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Abstract

In a world of big data, non-probability samples are fast and easy to collect, and the responses can be binary.
Traditional design surveys, where probability theory plays an important role, require enormous planning and
are very expensive. Typically, to reduce cost and save time, large data sets are collected using haphazard
methods instead of designed surveys. An issue with big data is that the selection probabilities are unknown
and descriptive summaries are generally biased. It is often the case that selection probabilities are related
to the covariates and the binary response variable, and selection is not at random (SNAR); the samples
and non-samples are not random samples from the population. The main contribution of our research is a
methodology for correcting selection bias in nonprobability samples with binary response and appropriate
covariates.

To study binary response data and to deal with the sampling bias that comes from the SNAR mechanism
in a single area, we propose a non-ignorable selection model that uses a double logistic regression to link the
response model with the selection model. When selection is at random (SAR), a single logistic regression
model could be used to serve as an ignorable selection model (a link to the selection mechanism is not
needed). Both models are fit using full Bayesian methods. We use simulation studies to evaluate the ability
of the non-ignorable selection model to adjust for the selection bias from the SNAR mechanism. The
results show that when samples are SNAR, the non-ignorable selection model gives unbiased population
proportion prediction, and when samples are SAR, the non-ignorable selection model performs similarly
to the ignorable selection model. We also demonstrate the use of the model with real data from the Third
National Health and Nutrition Examination Survey (NHANES III), where a binary version of body mass
index is derived as the response with demographic covariates (age, race, sex). Additional work includes a
study on priors and a methodology for situations where individual covariates are typically unknown for the
non-sampled population, but other sources of data are integrated into the ensemble.

We extend the non-ignorable selection model to incorporate area level information, which is accom-
modated using random effects in the response sub-model and selection sub-model respectively. Small area
estimation has become enormously important where inference from one area cannot be reliably made. Both
the non-ignorable and ignorable selection models are applied to simulated data sets and real data from
NHANES III with thirty-five counties. Furthermore, we develop two variations of this model using (a) more
robust assumptions by assigning Dirichlet process priors to the random effects, and (b) a bivariate model to
incorporate the correlation of the two sets of random effects.

Key Words: Bayesian hierarchical model, Dirichlet Process, Double logistic regression, Metropolis– Hast-

ings sampler, Selectivity, Small area estimation.
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Chapter 1

Introduction

Traditionally, the objective of data collection is to obtain a sample that is an accurate representation

of the target population in the sense that it reflects all aspects of the population adequately. The

selection of such samples is guided by an underlying probabilistic mechanism which ensures that

each and every population unit has a positive probability of being selected.

However, obtaining a representative probability sample is often prohibitively difficult in the

real world due to various constraints. Even if a probability sampling plan is implemented, it is a

difficult task to obtain the requisite responses from the selected sample units. According to the

Pew Research Center, the response rate in telephone surveys dropped from 36% in 1997 to only

9% in 2012. Such low response rates cast doubts on the validity of probability samples as a proper

representation of the population.

Those considerations along with an explosion of data being generated through various channels

have led to an upsurge in the usage of non-probability sampling schemes. However, these obtained

samples often suffer from selection and hidden biases. Beaumont (2020) and Rao (2020) review

available methods that use data from a non-probability source, as well as the literature on integrat-

ing data of a probability and non-probability sample, and conclude that the recent methods are not

reliable and general enough to eliminate the use of probability surveys. Therefore, this indicates
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that more research is called for in this field.

The primary objective of this research is to propose a methodology that is aimed at reducing

selection bias when there is a significant difference between sampled and non-sampled units. In

this chapter, we discuss the main concepts in non-probability sampling and the currently used

methodologies to follow. Some basic concepts relating to non-probability sampling and types of

missingness are presented in Sections 1.1 and 1.2 respectively, a review of statistical approaches

and some statistical backgrounds are presented in Sections 1.3 and 1.4, and notation is presented

in Section 1.5. An overview of contributions of this research is discussed in Section 1.6.

1.1 Non-probability Sampling Methods

Since early work on observational studies of smoking and disease (Doll and Hill, 1964), non-

random sampling (known as non-probability sampling) methods have increased in both complexity

and use. In recent decades non-probability sampling holds the potential for providing a faster,

cheaper, and easier way to collect data compared to the traditional probability sampling method. In

order to explore the applicability of non-probability sampling schemes, the American Association

of Public Opinion Research (AAPOR) conducted a task force that outlined various forms of non-

probability sampling schemes (Baker, 2013).

Convenience sampling is a widespread sampling method in psychology (Presser, 1984), litiga-

tion research (Diamond, 2000), and medical research (Couper, 2007). It is a technique in which

the ease that potential participants can be located or recruited is the primary consideration, i.e.,

the samples are selected based on their convenience for researchers. Sampling methods such as

mall-intercept samples, volunteer samples, river samples, and snowball samples, are in the cate-

gory of convenience sampling. Since those non-probability samples are often self-selected and/or

homogeneous (e.g., river samples, where respondents are visiting the same website, are normally

homogeneous), one could not use a randomization approach to make inference from such samples.
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Quota sampling is another kind of non-probability sampling technique that uses sample match-

ing and stratification. In quota sampling, the objective is to obtain the samples that ‘mirror’ the

target population in terms of characteristics such as age, race and gender. In the UK, National

Opinion Polls have consistently employed random samples while the Gallup Poll has used quota

samples. Smith (1983) compared the survey results for the elections from 1959 to 1979 with the

actual outcomes. From the comparison, they show that quota samples provide the same prediction

accuracy as the random samples.

Network sampling is used to find members of hard-to-reach or hidden populations. The early

foundations of network sampling in the statistical literature (e.g. Goodman 1961) are probability

sampling methods. However, in more recent practice, the strategies, like link-tracing network sam-

pling, where eligible sample members connect researchers to other eligible samples, has proved

useful in cases where the probability sampling is not applicable, e.g., rare ethnic minorities (Welsh

1975), or people at risk for disease such as HIV (Klovdahl et al. 1994), or COVID-19 contact

tracing (Firth etc., 2020).

Non-probability samples usually suffer from selection bias, because the sample is most likely

differ from the nonsample in such a way that the sample cannot be accurately projected to the full

population. Valliant and Dever (2011) defined three populations to describe three components of

coverage survey bias. Those three populations are (1) the target population of interest, such as

adults who currently use cigarettes; (2) the potentially covered population given the way that data

are collected, such as people who have Internet access and visit the sites where study recruitment

occurs; and (3) the actual covered population, in the same example is the set of people who par-

ticipate in the study. The samples, those who are invited to participate and actually do, are biased

due to the selection process.

In our research, we focus on the methodologies of dealing with selection-biased samples, which

could be gathered by a non-probability sampling method or a probability sampling method with

high nonresponse rate. We refer to both non-sampled units and sampled but non-respondents as
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missing data. In the next section, we discuss the three broad types of missing data.

1.2 The Three Types of Missingness

Rubin (1976) introduced a formal framework for the field of incomplete data by classifying the

missing data mechanisms into three categories: missing completely at random (MCAR), missing

at random (MAR), and missing not at random (MNAR). When we talk about sample surveys, it

is more natural to use selection completely at random (SCAR), selection at random (SAR), and

selection not at random (SNAR), see Nandram et al. (2013). However, to be consistent with the

literature across fields, we use MCAR, MAR, and MNAR in this document.

We say data are MCAR when the probability of a value being missing is unrelated to the

observed and unobserved data on that unit. Denote the missingness indicator variable by I , co-

variates by X and the response variable by Y . Mathematically, MCAR can be represented by

P (Ii | Xi, Yi) = P (Ii). When data are MCAR the observed sample is most likely to be represen-

tative of the population.

The data are MAR if given, or conditional on, the observed data the probability distribution of

I is independent of the unobserved data. Mathematically, P (Ii | Xi, Yi) = P (Ii | Xi).

If the mechanism causing missing data is neither MCAR nor MAR, we say it is MNAR. Under

an MNAR mechanism, the probability of an observation being missing depends on the underlying

response, and this dependence remains even given the observed data. Mathematically, P (Ii |

Xi, Yi) 6= P (Ii | Xi). For example, in a health-related survey study, it is reasonable to believe

that nonresponse may be higher in those with worsening health status, which is the outcome of

interest. Analysis under MNAR is considerably harder, because the probability of an observation

being missing cannot be estimated directly from a model. We will introduce two approaches to

bypass the issue in Section 1.3.2.

Next, we will review the methodologies that have been proposed in the missing data field.
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1.3 State of the Art

The estimation procedures that have been used to deal with non-probability samples, missing data

and selection biased samples can be classified into two broad categories: Design-based (sometimes

referred to as pseudo design-based) and Model-based estimation.

Design-based estimation is associated with the estimated probability of being in the non-

probability sample, which relies on the heuristic that each observation represents how much of

other non-sampled or non-responding units, i.e., the pseudo weight of each observation. When the

pseudo weight is formed, the estimators can be computed by substituting the sample weight in the

traditional design-based sample with the estimated non-probability sample weight, and the pseudo

weight can be applied to estimation for any Y . The method of estimating the pseudo weight differs

from application to application and requires strong assumptions for the non-probability sampling

recruitment methods. Also, since the pseudo weight does not account for the population structure

of the Y , such an estimator can have a higher variance compared to model-based approaches and

will be biased when the response depends on covariates.

Inverse probability of treatment weighting (IPTW) is a design-based approach that uses a

propensity score. This allows one to obtain unbiased estimation if there are no residual system-

atic differences between groups after being weighted by the estimated inverse of the propensity

score. A potential drawback is that the variance can be very large if the weights are extreme, i.e.,

if the estimated propensity scores are close to 0 or 1. Setting weights to be within a range has

been proposed as one solution to this problem (Scharfstein, Rotnizky and Robins, 1999). One can

Winsorize the weights above 1.5 IQR of the third quantile.

In our simulation study (Section 2.2.2), we use the inverse of the propensity score as the weight

in the Horvitz-Thompson estimator and the Hajek Estimator to serve as comparisons with the

model we proposed. When our simulation scenario is MAR, the Hajek estimator gives the most

accurate prediction among all methods; but when scenarios are MNAR, neither estimator success-
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fully adjusts the bias.

Model-based approaches rely on statistical models that describe the variable being estimated in

the survey. Then, the variable of interest is assumed to be a random variable with that distribution.

When the samples are observed, they are used to fit the model and the analysis is conducted. A

typical use of this approach requires that the samples are independent draws from the distribution

of interest. However, this requirement can be relaxed to exchangeability in the Bayesian paradigm.

The Heckman selection model (1976) is an example of a model-based method from the economet-

rics literature. Our models are built on the selection model and we will see more about it in Section

1.3.2 and the following chapters.

Model-based approaches can be classified as ignorable nonresponse and nonignorable nonre-

sponse models. When the selection indicators do not depend on the missing values, i.e., for MCAR

or MAR, an ignorable nonresponse model could be used. When selection indicators depend on the

missing values, i.e., for MNAR, a nonignorable selection model is appropriate to use. Ignorable

selection is a strong assumption and evidence to support this assumption is typically nonexistent.

Therefore, it is advisable to study the sensitivity of conclusions to plausible violations of ignorable

selection models. In Sections 2.1 and 2.2, we will review ignorable selection models for MAR and

nonignorable selection models for MNAR respectively.

We restrict our attention to the methodologies where only the response variable contains miss-

ing values and covariates are observed for the whole population. There are ample studies that have

been done for other cases. Elliott and Valliant (2017) reviewed the approaches where covariates

for individual nonsample units are unknown, or only population totals of the covariates are avail-

able. For the design-based approach, they used a probability sample as a reference survey with the

goal of estimating the probability of a unit being in the nonprobability sample. This can be done by

matching the covariates in the non-probability sample with the probability sample and applying the

probability of the unit being in the probability sample to the derived formulation. When the covari-

ates do not correspond precisely to the probability samples, regression methods can be used. The
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superpopulation model approach requires that the population total of the covariates and the mean

of the response variables are linearly related to the covariates. Multilevel regression and stratifica-

tion (MRP) is another approach, which can be viewed as a weighted average of poststrata means,

where the weight Ph can be estimated via a probability sample. MRP can be also done by Bayesian

inference to incorporate the uncertainty of Ph, for example, Gelman and Little (1997) construct a

hierarchical logistic regression model to fit many more cells compared to what is possible using

classical methods.

Although our methodology is designed in the context of survey inference which involves mean

or total estimation, literature in the causal context is also included. Despite the difference in the

parameter of interest, the conditions that produce selection bias are similar (Mercer et al., 2017).

1.3.1 Approaches for MAR

The general idea in model-based estimation when adjusting for MAR is to assume the sample and

nonsample units follow the same model, where model parameters can be estimated from the sam-

ple and used to make predictions for the nonsample cases. Valliant, Dorfman and Royall (2000)

covered the model-assisted calibration extensively when the mean of a variable Y is linearly re-

lated to X (i.e., E(Yi | X i) = XT
i β). Regression models can be used with matching methods,

which aim to equate or balance the distribution of covariates between groups. Stuart (2010) sum-

marized the key advantages of matching methods: (1) matching methods are not in conflict with

regression adjustment; (2) when there is not sufficient overlap between groups, matching meth-

ods perform better than selection models and regression models; and (3) matching methods have

straightforward diagnostics by which their performance can be assessed.

Dealing with multiple covariates is a challenge. Chapin (1947) found that with initial pools

of 671 treated and 523 controls there were only 23 pairs that matched exactly on six categorical

covariates. Rosenbaum and Rubin (1983) made an important advance with the introduction of

the propensity score, which is the conditional probability of assignment to a particular treatment
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given a vector of observed covariates. The idea is that subjects in treatment or control groups

with the same propensity scores will have similar distributions of observed covariates. Both large

and small sample theory show that adjustment for the propensity score is sufficient to remove bias

due to all observed covariates (Rosenbaum and Rubin, 1983). One problem with propensity score

matching is that different covariates could have similar propensity scores. Also, one needs to have

all possible covariates to construct propensity scores for nonsamples.

There are three types of matching methods, which are one to one matching, weighting, and

subclassification. We briefly review those as follows.

Nearest neighbor matching

Nearest neighbor matching is the most commonly used and easiest to understand one to one match-

ing method (Rubin, 1973). The idea is to match control (or sampled) individuals to the treated (or

nonsampled) group and discard those who are not selected as matches. Since being discovered,

several drawbacks have been reported. One concern is that when there are no control individuals

with propensity scores similar to a given treated individual, the matching can lead to poor matches.

To avoid poor matches, Rosenbaum and Rubin (1985) discussed trade-offs when imposing a caliper

distance and only select a match if it is within the distance. Stuart (2010) reviewed the issues that

come from optimal matching, ratio matching, and with or without replacement.

Post-stratification

Post-stratification forms groups of individuals who are similar, which is usually defined by quan-

tiles of the propensity scores. The purpose of post-stratification is to correct for known differences

between the sample and population. The implicit model of post-stratification is that data can be

treated as a simple random sample within each poststratum or, more generally, the relative proba-

bilities of selection are equal.

Gelman (2007) discussed several post-stratification models with the assumption that the co-
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variates X are discrete and the categories include all the cross-classifications of X , as well as the

population size Nj of each category j is known. The full post-stratification model gives the pop-

ulation mean estimate as ˆ̄Y =

∑J
j=1Nj ȳj∑J
j=1Nj

. This can be interpreted as weighted averages of cell

means (Little, 1993). When the weights of the cells depend on the values of covariatesX , one can

use the classical regression model. The post-stratified estimate can be expressed as ˆ̄Y PS =
1

n
wj ȳj ,

where wj =
n

N
N ′Xpop(X ′X)−1X ′, hereN = (N1, .., NJ) andX is the J × k matrix of for the

J post-stratification cells. The regression model can be generalized to a hierarchical regression

model with y ∼ N(Xβ,Σy) and a prior distribution on β with β ∼ N(0,Σβ).

In recent research, we use propensity scores to balance the sampled and non-sampled units

and propose three modeling methods to address the issue of MAR in non-probability samples

(Nandram, Cao, Xu, and Bhadra, 2020). The propensity score is given by π(xi) = P (Ri = 1 |

xi,β) =
exp(x′iβ)

1 + exp(x′iβ)
, i = 1, ..., N . We first draw 1,000 simulated values of β from its posterior

distribution, where 1,000 is sufficient in representing the spread and location of β and has been

used in many publications, e.g., see (Nandram, Chen, Fu, and Manandhar, 2018). Using fully

Bayesian analysis and for each value of β, we calculate the propensity scores for all units in the

population. Then, 10 strata are formed by 10 intervals from deciles of all propensity scores. For

each stratum and each β, inferences for the non-sampled units can be made by the model Yij |

pi ∼ Bernoulli(pi), i = 1, ..., J ; j = ni + 1, ..., Ni, and the posterior distribution for pi is pi | yi ∼

Beta
(∑ni

j=1 yij, ni −
∑ni

j=1 yij

)
. At last, our target of inference – the finite population proportion

is computed by
1

N

N∑
i=1

yi. This first model assumes that the strata are independent of each other.

However, subjects close to the edges of two adjacent strata may have a non-negligible correlation.

For this reason, we introduce a modified model that incorporates a spatial dimension that reflects

the correlation between adjacent strata. The third model we propose is a more sophisticated spatial

model with a monotonically weakening spatial correlation that leads to a more precise prediction of

responses for the non-sampled units. In a simulation study where the true value of the population

proportion is 0.4976, the 95% HPD interval for the first model is (0.455, 0.559), for the second

9



model that includes spatial effect it is (0.433, 0.517), for the third model with the modified spatial

effect it is (0.456, 0.537). Since the modified spatial model gives the narrowest HPD interval and

the true value lies near the center of it, we conclude it is the optimal model for prediction under

such a situation.

The approaches of adjusting for MAR in non-probability samples have been extensively stud-

ied. Methods vary by situations where the covariates may or may not be known for individual

nonsample cases; or the situations whether or not a probability reference sample is available (Lit-

tle and Rubin, 2019). Our current research interest lies in making inferences from MNAR, where

inferences to the full population are normally considered to be difficult or impossible.

1.3.2 Approaches for MNAR

In this section, we review the literature for the methods that are designed for missing not at random

(MNAR). We focus on research using Bayesian methods. Little and Rubin (2019) distinguished

between the selection model and pattern mixture model (PMM). PMM specifies the joint distribu-

tion through the distribution of the missing data given covariates, i.e., pattern for missingness, and

the conditional distribution of the measurements given the pattern. One problem of the PMM is

that the parameters associated with the nonresponse pattern are not identifiable because there are

no data to estimate these parameters. While the selection model and the pattern mixture model

lead to the same joint density of the selection indicators and the responses, we prefer to use the

selection model because it is more convenient. The sample model is a simple adjustment of the

population model.
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Pattern Mixture Model

In the pattern mixture approach, the population is stratified into patterns of missingness, for exam-

ple, respondents and nonrespondents. A normal pattern mixture model can be defined by

yi | Ii = I, xi, β
(I)
0 , β(I), σ(I)2 ∼ N (β

(I)
0 + β(I)xi, σ

(I)2), I = 0, 1

Ii | xi, β(I)
0 , β(I) ∼ Bernoulli(Φ(w0 + w1xi)), i = 1, ...N ;

where I = 0 representing respond, I = 1 representing missing and Φ is the CDF of a standard

normal distribution (Little and Rubin, 2019). This model implies that the distribution of yi is a

mixture of two normal distributions,

(1− Φ(w0 + w1xi)) (β
(0)
0 + β(0)xi) + Φ(w0 + w1xi)(β

(1)
0 + β(1)xi)

The parameters (β
(0)
0 , β(0), σ(0)2) can be directly estimated from the respondent data, however,

there is no data to estimate the distribution of the nonrespondent part, that is, parameters

(β
(1)
0 , β(1)), σ(1)2) are not identifiable. Thus, other assumptions are needed to allow estimates of

(β
(1)
0 , β(1)), σ(1)2).

Foster and Smith (1998) used a pattern mixture specification for multinomial data and ex-

pressed uncertainty about ignorability by centering a nonignorable selection model on an ignorable

one, a method introduced by Rubin (1977). As expected, the centering parameter is not identified

by the data. For this reason, sensitivity analysis is usually conducted with the pattern mixture

model. For example, the difference between respondents and nonrespondents is characterized by

δ, which has a simple interpretation as the difference in means. In the sensitivity analysis, one can

vary the value of δ to see how the result changes accordingly.

Based on the normal pattern-mixture model, Little et al. (2019) proposed an index of the

degree of departure from ignorable sample selection, which is called the standardized measure of

unadjusted bias (SMUB). However, the index depends on an inestimable parameter φ ∈ [0, 1],
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where φ = 0 indicates the missing mechanism is MAR and φ = 1 means it is MNAR. Thus,

computing SMUB at 0 and 1 could provide a range of the index in a sensitivity analysis. Andridge

et al. (2011, 2019) proposed a similar SMUB index of the potential selection bias in estimates

of population proportions. They described both maximum likelihood and Bayesian estimation

approaches.

Selection Model

In the selection approach, the joint distribution of the response variable and the selection indicator

variable is decomposed by the distribution for the response variable and the model for the miss-

ingness mechanism (Heckman, 1976). Using similar notation as 2.2.1, a probit selection model is

defined by

yi | xi, β0, β1, σ2 ∼ N (β0 + β1xi, σ
2)

Ii | xi, yi, ψ0, ψ1, ψ2 ∼ Bernoulli(Φ(ψ0 + ψ1xi + ψ2yi)), i = 1, ...N.

As one might imagine, it is impossible to estimate the parameter ψ2 by maximum likelihood

methods when some of the yi are not observed. However, as we mentioned at the beginning of

this subsection, it is estimable under Bayesian paradigm since this parameter and data are not

separated. Greenlees, Reece, and Zieschang (1982) developed a normal-logistic regression model,

a nonignorable nonresponse model within the selection approach, to impute missing values in

the Current Population Survey when the probability of response depends on the variable being

imputed.

