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ABSTRACT 
 

 

   

Stem cell research is one of the most promising, yet controversal, medical topics in 

today‟s world. The purpose of this IQP is to investigate the potential applications of many 

different types of stem cells in various diseases, and to explore beyond the technology itself to 

discuss their legalities and ethics. Based on our research, our group concludes that, despite 

heated debates from both religious and political standpoints, stem cell therapies show strong 

benefits to society.  We agree that embryonic stem cell research should be expanded, and agree 

with Obama‟s recent legislation to allow federal funding to support this new technology. 
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PROJECT OBJECTIVES 

 

 

The objective of this IQP project is to examine the topic of stem cells, and to discuss the 

effect of this controversial new technology on society.  The purpose of chapter-1 is to classify 

stem cells, describe where they are isolated from, highlight their differences, and discuss their 

different potencies. Chapter-2 documents which types of stem cells have already been used in 

medical applications, distinguishing animal experiments from human clinical trials, and 

delineating which experiments remain as future applications.  Chapter-3‟s purpose is to show the 

ethical views of five major world religions surrounding this topic, while Chapter-4 discusses the 

U.S. and international laws governing stem cell use.  Finally, in the conclusion, the authors of 

this IQP announce their opinions regarding the use of stem cells based on their research. 
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CHAPTER-1:  STEM CELLS: TYPES AND SOURCES 

Aaron Sciore 

 

 Twenty years ago, if you told a biologist that we were a few decades away from being 

able to regrow entire organs, you would have gotten laughed out of the building. Where this idea 

once solely occupied the realm of science fiction, it is now considered not just a reality, but an 

inevitability.  The reason for this sudden change lies in a special kind of cell known as a „stem 

cell‟, some types of which can reproduce endlessly, and are also capable of transforming into any 

type of cell in the human body.  Named “breakthrough of the year” in 1999 by the journal 

Science (Vogel, 1999), these cells are the focal point of a revolution in biology and medicine 

known as regenerative medicine. Whereas before it was only possible to treat the symptoms of 

certain diseases, such as giving diabetics insulin, stem cells have given us the ability to actually 

regrow disabled or dysfunctional organs. Diabetic mice treated with stem cells have regrown a 

working pancreas (Hess et al., 2003), and rats with spinal cord injuries have achieved new 

mobility from stem cell therapy (Keirstead et al, 2005). 

 

Stem Cell Plasticity 

 The primary defining feature of a stem cell is plasticity, or its ability to become a variety 

of different cell types. As an organism is created and its cells divide, its cells become more 

specialized, until they fully differentiate into adult cells which constitute our organs. Stem cells 

are not all alike, and each type has a different degree of plasticity. The more differentiated a stem 

cell is, the more it is restricted to which types of adult cells it can make. For instance, 

hematopoietic stem cells, the stem cells responsible for maintaining the blood system, are 
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naturally restricted to forming mainly blood and marrow cells, although this is not always the 

case. The degree of plasticity is most often divided into four categories: totipotent, which can 

form all types of cells, including all of the cells in the adult and the placenta.  Currently the only 

cells known to be totipotent are the very early stages of development, a newly fertilized zygote 

through blastomere formation to about the 8-cell stage (Chamany, 2004).  As the blastomeres 

continue to develop to about day-4 to 6 post-fertilization, they form a hollow ball of cells termed 

a blastula, consisting of an outer shell known as the trophoblast, which becomes the placenta, 

and the Inner Cell Mass (ICM), which consists of the famous and controversial embryonic stem 

(ES) cells. These ES cells are termed pluripotent, which are cells that can differentiate into any 

cell in the organism, but not the placenta.   

 Further differentiation yields multipotent cells, such as the previously mentioned 

hematopoietic stem cells, which can form several cell types, but are restricted as to what cell 

types they can create.  Stem cells which are almost fully differentiated are known as unipotent 

cells, which are locked into specific cell fates, depending on the tissue origin. 

 

Stem Cell Self-Renewal 

 A second remarkable characteristic of stem cells is their ability to regenerate.  ES cells 

have the potential to replicate endlesslly, while most ACSs can not.  Without any environmental 

factors that cause differentiation, ES cells will self-renew infinitely. For example, a single ES 

cell, surrounded by feeder cells (usually mouse fibroblasts are used), can grow into millions of 

the same type of stem cell. Doing this is called creating a lineage. The conditions for creating 

and maintaining lineages vary between different types of stem cells, and not all stem cells are 

equally able to generate lineages (Zipori, 2005). 
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Naturally Occurring Stem Cells 

 There are many different types of stem cells which occur naturally in all mammals, but 

they can be grouped into two major categories: Embryonic and Adult.  

 

Embryonic Stem Cells 

 The most well-known type of stem cell is the Embryonic Stem (ES) cell. These cells, 

found within the hollow mass of a 4-6 day old embryo, are pluripotent, and have the ability to 

reproduce endlessly. ES cells have the most therapeutic potential of any of the naturally-

occurring stem cells, and have been shown to cure many diseases in animal test cases, which will 

be fully reviewed in Chapter 2.  Different lines of embryonic stem cells vary significantly in both 

their rate of growth on a feeder medium, and their likelihood to differentiate into certain tissue 

types. In a study of 17 human ES cell lineages, two lineages showed an order of magnitude more 

potential to enter the cardiovascular lineage than seven of the other lineages tested (Chien, 2008). 

 When an embryo is forming, its cells will divide from 1 to 2 to 4 to 8, forming a cluster 

of identical totipotent cells called blastomeres (Figure-1, diagram upper center). Upon further 

division, the embryo will differentiate into a blastocyst (diagram center) containing an outer shell 

known as the trophoblast, which becomes the placenta, and a cluster of pluripotent cells on the 

inside known as the Inner Cell Mass (ICM).  The blastocyst can be as large as 100 cells before 

the embryo continues to differentiate.  The cells that constitute the ICM are the ES cells, nearly 

completely undifferentiated and with significant self-renewal ability. At around the five day 

point, the blastocyst is fully formed and can be harvested for ES cells (diagram lower).  
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Figure-1:  Diagram of ES Cell Isolation.  ES cells, 

shown in blue, are isolated from day-5 blastocysts 

(diagram center) and grown on feeder cells (diagram 

lower) that provide growth factors.  (Regenerative 

Medicine, 2006) 

 

 

 

 

 

 

 Unfortunately, the process of gathering ES cells from the ICM  inevitably involves the 

destruction of the embryo. This is of significant ethical concern for many reasons, which will be 

fully reviewed in Chapter 3.  Because this process was illegal under the Bush administration 

(recently overturned by President Obama), there have been significant efforts to obtain ES cells 

from non-viable or abnormal embryos (Zhang 2006) with decent success.  

    

Adult Stem Cells 

 Adult stem cells (ASCs) are rare, partially-differentiated cells that exist within many 

organs in the body.  They exist to help repair damaged tissue and grow new tissue within their 

organ of assignment. The term „adult‟ does not refer to the age of the organism, only that it is 

observed in organisms later than the embryonic stage.  The practice of using adult stem cells for 
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medicinal purposes dates to before the term „stem cell‟ was coined.  Doctors have been using 

bone marrow transplants since 1939, when it was first successfully applied to treat aplastic 

anemia (McCann, 1988).  Once it was discovered that the active component in bone marrow is  

adult stem cells, the field took off.   Since then, scientists have isolated adult stem cells in many 

organs in the human body, and have used them therapeutically to great effect.   

 The main categories of adult stem cells (hematopoietic, mesenchymal, neural) are 

multipotent, though there are many more types of more differentiated unipotent stem cells that 

will not be reviewed here.  In most areas of the human body adult stem cells are exceedingly 

uncommon; this has made isolation and characterization of less-prevalent types of ASCs very 

difficult. 

 Unlike ES cells, ASCs do not have infinite growth capacity, and do not readily form 

lineages. It was assumed for a long time that this was a natural product of differentiation, that is, 

as a stem cell further differentiates it loses more and more capacity to regenerate, until it 

becomes a terminally differentiated cell which reproduces very slowly. It is now known that this 

is not at all the way stem cells behave. Renewal potential for different types of stem cells is 

highly variable and not at all dependent on the renewal potential of the less-differentiated cell 

(Zipori, 2005).  Multipotent neural crest stem cells, for example, regenerated much slower than 

the bipotent progenitor cells found towards the bottom of the differentiation hierarchy (Trentin et 

al., 2004).  Similarly, T and B lymphocyte cells, a terminally differentiated product of the 

hematopoietic cell system, reproduce far faster than hematopoietic stem cells (Zipori, 2005).  

This behavior makes sense, as lymphocytes and other immune suppressors need to be created 

much more rapidly than most other types of blood cells. 
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Hematopoietic Stem Cells 

 Hematopoietic stem cells (HSCs) are the precursors to all the different types of blood 

cells in our bodies. This is no small task – the average human body goes through around 100 

billion hematopoietic cells every day (Regenerative Medicine, Chap. 2, 2006).  HSCs 

differentiate along a very rigid hierarchy that quickly separates the rapidly-proliferating 

lymphocyte blood cells from the more slowly renewing myeloid tree (see Figure-2). 

 

 

Figure-2:  Diagram of Hematopoiesis and the Role of Hematopoietic 

Stem Cells.  The diagram shows the isolation of a hematopoietic stem 

cell (HSC) (center left) from bone marrow (diagram left).  The HSC can 

differentiate into myeloid or lymphoid progenitor cells (diagram upper), 

which differentiate into more specialized blood cells (diagram upper 

right).  (Regenerative Medicine, 2006) 

 

There are three main sources for HSCs: 

1) Bone marrow is the place where HSCs were first discovered, and it is the location where 

both the majority of the human body‟s HSCs are found, and the most commonly used 

source.  HSCs are relatively frequent in bone marrow, occupying around 1 in 10,000 

cells. This is concentrated enough that extracted bone marrow can be used therapeutically 
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without needing to further isolate the HSCs.  However, collecting bone marrow requires a 

long needle, and is generally unpleasant, and is slowly becoming phased out with time 

(Regenerative Medicine Chap. 2). 

 

2) Peripheral blood is the blood that runs throughout your arteries and veins, which is 

much easier to collect than bone marrow.  However, the concentration of HSCs in 

peripheral blood is much smaller – only about 1 in every hundred thousand are stem cells. 

Scientists have been able to increase this concentration by a process known as „cytokine 

mobilization‟, treatment of the donor with cytokine injections which cause the bone 

marrow to release large quantities of HSCs into the bloodstream, which are then 

collected.  So-called Mobilized Peripheral Blood exhibits over twice as fast a recovery in 

chemotherapy patients compared to a regular bone marrow transplant (Demirer et al., 

1996). 

 

3) Umbilical cord blood, as well as placenta, are usually discarded during childbirth, 

despite it being saturated with HSCs.  Many hospitals will allow the mother to freeze the 

umbilical cord blood and store it at a blood bank, which can subsequently be transplanted 

in the event of family blood problems. Cord blood is generally considered to be better at 

self-renewal than HSCs taken from an adult, and they display fewer transplant rejections  

(Regenerative Medicine, Chap. 2, 2006).  

 

Mesenchymal Stem Cells 

 Mesenchymal Stem Cells (MSCs) are the other type of stem cell found in the bone 

marrow, and it is primarily responsible for the creation of connective tissues, i.e. bone, tendons, 

muscle, and cartilage. In the bone marrow it forms stroma, the architecture that hematopoietic 

stem cells grow in. Though they exist in a similar concentration in the bone marrow, MSCs are 

much easier to isolate, as they readily stick to certain types of plastic, and will propagate readily 

in a culture medium (Jones, 2007). 

 Unlike HSCs, MSCs do not have an ordered hierarchy of differentiation, and may 

differentiate into many different cell types without intermediate steps, even those outside of the 

traditional mesenchymal system.  In tests run on mice infected with gastric ulcers, MSCs were 

observed to migrate from the bone marrow to the ulcer and differentiate into gastric cells (Zipori, 
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2005).  MSCs have also been observed to contribute to cardiomyocytes (heart muscle), 

pancreatic and liver cells, and even neural cells (Sell, 2005) 

 

Neural Stem Cells 

 Before the discovery of Neural Stem Cells (NSCs) in the 1990s, the brain was assumed to 

be a fully mature organ – no new cells were being made, and once the brain starts degenerating, 

the only medicine was to buy more time.  Neural stem cells found in mice and eventually 

humans challenged that assumption, and gave hope that patients with degenerative diseases such 

as Parkinson‟s could be cured.  NSCs are tripotent, they can form the neurons which make up the 

brain and nervous system, as well as glia and oligodendrocytes, the supporting cell structures 

surrounding the neurons and providing them nutrients (Regenerative Medicine, Chap. 3, 2005).  

 Only since 2001 have NSCs been isolated and cultured, most likely because NSCs are 

only found in a few areas in the brain. The reason why NSCs have been so difficult to find 

relative to the other forms of adult stem cells is their inactivity. NSCs do not produce very many 

new neurons in normal activity, and much research is dedicated to uncovering why this is, and 

how to stimulate their activity.  The primary locations for NSCs are two places: the 

subventricular zone, found on the edge of the brain‟s fluid-filled cavity, and the hippocampus, 

though they also have been found in the spinal cord (Shihabuddin et al., 2000) and the olfactory 

bulb (Pagano et al., 2000). It is even possible to extract NSCs from recently-deceased bodies 

(Palmer et al., 2001). Recent research suggests that there are a wide range of unipotent neural 

stem cells, each capable of producing a different type of neuron (Merkle, 2007). While this 

discovery makes life momentarily harder for researchers, it ultimately will give us much better 
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control over the brain‟s activity, for example NSCs that only form dopaminergenic neurons (the 

primary target of Parkinson‟s disease) could be isolated, and implanted into a patient‟s brain.  

 

Cardiac Stem Cells 

 Much like the brain, the predominant belief in the scientific community until recently was 

that the heart was a mature, terminally-differentiated organ incapable of regeneration. The heart 

naturally produces very little new tissue after birth, and most of the observable new tissue 

formed in the adult heart after an injury such as a heart attack is scar tissue (Passier, 2008). 

Evidence  now suggests that the body naturally regenerates heart tissue – months after successful 

heart transplants of mismatched sex donors, the new heart muscle was a mosaic of both XX and 

XY chromosomes (Quaini et al., 2002).   In 2003, a team of scientists identified multipotent 

cardiac stem cells with clonogenic and regenerative properties. The cardiac stem cells are 

capable of forming the three major tissues in the heart: myocytes, smooth muscle, and 

endothelial vascular cells (Beltrami et al., 2003).  There is significant debate about where exactly 

cardiac stem cells reside, though there is evidence they exist in very small numbers in the heart 

atrium and ventrical walls (Boyle, 2006), and in reservoirs in bone marrow (Orlic, 2001).  

Cardiac stem cells show remarkable ability to self-renew.  When they are purified and injected 

into a damaged heart, the heart can regenerate over half of the damaged tissue within a few 

weeks.  Like neural stem cells, cardiac stem cells do not appear to work very quickly, though 

explosive growth has been observed after heart attacks (Beltrami, 2003).  There is still a lot to be 

learned about the biological mechanism that turns these cells on and off. 
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Plasticity of Adult Stem Cells 

 

 The traditional model of  multipotent adult stem cells (for the major ASC categories 

discussed above) assumes that each adult stem cell can only differentiate into mature cell types 

in their respective lineages, e.g. blood stem cells become blood cells and nothing else.  However, 

this assumption has been challenged in recent years by more evidence suggesting that adult stem 

cells, when induced by certain conditions, can differentiate into cell types far outside their 

respective lineages. Bone marrow-derived stem cells, consisting primarily of mesenchymal and 

hematopoietic stem cells, have been shown to differentiate either in vivo or in vitro into 

numerous cell types, such as liver, skin, digestive tract, muscle, kidney, heart, and pancreas cells 

(Prentice, 2003).  Bone marrow has been used successfully in differentiating into less common 

cell types, with bone marrow transplants regenerating retinal cells (Otani, 2002), as well as the 

protective myelin coating surrounding the spinal cord (Sasaki, 2001). These results indicate 

plasticity far beyond what was previously thought possible with bone marrow transplants, but 

increased plasticity is also seen with other types of stem cells. Mesenchymal stem cells have 

been able to contribute to epithelial lung tissue (Ortiz, 2003).  Neuronal stem cells can form 

blood and muscle cells in vitro (Clarke, 2000). Stem cells isolated from skeletal muscle have 

been used to strengthen both the heart (Atkins, 1999) and the bladder (Lee, 2003).  Liver stem 

cells and pancreatic stem cells can easily and rapidly differentiate into either organ‟s cell types 

depending on the environment (Wang, 2001; Yang 2002).  And finally, hair stem cells have been 

able to completely repopulate the mouse hematopoietic system (Lako, 2002).  To say that the 

theories of adult stem cell plasticity are being reviewed is something of an understatement, as the 
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ability to form difficult tissue like brain from easy to obtain HSCs would be a major therapeutic 

achievement.  

