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Abstract 

Economic volatility is unpredictable, but investors try their best to prepare for the worst 

possibilities. A simulation of this fluctuation may be captured using mathematical models. An 

Economic Scenario Generator (ESG) uses a mathematical procedure to simulate, not predict, 

the returns for assets. We built our own ESG, using Excel, that is designed to include unlikely 

economic catastrophes. Our ESG simulated the returns of 10 exchange traded funds (ETFs) 

based on the historical returns of these ETFs. The final simulated returns of our ESG provide 

scenarios that may help investors prepare for various economic conditions. 
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Executive Summary 

Most individuals and companies would agree that being confident in their investments 

is advantageous. Although it is currently impossible to predict the future, it is possible to 

simulate it. An economic scenario generator (ESG) is a model that simulates asset returns for a 

group of correlated assets. The parameters of the model are developed using maximum 

likelihood estimation on historical return data. Through a process known as regime switching, 

an ESG is able to switch between different scenarios that may include a growing economy, a 

falling economy, and an economic crash. Our ESG uses parameters to generate simulations that 

are representative of the real world.  

Background 

There are two types of Economic Scenario Generators (ESGs), market consistent ESGs 

and real world ESGs. A market consistent ESG generates returns that are consistent with market 

prices. A real world ESG generates returns that are consistent with actual data and real world 

expectations, and this is the type of ESG we created. Our ESG transforms random numbers 

using an inverse transform method and then correlates them to achieve the desired 

distribution and covariance structure. The parameters and covariance structure used were 

calculated based on historical Exchange Traded Funds (ETFs) data. ETFs track groups of 

commodities and assets and can be traded similarly to common stocks.  

Since the economy goes through different periods of volatility, a proper ESG should 

portray this in its simulations. Our ESG will go through multiple states of volatility during 

different stages of the simulation to model the real world economy going through periods of 
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varying volatility. These states are referred to as regimes. A Markov Chain approach is used to 

model the transitions between regimes. Depending on the regime the ESG is currently in, there 

is a probability of either stay in that regime or switch into one of the others. The inverse 

transform method is used to sample random numbers for probability distributions, which 

determine the regime the ESG is in.  

Once this is completed, parameters can be calibrated to emulate the historical ETF data 

through Maximum Likelihood Estimation (MLE). This method analyzes data to estimate the 

parameters of the distribution, and produces the parameters that give the highest probability, 

or likelihood, of seeing the data that was observed.  

Our ESG uses a covariance matrix constructed using the covariance of the ETF data, 

which can then be decomposed using Cholesky Decomposition. Covariance refers to a statistical 

relationship involving dependence used to measure how much two random variables change 

together. Given matrix 𝐴 is positive definite it can be decomposed into a product of a unique 

lower triangular matrix 𝐿 and its transpose 𝐿𝑇, where 𝐴 = 𝐿 × 𝐿𝑇 . For the ESG, matrix A is the 

covariance matrix of the historical data. The matrix A can be decomposed to get L and LT. Then, 

LT is multiplied by the random numbers so that they will have the same covariance structure as 

the historical ETF data.  

Methodology 

The exchange traded funds (ETF) and exchange traded notes (ETN) we utilized for our 

simulations include: SPY, IWM, TLT, HYG, GLD, EFA, VXX, OIL, FEZ, and EEM, because they are 

well established and have at least five years of historical data. For all ten ETFs we collected five 

years of daily returns and then took the natural log of these returns to get log returns.  
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Taking the values from the ETFs, we used MLE to calculate the mean and volatility of 

Regime 1 and Regime 2 of all ten ETFs by following the steps used by Mary Hardy in her paper 

“A Regime Switching Model of Long Term Stock Returns.” Since we had the parameters for the 

first two regimes, we had to create the parameters for Regime 3 and adjust the other regimes 

accordingly. The first regime simulates a healthy economy with a positive mean and low 

volatility; the second simulates a falling economy with a lower mean and higher volatility, and 

the third regime simulates an economic crash with a low mean and very high volatility. In order 

to implement the regime switching process, we generated a random number that determined 

which regime the ten returns would be in.  

