Design and Authorship for the Halberd
Narrative Planning Engine

A Major Qualifying Project submitted to the faculty of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of
BACHELOR OF SCIENCE in
COMPUTER SCIENCE and
PROFESSIONAL WRITING and
INTERACTIVE MEDIA AND GAME DEVELOPMENT

Submitted by:
Richard Hayes
Myles Karam

Jonas McGowan-Martin
Brian Rubenstein

Gareth Solbeck

Advisors:

Professor Charles Rich (CS / IMGD)
Professor Mark Claypool (CS / IMGD)
Professor Ryan Madan (HUA)

Submitted:
April 27, 2017

This report represents the work of WPI undergraduate students submitted to
the faculty as evidence of completion of a degree requirement. WPI routinely
publishes these reports on its website without editorial or peer review.
For more information about the projects program at WPI, please see
http: / /www.wpi.edu/academics /ugradstudies/project-learning. html

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

In interactive narratives, there is a trade-off between authorial control and player
agency. To address this issue, our team developed Halberd, a game engine which uses
planning techniques to produce branching narratives while keeping author workload
manageable. Rather than writing story paths, the author writes a world, a set of
characters, and an end goal, and the engine dynamically generates the story path
based on player actions. Additionally, the engine handles procedural creation of
scenes using individual art or text components. To evaluate the engine, we created
and playtested a horror game, titled The Worm of FEverhill. This report describes the
design of the Halberd system, and discusses techniques of authorship for narrative
planning engines.

Acknowledgments

We would like to thank the following people for their significant roles in our
project:

e Cherish Springer, who created the art for The Worm of Everhill.
e Professor Ed Gutierrez, who advised Cherish Springer in creating the art.

e Professor Stephen G Ware, University of New Orleans, who wrote the Glaive
Narrative Planner.

i

Table of Contents
Abstract
Acknowledgments

Table of Contents

List of Figures

1 Introduction

2 Background

2.1 Procedural Content Generation
2.2 Writing
2.2.1 Traditional Literature
2.2.2 Writing for Gameso
2.3 Planningo
2.3.1 What is Planning? oL
2.3.2 Planning for Narratives
2.3.3 Planning in Gameso
3 The Halberd Engine
3.1 Integration with the Glaive Narrative Planner
3.2 Procedural Text Generation
3.3 Procedural Graphics Generation
3.3.1 Design & Architecture oL
3.3.2 Creating Art for Procedural Generation.
4 Creating The Worm of Everhill with Halberd
4.1 Genre Choice e
4.2 Actions
4.3 Characters
4.4 Ttems L
4.5 Locations
4.6 Design Challenges Lo
5 Results
5.1 Story Design
5.1.1 Meaningful Characters
5.1.2 Designing Goalso oL
5.1.3 Scopeof Story
5.2 Runtime & Optimization
5.3 Playtesting

il

ii

iii

vi

—

S ot w W

10
12
13

15
16
17
18
19
20

22
22
22
23
24
24
25

6

7

5.3.1 Methods for Playtesting
5.3.2 Results of Playtesting

Future Work

Conclusion

Supplement: Authoring Games for the Halberd Narrative
Planning Engine

Abstract

1

2

Introduction

The Halberd Narrative Planning Engine

2.1 Glaiveand PDDL
2.2 How Glaive Makes Choices
2.3 Displaying Text to the Player
2.4 Engine Limitations o

Authoring Plan-Based Stories for Halberd

3.1 The Worm of FEverhill
3.2 Creating Your World
3.3 Conceptual Challenge: Conflict and Intentionality
3.4 Conceptual Challenge: Rigidity
3.5 Writing Your Story L

Conclusion

References

Appendices

A PDDL Domain File for The Worm of FEverhill

B PDDL Problem File for The Worm of Everhill

C Text Decoration File for The Worm of Everhill

D Graphics Decoration File for The Worm of Everhill

E Sample Art for The Worm of Everhill

v

37
38
39

41
41
42
43
45

47
47
47
50
51
53

56

57

59
59
69
70
84

113

F Informed Consent Form for Playtesting 115
G Scripted Introduction for Playtesting 117

H Survey Questions for Playtesting 118

List of Figures

2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
3.4
3.5
5.1
5.2
5.3

A screenshot of an algorithmically created map in Rogue
A screenshot of Elite, an early example of PCG
Conflict pacing in traditional literature
A comparison of authorship required for interactive story structures .
Example of PDDL action operator from The Worm of Everhill
Architecture of the Halberd Game Engine
The Halberd game loop
The template assembly process
Image composition for characters holding items in Halberd.
Component placement within the Halberd rendering system
Runtime of the Glaive planning algorithm with and without threading
Participants’ self-reported interest during playtesting
Survey results about Ul understandability

vi

o Ot W~

11
15
16
18
20
21
31

1 Introduction

In interactive stories, there is a challenge called the “Narrative Paradox”. The
Narrative Paradox describes the challenge involved in reconciling the needs of the
player, who is now a participant in the story, and the author, whose job is to provide
a compelling story (Aylett, 2000). In games, the two extremes, full authorial control
and full player control respectively, are linear games and sandbox games. While linear
games guarantee the ability to portray an interesting narrative, they offer little in the
way of player control. Sandbox games provide plenty of opportunity for the player to
make choices, but are not guaranteed to provide a compelling story. In the middle,
to reconcile the two extremes, are branching narratives. Branching narratives involve
providing authored choices to the player, writing out every branch for each choice the
player makes. The challenge with branching narratives, however, is the large amount
of authorship necessary to make each branch compelling.

To attempt to reduce this increase in authorship load, programmers have used
planning to try to procedurally generate narratives. Planning is a field of study
within Computer Science that has been utilized by game developers for narrative
design to attempt to procedurally generate narrative arcs, thus requiring that authors
only write the world and goal (Young, Ware, Cassell, and Robertson, 2013). When
applied to games, however, there is a problem with planning: it is a static process.
This means that planning generates an entire plan, without accounting for player
interaction. To address this problem, we created the Halberd Game Engine, which
encapsulates a planning system called Glaive and provides methods for accepting
player input and adjusting the generated plan in response to that input (Ware and
Young, 2014). Furthermore, we developed a game, titled The Worm of Everhill,
that utilizes the Halberd Engine. Halberd can be used to create both text-based and
graphical games.

Overall, our experience with The Worm of Fverhill and in creating the Halberd
Game Engine gave us several insights with regards to two major areas: how to author
interesting stories within a planning engine, and target areas for optimization within
a planning system. Furthermore, we evaluated the success of The Worm of Everhill
through playtesting to determine how interesting and enjoyable the game was to play.

Section two, the background section, provides an understanding of procedural
content generation, writing techniques, and planning. This section also outlines some
of the other approaches to using planning to attempt to create interactive stories. The
third section discusses the design of the Halberd engine, breaking it down into three
parts: the integration with Glaive, the text generation, and the graphics generation.
Section four introduces The Worm of Fverhill, and describes the process of making
a game using Halberd. Section five outlines the findings of the project, including
discoveries in designing stories for Halberd, optimizations made to the Glaive planning
algorithm, and results from playtesting The Worm of Everhill. Finally, section six
suggests some possibilities for future work in the field of interactive planning, both

in Halberd and outside of the engine.

2 Background

Before discussing the technical details of the Halberd Engine, it is important to
understand past work in areas relevant to our project. In this section, we describe
how procedural content generation has been used in games. Next, the methods for
writing compelling narratives in classical literature are compared and contrasted to
how similar game narratives are approached by authors today. Lastly, we introduce
the concept of planning in the context of artificial intelligence, and detail several
of the challenges that must be overcome when applying this concept to games and
narratives.

2.1 Procedural Content Generation

Procedural content generation (PCG) is “the algorithmic creation of content with
limited or indirect user input” (Togelius, Shaker, and Nelson, 2016). Since the inven-
tion of this technology, PCG has been closely tied to the games industry. Its uses in
games are twofold: PCG not only provides a way to add variation to a game between
playthroughs, but also a way to add a seemingly infinite amount of content while
keeping the storage requirements manageable. The works outlined in this section are
early examples of PCG, and precursors for our work on the Halberd Engine.

It was the former property of PCG that led to its first implementation in a large-
scale game in 1980 with the release of Rogue, a dungeon crawl game where the dungeon
floors, enemies, and item drops are all randomly generated each time you play (Toy
and Arnold, 2012). See Figure 2.1 for an example map. The developers were inspired
by adventures from the Dungeons & Dragons role-playing game, and the very limited
amount of single-player linear story computer games available at the time. Disap-
pointed in the replayability of these adventure games, they created Rogue, which has
since spawned an entire genre of games called “rogue-likes”, which all share similar
PCG techniques for procedurally generating the environment and level progression of
the game each time you play.

Hits:£9(29) Str:16016) Gold:?718 Armor:5

Figure 2.1: A screenshot of an algorithmically created map in Rogue

In 1984, another landmark game was released, titled Elite, that used PCG to keep
storage requirements low (Bell, n.d.). Figure 2.2 shows a screenshot of this game. In
Elite, players traveled around space to trade goods, make money, and upgrade their
spaceships. However, the game’s scope was limited by 8-bit computing. PCG was
used in order to have enough planets for the game world to feel like it was on a galactic
scale. The game used a seeded algorithm to generate eight galaxies with 256 planets
each, allowing every planet to have unique properties. Since the game would only
keep the nearby planets in memory and recompute others using the static algorithm
when the player traveled, the game could be run within the memory constraints of
8-bit computers.

Figure 2.2: A screenshot of Elite, an early example of PCG

In both of these examples, PCG is used to generate the game environment. How-
ever, the possible uses of PCG are much more widespread. For example, procedurally
generating text is particularly prominent in a genre of games called interactive fiction
(IF). In an IF game, the player enters textual input and receives text as a response.
This presents the challenge of converting the logical statements describing the game
world into natural prose. Although many IF games, particularly early ones such as
Adventure or Zork, are puzzle and mechanic focused, IF games in general have a
more literary bent. As such, this makes them a strong example for procedural text
generation (Montfort, 2005).

Facade, released in 2005, went beyond template-based procedural text generation
to generate full sentences based on the context of the situation. This breakthrough
work featured two non-player characters that the player could communicate with
using typed sentences (Mateas and Stern, 2003). The player’s actions influence what
happens in the interactive story, and ultimately the outcome of the conversation
between the player and NPC characters. Facade effectively procedurally generates
the narrative of the game depending on player choices, and was one of the first pieces
of interactive media to do this.

2.2 Writing

There are many different types of writing, and many different types of documents
that can be authored. For the purpose of our project, we were mainly concerned with

the field of creative writing and authoring practices used to write fiction. Examples
of writing include books, journals, and other physical media. Physical literature
dominated as the method for recording thoughts, stories, and history for a great
many years, with the oldest known written story dating back to 2000 BC (“The
Epic of Gilgamesh: The First Epic, from The First Civilization,” n.d.). During this
time, narrative and literary theories formed and have been extensively developed for
studying and discussing the written story. Many of these theories are well accepted,
but some of the concepts are reliant on the linear, unchanging nature of the medium
for which they were first conceived. However, as modern technology has developed,
new and more dynamic storytelling media — such as digital games — have begun being
introduced. Since the goal of this project is to procedurally generate a narrative,
the details of how to create a story by hand are of great interest to us. This section
discusses some of the principles and techniques used for crafting stories in traditional
literature, and how they translate into the world of game design.

2.2.1 Traditional Literature

While traditional linear literature differs in a lot of ways from the dynamic and
interactive medium of digital games, there are techniques and guidelines for authoring
a story that predate this medium and can be adopted into design to improve story-
telling and the player’s experience. While some traditional literature is purely about
telling the reader the story of the characters in the authored world, many stories make
an effort to cause the reader to feel close to, and empathize with, the main character.
Some stories are even told in the first person, immersing the reader by making them
a character in the world. The character may have a different name, different ideals,
or different goals, but over time the reader suspends their reality to walk in the shoes
of this character and feel like they are actually present in the story’s events. Digital
games frequently use the same techniques, placing the player in the role of the main
character. Because of the interactive nature of digital games, immersion may be en-
hanced through the customization and personalization of a character, or by letting
the player make choices for that character in-game. However, for all intents and pur-
poses, the role of that character remains very similar to that of the main character
in traditional literature.

As for the story itself, interactive or not, there are certain common elements that
are said to be critical to the narrative’s form. Janet Burroway, author of Writing
Fiction: A Guide to Narrative Craft, claims that the three fundamental elements of
fiction are conflict, crisis, and resolution. Conflict is paramount to fiction, Burroway
says, because in fiction “only trouble is interesting.” It is important to make the
distinction that this is true of fiction and not of real life. A life where nothing ever
goes wrong may be quite pleasant to live. However, it is unlikely to make a very
captivating story. In contrast, even a minor conflict in a story has a way of drawing
in the audience (Burroway, 1992)

Another important distinction from real life is that a conflict established in litera-
ture is guaranteed to come to an end. This is the reason that it is okay, and in many
situations highly enjoyable, for a reader to read a violent, frightening or otherwise
unpleasant event in a story: because that event is bound to come to a close. In
literature, the events and conflicts are contained nicely in the words on the page. At
the very least, a literary conflict will cease once the reader runs out of pages to read.
That being said, a conflict ending due to a lack of pages is unlikely to be very satis-
fying. This is why crisis and resolution are important elements of a story. Following
the establishment of a conflict, a reader expects that conflict to reach its climax and
to ultimately be resolved. An important note is that the resolution to any conflict is
not required to be a happy one (Burroway, 1992).

These defining features of a story — conflict, crisis, and resolution — are applicable
to digital games as well as traditional literature. However, the implementation of
these features may be more complicated depending on the type of game and how
much narrative agency is offered to the player. Figure 2.3 below shows a common
relative pacing for conflict, crisis, and resolution in traditional literature. In this
narrative structure, the dramatic intensity of the narrative steadily increases over
time, reaching a climax point near the end of the narrative. After the climax point,
the intensity drops to provide a satisfying resolution. If the author of a novel chose
to follow this pacing, it would mean they would simply need to successively write the
events to the correct scale and in the proper order. The only obstacle would be their
own writing skills and vision for the story. However, when interaction is introduced,
the author must consider the fact that the player may not follow the exact pacing
they intended and, if possible, may experience events in various orders. This and
other complications have made storytelling through digital games into a challenge
that game designers have been confronting for many years.

Climax

Rising
Action

Resolution

Dramatic Intensity

Beginning

Time

Figure 2.3: Common pacing for conflict, crisis, and resolution in traditional
literature

2.2.2 Writing for Games

When writing narratives for games, authors must consider player agency in addi-
tion to plot structure. Aylett describes this as the “narrative paradox” of interactive
narrative: reconciling the needs of a participating user with the need for overall nar-
rative coherence. The author of a non-interactive story has complete control over
the narrative, but this is not tenable in an interactive medium. A game completely
controlled by the author limits the player to metaphorical page-turner. Instead, au-
thors of interactive media must provide the player with agency, and allow them to
participate in the narrative (Aylett, 2000).

Many games provide the player with minor agency, while defining the overall
narrative as a single linear path. The player may choose how they overcome the next
obstacle, but ultimately that obstacle must be overcome before the following one,
and so on. The author writes a series of key events, connected by nonessential player-
driven events, such as puzzles, combat, and the like. In such a narrative structure,
an author can use define the exact progression of narrative events, in the same way
as they would for a non-interactive narrative. This approach is pictured on the left
of Figure 2.4.

On the other hand, games with branching narratives allow the players to make
key decisions at various points throughout the story: to free the prisoner or leave
them behind, to hunt down the werewolf or set a trap for it. Such games require that
the author produce content for each branch of the narrative, but the author can still
readily review all possible narrative paths. However, this approach does result in an
increase in content needed with regard to player choices; the middle section of Figure
2.4 shows the increase in world states and transitions.

This increase in content has led to the development of various systems, such
as simulations and narrative planners, to manage and produce content. However,
such systems come with a reduction in the direct authorial control available. Rather
than writing content directly, which produces a single experience or small set of
experiences, the author tweaks the parameters of the system to adjust the range of
possible experiences. For example, in a narrative simulation, an author might define
one of the character’s friends as having a low loyalty trait in lieu of directly writing
a dramatic betrayal into the story. The rightmost section of Figure 2.4, illustrates
this as a single world state and a set of transitions, which may be applied in any
order to the initial world. The Halberd Game Engine described in this paper uses
a narrative planner that dynamically creates a sequence of actions out of the ones
provided, following this open ended story model to create a linear narrative.

Start Start Start

O

Pre-authored
World State

2>

Pre-authored
Transition

VVVVVVY
alalaValalatav(®
VVVVVVY

Linear Branching Open Ended
Narrative Story Story

Figure 2.4: A comparison of authorship required for interactive story structures.
Circles indicate the pre-authored world states and arrows indicate the pre-authored
transitions between world states.

2.3 Planning

Planning is a traditional method of artificial intelligence (AI) which involves
searching for a set of actions to transition from an initial state to a goal state. Over
the last few decades, planning algorithms have been developed and refined in order
to make them more feasible to be used in games. Among the first was the Stan-
ford Research Institute Problem Solver (STRIPS) planner. After the development of
the STRIPS planner, interest in planning algorithms has steadily grown, leading to
the development of planning systems such as the Fast-Forward planning system, the
Intent-Based Partial Order Causal Link planner, and the Glaive Narrative Planner
(Hoffmann and Nebel, 2001) (Riedl and Young, 2010) (Ware and Young, 2014). The
Halberd Game Engine uses the Glaive Narrative Planner as its core planning system,
but research into other planners helped inform decisions about how to approach the
development of the engine, and what work would be valuable to do within narrative
generation moving forwards.

2.3.1 What is Planning?

Planning, also called automated planning, is a field of AI about determining a
sequence of actions that transform a world state to satisfy some goal condition. At a
basic level, finding this series of actions involves searching through possible sequences,
one action at a time. Omne of the earlier planners, the STRIPS planner, used a
formal language to describe planning problems in terms of first-order logic (Fikes
and Nilsson, 1971). This language was later adapted into the Planning Domain
Definition Language (PDDL), a semi-standardized language introduced to improve
comparability of planning algorithms. PDDL is a list-like language, which describes
world states as a set of predicates. Actions are described by planning operators, which
specify first a set of parameters, and then the precondition and effect of the action
in terms of those parameters. The precondition defines a logical statement in terms
of predicates that must be true in order to apply the operator. The effect specifies
the predicates which are added or removed when the operator is applied (McDermott
et al., 1998).

In Figure 2.5 below, we show an example of both a PDDL operator and an instance
of the operator. The operator, at the top, is what an author writes in PDDL syntax.
Each operator has a set of typed parameters which it can be applied to. The pickup
action applies to a human, an item, and a place. The preconditions restrict which
combinations of parameters may be used: the human must not already have the
item, the human must not be dead, and both the human and the item must be at
the location. The truth of each of these conditions is indicated algorithmically by the
presence or absence of the relevant predicate in the world state. The effects define
the changes to the world state: once the pickup action has been used, the human
now has the item, and the item is no longer at the place. Algorithmically, this is
represented by the addition and removal of predicates in the world state (McDermott

10

et al., 1998).

(:action pickup
:parameters (?taker - human ?item - item ?place - place)
:precondition (and (not (has ?taker ?item))
(not (dead ?taker))
(at ?item ?place)
(at ?taker ?place))
reffect (and (has ?taker ?item)
(not (at ?item ?place))))

Figure 2.5: Example of PDDL action operator from The Worm of Everhill

PDDL also defines various extensions, such as including conditional clauses in the
preconditions or effects of an action. These extensions improve the expressiveness of
the language, at the cost of computational complexity (McDermott et al., 1998).

