon is used in a wide variety of applications. 

Many of Teflon’s properties suit it for use in a membrane designed to foster the transport of 

MTBE while restricting the passage of water.  It is also well-suited for use with aggressive solutions such 

as the oxidizing solutions that will be necessary for the destruction of the MTBE after it has crossed the 

membrane substrate.  PTFE is chemically inert, which means that it does not readily react to or interact 

with other substances which can help to prevent its degradation while oxidation is taking place.  It also 

has a high resistance to heat that will allow it to maintain its form when heat is evolved from oxidation-

reduction reactions (Gangal, S. V., Perfluorinated Polymers, Polytetrafluoroethylene, 2002).  These 

characteristics offer a PTFE surface that is non-corrosive.   

Teflon is comprised of a chain of non-polar monomers bearing the formula –(CnF2n)-.  The non-

polar monomer lends itself to a non-polar and therefore, hydrophobic and organophilic, polymer chain.  

The contact angle for PTFE ranges from 98.5 degrees (James R. Fleming et Al., Material of Construction 

for Pharmaceutical and for Biotechnology for Processing) to 105 degrees depending upon the 

manufacturing technique used in the development of the Teflon, as different techniques offer different 

surface topographies.  Teflon resin can be precipitated, from aqueous solution, in a granular form if a 

dispersing agent is not used.  If a dispersing agent is used in solution in conjunction with agitation, a 

particulate form of the resin develops (Gangal, S. V., Perfluorinated Polymers, Polytetrafluoroethylene, 

2002).  Either form carries the characteristics necessary for allowing the transport of MTBE while 

resisting destruction at by strong oxidizing agents.   
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Nylon - Nylon was discovered, in 1935, by Dr. Wallace Carothers, a research scientist in the 

employ of the DuPont Corporation.  Dr. Carothers made his discovery while investigating the 

polymerization of amides, which exhibit a significant resistance to aggressive environments.  DuPont 

developed nylon as an artificial fiber for use in the manufacture of hosiery and leggings.  During World 

War II, the polymer was used in parachutes as well as in other parts of the war effort (E.I. du Pont de 

Nemours and Company, 1935: Nylon ,2003.) 

Nylon is naturally hydrophilic with a water contact angle of 70 degrees (Tokoro, T.,  Recovery of 

Hydropohobicity of Nylon Aged by Heat and Saline Water, 1996).  It is a crystalline polyamide polymer.  

The crystalline network of the polymer offers a degree of strength to membranes made from it.  Nylon is 

resistant both to heat and a variety of chemicals, including weak acids (E.I. du Pont de Nemours and 

Company, 1935: Nylon ,2003). Nylon, however, is attacked by strong acids and in some cases dissolves in 

the presence of such solutions (Huntingdon Fusion Techniques Limited, Nylon Chemical Resistance and 

Technical Data).  The surface chemistry of nylon membranes can be altered in order to render it 

hydrophobic (GE OEM Labstore, Hydrophobic Membranes for Strong or Aggressive Solvents, Acids, Bases 

and Venting, 2008).  Contact angles of around 120 degrees are possible with nylon membranes that 

have received such treatment (Molly K. Phariss, Evaluation of Peel-Ply…, 2007).   

Polyvinylidene Diflouride –  Polyvinylidene diflouride, or PVDF, is a fluoropolymer resistant to 

chemical, including strong acids, and thermal degradation (The TexLoc Closet, PVDF Detailed Properties, 

2008).  The polymer chain is comprised of – (CH2CF2)n- monomers.  The wetting contact angle for 

18MΩ water on PVDF is 71.8 degrees.  This means that the surface of a PVDF membrane exhibits slightly 

http://heritage.dupont.com/touchpoints/tp_1935-2/overview.shtml
http://heritage.dupont.com/touchpoints/tp_1935-2/overview.shtml
http://heritage.dupont.com/touchpoints/tp_1935-2/overview.shtml
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hydrophilic behavior and, for comparison, “Teflon…is more than 137% less water-wettable than is PVDF” 

(James R. Fleming et Al., Material of Construction for Pharmaceutical and for Biotechnology for 

Processing ). 

Polypropylene – Polypropylene was first developed after the Second World War.  It was created 

in resin form, by a Spanish research scientist, Giulio Natta, in 1957 (Lenntech, Polypropylene, 2008).  The 

polymer was discovered by a number of other parties in close succession, resulting in long-running legal 

battle that was not settled for nearly thirty years.  Ultimately, Paul Hogan and Robert Banks, chemists 

employed by Phillips Petroleum were accredited with the patent for the discovery of polypropylene.  

Polypropylene is formed by the linkage of – (C2H2n) - component monomers, which elongates in 

a linear fashion when propylene gas is introduced to an appropriate solid catalyst (Lenntech, 

Polypropylene, 2008).  It is hydrophobic with a contact angle of 105 degrees (Jochen Frank, F. S., 

Characterization of the Interfacial Properties of Modified Polypropylene, 1999) and chemically resistant 

to attack by strong acidic solutions.  However, polypropylene is susceptible to solutions containing 

strong oxidizing agents and so may degrade in the presence of such solutions (Inteplast Group,  

Technical Properties of Polypropylene (PP) IntePro, 2006).   

Fenton’s Oxidation 

 There are a several different advanced oxidation processes used commercially.  These processes 

make use of hydrogen peroxide or titanium dioxide and ultraviolet radiation, ozone or iron to generate 

hydroxyl radicals.  The hydroxyl radicals are of sufficiently high oxidation state to oxidize organic 

compounds, such as MTBE, degrading them to benign products. The Fenton oxidation process is a 
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specific reaction that utilizes hydrogen peroxide and ferrous iron at low pH values (pH~3) to produce the 

desired hydroxyl radicals (Nada Al Ananzeh, J. A.,  Kinetic Model for the Degradation of MTBE by 

Fenton's Oxidation, 2005).   

Equation 2 
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Equation 3 
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The hydroxyl radicals then react with the MTBE that is in the solution.  The primary reactions of 

hydroxyl radicals with MTBE are as follows. 

 
Equation 4 

OHCOCHCHOHCOCHCH 2233333 )()(  

 
 

Equation 5 

OHCOCHCHCHOHCOCHCH 23232333 )()( 
 

There are a number of other reactions that occur in solution with the Fenton oxidation 

reagents.  Hydrogen peroxide and ferrous iron interact with the other components of the solution in up 

to thirty different minor reactions.  The hydroxyl radicals also participate in up to twenty-seven different 

minor reactions.  The major products of the degradation of MTBE by hydroxyl radical oxidation include 

tert-butyl formate, tert-butyl alcohol, acetone, methyl acetate, and formaldehyde (Nada Al Ananzeh et 

Al, Kinetic Model for the Degradation of the MTBE by Fenton’s Oxidation, 2005.)    
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The reaction of Fe 2+ with hydrogen peroxide occurs quite rapidly.  However, the Fe 3+ that is 

produced by this reaction also reacts with hydrogen peroxide in a much slower reaction to produce 

hydroxyl radicals.   