We used Excel version 2007 to generate the random numbers needed to simulate the 

returns. Real world stock markets are often simulated using a lognormal distribution. In order 

for the random numbers we generated to be lognormally distributed we took the natural log of 

the returns from the ETF data. Then the random numbers are made lognormally distributed 

when they are multiplied by the covariance matrix and then added to the mean.  

To construct a covariance matrix we used the data from the ten ETFs and plugged them 

into the Excel function COV(array1, array2), which created a symmetric 10 by 10 matrix. We 

then decomposed this matrix to get the lower (L) and upper (LT) matrices. The upper matrix (LT) 

was then multiplied by the set of random numbers and then added to the mean, to get the 

same correlation as the ETF data. These correlated lognormally distributed random numbers 

give us our simulated returns. 
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Results 

The goal of this project was to create a real world economic scenario generator (ESG) 

with three regimes that is well-defined, understandable and reproducible. By using MLE on the 

ETF data that we collected, we found that 74.33% of the data could be classified as Regime 1 

and 25.67% of the data could be classified as Regime 2. Regime 3’s parameters were not based 

on the data that we collected so we did not include it in MLE. We set the probability of landing 

in Regime 3 extremely low at 0.5%, which altered the probability of being in Regime 1 to 74.2% 

and in Regime 2 to 25.3%.  

We ran the ESG three different times with 100 scenarios, 1000 scenarios and 4000 

scenarios. As we expected, we found that our ESG became more accurate as the number of 

scenarios increased. We defined more accurate as minimizing the difference between the 

parameters found from the data and the simulated returns. This holds true for all parameters: 

mean, standard deviation, covariance, and the probability of being in a regime. The greatest 

difference in the 4000 simulations run in any regime between the means is 0.000696 and the 

greatest difference in any regime between the standard deviations is 0.039725. 
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1.0 Introduction 

Most individuals and companies would agree that being confident in their investments 

is advantageous. It would be extremely valuable to them to have the ability to determine what 

investments have too great a risk. Although it is not possible to predict the future, it is possible 

to simulate it. Through the use of thousands of simulations that are based on historical data, 

investors can make more informed choices regarding their economic decisions (Moudiki, 2014). 

An economic scenario generator (ESG) is a model that receives parameters and outputs 

economic simulations. To ensure the parameters have the highest probability of representing 

the historical data, they are calculated using maximum likelihood estimation (MLE). Through a 

process known as regime switching, an ESG is able to switch between different scenarios that 

may include a growing economy, a falling economy, and an economic crash ("Economic 

Scenario Generator," 2014). These processes are explained in detail in 2.0 Background.          

Our project used ten Exchange-Traded Funds (ETFs), however the ESG that we created is 

customizable for the number and variety of investment opportunities that exist in the world 

today. Our ESG uses parameters to generate simulations that are representative of the real 

world. One of our goals was to create a program in Microsoft Excel that was not only well 

defined and understandable, but able to be reproduced. Our procedure is discussed in 3.0 

Methodology. 

 The ESG we created was able to deliver simulations that were accurate to three decimal 

places and became increasingly accurate as the number of simulations increased. We defined 

accurate as minimizing the difference between the parameters found from the data and the 
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simulated returns. Comparisons between the three regimes, how our ESG is different from 

other ESGs, and additional outcomes are discussed in 4.0 Results.    

As we completed our project, several things came to our attention that would be 

beneficial for our ESG. As we would like to see these enhancements completed we have given 

an outline for them, in 5.0 Recommendations, for anyone that would like to continue our 

project in the future.   
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2.0 Background 

An Economic Scenario Generator (ESG) utilizes parameters, that are calibrated to 

historical data, as inputs to create simulations of possible scenarios that could occur given this 

data. Creating an ESG not only requires knowledge in a programming language, but an 

understanding of several mathematical processes which are discussed in this chapter.  

2.1 Economic Scenario Generator  

There are two types of Economic Scenario Generators (ESGs), market consistent ESGs 

and real world ESGs, that each have their own applications. A market consistent ESG generates 

returns that are consistent with market prices. A real world ESG generates returns that are 

consistent with actual data and real world expectations (Moudiki, 2014). The real world ESG 

scenarios reflect the possible states of the economy, which usually includes risk premium and 

the calibration of volatilities and correlations based on historical data. Market consistent 

scenarios can help us calculate market prices today, while real world scenarios can show us 

what the world might look like tomorrow ("Economic Scenario Generator," 2014). 

