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Abstract 

 While many artemisinin (AN) based combination therapies (ACTs) have long been 

effective in treating malaria, resistance has emerged driving the need for new treatment and 

prevention strategies. AN is produced by the plant Artemisia annua and recent studies suggested 

that the orally delivered dried leaves of the whole plant (pACT) that also contains AN synergistic 

flavonoids (FLVs) may be a more effective malaria treatment. In this study, an ex vitro digestion 

system was used to simulate the digestion of pACT to gain insight into how AN and synergistic 

FLVs become bioavailable as the pACT moves through the digestive system. Various delivery 

methods (e.g. capsules) and staple foods were combined with pACT and digested in order to 

investigate their impact on the bioavailability of AN and FLVs. The digested material was 

collected at the end of the oral, gastric and intestinal stages, filtered into solid and liquid 

fractions, and extracted for AN and FLV quantification. The intestinal liquid fraction was 

expected to contain high levels of AN and FLVs in order to be available for absorption into the 

bloodstream. This study found that compared to pACT alone, sucrose, canola oil, and white rice 

did not reduce the amount of AN released in the intestinal liquid fraction while the two types of 

capsules that were tested showed a significant reduction in AN release. The sucrose and canola 

oil pACT combinations also exhibited significantly greater FLV release than from pACT alone. 

These results have improved our understanding of how FLVs and AN are affected and released 

at different stages of digestion and will aid the development of pACT as a therapeutic. 
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1. Introduction 

 In 2011, there were roughly 215 million cases of malaria, mostly among African children, 

and an estimated 655,000 deaths in 2010 (World Health Organization [WHO] 2010). In 2012, 

3.3 billion people, or half of the world population, were at risk of contracting malaria (WHO 

2012b). The key drug fraction in malaria treatment is artemisinin (AN) (Figure 1), which is 

produced and stored in glandular secretory trichomes in the leaves of Artemisia annua.  

 

Figure 1: The structure of artemisinin. 

 Currently, AN based combination therapy (ACT) is the best available treatment for 

Plasmodium falciparum malaria. Malaria treatments contain AN in combination with an older 

antimalarial drug to prevent AN drug resistance from emerging. While ACTs are an effective 

treatment, they are expensive and unattainable to many suffering from malaria in developing 

countries. Resistance to antimalarial medications has undermined malaria control efforts and 

continues to be a threat (WHO 2010). Emerging research on A. annua whole plant treatment 

suggests that it may be an effective solution for the treatment of malaria (Weathers et al., 2011; 

Elfawal et al., 2012). Whole plant treatment, however, is still being investigated and is not a 

currently approved treatment for malaria but it may overcome some of the obstacles associated 

with current malaria treatment such as affordability, AN drug resistance, and accessibility.  
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 A. annua contains flavonoids (FLVs) that act synergistically with AN (Liu et al., 1992). 

This can increase the potency of AN, lowering the required dosage for treatment, which can 

decrease negative side effects caused by the drug. Mouse studies have shown that the dried plant 

provides more bioavailability of AN than the pure drug (Weathers et al., 2011) and is more 

effective than the pure drug in reducing parasitemia (Elfawal et al., 2012). Bioavailability in 

particular can be validated with a better understanding of the progression of the drug through the 

individual stages of the human digestive system.  

 Variables such as the drug capsule type and the presence of specific staple foods should 

be studied in order to determine whether they inhibit or enhance the bioavailability of AN and 

FLVs. Often, victims of malaria are unable to consume food or certain types of food, which 

limits their treatment options. For the most effective malaria treatment, the type of capsule and 

food necessary, in conjunction with A. annua, has not been studied. This study uses a stimulated 

ex vitro digestion to provide insight into what happens to the plant material as it is processed 

through the digestion system. It also identifies how dietary supplements and delivery methods 

impact the bioavailability of AN and FLVs, the key components of the proposed malaria 

treatment. 
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1 Literature Review 

1.1 Malaria 

 Malaria is a parasitic, infectious, mosquito born disease caused by Plasmodium. Humans 

receive and pass malaria by the bite of an infected Anopheles mosquito. This disease is highly 

prevalent in tropical and subtropical environments where the climate provides optimal living and 

breeding conditions for mosquitoes. The WHO has supported significant research in the field of 

malaria prevention and treatment. Deaths due to malaria have significantly decreased from 2002 

to 2012 due to ACTs, vector control, insecticides and the distribution of mosquito nets (WHO 

2012b). However, there is no single effective solution in preventing the spread of malaria and a 

devastating number of deaths due to malaria continue to occur globally every year. Malaria is 

most prevalent in developing countries and areas with low income where people are more 

exposed to mosquito bites (WHO 2012a). Malaria treatment is unaffordable to those suffering 

the most from it. Malaria can be contracted by the same person multiple times so treatment can 

be very demanding.  

There are four types of common malaria parasites: Plasmodium falciparum, vivax, 

malariae, and ovale (Davis and Shiel, 2010). Recently, a fifth type, Plasmodium knowlesi, was 

discovered in Malaysia and areas of Southeast Asia. More than one species of Plasmodium can 

infect a patient at the same time. Among five malaria plasmodium species, P. knowlesi and P. 

falciparum are the most dangerous and life threatening. 