 
Equation 6 
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Equation 7 
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Equation 8 

  OHHOFeHOHOFeIII

2

22

2 ))((  
 
 

As the reaction progresses, the degradation of MTBE slows considerably as Fe 2+ begins to 

compete with the byproducts of the minor reactions for hydrogen peroxide and the much slower 

reaction of Fe3+ with hydrogen peroxide.  With fewer hydroxyl radicals available, fewer oxidation 

reactions can occur.  Additionally, the products of the various reactions compete with the MTBE to react 

with what hydroxyl radicals are available.    Because of this, the degradation of MTBE slows quickly after 

the beginning of the reaction, breaking down up to 99% of the MTBE in the first five minutes of latency 

time, but never completely eradicating the contaminant. 
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METHODOLOGY 

Objective 1:  Membrane Viability  

 The characteristics of each polymer membrane acquired for the purpose of this investigation 

had to be tested to ensure that they were appropriate for the separation of MTBE from a water supply 

while also preventing the transport of the oxidizing solution into the water supply.  The membranes 

were tested for hydrophobic character, ability to maintain hydrogen peroxide on one side of the 

membrane, and ability to prevent the passage of iron ions.  The experiments were carried out in a 

progression designed to evaluate properties in keeping with a logical hierarchy of importance to the goal 

of the project.  Such a progression served to identify membranes not fit for use at the earliest possible 

juncture. 

 Four polymer membranes were obtained for testing over the course of the project.  Samples of 

polyvinylidene diflouride membrane tubing were procured from the stores of the Worcester Polytechnic 

Institute Civil Engineering Department.  Three other membranes were ordered from the General Electric 

Osmonics Labstore.  PTFE (Teflon) laminated membranes, Nylon, and polypropylene were purchased.   

Each of the membranes purchased from GE Osmonics were marketed as hydrophobic as well as having a 

high resistances to aggressive solutions.  The Teflon membranes ordered were disks 25mm in diameter 

and had 0.45 micron pores.  The part and model number were 1215492 and F04LP02500 respectively.  

The Nylon membrane ordered were also disks with 0.45 micron pores, but were 47mm in diameter, 

which had to be cut down for use in the apparatus.  The part and model numbers were 1237909 and 

R04SH04700 respectively.  Polypropylene membrane was purchased in sheets.  The pores, as with the 

other membranes, were 0.45 microns in diameter.  The part and model numbers were 1225933 and 

M04WP320F5 respectively. 



32 
 

Hydrophobicity  

The polymer membranes had to have a series of tests done in order to assess how each of four 

membranes interacts with liquid water.  Teflon, Nylon, polypropylene, and PVDF membranes were 

tested.  All of the membranes were marketed as having hydrophobic character.  The wettability of the 

membranes was tested from a macroscopic standpoint through a drop-wise test.  It was also quantified 

in terms of the water contact angles of the membranes, which were measured by a goniometer.   

Drop-Wise Testing 

The first test conducted was run to visually evaluate the wettability of the membranes with 

water as well as a hydrogen peroxide solution.  This base level investigation was used to identify, at the 

earliest possible stage, if any of the membranes was actually hydrophilic.   The experiment allowed 

conclusions to be drawn about the membrane wettability based on the shape of the water bead on the 

membrane surfaces.   

A 1-to-200 μL pipette was used to uptake and deposit 2 μL droplets of water onto each of the 

membranes, which had been placed onto a flat countertop.  Observations about the droplets on each 

membrane were recorded in a laboratory notebook.  A 30% hydrogen peroxide solution was then used 

to run the same experiment.  Again, observations about the drops were recorded.  Procedure 1 was 

followed to for the execution of the experiment. 

Procedure 1:  Drop-Wise Testing Procedure 

 Place the membranes on the lab surface and ensure that the membranes are flat 
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 Prepare a 1-to-200 μL pipette by affixing the appropriate size tip and setting it to a volume of 4 

μL 

 Fill a 50 mL beaker with approximately 25 mL of 18 MΩ E-Pure water 

 Draw a sample of water and carefully excrete a droplet onto the surface of the membrane 

 Drop several beads of water onto each membrane 

 Evaluate and record the shape of the beads of water immediately after deposition 

 Allow the beads of water to stand on the membranes for a period of ten minutes 

 Record any visible change in the shape of the water beads 

 Repeat the entire experiment from the first step with new membranes and a 30% hydrogen 

peroxide solution 

 

Contact Angle Measurement 

In an effort to quantify the hydrophobicity of the four membranes, the contact angles for the 

membranes were determined.  The contact angle measurements were taken using a goniometer.  A 

goniometer is a piece of equipment that makes use of camera that can magnify and capture the image 

of a droplet on any desired surface, supported on an adjustable platform between the camera and the 

opposing lantern.  The camera, platform, lantern, and automated water dispensing syringe can be seen 

in Figure 3.  The captured digital image can then be analyzed using computer software to determine the 

contact angle exhibited by a membrane.  The contact angle was measured repeatedly to allow a mean 

value to be determined. 
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Figure 3:  Sample Goniometer Equipment Setup 

 

 

 

 

 

 

 

 

 

Procedure 2:  Goniometer testing 

 Turn on the computer, camera, pump, and lantern 

 Load the automated syringe from a 50 mL beaker filled with 18MΩ E-Pure water 

 Place the membrane on the goniometer surface and ensure that the membrane is flat  

 Adjust the camera to frame the surface of the membrane 

 Enter the desired water droplet size into the computer software interface 

 Output a 4 μL water droplet onto the membrane, moving the platform-bound membrane 

upward or downward as necessary to allow the droplet to release   

 Manipulate the computer software to compute the contact angle 

 Move the platform laterally to present an unmarred section of membrane fills the camera frame 
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  Repeat all previous steps until five contact angle measurements have been resolved for each 

membrane 

 On the final droplet for each membrane, take a picture of a droplet to have visual evidence for 

later reporting 

 

Apparatus-Membrane Seal Testing 

 Another simple test had to be conducted 

before the designed apparatus, seen in Figure 4, 

could be used in tests.  The apparatus to be 

tested had two reservoirs, made from two inch 

PVC piping, to hold test solutions.  The reservoirs 

were capped by screw-on rubber stoppers.  The 

two reservoirs were connected by equal length 

sections of ¾ inch PVC piping with a threaded flange, displayed in Figure 5, to hold the membrane 

sample in place and attach the two halves of the apparatus.  Each PVC to PVC connection was threaded 

and the threads were wrapped with latex tape, to ensure tight seals.   