 

Other Sources of Pluripotent Stem Cells 

 Embryonic stem cells are pluripotent and powerful, but they have many innate and legal 

disadvantages.  Using ESCs for therapy can be highly dependent on the genes of the embryo they 

are harvested from.  If that embryo had a faulty heart gene, it would be undetectable since the 

embryo never had a heart. There are also problems of availability; since there are only several 

hundred lineages of ESCs that can be purchased, successfully matching donor stem cells to 

patients can be completely based on good guessing.  

 

Tests of Pluripotency 

 Pluripotency is not a binary state: it can exist in many different forms and capacities. 

Simply finding the markers for stemness is the bare minimum requirement for considering a cell 

pluripotent, it says nothing about the actual ability of that cell to differentiate into other cell 

types.  There are several assays which are currently useful for determining the pluripotent 

developmental potential of a cell (Jaenisch, 2008): 

-in vitro differentiation: The cells are exposed to different sets of 

conditions known to induce differentiation in pluripotent cells into 

various types of cells. The pluripotency is measured based on the 

ability of the differentiated cell to produce cell-specific markers. 

This test is the least stringent, and it does not provide any 

information about its ability to differentiate in vivo. 

 

-teratomas: An immune-compromised mouse is injected with the 

test cells, and 6-8 weeks later are examined for the presence of a 

teratoma. A teratoma is a specific type of tumor consisting of a 

mass of various differentiated cell types. This tests for the cells‟ 
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ability to differentiate in vivo but cannot test for any abnormalities 

in development (Baker, 2009). 

 

-chimeras:  A chimera is a blastocyst with its inner cell mass 

injected with test pluripotent cells. The pluripotency is evaluated 

on how well the test cells contribute to the development of the 

organism. 

 

-germ line: The embryonic germ stem cell is a type of stem cell 

that cannot be produced except by other germ stem cells and 

pluripotent stem cells. The germ line assay tests the ability of the 

cells to make a germ cell, which is then fertilized to try and create 

a healthy and fertile offspring. This is the most stringent test for 

defects in the genetic code of the stem cell, as it tests for that 

single cell‟s ability to create an entire organism. 

 

Single Cell Biopsy 

 Much of the opposition to embryonic stem cell research comes from the process of 

destroying viable embryos, and for a long time, this was the only way known to isolate 

embryonic stem cells. In 2005, a team of scientists were able to sidestep this requirement by 

extracting a single cell from the 8-cell stage blastomeres (Klimanskaya, 2006).  The residual 7-

cell stage blastomeres continued to grow and behave as normal, and showed only a minimal loss 

in viability. The biopsied cells were able to be cultured, and made into ES cell lineages with a 

2/3 success rate. This technique, originally tested for use on mice and primate embryos, was soon 

applied to human embryos with significant success (Klimanskaya, Nov. 2006). 

 

 

Somatic Cell Nuclear Transfer (SCNT) 

 One of the major disadvantages to using stem cells taken from an embryo usually 

obtained from an IVF clinic is that they will always have a different genetic background than the 

person they intend to inject the cells into. This histoincompatibility problem can sometimes 
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(usually infrequently) be worked around by establishing a donor-patient histocompatible 

matching system, but when the goal of treatment is to regrow large chunks of vital organs, there 

is always the risk of a dangerous or fatal immune response. Even cell lineages taken from within 

the patient‟s family are not foolproof.  

 The only sure way to guarantee a genetic match is by using the patient‟s own DNA. 

Somatic Cell Nuclear Transfer (SCNT), also known as therapeutic cloning, is the process of 

taking a cell from the patient‟s body (usually a skin fibroblast cell) and transferring its nucleus 

into a nucleus-free egg.  The skin nucleus is reprogrammed by the egg, rendering it in a 

totipotent state. The egg is then grown into a blastocyst, from which ES cells are harvested. 

These ES cells should be both pluripotent and patient-specific, dramatically increasing the odds 

of a successful transplant procedure. While SCNT has proven to work in mice, the current 

process itself is costly, difficult, and inefficient (Jaenisch, 2008).  Many of the clones formed die 

or have significant mutations due to the nucleus failing to be properly reprogrammed. It is still a 

contested question as to which types of cells make the best candidates for reprogramming, but 

the evidence tends to point towards lower levels of differentiation being better (Jaenisch, 2008).  

As of now, no one has been able to reprogram a human egg, though in 2007 a primate was 

successfully cloned, and a lineage of its embryonic stem cells was derived (Byrne, 2007).  And 

the infamous 2005 Korean experiment in Hwang‟s lab was subsequently proven as fraud. 

 

Parthenogenesis 

 In the mammalian model of reproduction, the sperm cells interact with the egg to produce 

a zygote, which then develops into a fetus. Many lower organisms, such as fish, amphibians, and 

some insects, reproduce through a different pathway, in which the egg is „tricked‟ to induce 



 18 

development before the addition of the sperm. This process is known as parthenogenesis. In the 

right conditions, mammalian eggs can also be induced to start reproducing. This is an unnatural 

and unsustainable process, so the parthenotes will stop reproducing at certain points. Mice 

parthenotes can only develop for 10 days without human assistance before going into arrest, 

while cow parthenotes can last as long as 48 days.  Human parthenotes are trickier to work with, 

and it is only recently that scientists have figured out how to make them proceed past the 8-cell 

blastomere stage of development (Brevini, 2008).  Once the parthenote separates into the 

trophoblast and the ICM, the ICM is harvested, and the ES cells are made into a lineage. These 

cells show all the normal genetic markers for pluripotency. 

 The advantages of this technique should be immediately obvious: by using a woman‟s 

own egg to create stem cells, there is a guaranteed genetic match to that woman patient and no 

risk of rejection. The disadvantages are much less obvious, however. Each egg is created with a 

slightly modified set of genes due to what is known as imprinting, which is the cell‟s way of 

chemically modifying DNA in the genome.  Imprinting can silence some essential genes for 

reproduction and growth, requiring the opposite sex‟s set of unimprinted genes to be properly 

expressed. This is the suspected cause of mammalian parthenotes being unable to come to term, 

and it may also be the reason why parthenote ES cells have been shown to be only marginally 

effective when transplanted into tissues. Additionally, because there is only one set of genetic 

material, any genetic predispositions to cancer or disease are significantly multiplied within the 

cell line.  
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Induced Pluripotent Cells  

 In June 2006, a team at Kyoto University led by Shinya Yamanaka rocked the world of 

stem cell research when it announced it had created pluripotent stem cells out of adult mouse 

skin cells (Yamanaka et al., 2006).  These cells, dubbed induced pluripotent stem (iPS) cells 

were shown to differentiate and behave exactly like embryonic stem cells, including the ability to 

infinitely self-renew. Yamanaka accomplished this feat by virally inserting just four genes into 

the mouse cell: c-Myc, Klf4, Oct4, and Sox2. This was a major breakthrough for many reasons. 

iPS cells are both pluripotent and are patient-specific – the „holy grail‟ of stem cell research. But 

unlike SCNT, which also possesses these qualities, the process of inducing pluripotency does not 

have to be done methodically under a microscope (Holden and Vogel, 2008).  By using a virus to 

reprogram somatic cells, iPS cells can be generated in batches, with the best cells selected to 

make lineages.  

 The ease of making and refining iPS cells has made inducing pluripotency the fastest 

growing field in stem cell research. 17 years separated the discovery of mouse embryonic stem 

cells and human embryonic stem cells; that feat was accomplished with iPS cells in just over six 

months (Baker, 2009) as Yamanaka‟s lab succeeded in preparing human iPS cells from a 36 year 

old woman and a 69 year old man (Takahashi et al., 2007).  Since then, thousands of labs have 

formed or been refocused to work on iPS cells. 

 What induces the iPS cells to become pluripotent?  Scientists have known about Oct4 as 

an ubiquitous pluripotency marker since the late 1990‟s, and it was shown by Yamanaka to be a 

critical gene in activating pluripotency, but only within the past two years has the mechanism 

surrounding pluripotency been uncovered. The modern theory of pluripotency revolves around 

three genes: Oct4, Sox2, and Nanog (Jaenisch, 2008).  In all non-stem cells, these three genes are 
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buried deep within the chromatin, the coils of DNA that are either tightly coiled to silence gene 

expression, or more loosely wrapped to promote gene expression. These coils are constantly 

winding and unwinding, either from an outside force or spontaneously. Each of the three 

pluripotency proteins bind to each other‟s promoters, the DNA sequence that immediately 

precedes the genes. In the presence of virally-expressed Oct4 or Sox2 proteins, after enough 

unwinding of the chromatin, the proteins will bind to the endogenous pluripotency genes, 

preventing them from rewinding and allowing transcription to occur. This creates more 

pluripotency proteins, which further entrenches the cell into its pluripotent state.  As shown in 

Figure-3, these three genes also activate many other genes involved in maintaining pluripotency, 

while silencing many of the genes that induce differentiation.  As differentiation occurs, 

expression of Oct4 is quickly silenced, and the genes responsible for differentiation are 

subsequently activated.  
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Figure-3:  Diagram of the Role of Oct-4, Sox-2, and Nanog at 

Inducing Pluripotency.  All the cell specific differentiation factors are 

silenced (bottom right), while factors responsible for maintaining the ES 

pluripotency state are activated (top right). Each of the three major 

pluripotency genes Oct4, Sox2, and Nanog help to activate and maintain 

each other (Jaenisch, 2008). 

 

 But like all new technology, there are some kinks in the process that still need to be 

worked out.  One of the genes used, c-Myc, is an oncogene, and its addition to any cell will 

inevitably increase the risk of cancer. But without the gene, the cell is much more difficult to 

reprogram and has less therapeutic value when injected into infected mice (Baker, 2009). The 

very act of inserting genes into a genome, especially via viruses, is dangerous and can lead to 

many unintended consequences. There is no way to ensure that either the viruses or the genes 

they transfect will not interfere with expression of critical genes, causing cancer or death 

(Holden and  Vogel, 2008).  Numerous workarounds have been tested, such as viruses that are 
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automatically silenced by normal cell activity (Jaenisch, 2008), or by using adenoviruses which 

do not integrate themselves into the cell‟s genome (Stadtfeld, 2008), or by simply splicing out 

the reprogramming genes after pluripotency was induced (Yu, 2009). The most promising 

solutions, however, come from using drug-like molecules and proteins to activate the latent 

stemness genes (Shi, 2008).  

 Unfortunately, due to the difficulty of performing human research with embryonic stem 

cells, there are no easy ways to compare the various forms of iPS cells with unmodified 

traditional ES cells. Without such testing, there is no way to know if an improvement in 

technique yields a therapeutically improved cell, or if it is just looks like an improvement, but 

actually bypasses some critical regulatory mechanism (Holden and Vogel, 2008). 
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Chapter-2:  Stem Cell Applications 
     Hang Nguyen 

 

 The use of stem cell medicine is dated as far back as 1956 when Dr. Donnall Thomas, a 

bone marrow transplant specialist, administered donor human adult stem cells to a leukemia 

patient who went into complete remission. In 1981, the first embryonic stem (ES) cell line was 

developed from mice. After more than a decade, in 1998, James Thompson (University of 

Wisconsin – Madison) established the first human ES cell lines (Brown University, 2002).  Since 

those discoveries, scientists have gained numerous achievements in the field of stem cell 

research, including the determination that the active components in bone marrow are 

hematopoietic stem cells, isolation of human adult stem cells from tissues other than marrow, 

and recent data showing that ES-like cells can be produced directly from ordinary human skin 

fibroblast cells. New clinical methods have been developed based on these basic discoveries. 

 Despite the controversies over issues of embryo destruction for medical purposes, a vast 

number of cases have proven that ES cells are the key in our quest for finding cures for many 

fatal diseases.  Adult and ES cell applications hold great potential for healing injuries of body 

parts like skin, heart, bladder, and kidney. The purpose of this chapter is to document and discuss 

successful stem cell therapies currently being used to treat diseases, using adult or ES cells, and 

to delineate those applications that have not yet been achieved that remain as future experiments. 

 

Treatment of Diabetes Using Stem Cells 

 Diabetes currently affects 250 million individuals worldwide.  The greatest increase in 

diabetes prevalence occurs in Asia and South America. In the U.S., diabetes is the sixth leading 
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cause of death, impacting the quality of life for 20.8 million American children and adults. An 

estimated 54 million Americans have been diagnosed with “pre-diabetes” (Goldthwaite, 2006).  

People with diabetes must tolerate numerous means of treatment, including strict diet, daily 

check of glucose levels, and insulin shots. At present, diabetes can only be managed but there is 

no cure. 

 Diabetes results from the body‟s inability to either produce or respond to a hormone 

called insulin.  Insulin plays a vital part in transporting glucose from the bloodstream to inside 

our cells where glucose is used as energy (Figure-1). When pancreatic β-cells, the manufacturer 

of insulin, fail to produce enough insulin (Type I), the blood glucose concentration dramatically 

increases and body systems are obliged to carry a metabolic burden. There are two major types 

of diabetes: type I and II.  Type I, previously known as juvenile-onset diabetes, results when a 

person‟s immune system mistakenly attacks and destroys β-cells. People with type I diabetes 

have a complete dependence on exogenous sources of insulin (Assady et al., 2005). Type II, also 

referred as adult-onset diabetes, results from a progressive decline in β-cell activity combined 

with insulin resistance, a condition in which different tissues in the body such as liver, muscles, 

and fat no longer respond to insulin action (Goldthwaite, 2006).  Type I diabetes accounts for 5-

10% of total cases, while type II diabetes is found to be more common but preventable if a 

person has healthy life-style. 
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Figure-1: The Role of Insulin in Glucose Update.  The pancreas (upper left) is located 

in the abdomen, adjacent to the duodenum (the first portion of the small intestine). A 

cross-section of the pancreas (upper right) shows the islet of Langerhans which is the 

functional unit of the endocrine pancreas. Encircled in black is the beta cell that 

synthesizes and secretes insulin (lower right)  Beta cells are located adjacent to blood 

vessels and can easily respond to changes in blood glucose concentration by adjusting 

insulin production. Insulin facilitates the uptake of glucose (lower left), the main fuel 

source, into cells of tissues such as muscle. (Goldthwaite, 2006) 

 

 In 1990, the first human transplant of cadaver-supplied pancreatic islet tissue in patients 

with type 1 diabetes was successfully performed by the physicians at the Washington University 

Medical Center (Goldthwaite, 2006).  With further improvements, the so-called “Edmonton 

protocol” involving the transplant of islets from cadaveric pancreatic tissue from multiple donors 
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and infusing them into the recipient‟s portal vein became popular.  However, a long-term follow-

up study of Edmonton transplant patients indicated that less than 10% of recipients remained  

insulin-sufficient five years post-transplant (Goldthwaite, 2006), due mainly to the damage of 

transplant tissues during islets isolation and the side effects of drugs necessary to keep the body 

from rejecting transplanted tissues. Although pancreatic islet transplantation technologies and 

procedures continue to be improved, the lack of available matched donors is a main issue, so 

scientists turned to stem cells for regenerative medicine. 