Malaria occurs mainly in tropical and subtropical climates where it is hot and humid and 

mosquitoes thrive. Malaria parasites can live and complete their life cycles by incubating in the 

mosquito body (Dugdale, 2011). The Southern Sahara and parts of Oceania, e.g. Papua New 
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Guinea and Southern Africa, have the highest malaria transmission rate (WHO, 2012a). While 

parts of Africa have a dry environment, they still have oases with scarce water pools that serve as 

the main water source for humans as well as a breeding ground for mosquitoes. Malaria does not 

propagate well in very dry environments in the desert or very cold regions such as Western 

Europe and the United States (WHO, 2012b). 

1.1.1 Treatment and Drug Delivery 

 Treatment of malaria is dependent on a variety of factors including the severity of the 

disease, the species of the malaria parasite, the origin of the infection, and its drug resistance 

status (WHO, 2010). There are many AN-based anti-malarial medications and current treatments 

contain a derived compound, e.g. artesunate or artemether. Oral AN-based mono-therapies are 

only used in severe cases because of the risk of developing resistance. ACTs are expensive and 

therefore difficult to acquire in most developing countries. Most often they are acquired through 

national and donor funding organizations. Cloroquine and sulfadoxine-pyrimethamine are safe, 

accessible, and much more affordable (US$0.10 - $0.20), but parasites are often now resistant, 

which is why they are replaced by a more expensive drug such as artemether in combination with 

lumefantrine, known as Coartem
®
 (WHO, 2010). ACTs cost approximately US $1.20 - $3.50 per 

adult course, which is still too expensive for the developing world (WHO, 2010). They are 

delivered orally in water soluble co-formulated tablets and co-blistered tablets. Co-formulated 

tablets, as noted in Table 1, have both of the drugs of the ACT in the same dosage form. Co-

blistered tablets have each medicine packaged together in separate blisters so that they may be 

administered as a single dose or as divided doses; half the dose is taken in the morning and the 

other half is taken at night. Dosage is based strictly according to body weight (WHO, 2010). 
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Currently, whole plant treatment is not used as a treatment for malaria but it has potential in 

battling the issues of drug resistance, availability, and costs. 

Table 1: Recommended Treatments for Malaria (WHO, 2010) 

Active pharmeceutical ingredient(s) in available 

formulation(s) 

Uncomplicated 

falciparum malaria 

Used when 

treatment fails 

Severe 

malaria 

Artemether-lumefantrine oral √ √*  

Artesunate + - amodiaquine oral √   

Artesunate + mefloquine oral √ √*  

Artesunate + solfadoxine-pyrimethamine oral √   

Dihydroartemisinin-piperaquine oral √ √*  

Artesunate (or quinine) combined with 

tetracycline or doxycycline or clindamycin, oral  √  

Artesunate,  intravenous or intramuscular   √ 

Artemether, intramuscular   √ 

Quinine, intravenous or intramuscular   √ 

Artemotil, intramuscular   √** 

Artesunate, rectal   √*** 

Artemisinin, rectal   √*** 
Abbreviations: 

+ co-packaged products; 

- co-formulated products; 

+- co-packaged FPPs also available as co-formulated tablets, since some API-API incompatibilities have been 

resolved 

* only if not used as first-line treatment; 

** used if no alternatives is available, as few clinical trials have been conducted;  

*** for patients with severe malaria before referral to a facility where complete parenteral treatment with artesunate, 

quinine or artemether can be administered  

* for areas where amodiaquine or sulfadoxine-pyrimidine cure rate ≥ 80% 

 In 2011, a study conducted by Verret et al., on post-response of ACTs in malaria-infected 

Ugandan children showed that there was a recurrence of malaria parasites in patients who 

previously treated with dihydroartemisinin-piperaquine (DP). The study took 292 malaria 

infected children, ages 4 to 12 months, and treated 145 of them with DP and the other 147 with 

artemether-lumefantrine (AL) for 2 years; 99 % of the subjects were able to clear all parasites by 

day 3. However, the DP treated children showed a significantly higher risk for recurrence of P. 

falciparum parasite 42 days post treatment. Additionally, the study demonstrated that a 
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trimethoprim-sulfamethoxazole prophylaxis reduced parasite recurrence in patients with mild to 

chronic malnutrition (Verret et al., 2011). Recurrence of malaria parasites in A. annua whole 

plant treatment has not yet been studied. 

1.2 Whole Plant Treatment: Tea Infusion 

A. annua has been used for medicinal purposes in traditional Chinese medicine dating 

back to 168 B.CE.  It was not until 1972 that the active drug, AN, was identified as the key anti-

malarial agent of A. annua (Efferth, 2009). A study conducted by Hsu (2006) suggests that using 

some of the more traditional preparation methods, pressing fresh juice from the plant, or 

extracting the plant in cold water, can provide a higher concentration of AN. In information from 

the history of Chinese medicine, Hsu also noted that soaking the fresh plant to obtain the plant’s 

juices created water-emulsion compounds such as FLVs and ether oils (Hsu, 2006). These 

compounds likely enhance the amount of AN that can be extracted from the plant. 

Recent studies by Carbonara et al. (2012) suggested that tea infusion (boiling) is an 

ineffective method for preparing A. annua because it destroys most of the AN. They prepared the 

tea by infusing A. annua for different times: 1, 24, and 48 hours. The AN content of each tea was 

quantified by HPLC. They also tested various extraction solvents: water, acetonitrile (less polar), 

and hexane (non-polar). The measured AN content of each sample was very low. Also, there was 

no detection of phenolic compounds (Catbonara et al, 2012). Therefore, they concluded that 

boiling is not an effective way to prepare A. annua tea infusion to obtain AN. 