These two ESGs are mainly used by insurance companies and banks. Life insurance 

companies use ESGs as part of their Asset Liability Management (ALM) process, property and 

casualty insurance companies use it as part of their Dynamic Financial Analysis (DFA) process, 

and banks use it as part of their Balance Sheet Management (BSM) process (Blum & 

Dacorogna). ESGs are one of the main components of the DFA, ALM and BSM processes, which 

are methods used to evaluate and model the financial risks and benefits of a company, by 

creating large quantities of computer simulations. These processes are different from other 
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methods of actuarial analysis because they do not analyze their components separately, but as 

a complete picture. Specifically, they can be used to measure the benefits and levels of risk 

associated with current assets, and determine what other options exist to help minimize these 

risks and maximize the benefits (Kaufmann, Gadmer, & Klett, 2001). 

2.2 Exchange Traded Funds Data  

Simulations must be based on historic data. The data required to produce simulations 

depends on the desired results. For example, in order to simulate stock market returns, past 

years of stock market returns must be used.  Likewise, the return period being simulated must 

be the same period for the historic data that was pulled; if daily returns are being simulated, 

the ESG must analyze daily return data. Exchange Traded Funds (ETFs) are a source of historic 

data. They track groups of commodities and assets and can be traded similarly to common 

stocks. Stocks are generally modeled using a lognormal distribution and because of their 

similarity to common stocks, ETFs can also be modeled using a lognormal distribution. An ESG 

takes the parameters that define the historical data’s distribution as inputs and uses them to 

produce simulations from random numbers. 

2.3 Random Number Generator 

Most Random Number Generators (RNGs) rely on the use of a formula and are 

therefore considered pseudo-random numbers. They must pass several rigorous tests to be 

considered suitable for professional use.  Two of the most notable tests for these pseudo-

random numbers are the DIEHARD test and the standards set by the National Institute of 

Standards and Technology (NIST)(Rotz, Falk, & Joshee, 2004). 
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Microsoft Excel’s RNG has had many problems in the past. The original RNG, in Excel 

versions up to 2003, provided approximately one-million pseudo-random numbers before it 

started repeating. Microsoft’s 2003 edition of Excel tried to implement a Wichmann-Hill 

Generator. The Wichmann-Hill random number process involves generating three random 

numbers on [0,1], summing them, and then using the decimal part of the sum as the pseudo-

random number. With the implementation of this process Excel’s RNG would have provided 

approximately ten-trillion pseudo-random numbers before repeating. However, because 

Microsoft did not properly implement this process, their RNG produced negative pseudo-

random numbers. Although still an improvement from their previous version, Microsoft’s 2003 

RNG did not pass the standards set by institutions such as NIST or the DIEHARD test 

(McCullough, 2008). With the release of Microsoft’s 2007 version of Excel the problem of 

creating negative random numbers was fixed. In addition to fixing this problem, Microsoft 

added the function RANDOMIZE which allows the user to seed the random number generator 

so their result can be reproduced. The 2007 version of Excel has passed both the DIEHARD test 

and the standards set by the NIST (Microsoft, 2016). 

 An ESG uses random numbers by transforming them to the desired distribution using 

the covariance from the ETF data. In the next sections we will explore the processes to 

transform the random numbers into simulated returns. 

2.4 Markov Chains – Regime Switching 

One of the fundamental concepts of an ESG is that it simulates the real world. Since the 

economy goes through different periods of volatility, an ESG should portray this in its 

simulations as well. One way to do this is through the use of multiple states of volatility. The 
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ESG will go through these states during different stages of the simulation to model the real 

world economy going through periods of varying volatility. These states are referred to as 

regimes (Anton, Grobe, Rorres, & Grobe, 1994).  

Markov Chains are used to model the transitions between regimes. Depending on the 

regime the ESG is currently in, there is a probability of either staying in that regime or switching 

into one of the others.  

“If a Markov chain has k possible states, which we label as 1, 2,…, k, then the probability 

that the system is in state i at any observation after it was in state j at the preceding 

observation is denoted by pij and is called the transition probability from state j to state 

i. The matrix P=[pij] is called the transition matrix of the Markov Chain (Ross, 2013).” 