Nandram and Choi (2002a, 2002b) proposed a hierarchical Bayesian selection model for bi-

nary nonresponse data. To bypass the weak identifiability of the parameters, they ‘borrow strength’

across areas (states) as in small area estimation. The uncertainty about ignorability is accommo-

dated by a centering parameter with different priors. They conclude that although there are differ-

ences for the centering parameters under different priors, inference about the proportion in each
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area is very similar.

Nandram and Choi (2005) use both the pattern mixture approach and the selection approach to

analyze the NHANES III data and study the finite population mean BMI. For the pattern mixture

approach, they use a similar idea as Nandram and Choi (2002a) to “center” the nonignorable

nonresponse model on the ignorable nonresponse model with some variation. They discover that

the parameters become unidentifiable if there is a substantial difference between the respondents

and the nonrespondents. For the selection approach, they use a normal-logistic model, where the

response propensity is related to BMI only, and use a hierarchical Bayesian model to accommodate

clustering within counties. They further refine the model by using a spline regression to model

BMI.

Nandram and Choi (2010) extend the basic nonignorable nonresponse model of Nandram and

Choi (2005) to assess the finite BMI population percentiles of domains formed by age, race, and sex

within counties. They fit many models to investigate sensitivity and robustness to the assumption

of nonignorable nonresponse and selection.

1.3.3 Multi-level Modelling under MNAR

Pfeffermann, Moura, and Silva (2006) proposed a model-dependent approach that accounts for

selection not at random in multi-level sample surveys. The methodology they proposed first ex-

tracts the hierarchical model holding for the sample data given the selected sample, and then fit

the resulting sample model using Bayesian methods. This approach allows the sample selection

probabilities to serve as additional data that possibly strengthen the estimators. Even though in this

paper the authors made inference only for superpopulation parameters, they also mentioned that

the sample model can be used to predict the small area means in sampled and nonsampled areas,

which is our target inference in Chapter 3.

Sverchkov and Pfeffermann (2018) extend the model to consider the MNAR at the unit level.

The proposed extension consists of first identifying the model holding for the observed responses
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and using the model for estimating the response probabilities, and then applying the approach of

Pfeffermann and Sverchkov to the observed data with the unit sampling probabilities replaced by

the products of the sampling probabilities and the estimated response probabilities. They further

proposed a methodology to compute the estimates and calculate the empirical MSE over bootstrap

samples.

1.4 Statistical Background

In this section, we discuss two statistical concepts that will be used in our model.

1.4.1 Binary Data

In statistics, binary dataset is a data type consisting of categorical data that can only take two

possible values, such as “yes” and “no”, or “presence” and “absence”. A binary variable is a

random variable of binary type that follows a Bernoulli distribution. A binary regression estimates

a relationship between covariates and a single output binary variable. In binary regression, one of

the two alternatives is considered as “success”, and the probability of success is modeled. One of

the most common binary regression models is logistic regression, and it is enormously popular in

all sciences. In this dissertation, our main focus is in binary data from a nonprobability samples,

i.e., “normal” or “abnormal” from BMI data.

1.4.2 Logistic Regression

Logistic regression is used in various fields, including machine learning, social sciences, and most

medical fields. For example, it can be used in predicting the risk of developing a given disease, or

used in calculating a customer’s propensity to purchase a product.

The model assumes a linear relationship between the predictor variables (covariates) and the
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log-odds of the event that Y = 1,

` = log
P

1− P
= β0 + β1x1 + β2x2,

where ` is the log-odds, βi are parameters of the model. This can also be written as logit(P ) =

β0 + β1x1 + β2x2.

By simple algebraic manipulation, the probability that Y = 1 is

P =
exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)
,

which is the expression we use in our model.

1.5 Notation

Following Smith (1983), we consider the joint density of the response variables,Y = (Y1, Y2, ..., YN)

and the selection indicator variables, I = (I1, I2, ..., IN). In our study, we assume the covariates

X on the population level are fully observed or collected from external sources, for example, from

the U.S. Census Bureau (https://www.census.gov). Suppose we have p − 1 covariates, then, the

design matrixX has the dimension N × p. Let n be the sample size and N be the population size.

Without loss of generality, let yi, i = 1, ..., n, denote the sample responses, and yi, i = n+1, ..., N ,

denote the non-sampled units; accordingly, Ii = 1 for i = 1, ...n and Ii = 0, i = n+ 1, ..., N . Note

that we do not differentiate non-respondents from non-sampled units, that is, we treat the subjects

that have been selected and do not respond as part of the non-sampled units. The finite population

proportion, denoted by Ȳ = (1/N)
∑N

i=1 yi, is the quantity of interest for the homogeneous model,

and for the heterogeneous model the target of inferences are the finite population proportion for

each area.
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1.6 Contributions of this Research and Dissertation Organiza-

tion

In our research, we present a methodology of using the selection model and fully Bayesian analysis

for non-ignorable missing data mechanism. Our model setup is double logistic regresson, where

the binary outcome yi is modeled by

logit(P (yi = 1)) = x′iγ;

and the model of missingness, which is denoted by I , is given by another logistic regression model

with

logit(P (Ii = 1)) = x′iβ + βp+1yi.

The parameter βp+1 has been known for being ‘non-identifiable’ by many researchers. For

example, Wang, Bartlett, and Ryan (2017) investigate the likelihood of the model parameters and

show that the model is non-identifiable. Although the model setup is similar, our model incor-

porates covariates x which help to identify the parameter βp+1 by fully Bayesian analysis. We

explore the performance of our methodology using simulated binary response data under differ-

ent bias scenarios (sample proportion underestimate/overestimate the population proportion under

MNAR). The simulation results show that the nonignorable selection model we proposed correctly

specifies the parameter values and eliminates the sampling bias. Our preceding work has been

presented in JSM 2019 and published (Xu and Nandram, 2019; Xu and Nandram, 2020).

We further apply our model to the BMI data from NHANES III (Nandram and Choi, 2010),

in which it is reasonable to think that individuals will be less likely to respond if their BMI data

are abnormal. In this application, we are using a sample of 761 subjects to make an inference

for a population of 630,308 with three categorical covariates. To bypass the Markov chain Monte

Carlo (MCMC) mixing problem that could come from the large population size and a small num-
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ber of distinct covariates, we propose a more efficient MCMC algorithm that gives satisfactory

performance.

When there are cluster area effects in the data and these are exchangeable, one could use a

small area model (SAE) for the heterogeneity (Rao and Molina, 2015). Using double regression

as the nonignorable selection model in SAE is an unexplored domain. We add area effects to the

response model, denoted by ν1i; and to the missingness model, denoted by ν2i, and allow them

to have their parametric distributions respectively. We use the same structure as in the model

proposed previously, but update the model for responses by

logit(P (yij = 1)) = x′ijγ + ν1i, i = 1, ..., `, j = 1, ..., Ni,

ν1i | σ2
1
iid∼ N(0, σ2

1), i = 1, ..., `,

and the model for missingness by

logit(P (Iij = 1)) = x′ijβ + βp+1yij + ν2i; i = 1, ..., `, j = 1, ..., Ni,

ν2i | σ2
2
iid∼ N(0, σ2

2), i = 1, ..., `,

where i is the index for areas, and j is the index for units within areas.

Using a common parametric distribution facilitates a ‘borrowing of strength’ across the en-

semble. However, when there is a preference for a more robust approach, one could prefer a

nonparametric Bayesian approach (Nandram and Choi, 2004; Nandram and Yin, 2016a, 2016b;

Yin and Nandram, 2020a, 2020b).

In Chapter 2, we focus on the Bayesian selection model for homogeneous data. We develop

a nonignorable selection model and a MCMC algorithm to sample the unknown parameters and

non-sampled units iteratively. We compare several other models with the proposed model, in-

cluding an ignorable selection model, H-T estimator, and Hajek estimator through a simulation

study. Through an application to BMI data, it is shown that the nonignorable selection model and
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ignorable selection model give different predictions, indicating the sample bias is related to out-

comes (MNAR). An extended research on scenarios where individual covariates are unknown is

conducted, as well as the impact of priors in the model.

We extend the idea of the nonignorable model for homogeneous data to a model for hetero-

geneous data in Chapter 3, employing the formulation of small area estimation (SAE) in the two

submodels of the nonignorable selection model. BMI data with 35 counties are adjusted with both

the ignorable and nonignorable selection model, with a clearer separation in the finite population

proportions. We explore two variations of the model, specifically incorporating the Dirichlet pro-

cess prior and bivariate prior into the model.

We give concluding remarks and propose future work in Chapter 4. Specifically, we describe

the main area in the dissertation, homogeneous and heterogeneous data, available in the form of a

single nonprobability sample with appropriate covariates.
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Chapter 2

Bayesian Selection Model for Homogeneous

Data

Using Bayesian methodology for missing data has gained popularity over recent years. The

Bayesian paradigm is appealing because missing data can be treated as hidden parameters and

are estimated within each MCMC iteration. In this chapter, we focus on homogeneous data and

propose both the ignorable and nonignorable Bayesian selection model (Section 2.1). In Section

2.2, a simulation study is conducted to test both models. In Section 2.3, we apply the BMI data

from NHANES III to the two selection models proposed. In Section 2.4, we study how different

priors affect the model’s performance. Finally in Section 2.5, we discuss a more practical situation

where covariates are unobserved for the non-sampled units.

2.1 Selection Model Specification

In this section, we first introduce a nonignorable selection model that is based on double regression

and the selection model. Then, as a comparison, we design an ignorable selection model that uses

a single logistic regression. We test the performance of both these models by simulated data in the
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next section.

2.1.1 Nonignorable Selection Model

The selection model factors the joint likelihood of Y and I into the complete-data model for Y

and the model for the missing data mechanism. The complete-data model specifies the relationship

between responses and covariates from an underlying population. For binary response variable Y ,

we use a logistic regression that can be expressed as follows,

yi | γ
ind∼ Bernoulli

{
exp(x′iγ)

1 + exp(x′iγ)

}
, i = 1, ..., N, (2.1.1)

where γ is a coefficient vector with the length p. This is the population model and it gives a

description of the responses where there is no selection bias.

The model of missingness is given by a logistic regression

Ii | y,β
ind∼ Bernoulli

{
exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

}
, i = 1, ..., N. (2.1.2)

We see the missing data mechanism is MNAR because the probability of missingness depends

on all values of y, i.e., both the observed and unobserved values. Denote the vector of coefficients

associated with X by β(p) and the coefficient for Y in (2.1.2) by βp+1. When it is not necessary

to split into β(p) and βp+1, we use β to represent the combined parameter vector.

The joint likelihood of the ith subject can be obtained by combing these two models, as follows,
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f(yi, Ii|β,γ)

∝
(

exp(x′iγ)

1 + exp(x′iγ)

)yi (
1− exp(x′iγ)

1 + exp(x′iγ)

)1−yi
(

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

)Ii

×

(
1−

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

)1−Ii

, i = 1, ..., N.

(2.1.3)

To improve the mixing performance in MCMC, we use a vague prior – multivariate normal

N(β̂, 102Σ̂β) to be the prior for β, where β̂ is the mode of the likelihood for β, and Σ̂ is the

inverse of the Hessian of its negative log-likelihood. A similar prior applies to γ. Note we multiply

the estimated covariance matrix by 102 to avoid the issues of the double use of data and making the

prior vague. We tried different values aside from 102, i.e., 10, 103, and they all give similar results.

Other forms of priors are investigated in Section 2.4.

Denote the non-sampled units by yns, and the sampled ones by ys. Taking Ii = 1 for i =

1, ..., n, and Ii = 0 for i = n+ 1, ..., N , the joint posterior distribution is

f(yns,β,γ | I,ys)

∝
n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

N∏
i=n+1

exp(x′iγyi)

1 + exp(x′iγ)

1

1 + exp(x′iβ(p) + βp+1yi)

× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
.

(2.1.4)

In Appendix B, we provide a proof for the propriety of a more general case of (2.1.4), that is, using

a flat prior for γ.

Next, our goal is to apply MCMC methods to draw samples of β,γ and the non-sampled units

yi, i = n + 1, ..., N from the posterior distribution. Our target of inference is the finite population
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proportion that is based on the combination of the sampled Y values and the draws of the non-

sampled Y values.

Conditional Posterior Distributions

To use the Metropolis-Hastings sampler to draw samples of the unknown parameters, we first

need to write down their conditional posterior distributions. It is easy to derive the conditional pos-

terior densities of vector β and γ. The derivation of the non-sampled unit yi is less straightforward,

the proof of which is presented in Appendix A. The conditional posterior densities are

(i) f(β | y, I) ∝
N∏
i=1

exp
{

(x′iβ(p) + βp+1yi)Ii
}

1 + exp(x′iβ(p) + βp+1yi)
exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
;

(ii) f(γ | y, I) ∝
N∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
;

(iii) P (yi = 1 | γ,β) =
exp(x′iγ)

{
1 + exp(x′iβ(p))

}
exp(x′iγ)

{
1 + exp(x′iβ(p))

}
+ 1 + exp(x′iβ(p) + βp+1)

,

P (yi = 0 | γ,β) = 1− P (yi = 1 | γ,β), i = n+ 1, ..., N.

Note that the density of β or γ is not in a simple form, corresponding to nonstandard proba-

bility densities, while the conditional posterior distribution of yi, i = n + 1, ..., N , has a standard

probability density – Bernoulli distribution. Thus, the Metropolis-Hastings sampler is run in three

blocks, one for γ, one forβ, and one for yi, the standard probability density. The detailed algorithm

can be found in below.

Algorithm: For (t = 1, ..., T ), repeat:

1. Draw β∗ from multivariate t-distribution, where the proposal mean vector is the mode of (i),

and the covariance matrix is given by its inverse of the Hessian of the negative log-likelihood

function. Keep the degrees of freedom ν fixed throughout the iterations. It is standard to tune

the Metropolis step by varying ν. Denote this proposal density by g(β | y, I).
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2. Compute the acceptance ratio

r =
f(β∗ | y, I)g(β(t−1) | y, I)

g(β∗ | y, I)f(β(t−1) | y, I)
.

3. Draw u from uniform U (0, 1), if u ≤ min(1, r), set β(t) = β∗, else, set β(t) = β(t−1).

Count the number of jumps.

4. Similarly, adapt steps 1-3 to draw γ(t) based on formula (ii).

5. For each i, i = n + 1, ..., N , calculate the probability of success by formula (iii), and draw

the corresponding yi from its Bernoulli distribution. Then, the finite population proportion,

denoted by Ȳ , can be obtained by finding the proportion of combined samples and the pre-

dicted nonsamples.

We need to check if the jumping rates for β or γ are within the range of (25%, 75%). If the jumping

rate is not acceptable, i.e. too low or too high, we tune the parameter by varying the corresponding

ν and repeat the above steps. Note that the value of ν can be different or the same for β and γ,

here, we use the same ν. If the jumping rate is acceptable, then we further burn-in and thin the

MCMC chain and check the diagnostics.

2.1.2 Ignorable Selection Model

If the missingness scheme is MAR or MCAR, we would use a single logistic regression as the

ignorable selection model for binary response data. Here, we use it as our baseline model to

compare results. The model with the prior for γ is

yi | γ
ind∼ Bernoulli

{
exp(x′iγ)

1 + exp(x′iγ)

}
, i = 1, ..., n,

π(γ) ∝ 1.

(2.1.5)
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We note that others have used Jeffrey’s prior for π(γ), (for example, Chen, Ibrahim and Kim,

2008), but for ease of calculation we do not use it here.

The posterior distribution of γ is

f(γ | ys) ∝
n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
. (2.1.6)

The proof of its propriety is the same as a part of the proof for (2.1.4) using the idea of log-

concavity, as shown in Appendix B.

Algorithm:

1. For (t = 1, ..., T ), repeat:

(i) Draw γ∗ from multivariate t-distribution, where the proposal mean vector is the mode

of (2.1.6), and the covariance matrix is given by its inverse of the Hessian of the neg-

ative log-likelihood function. Keep the degrees of freedom ν fixed throughout the

iterations. Denote this proposal density by g(γ | ys).

(ii) Compute the acceptance ratio

r =
f(γ∗ | ys)g(γ(t−1) | ys)
g(γ∗ | ys)f(γ(t−1) | ys)

.

(iii) Draw u from uniform U(0, 1), if u ≤ min(1, r), set γ(t) = γ∗, else, set γ(t) = γ(t−1).

Count the number of jumps.

2. After finishing the T iterations, check if the jumping rate for γ is within the range of (25%,

75%). If the jumping rate is not acceptable, i.e. too low or too high, we tune the parameter

by varying ν and repeat the above steps. If the jumping rate is acceptable, we further burn-in

and thin the MCMC chain to obtain M sets of samples and check the diagnostics.
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3. For each set of γ, and each item in the non-sampled set, calculate the probability of success

by formula (5), denoted by pi, then draw the corresponding yi from Bernoulli (pi). When

finished for all non-sampled units, one sample of Ȳ can be obtained by finding the proportion

of combined samples and yi’s, i = n + 1, ..., N . Repeat this step for all sets of γ to obtain

the posterior predictive distribution of population proportion.

2.2 Simulation Study

In this section, we conduct a simulation study with three different scenarios and compare results

among the nonignorable selection model, the ignorable selection model, the Horvitz-Thompson

estimator, and the Hajek estimator. In Section 2.2.1, we describe how datasets are generated under

three scenarios. In Section 2.2.2, we give the results and diagnostics under the three scenarios by

using different models. In Section 2.2.3, repeated simulations are provided by using the nonig-

norable selection model. In Section 2.2.4, we apply log pseudo marginal likelihood (LPML) to

compare the nonignorable and the ignorable selection model.

2.2.1 Dataset Description

We run a simulation study to test our model. First, we generate values for the covariates, as an

example, age, race, sex, education from distributions listed in Table 2.1. Age values are drawn

from a normal distribution with mean 50 and standard deviation 5; race, sex, and education are

drawn from Bernoulli distributions with probabilities of 0.45, 0.3, and 0.4 respectively. We draw

N = 10, 000 from each covariate to create the population.

Then, the values for the response variable Y are generated by the distribution below for all

10,000 units,

yi|γ ∼ Bernoulli{ex′
iγ/(1 + ex

′
iγ)}, i = 1, ..., N,

25



Table 2.1: Distributions for covariates

Covariate Distribution
age N(50, 52)
race Bernoulli (0.45)
sex Bernoulli (0.3)
education Bernoulli (0.4)

where γ = (γ0, γ1, γ2, γ3, γ4), with the values of γ0 = 0.4, γ1 = 3, γ2 = 6, γ3 = −2, γ4 = −6.

The samples are defined by {(yi,xi) : Ii = 1}, and to test on different missingness mecha-

nisms, we generate Ii by

Ii|β ∼ Bernoulli{ex
′
iβ(4)+β5yi/(1 + ex

′
iβ(4)+β5yi)}, i = 1, ..., N,

where the coefficients β are specified differently under 3 scenarios as follows.

Scenario 1: Nonignorable nonresponse (overestimation)

We take β0 = −2.2, β1 = −0.6, β2 = −1, β3 = −0.5, β4 = −1, β5 = 1.5. Since we have 4

covariates in this example, β(4) is a 5 dimensional vector (including intercept), and β5 is the βp+1

in the formulation for the nonignorable selection model. It has been noticed that this coefficient

could be poorly identified, so we closely monitor it. In this case, β5 = 1.5, a positive value,

showing that the selection probability for y = 1 is greater than the probability for y = 0, which

indicates the sample proportion will be greater than the population proportion.

As expected, the sample proportion is 0.69 with the sample size of n = 1148, while the true

population proportion is 0.51. The sample proportion overestimates the population proportion by

35%.

Scenario 2: Ignorable nonresponse (MAR)

We take β0 = −2, β1 = 2, β2 = −3, β3 = −1, β4 = −0.5, β5 = 0. Here, β5 = 0 means that the

missingness indicator is not related to y, hence the missingness mechanism is MAR.
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Using the selection submodel with above coefficients, we generated n = 1078 samples. The

sample proportion is 0.67, and the true population proportion is 0.50. The samples are still biased

because other coefficients in the selection submodel are not zero.

Scenario 3 Nonignorable nonresponse (underestimation)

We take β0 = −2, β1 = 0.5, β2 = 0, β3 = −0.8, β4 = 1, β5 = −1. As opposed to Scenario

1, here β5 is negative, hence we expect the sample proportion will underestimate the population

proportion.

In this scenario, with 1153 samples, the sample proportion becomes 0.33 while the population

proportion is 0.50. The sample proportion underestimates the population proportion by 34%.

2.2.2 Comparison and Results

In this part, we run one simulation for each scenario on the nonignorable selection model, the

ignorable selection model, the Horvitz-Thompson estimator, and the Hajek estimator. We focus

on the detailed diagnostics and population proportion predictions among models. In the follow-

ing subsection, we perform repeated simulations on the nonignorable selection model to see the

consistency of the model’s performance.

Nonignorable Model

Through trial and error, we use 30,000 iterations, burning-in the first 5,000, and thinning by

25 to obtain the MCMC samples of size 1,000, which gives a stationary distribution. The jumping

rates are around 0.68 for γ, and 0.61 for β, which are acceptable as these are between 0.25 and

0.75. Our program is written using R language, and the execution time is about 110 minutes on

my personal computer (processor is 3.7 GHz 6-Core Intel Core i5 and memory is 8 GB 2667 MHz

DDR4).