 

Diabetes and Adult Stem Cells  

 Recent studies in rodents have indicated that the adult pancreas contains endocrine 

progenitor cells that can differentiate into β-cells (Seaberg et al., 2004). The progenitor cells 

from the adult mouse pancreas differentiated into a group of cells containing exocrine cells, 

neurons, glial cells, and β-like cells which demonstrated glucose-dependent insulin release, 

suggesting the possible therapeutic application of adult stem cells to diabetes (Seaberg et al., 

2004).   Several subsequent studies have also confirmed the existence of pancreatic stem cells in 

vitro and in vivo.  According to research at the Howard Hughes Medical Institute in collaboration 

with Harvard University and Boston Children‟s Hospital, fully differentiated adult exocrine cells 

can be directly reprogrammed into cells that closely resemble β-cells in adult animals by a 

combination of just three transcription factors (Zhou et al., 2008). 

 Mouse bone marrow, essential for immunity and circulation, has also been described in 

scientific reports as being capable of inducing the differentiation of endogenous pancreatic tissue 

into insulin-producing cells, and as a feasible approach for treating type II diabetes (Hess et al., 

2003).  Transplant of mouse bone marrow cells into mouse models for diabetes can reverse 
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hypoinsulinemia and hyperglycemia. The mechanism by which the bone marrow−derived stem 

cells induce endogenous pancreatic tissue repair is not yet known, however the rapidity of the 

regeneration process cells suggests that endogenous pancreatic stem cells may mediate the 

restorative process through endothelial interactions (Hess et al., 2003). 

 Human adult stem cells have also been shown to be capable of differentiation into insulin 

secreting glucose-regulatable cells, demonstrating the potential for treating diabetic patients in 

the future. At a 2008 International Conference on BioMedical Engineering and Informatics, 

researchers at King‟s College (London, UK) showed that human marrow stromal cells (hMSCs) 

are an excellent source for unlimited surrogate insulin-producing glucose-regulated cells. They 

developed a robust system involving the non-viral delivery of DNA encoding three key 

transcription factors Ngn3, Pdx1, and Mafa, to direct the differentiation of hMSCs into insulin-

producing cells.  The cells also expressed stem cell markers and a panel of key genes required for 

the development and maintenance of functional phenotypes of pancreatic β-cells. How the cells 

developed into the functional phenotype is still not clear and is worthy of further exploration, but 

the study offers the potential for generating new islet cells from a patients‟ own bone marrow 

(Zhao et al., 2008).  

 

Diabetes and Embryonic Stem Cells 

 In 2001, scientists at the National Institutes of Health performed an experiment using 

mouse embryonic stem cells to generate cells expressing insulin and other pancreatic endocrine 

hormones (Lumelsky et al., 2001).  The differentiated cells were also found to respond to glucose 

by a mechanism similar to that used in vivo. When injected into diabetic mice, these cells 

underwent rapid vascularization and maintained an islet-like organization (Lumelsky et al., 



 31 

2001).  With respect to human ES cells, Novocell Inc., a stem cell engineering company located 

in San Diego (CA) has developed an in vivo mimicking process that coverts human embryonic 

stem cells (hES cells) to insulin secreting endocrine cells (D‟Amour, 2006). They developed a 

five-step protocol for efficiently differentiating hES cells to insulin-expressing cells through a 

series of endodermal cell intermediates resembling stages of pancreatic development.  The 

technique demonstrates that hES cells are a renewable source of cell replacement in type 1 

diabetes (D‟Amour, 2006). This differentiation process was also observed by a different group of 

researchers in 2005 who differentiated hES cells to produce numerous types of cells, including a 

subset that have many characteristics of β-cell function, including proinsulin and/or insulin 

production, insulin release, and the expression of other β-cell markers (Assady et al., 2005). 

 Thus the stem cell treatments to date indicate that ES cells have successfully been 

differentiated into insulin-producing cells in mice and humans.  The ES derived cells have been 

shown to reverse diabetes in mouse models, but have not yet been used to treat diabetes in 

patients.  Adult mouse and human pancreatic progenitor cells and bone marrow have also been 

shown to differentiate into insulin-producing cells.  Murine bone marrow cells have been used to 

treat diabetes in mouse models, but neither ES cells nor adult stem cells have been used yet to 

treat human diabetic patients. 

 

Treatment of Damaged Heart Muscle Using Stem Cells 

 Sixteen-year-old Dimitri Bonnville, who suffered a massive heart attack, was the first to 

receive a stem-cell therapy to revive his damaged heart tissue and substantially recovered a week 

later (Philipkoski, 2003).  But not everyone is as lucky as this boy; according to a National 

Health and Nutrition Examination Survey, cardiovascular disease (CVD) (including 
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hypertension, coronary heart disease, stroke, and congestive heart failure) killed approximately 

1.4 million people in America in 2002.  CVD has been ranked as the number one cause of death 

in the U.S. every year since 1900 (Goldthwaite, 2006).  Myocardial infarction, so-called heart 

attack, is characterized by a loss of heart muscle cells and an impairment of cardiac performance.  

It has been assumed that if enough cardiac muscle cells could be generated to compensate lost or 

damaged cells (Figure-2), contractile function of the heart would be restored. Recently, intensive 

research on stem-cell-based therapies have provided persuasive results to justify the claim of 

stem cells‟ usefulness in the war against myocardial infarction, and the National Institutes of 

Health spent $2.5 billion on stem cell research from 2004-2007 for this purpose (Passier et al., 

2008). 
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Figure-2: The Use of ES and Adult Stem Cells to Heal a Wounded Heart.  Adult stem cells, 

cardiac progenitor cells or human ES-cell-derived cardiomyocytes (upper left) are isolated and 

injected into the heart (diagram center) of an immunodeficient mouse that has had a myocardial 

infarction. At different time points after transplantation, cardiac function is analysed (diagram 

lower) by using magnetic resonance imaging, ultrasonography, or ventricular pressure–volume 

loops. To determine cell survival, cell phenotype, and cell integration, hearts are isolated after 

transplantation, and transverse heart sections are used for immunostaining with specific 

fluorochrome-conjugated antibodies (cardiomyocytes are identified by antibodies specific for -

actinin), followed by confocal microscopy. (Passier et al., 2008) 

 

 

 



 34 

ES Cells and Heart Repair 

 Because ES cells can proliferate indefinitely in vitro, they can supply a cell reservoir for 

extensive tissue regeneration. Although multiple candidate cell types have been shown to display 

varying degrees of cardiogenicity, ES cells derived from the inner cell mass of the blastocyst 

possess the most recognized capacity to yield cardiomyocytes. ES cells are usually first 

demonstrated to fulfill key criteria for ES cells: derivation from the pre-implantation embryo, 

prolonged undifferentiated proliferation under special conditions, and the ability to form all three 

germ layers. When cultured with mitotically inactivated mouse embryonic fibroblast feeder 

layer, hES cells could be maintained in the undifferentiated state for prolonged periods.   

 With respect to ES cell differentiation into cardiomyocytes, initial information was 

obtained from mouse ES cells. Recapitulating the development of murine cardiomyocytes from 

very early cardiac precursor cells to terminally differentiated cells provided researchers with 

important insights of cardiomyogenesis, including the origin, commitment, patterns of gene 

expression, ion channel development, and function.  However scientists now realize there are key 

differences between murine and human ES cells, but morphologically, the in vitro differentiation 

of human and mouse ES cells into cardiomyocytes appears to follow parallel pathways (Figure-

3) (Kehat et al., 2001). 
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 Figure-3:  The Stages of Human ES Cell Differentiation Into Cardiomyocytes.  (a) 

Schematic of the three stages in human ES cell differentiation. Initially, the ES colonies are 

grown on top of the MEF feeder layer (left). To induce differentiation, cells are transferred to a 

suspension, where they aggregate to form embryoid bodies (EBs) (middle).  After 10 days in 

suspension, EBs are plated on gelatin-coated culture dishes, where they are observed for the 

appearance of spontaneous contractions (right) typical of cardiomyocytes. (b) Photomicrographs 

depicting the three mentioned stages: ES colony (left), EBs in suspension (middle), and a 

contracting area in the outgrowth of an EB (right, arrow).  (Kehat et al., 2001) 

    
 

 In 2004, scientists at the Mayo Clinic College of Medicine (Rochester, Minnesota) 

performed an experiment to support the potential for ES cell-based reparative treatment of 

myocardial infarction (Terzic, 2004). A transition of mouse ES cells to cardiomyocytes occurred 

under the direction of rat host paracrine signaling that assists the cardiac-specific differentiation. 

The produced cells expressed characteristics of cardiac phenotypes and illustrated cardiac 

functional markers. Furthermore, when transplanted into injured rat hearts, the propagated 

cardiomyocytes repopulated significant regions of the rat dysfunctional myocardium, and 

resulted in better tissue contraction with reduced mortality (Terzic, 2004). A 12-week follow-up 

period proved that the presence of mouse ES cell-derived cardiomyocytes within the infarct area 

was directly associated with a preserved left ventricular structure and lessened scar tissue. They 
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also found no evidence of rejection of transplanted cells, despite the xenotransplantation of 

murine ES cells into rat heart (Terzic, 2004). Thus according to this rodent study, ES cell 

myocardial regeneration has an impact on ventricular remodeling and can provide stable impact 

after heart failure. 

 

Adult Stem Cells and Heart Repair 

 Although ES cells may provide a unique method to reduce the morbidity of prevalent 

heart disease, it is not a favorable long-term solution due to the restricted ES cell access for pre-

clinical study.  However, a shot of adult bone marrow straight into the heart may be the answer 

to heart attack survivors, as revealed by scientists in Germany and Norway after conducting a 

drastic trial (Couzin, 2006).  Two hundred and four volunteers who had had a heart attack within 

the previous week and another 75 whose heart attack hit more than 6 years before participated in 

the study. Half of the patients were offered an infusion of their own bone marrow into the 

affected coronary artery, while the others received a placebo injection. The study then looked at 

left ventricular ejection fraction, a measure of the heart‟s pumping capacity. A year later, only 2 

of the treated people had died and none had had another heart attack, compared with 6 deaths and 

5 heart attacks in the placebo group (Couzin, 2006). 

 In mice, locally-transplanted Lin-negative c-kit-positive bone marrow stem cells have 

been shown to form new myocytes, endothelial cells, and smooth muscle cells, generating 

coronary arteries, arterioles and capillaries. The differentiating myocytes synthesized nuclear and 

cytoplasmic proteins characteristic of cardiac tissue. 12 out of 30 (40%) female mice 

demonstrated myocardial regeneration when their peri-infarcted left ventricles were injected with 

male Lin
-
c-kit

+
 bone marrow cells, although an immunological reaction to the histocompatibility 
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antigen on the Y chromosome of the donor bone marrow cells could account for the relatively 

small percentage of repair (Orlic et al., 2001). 

 In 2006, Dr. Schächinger and his coworkers designed a double-blinded, placebo-

controlled, randomized multicenter trial to determine whether this adult bone marrow cell 

reperfusion strategy enhances global left ventricular operation in patients. Their finding was that 

intracoronary infusion of enriched bone marrow cells (BMC) is associated with an increase in 

left ventricular function of patients with acute myocardial infarction (Schächinger et al., 2006). 

This suggested that intravascular administration of progenitor cells derived from BMC 

contributes to regeneration of infarcted myocardium. 

 Thus, the stem cell treatments to date indicate that ES cells have successfully been used 

to induce heart damage repair in mice, and in humans have been shown to differentiate in vitro 

into cardiac-like cells, but ES cells have not been used in humans yet to treat heart attacks.  Adult 

bone marrow cell injections have been shown to induce heart repair in both mice and humans. 

 

Treatment of Nervous System Diseases Using Stem Cells 

 The nervous system, the most complex organ of human beings, is composed of neurons 

and other specialized cells called glial cells that aid in the function of neurons. Sensory neurons 

and connecting neurons, belonging to the peripheral nervous system, and all the neurons in the 

spinal cord and brain (which make up the central nervous system) generate electrochemical 

signals and neurotransmitters to induce impulses within the system. When one‟s nervous system 

is marred, a self-repairing mechanism inside the brain is activated, but unfortunately, new 

neurons only originate at a few sites in the brain and turn into a few types of nerve cells. While 

most current treatments aim to limit the damage of nervous system diseases, advances in stem 
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cell research indicate this damage can be reversed by replacing lost cells with new ones to restore 

brain function. 

 

Parkinson’s Disease  

 Parkinson‟s disease (PD) is a progressive disorder that results from a loss of midbrain 

dopamine-secreting neurons (Figure-4). These motor neurons regulate body movement, so when 

these cells die off, the nervous system loses control of body parts leading to movement 

difficulties, a notable trait of Parkinson‟s disease. The causes of death of these neurons remain 

unknown, though there is evidence showing that a combination of environmental factors and 

genetic predisposition are precursors to the disease. For many years, doctors have treated 

Parkinson‟s patients with L-dopa that the brain converts into dopamine, but the drug eventually 

loses its effectiveness and yields side-effects (Goldthwaite, 2006). 
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Figure-4:  Diagram of the Neuronal Pathways that Degenerate in Parkinson's Disease.  
Electrical signals that control body movements travel along neurons that project from the 

substantia nigra (lower center) to the caudate nucleus and putamen (collectively called the 

striatum) (diagram center). These "nigro-striatal" neurons release dopamine at their stargets in the 

striatum. In Parkinson's patients, dopamine neurons in the nigro-striatal pathway degenerate for 

unknown reasons. (“Rebuilding the Nervous System with Stem Cells,” 2005) 

 

 

 The National Institute of Health has funded two large clinical trials in the past 15 years in 

which researchers transplanted tissue from aborted fetuses into the striatum of patients with 

Parkinson‟s disease. These studies, performed in Colorado and New York, were double-blinded 

and well-controlled. The patients‟ progress was followed for up to eight years and promising 

findings emerged. Younger and milder Parkinson‟s patients responded relatively well to the 
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grafts, and positron emission tomography (PET) scans of patients showed that some of the 

transplanted dopamine neurons survived and matured. Autopsies on three patients who died of 

unrelated causes also indicated the presence of dopamine neurons. However, 15% of the patients 

in the Colorado study, and more than half of the patients in the New York study, did not gain 

improvement and began to suffer from dyskinesias and jerky involuntary movements 

(Goldthwaite, 2006).  Although this embryonic tissue transplant technique showed promise, the 

aborted fetus source of the tissue remains extremely controversial, thus alternative stem cell 

treatments are being researched. 

 

ES Cell Treatment of Parkinson’s Disease 

 Much progress has been made the last several years to differentiate ES cells into 

dopamine producing neural cells.  A project was performed in 2002 by a group of scientists at 

the National Institute of Health to encourage the use of ES cells in cell-replacement therapy for 

Parkinson‟s disease (Kim et al., 2002). They reported that a highly enriched population of 

midbrain precursors and dopamine neurons can be derived from mouse ES cells. A functional 

analysis of the ES-cell-derived neurons was conducted by anatomical, neurochemical, 

electrophysiological, and behavioral tests, which showed the cells had strong dopaminergic 

functions. The study demonstrated a method of further increasing the efficiency of midbrain-

specific generation of dopamine neurons from ES cells, and injection of the cells led to recovery 

in a rodent model of Parkinson‟s disease (Kim et al., 2002). 

 In 2004, a team from Israel‟s Hadassah University announced that for the first time, hES 

cells had been used to treat a rat model for Parkinson‟s disease (Ben-Hur et al., 2004). They 

generated a culture of neural progenitors from hES cells and grafted those into the brains of 
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Parkinson rats. They then noticed that the rats were able to modulate their movements while 

being dragged across a surface, which was a great improvement compared to their pre-treatment 

continuous turning and inability to make side steps. Post-mortem examination found that the 

stem cells had developed into dopamine-producing cells and they did not continue to change or 

proliferate to generate cancerous tumors. “These observations are encouraging, and set the stage 

for future developments that may allow the use of embryonic stem cells for the treatment of 

Parkinson‟s disease,” said Dr. Benjamin Reubinoff (Ben-Hur et al., 2004).  These hES-derived 

cells, however, have not yet been used to treat Parkinson‟s patients. 