Until this point, we have described a plan as a sequence of actions. However,
a subclass of planners called partial-order planners use a structure which describes
the restrictions on relative ordering of actions rather than defining a linear total
ordering of actions. Most typically, these are restrictions are represented using causal
links, which connect an action’s preconditions to the actions which establish each
precondition. In the case of actions which depend on predicates in the initial state,
the causal link is instead connected to a dummy action indicating this. This structure
allows planners to require that some actions happen before others, without completely
restraining the ordering (Young, 1999).

Many planners, particularly general planners, lack the processing efficiency to be
used on large problems. Depending on the heuristic used in the search, the compu-
tational complexity can be such that planning for even short problems can take a
prohibitively long time. Planners like the FF (Fast-Forward) Planning System have
attempted to improve this search time. FF is a forward-searching state-space planner.
Starting with the initial world state, it searches through possible successors (resultant
states after having applied a single action) iteratively until reaching a state satisfying
the goal. More specifically, FF uses a search heuristic called relaxed GRAPHPLAN,
which estimates the distance of a state from the goal, in terms of the predicates
present. FF also prunes the state space by identifying helpful actions and cutting
branches where a subgoal is achieved too early. These methods result in a signifi-
cant runtime improvement over other heuristic-search planners, and allow Halberd to
re-plan without significant load times. (Hoffmann and Nebel, 2001).

11

2.3.2 Planning for Narratives

Many efforts have been made to model and generate narratives. The similarities
between narrative structure and plan structure make planning systems a particularly
appealing approach. In many models of narrative structure, the lowest level is called
the fabula, and consists of the agents in a world, the actions carried out by these
agents, and the relationships between these actions. Young points out the similarities
between this and representational planning models, which also include agents, actions,
and causal relationships. Narratives can be said to be plans, where the planning
problem is constrained not only by logical and causal considerations, but also by
narratological ones, such as conflict and character believability (Young, 1999).

Meehan’s TALE-SPIN focuses on modeling the goals of characters. The goal of
this system is to resolve the initial goals of the characters, given a set of interme-
diate subgoals and actions. As Meehan describes, a significant amount of effort is
involved in codifying the knowledge of the world, both in the specification of possible
actions and in the initial state of the world. This knowledge ranges from the physical
constraints of the world to the emotional states and relationships of the characters.
The consistency and believability of the narrative rely upon this knowledge (Meehan,
1977).

Later work by Dehn reflects upon TALE-SPIN, stating that its simulational ap-
proach is a less effective way of modelling a narrative. Her system, AUTHOR, focuses
instead upon authorial intent, describing a story as the result of a series of author
goals rather than character goals. As with the character goals in Meehan’s system,
these author goals are broken down into subgoals, which can then be resolved. Char-
acters become tools for the author, brought into existence and justified when needed.
Overall, AUTHOR models the authorial process of creating a narrative, but at the
expense of character depth (Dehn, 1981).

Riedl & Young’s planning algorithm IPOCL (Intentional Partial Order Causal
Link) builds upon a more general class of planners called POCL planners. In general,
these planners work by iteratively resolving flaws, such as unsatisfied preconditions,
by adding actions until a complete plan is constructed. The IPOCL algorithm builds
on this by annotating actions with the characters who must intend for that action to
take place. The planner associates these actions to character goals, and requires that
all actions in a plan have a goal association. This provides an overarching authorial
goal for narrative guidance, and character goals to ensure that the actions taken are
believable (Riedl and Young, 2010).

Later extension upon the IPOCL algorithm produced the Conflict Partial Order
Causal Link algorithm. This algorithm uses threatened causal link flaws, which indi-
cate where an action may prevent another’s preconditions from being met, to model
conflict. Actions may be included in the plan to justify intentions while ultimately
being marked as non-executed, and thus not having any causal effect. This extension
on TPOCL gives the planner more flexibility and allows it to model conflict, in which
one or more characters are unable to complete their plan to reach some character goal

12

(Ware and Young, 2011).

Glaive, a planning algorithm by Ware, revisits the CPOCL algorithm’s models of
conflict and intentionality, but endeavors to find a balance between narrative modeling
and algorithm runtime. Instead of a POCL planner, Glaive’s core is a forward-
searching state-space planner, which starts with a single node for the initial problem
state and searches through a space constructed by applying actions to existing state
nodes (Ware and Young, 2014). Glaive is the planning algorithm that powers Halberd
due to its numerous runtime improvements.

2.3.3 Planning in Games

All of the algorithms discussed up to this point have been offline planners; which
take a static problem definition and produce a valid plan. However, to utilize these
tools in interactive narrative to address the narrative paradox, as described in Section
2.2.2, we need to consider the actions of the player. In many cases, player interactions
may run counter to the intended narrative structure, and the system will need to
resolve this in some way. In this section, we examine past uses of planning for narrative
generation in games, and their approaches for incorporating player interaction.

LOGTELL is a tool for generating stories, which allows the user to work collab-
oratively with the system to author a narrative. Plots are generated iteratively, by
alternately inferring new character goals and planning to satisfy those goals. After
each planning phase, the user may either accept the given partial plot or ask the
system to generate an alternative. Additionally, the user may give specific events or
situations to be included in the narrative. These must be validated by the planner
and may be rejected if no plan can be found to satisfy them. Because the user is
always intervening indirectly, it is more permissible for the system to reject some user
inputs; there is no immersion to be broken in this case (Karlsson, Ciarlini, Feijé, and
Furtado, 2006).

Barber and Kudenko propose a system that limits the user’s interactions to dilem-
mas. Each of these dilemmas gives the user a significant choice with two options, each
of which is consistent with the narrative so far. For example, the Sacrifice dilemma
gives the user the choice of whether or not to give something up in order to help a
friend. Either of the choices will produce a coherent narrative, but the choices do
clearly have a narrative impact. In this way, the user is still involved in the story,
despite having only limited agency (Barber and Kudenko, 2007).

The narrative planning system Mimesis creates and maintains narratives as an Al
controller in an existing virtual environment. First, it generates a story plan before
the start of the game. Then, it directs NPC actions according to this plan, and
mediates all user actions, checking whether they conflict with the constraints of the
plan. If they do, the system may either intervene or accommodate the user. When
intervening, the system may cause the action to fail, ideally in some world-consistent
way. For example, the system may intervene when the player attempts to open a

13

door by having the door be locked. Alternately, to accommodate the user, Mimesis
must restructure the plan. This accommodation may be trivial (such as moving a
future action to a new location) or much more substantive, and thus computationally
expensive. Mimesis can estimate the computational cost of restructuring the system
and determine which means of mediation it should use (Young et al., 2004).

14

3 The Halberd Engine

The goal for our project was to produce a game engine that uses an existing
intentional planning algorithm at its core. We have designed our engine to work
with Glaive in a way that allows player input. Since Glaive only runs one time and
produces a plan that will bring the game from a defined start state to a defined end
state, there is no method of interaction. To extend Glaive to include interaction, we
implemented an engine named Halberd that integrates these individual static plans
into a game loop. Halberd allows the player to interact with the planner, generating
new plans that account for the player’s choices.

Halberd consists of three components. The Game Manager is responsible for
maintaining and updating the world state and narrative path. It interfaces with
the Glaive narrative planner, which produces static partial-order plans as described
previously in Section 2.3.1. The rendering system displays the world state and actions
performed. Halberd provides two options for this rendering system: a text interface
and a graphical interface.

Game | | Glaive
Manager | ‘| Planner
h 4
.| Rendering
Author System

l

Player
Figure 3.1: Architecture of the Halberd Game Engine

Halberd integrates the static planner into a game loop as follows. First, Halberd
renders the starting world state. The player is then prompted to choose an action.
Possible player actions are determined by comparing the preconditions defined in the
planning problem to the current world state. After the player chooses an action, the
planner generates a new plan, using the current world as an initial state. The game
manager executes the first set of NPC actions from this plan. Finally, Halberd renders

15

both the actions taken and the new world state, and then begin the loop again.

" 3. The planner \h
generates a plan

4. The engine
2. The player
takes an action exe:cutes NPC
actions
/@- i
g N—

Figure 3.2: The Halberd game loop

3.1 Integration with the Glaive Narrative Planner

Integrating the existing Glaive algorithm, an algorithm made for single-time static
use, into a game engine was one of the first challenges we faced. The integration
required inputting new parameters into Glaive based on the results of past actions.
The first step in converting Glaive into a dynamic system was to separate a subset of
the plan generated, and execute those steps. Initially, Halberd made a single step per
player action. We later implemented a system where each actor in the world could
take one step per player action. However, this introduced some problems. In order for
the defined plan to work, some characters needed to take specific actions at specific
times. This meant that simply taking a single action for each actor was not a viable
option. However, because Glaive is a partial-order planner, as described in Section
2.3.1, we were able to use the causal links that Glaive generates to determine which
steps have had the necessary previous steps performed. After all these independent
steps are executed, Halberd stores the new world state, and prompts the player for
their next action based on the resulting world state. After the player’s next action
has been taken, Halberd replans from there.

Once the initial structure of integrating interaction into the planning algorithm
was complete, we encountered a new complication within the system: state simpli-
fication. Glaive represents world states using a conjunction of logical predicates, as
described previously in Section 2.3.1. When the state space is initially created, it
provides every possible action and predicate, without accounting for what would ac-
tually makes sense for a character to do. Glaive provides a method of simplifying this

16

state space to remove predicates and actions that are unintentional, and therefore
would not be included in the story plan. This simplification decreases the planning
time. However, due to the necessity of changes in character intention, we found that
this could remove actions that, while not intentional at the start, would be necessary
later. For example, in The Worm of Everhill, the talk-to-human and talk-to-possessed
actions might be simplified away, but a player may later be interested in performing
that action to gather information (See Appendices A and B for the complete domain
and problem files for The Worm of Everhill). Furthermore, the player needs to be
able to take actions that are not intentional with regards to the system’s understand-
ing of them. Therefore, the Halberd engine does not simplify the state space before
running the game. See Section 5.2 for the runtime impacts of this change.

Once we had interaction working within Glaive, we created an API for Glaive,
providing only specified functions to the higher level graphics and text rendering
systems. The API hooks allow for creating a plan, pulling steps for specified characters
out of the plan, making player and NPC steps, pulling information about the world,
and getting the list of possible steps that can be made in the current world state.
This encapsulation means that the text and graphical rendering within Halberd does
not need to know about the planner.

3.2 Procedural Text Generation

At a basic level, the task of any game renderer is to present the relevant game
state information to the player. Beyond that, the renderer is responsible for the way
in which the player experiences the game. It is important that rendered content be
clearly understandable and consistent, and provide an overall tone appropriate to the
game.

As described in Section 3.1, Halberd tracks the world state using a set of logical
predicates. While we could simply print these predicates out in standard PDDL
format, this would not be easily readable, and would detract from the narrative.
Instead, we chose to present the world using a series of descriptive sentences. In
the text version, available actions were displayed as a numbered menu of imperative
sentences, and executed actions were then displayed as descriptive sentences as well.
In the graphical version, the actions available became clickable buttons, each of which
contained the corresponding imperative sentence. To add more flavor to the text
renderer, whenever the player moves to a new area, the renderer displays a paragraph
description of the area.

To generate these sentences, Halberd uses a template-based approach. Actions
and predicates are assigned phrase templates, with variables to be filled by objects.
Objects are assigned phrases to be used in the larger templates. In this way, a large
number of sentences can be produced from a relatively small number of phrases.
This assembly is illustrated in Figure 3.3. Actions follow the same pattern, with two
separate templates for the descriptive and imperative formats.

17

1. The predicate or action is extracted.

2. The template associated with the predicate or action is retrieved.
3. The required arguments used in the template are extracted.

4. The phrases associated with each argument are retrieved.

5. The phrases are assembled in the template.

(pickup farmer pitchfork farm)

1
(piékup ?taker ?7ditem ?place) farmer pitchfork
2 3 3
4 4
[?taker] picksup [?item] the farmer a pitchfork

5

the farmer picks up a pitchfork

Figure 3.3: The template assembly process, illustrated with the pickup action
from The Worm of FEverhill

This template-based approach alone is functional, but the output is often repet-
itive or stilted. To allow more variation, Halberd’s text-rendering system supports
adding multiple phrases for each object, action, or predicate. Whenever one of these
needs to be rendered, the renderer chooses one of the associated phrases at random.
In addition, authors may add specific phrases based on the arguments to the tem-
plate. This is particularly useful for high-impact messages such as “<character> is
dead” which would be more effective as phrases specifically tailored towards individual
characters.

An example text rendering file can be found in Appendix C.

3.3 Procedural Graphics Generation

Similar to the way text is rendered in Halberd, the visual representations of the
characters, places, and items in the world are all displayed based on the contents of

18

the world state. The world state is first filtered for the predicates, characters, and
items that are relevant to the player: specifically, those that should be viewable by
the player in the game world. Then, through the decorations defined for the PDDL
statements, images are drawn on the screen in the correct sizes and orientations. The
design for the code and the art assets is covered in this section.

3.3.1 Design & Architecture

Unlike many traditional game engines, Halberd cannot use pre-authored environ-
ments for rendering, as scenes must be procedurally generated using components. We
created a resource manager that loads these components and their positioning infor-
mation upon launching the game. This decreases load times during a play session
and simplifies the storage of these components. The resource manager also creates
game objects for each of the primitives in the story. These objects are what the game
logic uses to represent all of the nouns from the PDDL syntax and link them with
the relevant graphics.

Once the resource manager has finished setup, play can begin. The game retrieves
the player-filtered world state from the Glaive wrapper, and converts each of the
PDDL predicates to an image, through string-matching the terms of the predicate
to a game object. If the predicate has a game object that matches its terms, the
game object is then added to the list of objects to be rendered. In the actual render
function of the game screen, the objects are rendered according to their properties,
which were the decorations loaded in through the resource manager. These properties
depend on what type of game object is being rendered: location, character, or item.

Locations serve as the backdrop of a scene and provide guidelines on where to
place other objects on top of them to make a well laid out image. They are decorated
with slots to place characters and items on, oriented in spots on the location image
where they would make sense. For example, if there is a table in the middle of a
location image, the game object could be decorated with an object slot to have an
item (if there are any items in the world state) rendered on the table. Character
objects are decorated with the ability to hold items, defined by two pairs of points.
Items are decorated with two corresponding points, which vary in placement from
item to item. For a smaller item, the points are farther away from each other in
order to scale it up to look natural when a character is holding it. The points may
also be adjusted to change the angle at which a character holds an item. Defining
these points in this manner allows the system to simply add an item to the character
to hold. Orientation, mirroring, and scaling are all handled through the attachment
points. See Figure 3.4 for a visual representation.

19

Figure 3.4: Image composition for characters holding items in Halberd, illustrated
by art from The Worm of Everhill

3.3.2 Creating Art for Procedural Generation

As the code for the graphical system was developed, it became clear that art for
a Halberd game had to be specifically designed for the system. Having dynamically
changing world states means that the art needs to be dynamic as well. Locations must
have open areas for characters and items to be laid out on, but must also not feel
empty within those spaces because there are not always characters and items there.
Characters must change visually depending on their state, defined by the world state.
For example, in The Worm of Fverhill, a different image is used for characters that
are dead. Currently, Halberd supports PNG images. The resolution of the graphical
panel is 800x1000 pixels. See Appendix E for examples of the art used in The Worm
of Everhill.

20

Ny
'

Figure 3.5: An example of component placement within the Halberd rendering
system

21

4 Creating The Worm of Everhill with Halberd

To demonstrate the capabilities of Halberd, we authored a game titled The Worm
of Everhill. In The Worm of Everhill, the sleepy, small town of Everhill is thrown into
turmoil when a “mindworm” attacks. The mindworm is a small, slug-like creature
that possesses a human, causing them to go on a murderous rampage. It is the player’s
job to find out who is possessed, and to stop the mindworm from killing everyone in
the town, including the protagonist.

4.1 Genre Choice

This horror plot and setting was a good fit for how our planner reasons about
conflict and intentions. In a typical horror story, there is an obvious conflict of
interest between the forces of evil and the people just trying to stay alive or defeat
the evil. The mindworm is the antagonist in The Worm of Everhill, and its intentions
are to possess non-player characters (NPCs), and to make those NPCs kill the other
characters. The conflict between these goals and the goals of all the other characters
to stay alive demonstrates the conflict resolving capabilities of Halberd well.

The horror genre is also based on suspense, and a lot of The Worm of Everhill’s
story is generated behind the scenes from the player’s point of view, building the
suspense until the climax. Horror games often build atmosphere by showing the
aftermath of certain “scary” or “bloody” events taking place, such as walking into
a room with a dead body. In The Worm of Everhill, finding dead bodies is a large
part of how suspense is built until the big reveal of who is currently possessed by the
mindworm. The player not knowing a lot about the environment, including how the
dead bodies got there, adds to this sense of suspense.

This hiding of information from the player to create tension was one of the main
motivations for making a horror game in the Halberd Engine. Since player information
is based on the world state at the current location, we made sure to include enough
locations in order to have NPCs, especially the possessed one, take series of actions
that are hidden from the player. This allows for body discovery, and walking in on
incriminating situations for the mindworm-controlled NPC.

4.2 Actions

Even though horror games are based on suspense and the aftermath of certain
events, there still needs to be some actions that the player can take that will allow for
interesting gameplay. In The Worm of Fverhill, we have implemented actions that
are available to all humans in the game, including the player:

e Move from one location to another

e Pick up and put down objects

22

Talk to human

Douse human

Ignite human

Bind human

Target human
e Kill human

These actions include the menial tasks of moving and managing the items a human
is holding, and more dramatic events that lead to a human dying or being restrained.
Some actions require the human doing them to have an item to do them with; for
example, dousing requires a flammable liquid and igniting requires a lighter. It is
important to note that even when the player manages to kill the human that is
possessed by the mindworm, the game does not end, because the mindworm is not
dead. The mindworm is still an active agent in the story, and according to its goals,
it will slither off in search of a new host. The only way to defeat it for good is to light
it on fire, which can be done whether it is in a human or not. These actions offer an
interesting way to interact with the story environment.

4.3 Characters

Along with deciding actions that the player could perform, it was important to
create a cast of interesting characters. In The Worm of Fverhill, we evoked the sense
of the horror genre through providing interesting characters and then having those
characters turn against each other. Furthermore, we provided the player with a moral
dilemma of what to do when one of the townspeople tried to kill them and evoked a
feeling as though the player’s life is on the line. The challenge was to create interesting
characters without scripted narrative events to show character development.

To create these interesting characters, we scattered details about them through
the graphics and text descriptions of the world. This provided a sense as though
these characters were alive and active in this town. In The Worm of Everhill, there
are eight different non-player characters, as follows:

e Matthias Cooper
Jill Mills

Jack Myers

Joseph Mills

Bruce Ableton

23

e Vivienne West
e Emilia Brooks
e William Archibald Barrington

We displayed characterizing details for each of these characters via their placement
in the world and small graphical details. For example, Jack Myers was placed at the
Worker’s Respite, a bed & breakfast, in order to inform the player that they did not
live in the town.