Geweke’s Diagnostics are also conducted to check the convergence of each parameter to its

target distribution, with p-values and effective sample sizes (ESS) shown in Table 2.2. We see that

all the p-values for the Z tests are greater than 0.05, and ESS for each parameter is adequate. It is
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worth noting that the ESS is calculated by the formula for multivariate Markov chain as described

in Vats et al. (2015), which is given by

ESS = n
|Λ|1/p

|Σ|1/p
,

where Λ is the sample covariance matrix, and Σ is the asymptotic covariance matrix in the Markov

chain central limit theorem, which is different from Λ since samples are correlated, and p is the

dimension of the posterior.

Table 2.2 provides the posterior summaries, p-values for testing stationary in Geweke’s Diag-

nostic as well as the ESS for all coefficients. Recall that the HPD intervals for β5 have different

relationships with 0 in these scenarios, which are greater than 0, containing 0 and less than 0 re-

spectively. The results are in line with the missing data mechanisms in these three scenarios. Note

that the p-value for γ2 and β3 in scenario 2 are a bit small, which indicates more iterations may

required for scenario 2.

Table 2.3 depicts the posterior summaries of Ȳ , along with the true population proportions and

sample proportions. The comparison of the population proportion prediction across all models are

given in Table 2.6. We see that the HPD interval of posterior mean contains the true population

proportion in each scenario, suggesting the models successfully adjust the sample bias and predict

the population proportion.

Ignorable Model

For consistency purposes, we also use 30,000 as the number of iterations, then burn-in the first

5,000, thining by 25, and end up with 1,000 samples of γ. Then, we obtain 1,000 samples of Ȳ ,

with each one calculated by the draws of yns from the distribution with the corresponding γ value.

The Geweke’s test and effective sample sizes for γ are shown in Table 2.4. The whole procedure

finished within a minute, and as we can see from Table 2.4, the MCMC chain mixes rapidly.
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Table 2.2: Posterior summaries and diagnostics of γ and β for the nonignorable selection model
by scenario

γ (True) PM (PSD) 95% HPD p-
value

β (True) PM (PSD) 95% HPD p-
value

S1

γ0 (0.4) 0.33 (0.20) (-0.07, 0.72) 0.74 β0(-2.2) -2.19 (0.09) (-2.37, -1.98) 0.81
γ1 (3) 3.13(0.22) (2.67, 3.55) 0.20 β1(-0.6) -0.58 (0.04) (-0.67, -0.49) 0.41
γ2 (6) 6.36 (0.47) (5.51, 7.32) 0.11 β2 (-1) -1.09 (0.10) (-0.28, -0.88) 0.80
γ3 (-2) -2.07 (0.27) (-2.61, -1.58) 0.49 β3 (-0.5) -0.52 (0.07) (-0.66, -0.37) 0.23
γ4 (-6) -6.89 (0.53) (-7.87, -5.78) 0.53 β4 (-1) -0.92 (0.11) (-1.11, -0.71) 0.63
ESS 624 β5 (1.5) 1.56 (0.17) (1.21, 1.88) 0.59

ESS 723

S2

γ0 (0.4) 0.79 (0.24) (0.32, 1.22) 0.56 β0 (-2) -1.70 (0.17) (-2.04, -1.38) 0.33
γ1 (3) 2.56 (0.22) (2.15, 2.99) 0.54 β1 (2) 2.01 (0.07) (1.88, 2.15) 0.26
γ2 (6) 5.04 (0.85) (3.52, 6.67) 0.06 β2 (-3) -2.97 (0.12) (-3.20, -2.76) 0.99
γ3 (-2) -1.81 (0.28) (-2.39, -1.28) 0.28 β3 (-1) -1.03 (0.09) (-1.21, -0.87) 0.01
γ4 (-6) -5.65 (0.34) (-6.30, -5.00) 0.35 β4(-0.5) -0.85 (0.17) (-1.17, -0.52) 0.19
ESS 515 β5 (0) -0.30 (0.24) (-0.78, 0.12) 0.37

ESS 1022

S3

γ0 (0.4) 0.28 (0.23) (-0.18, 0.75) 0.74 β0 (-2) -1.86 (0.10) (-2.04, -1.64) 0.20
γ1 (3) 3.12(0.21) (2.74, 3.55) 0.31 β1 (0.5) 0.50 (0.05) (0.41, 0.59) 0.45
γ2 (6) 5.98 (0.39) (5.22, 6.74) 0.84 β2 (0) 0.13 (0.10) (-0.05, 0.33) 0.89
γ3 (-2) -2.01 (0.28) (-2.57, -1.46) 0.82 β3 (-0.8) -0.85 (0.07) (-1.00, -0.71) 0.83
γ4 (-6) -5.69 (0.38) (-6.47, -4.97) 0.56 β4 (1) 0.80 (0.09) (0.64, 0.98) 0.19
ESS 758 β5 (-1) -1.14 (0.17) (-1.49, -0.81) 0.29

ESS 762

Note: Scenario 1 (S1): nonignorable nonresponse (overestimation); Scenario 2 (S2): ignorable nonresponse; Sce-
nario 3 (S3): nonignorable nonresponse (underestimation); PM: posterior mean; PSD: posterior standard deviation

Table 2.3: Posterior summaries of Ȳ for the nonignorable selection model by scenario

True Ȳ ȳs Posterior Mean (SD) 95% HPD
Scenario 1 0.51 0.69 0.50 (0.02) (0.47, 0.54)
Scenario 2 0.50 0.67 0.52 (0.03) (0.46, 0.57)
Scenario 3 0.50 0.33 0.51 (0.01) (0.48, 0.53)
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The posterior mean of the predictive population proportions under three scenarios are 0.61,

0.50, and 0.44 respectively when their true values are 0.51, 0.50, and 0.50. In Table 2.5, we see

that HPD intervals by the ignorable selection model do not contain the true population proportion

in Scenario 1 and Scenario 3, the interval barely contains the true value in Scenario 2.

The histograms of population proportion predictions under both ignorable selection and nonig-

norable selection models in each scenario are given in Figure 2.1. We see that for Scenario 1 and

3, the predictions by the nonignorable selection model are centered around the true value (dashed

line), while the predictions by the ignorable model are far away from the true population propor-

tion. When the missingness mechanism is MAR, i.e., Scenario 2, both histograms cover the true

value, but the one by the ignorable selection model is more equally balanced around the true value,

indicating a better prediction.
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Table 2.4: Posterior summaries and diagnostics of γ for the ignorable selection model by scenario

γ PM (PSD) 95% HPD p-value

S1

γ0 1.46 (0.15) (1.17, 1.74) 0.16
γ1 3.19 (0.22) (2.75, 3.62) 0.29
γ2 7.03 (0.54) (5.96, 8.15) 0.89
γ3 -1.60 (0.34) (-2.27, -0.94) 0.10
γ4 -6.11 (0.53) (-7.20, -5.14) 0.72
ESS 1000

S2

γ0 0.53 (0.15) (0.21, 0.82) 0.13
γ1 2.67 (0.21) (2.27, 3.08) 0.21
γ2 5.04 (0.88) (3.31, 6.77) 0.10
γ3 -1.89 (0.27) (-2.45, -1.37) 0.84
γ4 -5.66 (0.34) (-6.33, -5.01) 0.75
ESS 903

S3

γ0 -0.74 (0.19) (-1.09, 0.37) 0.06
γ1 3.23 (0.22) (2.80, 3.66) 0.08
γ2 6.11 (0.42) (5.38, 6.98) 0.10
γ3 -1.92 (0.30) (-2.53, -1.37) 0.29
γ4 -5.77 (0.42) (-6.58, -4.97) 0.31
ESS 935

Note: Scenario 1 (S1): nonignorable nonresponse (overestimation);
Scenario 2 (S2): ignorable nonresponse; Scenario 3 (S3): nonignorable
nonresponse (underestimation); PM: posterior mean; PSD: posterior
standard deviation

Table 2.5: Posterior summaries of Ȳ for the ignorable selection model by scenario

True Ȳ ȳs Posterior Mean (SD) 95% HPD
Scenario 1 0.51 0.69 0.61 (0.01) (0.59, 0.63)
Scenario 2 0.50 0.67 0.50 (0.03) (0.45, 0.55)
Scenario 3 0.50 0.33 0.44 (0.01) (0.43, 0.46)
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Horvitz-Thompson Estimator

The Horvitz -Thompson (H-T) estimator and the following Hajek estimator are both inverse

probability weighted (IPW) estimators, where the probability could be defined by

Pri =
nπi∑N
j=1 πj

, i = 1, ..., n

Note that
∑N

i=1 Pri = n, and one can have Pri > 1. Here, πi is the propensity score for each

subject and it is calculated by

πi = P (Ri = 1|xi;α) =
exp(x′iα)

1 + exp(x′iα)
, i = 1, 2, ...N,

where α is the maximum likelihood estimate from samples. Notice the selection probability for-

mulation does not incorporate variable Y , hence the estimators using it are designed for MAR

mechanisms.

Horvitz-Thompson (H-T) estimator (1952) has long been used as an unbiased estimator when

the weights of samples are correctly specified. The expression to calculate the population mean is

ˆ̄YHT =
1

N

n∑
i=1

yi
Pri

,

where Pri could be the same probability defined above.

Results by the H-T estimator for all 3 scenarios are presented in Table 2.6. We see that the

estimator corrects the sampling bias in the right direction for Scenario 1 and 3, but the performance

is no better than the nonignorable nor the ignorable selection model. For Scenario 2, the estimator

seems to overcorrect the bias.

Note the estimator gives only a single value, as opposed to an interval given by Bayesian

methods. We obtain approximate standard errors and confidence intervals for the H-T and Hajek
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estimators by bootstrapping {(Pri, yi), i = 1, ..., n}.

Hajek Estimator

Hajek estimator of the population mean, defined by Sarndal, Swensson, and Wretman (2003)

is

ˆ̄YH =

∑n
i=1 yi/Pri∑n
i=1 1/Pri

,

where Pri is the same selection probability used for H-T estimator. The results are provided in

Table 2.6.

The estimates from the Hajek estimator are generally better or no worse than the H-T estimator.

It is also worth noting that under Scenario 2, the Hajek estimator gives an estimate close to the

ignorable model, but with a wider 95% HPD interval.

Table 2.6: Results comparison by scenario

Nonignorable
model
(95% HPD)

Ignorable
model
(95% HPD)

H-T (95% CI) Hajek(95% CI)

S1 (ȳs : 0.69) 0.51 (0.47, 0.54) 0.61 (0.59, 0.63) 0.64 (0.60, 0.69) 0.64 (0.60, 0.68)
S2 (ȳs : 0.67) 0.52 (0.46, 0.57) 0.50 (0.45, 0.55) 0.44 (0.34, 0.55) 0.48 (0.36, 0.61)
S3 (ȳs : 0.33) 0.51 (0.48, 0.53) 0.44 (0.43, 0.46) 0.40 (0.37, 0.44) 0.40 (0.36, 0.43)
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3

Figure 2.1: Histogram of population proportion prediction by scenario. (a): nonignorable selection

model (left), ignorable selection model (right). (b) and (c): nonignorable selection model (right),

ignorable selection model (left). Dashed line: true population proportion
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2.2.3 Repeated Simulation Runs on the Nonignorable Selection Model

In this section, we performed 20 repeated simulation runs for each scenario and present the result

of root mean square error (RMSE) and coverage rate in Table 2.7. Coverage rate is defined by the

proportion of times the 95% HPD interval covers the true population proportion. RMSE is defined

as the square root of the mean square error, which is calculated by

RMSE =

√∑T
t=1(Ȳt − Ȳtrue)2

T
,

where T is the number of repetitions, Ȳt is the posterior mean prediction for the repetition t, and

Ȳtrue is the true value of population proportion. Procedures are conducted in the same way across

all simulation runs, that is, 30,000 iterations with a burn-in period of 5,000 and thinning by 25.

From Table 2.7, we see that the RMSE for scenario 2 is a little bit greater than scenarios 1 and 3,

this is consistent with the relatively small p-values noted in Table 2.2, indicating more interations

might be needed for scenario 2. We also acknowledge that 20 repetitions might not be enough

to observe the coverage probability. However, the procedure is computationally expensive, and

we leave the large number of repetitions for future work. A visual of 95% HPD interval for each

simulation run is shown in Figure 2.2, from which we see that the coverage counts are 17, 19, and

19 for scenarios 1 to 3 respectively. Overall, the results indicate that the model and procedure is

consistent among all simulation runs.

Table 2.7: Results over 20 replicates by scenario

Coverage Rate RMSE
Scenario 1 0.85 0.016
Scenario 2 0.95 0.031
Scenario 3 0.95 0.014
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3

Figure 2.2: 95% HPD interval and posterior mean of population proportion prediction in repeated
simulation runs by scenario. (Dashed line: true population proportion. Red circle: sample propor-
tion.)
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2.2.4 Model Diagnostic by LPML

Log pseudo marginal likelihood (LPML) has been widely used as a criterion for comparing models,

which is defined by conditional predictive ordinate (CPO) as below

LPML =
n∑
i=1

log(CPOi), CPOi = f(yobsi | y i)

Large LPML value indicates a well fitted model.

The MCMC numerical approximation of CPOi is calculated by

ĈPOi =

(
M−1

M∑
h=1

1

f(yi | θh)

)−1
,

where yi is the sample response, θh are posterior draws of unknown parameters.

From the definition of CPOi, we see that it measures how likely the sample data, which is

subject to selection bias, is in line with the model. However, to use this well established methodol-

ogy, we propose a revised CPO to evaluate the concordance of observed values with the proposed

models. To adjust for the selection effect, we incorporate Ii = 1 to the revised CPO∗i , which is

ĈPO∗i =

(
M−1

M∑
h=1

1

f(yi, Ii = 1 | θh)

)−1
,

This allows the nonignorable and ignorable models a fair comparison. For the nonignorable

selection model, f(yi, Ii = 1 | θh) is defined by

f(yi, Ii = 1 | θh) =

(
exp(x′iγh)

1 + exp(x′iγh)

)yi ( 1

1 + exp(x′iγh)

)1−yi exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)
.

For the ignorable selection model, since we do not have β in the original model, we have to obtain

that first to make LPML values comparable. So, samples of β are drawn from
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f(β | x, I) ∝
N∏
i=1

exp(x′iβIi)

1 + exp(x′iβ)
. (2.2.1)

Then for the ignorable selection model, f(yi, Ii = 1 | θh) is defined by

f(yi, Ii = 1 | θh) =

(
exp(x′iγh)

1 + exp(x′iγh)

)yi ( 1

1 + exp(x′iγh)

)1−yi exp(x′iβ)

1 + exp(x′iβ)
.

Table 2.8 gives the estimated LPML for all three scenarios. Note that the greater value indicates

better concordance of the observed values. We see that the nonignorable model has greater values

for scenarios 1 and 3, but for scenario 2, both model have about the same values.

This indicates that the nonignorable selection model fits the data better for scenarios 1 and

3. However, we want to emphasize that this evaluation is useful to assess the quality of model

predictions for the unobserved units to some degree, but not completely.

Table 2.8: LPML of nonignorable and ignorable models under 3 scenarios

Nonignorable model Ignorable model
Scenario 1 -1994.08 -2070.54
Scenario 2 -1573.87 -1572.23
Scenario 3 -2477.87 -2526.27
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2.3 Application on Body Mass Index

We apply our model to the BMI data from NHANES III (Nandram and Choi, 2010). In the original

datasets, there are sample weights, but we exclude using them since they are not available for non-

samples and not compatible with the model we proposed. Our procedure provides an alternative to

including the survey weights. The dataset we use contains age, race and sex as covariates, where

age is collected as integers ranging from 1 to 19, race has the values of -1, 0, and 1 representing

white non-Hispanic, black non-Hispanic and Hispanic, sex is presented by -1 and 1 for male and

female. We use the data of the largest county from NHANES III. The sample includes 761 subjects,

which is subject to MNAR at the selection and interview stages. The population size is 630,308,

however, there are only 19 × 3 × 2 = 114, denoted by C, unique sets of age-race-sex values in

the population. This makes it inconvenient and time-consuming to directly apply the algorithm

defined in Section 2.1.1. We propose a revised strategy to generate MCMC samples.

We are interested in estimating the proportion of children with healthy BMI, which is defined

by greater than or equal to 20 and less than or equal to 25 in our application. Strictly speaking,

normal weight status for children and teenagers should be based on BMI between 5th and 85th

percentile growth data from the Centers for Disease Control and Prevention (CDC). However, our

method is applicable to different criteria and studies.

2.3.1 A More Compact Nonignorable Model

We encounter the following two difficulties when applying the algorithm described in Section

2.1.1.

(1) When there are large numbers of replicates in the population (630,308 observations with only

114 distinct sets of values), the variance-covariance matrix of γ becomes very small, i.e., each

item in the matrix is on the scale of 10−7, which means the posterior is a very thin-tailed

distribution. Such distributions cause the MCMC chain to mix slowly and fail to converge
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within 100,000 iterations using our data.

(2) Notice that within each iteration, we need to draw the individual nonsampled units from their

corresponding Bernoulli distribution, that is, N − n = 629, 547 of them, which is computa-

tionally expensive.

To bypass the second difficulty, we can think of the C(C = 114) different sets of values of co-

variates as different categories, denoted by i = 1, ..., C. For each category i, the probability of yij

calculated by (iii) in Section 2.1 is the same for all j’s, j = 1, ..., ni, denoted by pi. Thus, we can

generate the sum of yij in category i by

ni∑
j=1

yij ∼ Binomial (ni, pi).

Inspired by the idea of grouping observations into categories, we rewrite the posterior distribu-

tion of γ and β in terms of quantities in category to deal with our first difficulty.

Consider the following 2× 2 contingency table for any category i, i = 1, ..., C

yi = 1 yi = 0

Ii = 1 pi1 pi2

Ii = 0 pi3 pi4

Here we use yi to denote the response variable in category i, and Ii the indicator variable in the

same category. Let pi1, pi2, pi3, and pi4 be the cell probabilities, with the constraint pi1 +pi2 +pi3 +

pi4 = 1. Recall yi and Ii follow the distributions,

yi | γ
ind∼ Bernoulli

{
exp(x′iγ)

1 + exp(x′iγ)

}
, i = 1, ..., C;

Ii | y,β
ind∼ Bernoulli

{
exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

}
, i = 1, ..., C.

(2.3.1)
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Thus, it is straightforward to show that

pi1 = P (yi = 1, Ii = 1 | γ,β) =
exp(x′iγ)

1 + exp(x′iγ)
×

exp(x′iβ(p) + βp+1)

1 + exp(x′iβ(p) + βp+1)
,

pi2 = P (yi = 0, Ii = 1 | γ,β) =
1

1 + exp(x′iγ)
×

exp(x′iβ(p))

1 + exp(x′iβ(p))
,

pi3 = P (yi = 1, Ii = 0 | γ,β) =
exp(x′iγ)

1 + exp(x′iγ)
× 1

1 + exp(x′iβ(p) + βp+1)
,

pi4 = P (yi = 0, Ii = 0 | γ,β) =
1

1 + exp(x′iγ)
× 1

1 + exp(x′iβ(p))
.

(2.3.2)

One can verify that pi1 + pi2 + pi3 + pi4 = 1.

For the counts of each cell, we introduce the following notation,

yi = 1 yi = 0

Ii = 1 ai ni − ai ni

Ii = 0 zi Ni − ni − zi Ni − ni

with probability mass function as follows

P (ai, ni − ai, zi, Ni − ni − zi) =
Ni!

ai!(ni − ai)!zi!(Ni − ni − zi)!
× pi1aipi2ni−aipi3

zipi4
Ni−ni−zi .

It is worth noting that zi is the summation of all the non-sampled y’s in category i, and ai, ni,

Ni are all observed. Using the weakly informative priors for γ and β, the new form of the joint

posterior density is

P (z,β,γ | I,ys) ∝
C∏
i=1

Ni!

ai!(ni − ai)!zi!(Ni − ni − zi)!
× pi1aipi2ni−aipi3

zipi4
Ni−ni−zi

× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
,

(2.3.3)

where pi1, pi2, pi3, and pi4 are functions of γ and β as displayed in (2.3.2). We will explain how to
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draw MCMC samples from it in the next part.

MCMC Algorithm

Looking at the joint posterior distribution (2.3.3), we realize it is very difficult to draw z,β, and

γ all together. Xu, Nandram and Manandhar (2020) construct a sampler called random sampler to

draw samples for weakly identifiable parameters that improves the mixing performance. Here, we

use a similar yet simpler idea since the variable zi can be analytically summed out, thereby making

drawing MCMC samples of γ and β much faster. We omit the priors in this derivation for the ease

of reading. Thus,

π(β,γ |I,ys) ∝
C∏
i=1

Ni−ni∑
zi=0

{
pi1

aipi2
ni−ai × pi3

zipi4
Ni−ni−zi

zi!(Ni − ni − zi)!

}

=
C∏
i=1

pi1aipi2ni−ai × (pi3 + pi4)
Ni−ni

(Ni − ni)!
× (Ni − ni)!

Ni−ni∑
zi=0

(
pi3

pi3+pi4

)zi(
pi4

pi3+pi4

)Ni−ni−zi

zi!(Ni − ni − zi)!


=

C∏
i=1

{
pi1

aipi2
ni−ai × (pi3 + pi4)

Ni−ni

(Ni − ni)!

}
(

because for a r.v. xi, xi ∼ Binomial
(
Ni − ni,

pi3
pi3 + pi4

)
=⇒

Ni−ni∑
xi=0

xi = 1,

)

∝
C∏
i=1

{
pi1

aipi2
ni−ai(pi3 + pi4)

Ni−ni
}
.