Movement between regimes in the Markov Chain process is determined through a discrete 

application of the Inverse Transform Method. For example below, Table 1: Transition Matrix, is 

the transition matrix that holds the sample probabilities of switching between two regimes. 

 
Starting in 
Regime 1 

Starting in 
Regime 2 

Ending in 
Regime 1 

0.80 0.65 

Ending in 
Regime 2 

0.20 0.35 

Table 1: Transition Matrix 

In the example below in Table 2: Regime Switching Example, we start in Regime 1 and 

the first random number is 0.76998. Since this number is in the range of 0 to 0.80, we stay in 

Regime 1. The next random number picks up where the last regime left off, so we again start in 

Regime 1. The next random number is 0.82837 which falls in the range of 0.80 to 1, therefore 
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we switch into Regime 2. For the following two numbers the process would repeat except it 

would use the probabilities in the right column of the transition matrix because we are now 

starting in Regime 2. This process is repeated until the desired number of simulations is 

reached. 

Starting in 
Regime 

Random 
Number 

Ending in 
Regime 

1 0.76998 1 

1 0.82837 2 

2 0.21792 2 

2 0.57101 1 

… … … 

Table 2: Regime Switching Example 

2.5 Inverse Transform Methods 

The Inverse Transform Method is used to convert uniform random numbers to 

outcomes based on the underlying probability distribution(s) of the variable under 

consideration (for instance, determining the changes in regime or determining the daily 

returns). To use the Inverse Transform Method, take the inverse of the desired cumulative 

distribution function (CDF) and then plug in numbers that are uniformly distributed on (0,1). A 

useful definition given by S.M. Ross is: “Let U be a uniform (0,1) random variable. For any 

continuous distribution function F the random variable X defined by X=F-1(U) has distribution F. 

[F-1(u) is defined to be that value of x such that F(x)=u.]” (Ross, 2013) 
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For example (“The Inverse Transform Algorithm”, 2016): Let the density be defined as 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 and the CDF defined as 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥. Set 𝐹(𝑥) = 𝑢 and solve for 𝑥: 

1 − 𝑒−𝜆𝑥 = 𝑢 

𝑒−𝜆𝑥 = 1 − 𝑢 

𝑥 =
−log (1 − 𝑢)

𝜆
 

Since the ETF return data is lognormally distributed, the random numbers go through an 

inverse lognormal transformation in order to be used in the Markov Chain process. The formula 

for this is: 𝑌 = (𝑋 ∗ 𝜎) + 𝜇. Where X is a random number generated by Excel, σ is the standard 

deviation, and μ is the mean. Once this is completed, parameters can be calibrated to emulate 

the ETF data through Maximum Likelihood Estimation. 

2.6 Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is used to determine the parameters of an 

unknown distribution based on given data. As its name implies, it outputs the parameters that 

give the highest probability, or likelihood, of seeing the data that was observed (Hardy, 2001).  

For Example: “Suppose the weights of randomly selected American female college 

students are normally distributed with unknown mean μ and standard deviation σ. A random 

sample of ten American female college students yielded the following weights (in pounds): 

115 122 130 127 149 160 152 138 149 180 

Based on the definitions given above, identify the likelihood function and the maximum 

likelihood estimator μ; the mean weight of all American female college students.  

The solution would be: 

The probability density function of Xi is:     𝑓(𝑥𝑖, µ, 𝜎2) =
1

𝜎√2𝜋
𝑒

−(𝑥𝑖−µ)2

2𝜎2    where−∞ < 𝑥 < ∞.  
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The parameter space is 𝛺 = {(µ, 𝜎) : − ∞ < µ < ∞ 𝑎𝑛𝑑 0 < 𝜎 < ∞}. Therefore, the likelihood 

function is: 

𝐿(µ, 𝜎) = 𝜎−𝑛2𝜋−𝑛/2𝑒
−1

2𝜎2 ∑ (𝑥𝑖−µ)2𝑛
𝑖=1 , where  −∞ < µ < ∞ and 0 < 𝜎 < ∞. 

It can be shown, upon maximizing the likelihood function with respect to µ, that the maximum 

likelihood estimator of μ is: 

µ′ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   where 𝑥𝑖 = average. 