4.4 Items

For item design in The Worm of Everhill, we focused on making sure the items
existed for the player to perform any actions that they were able to. Therefore,
the game ended up having four different categories of items: weapons, combustibles,
restraints, and igniters. Weapons allow characters to target and kill other characters.
Similarly, combustibles allow dousing of other characters, restraints allow binding,
and igniters allow ignition of doused characters. We chose how many of each of these
types to place in the world based on the nature of the item type. For example, a
restraint could only be used once, so we wanted to ensure that there were multiple
restraints available. The final version of The Worm of Fverhill includes the following
items:

e Weapon: knife, gun, and pitchfork
e Combustible: gasoline and alcohol
e Restraint: handcuffs and duct tape
e Igniter: lighter

When choosing the items, we wanted to make sure that they made sense for the
setting. Given that The Worm of FEverhill takes place in a small town, we played
into some of the small town stereotypes, such as including a pitchfork as one of the
weapons. We were also careful to make sure that items were only placed at locations
where it would make sense to find them.

4.5 Locations

Locations in The Worm of Everhill were designed to support the goal of creating
interesting characters. For example, the Sheriff’s Office location explicitly has a sign
that reads “Mills for Mayor”, to suggest to the player that there is an election in
progress. Other locations, such as the Worker’s Respite bed & breakfast, provide
other details about the town. The locations were designed in a cohesive style, to

24

create a consistent feeling of being in a small rural town. Overall, The Worm of
Everhill had eight locations in total:

e the General Store

e the Town Hall

e the Player’s Home

e the Sheriff’s Office

e the Mills’ Household
e the Worker’s Respite
e the Hospital

e the Farm

These locations were chosen to provide all the basic locations that you may find
in any given town. The general store provides a location which fulfills the need
for commerce, and gives a sense of what the economy in this town might look like.
The town hall and sheriff’s office provide locations which represent government and
authority. The player’s home, the Mills” household, and the Worker’s Respite provide
locations to show what a house might look like in the town. The hospital and farm
round out the locations, providing some other cliché small town locations to help
make the world feel real.

4.6 Design Challenges

Something that we struggled with while designing the game world of Everhill was
making the environment feel alive. The small town was supposed to be a very laid
back place, but not devoid of any personality. The NPCs would stand in their starting
locations and do nothing, and it was both unsettling and boring. Having characters
do actions while idling is not something that the engine supports; actions must be
explained by intentions. This meant that the challenge of NPCs standing and doing
nothing could not be solved very easily with authoring, since the goal of the game
and the intentions of the characters would need to be defined in such a way that the
planner would want characters to act. Instead, to provide flavor to the world, the
engine provides the ability to decorate the setting with text and graphics. In the text
version, each location has a contextual paragraph that the player reads when they
first arrive, which includes details about the setting and what the characters in it are
doing. The graphical representations of characters and locations also try to inject as
much life into the story as possible, with the artwork helping to provide life to the
different characters. A subplot where the sheriff is running to replace the current

25

mayor can be discovered by reading and paying attention to the campaign ads found
in the location graphics.

Another issue that we ran into while writing The Worm of Everhill was that the
player would unexpectedly die on the same step as moving to a new location. The
reason for this was that the player would travel to a location where the mindworm-
controlled NPC was. After the player’s step to move, Halberd would have the pos-
sessed NPC take its step, which was to kill the player. To fix this, we added a
targeting action; a human has to target another human before they can be killed.
This allows for some counterplay when the player arrives in the same location as the
mindworm-controlled human. If the mindworm-controlled human targets the player,
the player can quickly escape and try again.

26

5 Results

Our goal for this project was to explore the use of a planning algorithm as the
core of a game engine. Doing so would allow us to use planning to reduce author
workload when creating branching storyline games. To begin our project, we studied
the Glaive planner, and then designed the Halberd Engine that uses Glaive as its
main algorithm. During the creation of Halberd, we created The Worm of Everhill,
a game world that is specifically designed to use a planner in order to run. We have
learned a lot over the course of our work with Halberd and with The Worm of Everhill
with respect to story design and game design using a planner. This section discusses
how story design using a planner differs from conventional story design as well as the
feasibility of using a planner in a game setting. Finally, we playtested our game to
get some feedback on both how well our engine works and how well our story was
designed.

5.1 Story Design

While developing and working with the Halberd Engine, one of the goals we set for
ourselves was to develop strong practices for constructing interactive stories within
Halberd. Not only did these stories need to work within the technical boundaries of
the software itself, but they had to be interesting and compelling for the player. The
procedural nature of the story generation meant that an author would not be able to
pre-write every detail in the story, or the order in which the scenes would happen.
Player agency meant that the story would most likely deviate from the planner’s
initial plan. However, it was still important to have strategies that would give the
game developer or story author control over the feeling of their story, and to address
experience goals, story length, game endings, and story scope. Additionally, we felt it
was important to write meaningful and believable characters in order to get the player
truly invested in a story. This section describes some of the challenges encountered
while designing plan-based stories, and the ways that we adapted to these challenges.

5.1.1 Meaningful Characters

One issue we noticed in early development of The Worm of Everhill is that there is
a tendency to create one-dimensional characters when designing in a planning engine.
In the story’s logic files, the author of the story is only given one word to describe a
character, which will serve as a label for them. However, knowing more than a simple
label for these characters can often help make the world feel more real, even if very
little of the written background will actually make it into the game. Furthermore, this
character information can help with smaller, seemingly unrelated design decisions.

Originally, in The Worm of Everhill, each character was simply defined by a
profession, or a first name. This meant that playing through the game felt very dry,
and it was unlikely that the player would feel any attachment to the characters. In

27

an attempt to address this, we wrote out names, descriptions, and small pieces of
information, such as hobbies. We used this to both inform our placement of items,
and provide information to our artist to use as a reference. For example, when the
character Jill became Jill Mills, the young woman in her early twenties who aspires to
become a mechanical engineer, we realized that a logical place for the gasoline item
we already had in the game was at her house. In addition, this allowed our artist to
use this information to help with drawing, not only Jill, but also the Mills’ Household.

With regards to text rendering, we also used written character information to work
small details into the descriptions for text-variants and locations to make the world
feel more real. One example of this was the relationship between Mayor Ableton and
Sheriff Mills. We determined early in our world-building that there was a mayoral
election coming up, and that these two characters were competing for the position of
Mayor of Everhill. Therefore, in the text description for the Sherift’s Office, we show
the player that the front desk has several pins that have “Mills for Mayor” printed
on them. Similarly, when we provide the death description for Mayor Ableton, we
describe an “Ableton for Mayor” pin laying at his side, stained with blood. While
we do not explicitly state that there is a mayoral election in progress, these little
details can give the player the impression that they are interacting with a realistic
world, even if they do not get to see it all. This helps offset the lack of scripted events
and prose which are used to add characterization in more directly authored game
narratives.

5.1.2 Designing Goals

In a traditional PDDL architecture, the goal that the planner is planning for is
defined in the problem file. This is acceptable for a non-interactive plan and simple
interactive stories that move toward a single end-state, but we encountered some
problems with using this structure for our design. Having a single goal that the
planner was working to meet was technically acceptable, but the player was capable
of performing actions that prevented the planner from finding a valid path to that
goal. In such a case, the planner could no longer take any valid steps and the game
would end. This result would likely be both jarring and unsatisfying to the typical
player. While we could include multiple acceptable goals, this caused the planner to
take much longer to find a solution because it was searching for a valid path to each
goal. This, again, would likely be acceptable for non-interactive plan generation as
the planner would only need to run once and a player would not be waiting to take
an action, but was far from ideal for our purposes.

Our solution was to abstract the goal out of the problem and to create logic
for multiple goals in the domain. We did this by creating a single predicate, for
example “goal-achieved,” and having the goal defined in the problem simply be that
the predicate is active in the world. Then, in the problem, we created logic in multiple
axioms (one for each possible goal we wanted in the story) that would activate the

28

goal predicate under certain conditions. This allowed us to create numerous options
for acceptable end-states, and it also helped us avoid the story awkwardly ending
because the planner could not find a plan.

Another function of the Halberd Engine is to provide a concept of location that can
be checked before certain details are revealed to the player. This function introduces
the concept of having “on-stage” and “off-stage” actions. If a tree falls down in the
woods and the player’s character is off in the city somewhere playing an arcade game,
it does not necessarily make sense for the player to know it happened. This is an
optional feature, but we made use of it in The Worm of Everhill. Instead of informing
the player who the mindworm possesses and when it happens, and when and where
each person in the game is killed, these actions can happen off-stage and will only
be told to the player if the player’s character is in the same location at the time the
actions take place. This adds a sense of mystery to the game, allowing the player
to determine for themself that a possessed character is behaving strangely, or to find
the dead body of a character who was earlier killed off-stage. Unfortunately, this also
created a problem: if the goal of the story was reached by actions that took place
off-stage, the game would end and the player would not know why.

This problem highlighted an important aspect of the goal-authoring process for
these plan-based stories: if authors want to avoid the story concluding without their
knowledge, they need to include the player character as a necessary part of the goal.
For The Worm of Everhill, this meant that the goal for the mindworm should not
just be to travel around and kill all of the non-player characters in the town, but to
also hunt the player’s character. Another acceptable goal was for the player to kill
the mindworm, saving the town (or at least whatever was left of it). This particular
goal would not be something that the planner would plan towards, as the planner
could not take actions for the player, but it was important to recognize this goal if it
occurred so that the game could end appropriately.

5.1.3 Scope of Story

The scope of the stories we could create with our engine was an authorial concern
constrained by the limitations of the technology we were using. In terms of the
technical limitations, we were working within the time and memory constraints of
the computer we were playing the game on. Authorially, there was no limit to the
number of characters, predicates, items, locations, actions, axioms and goals that
we could include in the PDDLs. In theory, we could have crafted an epic tale with
thousands of characters that took place in many locations all around our fictional
game world. In practice, every addition to the PDDLs created extra logical relations,
actions and possible paths that the planner had to consider, and the higher the
number of additions, the slower the planner was to find a plan. As we needed to
replan after each action the player took, this was a constraint we had to take very
seriously. Another significant constraint was the computer’s memory. Some additions

29

or logic in the PDDL caused the planner to use more memory space and sometimes
even throw an error because it ran out of memory. Even if the player was willing to
wait for minutes at a time between each action, they would not be able to continue
playing the game if the system ran out of memory.

In a scenario where an author is working with an ideal computer that can always
find a plan instantly and has infinite memory space, there are still authorial consider-
ations to be made about scope. If an author of one of these plan-based stories decides
to use the on-stage, off-stage features that were discussed in the previous section,
then a very large world with many characters means that there is a very high prob-
ability that the player will not be where the most exciting actions are taking place.
In a story where the author has chosen not to filter information by location, a world
with many characters and many locations would mean that an equally large amount
of information about the world-state would need to be provided to the player either
through art or text. In general, both technically and authorially a better choice is to
keep the number of characters, locations, and items in a plan-based story to a low
number, if possible. For example, The Worm of Fverhill includes only ten characters,
eight items, and eight locations.

5.2 Runtime & Optimization

As our story grew in scope, the runtime of the Glaive algorithm grew. This forced
us to be thoughtful about the content included in our stories, and to examine possible
optimizations of the Glaive algorithm in the context of the Halberd Engine. We found
that there were two places in particular which were important to examine: the startup
phase of our story, and the time between actions, or search phase. The setup phase
is run once, at the start of the game, whereas the search stage is run each time the
player takes an action. In the startup phase, the majority of the runtime problem
came from creating the search space, that is, the set of all possible actions, predicates,
and characters. Once the game had already started, the wait-time between different
actions was a result of the search stage.

We decided to approach the search phase first, in order to reduce the wait time
between actions. On brief examination, we determined that approximately nine-
tenths of the runtime in this stage was being used to construct individual actors’
goal trees. Therefore, we explored the idea of storing these goal trees between runs.
However, with the state changed, the goal trees that the Glaive Planning Algorithm
created were no longer valid. This meant that the stored trees ended up not being
useful. This led us to our second approach: multithreading. When creating goal
trees for the individual agents, we noticed that each goal tree was being created
independently of the other goal trees. Therefore, we explored spinning off a thread to
generate the goal tree for each of the agents. If there are no actions which have more
than one agent, the threads are independent, making this approach a viable option.

In order to examine the runtime of the Halberd engine before and after our al-

30

gorithm modifications, we ran the Glaive algorithm on the initial planning problem
for The Worm of Fverhill, and measured the lengths of the setup phase and search
phase. We used four different versions of the algorithm: with and without our thread-
ing modifications, and with and without simplifying the state space before searching.
These benchmarks were run on a Windows 7 computer, with Java version 1.8.0, and
a 4-core processor. Figure 5.1 shows the average results from 100 runs of these tests.
In the unsimplified planning algorithm, the threading modifications provided a 66.4%
runtime decrease within the search phase for The Worm of Fverhill, while leaving the
setup phase relatively unaffected.

Average Runtime for Planning Algorithm Average Runtime for Planning Algorithm
with Simplified State Space without Simplified State Space
30 20 18.690
25.341 18
é _é 16
S 20 c
ot 16.187 9 12
< s 13.228 < 10
(] (]
€ g 8 6.560
= 10 =
€ € 6
> 5.444 =1 4 3.535 3.525
o 5 o
I [] .]
0 0
Unthreaded Threaded Unthreaded Threaded

W Setup Phase W Search Phase M Setup Phase MW Search Phase

Figure 5.1: Average runtime for two phases of the Glaive planning algorithm, with
and without threading in the goal tree construction process

Regarding the setup phase, we discovered an issue with delegation in narrative
plans. Delegation is a method of describing what happens when one actor tells another
actor to accomplish a goal for them. In Glaive, delegation expands the state space
significantly, increasing memory usage to the point that it was not feasible for use
in our game engine. Glaive uses a system of initially creating a fully detailed state
space that extends the domain file by creating all possible actions and predicates
from the set of objects in the problem. When delegation is included, this can create
an exponential explosion of the state space, as Glaive’s parsing algorithm does not
differentiate which objects can delegate, and which objects cannot. Furthermore,
Glaive does not differentiate which objects can be delegated to. This means that,
until it simplifies the world state, any object can delegate any predicate to any other
object. This gives it a O(n?m) space complexity, where n represents all objects, and
m represents all predicates. Because the predicates are also based on the number
of objects, this sort of brute-force delegation approach is not feasible for large-scale
game development within our engine.

31

5.3 Playtesting

In order to to evaluate the Halberd Engine and our game, The Worm of Fverhill,
we carried out formal playtests with WPI students. Our playtest methods, followed
by results, are explained in this chapter. Overall, each student was allotted a 30-
minute time period to play our game, while two members of our group observed and
took notes. After the player completed the game, they were surveyed to see how
much they enjoyed the game, and if they would play it again.

5.3.1 Methods for Playtesting

To begin, we emailed all Computer Science and Interactive Media and Game
Development students at WPI to inform them of our playtesting. The email included
a short description of our game and a schedule in which they could each sign up for
a 30-minute play session. We then followed the same steps, listed below, for each
participant:

1. The participant was given a consent form (See Appendix F), informing them of
why they were being playtested, and the risks and benefits of participating in
our playtest.

2. The participant was given a short introduction to our game (See Appendix G),
read aloud by one of the facilitators.

3. The participant was then allowed to play the game. During this playthrough,
the facilitators recorded the reactions of the participant while playing.

4. At the end of the playtest, the participant was given a survey with a series of
questions, which included how much they liked the game, what its strengths
and weaknesses were, and whether they would play it again. Our complete list
of survey questions can be found in Appendix H.

5.3.2 Results of Playtesting

Towards the end of our project, we carried out formative playtesting. The forma-
tive playtesting was during one of our beta versions of our game, and we had a total
of 10 playtesters. During this playtesting, we were able to discover any issues with
either our game or engine, and made fixes immediately. This section will discuss the
feedback received from the playtests.

To begin, our game was rated with a difficulty of intermediate to hard. One
participant mentioned “that you can die very easily” which is what we expected, but
participants took this as having to play more than once to keep learning about the
game. When asked whether the game consistently held their interest, the response of
our playtesters were generally positive. Figure 5.2 summarizes these responses.

32

M [nterested
® Partially Interested

= Not Interested

Figure 5.2: A graph showing participants’ self-reported interest during playtesting

Based on these responses, it is safe to say that many of the participants enjoyed
playing The Worm of Everhill, especially since many of them did actually play more
than once.

Besides difficulty, we also questioned the participants on how they would describe
our game. We were happy to see many participants described it as a horror-esque
text adventure game with graphics, because this was our original intention. One
participant even said “horror text adventure. It reminded me of X-Files”.

Finally, we asked how well the participants understood the user interface (UI)
of the game. Overall, our Ul was between easy and intermediate to understand, as
shown by the results in Figure 5.3.

33

Was the display of the game world or individual actions
understandable and easy to use?

UIIII
1 2 3 4 5

Difficulty to Use (1 is easiest, 6 is hardest)

%]

[

Responses
[

Number of Participant

6

Figure 5.3: Survey results about Ul understandability

The biggest issues with the UI that were pointed out to us were how we displayed
possible player actions, and the amount of text displayed. Many individuals said it
was too cluttered, so we organized the buttons into a scrollable section. We also
removed a portion the text displayed, giving the Ul a more organized and cleaner
look.

34

6 Future Work

There is considerable effort to be done in the field of planning before it reaches
the level of commercially authored branching storyline games. Further algorithmic
improvements to reduce runtime and space usage within planning systems will provide
the ability to create not only broader, more expansive worlds, but also longer stories.
With current hardware capabilities, we recommend further exploration into more
intentional agents within fewer locations. One of the weak points of The Worm
of Everhill was that there was a lack of intentional agents, the mindworm and its
possessed human being the only non-player characters acting within the game. Games
that take place within fewer locations, with lots of characters taking steps, lend
themselves to the strengths of planning more than a setting with few intentional
characters such as The Worm of Everhill.

There are also several algorithmic improvements that should be investigated in
regards to interactive planning specifically. One of the challenges with utilizing the
capabilities of the Glaive Narrative Planner in an interactive context was making use
of the simplified state space. A simplification algorithm developed specifically with
an interactive narrative system in mind could help reduce the loading time between
steps. Characters that need to act outside the bounds of their intentions could be
flagged, such that actions or predicates involving them would not be simplified away.
Furthermore, similar flags could help reduce the space complexity of delegation, not-
ing which characters can delegate, and which can be delegated to. This could provide
increased functionality to authors, giving them better tools to write complex worlds
for interactive planning.

35

7 Conclusion

Frequently, game designers will approach narrative in a similar way to linear
stories. However, because of the interactive nature of games, this approach is not very
effective. A tension called the “narrative paradox” exists between the author’s direct
control of a narrative and the player’s ability to influence that narrative. Various
systems and approaches have been developed in the past to generate narratives in
order to find a compromise between the two.

To explore planning as an approach to narrative generation, we developed the
Halberd Narrative Planning Engine. Halberd uses the Glaive narrative planner to
direct game narrative. Supported by other procedural content generation techniques,
Halberd provides a platform for procedurally generated, turn-based narrative games.
Our game, The Worm of Everhill, showcases the techniques used in this engine.

When authoring for a planning game engine, the authorship focus shifts from
defining narrative paths to defining more about the world and characters. By focusing
on creating a detailed world, authors can achieve the narrative development that more
linear engines might afford through scripted events. Furthermore, the definition of
end states allows the author to provide satisfying endings for the player of the game.

We have determined that planning currently provides the ability to create dynamic
short stories, with high replay value. Algorithmic improvements and greater investi-
gation into authoring approaches within a planning system will greatly improve the
quality of stories that can be generated. Within a planning engine, authors create
worlds rather than stories, and watch as the narrative is generated, coming to life
before their players’ eyes.