 

Adult Neural Stem Cell Treatment of Parkinson’s Disease 

 Scientists are also studying the possibility that the human brain may be able to repair 

itself with therapeutic support. Even in adults, new nerve cells are born in a brain region called 

the dentate gyrus of the hippocampus, and their presence suggests that neural stem cells (NSCs) 

in the adult brain may have the potential to re-wire dysfunctional neuronal circuitry.  A study 

investigated how the adult rat brain responds to transforming growth factor alpha (TGFα), a 

protein important for early brain development, but which is expressed only in limited quantities 

in adults.  Injection of TGFα into a healthy rat brain causes NSCs to divide for several days 

before ceasing division. In Parkinsonian rats, the NSCs actually proliferated and migrated to the 

damaged areas, and the TGFα-treated rats showed few of the behavioral problems associated 

with untreated Parkinsonian rats. It is not clear, however, if stem cells are responsible for this 

repair or if the TGFα activates a different repair mechanism (Panchision, 2006). 
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Stem Cell Treatment of Spinal Cord Injuries 

 Spinal cord trauma destroys numerous cell types, including the neurons that carry 

messages between the brain and the rest of the body. In many spinal injuries, the cord is not 

actually severed, but the signal-carrying neuronal axons do not work correctly. There is no cure 

for spinal cord lesions at present, and the most common current treatment – high doses of 

methylprednisolone to lower inflammation – is of questionable value. Transplantation of stem 

cells into an injured cord could lead to benefits mainly due to trophic factor secretion or 

remyelination of spared axons (Lindvall and Kokaia, 2006). 

 Reasoning that pre-differentiation of embryonic neural precursors to astrocytes, which 

are thought to support axon growth in the injured immature central nervous system, would be 

helpful for spinal cord injuries repair, a novel strategy was developed by scientists to restore 

locomotion after acute transection injury of adult rat spinal cord. After establishing pure 

populations of astrocytes directly from glial-restricted progenitor cells, transplantation was 

administered. A growth of 60% of ascending dorsal column axons into the centers of lesions was 

observed, 66% of these extending beyond the injury site. Grid-walk analysis of transplanted rats 

with rubrospinal tract injuries revealed significant improvements in locomotor function. The 

procedure also induced a striking level of tissue reorganization, suppressed initial scarring, and 

rescued axotomized central nervous neurons (Davies, 2006). 

 These rodent findings were verified by Hans Keirstead and his colleagues at the Reeve-

Irvine Research Center at University of California Irvine who found that rodent derived hES 

cells promote mobility in rats with spinal cord injuries. A technique was created to entice hES 

cells to differentiate into early-stage oligodendrocyte cells, these cells then were injected into rats 

with induced partial injury to the spinal cord – one group was injected 7 days after injury, and 
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another group 10 months after injury.  Although injected cells formed full-grown 

oligodendrocyte cells and migrated to appropriate neuronal sites within the spinal cord in both 

groups, only the 7-day post-injury injection group showed significant improvements in walking, 

likely due to myelin, the biological insulation for nerve fibers critical for the maintenance of 

electrical conduction in the central nervous system. In the rats with 7-day post-injury treatment, 

myelin tissue formed as the oligodendrocyte cells wrapped around damaged neurons, but in the 

other group of rats, myelin could not form because the space surrounding neuron cells had been 

filled with scar tissue (Keirstead et al., 2005). This study indicates the importance of myelin loss 

in spinal cord injury and illustrates one approach to treating it.   

 

Stem Cell Treatments of Stroke  

 Stroke, the most common cause of disability in adults, is caused by a blockage of a 

cerebral artery (Figure-5). As a consequence of disrupted blood flow, neurons and glial cells in 

affected brain regions die from an insufficient amount of oxygen, leading to motor, sensory or 

cognitive impairment.  
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 Transplanted cells from different sources, such as fetal brain, neuroepithelial cell lines, 

bone marrow, and umbilical cord blood, have dramatically enhanced the odds of patient 

recovery. Some results suggest that future stroke treatments may be able to coax the brain‟s own 

stem cells to make replacement neurons. A group from University of Tokyo added a growth 

factor, bFGF, into the brains of rats after a stroke, and determined that large number of new 

Figure-5:  Diagram of a Stroke Induced by Brain 

Artery Blockage.  The shaded gray area in the brain 

denotes brain cells stressed from lack of oxygen.  

(“Atrial Fibrillation Signs & Symptoms,” DCI Home) 
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neurons generated from hippocampus was making connections with other neurons.  Another 

attempt to use transplantation as a means to treat the loss of brain mass in stroke used stem cells 

encased in a polymer scaffold implanted into stroke-damaged brains of mice, and demonstrated 

that the seeded stem cells transformed to neurons and the polymer reduced scarring 

(Goldthwaite, 2006). 

 Human fetal brain cells have been used to treat rodent models for stroke.  Two research 

groups transplanted human fetal stem cells in independent studies into the brains of stroke-

affected rodents.  These cells not only survived but also migrated to the damaged areas of the 

brain (Goldthwaite, 2006).  But as was noted in the Parkinson‟s subsection, the use of fetal cells 

is highly controversial, thus the scientists are working hard to uncover a more preferable stem 

cell therapy approach to stroke. 

 

Treatment of Alzheimer’s Disease with Stem Cells 

 Alzheimer disease (AD), named after the German physician Alois Alzheimer who first 

described it in 1906, is a degenerative brain disease. It accounts for 50 to 70 percent of 

progressive dementia cases, and it is pathologically characterized by the deposition of amyloid-β 

peptide in the brain parenchyma. Alzheimer causes problem with memory, thinking, and 

behavior severe enough to disturb work, lifelong hobbies, or social life. Today there is still no 

cure but scientists are recently considering stem cell treatments.  Nikolic and colleagues (2008) 

have recently used human umbilical cord blood cells (HUCBCs) to alter AD-like pathology in 

transgenic AD mouse models.  Their study showed a marked reduction in amyloid-β levels in the 

brain and less astrocytosis following multiple low-dose infusions of HUCBCs (Nikolic et al., 

2008). 



 46 

 

Krabbe’s Disease and Stem Cells 

 Krabbe‟s disease, or globoid cell leukodystrophy, is a rare recessive disorder that 

influences the nervous system. It results from the shortage of an enzyme called 

galactosylceramidase. This enzyme deficiency impairs the growth and maintenance of myelin, 

the protective covering around specific nerve cells that ensure the rapid transmission of nerve 

impulses. In the infantile form, symptoms appear before six months of age, and are physically 

characterized by irritability, muscle weakness, feeding difficulties, episodes of fever without any 

sign of infection, stiff posture, blindness, deafness, mental deterioration, seizures, and death, 

usually before two years of age. Bone marrow has traditionally been used as the source of donor 

stem cells for Krabbe‟s transplantation, but the lack of matched donors and the long time of 

recruitment of unrelated adult donors can hinder treatment. Allogeneic bone marrow 

hematopoietic stem-cell transplantation, on the other hand, has been reported to be beneficial in 

patients with early stages of juvenile Krabbe‟s disease. In this type treatment, the patient‟s own 

bone marrow injected cells repopulate various tissues, delivering enzymes both inside and 

outside the vascular compartment (Escolar et al., 2005). 

 Alternatively, umbilical cord blood-derived stem cells can also be used.  In a recent 

clinical trial, 11 asymptomatic newborns (ages ranging from 12 to 44 days) in whom the disease 

was diagnosed because of a family history, and 14 infants (ages 142 to 352 days) with infantile 

Krabbe‟s underwent transplantation of umbilical-cord blood from unrelated donors. Engraftment, 

survival rate and neurological development were evaluated longitudinally for four months to six 

years, and the outcomes of the two groups were compared. While the treatment favorably altered 

the natural progression of the disease among the newborn group, the infant group had a higher 
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rate of death and minimal neurologic benefits from transplantation. In contrast to untreated 

patients, the transplanted newborns survived with durable donor chimerism (mixed donor and 

patient cells) and normal peripheral-blood enzyme activity. They maintained normal vision and 

hearing and normal cognitive development, gained substantial neurologic benefits, and continued 

improvement in nerve-conduction studies. Except for areas influenced by gross motor 

development, hematopoietic stem cell transplantation proved to be a powerful treatment for 

infantile Krabbe‟s disease if the newborns were treated before the onset of symptoms (Escolar et 

al., 2005). 

 

Chapter-2 Conclusion 

 As documented in this Chapter, ASCs or ES cells have been used to treat diabetes, heart 

disease, and nerve disorder in animal models, but such cells have not yet been formally applied 

to humans (outside of a few senate testimony cases).  So the world awaits future clinical trial 

data.  Scientific work over the last few decades in various stem cell applications have brought 

hope to millions of lives. Rhode Island Democrat Congressman James Langevin, who has been 

paralyzed since a gun accident at age 16, said “I believe one day I will walk again…Stem cell 

research gives us hope and a reason to believe. We have a historic opportunity to make a 

difference for millions of Americans.” Although stem-cell therapy is still in a premature stage, it 

has been discovered as a really promising medical innovation that could someday cure 

devastating diseases. The road ahead for stem cell research is challenging but exciting.  Clinical 

trials will hopefully provide the key data needed to move stem cell treatments into the 

mainstream to save countless lives. 

 



 48 

Chapter 2 Bibliography 

Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki K, and Tzukerman M (2005) “Insulin 

Production by Human Embryonic Stem Cells”. 

http://diabetes.diabetesjournals.org/cgi/content/full/50/8/1691 
 
“Atrial Fibrillation Signs & Symptoms.” National Heart Lung and Blood Institute: Diseases and 

Conditions Index.  http://www.nhlbi.nih.gov/health/dci/Diseases/af/af_signs.html 

 

Ben-Hur T, Idelson M, Khaner H, Pera M, et al (2004) “Transplantation of Human Embryonic 

Stem Cell–Derived Neural Progenitors Improves Behavioral Deficit in Parkinsonian Rats.” Stem 

Cells 22: 1246-1255. http://stemcells.alphamedpress.org/cgi/reprint/22/7/1246.pdf 
 

Brown University (2002) “The History of Stem Cells”.   
http://biomed.brown.edu/Courses/BI108/BI108_2002_Groups/pancstems/stemcell/stemcell_history.htm 

 

Couzin, Jennifer (2006) “A Shot of Bone Marrow Can Help the Heart.”  Science 313: 1715-

1716.   http://sciencemag.org/cgi/content/full/313/5794/1715a 
 

D‟Amour, KA (2006) “Production of pancreatic hormone–expressing endocrine cells from 

human embryonic stem cells.” Nature Biotechnology 24: 1392-1401. 

http://www.nature.com/nbt/journal/v24/n11/full/nbt1259.html 
 

Davies, JE (2006) “Astrocytes derived from glial-restricted precursors promote spinal cord 

repair.” Journal of Biology 7: 1-21.  http://jbiol.com/content/5/3/7 
 

Escolar ML, Poe MD, Provenzale JM, Richards KC, et al (2005) “Transplantation of umbilical-

cord blood in babies with infantile Krabbe's disease.”  New England Journal of Medicine 

352(20): 2069-2081.  http://content.nejm.org/cgi/reprint/352/20/2069.pdf 

 

Goldthwaite CA (2006) “Are Stem Cells the Next Frontier for diabetes treatment?” NIH Stem 

Cell Reports, Chapter-7.   http://stemcells.nih.gov/info/scireport/2006Chapter7.htm 
 

Goldthwaite CA (2006) “Mending a Broken Heart: Stem Cells and Cardiac Repair.” NIH Stem 

Cell Reports, Chapter-6.  http://stemcells.nih.gov/info/scireport/2006Chapter6.htm 
 

Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) 

“Bone Marrow-Derived Stem Cells Initiate Pancreatic Regeneration.” Nature Biotechnology 7: 

763-770.  http://www.nature.com/nbt/journal/v21/n7/full/nbt841.html 
 

Kehat, I, Kenyagin-Karsenti, D, Druckmann, M, Segev, H, et al (2001) “Human Embryonic 

Stem Cells Can Differentiate Into Myocytes Portraying Cardiomyocytic Structural and 

Functional Properties.” Journal of Clinical Investigation 108: 407-414. 

http://www.biol.vt.edu/faculty/sible/kehat.pdf 
 

http://diabetes.diabetesjournals.org/cgi/content/full/50/8/1691
http://stemcells.alphamedpress.org/cgi/reprint/22/7/1246.pdf
http://biomed.brown.edu/Courses/BI108/BI108_2002_Groups/pancstems/stemcell/stemcell_history.htm
http://sciencemag.org/cgi/content/full/313/5794/1715a
http://www.nature.com/nbt/journal/v24/n11/full/nbt1259.html
http://jbiol.com/content/5/3/7
http://content.nejm.org/cgi/reprint/352/20/2069.pdf
http://stemcells.nih.gov/info/scireport/2006Chapter7.htm
http://stemcells.nih.gov/info/scireport/2006Chapter6.htm
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Hess%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Li%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Martin%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Sakano%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Hill%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Strutt%20B%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Thyssen%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Gray%20DA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=Search&Term=%22Bhatia%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.nature.com/nbt/journal/v21/n7/full/nbt841.html
http://www.biol.vt.edu/faculty/sible/kehat.pdf


 49 

Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, and Steward O (2005)  

“Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants 

Remyelinate and Restore Locomotion after Spinal Cord Injury.” The Journal of Neuroscience 

25(19): 4694-4705. http://www.jneurosci.org/cgi/reprint/25/19/4694 

 

Kim JH, M J, Auerbach, Rodriguez-Gomez JA, Velasco I, Gavin D, et al (2002) “Dopamine 

neurons derived from embryonic stem cells function in an animal model of Parkinson's disease.”  

Nature 418: 50-56.  http://www.nature.com/nature/journal/v418/n6893/pdf/nature00900.pdf 
 

Lindvall O, and Kokaia Z (2006) “Stem Cells for the Treatment of Neurological Disorders.”  

Nature 441: 1094-1096.  http://www.nature.com/nature/journal/v441/n7097/full/nature04960.html 

 

Lumelsky N, Blondel 0, Laeng P, Velasco I, Ravin R, and McKay R (2001) “Differentiation of 

Embryonic Stem Cells to Insulin-Secreting Structures Similar to Pancreatic Islets.” Science 

292:1389-1394.  http://www.sciencemag.org/cgi/reprint/1058866v1.pdf 

 

Nikolic WV, Hou H, Town T, Zhu Y, Giunta B, et al (2008) “Peripherally administered human 

umbilical cord blood cells reduce parenchymal and vascular β-amyloid deposits in Alzheimer‟s 

mice.” Stem Cells and Development 17: 1-17. http://www.cryo-

intl.com/_files/_articles/full_study_report_on_Alzheimers_in_mice_and_UCB_application_Sanberg.pdf 

 

Orlic D, Kajstura J, Chimenti S, Jakoniuk I, et al (2001) “Bone Marrow Cells Regenerate 

Infarcted Myocardium.” Nature 410: 701–705. 

http://www.nature.com/nature/journal/v410/n6829/full/410701a0.html 

 

Panchision, David M (2006) “Repairing the Nervous System with Stem Cells.” NIH Stem Cell 

Reports, Chapter-3. http://stemcells.nih.gov/info/scireport/2006Chapter3.htm 

 

Passier R, van Laake LW, Mummery CL (2008) “Stem-cell-based therapy and lessons from the 

heart.” Nature 453: 322-329. 

http://www.nature.com/nature/journal/v453/n7193/full/nature07040.html 
 

Philipkoski K (2003) “Stem Cells Heal a Broken Heart.” 

http://www.wired.com/news/medtech/0,1286,57944,00.html 

  

“Rebuilding the Nervous System with Stem Cells.” (2005) NIH, Stem Cells,  

Chapter-8.  http://stemcells.nih.gov/info/scireport/PDFs/chapter8.pdf 

 

Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, et al (2006) “Intracoronary 

Bone Marrow–Derived Progenitor Cells in Acute Myocardial Infarction.” The New England 

Journal of Medicine 355: 1210-1221. http://content.nejm.org/cgi/reprint/355/12/1210.pdf 

 

Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van 

der Kooy D (2004) “Clonal identification of multipotent precursors from adult mouse pancreas 

that generate neural and pancreatic lineages.” Nature Biotechnology 22:1115-1124. 

http://www.nature.com/nbt/journal/v22/n9/full/nbt1004.html 

http://www.jneurosci.org/cgi/reprint/25/19/4694
http://www.nature.com/nature/journal/v418/n6893/pdf/nature00900.pdf
http://www.nature.com/nature/journal/v441/n7097/full/nature04960.html
http://www.sciencemag.org/cgi/reprint/1058866v1.pdf
http://www.cryo-intl.com/_files/_articles/full_study_report_on_Alzheimers_in_mice_and_UCB_application_Sanberg.pdf
http://www.cryo-intl.com/_files/_articles/full_study_report_on_Alzheimers_in_mice_and_UCB_application_Sanberg.pdf
javascript:reportglosspop('Bonemarrow')
http://www.nature.com/nature/journal/v410/n6829/full/410701a0.html
http://stemcells.nih.gov/info/scireport/2006Chapter3.htm
http://www.wired.com/news/feedback/mail/1,2330,0-31-57944,00.html
http://www.wired.com/news/medtech/0,1286,57944,00.html
http://stemcells.nih.gov/info/scireport/PDFs/chapter8.pdf
http://content.nejm.org/cgi/reprint/355/12/1210.pdf
http://www.nature.com/nbt/journal/v22/n9/full/nbt1004.html


 50 

 

Terzic A (2004) “Stable benefit of embryonic stem cell therapy in myocardial infarction.”  