Based on the given sample, a maximum likelihood estimate of μ is: 

µ′ =
1

𝑛
∑ 𝑥𝑖 =  

1

10
(115 + ⋯ + 180) = 142.2 𝑙𝑏𝑠.

𝑛

𝑖=1

 

Note that the only difference between the formulas for the maximum likelihood estimator and 

the maximum likelihood estimate is that the estimator is defined using capital letters, to denote 

that its value is random, and the estimate is defined using lowercase letters, to denote that its 

value is fixed and based on an observed sample” ("Maximum Likelihood Estimation," 2016).  

Note, too, that the maximum likelihood estimate of the mean weight of all American female 

college students based on this sample is simply the sample mean of the observations, not a 

completely unexpected result. 

2.7 Covariance Matrix 

Covariance refers to a statistical relationship involving dependence used to measure 

how much two random variables change together. Covariance for a sample is defined as: 

𝐶𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

𝑛

𝑖=1

𝑛 − 1
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A covariance matrix depicts the covariance of an array of random variables relative to 

each other. The matrix contains the variance of each random variable on the diagonal and the 

covariance between each pair of random variables in the other positions. It is symmetric, this is 

because the covariance between X and Y, and between Y and X are the same (Law & Kelton, 

1991). Additionally, it can easily be shown that the covariance between a random variable X 

and itself, Cov(X, X) reduces to Var(X).  Thus, the variance-covariance matrix is described as: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 =  [

𝑉𝑎𝑟[𝑋1] 𝐶𝑜𝑣[𝑋1, 𝑋2]
𝐶𝑜𝑣[𝑋2, 𝑋1] 𝑉𝑎𝑟[𝑋2]

⋯
𝐶𝑜𝑣[𝑋1, 𝑋𝑛]
𝐶𝑜𝑣[𝑋2, 𝑋𝑛]

⋮                           ⋮ ⋱ ⋮
𝐶𝑜𝑣[𝑋𝑛 , 𝑋1] 𝐶𝑜𝑣[𝑋𝑛 , 𝑋2] ⋯ 𝑉𝑎𝑟[𝑋𝑛]

] 

The variance-covariance matrix constructed using the covariance of the historic ETF data, can 

then be decomposed using Cholesky Decomposition. 

2.8 Cholesky Decomposition 

 Every symmetric, positive definite matrix 𝐴 can be decomposed into a product of a 

unique lower triangular matrix 𝐿 and its transpose 𝐿𝑇, where 𝐴 = 𝐿 × 𝐿𝑇 and 𝐿 is called the 

Cholesky factor of 𝐴, as shown below: 

 

For Example: 

(
25 15 −20
15 45 6

−20 6 26
) = (

5 0 0
3 6 0

−4 3 1
) ∗ (

5 3 −4
0 6 3
0 0 1

) 
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For the ESG, matrix A is constructed with the covariance between the ETF data. Then 

matrix A is decomposed to get L and LT. If the set of random numbers is oriented horizontally, 

they are multiplied by L. If the set of random numbers is oriented vertically they are multiplied 

by LT. This multiplication results in a set of random numbers that have the covariance structure 

of A (Burden & Faires, 1997).  
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3.0 Methodology 

The goal of this project was to develop a real world economic scenario generator. In 

order to meet our goal, we identified several mathematical processes - shown in Table 3: Gantt 

Chart - that needed to be implemented. This chapter explains our procedure in detail. 

 
Table 3: Gantt Chart 

3.1 ETF Data 

The exchange traded funds (ETF) and exchange traded notes (ETN) we utilized for our 

simulations include: SPY, IWM, TLT, HYG, GLD, EFA, VXX, OIL, FEZ, and EEM. These ten were 

chosen because they are well established, capture a wide variety of markets and have at least 

five years of historical data, which is essential for the accurate approximation of the covariance 

matrix. We found the data for these ETFs on the NASDAQ website. Table 4: Summary of ETFs, 

below is a summary of the underlying assets that each ETF represents. 
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ETF/ETN SPY IWM TLT HYG GLD 

Underlying Index/ 
Commodity 

S&P 500 Russel 2000 

Barclays U.S. 
20+ Year 
Treasury 

Bonds 

Markit iBoxx 
USD Liquid 
High Yield 

Gold bullions 
spot price 

Features of the 
Index 

Largest 500 
U.S. 

companies 

Smallest 2000 
companies in 

the Russel 
3000 index of 

small-cap 
equities 

U.S. Treasury 
Bonds that will 

not reach 
maturity for 

twenty or 
more years 

High yield 
corporate 

bonds for sale 
in the U.S. 