36

Supplement:
Authoring Games for the Halberd
Narrative Planning Engine

Richard Hayes

37

Abstract

This goal of this project was to create a game engine that facilitated the design
and authorship of interactive branching narratives in games, addressing the problem
of the heavy workload associated with these narratives. Additionally, this study looks
into the best practices for authoring a story using Halberd, highlighting the benefits
and constraints of the engine, and discussing the project team’s experience when
writing The Worm of Everhill: a planning-based horror game created with Halberd.

38

1 Introduction

There exists a desire among storytellers to welcome participation into a narrative:
to allow the audience to interact with a story and even change its outcome. We
see this from authors who write Choose Your Own Adventure books, from actors
and comedians who improvise on audience suggestions, and from game developers
who work to blend the act of play and storytelling into rule-based environments.
However, there seems to be difficulties that are intrinsic to this task, particularly
when improvisation is not an option.

One such difficulty is this: the more agency that an audience has in a story,
the more difficult it becomes to maintain a coherent narrative. This is known as
the narrative paradox’, and refers to the balance between the need of the author
to provide a satisfying story structure, and the need of the audience to interactively
affect the story and their experience. This is often seen as a scale (Aylett, 2000). On
one end of the scale, too much audience agency results in a narrative becoming more
of a conversation, a toy, or a simulation, depending on the medium. At the other end,
we have traditional literature, movies, plays, and other stories in which the text that
makes up the narrative remains the same each time they are told. It is possible to
balance this scale, but is the middle-ground between these two extremes a desirable
form of storytelling?

A second difficulty with incorporating audience agency into a narrative is the
branching problem. This problem arises when improvisation is not an option, such
as in written works and digital games. In these situations, the written text or code is
unable to simply make up a response to the audience the same way that an improvising
actor could. Every time that audience agency is introduced in these mediums, a
suitable response must be authored for every change the audience can make. If
the audience can choose to make one change out of two options, a story-path must
be authored to account for either choice. If the audience is again offered a similar
choice after the first one, an author must now account for four story-paths. The two
story-paths split into four after the second choice, and a third would split those four
into eight. This exponential increase in an author’s workload can quickly become
unmanageable.

These difficulties are what our team wanted to address with this project. As game
developers, we could not rely on human improvisation to address changes made by the
audience on these types of stories. However, we were unsatisfied by the storytelling
practices we saw in many games that simply acted as ways to avoid or work around
this issue, such as short story-paths that quickly ended a story, or decisions that would
only temporarily change the course of a narrative before returning to a single path.
We wanted our audience, the player, to truly be a part of the story, to make decisions
that had meaningful impacts on the narrative and not simply be tricked by the illusion
of choice. However, we also wanted the narrative goals of our stories and the dramatic
or emotional experiences that we design to remain intact, and we couldn’t simply put

39

in the time to manually author an exponentially increasing number of story-paths.

To address these needs, we developed the Halberd Narrative Planning Engine: a
game engine that uses planning software to facilitate the design and authorship of
interactive, branching narratives. Halberd was made to shift an author’s focus away
from painstakingly authoring an extra story-path for every choice that the player
makes, and towards story goals, character development and world building. Halberd
also blends player actions and story progression, dynamically re-planning a story’s
events to accommodate the player’s choices. In this paper, I discuss how the engine
accomplishes these tasks. I will also suggest the best practices for authoring a story
in this engine, while referring to some of the lessons my group learned when writing
our own game: The Worm of Everhill.

40

2 The Halberd Narrative Planning Engine

In this section, I will discuss some of the technical aspects of the Halberd Narrative
Planning Engine that provide context both for the project and for the authoring
techniques that will be discussed later in the chapter: Authoring Plan-Based Stories
for Halberd.

Halberd uses a technique called planning to generate story-paths on the fly, as the
player of a game makes choices that affect the game world. In order to best utilize
the engine and to make informed decisions when authoring a story for Halberd, it is
important to understand some of the technical context for this project, including the
benefits and constraints of the software.

2.1 Glaive and PDDL

As a starting point for the project, our team obtained permission to alter a pre-
existing planning software called Glaive, that was developed by Stephen Ware for his
dissertation work on automated narrative planning at the University of New Orleans.
What differentiates Glaive from a classical planner is its ability to construct a plan
based on intentionality. This means that a character can be written into an authored
world with some sort of intention or character goal, and Glaive will incorporate that
goal into its generated plan. This made the planner an attractive foundation for a
project focused on procedurally generating interactive narratives (Ware and Young,
2014).

Choosing Glaive as a starting point meant that authoring would require the use
of the Planning Domain Definition Language, or PDDL, which is a semi-standardized
planning language used in Artificial Intelligence. For discussion purposes, there are
several concepts related to PDDL that will be important to authoring stories. Firstly,
two PDDL files are used to generate a narrative: a domain file and a problem file.
In a domain file, the author specifies the types of things that will be in their world,
predicates that apply to those things, actions that can be taken, and axioms that
affect the world. By “types of things”, I am referring to categories that the elements
of the world fall under. For example, many stories include people, places and objects.
In a domain file, an author doesn’t get specific about who the people will be; they just
say that “people” will exist in this world. Instead of “people”, a fantasy story might
want to say that “humans”, “elves”, and “goblins” exist in the world. Predicates
essentially refer to adjectives that may apply to the things in the world: a place may
be dark, a person may be armed or hungry, or an object may be cold. Actions are what
the planner uses to generate plans. Examples of actions could include a character
moving from one place to another, two characters having a conversation, a character
picking up an item, or a character getting their hair cut. Finally, axioms are logical
rules for the authored world, usually to apply a predicate under some circumstance;
if a character is holding a weapon then they should be considered armed, or if a

41

character is in the same area as a monster then that character should be frightened.

The second PDDL file, the problem file, is a lot simpler. The problem is where the
author specifies the specific instances of the things that they defined in the domain.
For example, if the author stated in the domain that people exist in the world, the
problem would be where the author would say who the specific people are: “Mary
Jane”, “John Smith”, etc. Secondly, the author uses the problem file to define the
beginning state of the world. For example, John is at the coffee shop, Mary is at
the bus stop, John is hungry, etc. The problem is also where the author can specify
individual character goals, such as saying that John intends to get engaged to Mary,
and also a final goal for the story, such as “Mary and John are engaged and Mary got
her dream job.” The planner will take the initial world state from the problem file
and, using the actions and axioms from the domain file, generate a story-path from
that initial state to a state in which the goals are satisfied.

2.2 How Glaive Makes Choices

In order to generate story-paths from an initial state defined in the problem file
and actions and rules defined in the domain file, Glaive considers every possible story-
path that both succeeds at getting to the goal defined in the problem, and “makes
sense” from a planning standpoint. What I mean by “makes sense” here, is that a
story-path will not be considered if it includes a character acting against their own
intentional goals. Additionally, Glaive will not allow for circular logic. Technically, a
story-path would still get to the goal if a character picked up and put down a book
many times in a row before starting the sequence of actions that lead to the goal,
but as the number of times this happens could be expanded infinitely and does not
facilitate the advancement of the story, paths like this are not considered.

Not only will Glaive avoid paths where a character acts against their own inten-
tions, but it will attempt to satisfy character goals defined by these intentions while
generating a path to the story goal. When defining an action that characters can
take in the domain file, an author can specify one or more intentional agents for that
action, essentially stating that the characters involved in that action must consent
to the action in order for it to occur. Glaive uses these definitions to decide what
actions are possible for each character based on their intentions.

Finally, after examining all of the potential paths to take a story from the initial
state to the goal state, Glaive will always choose the shortest story-path available.
This is typically ideal for a planner to do, because a shorter path to a solution for a
technical problem is more efficient. However, this is potentially a weakness of using
a planner for narrative generation. The shortest possible story is not necessarily
the most satisfying. It was out of the scope for our project to change this aspect
of Glaive, but its presence meant that there were extra considerations to be made
when authoring a story for the Halberd Engine. These considerations are discussed
in the chapter: Authoring Plan-Based Stories for Halberd, under the section titled

42

“Conceptual Challenge: Rigidity.”

2.3 Displaying Text to the Player

PDDL uses a syntax that is made to be easily parsed by planning software. While
this syntax is human-readable, particularly to one who is comfortable with the lan-
guage, it is decidedly different from how we typically structure our sentences when
speaking or writing. The story-path output by Glaive is produced in a similar syntax.
This is ideal for the code in the software, but it presented a problem when it came
to authoring stories with Halberd: we wanted to present the text for the story in the
format that readers would expect to see.

The translation of the narrative text from PDDL representation to English sen-
tences was not too difficult in concept. If Halberd created a state where a character
named “Joe” was holding a cup of coffee, the PDDL representation would look some-
thing like: (holding joe coffee). Essentially what we wanted to do was to have
an English sentence prepared to use in place of that representation any time it was
encountered in a story-path. What we wanted to avoid, however, was recreating the
branching narrative problem where we would be manually writing a replacement sen-
tence for every possible combination of elements that the planner might give us in
PDDL form.

To address this issue, our team introduced a third file for the planner to use
alongside the domain and problems files: a text file written in the JavaScript Object
Notation (JSON). This file was where we would include manually written replace-
ment text as described above, but with an advantage that JSON provided to us:
the use of Java-style formatted strings. For our purposes, these formatted strings
gave us the ability to write fill-in-the-blank style sentences and fill in those blanks
programmatically. To go back to our example of (holding joe coffee), we could
manually author a single sentence for the predicate “holding” using format specifiers
that act as placeholders for the elements related to that predicate: “%1$s is holding
%2%s”. Halberd could then fill in those blanks to create the sentence “joe is holding
coffee.” Furthermore, the JSON file allowed us to provide aliases for elements in
the PDDL. While the PDDL uses the representation joe in its logic, we could use
the JSON to automatically replace joe with “Joe”, or perhaps “Joe Smith,” and
coffee with “a coffee mug.” This would result in Halberd translating the planning
output (holding joe coffee) into the English sentence “Joe Smith is holding a
coffee mug”. The best part about this solution is that if there was ever a time that
Mary, Tom, Angela or any number of other characters could be holding an object of
any sort, this same sentence structure could be used and the blanks would simply be
filled in with different terms.

While we believed that having the freedom of the formatted sentences described
above was very important for authoring a story with a narrative planner, we also
recognized the importance of allowing fine-grained and specific details in certain de-

43

scriptions. We discuss the authorial importance of this specificity in greater detail
in the chapter on Authoring Plan-Based Stories for Halberd, under the section titled
“Writing Your Story”, but I will provide an example here for context. Consider the
sentence “John gets married to Jane.” This is the type of sentence that our format-
ted strings could easily produce, and while it is a perfectly valid way of representing
the action of getting married, it is exactly the type of story event that could war-
rant a longer, more dramatic, and more personal description. The fill-in-the-blank
structures we offered created a foundation for presenting our stories, but did not offer
much in terms of achieving specificity.

In order to add specificity to our options for structuring sentences in Halberd,
we built another feature into our engine: keyword-specific sentences. In our JSON
file, we provided a method for an author to optionally specify sentences that would
be displayed if certain keywords were encountered. A fill-in-the-blank style sentence
would still be required in the JSON file, but Halberd would now perform a check for
any keyword-specific sentences and look to see if those keywords showed up in the
output. For example, if the output was (marry john jane) — which could produce
the English sentence “John gets married to Jane” — an author may have prepared
a sentence for the marriage action that was specific to the keyword john: “John
has been looking forward to getting married for his entire adult life, and couldn’t be
happier to have found his dream bride, Jane.” Halberd would recognize this keyword
and display the specific sentence instead of the basic one.

In addition to formatted strings and keyword-specific sentences, our team added
one other function for sentence structure to the Halberd Engine: randomized sentence
variants. This means that an author can provide more than one formatted string for
describing a single action, and Halberd will choose one of the strings randomly. The
need for this became apparent once we started to create and play narratives and found
that certain actions would occur many times in a single narrative. For example, in
a narrative with multiple locations and multiple characters, characters would often
move from place to place. With a single formatted string describing the move action,
we would see repetitive sentences such as “Mary walked to the store,” “Mark walked
to the office,” “Bill walked to the park,” “Jane walked to the airport,” etc. Rather
than simply repeating the formatted string “%1$s walked to %2$s” over and over,
our new addition allowed the engine to choose between that string and other variants
such as “%1$s ran to %2%$s,” “%i1$s strolled to %2%s,” “%1$s jogged to %2%s,” etc.
This didn’t provide any technical purpose, but it allowed us to optionally improve
the aesthetics of our game text by diversifying the action descriptions.

One final addition we made to the display options in Halberd was display-types.
Any predicate defined in the domain was allowed to be internal or external. If a
predicate was internal, the description for that predicate would only be displayed if
the predicate was associated with the player. For example, if Thungry’ was an internal
predicate, the player would only be informed if the player’s character was hungry, but
not if one of the other characters was hungry. If a predicate was external, it would

44

be displayed regardless of who it was associated with. Additionally, we introduced a
concept of on-stage and off-stage, where an author could choose whether the player
would be informed about actions that took place in a different location, or if they had
to be in the same area in order to witness it. The authorial benefits of this concept
will be discussed in the chapter on Authoring Plan-Based Stories for Halberd, under
the section titled “Creating Your World.”

2.4 Engine Limitations

Now that I have discussed some of the technical aspects of planning and high-
lighted the affordances of the Halberd Engine, it is important to understand its limi-
tations.

Halberd is limited by the hardware in the computer it is running on. This can be
said for most software, but the content limitations this imposes must be considered
when authoring a story using this engine. As previously explained, the Glaive plan-
ning algorithm that Halberd uses searches every possible story-path for the fastest
path that makes sense to the planner. This set of all possible paths can grow very
large, very quickly with the addition of extra characters, items, locations, actions,
predicates, and axioms in the PDDL files. This has two important implications for
the design process. Firstly, the larger the set of all possible paths becomes, the longer
it takes the planning algorithm to examine them all. As Halberd needs to re-plan the
narrative after each choice the player makes, this will mean that the player will need
to wait through longer loading-times between choices in stories with more elements.
Depending on the type of game and the experience that the game developer is trying
to create, this can become prohibitive. Secondly, a game that involves a very large
number of elements may even produce so many possible story-paths that the software
runs out of memory-space on the computer and shuts the game down.

Halberd is also limited by the software. This limitation is less severe, as the
code-base can be modified and expanded. However, in its current state, there are
considerations that an author should make. While PDDL can define certain logical
rules using axioms, there are certain types of rules that a planner is not well-suited
to define. For example, if an author wanted to limit the number of objects that a
character could pick up, there is no simple way to do this. This is true of many forms
of logic that involve keeping track of information such as numbers. This is easy to do
in the code that makes up Halberd and Glaive, but there is currently no channel or
method for communicating this information between the code and the PDDL files.

PDDL is also not well-suited for generating character dialogue. Some of the sen-
tence structure options that we discussed earlier could be used to embed rudimentary
character dialogue into a game, but that dialogue would remain the same every time
the associated element needed to be displayed, and it would not be an interactive
experience for the player. In its current state, Halberd is best-suited for relaying
information as if the story is being told by a narrator. However, it would be possible

45

to extend the engine to use a dialogue generation tool in a future project.

46

3 Authoring Plan-Based Stories for Halberd

In this section, I will address what it means to author plan-based branching narra-
tives, and discuss the implications of the technical features described in “The Halberd
Narrative Planning Engine” in an authorial context. We will also talk about the in-
teractive, iterative process involved with designing and writing games for Halberd.
We will suggest some of the best practices for authoring stories with this engine,
providing examples from the experience of creating our own story: The Worm of
Everhill.

3.1 The Worm of Everhall

The Worm of Everhill is the first fully-developed game created with the Halberd
Narrative Planning Engine. It is a horror-themed narrative that takes place in the
small town of Everhill, where a strange worm emerges and begins to control the
minds of the unsuspecting townspeople, to violent ends. The player of this game
takes control of an unnamed protagonist whose actions can change the course of
events in the story. The story itself is written to produce a sense of mystery and fear,
as the player is not informed of impending danger and is left to discover suspicious
behavior and victims of attacks, and to ultimately reveal the monster behind the
violence: the mindworm. Either that, or become a victim themselves.

The Worm of Ewverhill was developed using techniques that were derived both
from research on authoring practices in traditional media, and from the experiences
we had while working with Halberd. In the following sections, I will discuss these
techniques and refer back to The Worm of Everhill to reflect on the effectiveness of
their implementations.

3.2 Creating Your World

At the beginning of this chapter, I referred to the authoring process using Halberd
as an interactive, iterative process. To elaborate on what that means, I would like
to consider a quote from novelist Duana Swierczynski regarding the loose plotting
process he used when writing his crime novel, The Wheelman:

[The Wheelman] opened with a bank robbery gone wrong and just followed
the aftermath. I had a vague idea about where [the novel would] go, but
when I sat down to write each section, I allowed the story to be the boss.
It was great fun because I was discovering the story as I went along.
New characters would pop up and I'd be like, Oh, okay, you want to join
in? Sure. So what’s your story? The answer would often surprise me
(Swierczynski, n.d.).

47

This process that Swierczynski describes, of sitting in a scene and watching the
story play out and welcoming new ideas that present themselves, is exactly the inter-
activity that I am referring to. While Swierczynski’s process of plotting was abstract
and internal, it is very similar to the tangible experience that the Halberd Engine
offers to the author. Because the engine uses planning software, the narrative does
not require being written out before the program is run. This means that an author
can set up a world, or even just a scene, and take the role of the player by running the
game and experiencing how the story plays out. Our team did this regularly while
designing The Worm of Everhill. We would create a scenario, run the game, make
choices as the player, and watch as the planner responded in turn. In doing this, we
got a sense of what felt right, what felt wrong, what was missing, and what did and
didn’t happen the way we thought it would. This conversation between the author
and the game is the interactive element, and using the information we got from this
process to tweak and expand our story is the iterative element.

Approaching narrative authorship this way, we found that it’s better to start sim-
ple. Placing ourselves in a scene to get a sense of the pacing, what we liked and what
we didn’t, was much easier and less overwhelming when there were fewer elements to
consider: fewer characters and items to interact with, and fewer actions available to
us. It was easier to feel the absence of something than to interact with a complicated
or busy scene and figure out which part was negatively affecting our experience. The
Worm of Everhill features 9 characters besides the player, 8 locations, 8 items, and
nearly 20 actions defined in the PDDL, but until the late stages of its development,
the game was tested with smaller-scale scenarios and slowly built-upon using this
interactive, iterative process.

In addition to helping determine which PDDL defined elements you should add,
remove, or change in your game, interactively experiencing your story with Halberd
can also provide valuable insight into the effectiveness of your games goals. There
are two types of goals I am referring to here: experience goals, and planner goals.
Experience goals are part of the design process for anything an audience will interact
with. In a story, your experience goals for the reader may be for them to feel happy
or sad, to have learned a lesson, to have experienced something new, or in the case
of The Worm of Everhill, to feel a sensation such as fear.

As a tradeoff for using planner software to generate a narrative, an author must
give up some control over the sequence of events in their story, so it’s important to
consider experience goals that are not directly tied to events happening in a certain
order. In The Worm of Everhill, we wanted our story to build tension and suspense,
eventually reaching a climax, and ending in a resolution. This is a common flow
for traditional literature, but as we could not control what events happened at what
times, we took advantage of some of the technical features of the engine, described
in our chapter on The Halberd Narrative Planning Engine, and tested and tweaked
our game until it produced the feeling we were looking for. We used the concept
of on-stage and off-stage to produce mystery. As there were many locations in our

48

game and the player would only be informed of what was happening at their own
location, the mindworm would always possess some victim off-stage at the beginning
of the story, and there was a high likelihood that the first people to be killed by the
mindworm would be killed off-stage, leaving it up to the player to find the bodies and
attempt to discover who was responsible.