American Journal of Physiology-Heart and Circulatory Physiology 287, 471-479. 

http://ajpheart.physiology.org/cgi/content/abstract/287/2/H471  

 

Zhao M, Amiel SA, Rela M, Heaton N, Huang GC (2008) “Insulin Producing Cells Derived 

from Human Bone Marrow Stromal Cells.”  IEEE Xplore. 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4548767 

 

Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) “In Vivo Reprogramming of 

Adult Pancreatic Exocrine Cells to β-Cells.” Nature 455: 627-632. 

http://www.nature.com/nature/journal/v455/n7213/full/nature07314.html 
 
  

http://www.nature.com/nature/journal/v455/n7213/full/nature07314.html/


 51 

Chapter-3: Stem Cell Ethics 

Aaron Sciore 

 

With the promise of curing diseases long ago written off as hopeless, embryonic stem(ES) cells 

have captured the awe and attention of the world.  But as is typical for a controversial technology, it also 

caught the attention of major religious leaders, who decried that the method for retrieving the ES cells 

(usually involving the destruction of a human embryo) is an affront to God and human dignity.  Primarily 

Christian groups lobbied Washington to ban all forms of ES research, leading to the 2001 compromise by 

then-President Bush, banning federal funding for creating new ES lineages while allowing research on 

previously established cell  lines (discussed in detail in Chapter-4).  This federal ban has recently been 

overturned in 2009 by President Obama, leading to the first-ever clinical human trials on ES cells.  

Although religious groups push for the use of adult stem cells (ASCs) as an alternate to ES cells, since 

their use does not destroy an embryo, ASCs are difficult to isolate, difficult to grow in vitro, and do not 

have the same potency as ES cells.  Thus, scientists continue to push hard for ES cell use.  The purpose of 

this chapter is to discuss the ethics of various types of stem cells, as an example of the impact of 

technology on society. 

 

Embryonic Stem Cell Ethics 

 The most controversial area of stem cell research is without a doubt the work done on embryonic 

stem (ES) cells.  ES cells are harvested from 4-6 day old IVF blastocysts, destroying the blastocyst in the 

process. When the process for extracting human ES cells was first published in 1998 (Thomson et al., 

1998), there was an immediate and significant backlash in the religious and philosophical community. 

Many feared the ethical implications of treating potential human lives as scientist‟s playthings. Others 

were concerned about the morality of impeding lifesaving research to placate otherwise uninvolved 
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people.  Either way, this topic has sparked a philosophical firestorm about when, in an embryo‟s 

development, does it become a person worthy of moral consideration.  

Some individuals in the scientific community take a non-religious approach to the debate, 

viewing embryos as groups of cells with no rights whatsoever.  However, this view is not shared by most 

scientists, bioethicists, and citizens who bring various religious beliefs to the debate.  After more than a 

decade since the advent of human ES cell research, each major world religion has had sufficient time to 

come to their own consensus regarding whether ES research fits within their particular code of ethics. I 

will explore briefly some of the major world religion stances on ES cells, and describe work done by 

secular bioethicists on when a human embryo becomes a person worthy of moral consideration. 

 

Christianity and Stem Cells 

With around 1/3 of the world‟s population, Christianity is the world‟s most-followed religion. 

There are many different sects within Christianity, and not all of them have the same views on stem cell 

research. The Episcopal and Methodist Churches support the harvesting of embryos left over from the 

process of in vitro fertilization (IVF), if the embryos were going to be discarded anyway (Pew Forum, 

2008).  However, most of the major Christian sects believe that it is at conception that a human life 

begins, and that even the newly fertilized zygote has a soul, and should not be purposely destroyed 

(Fleischmann, 2001).  Harvesting embryos would be murder, and Christian doctrine specifically forbids 

murder even if it would be to save another‟s life (Shannon, 2008).   

The Catholic Church has been the harshest critic of ES cell research.  In response to President 

Bush‟s 2001 ban on creating new ES cell lineages while allowing work with previously established 

lineages, the President of the U.S. Conference of Catholic Bishops said (referring to the work on the 

previous lines) “The federal government, for the first time in history, will support research that relies on 

the destruction of some defenseless human beings for the possible benefit to others...it allows our nation‟s 

research enterprise to cultivate a disrespect for human life” (Nairn, 2005).  In 2008, the U.S. Conference 

of Catholic Bishops voted 191-1 in favor of releasing a paper urging Catholics and “all people of good 



 53 

will” to stand together and denounce embryonic stem cell research as murder (UCSSB, 2008).   However 

all Christian sects, including the conservative Catholic Church (Pope Benedict XVI, 2007), have 

advocated for research with adult stem cells as an alternative to using embryos. 

 

Judaism and Stem Cells  

The Jewish view on stem cell research is more complex and uncertain than the Catholic view. 

The Torah itself does not equate the life of a fetus to that of an adult – accidentally killing a pregnant 

woman is a capital crime, but causing her to miscarry is only a fineable offense.  Abortion is considered 

murder, and is illegal under Jewish law, but it does not carry the same penalty that other murders have. 

There is scriptural writing indicating that prior to forty days, the fetus is “mere water” and not considered 

a person, but this passage‟s meaning and relevance are hotly debated, and many influential rabbis believe 

it does not override other relevant passages, such as the prohibition of „wasting seed‟ (Eisenberg, 2001). 

This interpretation still forbids pre-day 40 abortions, but has interesting implications for the topic of stem-

cell research, because excess IVF embryos are not truly humans, but are „seed‟, so using them for medical 

purposes (to try to save lives) is not wasting them at all.  Thus by this view, it would be more ethical to 

use embryos for ES cell research than to simply throw them out. 

 Although there is no complete consensus in the Jewish community regarding ES cells, all of the 

major sects of Judaism, Orthodox, Conservative, and Reform, support ES cell research.  Several major 

Jewish community leaders attended President Obama‟s signing ceremony for overturning the 2001 Bush 

ban on deriving new ES cell lines (Fingerhut, 2009). 

 

Islam and Stem Cells 

Islam is the most permissive of all the Abrahamic religions on the topic of embryonic stem cell 

research.  Islamic tradition dictates that the human fetus exists “first as a drop of matter for forty days, 

then as a blood clot for forty days, then as a blob for forty days, and then the angel is sent to breathe life 

into him” (Weckerly, 2002).  Only after 120 days does ensoulment occur.  Islamic law (Shari‟ah) carries 
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lighter punishments for causing a miscarriage within the first 40 days of pregnancy than it does for a late-

term pregnancy, and abortion laws are generally less strict for abortions before the 40-day mark (Siddiqi, 

2007). Unlike Judaism and Christianity, Muslims acknowledge that it‟s a part of nature that most 

reproductive material inevitably ends up wasted or destroyed.  Muslims are also encouraged by Shari‟ah 

to make distinctions between actual life [after 120 days] and potential life [prior to 120 days], and to 

always favor actual life (Mohammad, 2009). 

 Islamic tradition and scripture also puts significant weight on determining a family‟s lineage. 

Adoption, surrogate mothering, and sperm banks, are all forbidden under Islamic law for this reason.  In 

vitro fertilization is allowed, but only when the egg donor is married to the sperm donor and the embryo 

is implanted into the egg donor. Unless the parents want a second child, the excess embryos created by 

IVF would be completely unusable by other Muslim couples (Weckerly, 2002).  The Islamic Institute, an 

Islamic advocacy group in Washington, released a statement that “Under the Islamic principle of the 

'purposes and higher causes of the Shari'ah (Islamic law)', we believe it is a societal obligation to perform 

research on these extra [IVF] embryos instead of discarding them.”  A survey done by the same institute 

found that 71% of Muslims approve of donating excess IVF embryos for ES research, with 43% saying it 

was okay to make embryos specifically to harvest for stem cells (Ahmed, 2001). 

 

Hinduism and Buddhism and Stem Cells 

 Unlike Western theology based around rigid moral codes, Hinduism, Buddhism, and other 

Eastern-derived religions take a less absolutist approach. These religions do not have any centralized 

hierarchy, so there is no single officially sanctioned argument on stem cell research. The overarching 

moral philosophy is known as karma, a more individually-based system where people who have done 

good deeds have good karma, and are reincarnated into a better position, as well as the opposite. 

Hinduism and Buddhism both believe that a soul is given to a human being at the moment of conception, 

with the soul being reincarnated from a past life (Hughes and Keown, 1995). 
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  Hinduism deeply respects all human beings‟ right to life.  Abortion is immoral at all stages of 

development in the Hindu belief system.  However, Hinduism teaches that life and death are inseparable 

parts of the same natural cycle. Destroying life, say, by killing and eating a rabbit, is acceptable, and not 

bad karma.  According to Swami Tyagananda, a Hindu monk and chaplain for MIT and Harvard, 

consciously taking a life does not cause bad karma if it is done “in extraordinary, unavoidable 

circumstances, and always for the greater good” (Tyagananda, 2002).  In this manner, abortion is allowed 

if the mother‟s life is in danger.  The Hindu stance on embryonic stem cell research depends heavily on 

these qualifications.  The clause „extraordinary, unavoidable circumstances‟ is fairly easy to satisfy, as ES 

cells have therapeutic properties far beyond the ordinary, and it is unavoidable as to access them involves 

the death of a living being.  The „greater good‟ qualification presents a moral question not raised by 

Western religions – to what end is the scientific research going to be used?  If the goal is to advance 

knowledge and to provide treatment to people with diseases, it would be moral.  However, if embryos 

were used to make a profit, or to cure only the richest patients for exorbitant amounts of money, it would 

be immoral. 

 Similar to Hinduism, the First Precept (primary tenet) in Buddhism is to do no harm to any living 

things.  A devout Buddhist might decide against benefitting from embryonic stem cell research, as killing 

embryos would be bad karma, instead allowing himself to die so that he might be reincarnated with the 

same karma (Promta, 2004).  Unlike most Western schools of theology, Buddhism does not believe there 

is a line between naturally caused events and human caused events, as humans are inextricably part of 

nature (Hughes, 1995).  To this end, a Buddhist would contend that every embryo created by in vitro 

fertilization also has its own soul, worthy of consideration just as much as an adult human soul would be. 

Damien Keown, editor of the online Journal of Buddhist Ethics, contends that this First Precept overrules 

the medicinal prospects of ES cells, likening it to a bank robber who donates the stolen cash to charity 

(Keown, 2001). 

 But not all Buddhists subscribe to this hard-line view.  There is a gradient of Buddhist morality 

towards the harm of living beings.  Butchers are not imprisoned in Buddhist countries, despite their 



 56 

highly immoral practices of slaughtering animals for money.  Likewise, abortions, while they always 

create bad karma, are viewed to be a decision between the mother and the fetus, and rarely are abortions 

criminalized in Buddhist society (Hughes, 1995).  There are also those that interpret Buddhist tradition to 

only apply the “prohibition of harm” to sentient beings (Walters, 2004).  The Dalai Lama has contended 

the definition of a soul as inhabiting everything post-conception, stating that “It may be that what you do 

to a conglomeration of cells that have the possibility of becoming human entails no negative or karmically 

unwholesome act.  However, when you're dealing with a configuration of cells that are definitely on the 

track to becoming a human being, it's a different situation”(Dalai Lama, 2002). 

 Much like Hinduism, Buddhists believe that the more important quality to determine the karmic 

weight of an action is intent. The Dalai Lama, speaking at the 2002 Mind and Life conference, told 

scientists:  

“From the Buddhist perspective, the general line of demarcation in ethics 

is based mainly on the long-term consequences-the results of the 

scientific research. It's very difficult to distinguish the ethical status of an 

action simply by judging the nature of the action itself. Much depends on 

the actor's motivation. A 'spiritual' act with negative motivation is 

essentially wrong. A more aggressive act may seem destructive, but if 

that specific action is carried out with altruistic motivation, and the 

proper sort of goal, then it could be positive…If you as scientists have a 

sincerely compassionate motivation, and a sense of responsibility for the 

long-term implications, then carry out your work and make your 

decisions.”  (Dalai Lama, 2002) 

 

Areas of Secular Concern for Stem Cells 

 As we have seen already, there are a great deal of differing opinions on the topic of embryonic 

stem cell research.  There are the two extremes – those that believe an embryo is a human being and ES 

research is tantamount to genocide, and those who believe an embryo is merely a collection of cells with 

no moral weight whatsoever.  And in the gap is a wide variety of views aiming to determine exactly what 

moral consideration we should be giving to these embryos. Weighed against this debate is the enormous 

medical potential stem cell research has in unlocking cures and treatments for diseases previously 

considered fatal.  What follows is a summary of the work bioethicists have done in investigating these 
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concerns.  First and foremost, we must investigate the indeterminate moral status of a partially-developed 

human being.  Since we are dealing with the ramifications of destroying life, particularly human life, it is 

important to begin with a grounding in why murder itself is forbidden. 

 

-Why is Murder Bad? 

   There are two primary objections to murder, one being personal – “I wouldn‟t want to die,” and 

the other being social – “I don‟t want my friends/family to die.”  These objections are universal to people 

with sound minds, so protecting the right to life is codified and made into law.  

 We can apply these two basic objections to the destruction of embryos to get some moral clarity. 

The first notable result is that the social objection is completely meaningless in this context. No one is 

friends with an embryo, as friendship involves shared mutual interests, of which the embryo has none. 

The embryo has a family, but that family has not watched the embryo grow up, and has no emotional 

attachment to it. The other objection, the personal objection, does not go away that easily. An embryo 

may not be able to vocalize it, but avoiding death is a trait universal to all forms of life. This quality must 

still be respected, but it is still not clear how much weight it should be given. 

 

-What is a Soul? 

 Ignoring the theological implications of such a question, it is useful to invoke the concept of a 

soul to help shine light on the above question.  A soul, in this context, refers to the net sum of the goals 

and desires of any organism, including the desire to not die.  Aquinas categorized souls into three 

categories: vegetative, sensitive, and intellective.  A vegetative soul is found in all organisms, it is 

responsible for guiding a tree towards sunlight, or for processing nutrients from food. The sensitive soul 

is found in all animals, it allows the organism to react to stimuli, to feel hunger and respond by going to 

find food.  The intellective soul is human-specific, and it allows people to make rational judgments and 

engage in abstract conversation (Eberl, 2000).   
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 What kind of soul an organism has is a key factor to the amount of moral weight that organism 

should be given.  For example, a tree being cut down is not a particularly immoral action; the tree has a 

vegetative soul.  However, if there was a family of squirrels living in the tree, it would be more immoral 

to cut the tree down, thus depriving the squirrels (with a sensitive soul) of their home and comfort. This 

kind of morality that exists between the various intertwined souls in nature is called deep ecology and 

won‟t be discussed here in depth.  