Bars of gold 
with a purity 
of 99.5% or 

higher 

ETF/ETN EFA VXX OIL FEZ EEM 

Underlying Index/ 
Commodity 

MSCI EAFE 
S&P 500 VIX 
Short-Term 

Futures 

S&P GSCI 
Crude Oil Total 

Return 

EURO STOXX 
50 

MSCI 
Emerging 
Markets 

Features of the 
Index 

Large-cap and 
medium-cap 

equities 

CBOE Volatility 
Index which 

measures the 
volatility of 

S&P 500 
futures 

Returns of oil 
futures 

contracts with 
West Texas 

Intermediate 

50 of the 
largest and 
most liquid 
Eurozone 

stocks 

Medium-cap 
and large-cap 
equities from 

emerging 
markets 

Table 4: Summary of ETFs 

For all ten ETFs we collected five years of daily returns. We then took the natural log of 

each return and calculated the mean and standard deviation of each, which is shown in Table 5: 

ETF Data, below. 

 
EFA VXX OIL FEZ EEM HYG TLT IWM SPY GLD 

𝝁 0.0002 -0.0033 -0.0005 0.0001 0.0002 0.0001 0.0001 0.0005 0.0005 0.0001 

𝝈 0.0139 0.0399 0.0211 0.0184 0.0160 0.0065 0.0100 0.0146 0.0110 0.0112 

Table 5: ETF Data 

3.2 Maximum Likelihood Estimation 

Taking the values from the ETFs, and assuming a two-regime model, we used MLE to 

calculate the mean and volatility of each regime of every ETF. We started by calculating the 

parameters for Regimes 1 and 2. We followed the steps used by Mary Hardy in her paper “A 

Regime Switching Model of Long Term Stock Returns” to complete MLE. We first used MLE to 

solve for the transition probabilities, mean and volatility of the SPY data.  We used the invariant 
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probability formula to determine transition probabilities. Let 𝜌𝑥,𝑦 be the probability of 

switching from regime x to regime y. The invariant formula has two parts: 

𝜋1 =
𝜌2,1

𝜌1,2+𝜌2,1
  and  𝜋2 =

𝜌1,2

𝜌1,2+𝜌2,1
 . 

After this initial step, the remainder of MLE is solved using a recursive formula (Hardy, 2001). 

 The recursive formula can be broken up into two parts. The numerator depends on 

which regime you are in and which regime you are switching to. The denominator is the sum of 

all possible numerators and remains the same. We assumed the probabilities were normally 

distributed and used the normal distribution formula ϕ (
𝑋−𝜇1

𝜎1
) or ϕ (

𝑋−𝜇2

𝜎2
) for our calculations. 

𝜇1 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑅𝑒𝑔𝑖𝑚𝑒 1                                             𝜇2 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑅𝑒𝑔𝑖𝑚𝑒 2 

𝜎1 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑔𝑖𝑚𝑒 1                                     𝜎2 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑔𝑖𝑚𝑒 2 

𝑋 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

The denominator of the recursive formula is: 𝜌1 × ϕ (
𝑋−𝜇1

𝜎1
) + 𝜌2 × ϕ (

𝑋−𝜇2

𝜎2
). The numerator of 

the recursive formula is one of the following, depending on the current regime. Numerator 1: 

𝜌1 × ϕ (
𝑋−𝜇1

𝜎1
), Numerator 2: 𝜌2 × ϕ (

𝑋−𝜇2

𝜎2
) (Hardy, 2001). 

After completing MLE for the SPY data, we used the transition probabilities we found to 

then complete MLE for all 10 ETFs. Since we had the parameters for the first two regimes, we 

had to create the parameters for Regime 3 and adjust the other regimes accordingly. 