 Other studies, however, have shown that tea infusion prepared with high temperatures yield 

increasing levels of AN, but may destroy some FLVs. van der Kooy and Verpoorte (2011) used 

three methods to prepare A. annua tea infusion: i) applied water with different temperatures from 

room temperature, 40, 50, 60 … 100˚C ii) used boiling water and autoclaved at 105˚C for 1, 3, 
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and 10 minutes and iii) added varying volumes of water to the plants and boiled for 5 minutes. 

According to their study, AN concentration was increased with boiling temperatures, but AN 

was degraded at 105˚C. By keeping the tea at 100˚C for 2 minutes, the AN extraction was 90% 

efficient (van der Kooy and Verpoorte, 2011).  

 A recent study conducted by Weathers and Towler (2012) demonstrated that two 

flavonoids, casticin (CAS) and artemetin (ART), are poorly extracted and unstable in A. annua 

tea infusion. They used different cultivars of A. annua: non-clonal A. annua L. (Chinese origin), 

SAM clone, #15 clone, and FLV5 (Brazilian origin). After infusion in boiling water the tea was 

extracted based on the optimal extraction method reported by van der Kooy and Verpoorte 

(2011) and quantified for AN, CAS and ART by GC/MS (Gas Chromatography – Mass 

Spectrometry) analysis. From this extraction, the measured flavonoids, CAS and ART, were very 

low. Also, after storage of the tea infusion at room temperature for more than 24 hours, while 

AN was stable, CAS and ART further decreased more than 40% (Weathers and Towler, 2012). 

Due to the reported synergistic properties of FLVs with AN, tea infusion does not seem to be an 

advantageous method for treating malaria. Conversely, a recent study conducted by Ogwang et 

al. (2011) showed that malarial patients in Kenya and Uganda who consume one or two cups of 

A. annua tea a day may develop immunity against malaria. 

1.3 Whole Plant Treatment: Dried Leaf Consumption  

 In addition to AN, dried A. annua leaves contain therapeutic compounds that ACTs do 

not provide. In the study by Rath et al. (2004), AN was extracted from dried A. annua. L with 

petrol ether at 60 - 90˚C for 3 hours. They found that AN only made up 1.39% of the dried plant 

material. Even though dried A. annua contained AN content less than 1.5%, other active 

ingredients were present (Rath et al., 2004). Wilcox et al. (2004) pointed out that A. annua 
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contains many different classes of compounds that provide anti-malarial characteristics, such as 

monoterpenes, sesquiterpenes, triterpenoids, flavonoids, and aromatic compounds. Furthermore, 

they noted that in dried A. annua, AN remains stable over a long period of time. Since AN is 

produced and stored in glandular trichomes, which contain oil, AN should remain stable. Also, 

with properly dried storage methods, there should be no fungal growth. 

 Rath et al. (2004) found that A. annua, delivered in either the form of tea or dried leaves, 

created equal bioavailability of AN. They detected 240 μg/L of AN in the bloodstream after 

preparation of a tea from 5 g dried A. annua. The study suggested that tea and dried leaves 

provide similar bioavailability of AN, but that tea may be absorbed faster into the bloodstream. 

The minimum requirement of AN needed to be effective against malaria in the bloodstream is 10 

μg/L (Alin and Bjorkman, 1994). Therefore, the whole plant treatment could provide more than 

enough AN needed for treatment.  

 Weathers et al. (2011) examined bioavailability of the AN present in the bloodstream of 

mice that were administered either dried A. annua leaves or pure AN mixed with mouse chow. 

They found that when the mice were fed plant material containing 31µg of AN, the maximum 

concentration in the blood occurred after 30 minutes, while 1,400 µg of the pure drug with 

mouse chow took 60 minutes to reach the same concentration in the blood. Also, 31 µg of the 

pure drug with mouse chow produced undetectable levels of AN in the blood. These results were 

consistent with the findings of Rath’s experiments in which dried plant provided more serum-

available AN than the pure drug. 

 A more recent study provided further evidence that whole plant A. annua can be used as an 

effective antimalarial therapy. Elfawal et al. (2012) used Plasmodium chabaudi infected mice in 
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their study and found that a low dose of dried A. annua leaves can kill more malaria parasites 

than a comparable dose of pure AN drug from 12-72 hours after treatment. The authors coined 

the term ‘pACT’ to denote whole plant A. annua use as a therapeutic wherein the plant contains 

its own endogenously produced combination drugs. 

1.4 The Synergy of Artemisinin and Flavonoids  

  There are many cultivars of A. annua that contain varying concentrations of FLVs and AN. 