Because of the nature of the how the planner works, it is perfectly possible for
the mindworm or a possessed human to reveal themselves to the player early in
the game, or for the player to walk into a scene where a violent character quickly
attacks them before they get their bearings. While this doesn’t necessarily satisfy the
experience goals for our game, we did not consider this a failure. It would have been
possible for us to prevent this type of situation from occurring early in our game by
authoring additional rules or story goals into our PDDL files, but we found that it did
not typically detract from the experience of the game. In fact, when we playtested
The Worm of Everhill, our testers often considered such an unfortunate event as a
learning experience and were excited to restart the story with the new insight that
the experience gave them. It is important to consider that one motivation to use a
narrative planner for creating games is to allow for a great number of possible story-
paths, and some will inevitably be less ideal or less satisfying than others. However,
a story ending in a satisfying way is not the same as a story ending in an ideal way.

Janet Burroway, in her book Writing Fiction: A Guide To Narrative Craft, ex-
plains that a readers satisfaction with a story is not dependent on a happy story
ending in a happy way, or a sad story ending sad. Readers are open to being taken
on all sorts of adventures through dangers and horrors and disasters alike because
they know the story is fiction, and they know it will end (Burroway, 1992, pp. 41-42).
She suggests that the plot itself is what one must master to keep the reader turning
the page (Burroway, 1992, p. 37). Best-selling author James Patterson’s answer to
keeping the reader interested is to keep the story suspenseful. Readers want suspense,
and Patterson believes that lies in leaving questions that must be answered, and find-
ing the answer to those questions is the driving force that keeps the reader with you
(Berkowitz, 2014). It’s hard to give too much insight into how this would work in a
work in a plan-based narrative, as each story is different and certain questions may
be easier to present to the player than others. However, we believe that the mystery
created by the off-stage events in The Worm of Fverhill accomplished this well for a
horror setting. Experiencing the story interactively as an author, as well as playtest-
ing it with others, is a helpful way to gain insight into the effectiveness of your story
at motivating the player to keep playing.

The second type of goal that we mentioned was a planner goal. As it sounds,
this is the goal that the planner itself is planning toward. When described in the
chapter on The Halberd Narrative Planning Engine under the section “How Glaive
Makes Choices,” planner goals are treated as the authorial goal. For example, a
PDDL could set a goal for the planner to state that, at the end of the story, John and
Jane needed to be married. However, if the player was in control of one of these two

49

characters and also working toward that goal, the story may not be very interesting.
As a planner tries to find the quickest path to its goal, having the same goal as
the player causes everything to work in favor of the player’s actions, guiding them
quickly and easily to this planner goal. That could be fine, if that outcome matches
the experience that the author wanted the player to have, but it lacks what Burroway
calls the “first encountered and fundamental element of fiction”: conflict. According
to Burroway, “in literature, only trouble is interesting” (Burroway, 1992, p. 39). I
believe that this can be applied to narratives in games as well, so while authoring
The Worm of Everhill, steps were taken to ensure that conflict was authored into the
story. The following section will discuss how this can be done, and how it can be
enhanced by using Glaive’s ability to reason about character intentionality.

3.3 Conceptual Challenge: Conflict and Intentionality

At the end of the last section, we briefly mentioned writing goals for the planner
to plan toward, and how writing planner goals that are in-sync with player goals,
while perfectly valid, may not produce satisfying story results due to the lack of an
essential element: conflict. Conflict is a highly important element in fiction as it often
drives character development and serves as motivation for the reader to keep reading.
Conflict is also important in digital games, as similar rules for a satisfying narrative
apply to games, and the audience is predisposed to expect conflict as a formative
element of gameplay. Using Halberd, there are a several ways for an author to in-
troduce conflict into their game: planning against the player, and writing intentional
characters.

While designing a story for Halberd, it may be an author’s first instinct to set
the planner’s goal to whatever the goal of player is. For example, in The Worm
of Everhill, the town and townspeople would be in danger during the story and we
expected that the player would want to save them, so our initial thought was to have
Halberd plan toward a solution where the town and its people were safe. Halberd
could easily make a plan to get to this solution, but there was a problem: none of the
townspeople were ever put in danger. Halberd wouldn’t create the horrific scenario
that we wanted our players to experience, because putting the townspeople in danger
did nothing to accomplish the goal of the planner, which was to make everyone safe.

The solution to this problem that we found was to author the goal of the planner as
a conflict against the player. Since we expected that the player would want to save the
town and the people, we instead changed the goal of the planner to find some solution
where everyone in the town had been killed off, and the mindworm was victorious.
Suddenly, our story became interesting; the player was put into a scenario where the
mindworm was possessing townspeople and using them to kill other townspeople in
an attempt to satisfy the planner’s goal of having everyone dead. Now the player had
something to battle against. The story became a race against the clock to discover
the murders, reveal the monster, and get rid of it before it destroyed the entire town

50

or killed the player character directly. This one change to the goal of our story made
all of the difference.

Sometimes an author may not want the entire game world to plot against the
player, however, and Halberd provides a way to manage this as well. In addition to
writing planner goals, an author using Halberd can write character-specific goals by
using the feature of character intentionality. The Glaive Narrative Planner, which
Halberd extends, contains logic to reason about a character’s intentionality before
they take any actions. What this means is that the author can specify some intention
or goal for a character — for example, the mindworm intends to kill all of the towns-
people — and will only make a character take an action that makes sense in terms
of that intention or goal. This is a necessary feature to preserve the believability of
a character, as a planner trying to find the fastest solution to kill everyone in the
town might simply have each of the characters find a weapon and kill themselves,
rather than having the mindworm travel from place to place and do all of the work.
Luckily, as this solution does not make sense with the character goals of the non-
possessed characters, the planner will instead find the fastest plan that also satisfies
a character’s goals: in this case having the mindworm kill all of the townspeople.

Character intentionality can also be used as a tool to create conflict in a story.
If two characters have conflicting intentions, it is likely that a conflict will occur
over those intentions at some point in the story. A character can also be written to
have intentions that conflict with the expected player’s intentions. This can make the
game’s conflict feel more personal, and also avoid the issue of the entire world working
against the player that can occur when the planner goal contradicts the player’s goal.

3.4 Conceptual Challenge: Rigidity

Combinations of planner goals and character intentionality, as discussed in the
previous section, can greatly increase an author’s control over the player’s experience.
However, as we increase our knowledge of the ways in which we can control the
story, we should take a moment to recall the purpose of authoring these branching
narratives: to creative an interactive experience where a story can be generated in
many different ways to adapt to the player’s choices. While taking advantage of
these tools for controlling the player’s experience, an author should give some careful
thought to the rigidity of their story.

Let’s talk about what rigidity means in the context of an interactive game. This
comes back to the issue of the narrative paradox described in the Introduction: the
more control an author asserts over a game’s narrative, the less interactive it becomes.
While Halberd produces branching narratives to address this problem, it is possible
for an author using Halberd to force various degrees of control over the course of the
events in-game. For example, a game may be able to branch many times, but the
author can enforce heavy control by setting the only goal of the story to end in a
specific room that the player needs a key to get into. This means that no matter

51

what other actions the player takes along the course of the narrative, they will always
need to get that key and enter that room in that specific order, essentially folding all
possible branches of the story back in to a certain point. This type of control can be
helpful, but it can also be frustrating for a player, making them feel like they were
simply given the illusion of choice.

I will offer another example of this rigidity problem through a story that I wrote
during my preliminary experiments with PDDL that, in my opinion, failed to properly
address this challenge. The story was a simple spy narrative, drawing inspiration from
the gadget using agents in movies such as James Bond. In the story, a spy had to
infiltrate a building by sneaking past a guard, gain access to the mastermind’s office,
obtain a key code to a vault accessible from the lobby, enter the vault, steal the secret
plans, and finally escape. While simple and not terribly exciting, the structure of the
story was fine, but the problem lied in the fact that it really only ever played out in
one of two ways: either the spy would succeed in completing each of the objectives
listed above, or he would be caught and killed. While writing the story, I considered
the series of events that may occur during the plan and tried to control the progression
too heavily by using that lock-and-key structure discussed above. In this story, you
had to sneak past the guard to get to the mastermind’s office, you had to obtain the
key code before you could get into the vault, and you had to have the secret plans
before you could escape. The player may be able to mess around and try a couple of
different things, but ultimately they would need to do these specific actions in this
specific order to finish the story without the spy dying.

I would like to note, however, that rigidity is not something that needs to be
avoided entirely. In fact, it is difficult to avoid using some amount of this control and
still author a satisfying story. A narrative should be more rigid in places that are
more import to the story and the experience of the player. For example, if an author
felt that two characters needed to get married before the end of the story, they could
include this as part of the goal and Halberd would work to enforce it. If the author left
many elements of this marriage up to the planner, giving many options for proposal
locations, types of rings, wedding theme, which two characters were getting married,
etc., the occurrence of the event would be rigid, but the details would not. In The
Worm of FEwverhill, we enforce some rigidity by making a character need a weapon
before they can target anyone, and making them need to target someone before they
can kill that person. These extra steps can also help slow the pacing of the story a
bit, balancing the speed of a human player who might want to explore the world, and
the speed of the planner that is simply taking steps to reach its goal. Determining the
best balance of rigidity should be another part of the interactive, iterative experience
of working with Halberd.

92

3.5 Writing Your Story

In the sections above, we discussed some of the best authorial practices for taking
advantage of the planning features offered by Halberd. We talked about developing
the world, bit by bit, plotting conflict and character intentionality, and how to prop-
erly assert control over your narrative without sacrificing the player’s agency. What
we have not yet discussed is how to use the formatted strings, described in the section
on Displaying Text to the Player, to actually write the sentences that will make up
the story that is presented to the player. This section will not cover how to write a
good sentence, but instead focus on how to use the PDDL to English-sentence trans-
lation tools that Halberd has to offer, and how the different ways of authoring these
sentences can affect the story.

As a reminder, Halberd offers three types of sentence definitions: fill-in-the-blank,
keyword-specific, and random variants. The structure of one of these sentences can
be a powerful tool for affecting the player’s experience. Stanley Fish, in his book
How to Write a Sentence and How to Read One, claims that much of the power in
a sentence comes from its syntax; “It is syntax that gives the words the power to
relate to each other in a sequence ... to carry meaning — of whatever kind — as well
as glow individually in just the right place” (Fish, 2011, p. 8). “Joe jogged to the
house” has a very different feeling than “It was to the house that Joe jogged,” and
in our engine this is simply a matter of rearranging the basic sentence structure and
putting the keywords in different places.

The fill-in-the-blank style sentences are likely to be the most commonly used
structure in your generated narrative. These structures use one or more ’'blanks’ to
generalize the description of a predicate or an action and allow the planner to fill
in those blanks as necessary. The pick-up action in a story could, for example, be
represented by the structure picks up ;> which would allow for the
translation of any situation in which any character picked up any object. This is
a very simplistic example, but an author using this structure can write whatever
they want before, after, and between these blanks, or even rearrange the order of
the blanks themselves. This is why we can transform a sentence like “Joe jogged to
the house” into “It was to the house that Joe jogged.” It is also not required that
these structures are kept to a single sentence. An author could, if they desired, write
paragraphs to describe these actions. However, when elaborating heavily on an action
in the description, it can become difficult to allow the sentence to remain general to
any character, place, item, etc.

Sometimes generality does not meet the needs of an author, and a sentence may
require elaboration that would not be appropriate for anything simply filling in the
blanks. Janet Burroway, in her book Writing Fiction: A Guide To Narrative Craft,
emphasizes the importance of specificity. Burroway claims that an author, while
thinking in terms of the basic categories of a story and conflict, may get lost in the
idea that the events of a story take place in an abstract dimension. Man against
nature is one such abstract dimension, and is one of the basic conflicts found in

53

a story, but it doesn’t truly become interesting until man and nature are defined
and we are given the specifics of the situation to empathize with (Burroway, 1992,
p. 41). This concept is highly relevant to the nature of the plan-based narratives we
were creating. The fill-in-the-blank structures Halberd offers create a foundation for
presenting our stories, but do not offer much in terms of specificity. For example, if
there was an action to hack a computer, rather than plainly stating “Mary hacked
the computer,” an author might want to say something like “Mary was a local legend
when it came to hacking into computer systems, and she gained full access to the
network within seconds.” However, if the only blank in this sentence was for the
character, we could run into undesirable situations in the narrative. For example,
if Henry were to be the one hacking, we might not want to say “Henry was a local
legend when it came to hacking into computer systems, and she gained full access
to the network within seconds.” First off, the pronoun ‘she’ may not be appropriate
for Henry, and secondly we probably don’t want every single character who hacks a
computer in the narrative to be a local legend.

To address this, we extended the use of the generalized formatted strings, offering
an optional feature to recognize a keyword that is filling in one of the blanks. For
example, an author could write a specific sentence that the program would choose
to display if it recognized the keyword “Mary,” but if the program didn’t find that
keyword, it would default to the generic fill-in-the-blank method. For example “Henry
hacked the computer.” These optional, keyword-specific sentences should be used
sparingly or one may find themselves again running into the narrative paradox, writing
a sentence for every possible combination of characters, actions and objects. Used
responsibly, the allowance of this kind of control gives the author the ability to insert
more detail and perhaps create deeper points of storytelling.

It is important to note that, while an author may have the time to write a long
and specific sentence about every action in their story, it may not always be beneficial
to do so. In our plan-based system, the author has to give up some control over the
order of the events in a narrative and, as such, cannot know exactly what will be
happening when the player is presented with the information about any given world-
state. In an interview, author James Patterson offers an anecdote about writing the
way that he would verbally tell a story:

I think what hooks people into my stories is the pace. I try to leave out
the parts people skip. I used to live across the street from Alexander Haig,
and if T told you a story that I went out to get the paper and Haig was
laying in the driveway, and then I went on for 20 minutes describing the
architecture on the street and the way the palm trees were, you’d feel like
“Stop with the description—what’s going on with Haig?”

Halberd will, in fact, describe everything that is in an area to the player if there
is a description available. By utilizing the presentation methods we have discussed,
an author has some control over this. Typically, the short, cookie-cutter sentences

o4

like “a chair is in the living room” will not take too much time to read and can be
easily ignored if there is something more interesting that the player wants to pay
attention to. However, if an author decides to write a paragraph to describe that
chair, focusing on all of the little scuffs on the pattern or the pocket-change between
the seat cushions, it will be harder for the player to move past that chair and onto a
more interesting focus. Now, consider that the chair may just be one of ten items in
a room that are each described in such excruciating detail; the story would end up
resembling Patterson’s twenty-minute tangent about his neighborhood. To avoid this,
the author of a plan-based story should keep most descriptions of items and events
short, elaborating only on points of drama or interest: events that are critical to the
story that the author wants to tell, or that the author would like to emphasize. In
many stories, the action of one character killing another character would be a greater
point of interest than a character making a sandwich.

55

4 Conclusion

I would like to take a moment to reflect on The Halberd Narrative Planning
Engine. The goal of this project was to address the narrative paradox and to present
a solution to the large branching problem in interactive narratives. In many ways,
I feel that Halberd accomplished this. The engine allows for an author to define a
world, rules, and goals, and handles the planning of the many story-branches itself.
The design process of these authored worlds does require the author to work within
constraints that are not found in traditional media, but the trade-off in labor can be
well worth it as the planner will be able to quickly generate paths that would take
considerable effort to manually write. Additionally, while the author has to give up
some control over the sequence of events in a story, Halberds tools for asserting control
and imparting conflict into the story as part of its planning process, successfully blend
player agency and story events in a way that is not seen in other forms of storytelling
in games.

Halberd’s greatest weaknesses come from its dependency on the computer that it
is running on. The high complexity of the planning algorithm used in Halberd means
that complex stories take a long time to re-plan between the player’s actions, and this
can quickly become prohibitively long. In addition, depending on the hardware, there
is a complexity threshold past which Halberd will run out of memory and stop the
program from running. Luckily, these limitations will be minimized as technology
continues to improve over the years to come, and plan-based story generation will
become much more feasible for complex narratives. Because of this, planning software
may play a large role not only in the design of games in the future, but in the
authorship of interactive storytelling as a whole.

Halberd extends the narrative planning work found in Stephen Ware’s Glaive by
taking the concept of planning into a dynamic context, helping an author to incor-
porate player agency directly into the events of a story by procedurally adapting the
narrative to the player’s actions. This context provides a new avenue for storytelling,
both for game developers and authors, and takes a step toward solving the narrative
paradox that plagues interactive storytelling. Planning-based games could potentially
create a whole new level of audience immersion, allowing players to have their actions
truly impact the digital world. As more advanced technology expands their capabil-
ities, I am excited to see where engines like Halberd will take the field of interactive
media.

56

References

Aylett, R. (2000). Emergent narrative, social immersion and “storification”. In Pro-
ceedings of the 1st international workshop on narrative and interactive learning
environments (pp. 35—44).

Barber, H. & Kudenko, D. (2007). Dynamic generation of dilemma-based interactive
narratives. AIIDE, 7, 2-7.

Bell, I. (n.d.). Ian bell’s elite pages. Retrieved April 10, 2017, from http://www.
iancgbell.clara.net /elite/

Berkowitz, J. (2014, April). World’s best-selling author james patterson on how to
write an unputdownable story. Retrieved April 1, 2017, from https://www.
fastcompany. com /3029052 / worlds- best- selling- author- james- patterson- on-
how-to-write-an-unputdownable-story

Burroway, J. (1992). Writing fiction: a guide to narrative craft (3rd). HarperCollins.

Dehn, N. (1981). Story generation after TALE-SPIN. In Ijcai (Vol. 81, pp. 16-18).

Fikes, R. E. & Nilsson, N. J. (1971). STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4), 189-208.

Fish, S. (2011). How to write a sentence and how to read one. HarperCollins.

Hoffmann, J. & Nebel, B. (2001). The FF planning system: fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14, 253—
302.

Karlsson, B., Ciarlini, A., Feijé, B., & Furtado, A. (2006). Applying a plan-recognition
/ plan-generation paradigm to interactive storytelling: the LOGTELL case
study. Monografias em Ciéncia da Computagao Series.

Mateas, M. & Stern, A. (2003). Facade: an experiment in building a fully-realized
interactive drama. In Game developers conference (Vol. 2).

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., ...
Wilkins, D. (1998). PDDL - the planning domain definition language.

Meehan, J. R. (1977). TALE-SPIN, an interactive program that writes stories. In
IJCAI (Vol. 77, pp. 91-98).

Montfort, N. (2005). Twisty little passages: an approach to interactive fiction. MIT
Press.

The Epic of Gilgamesh: The First Epic, from The First Civilization. (n.d.). Retrieved
March 17, 2017, from http://webpages.uidaho.edu/engl257 / Ancient /epic_of -
gilgamesh.htm

Riedl, M. O. & Young, R. M. (2010). Narrative planning: balancing plot and character.
Journal of Artificial Intelligence Research.