To test the seals, throughout the apparatus as well as around the membrane, the apparatus was 

assembled with a sample membrane loaded.   One reservoir was filled with 18 MΩ E-pure water and the 

other was left empty.  The setup was allowed to stand for 5, 10 and 15 minute periods.  At the end of 

each time period the apparatus was drained and disassembled.  The side of the membrane not in 

contact with the water and the ¾ in PVC tubing from the dry side of the apparatus were investigated for 

moisture.  This test offered one final practical check of the hydrophobic character of the membranes 

Figure 4:  Test Apparatus with Two Reservoirs and a Coupling 
Flange 
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while also ensuring the integrity of the entire device.  The test was repeated with a hydrogen peroxide 

solution. 

 

 

 

 

 

 

 

 

 

Procedure 3:  Apparatus-Membrane Seal Test 

 Seat a membrane onto the black O-ring of the flange   

 Screw the two halves of the apparatus together 

 Pour 175 mL of 18 MΩ E-pure water into one arm of the apparatus and screw the rubber 

stopper onto the apparatus. 

 Place on a shaker-table to simulate the conditions of future experiments 

 Remove the apparatus from the shaker-table after five minutes and empty the reservoirs  

Figure 5:  Threaded Flange with Membrane 
in Place 
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 Disassemble the apparatus 

 Examine the membrane and the side of the apparatus that was left dry for moisture 

 Repeat for 10 and 15 minute intervals 

 Repeat the entire experiment with a hydrogen peroxide solution made by adding 670 μL of 30% 

hydrogen peroxide to 200 mL of 18 MΩ E-pure water for the test solution 
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Objective 2:  Solution Preparations 

 Several solutions of MTBE in water had to be generated for use in testing.  In order to generate 

a concentration-absorbance curve, from which absorbance measurements could be converted into 

concentration measurements, varying solutions of calculated concentrations of MTBE had to be 

developed and then measured for absorbance.  Solutions were also necessary for loading into the  

Table 1:  MTBE Solution Preparation  

apparatus during each test.  The solutions of MTBE created were 1000, 500, 250, 125 and 50 ppm.  The  

following table will show the total volume of the solution, the amount of MTBE pipetted into the 

solution and the concentration of the MTBE in parts per million, ppm.  All solutions will be prepared in a 

300 ml flask and stirred for 20 minutes prior to being placed within the apparatus.  Solutions below 50 

Total Volume MTBE Volume Concentration 

250 mL 340 μL 1000 ppm 

250 mL 170 μL 500 ppm 

250 mL 85 μL 250 ppm 

250 mL 34 μL 100 ppm 

250 mL 17 μL 50 ppm 
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ppm were not prepared because MTBE levels below 50 ppm approximate the levels set forth by the 

Environmental Protection Agency as acceptable hazards to individual hazard. 
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Objective 3:  MTBE Transport Across Polymer Membranes 

 Having determined which of the membranes were hydrophobic and how the different 

hydrophobic membranes compared to each other, it became imperative to determine if the various 

polymer membranes could, indeed, transport MTBE across its thickness.  The hydrophobic character of 

the membranes should lend itself to organophilic character, but this assumption needed to be tested.  

In addition to testing the ability of the membranes to allow and foster the transport of MTBE, a 

comparison of the ability of the membranes to conduct that transport must be possible from our 

experiments.    

Concentration Profiles for MTBE Transport  

The aforementioned aims were accomplished by measuring the concentration of an MTBE 

solution over time while connected to a reservoir initially containing only water.   Experiments were 

conducted over a period of thirty minutes with samples drawn initially and at five, 15, 25 and 30 

minutes.  Some experiments were run for longer periods of time.  A spectrophotometer was utilized to 

assess the concentrations of the samples as they were drawn.  Well-mixed solutions were maintained by 

keeping the apparatuses on a shaker-table that oscillated at a constant rate.   

Procedure 4:  Concentration Profiling for MTBE Transport  

 Prepare MTBE solution 

 Assemble the apparatus with sample membrane in place 

 Pour 175 mL of 1000 ppm MTBE solution into an appropriately labeled arm of the apparatus 

 Pour 175 mL of 18 MΩ E-pure water into the opposing arm of the apparatus and screw the 

rubber stoppers onto each reservoirs after taking an initial sample 
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 Place the apparatus on the shaker-table, and set the table to a low speed 

 Remove the apparatus and draw 3.25 mL samples from each arm of the apparatus at each 

preset interval; 5, 15, 25 and 30 minutes 

 Excrete the samples into individual vials for spectrophotometer analysis 

 Screw the rubber stopper onto  both arms of the apparatus 

 Replace the apparatus on the shaker-table  

 At the conclusion of the testing period the MTBE solution must be disposed of in a hazardous 

waste container and the apparatus must be thoroughly cleaned 
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Objective 4:  MTBE Transport and Fenton’s Oxidation   

 After removing the MTBE contamination from a water source, it must be degraded into lesser 

forms that do not conflict with health standards.  Fenton’s oxidation reactions, which are a specific set 

of oxidation reactions, have been shown to help meet that requirement of a remediation system.  

However, these reactions are quite aggressive and so these polymer membranes had to be shown to be 

able to withstand attack by the solution.  Only the membrane displaying the most rapid transport of 

MTBE in the previous round of testing was used in subsequent tests.  The polymer membranes were 

tested via separate experiments to ensure that they did not allow the passage of iron ions or hydrogen 

peroxide.  The non-polar surface of the hydrophobic membrane was expected to repel the two 

components of interest on similar principles to the repulsion of water.   

Fenton’s Oxidation in the Apparatus 

Fenton’s oxidation reactions take place when ferrous iron is in solution with hydrogen peroxide.  

To create this solution, FeSO4·7H2O was dissolved in water.  Once the salt had completely dissolved, 

hydrogen peroxide was added.    This solution presents two additional possible contaminants to the 

remediation system.  The contamination of the MTBE/water side with iron or hydrogen peroxide is not 

acceptable and so they must not pass through the membrane.  Having tested the membrane’s ability to 

prevent the passage of iron ions and hydrogen peroxide, tests could be conducted with Fenton’s 

oxidation taking place in one reservoir and MTBE transport from the opposing, membrane-separated, 

reservoir.    
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Iron Ion Tracking Across Teflon Membrane 

 The passage of ferrous iron and hydrogen peroxide from one reservior to the other, across the 

membrane, was tested in a pair of overnight tests.  For the iron-based test, a solution of FeSO4·7H2O in 

water was created.   The combined solution was added to a reservoir on the apparatus.  The opposing 

reservoir was filled with 18 MΩ E-pure water and the two stoppers were put into place to seal the 

apparatus.  The device was placed on a shaker-table for 24 hours to allow a significant opportunity for 

transport of iron ions across the membrane.    The presence of iron ions in the water side of the 

apparatus at the end of the experiment was tested by adding sodium bicarbonate.  From a list of 

solubility rules it was determined that sodium does not form a precipitate with SO4
2- but Fe2+ does form 

a precipitate with HCO3
2-.   Therefore any iron in solution would precipitate out in the presence of the 

added salt.  The same experiment was conducted with a hydrogen peroxide solution.  The presence of 

hydrogen peroxide in the water side of the apparatus at the end of the experiment was tested by adding 

FeSO4·7H2O, because the addition of hydrogen peroxide to a solution containing ferrous iron generates 

a clearly distinguishable brown precipitate, 30% hydrogen peroxide was added to the liquid contained in 

the “water” side of the apparatus with formation of a precipitate signaling iron transport and the 

absence of a precipitate highlighting the absence of iron.   