In an A. annua cultivar with an Italian origin, eupatin, chrysoplenetin, casticin, and artemetin 

were identified as the key FLVs present in the plant, however not all FLVs could be separated 

and validly identified (Baraldi et al., 2008). Ferreira (2008) found that a Brazilian cultivar had 

high levels of antioxidants, which indicated it contained high FLV content. Each cultivar has 

different types and concentrations of FLVs. However, after they quantified the amount of AN 

and FLVs from three cultivars of A. annua, FLV5 (Brazilian origin), Clone SAM, and Clone 15 

by GC-MS, Weathers and Towler (2012) found that the Brazilian FLV5 cultivar does not 

provide the higher level of FLVs than the other A. annua cultivars. Table 2 shows the measured 

amounts of AN, ART and CAS based on the GC/MS results. According to Table 2, the FLV5 

cultivar yielded the lowest amount of ART and CAS. Clone 15 yielded higher amounts of FLV 

levels but lower AN levels than FLV5. Among the three cultivars, Clone SAM yielded the 

highest levels of AN, CAS, and ART.  

Table 2: AN and FLVs in Three A. annua cultivars (Weathers and Towler, 2012) 

Cultivar Artemisinin (mg/g DW) Artemetin (mg/g DW) Casticin (mg/g DW) 

FLV5 6.79 0.019 0.141 

Clone 15 5.71 0.080 0.211 

Clone SAM 14.89 0.210 0.410 
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      Both AN and FLVs in A. annua have been studied for their effectiveness in treating 

malaria and various types of cancer. Liu et al. (1992) measured the level and antimalarial 

efficacy of 6 types of FLVs that were found in A. annua L.: artemetin, casticin, chrypsoplenetin, 

chrysosplenol-D, cirsilineol, and eupatorin (Figure 2). They also measured the antiparasitic 

ability of each FLV, present with AN. The IC50 represents the concentration of compound 

required to reduce a pathogen population in an infected individual by half. AN alone produced an 

IC50 of 3.3 x 10
-8

M, which was 1,000 times better than any of the studied FLVs acting alone 

against malaria which had an IC50 of 2.4-6.5 x 10
-5 

M (Table 3). When these FLVs, especially 

chrysosplenol-D and cirsilineol, were combined with AN, the IC50 of AN dropped from 3.3 x 10
-

8
 M to as low as 1.5 x 10

-8 
M, indicating a major increase in the potency of the drug (Table 3). 

These results support the potential effectiveness of whole plant treatment since FLVs are found 

naturally in A. annua.  

1.5 Ex Vitro and In Vivo Digestion Studies 

 Previous studies validated the effectiveness of using a simulated ex vitro digestive system 

to mimic the breakdown of compounds in human digestion as shown, for example by Barlow et 

al. (2003) in a study on Ginkgo digestion. Ginkgo biloba is well known for its FLV content, and 

it was used to test the absorption of polyphenols under gastrointestinal conditions. The study 

used HPLC analysis to identify the resulting breakdown products and intact FLVs that were 

likely available for absorption into the bloodstream. After HPLC analysis, the results showed 

that generally glycosides were hydrolyzed to aglycones. Subsequently the aglycones were further 

degraded and it was suggested that further research was needed to investigate the reported 

benefits of Ginkgo flavonoids (Barlow et al., 2003). 
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Table 3: Antimalarial Activity of Flavonoids (Liu et al., 1992) 

Compounds IC50 of FLV alone (M) AN IC50 + 5 ug of FLV(M) 

Artemisinin - 3.3 x 10
-8

 

Artemetin 2.6 x 10
-5 

2.6 x 10
-8

 

Casticin 2.4 x 10
-5

 2.6 x 10
-8

 

Chrypsoplenetin 2.3 x 10
-5

 2.25 x 10
-8

 

Chrysosplenol-D 3.2 x 10
-5

 1.5 x 10
-8

 

Cirsilineol 3.6 x 10
-5

 1.6 x 10
-8

 

Eupatorin 6.5 x 10
-5

 3.0 x 10
-8

 

 

  

                       Artemisinin                         Artemetin                                 Casticin 

   

            Chrysoplenetin                   Chrysoplenol-D                                            Cirsiliol 

  

               Eupatorin                                                               Quercetin 

Figure 2: Structures of artemisinin and flavonoids reported to be present in A. annua. 
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 A recent study by Megalhaes and his colleague (2012) found that A. annua infusion tea 

from different cultivars exhibited a potent anti-inflammatory effect, which they attributed to 

phenolics. The study used human intestinal Caco-2 cells to mimic an in vivo inflammatory 

environment. By ELISA quantification, they showed that the pro-inflammatory cytokines, IL-8 

and IL-6, decreased inflammatory conditions in the cell lines. Using different A. annua cultivars 

of known AN content, Bra (Brazil) and Lux (Luxembourg), they demonstrated that decreased 

inflammation was not due to the AN in the tea, but rather to the phenolics. Additionally, by 

measuring cellular metabolic activity, they demonstrated that A. annua infusion tea does not 

affect toxicity of the intestinal Caco-2 cells (Magalhaes et al., 2012). This suggested that 

phenolics may have a beneficial anti-inflammatory affect in the intestine in vivo.  

1.6 The Digestive System 

 Studies conducted on A. annua in the past have provided information on the efficacy of 

pACT treatment based on the concentration of the drug found in the bloodstream. More 

information on how this plant breaks down during the digestive process can provide insight into 

how endogenous therapeutic chemicals in the plant are released and passed through the digestive 

tract and into the bloodstream, where parasites reside after infection. The human digestive 

system consists of three main phases: oral, gastric, and intestinal. Each phase works in sequence 

to break down food and other compounds that then become available for absorption into the 

bloodstream during the intestinal phase. 