Replacing pi1, pi2, pi3, and pi4 with their corresponding formula in (2.3.2) and inserting the

priors, we arrive at the following joint posterior density of γ and β,
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π(β,γ | I,ys) ∝
C∏
i=1

{(
exp(x′iγ)

1 + exp(x′iγ)

exp(x′iβ(p) + βp+1)

1 + exp(x′iβ(p) + βp+1)

)ai (
1

1 + exp(x′iγ)
×

exp(x′iβ(p))

1 + exp(x′iβ(p))

)ni−ai

×

[
exp(x′iγ)

(
1 + exp(x′iβ(p))

)
+ 1 + exp(x′iβ(p) + βp+1)

(1 + exp(x′iγ))
(
1 + exp(x′iβ(p) + βp+1)

) (
1 + exp(x′iβ(p))

)]Ni−ni


× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
.

(2.3.4)

Therefore, the two conditional posterior distributions are,

π(γ | β, I,ys)

∝
C∏
i=1

{
exp(x′iγai)

[
exp(x′iγ)

(
1 + exp(x′iβ(p))

)
+ 1 + exp(x′iβ(p) + βp+1)

]Ni−ni

(1 + exp(x′iγ))Ni

}

× exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
,

(2.3.5)

and

π(β | γ, I,ys)

∝
C∏
i=1

{
exp(x′iβ(p)ni + βp+1ai)

[
exp(x′iγ)

(
1 + exp(x′iβ(p))

)
+ 1 + exp(x′iβ(p) + βp+1)

]Ni−ni(
1 + exp(x′iβ(p) + βp+1)

)Ni−ni+ai (1 + exp(x′iβ(p))
)Ni−ai

}

× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
.

(2.3.6)

Algorithm:

1. For (t = 1, ..., T ), repeat:

(i) Draw β∗ from multivariate t-distribution, where the proposal mean vector is the mode
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of (2.3.6), and the covariance matrix is given by its inverse of the Hessian of the neg-

ative log-likelihood function. Keep the degrees of freedom ν fixed throughout the

iterations. It is standard to tune the Metropolis step by varying ν. Denote this proposal

density by g(β | γ,y, I).

(ii) Compute the acceptance ratio

r =
f(β∗ | γ,y, I)g(β(t−1) | γ,y, I)

g(β∗ | γ,y, I)f(β(t−1) | γ,y, I)
.

(iii) Draw u from uniform U(0, 1), if u ≤ min(1, r), set β(t) = β∗, else, set β(t) = β(t−1).

Count the number of jumps.

(iv) Similarly, adapt steps (i)-(iii) to draw γ(t) based on formula (2.3.5).

2. After finishing the T iterations, we check if the jumping rates for β or γ are within the range

of (25%, 75%). If the jumping rate is not acceptable, i.e. too low or too high, we change the

value for ν and repeat the above steps. If the jumping rate is acceptable, we further burn-in

and thin the MCMC chain to obtain M sets of samples and check the diagnostics.

3. For each set of β and γ, and each i, i = n + 1, ..., C, calculate the probability of success

by formula (iii) in Section 2.1.1, denoted by pi , then draw the corresponding zi from its

distribution, Binomial(Ni − ni, pi). Then, the finite population proportion can be obtained

by finding the proportion of combined samples and zi’s. Repeat this step for all sets of β and

γ to obtain the posterior predictive distribution of population proportion.

2.3.2 Diagnostics and Results

Nonignorable Selection Model

This new MCMC algorithm is much more efficient than applying the original one directly. The

execution time is about 100 minutes for 30,000 iterations using the same computer as previously
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specified. After burning-in the first 10,000 and thinning by 20, we obtain 1,000 sets of β, γ, and

finite population proportions. Table 2.9 depicts the diagnostics and summaries for γ and β. The

diagnostics indicate adequate convergence. Since γ1, γ2, γ3 correspond to variables Age, Sex and

Race, then from the summaries we see that both age and sex are significant in predicting Y ; and

both race and Y are significant in the selection model.

The posterior mean of population proportion predictions by this nonignorable selection model

is 0.63, with 95% HPD interval to be (0.46, 0.78) as shown in Table 2.11.

For completeness, we also want to know the proportion of children with unhealthy BMI. Since

for each healthy BMI’s proportion, the unhealthy BMI’s proportion is just 1 minus that value, thus

we can easily obtain the MCMC samples of unhealthy BMI proportion without doing the iteration

again. The posterior mean for unhealthy BMI’s proportion is 0.37, and the 95% HPD interval is

(0.22, 0.54).

Table 2.9: Posterior summaries and diagnostics for γ and β

γ PM (PSD) 95% HPD p-value β PM (PSD) 95% HPD p-value
γ0 -1.86 (0.55) (-2.89, -0.78) 0.62 β0 -6.29 (0.12) (-6.52, -6.04) 0.73
γ1 0.28 (0.02) (0.23, 0.32) 0.91 β1 0.05(0.03) (-0.01, 0.10) 0.52
γ2 0.23 (0.10) (0.04, 0.43) 0.07 β2 0.03 (0.05) (-0.06, 0.13) 0.72
γ3 -0.09 (0.14) (-0.38, 0.17) 0.13 β3 1.20 (0.06) (1.09, 1.34) 0.15
ESS 603 β4 -2.00 (0.54) (-3.09, -1.03) 0.56

ESS 1034

Note: PM: posterior mean; PSD: posterior standard deviation

We also apply the data to the ignorable model. The Geweke’s Diagnostics in Table 2.10 indicate

satisfactory mixing and convergence of the chain. The posterior mean prediction by the ignorable

selection model is 0.31 as shown in Table 2.11, which is much less than the prediction by the

nonignorable selection model, i.e., 0.63. This is because in the nonignorable selection model, the

coefficient of y in the selection part is significant, which has the value of -2, while the ignorable

selection model fails to incorporate this. The histograms of population proportions predicted by
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these two models are shown in Figure 2.3, where we see that aside from the differences in the

locations, the nonignorable selection model is more spread out than the ignorable selection model.

This is sensible because, from Bayesian point of view, the nonignorable model has more variables

and thus more variability; in frequentist view, this possibly be a case of bias-variance tradeoff.

Table 2.10: Posterior summaries and diagnostics of γ for the ignorable selection model

γ PM (PSD) 95% HPD p-value
γ0 -3.69 (0.25) (-4.21, -4.24) 0.50
γ1 0.26 (0.02) (0.22, 0.30) 0.30
γ2 0.32 (0.10) (0.14, 0.51) 0.05
γ3 -0.06 (0.13) (-0.30, 0.22) 0.94
ESS 1000

Note: PM: posterior mean; PSD: posterior standard devia-
tion

Table 2.11: Posterior summaries of Ȳ

ȳs
Nonignorable model
PM (95% HPD)

Ignorable model
PM (95% HPD)

0.23 0.63 (0.46, 0.78) 0.31 (0.26, 0.36)

Note: PM: posterior mean.
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Figure 2.3: Histogram of the finite population proportion for children with healthy BMI by ignor-

able (left) and nonignorable model (right)
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2.4 Study on Priors

In this section, we would like to find out the impact of the choice of the priors for β, specifically,

we want to know (1) the impact of prior on MCMC convergence; and (2) the estimate of the finite

population proportion. We keep the prior for γ unchanged. To answer the first question, we use

effective sample size of the posterior samples as the rule for deciding Markov chain convergence.

ESS has a connection with many MCMC diagnostics, for example, Gong and Flegal (2016) and

Vats et al. (2019) provide the connection between ESS and relative fixed-width stopping rule; Vats

and Knudson (2018) draw correspondence between ESS and a version of the widely used Gelman-

Rubin (GR) diagnostic. For the second question, we check the population proportion predictions

for each tested prior.

We first propose a method of constructing the prior from the samples, this is based on the idea

of creating the nonignorable selection model around the ignorble selection model.

Data Prior

1. Impute each yns by the nearest neighbor search, that is, impute the non-sampled yj by yi,

where yi is the point in sample that minimizes

(x1i − x1j)2 + (x2i − x2j)2 + (x3i − x3j)2 + (x4i − x4j)2,

assuming we use our previous simulation setup with 4 covariates.

2. Now we obtain a dataset with N observations. When N is large, the prior that is constructed

on them could dominate the likelihood function, thus, we use 5% of the dataset to construct

the prior. We randomly draw 5% of N, denoted by Nsub, then we find the mode and the
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Hessian matrix of the following negative log-likelihood.

Ii | y,β
ind∼ Bernoulli

{
exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

}
, i = 1, ..., Nsub.

=⇒ L(β) =

Nsub∏
i=1

exp
{

(x′iβ(p) + βp+1yi)Ii
}

1 + exp(x′iβ(p) + βp+1yi)
.

=⇒ −logL(β) = −
Nsub∑
i=1

exp
{

(x′iβ(p) + βp+1yi)Ii
}

1 + exp(x′iβ(p) + βp+1yi)
.

(2.4.1)

3. Denote the mode by β0 and the inverse of Hessian matrix by Σβ0
. The constructed prior is

N(β0,Σβ0
)

Simulation Results

Using the same method of conducting the simulation study as Section 2.2.1 scenario 3, we

generate a sample of 1187 with the sample proportion of 0.34 and population proportion of 0.51.

We varied the proportion of data used in constructing the data prior. The results are obtained from

30,000 iterations with burning in the first 10,000 and thinning by 19, of which presented in Table

2.12. The last row is the prior defined in Section 2.1.1. We see that all ESS for γ and β are greater

than 500, which indicates all of them are acceptable. However, we do not see one exceptional

results and thus we cannot conclude which prior has the best performance in convergence. The

population proportion predictions are also the same in terms of posterior mean and HPD interval.

Table 2.12: Results comparison by different prior for β

Prior for β ESS for γ ESS for β Posterior Mean
(95% HPD)

Data prior: 5% 568 957 0.51 (0.49, 0.53)
Data prior: 2% 692 1102 0.51 (0.48, 0.53)
Flat prior 535 832 0.51 (0.48, 0.53)
N(β̂, 102Σ̂β) 758 762 0.51 (0.48, 0.53)
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2.5 Study on Unknown Individual Covariates

In this section, we explore the case where individual covariates X are not available for non-

sampled units. Here we perform a data fusion to obtain the nonsampled covariates, and propose

a methodology to generate the individual discrete covariates based on information of total counts

for each level. For illustration purpose, we simplify the application of BMI in Section 2.3, and use

a level of 4 for the age variable, a level of 2 for both race and sex, which gives us a level of 16

in all possible combinations of covariates. The data can be presented by the table below (Table

2.13). Our goal is to use the total counts for each level of a variable (Table 2.14) to generate Ni,

i = 1, ..., 16.

Table 2.13: Data structure

Age Race Sex N

2 (0-4)
-1

-1 N1

1 N2

1
-1 N3

1 N4

7 (5-9)
-1

-1 N5

1 N6

1
-1 N7

1 N8

12 (10-14)
-1

-1 N9

1 N10

1
-1 N11

1 N12

17 (15-19)
-1

-1 N13

1 N14

1
-1 N15

1 N16
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Table 2.14: Counts by levels for each covariate

Covariate Level Counts Notation

Age

2 150108 A1

7 170516 A2

12 153041 A3

17 153588 A4

Race
-1 459056 R0

1 168197 R1

Sex
-1 305500 S0

1 321753 S1

Total 627253 N

Goal: To draw samples of N1, N2, ..., N16

The constraints are:

N1 +N2 +N3 +N4 = A1,

N5 +N6 +N7 +N8 = A2,

N9 +N10 +N11 +N12 = A3,

N13 +N14 +N15 +N16 = A4,

N1 +N2 +N5 +N6 +N9 +N10 +N13 +N14 = R0,

N3 +N4 +N7 +N8 +N11 +N12 +N15 +N16 = R1,

N1 +N3 +N5 +N7 +N9 +N11 +N13 +N15 = S0,

N2 +N4 +N6 +N8 +N10 +N12 +N14 +N16 = S1,

N1, N2, ..., N16 ≥ 0.

(2.5.1)

We have 16 variables with 10 constraints, while these constraints are not independent to each

other, i.e.,
∑4

i=1Ai = N , R0 + R1 = N , S0 + S1 = N . From the constraints, one can obtain

equations for 6 variables, which depend on 10 free variables. The Python module called Sympy is

designed for symbolic calculation and can be used to obtain the following results. The equations

55



are

N1 = −A2 − A3 − A4 +N +N10 +N12 +N14 +N16 −N3 +N6 +N8 − S1,

N2 = −N10 −N12 −N14 −N16 −N4 −N6 −N8 + S1,

N5 = A2 +N11 +N12 +N15 +N16 +N3 +N4 −N6 −R1,

N7 = −N11 −N12 −N15 −N16 −N3 −N4 −N8 +R1,

N9 = A3 −N10 −N11 −N12,

N13 = A4 −N14 −N15 −N16.

(2.5.2)

The free variables are N3, N4, N6, N8, N10, N11, N12, N14, N15, N16. Next, one can use the equa-

tions 2.5.2 to derive the bounds for free variables. To save space, we leave the mathematic formu-

lations of the bounds in Appendix C, from where we arrive at the following algorithm for sampling

N1, ..., N16.

Algorithm:

1. Give initial values to N1, ..., N16 by drawing from Multinomial (N,p), where p = n/n, n

is the vector of counts in each category in the sample and n is the sample size.

2. For (t = 1, ..., T ), repeat:

(i) DrawN
(t)
3 from the truncated multinomial distribution Multinomial (N,p) with bounds

calculated in Appendix C and the current values for all other Ni ’s, i 6= 3. Technically,

this is implemented by the grid method, that is, calculating the probability of a sequence

of values between bounds and drawing a value from the sequence with associated prob-

abilities.

(ii) Repeate (i) for N (t)
4 , N

(t)
6 , N

(t)
8 , N

(t)
10 , N

(t)
11 , N

(t)
12 , N

(t)
14 , N

(t)
15 , N

(t)
16 with adapted ranges.

(iii) Calculate values for N (t)
1 , N

(t)
2 , N

(t)
5 , N

(t)
7 , N

(t)
9 , N

(t)
13 based on formula (2.5.2).

(iv) Back to (i) for the next loop.
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2.5.1 Simulation Study

We use population covariatesX from BMI data and coefficients γ = (−1.85, 0.27,−0.08, 0.23) to

generate responseY . Then, from the population and using coefficientsβ = (−5, 0.05, 0.2, 0.03,−1.5),

we generate the sample and obtain the non-sample part. Values for A0, A1, A2, A3, R0, R1, S0, S1

could be summarized from the non-sample part and presented in the Table 2.13.

By iterating 5000 times and using the last one, we get the number for Ni presented in the table

below, along with the true counts from simulation.

N1 N2 N3 N4 N5 N6 N7 N8

Generated 52731 50523 23715 23139 50985 56944 31585 31002
True 52340 55025 20962 21781 60742 63508 22571 23695

N9 N10 N11 N12 N13 N14 N15 N16

Generated 64426 41637 22746 24232 68849 41430 22075 21234
True 55003 57703 19600 20735 55575 59160 18707 20146

We further use those generated Ni in the model and the predicted population proportions are

summarized in the Table 2.15 with the visual in Figure 2.5. We see the 95% credible interval is a

bit wider than the one in Section 2.3.2. This is probably because when the Age variable is grouped

into 4 levels and Race grouped into 2 levels, some information is lost and thus makes the prediction

less accurate.

Table 2.15: Posterior summaries of Ȳ

True Ȳ ȳs Posterior Mean (PSD) 95% HPD
0.62 0.34 0.59 (0.11) (0.37, 0.77)

Note: PSD: posterior standard deviation.
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Figure 2.4: Histogram of Population Proportion Prediction
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2.6 Conclusion

This chapter proposed a novel modeling framework that enables us to predict the non-sampled sub-

jects’ responses from biased samples when the missingness mechanism is MNAR. The underlying

idea is to link the model of response with the model of selection by the unknown response variable,

which can be obtained within MCMC iterations. We tested our model on the simulated datasets

under three scenarios. A comparison of the predictions under various models with the true value

indicates the superiority of the nonignorable selection model over the ignorable selection model,

H-T and Hajek estimators under MNAR, and also indicates that the ignorable model performs best

when missingness mechanism is MAR.

The proposed nonignorable selection model requires that the individual covariates are known

for all units. When the individual covariates are unknown for non-sampled units, we provide a

methodology to generate the individual discrete covariates.

It is usually difficult to learn about the missing data mechanism. However, incorporating the

response variable into the selection model and testing its statistical significance gives us a sense of

the selection mechanism. Moreover, by fitting the models to three scenarios, it is evident that our

nonignorable model is robust and can automatically adjust to different missing data mechanisms

(MAR or MNAR). We believe that the methodology we proposed, and the compact model applied

on BMI data will contribute to ongoing research in this field.

59



Chapter 3

Bayesian Selection Model for

Heterogeneous Data

Area information is widely used in practice, not only for the estimates of the subpopulation (area)

but also for the total population of interest. A hierarchical model is often used to borrow strength

from other areas. An attractive property of the hierarchical Bayesian model is that it takes care

of extraneous variations among areas. Another benefit is that there is robustness in the model

specifications at deeper levels beyond the sampling process. This has been found empirically

(Nandram and Choi, 2005, 2010). At the first level of the hierarchy, these models assume that

the individuals are exchangeable within an area but not across areas. At the second level of the

hierarchy, the areas are assumed to be exchangeable, which acknowledges variation between areas.

The nonignorable selection model we propose links two hierarchical submodels by variable Y .

In this chapter, we first introduce a model that includes clustering effects to account for het-

erogeneity among areas through the selection indicators and the response values, followed by a

simulation study. Then, we propose some adjustments for the model, including the Dirichlet Pro-

cess mixture model and the bivariate model.

60



3.1 Hierarchical Model Specification

In this section, we first introduce the hierarchical nonignorable selection model, which is an ex-

tension of the nonignorable selection model proposed in Chapter 2. Then, as a comparison, we

propose the hierarchical ignorable selection model.

3.1.1 Hierarchical Nonignorable Selection Model

The hierarchical nonignorable selection model is built by two hierarchical submodels. The first

submodel is for the response. Denote the area-specific random effect for the response by ν1. The

model is defined by a hierarchical Bayesian model f(y | ν1,γ) and f(ν1 | σ2
1).

The second submodel is to model the selection by f(I | y,ν2,β) and f(ν2 | σ2
2), where ν2

is the area-specific random effect for the selection mechanism. In this model, we assume ν1 and

ν2 are independent. Each element in I , denoted by Iij for i = 1, ..., ` and j = 1, ..., Ni, is the

selection indicator for the jth individual within the ith area in the population.

Now we present the formulations of these two submodels of the hierarchical nonignorable

selection model.

The response submodel

Suppose ν1i’s are the random effects for area i, i = 1, ..., `, which are independent and identi-

cally distributed (iid). Its variance σ2
1 is a measure of homogeneity of the areas, which is unknown

but given a non-informative prior. The hierarchical Bayesian model for the response is

yij | ν1i,γ
ind∼ Bernoulli

{
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)

}
, i = 1, ..., `, j = 1, ..., Ni,

ν1i | σ2
1
iid∼ N(0, σ2

1), i = 1, ..., `,

π(γ) ∼ N(γ̂, 102Σ̂γ),

π(σ2
1) =

1

(1 + σ2
1)2

.

(3.1.1)
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Here the prior for σ2
1 is the F (2, 2) distribution and holds good properties of a shrinkage prior. It is

also mathematical convenient in such models because the form of this prior can be canceled with

the Jacobian when transformed into a bounded variable, see (3.1.4).

The selection submodel

Similar to the nonignorable selection model in the previous chapter, we use β to represent the

combined parameter vector for X and Y , which is also given a vague prior - multivariate normal

N(β̂, 102Σ̂). The hierarchical Bayesian model for the selection mechanism is

Iij | yij, ν2i,β
ind∼ Bernoulli

{
exp(x′ijβ(p) + βp+1yij + ν2i)

1 + exp(x′ijβ(p) + βp+1yij + ν2i)

}
, i = 1, ..., `, j = 1, ..., Ni,

ν2i | σ2
2
ind∼ N(0, σ2

2), i = 1, ..., `,

π(β) ∼ N(β̂, 102Σ̂β)

π(σ2
2) =

1

(1 + σ2
2)2

.

(3.1.2)

The joint posterior distribution

Putting 3.1.1 and 3.1.2 together, we derived the joint posterior distribution as

f(yns,γ,β,ν1,ν2, σ
2
1, σ

2
2 | I,ys)

∝
∏̀
i=1

Ni∏
j=1

exp
[
(x′ijγ + ν1i)yij

]
1 + exp(x′ijγ + ν1i)

exp
[
(x′ijβ(p) + βp+1yij + ν2i)Iij

]
1 + exp(x′ijβ(p) + βp+1yij + ν2i)

× exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
×
∏̀
i=1

(σ2
1)−

1
2 exp

(
− ν21i

2σ2
1

)
×
∏̀
i=1

(σ2
2)−

1
2 exp

(
− ν22i

2σ2
2

)
× 1

(1 + σ2
1)2
× 1

(1 + σ2
2)2

(3.1.3)
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One can develop a proof for (3.1.3) by extending the proof in Appendix B.