 Brief control experiments were conducted to assess the validity of our claim that precipitates 

would form in the presence of the added salts.  When the down-stream water side solutions were 

poured from the apparatus into beakers, the up stream solutions were also poured into beakers as well.  

The upstream solutions contained the compounds of interest for each run.  Solutions containing the 
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salts, FeSO4·7H2O and NaHCO3, were added to the upstream solutions.  In each case, a clearly 

distinguishable precipitate formed and settled out of solution.   

Procedure 5:  Blocking Ferrous Iron Transport 

 Assemble the apparatus with sample membrane in place 

 Weigh and add 44.78 grams of FeSO4·7H2O to 200 mL of 18 MΩ E-pure water 

 Allow the solution to mix on a stir plate until all of the iron salt has dissolved 

 Pour 175 mL of the iron solution into a reservoir arm on the apparatus 

 Fill the opposing side with 175 mL of 18 MΩ E-pure water and secure the rubber stoppers onto 

each reservoirs  

 Place the assembly onto a shaker-table and allow to stand for 24 hours 

 At the end of the 24 hour period, remove the apparatus from the shaker-table 

 Drain the water side of the apparatus into a 500 mL beaker 

 Dissolve 10 grams of NaHCO3 into 50 mL of 18 MΩ E-pure water 

 Add the NaHCO3 solution to the to 500 mL beaker 

 Look for and make note of any precipitation  

 Dispose of the solutions appropriately and thorough cleanse the apparatus 

 

Procedure 6:  Blocking Hydrogen Peroxide Transport 

 Assemble the apparatus with sample membrane in place 

 Add 670 μL of 30% hydrogen peroxide to 200 mL of 18 MΩ E-pure water  

 Allow the solution to mix on a stir plate until all salt has dissolved 

 Pour 175 mL of the hydrogen peroxide solution into a reservoir arm on the apparatus 
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 Fill the opposing side with 175 mL of 18 MΩ E-pure water and secure the rubber stoppers onto 

each reservoirs  

 Place the assembly onto a shaker-table and allow to stand for 24 hours 

 At the end of the 24 hour period, remove the apparatus from the shaker-table 

 Drain the water side of the apparatus into a 500 mL beaker 

 Dissolve 5 grams of FeSO4·7H2O  into 50 mL of 18 MΩ E-pure water 

 Add the FeSO4·7H2O  solution to the to 500 mL beaker 

 Look for and make note of any precipitation  

 Dispose of the solutions appropriately and thorough cleanse the apparatus 

 

MTBE Transport into Fenton’s Oxidation  

Having proven that MTBE can pass through the pores of a particular hydrophobic polymer 

membrane while preventing the passage of iron ions and hydrogen peroxide in solution, tests with 

MTBE in being removed from one reservoir to be remediated in the other were possible.  A 1000 ppm 

solution of MTBE was prepared and poured into the assembled apparatus with a membrane loaded.  An 

iron solution was created and hydrogen peroxide was added to it.  Samples were drawn over the course 

of thirty minutes as well as at the end of longer periods of time.  The test allowed a comparison of the 

transfer characteristics of the membrane with and without degradation of MTBE.  It also allowed an 

investigation of attack on the membrane surface by the oxidizing solution as MTBE entered into the 

remediation solution.   
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Procedure 7:  MTBE Transport into Fenton’s Oxidation  

 Assemble the apparatus with a sample membrane loaded 

 Prepare MTBE and FeSO4·7H2O solutions 

 Pour 175 mL of desired MTBE solution into the right arm of the apparatus 

 Pour 175 mL of FeSO4·7H2O  solution into the left arm of the apparatus (1-to-56.18 molar MTBE/ 

FeSO4·7H2O  ratio) 

 Pipette 670 μL of H2O2 into the left arm of the apparatus ( 1-to-10.06 molar MTBE/H202 ratio) 

 Screw the rubber stopper onto the right arm of the apparatus 

 Cover the reservoir on the left arm of the apparatus with Para-film 

 Place the apparatus on a shaker-table set at a low speed  

 Remove the apparatus and draw 2.50 mL samples from each arm of the apparatus at each 

preset interval; 5, 15, 25 and 30 minutes 

 Excrete the samples into individual micro COD testing vials 

 Replace the reservoir covers on both arms of the apparatus 

 Replace the apparatus on the shaker-table  

 Shake the micro COD vial 

 Analyze the solution using micro COD testing (APPENDIX A) 

 Dispose of the solutions appropriately and thorough cleanse the apparatus 

 

Tracking Temperature Change in the Reservoirs 

 The concentration of MTBE in the reservoir containing Fenton’s oxidizing agents could not be 

measured because of the presence of the other components in solution.  Therefore, the removal of 
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MTBE from the MTBE reservoir could not be tracked into the opposing reservoir.  The oxidation of MTBE 

has a heat of reaction, and so, if the MTBE was oxidized the temperature of the oxidizing solution would 

increase as the reaction progressed.  If the MTBE is evaporating over the course of the reaction, a 

corresponding temperature decrease might be exhibited.  By measuring the temperatures of the two 

constituent solutions, of MTBE and hydrogen peroxide with ferrous iron, we can assume that if there is a 

temperature change when the two are separated by a membrane, it is because of MTBE transport and 

oxidation. 

 

Procedure 8:  MTBE and 18 MΩ E-pure water Heat of Reaction testing 

 Assemble the apparatus with a membrane loaded 

 Make 175 mL of 1000 ppm MTBE solution and let it come to room temperature.  Pour into the 

right arm.   

 Obtain 175 mL of 18 MΩ E-pure water and let it come to room temperature and then pour it 

into the left arm of the apparatus.  