1.6.1 Oral Phase 

 Human digestion begins in the mouth, known as the “buccal cavity,” where food or drugs 

are swallowed and sent to the esophagus. Although when swallowing an encapsulated oral drug 

the oral phase of the digestive system is very short, several enzymes are involved in the process. 
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When food, or a drug, is present in the mouth, saliva is produced and helps the food to form a 

bolus to aid in swallowing. Mucin is a protein of mucus that acts as a lubricant which helps to 

form the bolus. Uric acid and urea are naturally present with α-amylase; the latter is an enzyme 

present in saliva. The α-amylase catalyzes breakdown of starch into sugars. Once the bolus has 

formed, the tongue pushes it to the back of the mouth. Upon reaching the pharynx the bolus 

triggers an involuntary swallowing reflex preventing the bolus from entering the lungs and 

directing it down the esophagus by peristalsis where it enters the gastric phase of the digestive 

system (Hu and Li, 2011). The oral phase is the first place that starches begin to break down in 

the digestive system. 

1.6.2 Gastric Phase 

 The gastric phase mainly hydrolyzes proteins in an acidic condition into smaller units by 

the work of the enzyme pepsin. The esophagus, which brings food from the oral phase to the 

stomach, causes mechanical stimulation of the gastric wall via distention and stretching of 

smooth muscle. There is a secretion of gastric juices, which include HCl, pepsin, intrinsic factor, 

mucus, and HCO
-3

. Pepsinogen hydrolyzes to pepsin in order to digest proteins (Koeppen and 

Stanton 2010).  Due to presence of HCl, the pH of gastric juice is approximately 2. The acidic 

condition in the stomach is critical for killing many microbes that are ingested during a meal 

(Blair, 1996). The stomach mainly digests proteins; neither fats nor carbohydrates are digested 

by pepsin. 

1.6.3 Intestinal Phase 

 The intestinal phase digests most of the remaining ingested meal into small absorbable 

units by the work of various enzymes under slightly basic conditions. As the mucous-containing 
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food, called chyme, enters the duodenum, a signal is sent from the brain to stop acidic gastric 

juices produced in the stomach from passing through to the intestinal system (Koeppen and 

Stanton, 2010). Due to halted production of gastric juices, a slightly less acidic environment 

develops (Baron, 2009). This condition increases the functionality of enzymes secreted from the 

pancreas. Chyme stimulates pancreatic and bile secretion (Baron, 2009).  

  Pancreatin is composed of several enzymes secreted from the pancreas that are needed to 

digest vital nutrients in order to make them absorbable. Pancreatin contains amylase, lipase, and 

protease. Amylase helps to break down starches into glucose and lipase works by hydrolyzing 

lipids in the presence of bile (Koeppen and Stanton, 2010). Bile is an important alkaline that is 

made by the liver and stored in the gallbladder. Bile acts as an emulsifier for lipid and lipase 

interaction by hydrolyzing lipids into fatty acids so they can be absorbed by the duodenum part 

of the small intestine. Bile contains mostly cholesterol, bile acids (bile salt), and bilirubin, which 

is a breakdown product of red blood cells. Bile also contains water, potassium, sodium, and other 

metals such as copper (Dugdale, 2010). Lastly, the other important enzyme in pancreatin is 

protease. Protease works to digest protein by breaking down the peptide bonds between amino 

acids, the building blocks of proteins (Koeppen and Stanton, 2010). Amino acids are more useful 

and absorbable than intact proteins and thus more nutritional. By the end of the intestinal phase, 

digestion is completed and ingested food has been broken down into absorbable and more useful 

compounds. 

1.7 Capsule Delivery Methods and Dietary Supplements 

 Capsules and food incorporated in the delivery of A. annua might affect the 

bioavailability of AN and certain FLVs. This study tests the effects of gelatin and vegetarian 

capsules and the staple foods millet, white rice, canola oil, cornmeal, and sugar. These staple 
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foods were chosen based on their affordability and availability in the countries that are suffering 

the most from malaria. Vegetarian capsules are plant-based and contain cellulose or plant fiber 

and are commonly starch, gluten, and preservative free. Gelatin capsules, on the other hand, 

contain denatured collagen protein derived from connective tissues of vertebrate animals (Jain 

and Gupta, 2008). Both types of capsules dissolve readily in the stomach. 

 A. annua is a very bitter tasting plant and may be difficult to ingest for patients suffering 

from malaria. Dietary supplements may be beneficial in making drug delivery easier, especially 

for children who have trouble swallowing pills. Sugar is a common staple and addition to tea that 

could counteract the bitterness of the plant. However, glucose concentration plays an important 

factor in P. falciparum parasite growth. P. falciparum converts glucose to lactate through 

glycolysis, which is the primary source of energy for the parasite (Humeida et al., 2011). 

 A study conducted by Fang et al. (2003) showed that glucose starvation represses 

transcription involved with asexual development of the parasite while upregulating transcription 

involved in sexual development of the parasite. People suffering from malaria therefore 

experience hypoglycemia. Even though high blood sugar levels can intensify parasitic growth, if 

sugar significantly increases the bioavailability of AN, sugar in small quantities may provide a 

net benefit. 
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2 Hypothesis 

 By using simulated digestion system this study will establish the levels of AN and FLVs 

that become available for absorption at the end of each of the human digestive phases: oral, 

gastric and intestinal.   