Swierczynski, D. (n.d.). Tumbling down a hill in a house that is on fire. Retrieved
from http://www.centerforfiction.org/forwriters/writers-on-writing /tumbling-
down-a-hill-in-a-house-that-is-on-fire/

57

http://www.iancgbell.clara.net/elite/
http://www.iancgbell.clara.net/elite/
https://www.fastcompany.com/3029052/worlds-best-selling-author-james-patterson-on-how-to-write-an-unputdownable-story
https://www.fastcompany.com/3029052/worlds-best-selling-author-james-patterson-on-how-to-write-an-unputdownable-story
https://www.fastcompany.com/3029052/worlds-best-selling-author-james-patterson-on-how-to-write-an-unputdownable-story
http://webpages.uidaho.edu/engl257/Ancient/epic_of_gilgamesh.htm
http://webpages.uidaho.edu/engl257/Ancient/epic_of_gilgamesh.htm
http://www.centerforfiction.org/forwriters/writers-on-writing/tumbling-down-a-hill-in-a-house-that-is-on-fire/
http://www.centerforfiction.org/forwriters/writers-on-writing/tumbling-down-a-hill-in-a-house-that-is-on-fire/

Togelius, J., Shaker, N.; & Nelson, M. J. (2016). Introduction. In N. Shaker, J. To-
gelius, & M. J. Nelson (Eds.), Procedural content generation in games: a textbook
and an overview of current research (pp. 1-15). Springer.

Toy, M. C. & Arnold, K. C. (2012). A guide to the Dungeons of Doom. Computer
Systems Research Group. University of California, Berkeley. Nd Web, 9.
Ware, S. G. & Young, R. M. (2011). CPOCL: a narrative planner supporting conflict.
In Seventh artificial intelligence and interactive digital entertainment confer-

ence.

Ware, S. G. & Young, R. M. (2014). Glaive: a state-space narrative planner supporting
intentionality and conflict. In Auide.

Young, R. M. (1999). Notes on the use of plan structures in the creation of interactive
plot. In AAAI fall symposium on narrative intelligence (pp. 164-167).

Young, R. M., Riedl, M. O., Branly, M., Jhala, A., Martin, R., & Saretto, C. (2004).
An architecture for integrating plan-based behavior generation with interactive
game environments. Journal of Game Development, 1(1), 51-70.

Young, R. M., Ware, S. G., Cassell, B. A., & Robertson, J. (2013). Plans and planning
in narrative generation: a review of plan-based approaches to the generation of
story, discourse and interactivity in narratives. Sprache und Datenverarbeitung,
Special Issue on Formal and Computational Models of Narrative, 37(1-2), 41—
64.

58

Appendices

A PDDL Domain File for The Worm of Everh:ill

(define (domain horror)
(:requirements :adl :domain-axioms :intentionality)
(:types entity immovable - object

actor item - entity

human mindworm - actor

player npc - human

place meta - immovable

weapon tool combustible restraint igniter - item
number)

(:predicates (dead 7entity - entity)

(at 7entity - entity ?place - place)

(armed 7human - human)

(has 7human - human ?7item - item)

(controlling ?mindworm - mindworm 7human -
human)

(possessing ?mindworm - mindworm)

(possessed 7actor - actor)

(suspicious 7human - human)

(doused 7actor - actor)

(scorched 7actor - actor)

(targeting 7attacker - human 7attacked -
human)

(goal-achieved ?meta - meta)

(destroyed-town ?mindworm - mindworm)

(saved-town ?7player - player)

(free ?mindworm - mindworm)

(bound 7human)

(emerged ?mindworm - mindworm))

;; A human moves from one place to an adjacent place.
(:action move
:parameters (?actor - actor 7from - place ?to -
place)
:precondition (and (not (= 7from 7to))
(not (dead 7actor))

59

(at ?actor ?from))

effect (and (not (at ?actor ?from))
(at 7actor 7to))
ragents (7actor))

;; An attacking human targets a victim for attack
(:action target-human
:parameters (?attacker - human ?victim - human ?
weapon - weapon 7place - place)
:precondition (and (not (dead 7attacker))
(not (dead ?victim))
(at 7attacker 7place)
(at ?victim 7?place)
(has 7attacker ?weapon)
(not (= 7attacker ?victim)))
reffect (targeting 7attacker ?victim)
ragents (?7attacker))

An armed human kills another human that is in the
same area
(raction kill
:parameters (?killer - human ?victim - human ?place
- place 7weapon - weapon)
:precondition (and (not (dead ?killer))
(not (dead ?victim))
(targeting ?7killer ?7victim)
(not (= 7killer ?victim))
(at ?killer 7place)
(at ?victim ?place)
(not (possessed ?victim))
(has ?7killer 7weapon))

P

reffect (and (dead ?victim)
(not (targeting ?7killer ?victim)))
:agents (?killer))

An armed human kills a possessed npc that is in the

same area

(raction kill-possessed-human

:parameters (?killer - human ?victim - npc ?mindworm
- mindworm ?7place - place 7weapon - weapon)

:precondition (and (not (dead 7killer))

)

60

(not (dead ?victim))
(targeting ?7killer 7victim)
(controlling ?mindworm ?victim)
(not (= 7killer ?victim))
(at ?killer 7place)
(at ?victim ?7place)
(has ?killer 7weapon))
reffect (and (dead ?victim)
(not (targeting ?7killer ?victim))
(not (free ?mindworm))
(intends ?mindworm (free ?mindworm)))
ragents (?killer))

;; An armed human kills themself
(:raction kill-self
:parameters (?npc - npc 7weapon - weapon)
:precondition (and (not (dead ?npc))
(has ?npc ?weapon))
reffect (dead 7npc)
ragents (?npc))

;; A possessed human takes an item from a dead victim.
(:action loot-body
:parameters (?taker - human ?victim - human ?7item -
item 7place - place)
:precondition (and (not (dead 7taker))
(not (= 7taker ?victim))
(dead ?victim)
(at ?victim 7place)
(at ?taker 7place)
(possessed 7taker)
(has ?victim ?item))

effect (and (not (has ?victim ?item))
(has 7taker 7item))
ragents (?taker))

;5 The player takes an item from a dead victim.
(:action player-loot-body
:parameters (?taker - player ?7victim - human 7item -

61

item 7place - place)
:precondition (and (not (dead 7taker))
(not (= ?taker ?victim))
(dead ?victim)
(at ?victim 7place)
(at ?taker 7place)
(has ?victim ?7item))

:effect (and (not (has ?victim 7item))
(has 7taker 7item))
ragents (?taker))

;5 The player picks up an item located at the place they
’re currently at
(:raction player-pickup
:parameters (?taker - player 7item - item 7?place -
place)
:precondition (and (not (has 7taker 7item))
(not (dead ?taker))
(at 7item ?7place)
(at ?taker ?7place))

reffect (and (has 7?taker 7item)
(not (at ?item 7place)))
ragents (?taker))

;5 A possessed human picks up an item located at the
place they’re currently at
(:raction pickup
:parameters (?7taker - human 7item - item 7place -
place)
:precondition (and (not (has 7taker 7item))
(not (dead 7taker))
(possessed 7taker)
(at 7item 7place)
(at ?taker ?place))

reffect (and (has 7?taker 7item)
(not (at 7item 7place)))
ragents (?taker))

;5 A human puts down an item at the place they’re
currently at

62

(:action putdown
:parameters (?dropper - human ?7item - item ?place -
place)
:precondition (and (has ?dropper 7item)
(not (dead 7dropper))
(at ?dropper 7place))

reffect (and (not (has ?7dropper 7item))
(at 7item 7place))
ragents (?dropper))

;; A human douses a target in a combustible substance
(:action douse-person
:parameters (?douser - human ?victim - actor 7
combustible - combustible ?place - place)
:precondition (and (has 7?douser 7combustible)
(not (dead 7douser))
(at 7?douser 7place)
(at ?victim ?place))
reffect (doused ?victim)
ragents (?douser))

;5 A human with an igniter ignites a doused target
(:action ignite
:parameters (?killer - human 7victim - actor 7place
- place 7igniter - igniter)
:precondition (and (not (dead 7killer))
(at ?killer 7place)
(at ?victim ?place)
(doused ?victim)
(has ?7killer 7igniter)
(not (possessed ?victim)))

:effect (and (dead ?victim)
(scorched ?victim))
tagents (?killer))

;5 A human with an igniter ignites a doused possessed

target
(:raction ignite-possessed
:parameters (?killer - human ?victim - human ?

63

mindworm - mindworm 7place - place 7igniter -
igniter)
:precondition (and (not (dead 7killer))
(at 7?killer 7?place)
(at ?victim 7place)
(controlling ?mindworm ?victim)
(doused 7?victim)
(has 7killer 7igniter))
reffect (and (dead ?victim)
(scorched ?victim)
(dead ?mindworm))
ragents (?killer))

;5 A mindworm possesses a non-player-human
(:action possess-human
:parameters (?mindworm - mindworm 7human - npc 7
place - place)
:precondition (and (not (dead ?mindworm))
(not (dead 7human))
(not (bound ?human))
(not (possessed 7human))
(not (possessing ?mindworm))
(at ?mindworm ?7place)
(at 7human ?7place))
reffect (and (not (at ?mindworm 7place))
(controlling ?mindworm ?7human)
(possessed 7human)
(possessing ?mindworm)
(intends ?7human (destroyed-town 7
mindworm))
(intends ?human (armed 7human)))
ragents (?mindworm))

;5 A mindworm leaves a possessed non-player -human
(:action leave-possessed-human
:parameters (?mindworm - mindworm 7human - npc 7
place - place)
:precondition (and (not (dead ?mindworm))
(possessed 7human)
(controlling ?mindworm ?7human)

64

)

P

effect (and
)

(at 7human ?place))
(not (controlling ?mindworm 7human)

(not (possessed 7human))

(not (possessing 7mindworm))

(at ?mindworm 7place)

(free ?mindworm)

(not (intends 7human (destroyed-
town ?mindworm)))

(not (intends 7human (armed 7human)
))

(intends ?mindworm (possessing 7
mindworm)))

ragents (?mindworm))

The player talks to a non-possessed human
(:raction talk-to-human
:parameters (?7talker - player 7listener - human 7

place - place)
:precondition (and

:effect (not

(at ?talker 7place)

(at 7?listener 7place)

(not (= 7talker 7listener))
(not (dead ?talker))

(not (dead 7listener))

(not (possessed 7listener)))
(suspicious 7listener))

ragents (?talker))

The player talks to a possessed human
(:raction talk-to-possessed-human
:parameters (?talker - player 7listener - human 7

place - place)
:precondition (and

(at 7talker 7?place)

(at ?listener ?place)

(not (= 7talker 7listener))
(not (dead ?7talker))

(not (dead 7listener))
(possessed 7listener))

ceffect (suspicious ?7listener)
ragents (?talker))

65

;; A human binds an npc using a restraint item

(:action bind
:parameters

reffect

agents

(?binder - human ?victim - npc 7
restraint - restraint ?place - place)
:precondition (and (at ?binder ?place)

(and

(at ?victim 7place)

(not (dead ?binder))

(not (dead ?victim))

(not (bound ?victim))

(not (possessed ?victim))

(has ?binder ?restraint)

(not (= ?binder ?victim)))
(not (has 7?binder ?restraint))
(bound ?victim))

(?binder))

;5 A human binds a possessed npc using a restraint item

(raction bind-possessed-human

(?binder - human ?victim - npc ?mindworm
- mindworm ?7restraint - restraint ?place - place)

:precondition (and (at 7?binder 7?place)

:parameters

ceffect

(and

(at ?victim ?7place)

(not (dead ?binder))

(not (dead ?victim))

(not (bound ?victim))

(controlling ?mindworm ?victim)

(has ?binder 7restraint)

(not (= 7?binder ?victim)))

(not (has 7binder ?restraint))

(bound “?victim)

(not (controlling ?mindworm ?victim
))

(not (possessed ?victim))

(not (possessing 7mindworm))

(at ?mindworm 7place)

(free ?mindworm)

(not (intends 7?7victim (destroyed-
town ?mindworm)))

(not (intends ?victim (armed 7
victim)))

(intends ?mindworm (possessing 7

66

mindworm)))
ragents (?binder))

;5 A mindworm emerges...
(:action emerge

:parameters (?mindworm - mindworm 7place - place)
:precondition (not (emerged 7mindworm))
reffect (and (emerged 7mindworm)
(at ?mindworm 7place))
ragents (?mindworm))
e il AXIOMS ----------

;; When a human has a weapon, they are armed
(:axiom

:vars (?7human - human)
:context (and (not (armed 7human))
(exists (7w - weapon)

(has ?7human ?w)))
:implies (armed 7human))

;; When a human has no weapon, they are not armed
(:axiom

:vars (?human - human)
:context (and (armed 7human)
(forall (?w - weapon)

(not (has 7human ?7w))))
:implies (not (armed ?human)))

;; When an attackers target is not in the same place as
the attacker, the attacker stops targeting them
(:axiom
:vars (?7attacker - npc 7target - npc ?place - place
)
:context (and (targeting 7attacker 7?target)
(at 7attacker 7place)
(not (at ?target 7place)))
:implies (not (targeting 7attacker 7target)))

67

(:axiom
:vars
:context

:implies

(:axiom
:vars
:context

:implies

(:axiom
:vars
:context

:implies

(axiom
:vars
:context
:implies

(?mindworm - mindworm)
(forall (?h - human)
(dead ?h))

(destroyed-town ?mindworm))

(?player - player)

(forall (?m - mindworm)
(dead 7m))

(saved-town ?player))

(?meta - meta 7mindworm - mindworm)

(and (destroyed-town ?mindworm)
(free ?mindworm))

(goal-achieved ?meta))

(?meta - meta ?player - player)
(saved-town 7player)
(goal-achieved ?meta))

68

B PDDL Problem File for The Worm of Everhall

(define (problem horror)
(:domain horror)
(:objects player - player

meta - meta
groundskeeper sheriff mayor farmer citizen-one
citizen-two doctor storeowner - npc
mindworm - mindworm
general -—store town-hall home sheriff-office
house-one house-two hospital farm - place
knife gun pitchfork - weapon
gasoline alcohol - combustible
handcuffs duct-tape - restraint
food - consumable
lighter - igniter)
(:init
(at sheriff sheriff-office)
(at player home)
(at groundskeeper hospital)
(at mayor town-hall)
(at farmer farm)
(at citizen-one house-one)
(at citizen-two house-two)
(at doctor hospital)
(at storeowner general-store)
(at knife house-one)
(at pitchfork farm)
(at gun home)
(at gasoline general-store)
(at handcuffs sheriff-office)
(at duct-tape house-one)
(at lighter house-one)
(at alcohol house-two)
(free mindworm)
(intends mindworm (possessing mindworm))
(intends meta (goal-achieved meta)))
(:goal

(goal-achieved meta)))

69

C Text Decoration File for The Worm of Everh:ll

{
"actions": [

{
"name": "wait",
"description": "%1$s waits",
"command": "wait",
"type": "other"

},

{
"name": "move",
"description": [

"%1$%s moves to %3$s",
"%1$s travels to %3%s",
"%1$s jogs to %3$s",
"%1$s walks to %3%s",
"%1$%s runs to %3%s"

1,
"command": "move to %3$s",
"type": "move",
"variant -—argument" : 1,
"variants" : [
{
"key" : "mindworm",
"description" : "%1$s quickly crawls off towards
5h38s",
"command" : "move to %3$s"
}
]
+,
{
"name": "target-human",
"description": "%18$s approaches %2$s menacingly",
"command": "approach %2$s menacingly",
"type": "other",
"variant -—argument" : 3,
"variants" : [
{
"key" : "gun",
"description" : "%1$s lines up a shot towards %2
$s",

70

-]

"command" : "aim at %2$s"

1,
{
"key" : "pitchfork",
"description" : "%1$s approaches %2$s menacingly
, pitchfork held high",
"command" : "approach %2%$s, pitchfork raised"
}
]
"name": "kill",
"description": "%1$s kills %2%s with %4$s",
"command": "kill %2$s with %4$s",
"type": "other"
"name": "kill-possessed-human",
"description": "%1$s kills %2%$s with %5%s",
"command": "kill %2$s with %53%s",
"type": "other"
"name": "kill-self",
"description": "%18$s commits suicide with %2$s",
"command": "commit suicide with %2$s",
"type": "other"
"name": "loot-body",
"description": "%18$s loots %3$s from %2$s’s body",
"command": "loot %3$%$s from %2%$s’s body",
"type": "other"
"name": "player-loot-body",
"description": "%18$s loots %3$s from %2$s’s body",
"command": "loot %3$s from %2$s’s body",
"type": "other"
"name": "player-pickup",

71

-

"description": "%1$s picks up %2$s",

"command": "pick up %2$s",

"type": "other"

"name": "pickup",

"description": "%1$s picks up %2$s",

"command": "pick up %2$s",

"type": "other"

"name": "putdown',

"description": "%1$s puts down %2$s",

"command": "put down %2$s",

"type": "other"

"name": "douse-person'",

"description": "%1$s douses %2$s in %3$s",

"command": "douse %2%$s with %3$s",

"type": "other"

"name": "ignite",

"description": "%18$s lights %28%s on fire with %48$s",

"command": "light %2$s on fire with %4$s",

"type": "other"

"name": "ignite-possessed",

"description": "%18$s lights %28%s on fire with %58%s",

"command": "light %2$s on fire with %5%s",

"type": "other"

"name": "possess-human",

"description": "%1$s enters %2$%s through the ear
canal",

"command": "enter %2$s through the ear canal",

"type": "other"

72

"name": "leave-possessed-human",

"description": "%1$s erupts from %2%s’s nostril",
"command": "erupt from %2$s nostril",
"type": "other"
1,
{
"name": "talk-to-human'",
"description": "%1$s has a pleasant conversation
with %2%s",
"command": "Talk to %2$s",
"type": "other"
},
{
"name": "talk-to-possessed-human',
"description": "%18$s tries to start a conversation
with %2$s, but %2$s remains eerily silent",
"command": "Talk to %2$s",
"type": "other"
+,
{
"name": "bind",
"description": "%1$s restrains %2$s using the %33%s",
"command": "Restrain %2$s with %3$s",
"type'": "other"
1,
{
"name": "bind-possessed-human",
"description": "%1$s restrains %2$s using the %4$s,
and a worm erupts from %2$s’s nostril",
"command": "Restrain %2%$s with %4$s",
"type": "other"
1,
{
"name": "emerge",
"description": "%1$s emerges into %2%s",
"command": "Emerge",
"type": "other"
}
1,
"predicates": [
{
"name": "dead",

73

"description": "%18$s is dead",

"type": "extermal",
"variant -argument" : 1,
"variants" : [
{
"key" : "player",
"description" : "You are left laying in a pool

-

of your own blood. Flies begin to surround
your fresh wounds as a metallic odor tinges
the air, and your body lies cold and
motionless"

"key" : "groundskeeper',

"description" : "%1$s lies lifeless on the
ground. She looks sad but strangely peaceful,
her colorful dress drenched in blood"

llkeyll : llmayorll,
"description" : "%1$s’s body lays in a heap. A
campaign pin, \"Ableton for mayor\", lies at

his side, stained with blood"

"key" : "farmer",

"description" : "%1$s is dead, but his eyes
remain open. His hand is twisted, almost
strained, as if grasping for something"

"key" : "citizen-one",

"description" : "%1$s is dead, one hand
clutching his chest, the other reaching out
for something or someone. He was not ready to

goll
"key" : "citizen-two",
"description" : "%1$s’s body is soaked in blood,

laying still and breathless on the ground.
She had put up a fight"

74

-

{

"key" : "doctor",

"description" : "%1$s lays dead on the ground,
blood pooling around him. His teeth are bared

in a grimace"
3,
{

"key" : "storeowner'",

"description" : "%1$s’s body lays quiet. She is
dead. She was the oldest person in town, but
she couldn’t survive this day"

}
]
"name": "at",
"description": [
"%1$s is at %2$s"
1,
"type": "locational"
"name": "armed",
"description": "%1$s is armed",
"type": "extermnal"
"name": "has",
"description": "%1$s has %2%s",
"type": "extermnal"
"name": "controlling",
"description": "%1$s is controlling %2%$s",
"type": "intermnal"
"name": "possessed",
"description": "%1$s is possessed",
"type": "internal"

1)

-

-

"name": "possessing',

"description": "%1$s is possessing a human",

"type": "internal"

"name": "suspicious',

"description": "%18$s is acting suspiciously",

"type": "extermnal"

"name": "doused",

"description": "%1$s is doused in a flammable liquid
n

"type": "extermnal"

"name": "scorched",

"description": "%1$s’s body is burned to a crisp",

"type": "extermnal"

"name": "targeting",

"description": "%1$s is focused on %2$s",

"type": "internal"

"name": "goal-achieved",

"description": "The story is complete",

"type": "extermnal"

"name": "destroyed-town",

"description": "Everyone is dead...",

"type": "extermnal"

"name": "saved-town'",

"description": "The town is saved! But at what cost

n
"type": "extermnal"

76

"name": "bound",
"description": "%1$s is bound",
"type": "extermnal"

3,

{
"name": "seen-dead-people",
"description": "%1$s has seen dead people",
"type": "intermnal"

3,

{
"name": "free",
"description": "%1$s is free",
"type": "intermal"

3,

{
"name": "emerged",
"description": "%1$s has emerged",
"type": "intermnal"

b

1,
"objects": [

{
"name": "player',
"description": "the protagonist",
"type": "character"

3,

{
"name": "meta",
"description": "the author",
"type": "character"

3,

{
"name": "sheriff",
"description": "Joseph Mills",
"type": "character"

3,

{
"name": "mayor'",
"description": "Bruce Ableton",
"type": "character"

3,

7

-

-

Barrington",

"name": "groundskeeper',
"description": "Vivienne West",
"type'": "character"

"name": "citizen-one'",
"description": "Jack Myers",
"type'": "character"

"name": "citizen-two'",
"description": "Jill Mills",
"type'": "character"

"name": "farmer",

"description": "Matthias Cooper",
"type'": "character"

"name": "doctor",

"description": "William Archibald
"type'": "character"

"name": "storeowner",
"description": "Emilia Brooks",
"type": "character"

"name": "mindworm",
"description": "a worm",

"type": "character"

"name": "general-store",
"description": "the general store",
"type": "location",

"long-context":

"Looking up,

you can see a crooked

sign hanging across the entrance that reads: ’

Everhill General Store’.