 Cover each reservoir with parafilm and poke a hole in the center of the parafilm 

 Place a thermometer in each hole of the parafilm 

 Record temperature readings at 5, 10 and 15 minutes 

 Dispose of the solutions appropriately and thorough cleanse the apparatus 

 

Procedure 9:  Fenton’s solution and 18 MΩ E-pure water Heat of Reaction testing 
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 Assemble the apparatus with a membrane loaded 

 Obtain 175 mL of 18 MΩ E-pure water and let it come to room temperature.  Pour into the right 

arm of the apparatus 

 Make 175 mL of FeSO4·7H2O  solution  

 Pipette 670 μL of 30% H2O2 into iron solution 

 Let the solution come to room temperature and then pour it into the left arm of the apparatus  

 Cover each reservoir with parafilm and poke a hole in the center of the parafilm 

 Place a thermometer in each hole of the parafilm 

 Record temperature readings at 5, 10 and 15 minutes 

 Dispose of the solutions appropriately and thorough cleanse the apparatus 

 

Procedure 10:  MTBE and Fenton’s solution Heat of Reaction testing 

 Assemble the apparatus with a membrane loaded 

 Make 175 mL of 1000 ppm MTBE solution and let it come to room temperature 

 Pour the solution into the right arm of the apparatus 

 Make 175 mL of FeSO4·7H2O  solution  and add to it 670 μL of H2O2  

 Allow the solution to come to room temperature before pouring it into the left arm of the 

apparatus  

 Cover each reservoir with parafilm and poke a hole in the center of the parafilm 

 Place a thermometer in each hole of the parafilm 

 Record temperature readings at 5, 10 and 15 minutes 

 Dispose of the solutions appropriately and thorough cleanse the apparatus 
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Contact Angle Measurement After Prolonged Exposure to Fenton’s Oxidation 

 The experiments progressed from the initial tests to; assure the hydrophobicity of the polymer 

membranes, to a full test of the remediation of a MTBE contaminated solution by a strong oxidizing 

solution separated by one of those same membranes.  However, destruction of the membrane by the 

oxidizing solution presents a serious threat to the viability of hydrophobic polymer use in industrial-scale 

remediation efforts.  Each membrane was investigated visually for degradation after each exposure to 

the Fenton’s oxidation solution.  In an effort to quantify the potential breakdown of the membrane by 

the oxidizing agent, a post-use goniometer-based contact angle measurements were conducted for 

comparison to the initial values.   

Procedure 11:  Contact Angle Measurement After Exposure to Oxidation 

 Load the apparatus with a membrane and 1000 ppm MTBE solution and Fenton’s oxidation 

solution  

 Allow the apparatus to stand on a shaker-table for a full 48 hour period 

 Remove the apparatus from the shaker-table and drain the reservoirs 

 Disassemble the apparatus, remove and cleanse the membrane with 18 MΩ E-pure water 

 Follow all steps of Procedure 2 
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RESULTS AND DISCUSSION 

Objective 1:  Membrane Viability  

 The characteristics of each polymer membrane acquired for the purpose of this investigation 

had to be tested to ensure that they were appropriate for the separation of MTBE from a water supply 

while also preventing the transport of the oxidizing solution into the water supply.  The membranes 

were tested for hydrophobic character, ability to maintain hydrogen peroxide on one side of the 

membrane, and ability to prevent the passage of iron ions.  The experiments were carried out in a 

progression designed to evaluate properties in keeping with a logical hierarchy of importance to the goal 

of the project.  Such a progression served to identify membranes not fit for use at the earliest possible 

juncture.  

Hydrophobicity 

 For use in the separation of MTBE from a water supply, it was paramount to the continuation of 

research that the polymer membranes have the property of hydrophobicity.  If the membranes allowed 

the passage of water, then the water supply undergoing remediation would be able to pass into the 

oxidizing solution used to decompose the MTBE and the water in the oxidizing solution would be able to 

pass into the water supply to achieve equilibrium with regard to the MTBE concentration gradient.  The 

pores of the membrane must be large enough to allow the passage of MTBE and so can not be small 

enough to restrict the movement of water molecules.  Therefore, the membrane chemistry and surface 

topography must repel water. 

 The first round of testing conducted served to directly address the issue of the hydrophobic 

nature in the membranes.  Through these tests we sought to identify the membranes as either 



51 
 

hydrophilic or hydrophobic.  We also investigated the hydrophobic character of the membranes relative 

to one another.  

Drop-Wise Testing 

 The drop-wise testing experiment was used to identify the wettability of the membranes from a 

macroscopic viewpoint.  Water-droplets 4 μL in size were pipette onto each of the membranes.  The 

shape of each bead was then evaluated by the naked eye immediately after the drop was placed, and 

then again after a period of ten minutes to see if exposure to water had increased the wettability. 

Four membranes were tested over the course of the experiment; a Teflon membrane, a 

polypropylene membrane, a polyvinylidene diflouride, and a Nylon membrane. As reported in Table 1, 

the Teflon, polypropylene, and Nylon membranes all displayed limited wettability.  This conclusion was 

drawn from the spherical form of the beads of water; the droplets placed on each of the 

aforementioned membranes were repelled from the surface and limited the solid-liquid interface by 

taking on such a shape.   The results of the PVDF membrane test, however, stood in stark contrast to 

those of the other membranes. 

While the water droplet that was placed onto the PVDF membrane took on a definite form, it 

did not approximate a sphere.  The water-bead on the PVDF membrane took on the shape of a 

hemisphere.  Given that the amount water deposited on each membrane was the same and the 

different structure of the two types of beads observed, it could be concluded that there was a 

significantly larger solid-liquid interfacial area for the polyvinylidene diflouride (PVDF) membrane when 

compared to the others.  The shape of the water droplet on the PVDF membrane suggests that the 
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membrane was more hydrophilic and less hydrophobic than the other membranes tested.  A more 

definitive assessment could not be conducted due to the small scale and observations based on the 

unaided eye. 

Table 2:  Drop-Wise Testing Results 

Drop-Wise Testing 

Test Membrane 

Test Liquid - 4 μL Drop 

18 MΩ E-Pure Water 30 % H2O2 

After Drop 10 Min. Elapse After Drop 10 Min. Elapse 

0.45 μm Pore 

Nylon 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

0.45 μm Pore 

Teflon 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

0.45 μm Pore 

Polypropylene 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

Well-Defined 
Drop, Limited 

Wetting 

0.45 μm Pore 

Polyvinylidene 
Diflouride 

Visual Wetting, 
Poorly Formed 

Drop 

Visual Wetting, 
Poorly Formed 

Drop 

Visual Wetting, 
Poorly Formed 

Drop 

Visual Wetting, 
Poorly Formed 

Drop 

 

 Four drops were placed on each membrane and allowed to stand for ten minutes.  No 

difference was observed from one drop to the next on a particular membrane.  Time exposure did not 

appear to affect the form of the beads or the wettability of the individual surfaces.   The membranes 

were also tested with a hydrogen peroxide solution with the same results.  The observations about the 
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droplet shapes and apparent wettability of the membranes are reported in Table 2.  In order to 

determine if the PVDF membrane was hydrophobic or not and to allow a comparison of the membranes 

that had demonstrated hydrophobic character, the contact angle of a bead of water on each of the 

membranes had to be measured. 