Bayesian computation

We first write down the conditional posterior distribution for each parameter given all other

parameters. The conditional posterior distributions are

(i) f(γ | y,ν1) ∝
∏̀
i=1

Ni∏
j=1

exp[(x′ijγ + ν1i)yij]

1 + exp(x′ijγ + ν1i)
× exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
;

(ii) f(β, | y,ν2, I) ∝
∏̀
i=1

Ni∏
j=1

exp
[
(x′ijβ(p) + βp+1yij + ν2i)Iij

]
1 + exp(x′ijβ(p) + βp+1yij + ν2i)

× exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
;

(iii) f(ν1 | y,γ, σ2
1) ∝

∏̀
i=1

{
Ni∏
j=1

exp(ν1iyij)

1 + exp(x′ijγ + ν1i)
× exp

(
− ν21i

2σ2
1

)}
;

(iv) f(ν2, | y,β, I, σ2
2) ∝

∏̀
i=1

{
Ni∏
j=1

exp(ν2iIij)

1 + exp(x′ijβ(p) + βp+1yij + ν2i)
× exp

(
− ν22i

2σ2
2

)}
;

(v) f(σ2
1 | ν1) ∝

∏̀
i=1

(
σ2
1

)− 1
2 exp

(
− ν21i

2σ2
1

)
× 1

(1 + σ2
1)2

;

(vi) f(σ2
2 | ν2) ∝

∏̀
i=1

(
σ2
2

)− 1
2 exp

(
− ν22i

2σ2
2

)
× 1

(1 + σ2
2)2

;

(vii) P (yij = 1 | γ,β,ν1,ν2)

=
exp(x′ijγ + ν1i)

(
1 + exp(x′ijβ(p) + ν2i)

)
exp(x′ijγ + ν1i)

(
1 + exp(x′ijβ(p) + ν2i)

)
+ 1 + exp(x′ijβ(p) + βp+1 + ν2i)

,

P (yij = 0 | γ,β,ν1,ν2) = 1− P (yij = 1 | γ,β,ν1,ν2), i = 1, ..., `; j ∈ Si;

where Si denotes the non-sampled set of area i.
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We use the Metropolis-Hastings sampling algorithm that runs in 7 blocks with one for each

parameter.

For parameters γ, β, and yns, sampling methods are similar to the algorithm for the nonig-

norable selection model in Chapter 2, with formulations adjusted accordingly. For ν1 and ν2, we

could apply the same idea and use the multivariate t distribution as the proposal distribution for

each of them. However, note that each component in ν1 or ν2, denoted by ν1i and ν2i, is indepen-

dent of the others. Thus, we use the one-dimensional t distribution as the proposal distribution and

draw the sample of each component individually. Using this method, we sacrifice some algorithm

efficiency, but improve the mixing performance. Note that ν1i and ν2i can also be drawn by the

grid method, which we use in the Dirichlet process prior model in Section 3.3.

As for σ2
1 and σ2

2 , we use the grid method and first transform them onto the bounded range

(0, 1). We transform σ2
1 by

1

1 + σ2
1

= τ1, τ1 ∈ (0, 1), which results in the transformed density

f(τ1 | ν1) ∝
(

τ1
1− τ1

) `
2

exp

(
−
∑`

i=1 ν
2
1i

2
× τ1

1− τ1

)
. (3.1.4)

Then, a sample of σ2
1 can be obtained by transforming back a sample of τ1 based on the formula

σ2
1 =

1− τ1
τ1

.

Similarly, transform σ2
2 by

1

1 + σ2
2

= τ2, τ2 ∈ (0, 1), we have the transformed density

f(τ2 | ν2) ∝
(

τ2
1− τ2

) `
2

exp

(
−
∑`

i=1 ν
2
2i

2
× τ2

1− τ2

)
; (3.1.5)

and then using σ2
2 =

1− τ2
τ2

to get a sample of σ2
2 .
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Algorithm:

For (t = 1, ..., T ), repeat:

1. Draw γ∗ from multivariate t-distribution, where the proposal mean vector is the mode of (i),

and covariance matrix is given by its inverse of the Hessian of the negative log-likelihood

function. Keep the degrees of freedom fixed through out the iterations. Denote this proposal

density by g(γ | ys,ν1).

2. Compute the acceptance ratio

r =
f(γ∗ | ys,ν1)g(γ(t−1) | ys,ν1)

g(γ∗ | ys,ν1)f(γ(t−1) | ys,ν1)
.

3. Draw u from uniform U (0, 1), if u ≤ min(1, r), set γ(t) = γ∗, else, set γ(t) = γ(t−1).

Count the number of jumps.

4. Similarly, adapt steps 1-3 to draw β(t) based on formula (ii).

5. For each i = 1, ..., `, adapt steps 1-3 to draw ν
(t)
1i and ν(t)2i .

6. Use the grid method to sample τ1 from (3.1.4) and transform it back to σ2(t)
1 by σ2

1 = 1/τ1−1.

7. Similarly, draw a sample from (3.1.5) and obtain a sample of σ2(t)
2 .

8. For each i, and each nonsampled index j, calculate the probability of success by formula

(vii), and draw the corresponding y from its Bernoulli distribution. Then, one population

proportion prediction, denoted by Ȳ , can be obtained by finding the proportion of the pooled

samples and the predicted nonsamples. In addition, the finite population proportion for each

area, denoted by Ȳi, i = 1, ..., `, could also be obtained.

After finishing T iterations, we check if the jumping rates for β, γ, ν1i, and ν2i, i = 1, ..., ` are

within the range of (25%, 75%). If the jumping rate is not acceptable, i.e. too low or too high, we
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tune the parameter by varying the degree of freedom and repeat the above steps. If all jumpting

rates are acceptable, we continue burning-in and thinning the MCMC chain to obtain M sets of

samples and check the diagnostics.

3.1.2 Hierarchical Ignorable Selection Model

When the selection mechanism is ignorable, we can model the samples by a single response model,

which is

yij | ν1i,γ
ind∼ Bernoulli

{
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)

}
, i = 1, ..., `, j = 1, ..., ni,

ν1i | σ2
1
iid∼ N(0, σ2

1), i = 1, ..., `,

π(γ) ∼ N(γ̂, 102Σ̂γ),

π(σ2
1) =

1

(1 + σ2
1)2

.

The joint posterior distribution is

f(γ,ν1, σ
2
1, | xs,ys) ∝

∏̀
i=1

ni∏
j=1

exp
[
(x′ijγ + ν1i)yij

]
1 + exp(x′ijγ + ν1i)

× exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
×
∏̀
i=1

(σ2
1)−

1
2 exp

(
− ν21i

2σ2
1

)
× 1

(1 + σ2
1)2

.

The algorithm can be adapted from the ignorable selection model in Section 2.1.2, which is,

first run Metropolis-Hastings sampler to obtain, say 1000, sets of posterior samples of γ,ν1 and

σ2
1 , then plug-in each set of values to the response model and sample yns. Inferences of the finite

population proportion can be derived further by ys and yns.
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3.1.3 Simulation Study

We define the population size to be 12,000, that is N=12,000 with ` = 30 areas, which gives the

population size in each area to be Ni = 400. We first generate the covariates for the population,

that is, Age, Race, Gender, Education from distributions listed in Table 3.1. Age is from the

normal distribution with mean 50 and standard deviation 5; Race, Gender, and Education are from

Bernoulli distribution with probabilities of 0.45, 0.3, and 0.4 respectively. Then, we generate area

effects from N(0, 1), denoted by ν1i, i = 1, ..., `.

Table 3.1: Distributions for covariates

Covariate Distribution
Age N(50, 52)
Race Bernoulli(0.45)
Gender Bernoulli(0.3)
Education Bernoulli(0.4)

Once the above covariate and area effect values are simulated, we generate the response Y by

yij | ν1i,γ
ind∼ Bernoulli

{
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)

}
, i = 1, ..., l, j = 1, ..., Ni.

We use γ = (3, 6,−2,−3).

Next, we simulate the selection indicator variable. The selection area effects, denoted by ν2i,

are generated from N(0, 1). Then, the selection indicator is simulated by

Iij | yij, ν2i,β
ind∼ Bernoulli

{
exp(x′ijβ(p) + βp+1yij + ν2i)

1 + exp(x′ijβ(p) + βp+1yij + ν2i)

}
, i = 1, ..., l, j = 1, ..., Ni,

where β = (0.8, 0.8,−3,−2,−2.5).

Using the above procedure, we obtain the population with the population proportion of 0.56

The sample proportion is 0.46. The sample size by areas are 13, 11, 11, 63, 4, 41, 25, 104 , 52, 45,
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15, 49, 16, 8, 16, 6, 47, 24, 68, 22, 31, 26, 10 , 16, 40, 10, 2, 36, 11, 36. We see for certain areas,

the sample sizes are relatively small, i.e., 2, 4, 6, and 8.

Results

By running 30,000 iterations, burning-in the first 5,000, and thinning by 25, we obtain the

MCMC samples of size 1,000. Posterior summaries and Geweke’s Diagnostics are depicted in

Table 3.2. To save space we do not list all 30 dimensions of ν1 and ν2. The results indicate

adequate convergence.

Table 3.2: Posterior summaries and diagnostics for β, γ, ν1, ν2, σ2
1 ,σ2

2

γ PM (PSD) 95% HPD p-value β PM (PSD) 95% HPD p-value
γ1 3.15(0.17) (2.80, 3.48) 0.12 β1 0.69 (0.04) (0.60, 0.78) 0.78
γ2 6.01 (0.30) (5.48, 6.61) 0.49 β2 0.67 (0.09) (0.51, 0.88) 0.57
γ3 -2.31 (0.35) (-2.98, -1.67) 0.35 β3 -3.00 (0.11) (-3.24, -2.79) 0.30
γ4 -3.06 (0.26) (-3.56, -2.57) 0.24 β4 -1.90 (0.07) (-2.55, -2.03) 0.49
ESS 553 β5 -2.28 (0.14) (1.21, 1.88) 0.32

ESS 735
ν1 PM (PSD) 95% HPD p-value ν2 PM (PSD) 95% HPD p-value
ν11 -0.69 (0.63) (-1.98, 0.45) 0.93 ν21 -1.29 (0.30) (-1.84, -0.67) 0.19
ν12 0.43 (0.60) (-0.73, 1.60) 0.63 ν22 -0.98 (0.33) (-1.56, -0.31) 0.64
ν13 0.74 (0.65) (-0.45, 2.09) 0.22 ν23 -0.99 (0.32) (-1.69, -0.42) 0.94
ν14 -0.39 (0.32) (-1.01, 0.22) 0.78 ν24 1.23 (0.21) (0.80, 1.59) 0.89
...

...
...

...
...

...

σ2
1 PM (PSD) 95% HPD p-value σ2

2 PM (PSD) 95% HPD p-value
1.19 (0.41) (0.46, 2.00) 0.74 1.27 (0.34) (0.69, 1.95 ) 0.43

ESS 1000 ESS 1000

Note: PM: posterior mean; PSD: posterior standard deviation.

Table 3.3 depicts the posterior proportion prediction for the overall population, as well as the

prediction for each area under both the nonignorable selection model and the ignorable selection

model. Under the nonignorable selection model, the overall posterior proportion is 0.55 and its

95% HPD interval is (0.52, 0.57). We see that the 95% HPD interval contains the true population

68



proportion, which is 0.56. For each area, a visual of posterior mean proportion with the 95% HPD

interval, along with the true population proportion and sample proportion are presented in Figure

3.1. We see that the 95% HPD interval covers the true population proportion for each area with

one exception (area 26). Under the ignorable model, the overall posterior proportion is 0.41 and

the 95% HPD interval is (0.39, 0.42), therefore the interval does not contain the true population

proportion. One can also check the predictive proportions and intervals on area level in Table 3.3.
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Table 3.3: Posterior summaries of finite population proportions

Nonignorable Model Ignorable Model
Area True Ȳ ȳs PM (PSD) 95% HPD PM (PSD) 95% HPD
1 0.5 0.51 0.53 ( 0.029 ) ( 0.47 , 0.58 ) 0.37 ( 0.028 ) ( 0.32 , 0.43 )
2 0.44 0.34 0.41 ( 0.029 ) ( 0.36 , 0.47 ) 0.28 ( 0.025 ) ( 0.24 , 0.33 )
3 0.6 0.48 0.56 ( 0.025 ) ( 0.52 , 0.61 ) 0.44 ( 0.023 ) ( 0.39 , 0.48 )
4 0.59 0.43 0.59 ( 0.05 ) ( 0.5 , 0.69 ) 0.41 ( 0.057 ) ( 0.29 , 0.52 )
5 0.41 0.24 0.4 ( 0.038 ) ( 0.32 , 0.46 ) 0.26 ( 0.032 ) ( 0.19 , 0.32 )
6 0.65 0.59 0.63 ( 0.022 ) ( 0.59 , 0.67 ) 0.5 ( 0.021 ) ( 0.46 , 0.54 )
7 0.49 0.28 0.49 ( 0.043 ) ( 0.42 , 0.58 ) 0.32 ( 0.034 ) ( 0.26 , 0.39 )
8 0.62 0.69 0.66 ( 0.037 ) ( 0.58 , 0.73 ) 0.53 ( 0.03 ) ( 0.47 , 0.59 )
9 0.58 0.48 0.55 ( 0.019 ) ( 0.52 , 0.59 ) 0.44 ( 0.019 ) ( 0.4 , 0.47 )
10 0.52 0.22 0.49 ( 0.041 ) ( 0.42 , 0.58 ) 0.35 ( 0.036 ) ( 0.29 , 0.42 )
11 0.48 0.36 0.45 ( 0.018 ) ( 0.42 , 0.48 ) 0.34 ( 0.019 ) ( 0.3 , 0.38 )
12 0.51 0.37 0.48 ( 0.018 ) ( 0.44 , 0.51 ) 0.39 ( 0.017 ) ( 0.36 , 0.42 )
13 0.72 0.71 0.69 ( 0.03 ) ( 0.63 , 0.74 ) 0.55 ( 0.034 ) ( 0.48 , 0.61 )
14 0.5 0.46 0.48 ( 0.023 ) ( 0.43 , 0.52 ) 0.37 ( 0.02 ) ( 0.33 , 0.41 )
15 0.58 0.49 0.57 ( 0.023 ) ( 0.53 , 0.62 ) 0.44 ( 0.023 ) ( 0.4 , 0.48 )
16 0.52 0.43 0.5 ( 0.017 ) ( 0.47 , 0.54 ) 0.41 ( 0.017 ) ( 0.37 , 0.44 )
17 0.52 0.41 0.5 ( 0.014 ) ( 0.48 , 0.53 ) 0.42 ( 0.015 ) ( 0.39 , 0.44 )
18 0.64 0.54 0.63 ( 0.022 ) ( 0.58 , 0.67 ) 0.52 ( 0.024 ) ( 0.46 , 0.56 )
19 0.58 0.44 0.56 ( 0.023 ) ( 0.52 , 0.6 ) 0.44 ( 0.022 ) ( 0.4 , 0.48 )
20 0.52 0.41 0.56 ( 0.036 ) ( 0.49 , 0.63 ) 0.39 ( 0.037 ) ( 0.32 , 0.46 )
21 0.57 0.61 0.58 ( 0.016 ) ( 0.55 , 0.62 ) 0.49 ( 0.015 ) ( 0.46 , 0.51 )
22 0.54 0.47 0.58 ( 0.052 ) ( 0.49 , 0.69 ) 0.39 ( 0.052 ) ( 0.29 , 0.49 )
23 0.64 0.71 0.71 ( 0.052 ) ( 0.61 , 0.8 ) 0.56 ( 0.062 ) ( 0.44 , 0.68 )
24 0.57 0.59 0.55 ( 0.039 ) ( 0.48 , 0.62 ) 0.41 ( 0.037 ) ( 0.34 , 0.48 )
25 0.62 0.39 0.59 ( 0.048 ) ( 0.49 , 0.67 ) 0.37 ( 0.043 ) ( 0.28 , 0.45 )
26 0.57 0.36 0.5 ( 0.036 ) ( 0.42 , 0.56 ) 0.35 ( 0.029 ) ( 0.3 , 0.4 )
27 0.5 0.4 0.47 ( 0.02 ) ( 0.43 , 0.51 ) 0.36 ( 0.02 ) ( 0.33 , 0.41 )
28 0.54 0.34 0.49 ( 0.036 ) ( 0.41 , 0.55 ) 0.32 ( 0.035 ) ( 0.26 , 0.39 )
29 0.57 0.5 0.59 ( 0.034 ) ( 0.52 , 0.66 ) 0.41 ( 0.035 ) ( 0.34 , 0.47 )
30 0.58 0.33 0.57 ( 0.038 ) ( 0.49 , 0.64 ) 0.37 ( 0.046 ) ( 0.28 , 0.46 )
Overall 0.56 0.46 0.55 (0.01) (0.52, 0.57) 0.41 (0.01) (0.39, 0.42)

Note: PM: posterior mean; PSD: posterior standard deviation.
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Figure 3.1: Population proportion posterior mean and 95% HPD interval for each area using the

nonignorable model. (Triangle: true population proportion. Circle: sample proportion.)
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A visual of histograms for both the nonignorable selection model and the ignorable selection

model are presented in Figure 3.2. The histogram of the proportion predictions by the nonignorable

selection model covers the true population proportion, while the one using the ignorable selection

model does not. In addition to the location, the spread of predictions by the nonignorable selection

mode is a bit wider than the ignorable selection model, which is likely caused by uncertainty from

more parameters, but in a reasonable scale.

Figure 3.2: Histogram of the overall population proportion predictions by nonignorable selection

model (right) and ignorable selection model (left). Dashed line: true population proportion.
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3.2 Application on Body Mass Index with Multiple Areas

In this section, we apply both the nonignorable selection model and ignorable selection model on

the BMI data with 35 areas (counties) and age, race, sex as covariates. Age values are grouped into

0-4, 5-9, 10-14, and 15-19; and we use 2,7,12,and 17 to represent the four age groups. Race has

the value of 0 and 1, where 0 represents black and 1 white. Sex is presented by 0 and 1 for male

and female respectively. The total sample size across all counties is 5185, while the population

size is 23,106,185. Similar to Section 2.3, our target inference is the proportion of children with

healthy BMI, which is defined by greater than or equal to 20 and less than or equal to 25.

3.2.1 Model Reformulation of the Nonignorable Selection Model

We adapt the idea in Section 2.3 to reformulate the model to a more compact form, to increase the

algorithm’s performance.

We use ` to denote the total number of areas and Ci the number of unique sets of age-race-sex

values in each area i. Denote the index for areas by i, i = 1, ..., `; the index for categories, which

are the different combinations of covariates, by j, j = 1, ..., Ci; and a item within a category by k.

Accordingly, within category ij, sample size is denoted by nij and population size by Nij .

Then, the notation for the count (probability) for each cell within category ij is

yijk = 1 yijk = 0

Iijk = 1 aij (pij1) nij − aij (pij2) nij

Iijk = 0 zij (pij3) Nij − nij − zij (pij4) Nij − nij

pij1, pij2, pij3, and pij4 can be derived from
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yij | ν1i,γ
ind∼ Bernoulli

{
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)

}
, i = 1, ..., l, j = 1, ..., Ni,

Iij | yij, ν2i,β
ind∼ Bernoulli

{
exp(x′ijβ(p) + βp+1yij + ν2i)

1 + exp(x′ijβ(p) + βp+1yij + ν2i)

}
, i = 1, ..., l, j = 1, ..., Ni,

(3.2.1)

It can be shown that

pij1 = P (yi = 1, Ii = 1 | γ,β) =
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)
×

exp(x′ijβ(p) + βp+1 + ν2i)

1 + exp(x′ijβ(p) + βp+1 + ν2i)
,

pij2 = P (yi = 0, Ii = 1 | γ,β) =
1

1 + exp(x′ijγ + ν1i)
×

exp(x′ijβ(p) + ν2i)

1 + exp(x′ijβ(p) + ν2i)
,

pij3 = P (yi = 1, Ii = 0 | γ,β) =
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)
× 1

1 + exp(x′ijβ(p) + βp+1 + ν2i)
,

pij4 = P (yi = 0, Ii = 0 | γ,β) =
1

1 + exp(x′ijγ + ν1i)
× 1

1 + exp(x′ijβ(p) + ν2i)
.

(3.2.2)

One can verify that pij1 + pij2 + pij3 + pij4 = 1.

The probability mass function for the 2 by 2 contingency table is

P (aij, nij − aij, zij, Nij − nij − zij)

=
Nij!

aij!(nij − aij)!zij!(Nij − nij − zij)!
× pij1aijpij2nij−aijpij3

zijpij4
Nij−nij−zij .

Similar to the homogeneous derivation, we sum out zij and include all priors to derive the joint

posterior distribution as
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π(γ,β,ν1,ν2, σ
2
1, σ

2
2 | I,ys) ∝∏̀

i=1

Ci∏
j=1

{
pij1

aijpij2
nij−aij(pij3 + pij4)

Nij−nij
}
× exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)

× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
×
∏̀
i=1

(σ2
1)−

1
2 exp

(
− ν21i

2σ2
1

)

×
∏̀
i=1

(σ2
2)−

1
2 exp

(
− ν22i

2σ2
2

)
× 1

(1 + σ2
1)2
× 1

(1 + σ2
2)2

.

(3.2.3)

Replacing pij1, pij2, pij3, and pij4 by formula (3.2.2), we arrive at the joint posterior distribution

π(γ,β,ν1,ν2, σ
2
1, σ

2
2 | I,ys) ∝∏̀

i=1

Ci∏
j=1

{(
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)
×

exp(x′ijβ(p) + βp+1 + ν2i)

1 + exp(x′ijβ(p) + βp+1 + ν2i)

)aij

×

(
1

1 + exp(x′ijγ + ν1i)
×

exp(x′ijβ(p) + ν2i)

1 + exp(x′ijβ(p) + ν2i)

)nij−aij

×

(
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)
× 1

1 + exp(x′ijβ(p) + βp+1 + ν2i)

+
1

1 + exp(x′ijγ + ν1i)
× 1

1 + exp(x′ijβ(p) + ν2i)

)Nij−nij


× exp

(
−1

2
(γ − γ̂)T (102Σ̂γ)−1(γ − γ̂)

)
× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
×
∏̀
i=1

(σ2
1)−

1
2 exp

(
− ν21i

2σ2
1

)

×
∏̀
i=1

(σ2
2)−

1
2 exp

(
− ν22i

2σ2
2

)
× 1

(1 + σ2
1)2
× 1

(1 + σ2
2)2

.