 With this generalized framework, we can be more clearly about the moral consideration that an 

embryo deserves. An embryo by itself does not have the organs for either sensory or intellective behavior, 

the only reactions it can possibly make to stimuli is to differentiate. At this point, the embryo has a 

vegetative soul: it can grow, but can not do much else.  

 There is some debate over whether the embryo even has a single soul.  Prior to the formation of 

the primitive streak at around 14 days, any cell or group of cells in the ICM may break away and form its 

own, unique organism.  This is the twinning process by which identical twins are formed.  Some believe 

that since every single ES cell can theoretically become a human, that the embryo cannot be said to have a 

soul, it is only a collection of pre-ensouled cells that have not yet individualized (Shanon, 2008).  Others 

reject this, believing that even without a distinct soul, the embryo still qualifies for the moral protection 

that a vegetative soul affords (Eberl, 2000). 

 

-Potentiality 

 If the only consideration was the immediate concerns of the embryo, the debate would already be 

finished.  However, an embryo is not going to remain an undifferentiated mass of cells forever, it is only 

nine months away from becoming a human being with full human rights. This concept is called 

potentiality, and it is the primary concern most people have with embryonic stem cell research.  Not all 

embryos have the same potential to become a human.  Embryos that test positive for debilitating genetic 

defects are not considered to have the same potential to be a human as negative-testing embryos. 

Likewise, an embryo successfully implanted into the womb is considered to have a much greater potential 
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than one left over and stored in a freezer. These distinctions in potential can be categorized into two 

groups: active and passive potentials (Eberl, 2000).  A passive potential is something that can be done at 

any moment.  For example, I have the potential to cook dinner at any moment.  But, if I had taken steps to 

realize that potential, like a pot of water heating up on the stove, I would be said to have an active 

potential. An embryo successfully implanted into the uterus has a very active potential – without any 

impediments, there will be a human person born in nine months. Assuming the parents are intent on 

keeping it, this activation of potential gives the embryo an additional social moral standing – it now has a 

moral value to the parents, much in the same way that the tree had moral value to the squirrels.  

 

-Future Persons 

 Imagine a perfect world for the opponents of ES research.  Embryos are legally treated as 

persons, and can not be discarded or used for research. Each of the excess embryos that would have been 

destroyed is eventually implanted and adopted. This is a good thing, it means that suffering of human 

embryos was avoided.  But, a significant percentage of those that would be born will at one point suffer 

from a disease curable by embryonic stem cells.  Those future persons, by virtue of having developed a 

central nervous system, will feel a lot more pain than embryos with no discernable features.  While a 

person might feel justified in saving lives with this hardline policy, the cost in actual future human 

suffering is morally unacceptable (Shaw, 2008). 

 

-Research-Specific Embryos  

 While there seems to be a consensus among the bioethical community that spare IVF embryos 

should be donated to research rather than destroyed, not much has been said about embryos created solely 

for the purpose of being cannibalized for ES research. To a crusader for embryo rights, this kind of 

research seems like an unfathomable horror, reminiscent of Nazi medical handbooks and mad scientist 

ghost stories. The major religions are again divided on this issue: Muslims and Jews generally find this 

process unobjectionable, Christians of all denominations are horrified by it, and Buddhists and Hindus are 



 60 

wary of destroying life, but accept it if the research would save lives (Zoloth, 2009).  Still, the topic 

causes moral uncertainty among people regardless of religion: 40% of Muslims that accepted research on 

spare embryos were morally troubled by research-specific embryos (Ahmed, 2001).  Arguments for this 

distinction often invoke the concept of human dignity, that it degrades the meaning of human life if we 

make human life into a tool for our own uses, to just be created to be destroyed again.  Research on spare 

embryos is merely a byproduct of the in vitro fertilization process, a preferable alternative to the 

inevitable destruction of spare embryos. But it can also be said that the very procedure of IVF inherently 

instrumentalizes human life (Devolder, 2005).   Many embryos are created in a lab, but only one is chosen 

for personhood.  The rest are frozen or donated or discarded. This reckless disregard for most of the 

embryos‟ well-being is currently overlooked to benefit infertile couples.  Some say this comparison is not 

fair, as in vitro fertilization uses embryos for their designated purpose, making babies. Others contend the 

opposite, that if we are to instrumentalize an embryo, using it to save many thousands of human lives is a 

lot more ethical than using it to create one life.  Either way, the moral status of the embryo is already 

considered negligible compared to the benefit it gives to actual humans, so allowing the creation of 

embryos purely for research would not considerably devalue human dignity. 

 

Alternatives to Embryonic Stem Cell Research 

 Due to the controversial nature of embryonic stem cells, scientists have been trying to derive 

pluripotent cells from other sources. While these techniques have been successful in treating some 

diseases in animal models, they ultimately need to be tested against embryonic stem cells to ensure their 

safety. 

 

Parthenogenesis 

 Parthenogenesis, a natural process in some organisms where an egg is induced to divide without 

the presence of a sperm.  This is the method many lower organisms use for reproduction, for example to 

make worker bees and ants.  However, in humans and other mammals, parthenogenesis only causes 
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arrested early development.  Since 2002, scientists have been able to grow human parthenotes long 

enough to harvest ES cells.  This raises a very interesting question to the opponents of ES research about 

the definition of human beings. Several prominent authors in the Catholic Church argued that something 

that can never be born might not be even considered a human. Others believe that parthenogenesis is 

equally as immoral as harvesting embryos, even though the human that‟s created is fatally disfigured 

(Latkovic, 2006).  There is no solid consensus on parthenogenesis, and while it is more accepted than ES 

research, many in the Church believe it is better to be safe than sorry, especially when dealing with 

condoning what might be (to them) a massacre. 

 

Adult Stem Cells & iPS Cells 

 Adult stem cells (ASCs) are considered to be the most ethical source of stem cells, as their 

isolation does not destroy an embryo.  Treatments involving adult stem cells have been in use for decades 

(especially for hematopoietic stem cells), and are as harmful to a human to collect as a blood donation. 

All five of the major world religions approve adult stem cell research, including garnishing high praise 

from the Catholic church, declaring that “Catholic foundations and medical centers have been, and will 

continue to be, among the leading supporters of ethically responsible advances in the medical use of adult 

stem cells” (UCSSB, 2008).   In recent years, the revelation that adult somatic cells (skin fibroblast cells) 

could be reprogrammed using DNA encoding 2 to 4 transcription factors to be pluripotent (Takahashi et 

al., 2007) was hailed by opponents of ES research as the end of using embryos forever (Holden and 

Vogel, 2008). 

 

Chapter-3 Conclusion 

 The debate over stem cells has been very heated, with one side fearing for their eternal souls, 

while the other side is trying to get lifesaving cures to the public as fast as possible.  Each of the five 

major religions give different explanations based on scripture and tradition, but of them, only Christianity 

is firmly opposed to any form of embryonic research.  A secular bioethical examination of the debate calls 
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for moral consideration of the embryo, but not enough to jeopardize a potential cure to several major 

genetic illnesses.  Like all new medicines, all types of stem cell-based therapy need to be held to the 

utmost standards for safety and effectiveness.  
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Chapter 4:  Stem Cells Legalities 

Hang Nguyen 

 Stem cell research has become one of the most disputed topics of the 21
st
 century. 

Advocates say stem cell treatment is the future of regenerative medicine, and the cure of deadly 

diseases, while critics oppose using embryonic stem cells due to the destruction of an embryo. A 

recent ABC News poll (Table I) revealed that 59% of Americans support stem cell research 

while and only 35% are against it. The survey also pointed out that 6 in 10 say the government 

should overturn restrictions on federal funding of stem cell research (Langer, 2009). 

Results of ABC News Poll on American’s Support of Stem Cells as of Jan. 2009 

 Support Oppose 

All 59% 35% 

Democrats 

Independents 

Republicans 

68% 

64% 

40% 

26% 

30% 

55% 

Liberals 

Moderates 

Conservatives 

73% 

67% 

38% 

22% 

28% 

57% 
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No Religion 

White Catholics 

All Catholics 

All evangelical Protestant 

Evangelical white Protestant 

80% 

59% 

54% 

43% 

38% 

15% 

37% 

41% 

52% 

58% 

Trend   

4/15/07 60% 36% 

1/19/07 55% 38% 

Table-1: Results of ABC News poll on American Support of Stem Cells.  Question asked: Do 

you support or oppose loosening the current restrictions on federal funding for embryonic stem 

cell research? (Langer, 2009) 

 

 Despite the existence of hundreds of embryonic stem (ES) cell lines worldwide, U.S. 

scientists have been prevented from using federal money to help research these lines because of 

reoccurring legislations. This chapter will describe various regulations concerning stem cell 

research in different countries, focusing on the U.S.  

 

U.S. Federal Regulations on Stem Cell Research 

 Most recent U.S. federal regulations relating to ES cell research came out under President 

Bush‟s administration, however Bush‟s immediate predecessor, Bill Clinton, was a far greater 

supporter of human embryonic stem cell (hESC) research. In 1993, Congress and President 

Clinton gave the National Institute of Health (NIH) direct authority to fund human embryo 

research for the first time.  In response, the NIH established a panel, including scientists, 

ethicists, public policy experts, and patients‟ advocates, to consider the moral issues involved.  
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This panel made its recommendation that the use of spare embryos from in vitro fertilization 

(IVF) clinics (which are normally discarded with parental consent) for use to derive ES cell lines 

is appropriate and should receive federal funding. This suggestion created an uproar.  Within a 

year, Congress had banned the use of federal funds for any experiment in which a human embryo 

is either created or destroyed. Known as the Dickey-Wicker Amendment, this ban was actively 

renewed each year since then (Dunn, 2005) until President Obama overturned the amendment in 

2009. 

 In 1998, James Thomson (University of Wisconsin) successfully generated the first hESC 

lines using private funds (Thompson et al., 1998).  However the field demanded federal money 

to investigate more fully the potential of human ES cells, so in January of 1999, with the help of 

Harriet Rabb, the top lawyer at the Department of Health and Human Services (HHS), a turning 

point was set on the course of Clinton Administration policy. Harriet released a legal opinion 

which concluded that because human ES cells “are not human embryos within the statutory 

definition,” the Dickey-Wicker Amendment did not apply to them. Guidelines, developed by the 

NIH with input from the National Bioethics Advisory Commission, were published in August 

2000 not recommending the use of federal funds to destroy new human embryos to derive ES 

cells, but recommending federal funding on research with previously derived ES cells (Dunn, 

2005). President Clinton strongly endorsed the guidelines, and his administration was the first to 

open the door to federal funding for ES cell research.  

   As President Bush took over the office, his administration made several highly 

questionable decisions regarding stem cell research. In his State of the Union Address, Bush 

urged Congress to prohibit all human cloning; the NIH was also told to cancel its plan to review 

grant applications for hESC research (Agnew, 2003). On August 9
th

, 2001, Bush announced, 
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after much deliberation, that he would allow federally funded researchers to work with hESC 

lines as long as the cells were derived before he began his speech at 9:00 pm that day. While this 

limitation of stem cell sources was portrayed as a clever political maneuver, the scientific 

community thought that it was “an attempt at pleasing the misinformed masses while at the same 

time not entirely writing off the possibility of medical advances” (Stem Cell Laws, 2005).  

 Three months later, George W. Bush ordered an official withdrawal of funding guidelines 

that Clinton had authorized, making Bush the first President ever to reduce – below what his 

predecessor had done – the amount of hESC research eligible for federal funding (Dunn, 2005). 

On the scientific side of the problem, a year after Bush declared the new restriction of hESC 

research, the NIH crafted a model materials transfer agreement (MTA) to fund a half-dozen 

research groups that had derived hES cell lines so they could ramp up production, and also 

procured hES cells for six intramural NIH labs.  However, none of these efforts ensured the 

quality of the hES cell lines, and further research showed the majority of the lines were non 

functional.  As a result, U.S. scientists could only get their hands on 4 functional hES lines out of 

71 eligible lines on the NIH list (Holden, 2009). 

 In 2002, Bush created the Council of Bioethics with an explanation that he needed advice 

on “bioethical issues that may emerge as a consequence of advances in biomedical science and 

technology.” Since there are already several well-established organizations that could have easily 

taken on this task, such as the NIH or the American Society for Bioethics and Humanities, the 

fact that Bush felt it necessary to have his own watchdog on bioethics was an undeniable 

indication of how strong an opponent he is in hESC matter (Stem Cell Laws, 2005). In June of 

2004, 58 U.S. Senators sent a letter to President Bush urging him to expand the number of stem 

cell lines eligible for federally funded research. Earlier that April, 206 members of the U.S. 
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House of Representatives had signed a similar letter (Dunn, 2005). Yet, Bush did not change his 

position. 

 The first veto of President Bush‟s five-year-old administration was to reject Congress‟ 

bid to lift funding restrictions on hESC research. Bush reasoned that the bill “would have 

supported the taking of innocent life in the hope of finding medical benefits for others,” and that 

“it crosses a moral boundary that our decent society needs to respect.” However, “those families 

who wake up every morning to face another day with a deadly disease or a disability will not 

forget his decision to stand in the way of sound science and medical research,” said Senator 

James M. Talent (Babington, 2006). In short, hES cell issues shadowed Bush for much of his 

presidency. Although newly elected President Obama has now overturned most of President 

Bush‟s harsh hES legislation (mentioned later in this chapter), I will first discuss how individual 

states reacted to over-ride the harsh Bush federal policies. 

 

U.S. State Stem Cell Legislations 

 In general, following President Bush‟s harsh hES policies, private entities and state 

governments assumed greater responsibility for the funding of biomedical research. Individual 

U.S. states have passed a patchwork of bills to either outright ban all forms of cloning and hESC 

research, or to officially endorse hESC research and experiments involving cloned embryos. 

Several U.S. states launched campaigns against Bush‟s national policy as soon as the 9 August, 

2001 policy went into effect.  In January of 2004, New Jersey was the first state to originate a 

state-supported stem cell research facility, approving $10 million for the project. In November of 

that year, California became the lead in state funding when Californian voters accredited 

Proposition 71, a bond measure that provides $3 billion over 10 years to stem cell research, 
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including work with cloned human embryos and the stem cells they produce (Wadman, 2008).  

Rather than being despondent over the Bush veto, California Governor Arnold Schwarzenegger, 

a fellow Republician, took prompt action. He announced that the state is loaning the California 

Institute of Regenerative Medicine (CIRM) $150 million to get rolling.  

 Encouraged by California‟s success, other states followed suit, among them were New 

York, Connecticut, Maryland, Wisconsin, and Massachusetts. In June 2005, Connecticut 

Governor Jodi Rell signed into law a bill that earmarks $100 million for hES cell research over 

10 years. In 2007, the New York state government enacted a $600-million stem-cell research 

fund.  Recently, the most high-profile fight against Bush decision was in Massachusetts. In 

March of 2005, under a veto threat by former Republican Governor Mitt Romney, state 

lawmakers voted in favor of allowing hESC research to continue in Massachusetts, but this was 

overturned by Romney (Dunn, 2005).  In 2007, current Massachusetts governor Deval Patrick 

proposed $1 billion in state funding for biomedical research – half of which would be used to 

build a research center housing the nation‟s largest ES cell bank. That bill was approved by the 

MA Congress in 2008 (News in Brief, 2008), and was signed by Gov. Patrick in January 2009.   

Maryland authorized a commission to dole out $38 million, and Wisconsin is considering 

legislation to spend $750 million on research facilities (Wadman, 2008). “In 20 years, you can‟t 

imagine a major university without a stem-cell program,” said Andrew Cohn, a spokesman for 

the WiCell Research Institute, associated with the University of Wisconsin (Scherer, 2004). In 

Illinois, former Democratic Govenor Rod Blagojevich, wants state legislators to approve $100 

million for a stem cell program, and proclaimed a diverted $5 million from his budget for the 

research on top of $10 million awarded to seven Illinois Institutions (Holden, 2006). 
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Not surprisingly, opponents of hESC research immediately sprang into action. Six states, 

including Michigan, Indiana, North Dakota, South Dakota, Arkansas, and Louisiana, 

criminalized hESC research (Wadman, 2008). In 2005, Ohio Governor Bob Taft used his line-

item veto power to strike a ban on state funding of hESC research. The ban was to ensure that no 

funds under Taft‟s $500 million Third Frontier initiative heading to voters in November would 

be used for unproven research. This ban was firmly supported by pro-life organizations. Mark 

Lally, legislative director of Ohio Right to Life, told LifeNews.com: “Since adult stem cells have 

produced over 50 clinical treatments while ES cells have produced none, the legislature has 

wisely decided to invest in the only type of stem cell research that is both ethical and has 

demonstrated success.”  Rep. Mike Gilb, the Republican lawmakers who inserted the ban into 

the budget, said it is necessary because he worries ES cell research will lead to human cloning. 