Contact Angle Measurement 

 A goniometer was utilized to measure the contact angle of water droplets placed onto the 

polymer membranes.  A measurement was calculated for five drops per membrane, allowing a mean 

contact angle to be determined.   The calculated contact angles as well as the mean values are reported 

in Table 3.  Care was taken to use forceps to place the membranes on the measuring platform so that no 

skin oils would alter the results.   

Table 3:  Contact Angle Measurement from Goniometer Testing  

Goniometer Contact Angle Measurements 

Test Membrane 0.45 μm Pore 

Nylon 

0.45 μm Pore 

Teflon 

0.45 μm Pore 

Polypropylene 

0.45 μm Pore 

Polyvinylidene 
Diflouride 

Trial 1 121.0 127.2 118.8 74.6 

Trial 2 119.8 107.3 126.7 96.7 

Trial 3 119.7 124.2 127.8 89 

Trial 4 122.4 115.7 136.9 N/A 

Trial 5 125.5 126.7 139.4 N/A 

Average 121.7 120.2 130.7 86.8 
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 As reported in Table 3, the testing of the Nylon membrane yielded a range of contact angles 

from 119.7 to 125.5 degrees.  The mean value for the five measurements was 121.7 degrees, which is 

greater than 90, reaffirming the hydrophobic character observed in the drop-wise test.  Falling halfway 

between ninety degrees and 150 degrees, the cutoff for superhydrophobic character, Nylon exhibits 

significant hydrophobic behavior. 

 The Teflon membrane offered contact angle measurements from 127.2 degrees to 107.3.  The 

mean value for the contact angle of Teflon was 120.2 degrees.  The hydrophobic nature of the Teflon 

membrane was essentially equivalent to that of the Nylon membrane.   

 The polypropylene membrane rendered the highest contact angle and, therefore, the greatest 

hydrophobic character.  Individual measurements ranged from 118.8 degrees to 139.4 degrees and the 

mean value was 130.7 degrees.   

Only three measurements could be taken for the PVDF membrane.  Those measurements 

ranged from 74.6 degrees to 96.7 degrees. The average value of the PVDF contact angle was 86.8 

degrees.  Based on those measurements, the PVDF membrane that was tested was not hydrophobic.    

The polypropylene membrane has the greatest ability to resist the wetting of its surface, 

however, that classification does not, in and of itself, make the polypropylene membrane the best suited 

for use in removing MTBE from a water source.  Because of the slightly hydrophilic nature of the PVDF 

membrane, it was not used in any further tests. 
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Apparatus-Membrane Seal Testing 

 Before other characteristics of the membranes could be resolved, the apparatus to be used for 

our experiments had to be tested with the membranes in place.  The apparatus was assembled with the 

membranes seated between the two flanges of the juncture.  A reservoir was then filled with 18MΩ E-

pure water and allowed to sit with an empty reservoir on the opposite side of the membrane.  The test 

was run for five, 10, and 15 minutes intervals. At the end of each test, the apparatus was drained and 

disassembled.  Once disassembled, it was inspected.  

Table 4: Apparatus-Membrane Seal Test Results 

Apparatus -Membrane Seal Testing 

Setup Time  Result 

18 MΩ E-Pure 

Water vs. Air 

5 Min. No Visible Transport or Leaking 

10 Min. No Visible Transport or Leaking 

15 Min. No Visible Transport or Leaking 

30% H2O2 vs. Air 

5 Min. No Visible Transport or Leaking 

10 Min. No Visible Transport or Leaking 

15 Min. No Visible Transport or Leaking 

 

 The countertop that the experiment was run on was checked for any drops of water to ensure 

that the apparatus was not leaking.  The side of the membrane that was not in contact with the filled 

reservoir was inspected for moisture.  The channel on the portion of the apparatus that was left empty 

was inspected for moisture as well.  As reported in Table 4, there was no observed leaking in any 

portion of the apparatus or transport of water across the membrane barrier.  The test was also run with 
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a hydrogen peroxide solution to once again check for leaks and conduct a final test of the membranes 

impermeability to water and hydrogen peroxide.  The results, which can be found in Table 3, were the 

same as those for the water test. 
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Objective 2:  MTBE Transport Across Polymer Membranes 

 The ability of the membranes to transport MTBE was not necessarily tied exclusively to the 

hydrophobic character of the membranes.  While hydrophobic character suggests organophilicity and 

therefore the ability to pass organic compounds, the hypothesis had to be tested.  Beyond that, a 

comparison of the abilities of the membranes to carry out the transport of MTBE had to be developed.   

To do this, concentration measurements were taken over a period of time as MTBE moved from across 

the apparatus bound membrane. 

MTBE Transport Across Membranes   

The polypropylene, nylon and Teflon membranes were tested over a thirty minute interval for 

their ability to selectively transport MTBE from a reservoir containing MTBE in solution to a reservoir 

containing only 18 MΩ E-pure water.   3.25 mL samples of the solution in the MTBE reservoir were 

taken and the concentrations were measured via a spectrophotometer.   

The results of those tests are reported in Figure 6.  As is clearly demonstrated by the data points 

for each membrane, the concentration in the MTBE reservoir decreased over time in all cases.  This led 

to the conclusion that MTBE transport was possible and taking place through each membrane.   

The rate of MTBE transport, the reduction in MTBE concentration per unit time, was expected to 

decrease over the course of the experiments.  The driving force for the transportation of the MTBE 

across the membrane was the differential in concentration between the reservoirs.  As the MTBE 

concentration in the upstream reservoir decreased and it increased in the downstream reservoir, the 

difference in concentration would also decrease.  The smaller differential is tied directly to a smaller 
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driving force and a decreased rate of MTBE transport.  With decreasing rate of transport, the differential 

between the two reservoirs would decrease at ever lower rates, and so, as the system approached some 

equilibrium between the two reservoirs, the concentration was expected to asymptotically approach a 

level.  The measured values for the experiments appeared to follow this rationale.  Linear, polynomial, 

and exponential trend lines were generated for the data, but the fit with the highest R2 was a logarithmic 

trend line.  From these lines of best fit, a comparison of the permeabilities of the three membranes to 

MTBE was made possible.   

Figure 6: Tracking MTBE Transport Across Polymer Membranes 

 

As seen in Table 5, polypropylene transport MTBE at the slowest rate, with a logarithmic factor 

of -56.1.  Nylon transports MTBE at a higher rate, with a logarithmic factor of -61.1, but it is Teflon that 

exhibits the highest rate of transport.  The logarithmic factor for Teflon, as calculated from our 
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experimental results, was -73.6.  Because Teflon displayed the highest rate of MTBE transport, the focus 

of  the remainder of the project shifted to the Teflon film alone.  The other membranes, nylon and 

polypropylene were not used in any subsequent tests. 