78

The doorknob is slightly

loose, and at close inspection you notice the
paint on the door has started to peel. Upon
opening the door, you can see the shelves are
full of fresh produce from Cooper Farms. On the
counter, you see a simple credit card machine and
a tip jar, the bottom of which is lined with
dollar bills.",
"short-context": "Turning the loose doorknob, you

are greeted once more by the familiar sights of
the general store."

"name": "town-hall",

"description": "the town hall",

"type": "location",

"long-context": "The first thing you see upon

arriving at the town hall is the well kept garden
of Mayor Ableton. The double doors leading into
the town hall are made of mahogony, and the brass
doorhandles were recently polished. The front of
the town hall has a fresh coat of paint, but
around the edges of the walls, you can see paint
peeling on the sides. When you walk in, you are
immediately greeted with piles of paperwork
scattered across the desk, almost haphazardly.",

"short-context": "Opening the doors of the town hall
, you are once again greeted by piles of
paperwork."

"name": "home"

"description": "your home",

"type": "location",

"long-context": "There is something very comforting

about being in your own home. Even though you
live alone, you always feel like you’re being
welcomed back here. The house is in pretty good
condition, although it wouldn’t hurt to tidy up a
bit. You don’t have a lot here, but you have
what you need, and the general store is just down
the block if you find yourself wanting for
something .",

79

"short-context": "Even in tough times, you’re always
happy to welcome yourself back home."

"name": "house-one",

"description": "Worker’s Respite',

"type": "location",

"long-context": "As you show up to the bed and

breakfast, you see that it has recently gotten a
fresh coat of beige paint. The immaculate sign
hanging over the door shows the words ’The Worker
’s Respite’ above a fine painting of a bed. 0On
the top of the building, you can see a satellite
dish, which appears to be a recent addition.",

"short-context": "Upon returning to the Worker’s
Respite, you are once more greeted with the
immaculate sign."

"name": "house-two",

"description": "Jill’s house",

"type": "location",

"long-context": "As you approach the house of the

Mills family, the first thing you see 1is a car
parked out front. The hood is propped open, and a
box of tools is resting next to the front 1left
tire. The smell of gasoline and machine oil 1is
abundant, and the ground is covered with grease
stains. The house itself is a modest, two-story
home, with three windows visible from the front

of the building. The front is painted a faint
green, and the door is unlocked.",
"short-context": "Entering the vicinity of the Mills
household once more, you can clearly smell the
scent of machine oil."

"name": "hospital",

"description": "the hospital",

"type": "location",

"long-context": "You step through the clean glass

doors of Everhill Medical Center into a small

80

lobby. The waiting area is nearly untouched,
except for a single magazine that somehow found
its way onto the floor. As usual, there is nobody
waiting to see the doctor, and the check-in
sheet lists only a single appointment scheduled
for later in the day. The air smells a bit 1like
rubbing alcohol and medicine.",

"short-context": "The scent of medicine welcomes you
back to the still quiet lobby of Everhill
Medical Center."

"name": "farm"

"description": "the farm',

"type": "location",

"long-context": "You approach a barn and a small,

worn house you know to be the home of Farmer
Cooper. Beyond a fence of wood and wire, you see
the sprawling fields of grain and produce that
regularly stock the town’s general store. It
looks like a great deal of care is put into
maintaining these lands. The open fields manage
to be both peaceful and almost uncomfortably
quiet.",

"short-context": "You walk back into the open fields
of Cooper Farm. The only sounds you hear are the
wind and the occasional creak of the barn door."

"name": "sheriff-office",

"description": "the sheriff’s office",

"type": "location",

"long-context": "The first thing you smell as you

approach the sheriff’s office is the scent of
freshly baked cookies. The worn, but well kept
wooden door is propped open a few inches, and it
is clear that the room inside is well 1it. As you
walk through the door, you notice that the front
desk has several \"Mills for Mayor\" pins laying
on top of it, almost haphazardly.",
"short-context": "As you enter the sheriff’s office,
the old door welcomes you back with a creak as

81

it opens."

3,

{
"name": "knife",
"description": "a knife",
"type": "item"

3,

{
"name": "gun",
"description": "a gun",
"type": "item"

3,

{
"name": "pitchfork",
"description": "a pitchfork",
"type": "item"

3,

{
"name": "gasoline",
"description": "gasoline',
"type": "item"

3,

{
"name": "alcohol",
"description": "alcohol",
"type": "item"

3,

{
"name": "handcuffs",
"description": "a pair of handcuffs",
"type": "item"

3,

{
"name": "duct-tape",
"description": "a roll of duct tape",
"type": "item"

3,

{
"name": "lighter",
"description": "a lighter",
"type": "item"

b

82

83

D Graphics Decoration File for The Worm of Ev-
erhall

{
"actions" : [

{
"name" : "wait",
"description" : "%1$s waits",
"command" : "wait",
"type" : "other",
"panelType" : "2panel",
"imgPath" : "Stories/Horror/Assets/temp.png",
"importantTerms" : "O",
"actionNeeded" : "false"

3,

{
"name" : "move",
"command" : "move to %3$s",
"type" : "move",
"panelType" : "lpanel",
"imgPath" : "Stories/Horror/Assets/move.png",
"importantTerms" : "1",
"actionNeeded" : "false",
"description": [

"%1$s moves to %3%s",
"%1$s travels to %3$s",
"%18s jogs to %3%s",
"%1$%s walks to %3$s",
"%1$s runs to %3$s"

1,
"variant -—argument" : 1,
"variants" : [
{
"key" : "mindworm",
"description" : "%1$s quickly crawls off towards
5h3$s",
"command" : "move to %38$s"
}
]
+,

84

"name" : "target-human",
"description" : "%1$s approaches %2$s menacingly",
"command" : "approach %28$s menacingly",
"type" : "other",
"panelType" : "2panel",
"imgPath" : "Stories/Horror/Assets/temp.png",
"importantTerms" : "O",
"actionNeeded" : "false",
"variant -argument" : 3,
"variants" : [
{
"key" : "gun",
"description" : "%1$s lines up a shot towards
$sm,

"command" : "aim at %2$s"

-

"key" : "pitchfork",

h2

"description" : "%1$s approaches %2$s menacingly

, pitchfork held high",
"command" : "approach %2$s, pitchfork raised"

"name" : "kill",

"description" : "%1$s kills %2%s with %48$s",
"command" : "kill %2$s with %4$s",

"type" : "other",

"panelType" : "3panel_leftquarters",
"imgPath" : "Stories/Horror/Assets/kill.png",
"importantTerms" : "1 4 2",

"actionNeeded" : "false"

"name": "kill-possessed-human",
"description": "%1$s kills %28$s with %5$s",
"command": "kill %2$s with %5%s",

"type": "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/kill.png",
"importantTerms" : "O",

85

-

"actionNeeded" : "false"

"name" : "kill-self",
"description" : "%1$s commits suicide with %2$s",
"command" : "commit suicide with %2$s",
"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/kill.png",
"importantTerms" : "O",

"actionNeeded" : "false"

"name" : "loot-body",

"description" : "%1$s loots %3%s from %2$s’s body",

"command" : "loot %3$s from %2$%$s’s body",
"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/loot.png",
"importantTerms" : "O0",

"actionNeeded" : "false"

"name": "player-loot-body",

"description": "%18$s loots %3$s from %2$s’s body",

"command": "loot %3$s from %2%$s’s body",
"type": "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/loot.png",
"importantTerms" : "O0",

"actionNeeded" : "false"

"name" : "pickup",

"description" : "%1$s picks up %2$s",

"command" : "pick up %28$s",

"type" : "other",

"panelType" : "3panel",

"imgPath" : "Stories/Horror/Assets/pickup.jpg",
"importantTerms" : "O",

"actionNeeded" : "false"

86

-

"name": "player-pickup",

"description": "%1$s picks up %2%$s",

"command": "pick up %2$s",

"type": "other",

"panelType" : "3panel",

"imgPath" : "Stories/Horror/Assets/pickup.jpg",

"importantTerms" : "O0",

"actionNeeded" : "false"

"name" : "putdown",

"description" : "%1$s puts down %2$s",

"command" : "put down %2$s",

"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/putdown.png",

"importantTerms" : "O",

"actionNeeded" : "false"

"name" : "douse-person',

"description" : "%1$s douses %2$%$s in %3$s",

"command" : "douse %2%s with %3$s",

"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/douse-person.png
n

"importantTerms" : "3 2",

"actionNeeded" : "false"

"name" : "ignite",

"description" : "%1$s lights %2%s on fire with %43s
n

"command" : "light %2$s on fire with %4$s",

"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/ignite.png",

"importantTerms" : "4 2",

"actionNeeded" : "false"

87

"name" : "ignite-possessed",
"description" : "%1$s lights %2%s on fire with %58s

n
J

"command" : "light %2$s on fire with %5%$s",
"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/ignite.png",
"importantTerms" : "O0",

"actionNeeded" : "false"

"name" : "possess-human",

"description" : "%1$s enters %28%s through the ear
canal",

"command" : "enter %2$s through the ear canal',

lltypell : "Other”,

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/possess-human.png

n
)

"importantTerms" : "O",
"actionNeeded" : "false"

"name" : "leave-possessed-human",

"description" : "%1$s erupts from %28$s nostril",

"command" : "erupt from %2$s nostril",

"type" : "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/leave-possessed-
human.png",

"importantTerms" : "O",

"actionNeeded" : "false"

"name" : "talk-to-human",

"description" : "%1$s has a pleasant conversation
with %2%s",

"command" : "Talk to %2%s",

I|type|l . “Other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/temp.png",

88

"importantTerms" : "1 2",
"actionNeeded" : "false"

"name" : "talk-to-possessed-human",

"description" : "%1$s tries to start a conversation

with %2$%s, but %2$s remains eerily silent",
"command" : "Talk to %2$s",
"type" : "other",
"panelType" : "2panel",
"imgPath" : "Stories/Horror/Assets/temp.png",
"importantTerms" : "O",
"actionNeeded" : "false"

"name": "bind",

"description": "%1$s restrains %2$s using the
"command": "Restrain %2$s with %3$s",

"type": "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/temp.png",
"importantTerms" : "3 2",

"actionNeeded" : "false"

"name": "bind-possessed-human",
"description": "%1$s restrains %2$s using the
and a worm erupts from %2$s’s nostril",

"command": "Restrain %2%$s with %4$s",

"type": "other",

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/temp.png",
"importantTerms" : "O",

"actionNeeded" : "false"

"name": "emerge",

"description": "%1$s emerges into %2%s",
"command": "Emerge",

I|type|l: Ilotherﬂ,

"panelType" : "2panel",

"imgPath" : "Stories/Horror/Assets/temp.png",

89

%3$S" s

h48s,

}
] >

"importantTerms" : "O",
"actionNeeded" : "false"

"predicates" : [

{

"name" : "dead",

"description" : "%1$s is dead",
"type" : "extermal",
"renderType" : "characterState",
"variant -—argument" : 1,
"variants" : [

{

"key" : "player",

"description" : "You are left laying in a pool
of your own blood. Flies begin to surround
your fresh wounds as a metallic odor tinges
the air, and your body lies cold and
motionless"

"key" : "groundskeeper',

"description" : "%1$s lies lifeless on the
ground. She looks sad but strangely peaceful,
her colorful dress drenched in blood"

Ilkeyll : Ilmayorll
"description" : "%1$s’s body lays in a heap. A
campaign pin, \"Ableton for mayor\", lies at

his side, stained with blood"

"key" : "farmer",

"description" : "%1$s is dead, but his eyes
remain open. His hand is twisted, almost
strained, as if grasping for something"

"key" : "citizen-one'",
"description" : "%1$s is dead, one hand

90

-

clutching his chest, the other reaching out
for something or someone. He was not ready to

go"

+,
{

"key" : "citizen-two",

"description" : "%1$s’s body is soaked in blood,

laying still and breathless on the ground.
She had put up a fight"

3,
{

"key" : "doctor",

"description" : "%1$s lays dead on the ground,
blood pooling around him. His teeth are bared

in a grimace"
3,
{

"key" : "storeowner',

"description" : "%1$s’s body lays quiet. She is
dead. She was the oldest person in town, but
she couldn’t survive this day"

}
]
"name" : "at",
"description": [

"%1$s is at %2$s"
1,
"type" : "locational",
"renderType" : "locationState"
"name" : "armed",
"description" : "%1$s is armed",
"type" : "extermal",
"renderType" : "noRender"
"name" : "has",
"description" : "%1$s has %2$s",
"type" : "extermal",

91

-

"renderType" : "itemState"

"name" : "controlling",

"description" : "%1$s is controlling %2$s"
"type" : "intermal",

"renderType" : "noRender"

"name" : "possessed",

"description" : "%1$s is possessed",
"type" : "intermal",

"renderType" : "noRender"

"name" : "possessing",

3

"description" : "%1$s is possessing a human",

"type" : "intermal",
"renderType" : "noRender"

"name" : "suspicious",

"description" : "%1$s is acting suspiciously",

"type" : "extermal",
"renderType" : "characterState"

"name" : "doused",

"description" : "%1$s is doused in a flammable

liquid",
"type" : "extermal",
"renderType" : "characterState"

"name" : "scorched",

"description" : "%1$s’s body is burned to
"type" : "extermal",

"renderType" : "characterState"

"name" : "targeting",
"description" : "%1$s is focused on %2$s",

92

a crisp",

-

"type" : "intermal",

"renderType" : "characterState"

"name" : "goal-achieved",

"description" : "The story is complete",

"type" : "extermal",

"renderType" : "noRender"

"name" : "destroyed-town',

"description" : "Everyone 1is dead...",

"type" : "extermal",

"renderType" : "noRender"

"name" : "saved-town",

"description" : "The town 1is saved! But at what
n

"type" : "extermal",

"renderType" : "noRender"

"name": "bound",

"description": "%1$s is bound",

"type": "extermnal",

"renderType" : "noRender"

"name": "seen-dead-people",

"description": "%1$s has seen dead people",

"type": "hidden",

"renderType" : "noRender"

"name": "free'",

"description": "%18$s is free",

"type": "internal",

"renderType" : "noRender"

"name": "emerged",

93

cost

"description": "%18$s has emerged",

"type": "intermnal",
"renderType" : "noRender"

b

1,
"objects": [

{
"name": "player",
"description": "the protagonist",
"type": "character"

3,

{
"name": "meta",
"description": "the author",
"type": "character"

3,

{
"name": "sheriff",
"description": "Joseph Mills",
"type": "character"

3,

{
"name": "mayor",
"description": "Bruce Ableton",
"type": "character"

3,

{
"name": "groundskeeper",
"description": "Vivienne West",
"type": "character"

3,

{
"name": "citizen-one'",
"description": "Jack Myers",
"type": "character"

3,

{
"name": "citizen-two",
"description": "Jill Mills",
"type": "character"

+,

94

-

Barrington",

"name": "farmer",

"description": "Matthias Cooper",
"type'": "character"

"name": "doctor",

"description": "William Archibald
"type'": "character"

"name": "storeowner",
"description": "Emilia Brooks",
"type'": "character"

"name": "mindworm",
"description": "a worm",

"type'": "character"

"name": "general-store",
"description": "the general store",
"type": "location",

"long-context": "Looking up,

you can see

a crooked

sign hanging across the entrance that reads: ’

Everhill General Store’.
loose,

opening the door,

full of fresh produce from Cooper Farms.
you see a simple credit card machine and
the bottom of which is lined with

counter,

a tip jar,
dollar bills.",
"short-context":

"Turning the loose doorknob,

The doorknob is slightly
and at close inspection you notice the
paint on the door has started to peel.

Upon

you can see the shelves are

On the

you

are greeted once more by the familiar sights of

the general store."

"name": "town-hall",
"description": "the town hall",
"type": "location",

95

"long-context": "The first thing you see upon
arriving at the town hall is the well kept garden
of Mayor Ableton. The double doors leading into
the town hall are made of mahogony, and the brass
doorhandles were recently polished. The front of
the town hall has a fresh coat of paint, but
around the edges of the walls, you can see paint
peeling on the sides. When you walk in, you are
immediately greeted with piles of paperwork
scattered across the desk, almost haphazardly.",

"short -context": "Opening the doors of the town hall
, you are once again greeted by piles of
paperwork ."

3,
{

"name": "home",

"description": "your home",

"type": "location",

"long-context": "There is something very comforting
about being in your own home. Even though you
live alone, you always feel like you’re being
welcomed back here. The house is in pretty good
condition, although it wouldn’t hurt to tidy up a

bit. You don’t have a lot here, but you have
what you need, and the general store is just down
the block if you find yourself wanting for
something .",

"short-context": "Even in tough times, you’re always

happy to welcome yourself back home."
+,
{

"name": "house-one'",

"description": "Worker’s Respite",

"type": "location",

"long-context": "As you show up to the bed and

breakfast, you see that it has recently gotten a
fresh coat of beige paint. The immaculate sign
hanging over the door shows the words ’The Worker
’s Respite’ above a fine painting of a bed. 0On
the top of the building, you can see a satellite
dish, which appears to be a recent addition.",
"short-context": "Upon returning to the Worker’s

96

} >
{

Respite, you are once more greeted with the
immaculate sign."