3.3 Markov Chain  

In order to simulate a realistic changing economy, we created three regimes that had 

different levels of volatility. The first regime represents a healthy economy with a positive mean 

and low volatility, the second represents a falling economy with a lower mean and higher 
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volatility, and the third regime represents an economic crash with a low mean and very high 

volatility. 

We used MLE to find the transition probabilities, mean, and volatility for Regime 1 and 

Regime 2. We created the parameters for Regime 3 in a somewhat arbitrary fashion; by making 

the mean twice that of Regime 2 and the volatility 1.5 times that of Regime 2. Additionally, we 

made the probability of switching into Regime 3 very small so that it would only occur about 

0.5% of the time.  The mean and volatilities for the regimes can be found below in Table 6: 

Regime Parameters, and the regime transition probabilities can also be found below in Table 7: 

Regime Switching Probabilities. 

 
Table 6: Regime Parameters 

 
Starting in 
Regime 1 

Staring in 
Regime 2 

Starting in  
Regime 3 

Ending in Regime 1 0.9920 0.0206 0.1250 

Ending in Regime 2 0.0074 0.9790 0.1250 

Ending in Regime 3 0.0006 0.0004 0.7500 

Table 7: Regime Switching Probabilities 

In order to implement the regime switching process, we created a random number that 

determined which regime the ESG would be in. For each simulated daily return, a random 

number determines which regime and therefore which parameters the lognormally distributed 



   20 
 

return would have. For example, if we begin in Regime 1 and generate a random number 

between 0 and 0.992 then the model would remain in Regime 1, between 0.992 and 0.9994 it 

would switch to Regime 2, and between 0.9994 and 1 it would switch to Regime 3. These 

numbers are based on the transition probabilities found using MLE and slightly adjusted to 

account for the addition of Regime 3.  After the creation and calibration of the regime switching 

process, additional random numbers were needed to be transformed into simulated returns. 

3.4 Inverse Transform Methods 

We used Excel version 2007 to generate the random numbers needed to simulate the 

returns. Real world stock markets are often simulated using a lognormal distribution. In order 

for the random numbers we generated to be lognormally distributed we took the natural log of 

the returns from the ETF data (Sharpe). Since we calibrated the parameters for the ESG using 

MLE over these lognormal returns, application of these parameters also results in lognormally 

distributed data. Therefore, to complete our simulation all we had to do was apply the 

covariance structure and add the appropriate means to each resulting value. The final value 

shares the parameters of the historical data and has a lognormal distribution. 

3.5 Covariance and Cholesky Decomposition 

To construct a covariance matrix, we used the data from the ten ETFs. Using the Excel 

function COV(array1, array2) we found the covariance of each ETF to each other based on 

regime, which created a symmetric 10 by 10 matrix of covariances for each regime. We then 

decomposed each matrix using Cholesky Decomposition to get the lower (L) and upper (LT) 

matrices. We multiplied the random numbers by matrix LT based on regime and then added the 

appropriate mean to each. This gave the random numbers the desired covariance structure, we 
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then added the means so they would reflect the historical data. These correlated lognormally 

distributed random numbers are the results of the ESG simulation. 
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4.0 Results 

The goal of this project was to create a real world economic scenario generator (ESG) 

with three regimes that is well-defined, understandable and reproducible. Having successfully 

completed the projected, our key findings are discussed below. 

4.1 Results from MLE 

Completing the MLE allowed us to find the probabilities of switching between Regime 1 

and Regime 2. The results are shown below in Table 8: Initial Regime Switching Probabilities. 

 
Ending in Regime 1 Ending in Regime 2 

Starting in Regime 1 0.9920 0.0206 

Starting in Regime 2 0.0074 0.9790 

Table 8: Initial Regime Switching Probabilities 

Since Regime 3 was not based on the data that we collected, we did not include it in MLE.  We 

created the probability of switching to Regime 3 and adjusted the other probabilities 

accordingly. The final daily regime switching probabilities that we used in our ESG are shown in 

Table 7: Regime Switching Probabilities. 

4.2 Comparing Parameters to Simulations 

By using MLE on the ETF data that we collected, we found that 74.3268% of the data 

could be classified as Regime 1 and 25.6731% of the data could be classified as Regime 2. 