Objectives 

1. Measure the amount of AN and FLVs, from the A. annua pACT, present in the liquid and 

solid fractions at the end of each digestive phase.  

2. Measure the amount of AN and FLVs, from the A. annua pACT combined with each 

palatable delivery method, present in the liquid and solid fractions at the end of each 

digestive phase. The palatable delivery methods include gelatin and vegetarian capsules, 

sugar, and canola oil. 

3. Measure the amount of AN and FLVs, from the A. annua pACT combined with each 

dietary supplement, present in the liquid and solid fractions at the end of each digestive 

phase. The dietary supplements include meal of millet, cornmeal, and white rice. 
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3 Methodology 

3.1 Plants 

 Artemisia annua L., SAM cultivar (Weathers and Towler, 2012), was field grown from 

rooted cuttings planted in May 2012 and harvested in mid September 2012 from either Professor 

Weathers garden or the small farm in Stow, MA. All plants were watered regularly and no 

herbicides or pesticides were used.  After harvest, plants were dried under a greenhouse cover 

and then the dried leaves were removed and pressed through a 600 μm brass sieve. A single 

homogeneous batch of SAM plant material was used for the entire study. 

3.2 Chemicals 

 The solvents CH2Cl2 (D37-3), H2SO4 (A300-212), CH3OH (T324-1), and 

CH3COOCH2CH3 (E145-1), were purchased from Fisher Scientific Company; CH3CO2H was 

purchased from EM Science Company (AX0073-9). Along with all enzymes, C8H8O2 (p-

anisaldehyde) was purchased from Sigma-Aldrich. 

3.3 Ex Vitro Three Stage Digestion 

 The ex vitro digestion experimental setup in this study used the SOP provided by the 

Ferruzzi Lab at Purdue University and based on methods of Kean et al. (2011) modified from the 

original protocol of Garrett et al. (1999) (See Appendix C).  This is a test tube study that 

simulates food processing through the three phases of the digestive system: oral, gastric, and 

intestinal. Since this experiment involves the ingestion of a drug, as opposed to porridge used in 

the Kean et al. (2011) protocol, the procedures were slightly modified (See Appendix C).  The 

material was scaled down fourfold based on the mass of plant material needed and each 

simulation was run in triplicate. 



 
18 Jordan and Lasin 

 For the oral phase, an oral base solution was prepared containing 0.1792 g potassium 

chloride, 0.1776 g sodium phosphate, sodium sulfate 0.1140 g, 0.0596 g sodium chloride, and 

0.3388 g sodium bicarbonate in 100 mL of water. A 10 mL aliquot of the oral base solution was 

mixed in a beaker with 4 mg urea, 0.3 mg uric acid, and 0.5 mg mucin. A 1.5 mL aliquot of this 

solution was added to a 50 mL centrifuge tube containing 0.36 g of dry A. annua and 1.64 mL of 

distilled water. In the capsule delivery experiments, two capsules were used per reaction tube 

with each capsule containing 0.18 g of A. annua. In the palatable delivery methods or dietary 

supplements experiments, an additional 0.36 g of millet, cornmeal, or white rice meal, canola oil, 

or sugar was added to the reaction tube directly following the addition of 0.36 g of the A. annua. 

In the experiments containing the cereal meals, the addition of water was doubled. To each 

reaction tube, 46.875 mg of α-amylase was added and the tube was vortexed for 2 minutes. The 

tubes were blanketed with N2 gas, capped, and then placed in a 37°C water bath and shaken at 90 

rpm for 10 minutes. During the 10 minute incubation, a 10 mg/mL pepsin in 0.1 M HCl solution 

was prepared for the gastric phase. 

 The reaction tubes were removed from the bath and immediately placed on ice. A 4 mL 

aliquot of saline (0.9% NaCl) was added to bring the volume to 7.5 mL. Using 1M HCl, the pH 

of each reaction tube was adjusted to 4.0±0.1 and 0.5 mL of the pepsin solution was added. The 

pH was readjusted using 1M HCl to a pH of 2.5±0.1, and the volume of each reaction tube was 

brought to 10 mL with saline. The tubes were blanketed with N2 gas, capped, placed in the 37°C 

water bath and incubated at 90 rpm for 1 hour. During this time, a 2.25 mL solution containing 

30 mg/mL bile extract in 100 mM NaHCO3 solution was prepared and sonicated for 30 minutes; 

45 minutes into the incubation period, 1.5 mL of a pancreatin-lipase solution was prepared 

containing 20 mg/mL pancreatin and 10 mg/mL lipase in 100 mM NaHCO3. 
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 After the hour long gastric phase incubation the reaction tubes were removed and 

immediately placed on ice for preparation of the intestinal phase. The pH was adjusted to         

4.0 ±0.1 using 1M NaHCO3, and 0.5 mL of the pancreatin-lipase solution was added followed by 

0.75 mL of the bile extract solution. The pH was then adjusted to 6.5±0.1 using 1M NaHCO3, 

and each test tube volume was brought to 12.5 mL with saline. The samples were blanketed with 

N2 gas, capped, and incubated in the 37 °C water bath at 90 rpm for 2 hours for completion of the 

ex vitro digestion system.  