After all, initial trials using ES cells proved to be somewhat disastrous, for instance, in one case, 

Parkinson‟s patients who were injected with ES cells ended up growing hair in their brains; 

while adult stem cell research proved to offer promising progress for everything from heart 

disease to breast cancer (Ertelt, 2005).  A summary of various states policies related to cloning 

and hES cells is shown in Table-II. 

  

  

 

State/Jurisdiction 

Statute Section 

 

Specifically 

permits research 

on fetus/embryo 

 

Restricts research 

on aborted fetus/ 

embryo 

 

Consent 

provisions to 

conduct research 

on fetus/embryo3 

Restricts research 

on fetus or 

embryo resulting 

from sources 

other than 

abortion 

 

Restrictions of 

purchase/sale 

human tissue 

for research 

Arizona 

§§36-2302, 2303 

No Yes, prohibits 

research on aborted 

living/non-living 

embryo or fetus 

No Yes, prohibits the 

use of public monies 

for cloning for 

research 

No 

Arkansas 

§§20-17-802, 20-

16-1001 to 1004 

No Yes, prohibits 

research on aborted 

live fetus 

Yes, consent to 

conduct research on 

aborted fetus born 

Yes, prohibits 

research on cloned 

embryos 

Yes, prohibits 

sale of fetus/fetal 

tissue 

http://www.azleg.state.az.us/ars/36/02302.htm
http://www.azleg.state.az.us/ars/36/02303.htm
http://170.94.58.9/data/ar_code.asp
http://170.94.58.9/data/ar_code.asp
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dead 

California Health & 

Safety 2004 

Proposition 71 §§ 

123440, 24185, 

12115-7, 125300-

320 

Yes, permits 

research on adult 

and embryonic stem 

cells from any 

source 

Yes, prohibits 

research on aborted 

live fetus 

Yes, consent to 

donate IVF embryo 

to research 

Prohibits sale of 

embryos and 

oocytes; prohibits 

payment in excess 

of the amount of 

reimbursement of 

expenses to be 

made to any 

research subject to 

encourage her to 

produce human 

oocytes for the 

purposes of medical 

research 

Yes, prohibits 

sale for the 

purpose of 

reproductive 

cloning or for 

stem cell 

research 

Connecticut 

§§4-28e; 19a-32d 

et seq. 

Yes, on embryos 

before gastrulation 

(a process during 

embryonic 

development) 

 No Yes, consent to 

donate IVF embryo 

to research 

 No Yes, prohibits 

payment for 

embryos, 

embryonic stem 

cells unfertilized 

eggs or sperm 

donated 

following IVF 

treatment  

Florida 

§390.0111 

No Yes, prohibits on 

aborted live fetus 

No No No 

Illinois 

720 ILCS 510/6, 

510/12.1 

Executive Order 6 

(2005);410 ILCS 

110/1 et seq. 

Yes, permits 

research on 

embryonic stem 

cells, embryonic 

germ cells and adult 

stem cells from any 

source 

Yes, prohibits on 

aborted living/ 

nonliving fetus 

Yes, written consent 

to perform research 

on cells or tissues 

from a dead fetus 

other than from an 

abortion 

Yes, prohibits 

research on 

fetus/fertilized 

embryo; prohibits 

funding under E.O. 

6 (2005) of research 

on fetuses from 

induced abortions 

and the creation 

of embryos through 

the combination of 

gametes solely for 

the purpose of 

research 

Yes, prohibits 

sale of fetus/fetal 

tissue; prohibits 

purchase or sale 

of embryonic or 

fetal cadaveric 

tissue for 

research but 

permits 

reimbursement 

for removal, 

storage and 

transportation for 

research 

Indiana 

§35-46-5-1, 16-18-

2-5.5 

Yes, permits fetal 

stem cell research 

on placenta, cord 

blood, amniotic fluid 

or fetal tissue 

Yes, prohibits 

research on aborted 

living/non-living 

embryo or fetus 

Yes, consent 

required for fetal 

stem cell research 

Yes, prohibits 

research on cloned 

embryos 

Yes, prohibits 

sale of human 

ovum, zygote, 

embryo or fetus 

Iowa 

§§707C.4 

Yes, ensures that 

Iowa patients have 

access to stem cell 

No No No Yes, prohibits 

transfer or 

receipt of the 

http://www.lao.ca.gov/ballot/2004/71_11_2004.htm
http://www.lao.ca.gov/ballot/2004/71_11_2004.htm
http://www.leginfo.ca.gov/calaw.html
http://www.leginfo.ca.gov/calaw.html
http://www.leginfo.ca.gov/calaw.html
http://www.cga.ct.gov/
http://www.cga.ct.gov/
http://www.leg.state.fl.us/statutes/index.cfm?App_mode=Display_Statute&amp;amp;Search_String=&amp;amp;URL=Ch0390/SEC0111.HTM&amp;amp;Title=-%3e2002-%3eCh0390-%3eSection%200111
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1928&ChapAct=720%26nbsp%3BILCS%26nbsp%3B510%2F&ChapterID=53&ChapterName=CRIMINAL+OFFENSES&ActName=Illinois+Abortion+Law+of+1975%2E
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1928&ChapAct=720%26nbsp%3BILCS%26nbsp%3B510%2F&ChapterID=53&ChapterName=CRIMINAL+OFFENSES&ActName=Illinois+Abortion+Law+of+1975%2E
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1928&ChapAct=720%26nbsp%3BILCS%26nbsp%3B510%2F&ChapterID=53&ChapterName=CRIMINAL+OFFENSES&ActName=Illinois+Abortion+Law+of+1975%2E
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1928&ChapAct=720%26nbsp%3BILCS%26nbsp%3B510%2F&ChapterID=53&ChapterName=CRIMINAL+OFFENSES&ActName=Illinois+Abortion+Law+of+1975%2E
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=2938&ChapAct=410%26nbsp%3BILCS%26nbsp%3B110%2F&ChapterID=35&ChapterName=PUBLIC+HEALTH&ActName=Stem+Cell+Research+and+Human+Cloning+Prohibition+Act%2E
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=2938&ChapAct=410%26nbsp%3BILCS%26nbsp%3B110%2F&ChapterID=35&ChapterName=PUBLIC+HEALTH&ActName=Stem+Cell+Research+and+Human+Cloning+Prohibition+Act%2E
http://www.in.gov/legislative/ic/code/title35/ar46/ch5.html
http://www.in.gov/legislative/ic/code/title16/ar18/ch2.html
http://www.in.gov/legislative/ic/code/title16/ar18/ch2.html
http://www.legis.state.ia.us/
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therapies and cures 

and Iowa 

researchers may 

conduct stem cell 

research 

product of human 

reproductive 

cloning 

Kentucky 

§436.026 

No No No No Yes, prohibits 

sale of fetus/fetal 

tissue 

Louisiana 

§14: 87.2 

No No No Yes, prohibits 

research 

on fetus/embryo in 

utero, in vitro 

fertilized embryo 

No 

Maine 

22§1593 

No No No Yes, prohibits 

research on 

fetus/embryo born 

or extracted alive, 

only applies to in 

vitro fertilized 

embryos post-

implantation 

Yes, prohibits 

sale of fetus/fetal 

tissue 

Maryland 

83A§5-2B-01 et seq. 

Yes, permits 

research on adult 

and embryonic stem 

cells 

 No Yes, written consent 

to donate unused 

IVF material to 

research 

Yes, prohibits 

donation of unused 

oocytes for state 

funded stem cell 

research; cloning of 

an organism beyond 

the embryonic stage 

is prohibited 

Yes, prohibits 

valuable 

consideration for 

the donation or 

production of IVF 

material 

Massachusetts 

112§12J, 2005 SB 

2039 

Yes, on embryos 

that have not 

experienced more 

than 14 days of 

development (not 

including days 

frozen) 

Yes, prohibits 

research on 

embryo/live fetus 

Yes, written consent 

to perform research 

on a dead fetus and 

informed consent to 

donate egg, sperm, 

or unused 

preimplantation 

embryos created for 

IVF 

Yes, prohibits 

research on live 

embryo or fetus; 

also prohibits 

creation of fertilized 

embryo solely for 

research 

Yes, prohibits 

sale of neonate, 

embryo or fetus 

for illegal 

purposes; 

prohibits sale of 

embryos, 

gametes or 

cadaveric tissue 

for research 

Michigan 

§§333.2687-2688, 

§§333.16274-

16275, 333.20197, 

333.26401-26403, 

750.430a 

No Yes, live embryo/ 

fetus 

Yes, written consent 

of mother to donate 

dead embryo, fetus 

or neonate to 

research 

Yes, prohibits 

research on a live 

embryo or fetus, 

cloned embryo 

No 

http://www.lrc.state.ky.us/KRS/436-00/026.PDF
http://www.legis.state.la.us/lss/lss.asp?doc=78690
http://janus.state.me.us/legis/statutes/22/title22sec1593.html
http://michie.lexisnexis.com/maryland/lpext.dll?f=templates&fn=main-h.htm&cp=
http://www.state.ma.us/legis/laws/mgl/112-12j.htm
http://www.mass.gov/legis/bills/senate/st02/st02039.htm
http://www.mass.gov/legis/bills/senate/st02/st02039.htm
http://www.legislature.mi.gov/mileg.asp?page=chapterIndex
http://www.legislature.mi.gov/mileg.asp?page=chapterIndex
http://www.legislature.mi.gov/mileg.asp?page=chapterIndex
http://www.legislature.mi.gov/mileg.asp?page=chapterIndex
http://www.legislature.mi.gov/mileg.asp?page=chapterIndex
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Minnesota 

§§145.421, 422 

No No No Yes, prohibits 

research on a live 

embryo or fetus up 

to 265 days post 

fertilization 

Yes, permits the 

sale/purchase of 

cell culture lines 

from nonliving 

human conceptus 

Missouri 

§§188.036, 037 

No Yes, prohibits 

research on a fetus 

alive pre-abortion 

No No Yes, prohibits 

receipt of 

valuable 

consideration for 

aborted fetal 

organs or tissue 

Montana 

§50-20-108(3) 

No Yes, prohibits 

research on a live 

fetus 

No No No 

Nebraska 

§§28-342, 346, 71-

7606 

No Yes, prohibits 

research on aborted 

live fetus or the use 

of state funds for 

research on fetal 

tissue obtained from 

an abortion 

No Yes, limits the use 

of state funds for 

embryonic stem cell 

research; 

restrictions only 

apply to state 

healthcare cash 

funds provided 

by tobacco 

settlement dollars 

Yes, prohibits 

sale, distribution 

or donation of 

viable aborted 

child 

New Hampshire 

§§168-B:1, 15  

No No No Yes, prohibits the 

maintenance of a 

unfrozen fertilized 

pre-embryo past 14 

days 

Yes 

New Jersey 

C.26:2Z-1 et seq.; 

C.2C:11A-1 

Yes No Yes No No 

New Mexico 

§24-9A-1, 3, 5 

No No No Yes, prohibits 

research on a 

fetus/embryo born 

or extracted alive, 

only applies to in 

vitro fertilized 

embryos post-

implantation 

Yes, prohibits 

abortion for the 

purpose of selling 

the fetus to 

researchers 

New York  

Public Health Law 

Article 2, Title 5A 

Yes, permits 

research on adult 

and embryonic stem 

cells from any 

source 

No No     

North Dakota No Yes, prohibits Yes, requires Yes, prohibits Yes, prohibits the 

http://www.revisor.leg.state.mn.us/stats/
http://www.moga.mo.gov/statutes/c100-199/1880000036.htm
http://www.moga.mo.gov/statutes/c100-199/1880000037.htm
http://data.opi.state.mt.us/bills/mca/50/20/50-20-108.htm
http://uniweb.legislature.ne.gov/LegalDocs/view.php?page=s2803042000
http://uniweb.legislature.ne.gov/QS/laws.php?mode=view_sta&sta=s2803046000
http://uniweb.legislature.ne.gov/QS/laws.php?mode=view_sta&sta=s7176006000
http://uniweb.legislature.ne.gov/QS/laws.php?mode=view_sta&sta=s7176006000
http://www.gencourt.state.nh.us/rsa/html/XII/168-B/168-B-1.htm
http://www.gencourt.state.nh.us/rsa/html/XII/168-B/168-B-15.htm
http://www.njleg.state.nj.us/2002/Bills/PL03/203_.PDF
http://www.njleg.state.nj.us/2002/Bills/PL03/203_.PDF
http://www.conwaygreene.com/nmsu/lpext.dll?f=templates&fn=main-h.htm&2.0
http://public.leginfo.state.ny.us/menugetf.cgi?COMMONQUERY=LAWS
http://public.leginfo.state.ny.us/menugetf.cgi?COMMONQUERY=LAWS
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§14-02.2-01, 2; 

2003 HB 1424 

research on a 

living/non-living 

embryo or fetus 

consent to conduct 

research on a 

nonliving fetus or 

embryo other than 

from an abortion 

research on a fetus 

born or extracted 

alive; cloned 

embryos 

sale of a fetus to 

be used for illegal 

purposes 

Ohio 

§2919.14 

No Yes, prohibits 

research on a 

living/non-living 

embryo or fetus 

No No Yes, prohibits 

sale of fetus or 

fetal remains 

from an abortion 

Oklahoma 

63 §1-735 

No Yes, prohibits 

research on a 

fetus/embryo 

No No Yes, prohibits 

sale of fetus or 

fetal remains 

Pennsylvania 

18 §§3203, 3216 

No Yes, prohibits 

research on a live 

embryo or fetus 

Consideration may 

not be given to 

mothers consenting 

to research; in 

cases involving 

abortion, consent 

must be provided 

after decision to 

abort 

No Yes, 

consideration 

may not be given 

to mothers 

consenting to 

research or other 

transferring 

tissue except for 

expenses 

involved in actual 

retrieval, storage, 

etc. 

Rhode Island 

§11-54-1 

No No Yes Yes, prohibits 

research on a 

fetus/embryo born 

or extracted alive, 

only applies to in 

vitro fertilized 

embryos post-

implantation 

Yes, prohibits 

sale of neonate, 

embryo or fetus 

for illegal 

purposes 

South Dakota 

§§34-14-16, 17, 20; 

34-23A-17 

No Yes, prohibits 

research on a 

living/non-living 

embryo or fetus 

No Yes, prohibits 

research on embryo 

outside of a 

woman's body; 

research on cells or 

tissues derived from 

an embryo outside a 

woman's body 

Yes, prohibits 

sale of embryo 

Tennessee 

§39-15-208 

No No Yes, consent 

required to conduct 

research on aborted 

fetus 

No Yes, prohibits 

sale of aborted 

fetus 

Texas Penal 

Code §48.02 

No No No No Prohibits sale of 

fetus/fetal tissue 

Utah 

§§76-7-301, 310 

No No No Yes, prohibits 

research on a live 

Yes, prohibits 

sale of fetus/fetal 

http://www.legis.nd.gov/cencode/t14c022.pdf
http://www.legis.nd.gov/assembly/58-2003/bill-text/DAUB0400.pdf
http://codes.ohio.gov/orc/2919.14
http://www.lsb.state.ok.us/
http://members.aol.com/StatutesP5/18PA3203.html
http://members.aol.com/StatutesP5/18PA3216.html
http://www.rilin.state.ri.us/Statutes/TITLE11/11-54/11-54-1.HTM
http://legis.state.sd.us/statutes/DisplayStatute.aspx?Statute=34-14&Type=Statute
http://legis.state.sd.us/statutes/DisplayStatute.aspx?Type=Statute&Statute=34-23A-17
http://www.michie.com/tennessee/lpext.dll?f=templates&fn=main-h.htm&cp=
http://tlo2.tlc.state.tx.us/statutes/docs/PE/content/htm/pe.010.00.000048.00.htm#48.02.00
http://le.utah.gov/~code/TITLE76/htm/76_07_030100.htm
http://le.utah.gov/~code/TITLE76/htm/76_07_031000.htm
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fetus, fertilized 

embryo post-

implantation1 

tissue; also 

prohibits sale of 

live unborn 

children, which is 

not defined, but 

are referred to in 

abortion statute1 

Virginia 

§32.1-162.32-2 

No No No May prohibit 

research on a 

cloned embryo or 

fetus2 

Yes, prohibits 

shipping or 

receiving of the 

product of human 

cloning for 

commerce2 

Wyoming 

§35-6-115 

No No No No Yes, prohibits 

sale, distribution 

or donation of 

live or viable 

aborted child, 

defined to include 

embryos, for 

experimentation 

Table-2: Summary of American States’ Stem Cell Policies. 