(3.2.4)

Note that form (3.2.4) can be simplified analytically and then the conditional posterior dis-
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tribution for each unknown parameter can be further derived. However, to save time we avoid

simplifying the form and define a function in R to numerically calculate the conditional posterior

density.

The summaries of the finite population proportion overall and in each area found by both the

nonignorable and ignorable selection model are presented in Table 3.4. A visual of posterior

mean with 95% HPD intervals under the nonignorable selection model versus sample proportion

for each area are presented in Figure 3.3. We see that the overall inference from 35 counties

are consistent with the result from the one county in Section 2.3. The individual inferences are

consistent across counties, and seem not related with the sample proportion, but more affected by

covariates structure.

From histograms of both models in Figure 3.4, we see that the histogram of the ignorable model

is centered close to the sample proportion, which is 0.23, and with a small spread. By incorporating

the selection submodel, the histogram of the nonignorable model is centered around 0.6 but with a

relatively larger spread.
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Table 3.4: Posterior summaries of finite population proportions

Nonignorable Model Ignorable Model
County ȳs PM (PSD) 95% HPD PM (PSD) 95% HPD
4013 0 0.53 ( 0.058 ) ( 0.41 , 0.63 ) 0.24 ( 0.023 ) ( 0.19 , 0.28 )
6001 0 0.64 ( 0.058 ) ( 0.52 , 0.75 ) 0.31 ( 0.029 ) ( 0.26 , 0.36 )
6019 0 0.57 ( 0.061 ) ( 0.46 , 0.69 ) 0.25 ( 0.025 ) ( 0.21 , 0.3 )
6037 0.5 0.61 ( 0.051 ) ( 0.5 , 0.71 ) 0.29 ( 0.017 ) ( 0.26 , 0.32 )
6059 0.07 0.57 ( 0.055 ) ( 0.46 , 0.67 ) 0.26 ( 0.027 ) ( 0.21 , 0.31 )
6071 0.09 0.55 ( 0.061 ) ( 0.44 , 0.67 ) 0.24 ( 0.023 ) ( 0.19 , 0.28 )
6073 0.4 0.59 ( 0.06 ) ( 0.48 , 0.71 ) 0.25 ( 0.025 ) ( 0.2 , 0.3 )
6085 0 0.64 ( 0.065 ) ( 0.51 , 0.76 ) 0.3 ( 0.034 ) ( 0.23 , 0.36 )
6111 0.17 0.63 ( 0.06 ) ( 0.51 , 0.74 ) 0.3 ( 0.028 ) ( 0.24 , 0.35 )
12025 1 0.66 ( 0.061 ) ( 0.53 , 0.77 ) 0.33 ( 0.029 ) ( 0.27 , 0.38 )
12031 0.38 0.58 ( 0.059 ) ( 0.47 , 0.69 ) 0.24 ( 0.026 ) ( 0.19 , 0.29 )
12099 0.88 0.58 ( 0.059 ) ( 0.46 , 0.69 ) 0.27 ( 0.028 ) ( 0.21 , 0.32 )
17031 0 0.59 ( 0.054 ) ( 0.49 , 0.7 ) 0.27 ( 0.02 ) ( 0.23 , 0.31 )
25017 0 0.55 ( 0.062 ) ( 0.42 , 0.67 ) 0.24 ( 0.032 ) ( 0.18 , 0.3 )
26125 0.07 0.59 ( 0.062 ) ( 0.47 , 0.7 ) 0.26 ( 0.027 ) ( 0.21 , 0.31 )
26163 0 0.58 ( 0.06 ) ( 0.47 , 0.71 ) 0.26 ( 0.026 ) ( 0.21 , 0.31 )
29189 0 0.57 ( 0.062 ) ( 0.45 , 0.69 ) 0.24 ( 0.029 ) ( 0.18 , 0.29 )
36029 0.08 0.57 ( 0.061 ) ( 0.46 , 0.7 ) 0.24 ( 0.029 ) ( 0.19 , 0.31 )
36047 0.33 0.57 ( 0.064 ) ( 0.46 , 0.7 ) 0.24 ( 0.027 ) ( 0.2 , 0.3 )
36059 0.3 0.59 ( 0.06 ) ( 0.48 , 0.71 ) 0.26 ( 0.033 ) ( 0.19 , 0.32 )
36061 0 0.66 ( 0.058 ) ( 0.56 , 0.78 ) 0.34 ( 0.03 ) ( 0.28 , 0.39 )
36081 0.5 0.59 ( 0.062 ) ( 0.47 , 0.7 ) 0.26 ( 0.032 ) ( 0.2 , 0.32 )
36119 0.5 0.56 ( 0.062 ) ( 0.45 , 0.69 ) 0.25 ( 0.029 ) ( 0.2 , 0.31 )
39035 0.4 0.59 ( 0.056 ) ( 0.47 , 0.68 ) 0.27 ( 0.03 ) ( 0.22 , 0.33 )
39061 1 0.54 ( 0.064 ) ( 0.42 , 0.67 ) 0.24 ( 0.026 ) ( 0.19 , 0.29 )
42003 1 0.63 ( 0.058 ) ( 0.52 , 0.74 ) 0.3 ( 0.032 ) ( 0.24 , 0.36 )
42045 0.67 0.62 ( 0.059 ) ( 0.51 , 0.73 ) 0.3 ( 0.031 ) ( 0.25 , 0.37 )
42101 0.86 0.58 ( 0.066 ) ( 0.44 , 0.7 ) 0.24 ( 0.031 ) ( 0.18 , 0.3 )
44007 0 0.59 ( 0.058 ) ( 0.49 , 0.71 ) 0.26 ( 0.031 ) ( 0.21 , 0.32 )
48029 0 0.62 ( 0.054 ) ( 0.52 , 0.73 ) 0.29 ( 0.027 ) ( 0.24 , 0.35 )
48113 0 0.6 ( 0.057 ) ( 0.49 , 0.71 ) 0.28 ( 0.027 ) ( 0.24 , 0.34 )
48141 0.1 0.61 ( 0.061 ) ( 0.5 , 0.73 ) 0.27 ( 0.028 ) ( 0.22 , 0.33 )
48201 0 0.63 ( 0.056 ) ( 0.53 , 0.75 ) 0.3 ( 0.025 ) ( 0.25 , 0.35 )
48439 0.2 0.63 ( 0.057 ) ( 0.51 , 0.73 ) 0.3 ( 0.029 ) ( 0.24 , 0.35 )
53033 0 0.61 ( 0.058 ) ( 0.5 , 0.72 ) 0.28 ( 0.028 ) ( 0.23 , 0.34 )
Overall 0.23 0.60 (0.05) (0.50, 0.68) 0.28 (0.01) (0.26, 0.29)

Note: PM: posterior mean; PSD: posterior standard deviation.
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Figure 3.3: Population proportion posterior mean and 95% HPD interval for each county under the nonig-

norable model. (Circle: sample proportion.)
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Figure 3.4: Histogram of Population Proportion Prediction by nonignorable selection model (right)

and ignorable selection model (left).
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3.3 Model with Dirichlet Process Prior

In this section, we extend the model to allow for sharing the same area effects across multiple

areas. For example, areas close by could have similar area effects and thus can be grouped into

clusters. Our approach is to place Dirichlet process (Ferguson 1973) priors on area variables ν1i

and ν2i.

The Dirichlet process (DP) DP(α,G0) has two parameters, a concentration parameter α > 0,

and a base probability measure, G0. An explicit representation of a draw from a DP was given by

Sethuraman (1994), who showed that if G ∼ DP (α,G0), then, with probability 1,

G(ν) =
∞∑
k=1

wk ∆νk(ν),

where νk are independent random variables distributed according to G0; ∆νk is a point mass CDF

concentrated at νk and weightwk is random and defined byw1 = V1, wk = (1−V1)(1−V2) . . . (1−

Vk−1)Vk, k ≥ 2, where Vk are independently drawn from Beta(1, α). This representation is called

“stick-breaking” because it can be thought of as a stick-breaking procedure, where at each step, a

stick of length wk is broken off from a stick of unit length.

This representation shows that draws from a DP are discrete, which makes it is well suited for

the problem of placing priors on mixture components in mixture modeling in survey sample and

small area estimation. A significant amount of research has been conducted in DP mixture models

(DPM) in survey sampling and small area estimation (Antoniak 1974; Escobar and West 1995;

Maceachern and Muller 1998; Nandram and Yin 2016a, 2016b; Yin and Nandram 2020a, 2020b)

We maintain the structure in (3.1.1) and (3.1.2) but replace the priors for ν1i and ν2i with a DP

prior, which corresponds to two DPM models.
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Response submodel

yij | ν1i,γ
ind∼ Bernoulli

{
exp(x′ijγ + ν1i)

1 + exp(x′ijγ + ν1i)

}
, i = 1, ..., `, j = 1, ..., Ni,

ν1i | G1
iid∼ DP (α1, G01), i = 1, ..., `,

π(γ) ∼ N(γ̂, 102Σ̂γ),

π(σ2
1) ∝ 1

(1 + σ2
1)2

,

(3.3.1)

where G01 is the CDF of a normal random variable with mean 0 and variance σ2
1 .

Selection submodel

Iij | yij, ν2i,β
ind∼ Bernoulli

{
exp(x′ijβ(p) + βp+1yij + ν2i)

1 + exp(x′ijβ(p) + βp+1yij + ν2i)

}
, i = 1, ..., `, j = 1, ..., Ni,

ν2i | G2
iid∼ DP (α2, G02), i = 1, ..., `,

π(β) ∼ N(β̂, 102Σ̂β),

π(σ2
2) ∝ 1

(1 + σ2
2)2

,

(3.3.2)

where G02 is the CDF of a normal random variable with mean 0 and variance σ2
2 .

3.3.1 Slice Sampling

Sampling from the DPM model can be difficult due to the infinite dimensional problem. An origi-

nal algorithm by Escobar (1988), and some variations (MacEachern 1994, MacEachern and Muller

1998, Neal 2000) rely on integrating out the Dirichlet process from the model. These are usually

referred to as “marginal” methods. Walker (2007) used slice sampling ideas and found a way to
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sample a finite number of variables at each iteration, which is defined as the “conditional” method.

Our sampling approach is developed from the slice sampling algorithm proposed by Kalli, Griffin

and Walker (2011) and extended to include a sampler for α.

We focus on the details of sampling ν1 and ν2 as the sampling methods for other variables are

unchanged. We first look at the hierarchical submodel that involves ν1

yij | ν1i, ...
ind∼ Bernoulli (pij(ν1i)) , i = 1, ..., `, j = 1, ..., Ni,

ν1i | G1
iid∼ DP (α1, G01), i = 1, ..., `,

(3.3.3)

where

pij(ν1i) =
exp(x′ijγ + ν1i)

(
1 + exp(x′ijβ(p) + ν2i)

)
exp(x′ijγ + ν1i)

(
1 + exp(x′ijβ(p) + ν2i)

)
+ 1 + exp(x′ijβ(p) + βp+1 + ν2i)

from Section 3.1 (vii) and G01 is the CDF of a normal random variable with mean 0 and variance

σ2
1 .

By using a stick-breaking representation,

G1(ν1) =
∞∑
k=1

wk δν1k(ν1),

where ν11,ν12 ,ν13,... are independent and identically distributed from G01 and

w1 = V1, wk = Vk
∏
κ<k

(1− Vκ)

with Vk being independent and identically distributed from Beta(1, α1), we can write

f(y | w,ν1, ...) =
∞∑
k=1

wkBernoulli (p(ν1k)) . (3.3.4)

As one can see, (3.3.4) is an infinite mixture model and we will describe how to change this
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into a finite number of components. Our starting point is to introduce a random variable u such

that the joint density of y and u satisfies

f(y, u | w,ν1, ...) =
∞∑
k=1

1(u < wk)Bernoulli (p(ν1k)) . (3.3.5)

Then given u, the number of components is finite, with the indices for the components being

Au = {k : wk > u}.

To indicate which observations (area) belongs to which components, we introduce the vector d

with the length of `. For example, d = (5, 2, 5, ...) means that the first observation (area) and the

third belong to the same component (cluster) 5. Then, the joint posterior distribution is proportional

to

f(y,u,d | w,ν1, ...) ∝
∏̀
i=1

Ni∏
j=1

1(ui < wdi)Bernoulli (pij(ν1di)) , (3.3.6)

Mixing rate can be further introduce by introducing a positive decreasing sequence ξ1, ξ2, ξ3, ...

to the joint distribution (Kalli, Griffin and Walker, 2011). Our choice of the sequence is ξj =

(1 − k)kj−1, k ∈ (0, 1) and k is a tuning parameter, we find that k=0.75 strikes a good mixing.

Finally, the joint posterior distribution is

f(y,u,d | w,ν1, ...) ∝ ξ−1di

∏̀
i=1

Ni∏
j=1

1(ui < ξdi)wdiBernoulli (pij(ν1di)) , (3.3.7)

Next, we draw ν1di from this joint posterior distribution. The algorithm can be easily adapted

for ν2di .

Goal: To sample {ν1k, k = 1, 2, ...; (di, ui), i = 1, ..., `} at each sweep of the Gibbs sampler.

Theoretically, the index k goes to infinity, but in practice, one can use the integer M where M =

maxi{Mi} and Mi is the largest integer m for which ξm > ui. Give a initial value for d and α1.

Algorithm For (t = 1, ..., T ), repeat:
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Step 1. Execute the algorithm in Section 3.1 steps 1 - 4 to draw samples of γ and β.

Step 2. Now start the stick-breaking process to draw ν1:

1. Draw u, where ui ∼ U(0, ξdi), i = 1, 2, ..., `. Then, determine M such that M is the

largest index for which ξM > min(u).

2. Based on the index d, draw values of ν1k, k = 1, 2, ...,M . For each k:

– If there is di, i = 1, ..., l equals to k, denote the set of all such i by Ak, draw ν1k

from its posterior distribution

f(ν1k | y,γ, σ2
1) ∝

∏
i∈Ak

{
Ni∏
j=1

exp(ν1iyij)

1 + exp(x′ijγ + ν1i)
× exp

(
− ν21i

2σ2
1

)}
.

– If there is no di equals to k, then draw ν1k from the prior N(0, σ2
1).

3. Draw Vk, k = 1, 2, ...,M from Beta(ak, bk), where

ak = 1 +
n∑
i=1

1(di = k)

bk = α1 +
n∑
i=1

1(di > k)

Then, wk, j = 1, 2, ...,M can be calculated by w1 = V1, wk = Vk
∏

κ<k(1 − Vκ) for

k > 1.

4. Then, regroup the observations (areas) by first calculating the probability of the obser-

vation (area) i assigning to each component k:

Pik(di = k|...) ∝ 1(k : ξk > ui)wk/ξk

Ni∏
j=1

Bernoulli (yij; p(ν1k)) .

For each i, scale the probability such that
∑M

k=1 Pik = 1 and draw a integer from 1 to

M with the rescaled probabilities; assign it to di and proceed for all the is.

5. Based on the updated d, find the cluster number k. Use k to draw α1 with details in
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Appendix D.

Step 3. Adapt the Step 2 to ν2, and proceed with the rest of the algorithms in Section 3.1

steps 6-8. Repeat from the Step 1.

3.3.2 Simulation Study

We conduct a similar simulation study as the one in Section 3.1.1. The population size is 12,000

with ` = 30 areas. The coefficients for the population model are γTrue = (3, 6,−2,−3), and

the terms ν1i are sampled from a DP that gives 6 unique values. For the selection submodel, the

coefficients are βTrue = (0.8, 0.8,−3,−2,−2.5), and area effects ν2i are drawn from a DP that

gives 5 unique values.

The population proportion is 0.53, the sample proportion is 0.40, with the total sample size

among all areas is 1282. We run 30,000 iterations; burn-in the first 5,000; thinning by 25 and end

up with 1,000 samples.

Results

For simplicity, we omit presenting the diagnostics but only show the summaries of finite pro-

portion predictions by area and overall under both the nonignorable and ignorable selection model

(Table 3.5). We see that the 95% HPD interval from the nonignorable model covers the true pop-

ulation proportion for each area, which is also shown in Figure 3.5. The density of the finite

population proportions for each area under the nonignorable selection model is presented in Figure

3.6. The histogram comparison of the overall population proportions under the two models is in

Figure 3.7, which shows that the histogram from the nonignorable selection model covers the true

value while the ignorable model does not.

We also show some graphics for the area effects ν1 and ν2 in Figures 3.8 and 3.9. Figure 3.8

gives us an idea of how values of ν1i are distributed for each group, and how they are spread out
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among groups, from which we can (vaguely) tell how they form the clusters. Figure 3.9 gives the

curves for ν2i by group. It is clearer that there are possibly 4 clusters. Figures 3.10 and 3.11 are the

histograms for k1 and k2, which show the number of clusters for area effects of the response and

selection submodel respectively. We see that the modes are at 6 and 5, which are the same as the

true values (the numbers of the unique values in simulation), indicating that our model correctly

discovers the clusters.
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Table 3.5: Posterior summaries of finite population proportions

Nonignorable Model Ignorable Model
Area True Ȳ ȳs PM (PSD) 95% HPD PM (PSD) 95% HPD
1 0.54 0.47 0.54 ( 0.028 ) ( 0.48 , 0.59 ) 0.4 ( 0.031 ) ( 0.34 , 0.46 )
2 0.5 0.5 0.54 ( 0.032 ) ( 0.49 , 0.6 ) 0.37 ( 0.036 ) ( 0.3 , 0.43 )
3 0.51 0.38 0.5 ( 0.025 ) ( 0.45 , 0.55 ) 0.33 ( 0.032 ) ( 0.27 , 0.39 )
4 0.52 0.3 0.51 ( 0.027 ) ( 0.46 , 0.56 ) 0.35 ( 0.032 ) ( 0.29 , 0.41 )
5 0.55 0.4 0.57 ( 0.029 ) ( 0.52 , 0.62 ) 0.39 ( 0.038 ) ( 0.32 , 0.47 )
6 0.53 0.3 0.55 ( 0.029 ) ( 0.49 , 0.6 ) 0.29 ( 0.045 ) ( 0.2 , 0.38 )
7 0.57 0.44 0.55 ( 0.026 ) ( 0.5 , 0.6 ) 0.44 ( 0.038 ) ( 0.38 , 0.52 )
8 0.53 0.46 0.55 ( 0.025 ) ( 0.5 , 0.6 ) 0.42 ( 0.039 ) ( 0.34 , 0.5 )
9 0.52 0.31 0.54 ( 0.027 ) ( 0.49 , 0.59 ) 0.37 ( 0.038 ) ( 0.3 , 0.44 )
10 0.5 0.32 0.52 ( 0.028 ) ( 0.46 , 0.56 ) 0.31 ( 0.035 ) ( 0.24 , 0.38 )
11 0.47 0.3 0.48 ( 0.023 ) ( 0.43 , 0.52 ) 0.31 ( 0.029 ) ( 0.26 , 0.37 )
12 0.49 0.42 0.55 ( 0.028 ) ( 0.48 , 0.59 ) 0.4 ( 0.039 ) ( 0.31 , 0.46 )
13 0.52 0.27 0.5 ( 0.026 ) ( 0.46 , 0.56 ) 0.24 ( 0.034 ) ( 0.18 , 0.31 )
14 0.57 0.34 0.53 ( 0.025 ) ( 0.48 , 0.57 ) 0.39 ( 0.026 ) ( 0.34 , 0.44 )
15 0.52 0.33 0.53 ( 0.025 ) ( 0.48 , 0.58 ) 0.28 ( 0.043 ) ( 0.2 , 0.37 )
16 0.48 0.39 0.53 ( 0.029 ) ( 0.47 , 0.58 ) 0.38 ( 0.029 ) ( 0.32 , 0.43 )
17 0.52 0.43 0.53 ( 0.029 ) ( 0.47 , 0.58 ) 0.3 ( 0.045 ) ( 0.21 , 0.38 )
18 0.57 0.56 0.57 ( 0.03 ) ( 0.51 , 0.63 ) 0.41 ( 0.036 ) ( 0.34 , 0.48 )
19 0.56 0.47 0.58 ( 0.025 ) ( 0.54 , 0.63 ) 0.4 ( 0.033 ) ( 0.33 , 0.46 )
20 0.56 0.37 0.53 ( 0.028 ) ( 0.48 , 0.58 ) 0.37 ( 0.043 ) ( 0.29 , 0.46 )
21 0.58 0.44 0.56 ( 0.027 ) ( 0.51 , 0.61 ) 0.42 ( 0.036 ) ( 0.34 , 0.48 )
22 0.52 0.34 0.55 ( 0.029 ) ( 0.49 , 0.6 ) 0.34 ( 0.038 ) ( 0.26 , 0.41 )
23 0.56 0.48 0.57 ( 0.03 ) ( 0.51 , 0.62 ) 0.34 ( 0.042 ) ( 0.26 , 0.42 )
24 0.49 0.42 0.51 ( 0.025 ) ( 0.46 , 0.56 ) 0.35 ( 0.033 ) ( 0.28 , 0.41 )
25 0.56 0.53 0.57 ( 0.03 ) ( 0.51 , 0.62 ) 0.42 ( 0.038 ) ( 0.34 , 0.5 )
26 0.52 0.38 0.53 ( 0.032 ) ( 0.47 , 0.58 ) 0.34 ( 0.042 ) ( 0.25 , 0.42 )
27 0.6 0.48 0.56 ( 0.033 ) ( 0.5 , 0.63 ) 0.37 ( 0.033 ) ( 0.32 , 0.44 )
28 0.56 0.42 0.57 ( 0.028 ) ( 0.52 , 0.63 ) 0.4 ( 0.038 ) ( 0.32 , 0.47 )
29 0.5 0.38 0.52 ( 0.022 ) ( 0.47 , 0.55 ) 0.36 ( 0.026 ) ( 0.31 , 0.41 )
30 0.52 0.51 0.58 ( 0.028 ) ( 0.52 , 0.63 ) 0.46 ( 0.031 ) ( 0.41 , 0.52 )
Overall 0.53 0.40 0.54 (0.02) (0.51, 0.57) 0.36 (0.01) (0.34, 0.39)

Note: PM: posterior mean; PSD: posterior standard deviation.
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Figure 3.5: Population proportion posterior mean and 95% HPD interval for each area under the

nonignorable model. (Triangle: true population proportion. Circle: sample proportion.)
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Figure 3.6: Density of Population Proportion Predictions by Area under the Nonignorable Selec-

tion Model
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Figure 3.7: Histogram of the overall population proportion predictions by nonignorable selection

model (right) and ignorable selection model (left). Dashed line: true population proportion.
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Figure 3.8: Density of ν1 by group
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Figure 3.9: Density of ν2 by group

92



Figure 3.10: Histogram of k1
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Figure 3.11: Histogram of k2
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3.4 Model with Bivariate Prior for Area Effects

In this section, we model (ν1i, ν2i) together with a bivariate normal distirbution as a prior. In this

way, the area effects for the response model and the missingness model can be pooled together by

the correlation between the two variables. The prior is

ν1i
ν2i

 ∼ N


0

0

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


 , i = 1, ..., `

It is straightforward to show that this prior can also be formulated as

ν1i ∼ N(0, σ2
1)

ν2i | ν1i ∼ N
(
ρ
σ2
σ1
ν1i, (1− ρ2)σ2

2

)
, i = 1, ..., `.