3.4 Filtration and Extraction of Digesta (DG) 

 The resulting digesta (DG) from each of the oral, gastric, and intestinal phases were 

vortexed and filtered to separate the liquid and solid fractions. To measure the amount of AN and 

FLVs present in each digestive phase, four separate samples were extracted including the 

undigested plant material (Figure 3). For the first sample, the tubes were extracted after the oral 

phase, for the second sample the tubes were extracted after the gastric phase, and for the third 

sample the tubes were extracted after the intestinal phase was completed. The solid and liquid 

fractions at the end of each phase were extracted with methylene chloride and sonicated for 30 

minutes in a water bath at a cool temperature. After sonication, the solid fractions were vacuum 

filtered and dried with N2 gas and the methylene chloride component of the liquid fraction, which 

contains the extracted AN and FLVs, was isolated and dried with N2 gas.  
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Figure 3: The experimental set-up for ex vitro digestion and extraction. 

3.5 Thin Layer Chromatography (TLC) Testing  

 Each DG extraction (solid and liquid) was analyzed using Thin Layer Chromatography 

(TLC) to provide a visual profile of AN and FLVs released during each digestive stage under 

different conditions and also to define the appropriate amount of sample that would be needed 

for further quantification by GC/MS. TLC was performed by using GF-254 Si Gel plates from 

Sigma-Aldrich Company. The solvent system used was toluene – ethyl acetate (2:1). The TLC 

was run for the extracted DG along with standard compounds, AN and CAS. CAS was visible as 

a dark purple dot under UV light. AN stained hot pink after spraying the plate with 50 mL glacial 

acetic acid containing 1 mL of concentrated sulfuric acid and 0.5 ml p-anisaldehyde and heated 

for at least 10 minutes at 105 °C. The Rfs of AN and CAS were 0.70 and 0.25, respectively. 

Since AN ran well above all the fluorescing material, which contain FLVs and other materials, 
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the top strip was used to stain for AN detection (Figure 4). It was determined that 10% of each 

extract would be used for GC-MS analysis. 

 

Figure 4: Sample TLC plate under UV light (left) and the same plate after anisaldehyde 

staining (right). 

P, plant: control, SAM, 0.02 g DW 

ST, standard compound 

O, oral phase 

G, gastric phase 

I, intestinal phase 

S, solid fraction 

L, liquid fraction 

 

3.6 AN Quantification by GC-MS 

 AN was quantified in extracts by GCMS according to the method detailed in Weathers 

and Towler (2012).  
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3.7 AlCl3 Assay for Flavonoid Quantification  

Using quercetin as the standard, a standard curve was obtained by dissolving 10, 20, 30, 

40, and 50 μg of quercetin in MeOH. The solvent was evaporated and then a 1:1 solution of 2 % 

(w/v) AlCl3 to MeOH was added for a total volume of 3 mL and incubated for 25 minutes. 

Absorbance (OD), at 415 nm wavelength, was obtained using a Spec20 spectrophotometer. OD 

415nm versus the quercetin concentration (µg/mL) was plotted to generate a standard curve and 

linear equation. A 1:1 ratio of sample to AlCl3 reagent was preparaed; that is, AlCl3 solution 

added to a fraction of liquid or solid DG containing 5% of the starting plant material and diluted 

in methanol for a total volume of 3 mL and incubated for 25 minutes. The OD of each sample 

was measured at 415 nm and FLV content of each DG extract was calculated by using the 

quercetin standard curve.   

3.8 Statistical Analysis 

 Raw data from GC/MS analysis provided the AN content for each solid and liquid 

fraction of each digestion phase. These data were converted to μg AN/g dry weight (DW) of 

digested dry leaf material. FLV raw data from the AlCl3 colorimetric assay were converted to μg 

FLVs/g DW of digested dry leaf material. Each experiment was replicated three times; the 

averages, standard deviations, and standard errors were calculated for the AN and FLV content 

of each DG fraction (See Appendix A and B). Using the statistical software SPSS, post hoc 

Tukey tests and T-tests were used to determine statistical differences between samples. 
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4 Results 

 The AN content data from GC/MS analysis were graphically analysed displaying 

standard error. Experimental fractions were statistically compared to their digested 

phase/fraction pACT equivalent by standard T-test analysis. Each experiment and condition were 

given abbreviations indicated in Table 4.  

Table 4: Experimental Data Abbreviations 

s= Solid Fraction 

l= Liquid Fraction 

O= Oral Phase 

G= Gastric Phase 

I= Intestinal Phase 

PE= Plant Extract Control, pACT (undigested) 

WP= Whole Plant Control, pACT (digested) 

VC= Vegetarian Capsule (digested) 

VC CTRL= Vegetarian Control (undigested) 

gC= Gelatin Capsule (digested) 

gC CTRL= Gelatin Capsule Control (undigested) 

S= Sucrose (digested) 

Co= Canola Oil (digested) 

M= Millet (digested) 

WR= White Rice (digested) 

CM= Cornmeal (digested) 

*= Statistically Significant Compared to WP Equivalent, p≤0.05 

4.1 pACT Digestion Compared to pACT Extract Undigested 

 When the whole plant material (WP ≈ pACT) was extracted, it contained 7.7 mg AN/g 

DW of A. annua (Table 5). After digestion the amounts of released AN found in the liquid 

fraction of each digestion phase decreased with about half of the originally available AN 

appearing in the liquid fraction of the intestinal phase (Table 5). The amount of AN in the solid 

and liquid fractions was totaled for each phase of these simulated digestion experiments (Table 
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5). These totals reflected the potentially accessible AN in the 0.36 g of A. annua digested in each 

sample and allow us to determine by comparison if AN was lost or unnaccounted for when all 

fractions of an experiment were summed. The greatest loss in total AN content recovered after 

digestion of pACT is, as might be expected, in the intestinal phase (Table 5). 