(Source: Stem Cell Research,  2008) 

 

  

  

 Private plans to get stem cell research moving were positively embraced at many 

prominent U.S. universities. In December of 2002, Stanford University in California used non-

federal money to establish its Institute for Cancer/Stem Cell Biology and Medicine in an attempt 

to resolve funding and oversight dilemmas in the controversial hES field. The University of 

California - San Francisco, Johns Hopkins University in Baltimore, Maryland, and Harvard 

University in Cambridge, Massachusetts opened similar institutes. Besides developing new 

therapies for chronic diseases and cancer, it was quite feasible that these institutions would 

eventually use a method called therapeutic cloning, or somatic-cell nuclear transfer, to create 

new ES cell lines  that are patient-specific (Check, 2002), though this has not yet happened for 

humans (except for iPS cells recently derived from patient fibroblasts). 

http://www.ncsl.org/IssuesResearch/Health/EmbryonicandFetalResearchLaws/tabid/14413/Default.aspx#1
http://www.ncsl.org/IssuesResearch/Health/EmbryonicandFetalResearchLaws/tabid/14413/Default.aspx#1
http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+TOC3201000
http://www.ncsl.org/IssuesResearch/Health/EmbryonicandFetalResearchLaws/tabid/14413/Default.aspx#2
http://www.ncsl.org/IssuesResearch/Health/EmbryonicandFetalResearchLaws/tabid/14413/Default.aspx#2
http://legisweb.state.wy.us/statutes/statutes.aspx
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    The Bush administrative regulations limiting federal funding for hESC research left much to 

be desired for researchers. Many scientists wanted to work with stem cell lines beyond those 

derived before August 2001, thus, state policies designating funding for hESC research in recent 

years have lured top biotech companies and biologists to their research institutions. While some 

state legislatures at least considered bans against ES cell research due to ethical issues, other 

states have been clamoring to pass legislation to offer more funding.  

 

Obama Administration:  A Fresh Start for hESC Research 

 The moment President-elect Barack Obama took office he swept away the Bush 

Administration‟s restriction on federal funding for hES cell research in a move long anticipated 

by the U.S. scientific community.  Researchers at the NIH and the CIRM made it no secret, “I 

think everybody here is incredibly excited about the new Administration,” said Story Landis, 

director of the National Institute of Neurological Disorders and Stroke and chair of the NIH Stem 

Cell Task Force (Holden, 2008). “Since Obama was elected, the pharmaceutical industry is 

clearly much more interested in stem cells,” CIRM President Alan Trounson added, “that will be 

a really big help when we‟re working through costly and difficult clinical trials to get treatments 

to patients” (Hayden, 2009). 

 Within 3 months of his inauguration, as expected, President Obama signed an executive 

order supporting stem cell research on 9 March 2009 at a White House ceremony attended by 

scientists, lawmakers, patients, and patient advocates. “We will vigorously support scientists 

who pursue this research,” Obama said. “And we will aim for America to lead the world in the 

discoveries it one day may yield” (Hayden, 2009). The new order explicitly permits federal 
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funding for research on ES cell lines derived with parental consent from embryos left over at 

fertility clinics and otherwise slated for destruction. Estimates of the number of new lines range 

from 400 to 1,000. Picking up where the Clinton Administration left off in 2000, work is already 

under way at the NIH in Bethesda, Maryland, to develop guidelines covering the eligibility of 

various cell lines for federal funding. Some of the scientists are already proposing using the new 

ES cell lines in applications with $200 million in NIH „Challenge‟ grants, which will be funded 

by the economic stimulus package (Hayden, 2009).  

 The question now under debate is whether the federally funded ES cell work will still be 

limited to lines derived from surplus fertility clinic embryos, or whether the government will 

accept the use of lines from embryos that have been created solely for research. Many scientists 

would like to work with lines created through research cloning, or somatic cell nuclear transfer 

(SCNT). The NIH Stem Cell Guidelines, to be finalized this summer 2009, will give the 

scientists an answer. The draft that came out in April this year, though not perfect, was a big 

improvement over what scientists had been living with since 2001. The number of hESC lines 

available to researchers was largely expanded by eliminating the cutoff date for cell lines that 

qualify for federal funding.  But some restrictions remain: the ES cell lines must be derived from 

surplus embryos donated by couples receiving fertility treatment; not eligible are ES cell lines 

derived from other sources, including in vitro fertilization (IVF) embryos created for research 

purposes, SCNT, and parthenogenesis. Funding continues to be allowed for research with 

induced pluripotent stem (iPS) cells – cultivated from adult cells but which have some properties 

of ES cells – which many think will offer the same promise as cells from SCNT. NIH will not 

fund work that involves the possible introduction of pluripotent human cells (either iPS cells or 

ES cells) into the germ lines of any animals, a restriction recommended by the academies‟ report. 
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Parthenotes, which are short-lived embryos created from an unfertilized egg, are also forbidden, 

as they qualify as human embryos under the Dickey-Wicker amendment (Holden and Kaiser, 

2009).   

 Some researchers are really concerned about just how many of the existing hESC lines 

will be eligible, given NIH‟s detailed requirements on informed consent. Prominent Stanford 

University School of Medicine stem cell researcher Irving Weissman says the proposed ban on 

SCNT goes against the policy implied by Obama‟s earlier comments. “The NIH has not served 

its president well. There is no prohibition on SCNT in guidelines established by the International 

Society for Stem Cell Research (ISSCR) or by the National Academies,” said Weissman in a 

statement. Most researchers, however, share the sentiments of Sean Morrison of the University 

of Michigan Medical School in Ann Arbor, who says the proposed policy is “a huge advance and 

a reasonable compromise” (Holden and Kaiser, 2009).  

 Attitudes towards Obama‟s policy on stem cell research are starkly divided. While 

scientists and research advocates worldwide are celebrating the removal of rules restricting 

research on hESCs in the United States, which is said to have interfered the field‟s progress for 

seven and a half years; those who oppose the research criticized Obama for not investigating the 

situation thoroughly before making his decision.      
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International Stem Cell Policies 

European Union 

 Only days after U.S. President Bush vetoed a bill that would have significantly broadened 

federal funding for hESC research, European Union (EU) ministers gave the green light to 

funding guidelines similar to the U.S. proposal. The seventh Framework Programme for research 

FP7, which is worth about $63 billion, started in January 2007 and runs until 2013. Although the 

council does not directly finance the destruction of human embryos, that means researchers 

cannot use FP7 funding to derive their own cell lines from embryos left over from IVF 

procedures, but they are able to use the money to buy hESC lines from other sources (Wadman 

and Abbott, 2006). 

 

United Kingdom  

 In March 2002, a research group from King‟s College in London received one of the first 

licenses from the United Kingdom‟s Human Fertilisation and Embryology Authority (UKHFEA) 

to isolate stem cells from human embryos and establish cultures of stem cells that could be 

propagated or frozen. Three separate stem cell populations from 58 embryos came into existence. 

Although the creation of cell lines was not a surprise, the availability of these cells was 

significant because this was the first scientific publication describing the isolation of stem cells 

under government guidelines specific to stem cell research. More important, those lines are to be 

deposited in the UK‟s Stem Cell Bank, and will be accessible for more experiments (Garfinkle, 

2004). 

 hESC research field in the UK advanced when the UKHFEA granted a license to the 

Newcastle Center for Life on August 11, 2004, specifying that colonies of hESCs can be created 
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for research purposes but not for cloning a human being. After a year, the researchers may 

continue to work on any stem cell lines they have established though they could not do cloning 

or stem cell isolation unless a new license is issued (Garfinkle, 2004). 

Germany 

 In few countries has the soul-searching over promises and pitfalls of biotechnology been 

as intense as in Germany, in part because of the Nazis‟ grisly legacy of experimentation in 

eugenics.  In January 2002, when the German parliament voted on the importation of embryonic 

stem-cells, 340 out of 618 parliamentarians voted in agreement but only if the process would be 

kept under close government control. Although this decision to allow the limited import of 

embryonic stem cells may appear to be liberalization, it actually signified a tightening of 

restrictions for researchers. Existing German law banned research on human embryos and only 

allows the laboratory creation of an embryo for the purposes of IVF, yet it does not take into 

account the discovery of stem cells, thus did not explicitly ban their importation. Now that the 

parliament decided to prohibit German researchers from creating their own cells and only use 

stem cells that have already been created, “this means we‟ll have to do research with cells that 

will soon be obsolete,” said Dr. Kekule , director of the Institute for Medical Microbiology in 

Halle (Kim, 2002). 

 In 2006, Germany expressed its firm stand against ES cell research by calling for EU-

wide ban on stem cell research. Germany, along with Austria, Poland, Slovakia, Slovenia, and 

Luxembourg, put pressure on a number of European countries to reject a proposal that would 

make EU money available for stem-cell projects if the same kind of research is prohibited in 

some member states. On the other hand, Finland, who held the rotating EU presidency at the 
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time, recommended funding for research on human stem cells but prohibits money being given 

to projects dealing with human reproductive cloning, human genetic modification, or the creation 

of human embryos for scientific research (Deutsche Welle, 2006). 

Sweden 

 Sweden, considered to be at the forefront of stem cell science and technology, is ahead of 

many other countries with their legislations and the recent funding of a national stem cell bank. 

In September 2002, the Swedish National Research Council granted about $1 million to fund a 

national stem cell bank for three years. The framework for legislation and ethical guidelines for 

stem-cell research has been worked out quietly and reasonably fast in Sweden. Sweden allows 

stem cells to be taken from embryos that can no longer be used for further IVF treatment. The 

use of SCNT (using genetic material from a patient‟s own skin fibroblast cells to create embryos 

to derive ES cell lines for therapeutic purposes) is allowed in Sweden, even though this has not 

yet been pursued (Sweden‟s Stem Cell Success, 2002). Government funding has poured into the 

field, and because of its success, money from outside the country has also come in. In March 

2002, a joint US-Swedish research program was announced, securing $7.5 million funding for 

stem-cell research in the country. In September of the same year, the Swedish Research Council 

granted $4.5 million for a period of three years in research funds to nine projects and two 

extensive networks. Later in the fall, an additional $500,000 was awarded for research on ethical 

and legal issues (Sweden‟s Stem Cell Success, 2002). 

Australia 

 “Australia bans all human cloning whether for reproduction or research. This includes a 

ban on embryo splitting and other techniques that might create a clone without fertilization. But 
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Australia does allow the use of embryos remaining after assisted reproduction, as long as those 

embryos were created before 5 April 2002. This federal law supersedes all previous state-level 

laws concerning cells and cloning research” (Garfinkle, 2004).  

 Figure-1 shows a world map with countries color-coded depending on whether their stem 

cell policies are permissive (dark brown), flexible (light brown), or restrictive (yellow).  An 

explanation of the various levels follows the figure. 

 

Figure-1: World Map of Various ES Cell Research Policies. Countries colored in brown (permissive 

policies) represent about 3.8 billion people, more than half the world's population. All of them except the 

U.S. have banned by law human reproductive cloning. (Hoffman, 2005) 

Map Explanation  

 "Permissive" = various embryonic stem cell derivation techniques including SCNT, 

also called research or therapeutic cloning. SCNT is the transfer of a cell nucleus from a 
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somatic or body cell into an egg from which the nucleus has been removed. Countries in 

this category include Australia, Belgium, China, India, Israel, Japan, Singapore, South 

Korea, Sweden, the United Kingdom and others. These countries represent a global 

population of more than 2.7 billion people.  

 "Flexible" = derivations from fertility clinic donations only, excluding SCNT, and 

often under certain restrictions. Countries in this category include Brazil, Canada, France, 

Iran, South Africa, Spain, The Netherlands, Taiwan, and others. These countries 

represent a global population of more than 700 million people.  

 “Restrictive policy or no established policy.” Restrictive policies range from outright 

prohibition of human embryo research to permitting research on imported embryonic 

stem cell lines only to permitting research on a limited number of previously established 

stem cell lines. Countries with a restrictive policy include Austria, Germany, Ireland, 

Italy, Norway, and Poland.  

 Map is designed to reflect national policy and whether or not public funds may be used 

to pursue stem cell research using IVF embryos donated from fertility clinics.  

 The black dots show the locations of some of the leading genome sequencing research 

centers. Most U.S. centers are those that have been involved in the Human Genome 

Project. The genome sequencing centers are meant to indicate the level of scientific 

infrastructure and not whether stem cell genomic studies are being conducted at a given 

center. The dots are linked to center web sites.  

 California in the U.S. supports embryonic stem cell research through Proposition 71, a 

$3 billion bonding initiative that is projected to provide about $300 million in stem cell 

research funding annually for 10 years. Approved by California voters Nov. 2, 2004, 
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Proposition 71 establishes a state constitutional right to pursue stem cell research, 

including through SCNT or research/therapeutic cloning, and prohibits funding of human 

reproductive cloning research.  

 Map is a Mercator projection that exaggerates the size of areas far from the equator.  

 

Chapter-4  Conclusions 

 Laws on stem cell research vary widely across countries and even across states within 

large countries like the U.S. Ethical controversies surrounding hESCs drive the process of 

decision-making to complication. In a country with huge political divides from state to state like 

the U.S., it takes a tremendous amount of effort at both federal and state levels to reach a 

compromise so that scientists can do their job without hitting a road-block. In Europe, there is a 

wide variation in governments‟ regulations on stem-cell research, with countries like the UK 

encouraging it, while countries like Germany enforce a near total ban on it. 

 ES cells represent the future of modern biotechnology and medicine, and it would be a 

mistake for human beings not to take a chance on this controversial technology. People must 

begin to realize the potential medical benefits of ES cell research, and support ongoing research 

to create alternative sources for ES cells that would be more widely accepted. Expanding stem-

cell research in all countries, while mandating careful and cautious oversights is the best option.  
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PROJECT CONCLUSIONS 
 

 

 After examining the sources, applications, ethics, and legality of stem cells, the authors of 

this IQP actively encourage the use of all types of stem cells for therapeutic and research 

purposes.  Stem cells are some of the most powerful, and in some cases, only, tools for curing 

deadly genetic diseases.  While many people, specifically some Christian denominations, have 

ethical concerns with embryonic stem (ES) cells, we feel that all stem cell sources should be 

tapped, as each has its own unique advantages and drawbacks. There have been great advances 

in the field of adult stem cells, particularly with the development of induced pluripotent stem 

(iPS) cells, but there are still many unanswered questions about their efficiency and safety 

compared to ES cells. A human embryo is still human, and should be afforded some moral 

consideration, but it is the authors‟ opinion that this moral value does not outweigh the potential 

for adult humans to vastly improve their quality of life.  Like all new and powerful technologies, 

stem cells should be strictly regulated to prevent trivial non-medical uses. We believe that stem 

cell testing for various diseases should be continued, and the potential for therapeutic failure is 

not sufficient to discourage stem cell research, rather, it is important that stem cells be 

thoroughly investigated to minimize therapy failures. We applaud President Obama for his 

decision to allow federal research grants for ES research, and hope that this is a new beginning 

for many present and future lives and wellbeing. 

 