(3.4.1)

We give ρ a flat prior on (−1, 1).

Using the formulation of (3.4.1), the conditional posterior distributions of ν1i, ν2i, and ρ can be

easily derived as

(i) f(ν1i | y,γ, σ2
1) ∝

Ni∏
j=1

exp(ν1iyij)

1 + exp(x′ijγ + ν1i)
× exp

(
− ν21i

2σ2
1

)
, i = 1, ..., `;

(Note: this is unchanged from Section 3.1)

(ii) f(ν2i | y,β, I, σ2, ν1i, ρ)

∝
Ni∏
j=1

exp(ν2iIij)

1 + exp(x′ijβ(p) + βp+1yij + ν2i)
× exp

−1

2

(
ν2i − ρσ2σ1ν1i√

1− ρ2σ2

)2
 , i = 1, ..., l;

(iii) f(ρ | σ1, σ2, ν1i, ν2i) ∝

(
1√

1− ρ2

)l l∏
i=1

exp

−1

2

(
ν2i − ρσ2σ1ν1i√

1− ρ2σ2

)2
 .

The algorithm is adapted from the one in Section 3.1, with the formula for ν2i replaced and for

ρ added to the iteration, where ρ can be sampled by the grid method on (−1, 1).
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3.4.1 Simulation Study

A simulation study is conducted in a similar setup as in Section 3.2.2, with the only difference in

the generation of ν1i and ν2i. ν1i and ν2 are drawn from the bivariate normal distribution with mean

(0, 0)′, and marginal variances being 1 and the correlation ρ being 0.4.

The true population proportion is 0.55; the sample proportion is 0.47, with the total sample size

of 1671.

Results

Summaries of population proportion predictions under both models are presented in Table 3.6,

with the coverage for each area under the nonignorable selection model visually displayed in Figure

3.12. We see that in Area 5 the 95% HPD interval does not contain the true value. The histogram in

Figure 3.13 shows the population proportion predictions under the nonignorable selection model

are centered around the true value. We further investigate the diagnostic and summary of ρ (visually

displayed in Figure 3.14). The p-value for Geweke’s test is 0.36, the effective sample size is 793.

The posterior mean is 0.37, while the true value is 0.4, indicating this correlation parameter can be

correctly identified.

96



Table 3.6: Posterior summaries of finite population proportions

Nonignorable Model Ignorable Model
Area True Ȳ ȳs PM (PSD) 95% HPD PM (PSD) 95% HPD
1 0.56 0.42 0.5 ( 0.037 ) ( 0.44 , 0.58 ) 0.32 ( 0.032 ) ( 0.25 , 0.38 )
2 0.55 0.47 0.56 ( 0.026 ) ( 0.5 , 0.6 ) 0.4 ( 0.028 ) ( 0.35 , 0.45 )
3 0.42 0.22 0.42 ( 0.037 ) ( 0.35 , 0.5 ) 0.23 ( 0.03 ) ( 0.17 , 0.28 )
4 0.7 0.54 0.66 ( 0.022 ) ( 0.62 , 0.7 ) 0.53 ( 0.025 ) ( 0.48 , 0.58 )
5 0.41 0.38 0.55 ( 0.056 ) ( 0.43 , 0.65 ) 0.33 ( 0.059 ) ( 0.22 , 0.44 )
6 0.46 0.4 0.47 ( 0.024 ) ( 0.43 , 0.52 ) 0.35 ( 0.02 ) ( 0.3 , 0.38 )
7 0.65 0.42 0.6 ( 0.038 ) ( 0.53 , 0.67 ) 0.43 ( 0.04 ) ( 0.35 , 0.5 )
8 0.49 0.27 0.49 ( 0.033 ) ( 0.42 , 0.55 ) 0.3 ( 0.028 ) ( 0.25 , 0.36 )
9 0.49 0.41 0.53 ( 0.032 ) ( 0.47 , 0.59 ) 0.34 ( 0.04 ) ( 0.26 , 0.42 )
10 0.7 0.64 0.64 ( 0.043 ) ( 0.55 , 0.72 ) 0.43 ( 0.046 ) ( 0.34 , 0.52 )
11 0.64 0.63 0.68 ( 0.026 ) ( 0.62 , 0.72 ) 0.54 ( 0.025 ) ( 0.49 , 0.58 )
12 0.46 0.31 0.45 ( 0.022 ) ( 0.42 , 0.5 ) 0.3 ( 0.021 ) ( 0.26 , 0.34 )
13 0.66 0.65 0.64 ( 0.023 ) ( 0.6 , 0.69 ) 0.51 ( 0.021 ) ( 0.48 , 0.56 )
14 0.6 0.56 0.61 ( 0.029 ) ( 0.55 , 0.66 ) 0.44 ( 0.026 ) ( 0.39 , 0.49 )
15 0.44 0.34 0.44 ( 0.026 ) ( 0.39 , 0.49 ) 0.32 ( 0.019 ) ( 0.28 , 0.36 )
16 0.48 0.38 0.51 ( 0.041 ) ( 0.43 , 0.58 ) 0.31 ( 0.042 ) ( 0.22 , 0.38 )
17 0.56 0.49 0.55 ( 0.02 ) ( 0.51 , 0.58 ) 0.41 ( 0.018 ) ( 0.37 , 0.44 )
18 0.57 0.37 0.54 ( 0.038 ) ( 0.46 , 0.6 ) 0.34 ( 0.035 ) ( 0.26 , 0.4 )
19 0.65 0.64 0.66 ( 0.03 ) ( 0.6 , 0.72 ) 0.54 ( 0.03 ) ( 0.48 , 0.6 )
20 0.47 0.44 0.5 ( 0.039 ) ( 0.42 , 0.57 ) 0.31 ( 0.027 ) ( 0.26 , 0.36 )
21 0.43 0.18 0.46 ( 0.041 ) ( 0.38 , 0.54 ) 0.25 ( 0.045 ) ( 0.17 , 0.34 )
22 0.7 0.67 0.67 ( 0.023 ) ( 0.62 , 0.71 ) 0.54 ( 0.025 ) ( 0.48 , 0.58 )
23 0.52 0.3 0.48 ( 0.045 ) ( 0.4 , 0.56 ) 0.23 ( 0.033 ) ( 0.18 , 0.3 )
24 0.57 0.63 0.59 ( 0.047 ) ( 0.49 , 0.68 ) 0.42 ( 0.043 ) ( 0.34 , 0.5 )
25 0.58 0.53 0.59 ( 0.018 ) ( 0.55 , 0.62 ) 0.49 ( 0.018 ) ( 0.46 , 0.52 )
26 0.55 0.47 0.57 ( 0.026 ) ( 0.52 , 0.62 ) 0.41 ( 0.029 ) ( 0.35 , 0.46 )
27 0.48 0.35 0.49 ( 0.031 ) ( 0.43 , 0.55 ) 0.32 ( 0.027 ) ( 0.27 , 0.37 )
28 0.51 0.5 0.54 ( 0.034 ) ( 0.48 , 0.6 ) 0.39 ( 0.026 ) ( 0.33 , 0.44 )
29 0.56 0.37 0.54 ( 0.03 ) ( 0.46 , 0.58 ) 0.31 ( 0.03 ) ( 0.25 , 0.36 )
30 0.52 0.45 0.51 ( 0.038 ) ( 0.44 , 0.58 ) 0.34 ( 0.033 ) ( 0.27 , 0.4 )
Overall 0.55 0.47 0.55 (0.01) (0.52, 0.57) 0.38 (0.01) (0.36, 0.40)

Note: PM: posterior mean; PSD: posterior standard deviation.
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Figure 3.12: Population proportion posterior mean and 95% HPD interval for each area under the

nonignorable model. (Triangle: true population proportion. Circle: sample proportion.)
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Figure 3.13: Histogram of the overall population proportion predictions by nonignorable selection

model (right) and ignorable selection model (left). Dashed line: true population proportion.
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Figure 3.14: Diagnostics of ρ

3.5 Conclusion

In this chapter, we focus on the nonignorable selection model for heterogeneous data. Similar to

the one in last chapter, this proposed model has two parts, the response submodel and selection

submodel, which are connected by the response variable y. Differently, each of the two submodels

has an area variable that accounts for heterogeneity among areas. The simulation study shows a

decent population proportion prediction. Applying the model to BMI data provides us an real-

world example of using heterogeneous data in prediction.

We also develop two variations of the model proposed, which are the Dirichlet process mixture

model and the bivariate area effect model. The Dirichlet process prior works best when the area

effects are discrete, for example, some areas share the same effect. The bivariate area effect model

are designed when area effects for the response model and selection model are correlated, for

example, the area effects for the same area in the response submodel and selection submodel are

similar. These two models are tested by simulation studies respectively.
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Chapter 4

Concluding Remarks and Future Work

This dissertation is motivated by the desire to make inference about the finite population proportion

from biased samples, where the bias comes from selection not at random (SNAR), or missing not

at random (MNAR). The parameter associated with the response variable in the selection model is

usually deemed non-identifiable by some researchers, for example, in the paper by Wang, Bartlett,

and Ryan (2017). Our contribution to this area is that by incorporating covariates, we conclude

that this parameter can be identified, providing the model is correctly specified. The nonignorable

selection models we proposed, along with an ignorable selection model as a comparison, are fit

using both simulation data and real BMI data.

We used a single nonprobability sample to make inference about a finite population, and we in-

corporated appropriate covariates both for samples and nonsamples. When there are no covariates

available for nonsamples, but there are population totals available from a census or administrative

data, we can compute covariates using data fusion.
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4.1 Concluding Remarks

In Chapter 2, we focused on the one-level Bayesian models that are designed for homogeneous

data. We described the model specification for the nonignorable selection model, and proposed a

MCMC algorithm for sampling the non-sampled units along with parameters from the joint pos-

terior distribution. As a comparison, the ignorable selection model, Horvitz-Thompson estimator

and Hajek estimator with weight calculated from propensity score are also provided. It was shown

from simulation studies that when the missingness mechanism is MNAR, the nonignorable selec-

tion model provides decent population proportion predictions, with the 95% HPD interval covering

true population proportion; when the missingness mechanism is MAR, all 95% HPD intervals from

the 4 models cover the true value, but the ignorable selection model has the advantage of shortest

interval range and quick execution time.

We applied both the nonignorable selection model and ignorable selection model in estimating

the population proportion of children with healthy BMI in one county from NHANES III. The dif-

ficulty that arises from this real data application is the large population size (630,308) compared to

a relatively small sample size (761). We addressed the problem by changing the way of presenting

data while keep the model setup intact. The algorithm developed was shown to largely improve the

MCMC chain’s mixing performance in such a large population size within a reasonable execution

time. Even though we do not have a true value to check the model’s accuracy, the difference be-

tween population proportion predictions from the nonignorable selection model and the ignorable

selection model indicates there is a huge selection bias in the data and the nonignorable selection

model adjusts it.

We proposed a methodology to handle the case where individual covariates are not available

for non-sampled units. This approach is particularly appealing because on many occasions only

the total counts for each level of the discrete covariates are known using administrative data or a

census. The method involves solving a large system of equations and inequalities, which could be
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a dreadful experience if solved by hand. We employ a Python module to perform the symbolic

calculation and pass the expressions to R for the following MCMC algorithms. The simulation

study based on the BMI data indicates that finite population proportion is estimable under such

conditions.

In Chapter 3, we extended the one-level Bayesian selection model to hierarchical Bayesian se-

lection models for heterogeneous data. The hierarchical model relaxes the exchangeable require-

ment among individuals, and provides robustness in the model. As a trade-off, the complexity

of the nonignorable selection model increases, along with the algorithm’s running time. Simula-

tion studies were conducted on both the nonignorable selection model and the ignorable selection

model with results showing that the nonignorable model corrected the sampling bias overall and

for each area, while the ignorable model did not. By applying the both models to the BMI data

with 35 counties, the overall population proportion predictions by the two models displayed a clear

distinction, which indicated a correction of the MNAR mechanism by the nonignorable model.

A variant of the model, which placed Dirichlet process (DP) priors on area effect variables was

investigated. This model allowed discrete values of area effects to be sampled from the procedure,

meaning different areas could share the same area effects. The difficulty came from finding the

lower bounds of α, a concentration parameter that determines the number of distinct clusters, and

small values of which would lead to poor mixing performance, see Nandram and Yin (2016a,

2016b). We proposed an original methodology that found a lower bound for α, which is derived

from a prespecified highest possible value for the correlation of elements in the DP. The simulation

study showed that, in addition to the correct prediction of finite population proportion, the number

of distinct area effects can be correctly discovered as well.

Another variation is the model with a bivariate prior for area effects. This model is suitable for

the scenario where for each area, area effects for the response submodel and the selection submodel

are correlated. We used the bivariate normal distribution as the prior for the two area effects for

each area. A good property of the bivariate normal distribution is that it could be reformulated
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into two univariate normal distributions (3.4.1), which could make the algorithm easily adapted

from the one in Section 3.1.1. From the simulation study, we saw that the correlation was correctly

detected, as well as the finite population proportion overall and for each area.

Overall, this thesis provides novel contributions in making reference from MNAR scenarios

when incorporating covariates information in the model. By treating the non-sampled units as

unknown parameters and developing the MCMC algorithm, we are able to accurately predict the

finite population proportions.

4.2 Future work

In future work, we aim to explore a new form of hierarchical Bayesian model, which is a model

with random regression coefficients. The model structure proposed in this thesis allows only the

intercept to vary among areas. A more practical model would be to allow all the regression coeffi-

cients to vary with the area (Rao and Molina, 2015). The main part of the model would be changed

to

logit(P (yij = 1)) = x′ij(γ + νi), i = 1, ..., `, j = 1, ..., Ni,

logit(P (Iij = 1)) = x′ij(β + φi) + β(p+1)yij, i = 1, ..., `, j = 1, ..., Ni.

This type of modeling opens up a general framework to look at many practical problems.

First, νi and φi can have independent distributions as we have done for the single component

(random intercept only). Second, νi and φi can be dependent, again as we have done here for an

individual component (random intercept only). Third, we can have two Dirichlet processes inde-

pendently on νi and φi (local pooling) or a single Dirichlet process on (ν ′i,φ
′
i)
′ (global pooling).

Another work we would like to conduct is increasing the number of repetitions in the simulation

study to get a better sense of stability of the methodology. The computational burden to fit each

of the models is severe, and we would like to know how to provide more efficient algorithms. In
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Chapter 3 on Small Area Estimation, it would have been much better if the following three things

could have been done.

• Draw data from the ignorable selection model and fit both the ignorable and nonignorable

selection models. This can provide better support for the nonignorable selection model.

• Do a better job in estimating the concentration parameter of the Dirichlet process. This is

still an open problem at large.

• Compare the three small area models to see how they might differ. This can be done by

providing a neutral data set.

In this dissertation, we have studied a single nonprobability sample (homogeneous and het-

erogeneous) under nonignorability and ignorability. But it is now more useful to also add a small

probability sample to help in estimation, e.g., Rao (2020); Beaumont (2020); Sakshaug et al.

(2019); and Wisniowski et. al. (2020). Also, incorporating survey weights in non-probability

samples has became a necessary part of data analysis, see also Chen, Li, and Wu (2019) for doubly

robust inference.
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Appendix A

Conditional Posterior Distribution for yi in

Section 2.1.1 (iii)

We know that Y is binary variable, which means it is from Bernoulli distribution and characterized

by the success probability P (yi = 1 | ...), i = n + 1, ..., N . From (2.1.3) in Section 2.1.1, we see

that

P (yi = 1 | Ii = 0,xi,γ,β, βp+1) = k
exp(x′iγ)

1 + exp(x′iγ)

1

1 + exp(x′iβ + βp+1)
, (A.0.1)

where k is a constant of which the value is the product of the rest of fractions in the joint distribu-

tion. Similarly, by plugging in yi = 0, we have

P (yi = 0 | Ii = 0,xi,γ,β, βp+1) = k
1

1 + exp(x′iγ)

1

1 + exp(x′iβ)
, (A.0.2)

where k is the product of the same fractions, and thus has the same value as in (A.0.1).

By using the property that P (yi = 1 | ...) + P (yi = 0 | ...) = 1 we can solve for k,

k =
(1 + exp(x′iγ)) (1 + exp(x′iβ + βp+1)) (1 + exp(x′iβ))

exp(x′iγ)(1 + exp(x′iβ)) + 1 + exp(x′iβ + βp+1)
. (A.0.3)
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Putting (A.0.1) and (A.0.3) together, we arrived at

P (yi = 1 | xi,γ,β, βp+1) =
(1 + exp(x′iγ))(1 + exp(x′iβ + βp+1))(1 + exp(x′iβ))

exp(x′iγ)(1 + exp(x′iβ)) + 1 + exp(x′iβ + βp+1)

× exp(x′iγ)

1 + exp(x′iγ)

1

1 + exp(x′iβ + βp+1)

=
exp(x′iγ)(1 + exp(x′iβ))

exp(x′iγ)(1 + exp(x′iβ)) + 1 + exp(x′iβ + βp+1)
.
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Appendix B

Propriety of the Posterior Density of a

general case in (2.1.4)

We want to show the following density is proper

f(yns,β,γ | I,ys)

∝
n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

N∏
i=n+1

exp(x′iγyi)

1 + exp(x′iγ)

1

1 + exp(x′iβ(p) + βp+1yi)

× exp

(
−1

2
(β − β̂)T (102Σ̂β)−1(β − β̂)

)
.

(B.0.1)

That is, we need to show

B =

∫
γ

∫
β

n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)

×
N∏

i=n+1

{
1∑

yi=0

exp(x′iγyi)

1 + exp(x′iγ)

1

1 + exp(x′iβ(p) + βp+1yi)

}

× exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
dβdγ <∞.
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We proceed by the following three steps.

First, let us focus on the second row. It is worth noting that no matter what value yi has, for

i = n+ 1, ..., N , the term

exp(x′iγyi)

1 + exp(x′iγ)

1

1 + exp(x′iβ(p) + βp+1yi)
≤ 1.

Thus, we have the inequality

N∏
i=n+1

{
1∑

yi=0

exp(x′iγyi)

1 + exp(x′iγ)

1

1 + exp(x′iβ(p) + βp+1yi)

}
< 2N−n <∞.

Replaced the term in B by the inequality, our goal is to proveB∗ <∞, where

B∗ =

∫
γ

∫
β

n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)
exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
dβdγ

=

∫
β

n∏
i=1

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)
exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
dβ

×
∫
γ

n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
dγ.

In the next two steps we are going to prove the
∫
β dβ and

∫
γ dγ are both finite. We deal with

β first.

∫
β

n∏
i=1

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)
exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
dβ

<

∫
β

exp

(
−1

2
(β − β̂)T (102Σ̂)−1(β − β̂)

)
dβ

(
since

n∏
i=1

exp(x′iβ(p) + βp+1yi)

1 + exp(x′iβ(p) + βp+1yi)
< 1

)

<∞ (since N(β̂, 102Σ̂) is proper).
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Third, we need to show that

∫
γ

n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
dγ <∞.

We are going to show that
n∏
i=1

exp(x′iγyi)

1 + exp(x′iγ)
(B.0.2)

is log-concave. A log-concave density has sub-exponential tails, see Borell (1983). This means

any log-concave density is proper and the moment generating function exists.

Denote the log of (B.0.1) by ∆(γ), the gradient vector by G(γ), and the Hessian matrix by

H(γ). To show log concavity, we need to show that −H(γ) is positive definite (Dharmadhikari

and Joag-Dev, 1988), where

∆(γ) =

(
n∑
i=1

x′iyi

)
γ −

n∑
i=1

log(1 + exp(x′iγ)),

G(γ) =
n∑
i=1

xiyi −
n∑
i=1

xi exp(x′iγ)

1 + exp(x′iγ)
,

and H(γ) = −
n∑
i=1

xix
′
i exp(x′iγ)

(1 + exp(x′iγ))2
.

First note that if yi are not all 0’s or 1’s, G(γ) = 0 has at least one solution.

Then assuming X is full rank, and −H(γ) is positive definite, because for any a 6= 0,

−a′H(γ)a =
∑n

i=1(a
′xi)

2 exp(x′iγ)

(1 + exp(x′iγ))2
> 0.