Regime 3’s parameters were not based on the data that we collected so we did not include it in 

MLE. It was our intention that Regime 3 simulate an economic crash with high levels of volatility 

and a high negative mean. However economic crashes are not common and it is for this reason 

that we set the probability of landing in Regime 3 extremely low at 0.5%. In order to account for 
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the addition of Regime 3, we altered the probability of being in Regime 1 to 74.2% and in 

Regime 2 to 25.3%. 

After 4000 simulations, we compared the results of how many times a return ended in a 

regime with the probability that they were supposed to be in that regime. We expected the 

difference between these results to be extremely low. These results are shown below in Table 

9: Regime Probabilities. 

 
Parameter Simulated Difference 

Regime 1 74.20% 76.47% -2.27% 

Regime 2 25.30% 23.31% 1.99% 

Regime 3 0.50% 0.22% 0.28% 

Table 9: Regime Probabilities 

 Additionally, we compared the simulated covariance matrix for each regime with the 

covariance matrix we made using the ETF data. Table 10: Covariance Difference Matrices, 

below shows the differences between the simulated covariance matrix and the covariance 

matrix made using the data. The greatest difference in any regime is 3.9188 E(-5). 
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Table 10: Covariance Difference Matrices 

4.3 Increasing Simulation Size Improves Accuracy 

We ran the ESG three different times with 100 scenarios, 1000 scenarios and 4000 

scenarios. We found that our ESG became more accurate as the number of scenarios increased. 

We defined more accurate as minimizing the difference between the parameters found from 

the data and the simulated returns. This holds true for all parameters: mean, standard 

deviation, covariance, and the probability of being in a regime.  

 We expected the smallest simulation size of 100 to have the greatest differences 

between its parameters and simulated results. In Table 11: Trial 1, we can see that the greatest 

difference in any regime between the means is less than 1% at 0.009401. The greatest 

difference in any regime between the standard deviations is 0.037023. 
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Table 11: Trial 1 

 We expected that the second largest simulation size of 1000 would have similar 

differences between the parameters and simulated results. In Table 12: Trial 2, we can see that 

the greatest difference in any regime between the means is 0.002939. The greatest difference 

in any regime between the standard deviations is 0.038420. This was consistent with our 

expectations.  

 
Table 12: Trial 2 
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We expected the largest simulation size of 4000 to have the smallest differences 

between the parameters and simulated results. In Table 13: Trial 3, we can see that the 

greatest difference in any regime between the means is 0.000696. The greatest difference in 

any regime between the standard deviations is 0.039725. This finding shows that the mean of 

our results became more accurate as the simulation size increased while the standard deviation 

became slightly less accurate, which is logical because with more trials there is more 

opportunity for outliers. 

 
Table 13: Trial 3 

4.4 Details about Program 

These three runs also allowed us to measure the run time. The ESG takes approximately 

eight minutes per thousand scenarios to run. We were also able to discover that Excel limited 

the number of scenarios we were able to run. Excel has enough space to run approximately 

4100 scenarios. This made exploring the accuracy of our ESG for more than 4000 scenarios 

difficult. 
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5.0 Recommendations 

Based on our results, which are given in the previous section, we recommend the 

following for consideration in future projects. 

 

MATLAB 

Rewrite the code using MATLAB. This will allow for the ESG to be run on a supercomputer and 

the code will be simpler to distribute. It will also be useful to have access to MATLAB’s library of 

functions, which is constantly updated.   

 

Super Computer 

Use a supercomputer to run the simulations in parallel. This will decrease the run time and 

increase the number of simulations that are able to be run, therefore making the results more 

accurate. 

 

Output to txt File 

Send output to txt file. This will allow for the number of runs to be unlimited because it will not 

run out of space. Additionally, simulation data could be more easily exported to other software 

for parsing. 

 

User Interface 

Create a user interface. This will allow for the ESG to be used and run by someone who has not 

worked on the project or does not understand the processes. 

 

Automatic Results Checker 

Include in the code a results checker. This could be a difference matrix of the parameter-matrix 

subtracted by the simulated-matrix. This would allow the user to know right away if their 

results are within a reasonable error. 

 

Regime 3 

Make regime 3 more accurate. This could mean using parameters based on historical data from 

economic crashes. 
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