Table 5:  Logarthmic Lines of Best Fit for MTBE Transport to Water 

Logarthmic Lines of Best Fit for MTBE Transport to Water Reservoir 

Membrane Equation Logarithmic Factor  R2- value 

Nylon 
y = -61.1ln(x) + 

564.0 
-61.1 0.977 

Polypropylene 
y = -56.1ln(x) + 

605.7 
-56.1 0.962 

Teflon 
y = -73.6ln(x) + 

475.0 
-73.6 0.993 
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Objective 3:  Fenton’s Oxidation in the Apparatus 

 Polymer membrane use in the remediation of MTBE contamination will almost certainly require 

the use of aggressive solutions that are capable of degrading the organic compound, and  perhaps 

attacking the membranes.  The membranes must be able to resist the chemical attack, whether it is 

oxidation or acidic or alkaline in nature.    For our investigation of the use of polymer membranes, 

Fenton’s oxidation reactions were used to decompose MTBE.  The membranes in use therefore had to 

be able to contain the solutions components, maintain its integrity over a testing period, and also 

maintain its ability to repel water while transporting MTBE. 

Isolated Solution Transport for Teflon Membrane 

 The Teflon membrane was tested to ensure that it was capable of blocking the passage of 

ferrous iron ions as well as hydrogen peroxide, the two components of Fenton’s oxidation solution.  

Individual aqueous solutions of ferrous iron and hydrogen peroxide were allowed to stand in the 

apparatus for a 24 hour period.  The opposing reservoir was filled with water and at the end of the 

testing period; the water-side solution was tested for the presence of the respective component.  The 

presence of iron or hydrogen peroxide was tested by adding to the solution a salt that would result in 

the formation of precipitate in combination with the component of interest.  As displayed in Table 6, the 

salts added to the hydrogen peroxide-based test and the ferrous iron-based test were FeSO4·7H2O and 

NaHCO3 respectively.  The addition of the salt did not evolve a precipitate in either case and so we 

concluded that no transport of hydrogen peroxide or iron was taking place across the membrane 

boundary.  Therefore, in a test involving Fenton’s oxidation solution, the components would be 
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restricted to the reservoir that they were initially poured into and would not contaminate the solution in 

the other reservoir. 

Table 6: Transport of Fenton's Oxidation Solution Components 

Apparatus - Isolated Solution Transport Testing for Teflon Membrane 

Solution Additive Reaction Conclusion 

30% H2O2 in 18     
MΩ E-Pure Water 

FeSO4·7H2O   No Reaction No Transport 

FeSO4·7H2O   NaHCO3 No Reaction No Transport 

 

MTBE Transport into Fenton’s Oxidation 

 A full proof of concept run was conducted to ensure that MTBE transport was indeed possible 

from a MTBE solution reservoir into a reservoir containing Fenton’s oxidation solution.   The test was 

conducted over the same span of time, with samples drawn at the same intervals in the previous 

experiments.    Theoretically, as the MTBE transported across the polymer membrane, it should have 

been destroyed by the oxidizing agents in the down-stream reservoir, maintaining only a very small 

concentration of MTBE in that reservoir.  This effect should have provided for a linear declination of the 

driving force between the two reservoirs due to concentration gradient.  However, as shown in Figure 7, 

the removal of MTBE from the solution occurred in along a logarithmic trend line, much the same way 

that the transport occurred in the in the absence of the Fenton’s oxidation solution.  The trend line 

plotted Figure 7 was calculated from the values from four runs.  Two pairs of runs were conducted, with 

each of the duplicate apparatuses created for experimentation being utilized.  The values measured for 

the two apparatuses were averaged, leaving two sets of data points to be plotted. The logarithmic 

coefficient for the equation of the trend line generated for the data points was significantly lower than 
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that generated in the previous objective.  The value generated for MTBE into water was -46.19 and the 

value for MTBE in Fenton’s oxidation solution was -73.61.  There was some reddish-brown staining on 

some of the membranes at the conclusion of the tests.  The stains may well have been deposited iron 

that had the effect of clogging the pores of the membrane and therefore slowing the transport of MTBE 

across the polymer boundary.   

Figure 7:  Concentrations Over time for Full-Run 
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Tracking Temperature Change in the Reservoirs 

 The tests involving both MTBE and Fenton’s oxidation solution, in separate reservoirs of the 

same apparatus, suggested that MTBE transport and oxidation of that MTBE were occurring in 

conjunction with one another.  However, to be lend credence to the conclusion that the only reaction 

taking place during the testing period was oxidation of MTBE, the temperatures of the solutions over the 

course of the experiment were compared to baseline values, with changes in temperature suggesting 

reactions generating heats.  Temperature readings were taken over a twenty-five minute period.   

Table 7:  Heat of Reaction Test Results 

Apparatus - Heat of Reaction Test 

Setup Time  
Temperature (˚C) 

Side 1 Side 2 

18 MΩ E-Pure 

Water (1) vs. 
Fenton's Oxidation 

Solution (2) 

5 Min. 21.7 21.7 

10 Min. 21.7 21.7 

15 Min. 21.7 21.7 

18 MΩ E-Pure 

Water (1) vs. 1000 

ppm MTBE 
Solution (2) 

5 Min. 21.7 21.7 

10 Min. 21.7 21.7 

15 Min. 21.7 21.7 

Fenton's Oxidation 

Solution (1) vs.    
1000 ppm MTBE    

Solution (2) 

5 Min. 21.7 21.7 

10 Min. 22.2 21.7 

15 Min. 22.5 21.7 

20 Min. 22.6 21.7 

25 Min. 22.6 21.7 
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 No change in temperature was experienced when a MTBE solution was allowed to sit in the 

apparatus with a membrane separating it from a reservoir containing water.  The same result was seen 

when Fenton’s oxidation solution was allowed to stand in the same setup as the MTBE solution.  When 

the Fenton’s oxidation solution and MTBE solutions were both loaded into the apparatus, in different 

reservoirs, a temperature change of approximately one degree was seen over the twenty-five minute 

timeframe.  These results are summarized in Table 7 and they led to the conclusion that the oxidation of 

MTBE occurring. 