So we have established (B.1) is log-concave and thus the joint posterior distribution is proper.
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Appendix C

Bounds of free variables derived from

(2.5.2)

In Section 2.5, we propose an algorithm of sampling the 10 free variables from their respective

truncated multinomial distribution. Here, we explain how the bounds for each of those free vari-

ables are derived. We start from the constraints in (2.5.2), which are

N1 = −A2 − A3 − A4 +N +N10 +N12 +N14 +N16 −N3 +N6 +N8 − S1

N2 = −N10 −N12 −N14 −N16 −N4 −N6 −N8 + S1

N5 = A2 +N11 +N12 +N15 +N16 +N3 +N4 −N6 −R1

N7 = −N11 −N12 −N15 −N16 −N3 −N4 −N8 +R1

N9 = A3 −N10 −N11 −N12

N13 = A4 −N14 −N15 −N16

The free variables are N3, N4, N6, N8, N10, N11, N12, N14, N15, N16.

The bounds for each of the free variables is derived by making the right hand side of each and

every constraint greater than 0. For example, by using N1 ≥ 0 we have the inequality−A2−A3−
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A4 +N +N10 +N12 +N14 +N16 −N3 +N6 +N8 − S1 ≥ 0, from which we can get one upper

bound for N3, which is N3 ≤ −A2 − A3 − A4 + N + N10 + N12 + N14 + N16 + N6 + N8 − S1;

so on and so forth for variables N10, N12, N14, N16, N6 and N8 in this constraint. This step can be

implemented by Sympy as well, the output of which can then be passed to R environment. The

constraints for each free variable are

Variable Constraint

N3 N3 < −N11 −N12 −N15 −N16 −N4 −N8 +R1

N3 > −A2 −N11 −N12 −N15 −N16 −N4 +N6 +R1

N3 < −A2 − A3 − A4 +N +N10 +N12 +N14 +N16 +N6 +N8 − S1

N3 ≥ 0

N4 N4 < −N10 −N12 −N14 −N16 −N6 −N8 + S1

N4 < −N11 −N12 −N15 −N16 −N3 −N8 +R1

N4 > −A2 −N11 −N12 −N15 −N16 −N3 +N6 +R1

N4 ≥ 0

N6 N6 < −N10 −N12 −N14 −N16 −N4 −N8 + S1

N6 < A2 +N11 +N12 +N15 +N16 +N3 +N4 −R1

N6 > A2 + A3 + A4 −N −N10 −N12 −N14 −N16 +N3 −N8 + S1

N6 ≥ 0

N8 N8 < −N10 −N12 −N14 −N16 −N4 −N6 + S1

N8 < −N11 −N12 −N15 −N16 −N3 −N4 +R1

N8 > A2 + A3 + A4 −N −N10 −N12 −N14 −N16 +N3 −N6 + S1

N8 ≥ 0

N10 N10 < −N12 −N14 −N16 −N4 −N6 −N8 + S1

N10 < A3 −N11 −N12

N10 > A2 + A3 + A4 −N −N12 −N14 −N16 +N3 −N6 −N8 + S1
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N10 ≥ 0

N11 N11 < −N12 −N15 −N16 −N3 −N4 −N8 +R1

N11 < A3 −N10 −N12

N11 > −A2 −N12 −N15 −N16 −N3 −N4 +N6 +R1

N11 ≥ 0

N12 N12 < −N10 −N14 −N16 −N4 −N6 −N8 + S1

N12 < −N11 −N15 −N16 −N3 −N4 −N8 +R1

N12 < A3 −N10 −N11

N12 > −A2 −N11 −N15 −N16 −N3 −N4 +N6 +R1

N12 > A2 + A3 + A4 −N −N10 −N14 −N16 +N3 −N6 −N8 + S1

N12 ≥ 0

N14 N14 < −N10 −N12 −N16 −N4 −N6 −N8 + S1

N14 < A4 −N15 −N16

N14 > A2 + A3 + A4 −N −N10 −N12 −N16 +N3 −N6 −N8 + S1

N14 ≥ 0

N15 N15 < −N11 −N12 −N16 −N3 −N4 −N8 +R1

N15 < A4 −N14 −N16

N15 > −A2 −N11 −N12 −N16 −N3 −N4 +N6 +R1

N15 ≥ 0

N16 N16 < −N10 −N12 −N14 −N4 −N6 −N8 + S1

N16 < −N11 −N12 −N15 −N3 −N4 −N8 +R1

N16 < A4 −N14 −N15

N16 > −A2 −N11 −N12 −N15 −N3 −N4 +N6 +R1

N16 > A2 + A3 + A4 −N −N10 −N12 −N14 +N3 −N6 −N8 + S1

N16 ≥ 0
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Appendix D

A preliminary approach to draw α

D.1 Posterior for α

From Charles E. Antoniak’s paper (1974), we know

P (K = k) =
nak α

kΓ(α)

Γ(α + n)
,

where nak is the absolute value of Stirling number of the first kind.

Applying the prior for α, we have the posterior density as

π(α|k) ∝ αkΓ(α)

Γ(α + n)(α + 1)2
, α ∈ (0,∞). (D.1.1)

A straightforward approach to sample α is the grid sampling method. We first map the param-

eter range: α ∈ (0,∞) to φ ∈ (0, 1) by the transformation φ =
1

α + 1
. Then, we get the density

of φ as follows,

π(φ|k) ∝ (φ−1 − 1)kΓ(φ−1 − 1)

Γ(φ−1 − 1 + n)
, φ ∈ (0, 1). (D.1.2)
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Thus, φ can be easily sampled by applying the grid sampling method. Correspondingly, α is

computed by α =
1

φ
− 1.

However, in reality, this approach is problematic as it allows α to run from 0 to infinity. While

in the limit of α→ 0, the νj’s are all concentrated at a single value, which makes it impossible for

the algorithm to evaluate the lower level parameters, and thus produce the non-stationary chains.

We provide a preliminary solution for this problem.

The idea is to introduce a lower bound of α that restrict it from reaching 0. The lower bound

is derived from the correlation of any two elements in the Dirichlet process, which is 1
1+α

. We do

not want this correlation to be too large, otherwise we’ll end up with drawing from the same urn

over and over again (Polya Urn Scheme). Thus, we bound the correlation by the tuning parameter

a, where a can be determined by try and error to ensure the single value occasion will not occurred

at any iteration. We use a = 0.5 in our simulation. Note that

1

1 + α
≤ a⇒ α ≥ 1− a

a
.

Before we introduce the algorithm, we first derive some quantities of π(α|n, k), which will be

used in the algorithm.

• Mode of π(α|n, k).

π(α|n, k) ∝ αkΓ(α)

Γ(α + n)(α + 1)2
, α ∈ (0,∞)

=
αk∏n−1

s=0 (α + s)(α + 1)2
,

logπ(α|n, k) = k logα−
n−1∑
s=0

log(α + s)− 2log(α + 1) + c,

∂ logπ(α|n, k)

∂α
=
k

α
−

n−1∑
s=0

1

α + s
− 2

α + 1
= 0,

⇒ α =
k

2
α+1

+
∑n−1

s=0
1

α+s

.

(D.1.3)
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The mode α0 can be obtained by the fixed point iteration method.

• Variance and standard deviation (SD) of φ = logα.

We first transform α to φ by φ = logα. Owing to the logconcavity of π(φ|n, k), we can

obtain the approximated variance by the negative inverse of the Hessian matrix of π(φ|n, k)

evaluated at mode as follows,

π(φ|n, k) ∝ eφkeφ∏n−1
s=0 (eφ + s)(eφ + 1)2

, φ ∈ (−∞,∞),

logπ(φ|n, k) = φ(k + 1)−
n−1∑
s=0

log(eφ + s)− 2log(eφ + 1) + c,

∂ logπ(φ|n, k)

∂φ
= k + 1−

n−1∑
s=0

eφ

eφ + s
− 2eφ

eφ + 1
,

∂2 logπ(φ|n, k)

∂φ2
= −eφ

(
2

(1 + eφ)2
+

n−1∑
s=0

s

(s+ eφ)2

)
,

v̂ar(φ) =
1

α0
(

2
(1+α0)2

+
∑n−1

s=0
s

(s+α0)2

) ,
ŜD(φ) =

√√√√ 1

α0
(

2
(1+α0)2

+
∑n−1

s=0
s

(s+α0)2

) .

(D.1.4)

• Algorithm

1. Obtain the mode α0 and use it to compute ŜD(φ).

2. Apply the grid sampling method to draw φ,

where φ is defined on
(
max

(
log
(
1−a
a

)
, φ− 10 ∗ ŜD(φ)

)
, φ+ 10 ∗ ŜD(φ)

)
.

3. Transform φ back to α to obtain one sample of α.

116



Bibliography

Andridge R. R., and Little, R. J. A. (2011), “Proxy pattern-mixture analysis for survey nonre-

sponse,” Journal of Official Statistics, 27 (2), 153–180.

Andridge R. R., West, B. T., Little, R. J. A. Boonstra, P. S. and Leiton, F. A. (2019), “Indices of

non-ignorable selection bias for proportions estimated from non-probability samples,” Applied

Statistics, 68 (5), 1465–1483.

Antoniak, C. E. (1974), “Mixtures of Dirichlet processes with applications to Bayesian nonpara-

metric problems,” The Annals of Statistics, 2 (6), 1152–1174.

Austin, P. C. and Stuart E. A. (2015), “Moving towards best practice when using inverse proba-

bility of treatment weighting (IPTW) using the propensity score to estimate causal treatment

effects in observational studies,” Statistics in Medicine, 34, 3661–3679.

Baker, R., Brick, J. M., Bates, N. A., Battaglia, M., Couper, M. P., Dever, J. A., Gile, K. J.,

Tourangeau, R. (2013), “Summary report of the AAPOR task force on Non-probability sam-

pling,” Journal of Survey Statistics and Methodology, 1, 90–143.

Bang, H. and Robin, J. M. (2005), “Doubly robust estimation in missing data and causal inference

models,” Biometrics, 61, 962–972.

Beaumont, J. (2020), “Are probability surveys bound to disappear for the production of official

statistics,” Survey Methodology, 46 (1), 1–28.

117



Borell, C. (1983), “Convexity of measures in certain convex cones in vector space σ-algebras,”

Mathematica Scandinavica, 53, 125–144.

Chen, Y., Li, P. and Wu, C.(2019), “Doubly robust inference with nonprobability survey samples,”

Journal of the American Statistical Association, 0, 1–11.

Chapin, F. S. (1947), Experimental designs in sociological research

Choi, S. M., and Kim, D. H. (2014), “Sensitivity analysis in Bayesian nonignorable selection

model for binary responses,” Journal of the Korean Data & Information Science Society 2014,

25, 187–194.

Couper, M. P. (2007), “Issues of representation in eHealth research with a focus on web surveys,”

American Journal of Preventive Medicine, 32, S83–S89.

Dharmadhikari, S. W., and Joag-Dev, K. (1988), Unimodality, convexity, and appplication, CA:

Academic Press.

Diamond, S. S. (2000), “Reference guide on survey research.” Reference Manual on Scientific

Evidence 2nd Edition.

DiSogra, C., Cobb, C., Chan, E., and Dennis J. (2012) “Using rrobability-based online samples

to calibrate non-probability opt-in samples.” Presentation at: 67th Annual Conference of the

American Association for Public Opinion Research (AAPOR).

Doll, R. and Hill, A.B. (1964) “Mortality in relation to smoking: ten years’ observations of British

doctors,” Br Med, 1, 1399–1410.

Elliott, M. R. and Valliant, R. (2017) “Inference for nonprobability samples” Statistical Science,

32(2), 249–264.

118



Escobar, M. D. (1988) “Estimating the means of several normal populations by nonparametric

estimation of the distribution of the means” Ph.D. dissertation, Yale University, Dept. of

Statistics.

Escobar, M. D., West, M. (1995) “Bayesian density estimation and inference using mixtures”

Journal of the American Statistical Association, 90(430), 577–588.

Ferguson, T. S. (1973) “A Bayesian analysis of some nonparametric problems,” Annals of

Statistics, 1(2), 209–230.

Firth, F. A., Hellewell, J., Klepac, P., Kissler, S., CMMID COVID-19 Working Group, Kucharski,

A. J., and Spurgin, L. G. (2020) “Using a real-world network to model localized COVID-19

control strategies,” Nature Medicine .

Foster, J. J. and Smith, P. W. F. (1998) “Model-based inference for categorical survey data subject

to non-ignorable non-response,” Journal of the Royal Statistical Society, 60(1), 57–70.

Gelman A. (2007) “Struggles with survey weighting and regression modeling” Statistical Science,

22 (2).

Gelman A. and Little, T. (1997) “Poststratification into many categories using hierarchical logistic

regression,” Survey Methodology.

Gong, L., and Flegal, J. M. (2016) “A practical sequential stopping rule for high-dimensional

Markov Chain Monte Carlo” Journal of Computational and Graphical Statistics, 25 (3): 684–

700.

Goodman L. A. (1961) “Snowball sampling” Annals of Mathematical Statistics, 32: 148–70

Greenlees, J.S., Reece, W.S. and Zieschang, K.D. (1982) “Imputation of missing values when

the probability of response depends on the variable being imputed, ” Journal of the American

Statistical Association, 77: 251–261.

119



Heckman, J. J. (1976), “ The common structure of statistical models of truncation, sample se-

lection, and limited dependent variables and a simple estimator for such models,” Annals of

Economic and Social Measurement, 5, 475–492.

Horvitz, D., and Thompson, D. (1952), “A generalization of sampling without replacement from

a finite universe,” Journal of the American Statistical Association, 47, 663–685.

Kalli, M., Griffin, J. E. and Walker, S. G. (2011), “Slice sampling mixture models” Stat Comput,

21, 93–105.

Klovdahl, A. S., John, J. Potterat, D. E., Woodhouse, J. B., Muth, S. Q., Muth, and William, W. D.

(1994), “Social networks and infectious disease: the Colorado Springs study,” Social Science

& Medicine, 38 (1), 79–88.

Little, R. J. A. (1993), “Post-stratification: a modeler’s perspective,” Journal of the American

Statistical Association, 88, 1001–1012.

Little, R. J. A. and Rubin (2019), Statistical analysis with missing data, John Wiley & Sons, New

York.

Little, R. J. A., West B. T., Boonstra, P. S., and Hu J. (2019), “Measures of the degree of departure

from ignorable sample selection,” Journal of Survey Statistics and Methodology, 0, 1-33.

Mercer, A. W., Kreuter, F., Keeterr, S. and Stuart, E. A. (2017), “Theory and practice in nonprob-

ability surveys – parallels between causal inference and survey inference,” Public Opinion

Quarterly, 81, 250–279.

Maceachern, S. N. (1994), “Estimating normal means with a conjugate style Dirichlet process

prior,” Communication in Statistics: Simulation and Computation, 23, 727–741.

Maceachern, S. N., and Muller, P. (1998), “Estimating mixture of Dirichlet process models,”

Journal of Computational and Graphical Statistics, 7, 223–238.

120



Nandram, B., Cao, H., Xu, Z., and Bhadra, D. (2020), “Bayesian predictive inference for non-

probability samples with spatial poststratification.”

Nandram, B., Chen, L., Fu, S., and Manandhar, B. (2018), “Bayesian logistic regression for small

areas with numerous households,” Statistics and Application, 16, 171–205.

Nandram, B., and Choi, J. W. (2002a), “A Bayesian analysis of a proportion under non-ignorable

non-response” Statistics in Medicine, 21, 1189–1212.

Nandram, B., and Choi, J. W. (2002b), “Hierarchical Bayesian nonresponse models for binary

data from small areas with uncertainty about ignorability,” Journal of the American Statistical

Association, 97(458), 381–388.

Nandram, B., and Choi, J. W. (2004), “Nonparametric Bayesian analysis of a proportion for

a small area under nonignorable nonresponse,” Journal of Nonparametric Statistics, 16(6),

821–839.

Nandram, B., and Choi, J. W. (2005), “Hierarchical Bayesian nonignorable nonresponse regres-

sion models for small areas: an application to the NHANES data,” Survey Methodology, 31,

73–84.

Nandram, B., and Choi, J. W. (2010), “A Bayesian analysis of body mass index data from small

domains under nonignorable nonresponse and selection” Journal of the American Statistical

Association, 105, 120–135.

Nandram, B., Bhatta, D. Bhadra, D. Shen, G. (2013), “Bayesian predictive inference of a finite

population proportion under selection bias” Statistical Methodology, 11, 1–21.

Nandram, B., and Yin, J. (2016a), “Bayesian predictive inference under a Dirichlet process with

sensitivity to the normal baseline” Statistical Methodology, 28, 1–17.

121



Nandram, B., and Yin, J. (2016b), “A nonparametric Bayesian prediction interval for a finite

population mean” Journal of Statistical Computation and Simulation, 86 (16), 3141–3157.

Pfeffermann, D., Moura, F. A. D. S., and Silva, P. L. D. N. (2006), “Multi-level modelling under

informative sampling” Biometrika, 93, 943–959.

Presser, S. (1984), “Is inaccuracy on factual survey items item-specific or respondent-specific?”

Public Opinion Quarterly, 48, 344–355.

Rao, J. N. K. (2020), “On making valid inferences by integrating data from surveys and other

sources,” The Indian Journal of Statistics.

Rao, J.N.K. and Molina, I. (2015), Small Area Estimation, NJ: Wiley.

Rosenbaum, P. R. and Rubin, D. B. (1983), “The central role of the propensity score in observa-

tional studies for causal effects,” Biometrika, 70, 41–55.

Rosenbaum, P. R. and Rubin, D. B. (1985), “The bias due to incomplete matching,” Biometrika,

41, 103–116.

Rubin, D. B. (1973), “Matching to remove bias in observational studies,” Biometrika, 29, 159–

184.

Rubin, D. B. (1976), “Inference and missing data,” Biometrika, 63, 581–592.

Rubin, D. B. (1977), “Assignment of treatment group on the basis of a covariate,” Journal of

Educational Statistics, 2, 1–26.

Sakshaug, J. W., Wisniowski, A., Ruiz, D. A. P., and Blom, A. G. (2019), “Supplementing small

probability samples with nonprobability samples: a Bayesian approach,” Journal of Official

Statistics, 35(3), 653–681.

122



Sarndal, C. E., Swensson, B. and Wretman, J. (2003), Model Assisted Survey Sampling, NY:

Springer.

Sethuraman, J. (1994), “A constructive definition of Dirichlet priors,” Statistica Sinica, 4, 639–

650.

Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999), “Adjusting for non-ignorable drop-out

using semiparametric non-response models,” Journal of the American Statistical Association,

94, 1096–1120.

Smith, T. M. F. (1983), “On the validity of Inferences from Non-random Samples,” Journal of

the Royal Statistical Society, 146(4), 394–403.

Stuart, E. A. (2010), “Matching methods for causal inference: a review and a look forward

(2010),” Statistical Science, 25(1), 1–21.

Sugden, R. A., and Smith, T. M. F. (1984), “Ignorable and informative designs in survey sampling

inference,” Biometrika, 71(3), 495–506.

Sverchkov, M., and Pfeffermann, D. (2018), “Small area estimation under informative sampling

and not missing at random non-response,” Journal of the Royal Statistical Society, 181(4),

981–1008.

Valliant, R. and Dever, J. A. (2011), “Estimating propensity adjustments for volunteer web

surveys,” Sociological Methods & Research , 40(1), 105–137.

Valliant, R., Dorfman, A. H. and Royall, R. M. (2000), Finite Population Sampling and Inference:

A Prediction Approach.

Vats, D., and Knudson, C. (2018), “Revisiting the Gelman-Rubin diagnostic,” arXiv:1812.09384.

123



Vats, D., Flegal, J. M., and, Jones, G. L. (2015), “Multivariate output analysis for Markov chain

Monte Carlo,” arXiv preprint arXiv:1512.07713.

Walker, S. G. (2011), “Slice sampling mixture models,” Stat Comput, 21, 93–105.

Walker, S. G. (2007), “Sampling the Dirichlet mixture model with slices,” Commun. Stat., Simul.

Comput., 36, 45–54.

Wang, J.J.J., Bartlett, M. and Ryan, L. (2017), “Non-ignorable missingness in logistic regression,”

Statistics in Medicine, 36, 3005–3021.

Welch, S. (1975), “Sampling by referral in a dispersed population,” Public Opinion Quarterly,

39, 237–45.

Wisniowski, A., Sakshaug, J., Ruiz, D. A. P., and Blom, A. G. (2020), “Intergrating probability

and nonprobability samples for survey inference,” Journal of Survey Statistics and Methodol-

ogy, 8, 120–147.

Woo, N., Nandram, B., and Kim, D. (2018), “Bayesian small area models for three-way contin-

gency tables with nonignorability,” Statistica Sinica, 28, 1839–1866.

Xu, Z., Nandram, B., and Manandhar, B. (2020), “Bayesian inference of a finite population

mean under length-biased sampling,” in Statistical Methods and Applications in Forestry and

Environmental Sciences, Chapter 6, Singapore: Springer Nature.

Xu, Z. and Nandram, B. (2019), “Bayesian inference of non-probability samples,” JSM Pro-

ceedings, 2585–2593, Foundations in Bayesian Statistics Section. Alexandria, VA: American

Statistical Association.

Xu, Z. and Nandram, B. (2020), “Bayesian inference for non-probability samples with binary

responses” .

124



Yin, J. and Nandram, B. (2020a), “A Bayesian small area model with Dirichlet processes on the

responses,” Statistics in Transition.

Yin, J. and Nandram, B. (2020b), “A nonparametric Bayesian analysis of response data with gaps,

ourliers and ties,” Statistics and Applications, 18 (1), 1-21.

125