"name": "house-two",

"description": "Jill’s house",

"type": "location",

"long-context": "As you approach the house of the

Mills family, the first thing you see is a car
parked out front. The hood is propped open, and a
box of tools is resting next to the front 1left
tire. The smell of gasoline and machine oil 1is
abundant , and the ground is covered with grease
stains. The house itself is a modest, two-story
home, with three windows visible from the front

of the building. The front is painted a faint
green, and the door is unlocked.",
"short-context": "Entering the vicinity of the Mills
household once more, you can clearly smell the
scent of machine o0il."

"name": "hospital",

"description": "the hospital",

"type": "location",

"long-context": "You step through the clean glass

doors of Everhill Medical Center into a small
lobby. The waiting area is nearly untouched,
except for a single magazine that somehow found
its way onto the floor. As usual, there is nobody
waiting to see the doctor, and the check-in
sheet lists only a single appointment scheduled
for later in the day. The air smells a bit 1like
rubbing alcohol and medicine.",
"short-context": "The scent of medicine welcomes you
back to the still quiet lobby of Everhill
Medical Center."

"name": "farm"
"description": "the farm",
"type": "location",

97

"long-context": "You approach a barn and a small,
worn house you know to be the home of Farmer
Cooper. Beyond a fence of wood and wire, you see
the sprawling fields of grain and produce that
regularly stock the town’s general store. It
looks like a great deal of care is put into
maintaining these lands. The open fields manage
to be both peaceful and almost uncomfortably
quiet.",

"short-context": "You walk back into the open fields

of Cooper Farm. The only sounds you hear are the
wind and the occasional creak of the barn door."

"name": "sheriff-office",

"description": "the sheriff’s office",

"type": "location",

"long-context": "The first thing you smell as you

approach the sheriff’s office is the scent of
freshly baked cookies. The worn, but well kept
wooden door is propped open a few inches, and it
is clear that the room inside is well 1it. As you
walk through the door, you notice that the front
desk has several \"Mills for Mayor\" pins laying
on top of it, almost haphazardly.",

"short-context": "As you enter the sheriff’s office,
the old door welcomes you back with a creak as
it opens."

"name": "knife",
"description": "a knife",
Iltypell: Hitemll

n name n : n gun n s

"description": "a gun",
Iltypell: Hitemll

"name": "pitchfork",
"description": "a pitchfork",

98

lltypell: Hitemll

+,

{
"name": "gasoline",
"description": "gasoline',
"type": "item"

+,

{
"name": "alcohol",
"description": "alcohol",
"type": "item"

+,

{
"name": "handcuffs",
"description": "a pair of handcuffs",
"type": "item"

+,

{
"name": "duct-tape",
"description": "a roll of duct tape",
"type": "item"

+,

{
"name": "lighter",
"description": "a lighter",
"type": "item"

}

1,
"locations" : [

{
"name" : "general-store",
"description" : "the general store",
"type" : "location',
"long-context" : "Looking up, you can see a crooked

sign hanging across the entrance that reads: ’
Everhill General Store’. The doorknob is slightly
loose, and at careful look the paint on the door
has started to peel. On opening the door, you
can see the shelves are full of fresh produce
from Cooper Farms. On the counter, you see a
simple credit card machine and a tip jar, the

99

bottom of which is lined with dollar bills.",

"short-context" : "Turning the loose doorknob, you
are greeted once more by the familiar sights of
the general store.",

"image-path" : "Stories/Horror/Assets/Locations/
general_store.png",

"small-item-slots" : "130 205",

"large-item-slots" : "110 75",

"character-slots" : "30 30, 420 40, 250 20",

"actionImagePath" : "Stories/Horror/Assets/Locations

/general_store.png"

"name" : "town-hall",

"description" : "the town hall",

"type" : "location",

"long-context" : "The first thing you see on

arriving at the town hall is the well kept garden
of Mayor Ableton. The double doors leading into
the town hall are made of mahogony, and the brass
doorhandles were recently polished. The front of
the town hall has a fresh coat of paint, but
around the edges of the walls, you can see paint
peeling on the sides. On walking in, you are
immediately greeted with piles of paperwork
scattered across the desk, almost haphazardly.",

"short-context" : "Opening the doors once more, you
are once again greeted by piles of paperwork.",

"image-path" : "Stories/Horror/Assets/Locations/
town_hall.png",

"small-item-slots" : "300 265, 350 265",

"large-item-slots" : "700 100",

"character-slots" : "30 30, 420 40",

"actionImagePath" : "Stories/Horror/Assets/Locations

/town_hall.png"

"name" : "home"

"description" : "the protagonist’s home",

"type" : "location",

"long-context" : "There is something very comforting

about being in your own home. Even though you

100

-

} b
{

live alone, you always feel like you’re being
welcomed back here. The house is in pretty good
condition, although you could always use to tidy
up a bit. You don’t have a lot here, but you have
what you need, and the general store is just
down the block if you find yourself wanting for

something .",

"short-context" : "Even in tough times, you’re
always happy to welcome yourself back home.",

"image-path" : "Stories/Horror/Assets/Locations/home
.png",

"small-item-slots" : "420 170, 390 100",

"large-item-slots" : "260 215",

"character-slots" : "30 10, 650 30, 550 150",

"actionImagePath" : "Stories/Horror/Assets/Locations
/home . png"

"name" : "house-one'",

"description" : "Worker’s Respite",

"type" : "location",

"long-context" : "On showing up to bed and breakfast

, you see that it has recently gotten a fresh
coat of beige paint. The immaculate sign hanging
over the door shows the words ’The Worker'’s
Respite’ above a fine painting of of a bed. On
the top of a building, you can see a satallite
dish, which appears to be a recent addition to
the building.",

"short-context" : "Upon returning to the Worker’s
Respite, you are once more greeted with the
immaculate sign.",

"image-path" : "Stories/Horror/Assets/Locations/
workers_respite.png",

"small-item-slots" : "350 120, 300 50, 415 50",

"large-item-slots" : "400 300",

"character-slots" : "300 30, 550 30, 500 30, 600
30",

"actionImagePath" : "Stories/Horror/Assets/Locations

/workers_respite.png"

101

"name" : "house-two",

"description" : "Jill’s house",
"type" : "location",
"long-context" : "As you approach the house of the

Mills family, the first thing you see is a car
parked out front. The hood is propped open, and a
box of tools is resting next to the front left
tire. The smell of gasoline and machine o0il is
clear to smell, and the ground is covered with

grease stains. The house itself is a modest, two-
story home, with three windows visible from the
front of the building. The front is painted a
faint green, and the door is unlocked.',

"short-context" : "Entering the vicinity of the
Mills household once more, you can clearly smell
the scent of machine oil.",

"image-path" : "Stories/Horror/Assets/Locations/
mills_house.png",

"small-item-slots" : "200 200, 640 280",

"large-item-slots" : "450 225",

"character-slots" : "75 75, 450 30",

"actionImagePath" : "Stories/Horror/Assets/Locations

/mills_house.png"

"name" : "hospital",

"description" : "the hospital",

"type" : "location',

"long-context" : "You step through the clean glass

doors of Everhill Medical Center into a small
lobby. The waiting area is nearly untouched,
except for a single magazine that somehow found
its way onto the floor. As usual, there is nobody
waiting to see the doctor, and the check-in
sheet lists only a single appointment scheduled
for later that day. The air smells a bit like
rubbing alcohol and medicine.",

"short-context" : "The scent of medicine welcomes
you back to the still quiet lobby of Everhill
Medical Center.",

"image-path" : "Stories/Horror/Assets/Locations/
hospital.png",

102

-

"small-item-slots" : "300 300, 200 200",

"large-item-slots" : "100 75",
"character-slots" : "300 300, 200 200",
"actionImagePath" : "Stories/Horror/Assets/Locations

/hospital.png"

"name" : "farm"

"description" : "the farm",

"type" : "locatiomn",

"long-context" : "You approach a barn and a small,

worn house you know to be the home of Farmer
Cooper. Beyond a fence of wood and wire, you see
the sprawling fields of grain and produce that
regularly stock the town’s general store. It
looks like a great deal of care is put into
maintaining these lands. The open fields manage
to be both peaceful and almost uncomfortably
quiet.",

"short-context" : "You walk back into the open
fields of Cooper Farm. The only sounds you hear
are the wind and the occasional creak of the barn

door.",

"image-path" : "Stories/Horror/Assets/Locations/farm
.png",

"small-item-slots" : "570 140, 10 150",

"large-item-slots" : "100 110",

"character-slots" : "175 20, 400 35",

"actionImagePath" : "Stories/Horror/Assets/Locations
/farm.png"

"name" : "sheriff-office",

"description" : "the sheriff’s office",

"type" : "location",

"long-context" : "The first thing you smell as you

approach the sheriff’s office is the smell of
freshly baked cookies. The worn, but well kept
wooden door is propped open a few inches, and it
is clear the room inside is well 1lit. As you walk
inside the door, you notice that the front desk
has several Mills for Mayor pins lying on top of

103

it, almost haphazardly. The small cell in the
corner 1is empty, and a spare pair of handcuff’s
looks as though it has never been used.",

"short-context" : "As you enter the sheriff’s office
, you once again hear the welcoming creak of the
door as it opens.",

"image-path" : "Stories/Horror/Assets/Locations/
sheriff-office.png",
"small-item-slots" : "140 120, 160 120",
"large-item-slots" : "100 75",
"character-slots" : "30 30, 300 70",
"actionImagePath" : "Stories/Horror/Assets/Locations
/sheriff-office.png"
+
1,
"items" : [
{
"name" : "knife",
"description" : "a knife",
"type" : "small",
"size" : "50 50",
"image-path" : "Stories/Horror/Assets/0Objects/knife.
png",
"PLM ;"0 0",
"P2" : "50 50"
},
{
"name" : "gun",
"description" : "a gun",
"type" : "small",
"size" : "72 51",
"image-path" : "Stories/Horror/Assets/0Objects/gun.
png",
"PL" ;"0 0",
"P2" : "50 50"
},
{
"name" : "pitchfork",
"description" : "a pitchfork",
"type" : "large",
"size" : "220 220",

104

-

"image-path" : "Stories/Horror/Assets/0Objects/
pitchfork.png",

"p1" : "O 0",

"p2" : "50 50"

"name" : "gasoline",

"description" : "gasoline",

"type" : "large",

"size" : "-72 90",

"image-path" : "Stories/Horror/Assets/0Objects/
gasoline.png",

"p1" : "O 0",

"p2" : "50 50"

"name" : "alcohol",

"description" : "alcohol",

"type" : "small",

"size" : "40 90",

"image-path" : "Stories/Horror/Assets/0Objects/
alcohol.png",

"p1" : "O 0",

"p2" : "50 50"

"name" : "handcuffs",

"description" : "a pair of handcuffs",

"type" : "small",

"size" : "70 70",

"image-path" : "Stories/Horror/Assets/0Objects/
handcuffs.png",

"p1" : "O O",

"p2" : "50 50"

"name" : "duct-tape",

"description" : "a roll of duct tape",

"type" : "small",

"size" : "50 40",

"image-path" : "Stories/Horror/Assets/0Objects/

duct_tape.png",

105

IIP1II : IIO oll’

"p2" : "50 50"
3,
{
"name" : "lighter",
"description" : "a lighter",
"type" : "small",
"size" : "10 15",
"image-path" : "Stories/Horror/Assets/Objects/
lighter.png",
"p1" : "O O",
"p2" : "50 50"
}
1,
"characters" : [
{
"name" : "player',
"description" : "the protagonist",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/player.png",
"R1" : "40 138",
"R2" : "120 188",
"L1" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/player.png
3,
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/player.png
]
3,
{
"name" : "meta'",
"description" : "the author",
"type" : "character",

106

IISizell : IIO Oll’

"image-path" : "Stories/Horror/Assets/temp.png",
"R1" : "10 150",
"R2" : "0 160",
"Li" "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/temp.png"
]
"name" : "sheriff",
"description" : "the sheriff",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/
SheriffMills.png",
"R1" : "10 150",
"R2" "0 160",
"Lit "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/SheriffMills.png",
+,
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/SheriffMills.png",
3,
"name" : "mayor",
"description" : "the mayor",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/

BruceAbleton.png",

107

-]

+,

{

"R1" : "10 150"

"R2" : "O 160",
"Li" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/BruceAbleton.png",
},
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/BruceAbleton.png",
,
"name" : "groundskeeper",
"description" : "Vivienne West",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/
Vivienne.png",
"R1" : "10 150",
"R2" : "0 160",
"L1" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/Vivienne.png",
},
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/Vivienne.png",
1,
"name" : "citizen-one",
"description" : "Jack",

108

"type" : "character",

"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/
JackMyers .png",
"R1" : "10 150",
"R2" : "O 160",
"L1" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/JackMyers.png",
},
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/JackMyers.png",
,
"name" : "citizen-two",
"description" : "Jill",
"type" : "character",
"size" : "180 400",
"image-path" : "Stories/Horror/Assets/Characters/
Jill.png",
"R1" : "10 150",
"R2" : "O 160",
"Li" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/Jill.png",
},
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/Jill.png",
,

109

-

"name" : "farmer",
"description" : "the farmer",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/
Matthias.png",
"R1" : "10 150",
"R2" : "0 160",
"Li" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/Matthias.png",
},
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/Matthias.png",
.,
"name" : "doctor",
"description" : "the doctor",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/
Doctor.png",
"R1" : "10 150",
"R2" : "O 160",
"L1i" : "90 150",
"L2" : "100 160",
"states” L
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/Doctor.png",
},
{

110

} b
{

"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/Doctor.png",

H,
"name" : "storeowner",
"description" : "Emilia",
"type" : "character",
"size" : "150 400",
"image-path" : "Stories/Horror/Assets/Characters/
Emilia.png",
"R1" : "10 150",
"R2" : "O 160",
"Li" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",
"statelPath" : "Stories/Horror/Assets/Characters
/Emilia.png",
},
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/Doctor.png",
H,
"name" : "mindworm",
"description" : "a worm",
"type" : "character",
"size" : "100 100",
"image-path" : "Stories/Horror/Assets/Characters/
mindworm.png",
"R1" : "10 150",
"R2" : "O 160",
"L1" : "90 150",
"L2" : "100 160",
"states" : [
{
"statelName" : "normal",

111

"statelPath" : "Stories/Horror/Assets/Characters
/mindworm.png",

1,
{
"state2Name" : "dead",
"state2Path" : "Stories/Horror/Assets/Characters
/mindworm.png",
1,

112

E Sample Art for The Worm of Everhaill

All art for The Worm of Everhill was produced by Cherish Springer, advised by
Professor Ed Gutierrez.

113

114

F Informed Consent Form for Playtesting

Introduction: You are being asked to participate in a research study on the devel-
opment of digital games with procedurally generated narratives. Before you agree,
however, you must be fully informed about the purpose of the study, the procedures
to be followed, and any benefits, risks or discomfort that you may experience as a
result of your participation. This form presents information about the study so that
you may make a fully informed decision regarding your participation. Please feel free
to pause and ask any questions you might have during or after reading this form.

Purpose of the study: The purpose of this study is to obtain playtest feedback
on a digital game which dynamically generates narratives based on player actions,
and to identify potential improvements in the user interface and narrative design.

Procedures to be followed: You will be asked to play a ten-minute session of
a game. An investigator will record non-identifying data about the play session.
After completing the game, you will be asked to complete a brief, anonymous survey
describing your subjective experience.

Risks to study participants: The game being played contains non-graphic de-
pictions of violence, murder, and immolation.

Benefits to research participants and others: You will have an opportunity to
enjoy and comment on a new game under active development. Your feedback will help
provide insight about the design of games using procedurally generated narrative.

Record keeping and confidentiality: Records of your participation in this study
will be held confidential so far as permitted by law. However, the study investigators
and, under certain circumstances, the Worcester Polytechnic Institute Institutional
Review Board (WPI IRB) will be able to inspect and have access to confidential
data that identify you by name. Any publication or presentation of the data will not
identify you.

Compensation or treatment in the event of injury: There is no foreseeable
risk of injury associated with this research study. Nevertheless, you do not give up
any of your legal rights by signing this statement.

Your participation in this research is voluntary. Your refusal to participate
will not result in any penalty to you or any loss of benefits to which you may otherwise
be entitled. You may decide to stop participating in the research at any time without
penalty or loss of other benefits. The project investigators retain the right to cancel
or postpone the experimental procedures at any time they see fit.

115

By signing below, you acknowledge that you have been informed about and con-
sent to be a participant in the study described above. Make sure that your questions
are answered to your satisfaction before signing. You are entitled to retain a copy of
this consent agreement.

116

G Scripted Introduction for Playtesting

Hello, and thank you for volunteering to test our game. Before we begin, could you
please read and sign this Informed Consent form? [Participant signs IC form.] Thank
you. During your test session, we will be recording data about your interaction with
the game. You are encouraged to voice any thoughts you have during play. When
your session is complete, we will ask you to complete a brief survey about your play
experience. At no point during your play session, or in the survey after, will any sort
of personal and/or identifying information about you be recorded. You may choose
to stop playing and withdraw from the study at any point during the play session.
Please begin playing when you feel ready.

117

H

Survey Questions for Playtesting

What is the objective of the game? How did you discover it?
How difficult does the game seem?

Did the game consistently hold your interest?

Did anything about the game seem confusing or obscure?

What would it have been good to know about the game before you started
playing?

How would you describe the game to someone who has never played it?

Were you ever surprised about the actions available to you (e.g: having an action
available to you which you did not expect to have, or an action unavailable to
you which you expected to have)? Please explain.

Were you ever surprised about the actions of other characters (e.g: a character
acting in a way inconsistent with your expectations about the world and/or
their personality)? Please explain.

Was the method of input understandable and easy to use?

Was the display of the game world or individual actions understandable and
easy to use?

Do you have any additional comments or questions that you would like to share?

118

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Background
	Procedural Content Generation
	Writing
	Traditional Literature
	Writing for Games

	Planning
	What is Planning?
	Planning for Narratives
	Planning in Games

	The Halberd Engine
	Integration with the Glaive Narrative Planner
	Procedural Text Generation
	Procedural Graphics Generation
	Design & Architecture
	Creating Art for Procedural Generation

	Creating The Worm of Everhill with Halberd
	Genre Choice
	Actions
	Characters
	Items
	Locations
	Design Challenges

	Results
	Story Design
	Meaningful Characters
	Designing Goals
	Scope of Story

	Runtime & Optimization
	Playtesting
	Methods for Playtesting
	Results of Playtesting

	Future Work
	Conclusion
	Supplement: Authoring Games for the Halberd Narrative Planning Engine
	Abstract
	Introduction
	The Halberd Narrative Planning Engine
	Glaive and PDDL
	How Glaive Makes Choices
	Displaying Text to the Player
	Engine Limitations
	Authoring Plan-Based Stories for Halberd
	The Worm of Everhill
	Creating Your World
	Conceptual Challenge: Conflict and Intentionality
	Conceptual Challenge: Rigidity
	Writing Your Story

	Conclusion
	References
	Appendices
	PDDL Domain File for The Worm of Everhill
	PDDL Problem File for The Worm of Everhill
	Text Decoration File for The Worm of Everhill
	Graphics Decoration File for The Worm of Everhill
	Sample Art for The Worm of Everhill
	Informed Consent Form for Playtesting
	Scripted Introduction for Playtesting
	Survey Questions for Playtesting