Contact Angle Measurement after Prolonged Exposure to Fenton’s Oxidation 

 The Teflon membranes, after exposure to a strong oxidizing solution for a period of time no less 

than 48 hours, were tested again for the ability to repel water.  The hydrophobic nature of the 

membranes was characterized by the contact angle measured for a drop of 18MΩ E-pure water on the 

membrane surface.  The range for the contact angle measurements of the Teflon membrane after 

exposure was 109.2 to 135.9 degrees.  The mean contact angle, for the four measured values was 120.5 

degrees, which closely compares to the initial value mean contact angle of 120.2 degrees, certainly well 

within the standard deviation of the measurements.  Because of the close agreement of the two values, 

it can be concluded that no change in the hydrophobicity of the membrane occurred. 
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Table 8:  Conact Angle Measurements for Teflon Membrane after Fenton's Oxidation Exposure 

Goniometer Contact Angle 
Measurements after Fenton's 

Oxidation Exposure 

Test Membrane 
0.45 μm Pore 

Teflon 

Trial 1 109.2 

Trial 2 118.4 

Trial 3 135.9 

Trial 4 118.4 

Average 120.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

CONCLUSIONS AND RECOMMENDATIONS 

 Of the four polymer membranes that were initially procured for testing, only three actually 

exhibited hydrophobic character.  The Teflon, Nylon, and polypropylene membranes, which were 

proven to be hydrophobic, were tested for the ability to be permeated by MTBE.  All three selectively 

transported MTBE and a comparison of the concentration reductions over time highlighted the Teflon 

membrane as having the greatest permeability to the contaminant.  The Teflon membranes, when 

bound between an oxidizing solution, of ferrous iron ions and hydrogen peroxide, and MTBE in water, 

maintained their semi permeable characteristics.  However, the concentration of MTBE in the MTBE 

solution was not reduced as drastically when paired with the oxidizing solution, as when paired with 

water.   Staining was displayed on the membranes at the end of the test cycles involving the oxidizing 

solution containing iron.  Given this phenomenon, the conclusion was drawn that iron deposits were 

clogging the polymer pores, limiting transport of MTBE.  The deposition of iron onto the polymer 

membrane surface and the manner in which it reduces the membrane permeability to MTBE should be 

investigated further.  A simply means of cleansing the membrane surface of deposition may be possible. 

 The concentrations of solutions for all experiments were determined based on the absorbance 

of light by solution samples.  The concentration values were calculated from a standardization curve of 

the absorbance values measured for solutions of known concentration.  A spectrophotometer was used 

to measure absorbance.  The spectrophotometer utilized was inconsistent and on occasion, would 

report wildly different values for a single solution.  In such cases, the system would need to be restarted 

or revisited later.  A more reliable piece of equipment should be used in further experimentation.   

 The PTFE (Teflon) membrane used, while supported, was rather frail due to its thickness.  The 

limitations of using thicker, more structurally sound forms of the membrane must be investigated for 

the development of an industrial scale remediation effort.  A multiple pass tube exchanger would offer a 
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large surface area for MTBE transport, as well as a dedicated area for the oxidizing solution.  However, 

the Teflon tubes would have to be able be structurally sound enough to maintain form while also 

maintaining functionality.    

The Teflon, Nylon and polypropylene membranes all fostered MTBE transport, which supports 

the tie between hydrophobic character and organophilic character.  Other membranes resistant to 

strong solutions should be tested for the ability to rapidly transport MTBE, possibly outpacing the 

transport through Teflon. 
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APPENDICES 

Appendix A:  MicroCOD Testing Procedure 

 Preheat the MicroCOD incubator to 150oC 

  Appropriately label a COD testing vial 

 Draw a 2.5 mL sample using a 1-to- 5 μL pipette 

 Excrete 2.5 mL of test solution into a MicroCOD vial. 

 Shake the MicroCOD vial vigorously 

 Place the vial within the COD incubator and set the timer for 2 hours 

  Remove the MicroCOD vial from the incubator  

 Unscrew vial cap and draw a 3.25 mL sample 

 Excrete the sample into a spectrophotometer blank 

 Zero the spectrophotometer using an empty blank 

 Take a spectrophotometer reading 

 Record the reading  
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Appendix B:  Membrane Procurement Contact Information 

 

Teflon, Nylon, Polypropylene:  GE Osmonics Labstore:   

Address:   

5951 Clearwater Dr 

Minnetonka, MN 55343 

Phone Number: 

(800-444-1212) 

952-988-6665 

 Website: 

 http://www.osmolabstore.com/ 

Polyvinylidene Diflouride:   John Andrew Bergendahl 

Position:   

Associate Professor 

Civil and Environmental Engineering 

Worcester Polytechnic Institute 

        Office: 

        Kaven Hall 117B 

        Worcester Polytechnic Institute 

Phone Number: 

1-508-831-5772 

 Email: 

jberg@wpi.edu 
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Appendix C:   MTBE/Hydrogen Peroxide Ratio Calculations 

 

MTBE: 

 

 

Hydrogen Peroxide 

 

 

The ratio is  

 

For every mole of MTBE, there are 10.06 moles of Hydrogen Peroxide 
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APPENDIX D:  MTBE/ FeSO4∙7H2O Solution Ratio Calculations 

1000 ppm solution of MTBE: 

 

 

FeSO4∙7H2O solution: 

 

 

The ratio is  

 

For every mole of a 1000 ppm solution of MTBE, there are 56.18 moles of FeSO4∙7H2O. 
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APPENDIX E:  Hydrogen Peroxide/ FeSO4∙7H2O Solution Ratio Calculations 

Hydrogen Peroxide: 

 

 

FeSO4∙7H2O solution: 

 

 

The ratio is  

 

For every mole of a Hydrogen Peroxide, there are 5.59 moles of FeSO4∙7H2O. 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

Appendix F:  Goniometer Pictures 

Pre-Oxidation 

Teflon 

Figure 8:  Teflon Pre-Oxidation Picture 

 

Nylon 

Figure 9:  Nylon Pre-Oxidation Picture 
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PVDF 

Figure 10:  PVDF Pre-Oxidation Picture 

 

 

Polypropylene 

Figure 11:  Polypropylene Pre-Oxidation Picture 
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Post-Exposure: Teflon 

Figure 12:  Teflon Post-Oxidation Picture 
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APPENDIX G:  MTBE Concentration to Absorbance Calibration Curve 

Table 9:  Calibration Curve for MTBE Concentration vs Absorbance 

Calibration Curve for MTBE 
Concention vs Absorbance 

Concentration 
(ppm) 

Absorbance 

1000 0.0576 

500 0.0559 

250 0.0558 

125 0.0553 

50 0.0551 

 

 

Figure 13:  Calibration Curve for MTBE Concentration vs Absorbance 
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APPENDIX H:  MicroCOD MTBE Concentration to Absorbance Calibration Curve 

Table 10:  COD Testing Absorbance vs MTBE Concentration 

COD Testing Absorbance vs MTBE 
Concentration Curve 

Concentration of 
MTBE(ppm) 

Absorbance 

1000 0.84 

500 1.326 

250 1.8251 

125 3.663 

50 4.3665 

0 4.49 

 

 

Figure 14:  MicroCOD Absorbance vs MTBE Concentration 
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