Table 5: Of the total AN present in pACT intestinal digestive phase, 52% was unrecovered 

compared to the plant extract control. 

Experimental Averages AN (s + l) Fraction Totals (mg AN/g D)
 1

 

Plant Extract 7.7 

Digested samples of A. annua (pACT) 

pACT Oral Phase 6.1 

pACT Gastric Phase 6.4 

pACT Intestinal Phase 4.0 

1 
For each digestion phase s is the solid fraction AN, and l is the liquid fraction AN. 

 

4.2 pACT versus Two Capsule Types 

 When pACT was encased in either a vegetarian or gelatin capsule, results showed a 

statistically lower yield of AN in the intestinal liquid fraction (0.2-0.7 mg AN/g DW) compared 

to the DG of the whole plant (1.7 mg AN/g DW; pACT DG) (Figure 5A). DG of pACT in a 

vegetarian capsule showed a 43% reduction in the average AN content in the liquid portion of 

the DG from the gastric to the intestinal phase (Figure 5A&B). Much of the AN in pACT seems 

inaccessible when encapsulated (Figure 5); no particular digestive phase is more liberating or 

inhibiting for AN release.  
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Figure 5: Capsules decrease AN release. A) AN content for the solid and liquid fractions of the 

intestinal phase for the capsule experiments in mg AN/g D B) AN content for the solid and liquid 

fractions of the gastric phase for the capsule experiments in mg AN/g DW C) AN content for the 

solid and liquid fractions of the oral phase for the capsule experiments in mg AN/g DW. 

 To examine if the reduction in AN when pACT was encased in a capsule was due to the 

presence of cellulose or gelatin, the main material comprising vegetarian and gelatin capsules, 

respectively, each type of capsule was added to the unencased pACT and then immediately 

extracted with no digestion. The gelatin capsule control (undigested) produced AN values 

equivalent to the undigested plant extract control (Figure 6, dark blue bar vs. gray bar) 

suggesting that it was not the gelatin alone with A. annua that made AN unrecoverable but the 

combination of digestive material and gelatin (Figure 6, dark blue bar vs. light blue bars). In 

contrast, the undigested vegetarian capsule control (Figure 6, dark red bar) produced AN values 

s= Solid Fraction 

l= Liquid Fraction 

O= Oral Phase 

G= Gastric Phase 

I= Intestinal Phase 

WP= Whole Plant, pACT (digested) 

VC= Vegetarian Capsule (digested) 

gC= Gelatin Capsule (digested) 

*= Statistically Significant 

Compared to WP Equivalent, p≤0.05 
* 

* 

p=0.06 

A 

B C 

* 

* * 
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that were ~30% less than the plant extract control (PE, Figure 6, gray bar) suggesting that 

cellulose, added to A. annua, partially degrades or masks AN (Figure 6, dark red bar). 

 

Figure 6: Up to 70% of the original AN in the plant material was unrecovered from the 

solid and liquid fractions after digestion of the pACT with each capsule type. 

 When the total flavonoid content of the liquid fraction of each intestinal phase was 

measured, there was no significant difference in the amount of FLVs present (Table 6). 

However, for the pACT + vegetarian capsule experiment, the oral liquid fraction revealed 

significantly higher FLV content that increased further in the gastric liquid fraction but decreased 

by nearly 2-fold into the intestinal phase (Table 5). This suggested that a component of the 

intestinal phase interacts with material in the vegetarian capsule in a way that degrades FLVs. 

Table 6: In the intestinal phase, capsules had no negative effect on FLV content. 

Experiment Averages         

(mg FLVs/g DW) 
Oral Liquid Gastric Liquid Intestinal Liquid 

pACT 0.089 0.118 0.101 

pACT + gelatin Capsule 0.105 0.154 0.150 

pACT + Vegetarian Capsule 0.193* 0.244 0.130 

* Indicates statistically significant at p≤0.05; n = 3.  

s= Solid Fraction 

l= Liquid Fraction 

O= Oral Phase 

G= Gastric Phase 

I= Intestinal Phase 

PE= Plant Extract Control (undigested) 

VC CTRL= Vegetarian Control (undigested) 

gC CTRL= Gelatin Capsule Control (undigested) 

WP= Whole Plant, pACT (digested) 

VC= Vegetarian Capsule 

gC= Gelatin Capsule 

*= Statistically Significant Compared to WP 

Equivalent, p≤0.05 
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4.3 pACT versus Dietary Inclusions 

 When sucrose and canola oil were included in digestions with pACT they yielded 

statistically similar AN levels: 1.6 mg AN/g DW when sucrose was present (WP+S) and 1.4 mg 

AN/g DW in the presence of canola oil. (WP+Co). These results were not statistically different 

from the intestinal liquid fraction of pACT digestions (Figure 7A). Moreover, the pACT + canola 

oil experiment showed a significant increase in AN content in the liquid fraction from the oral to 

the gastric phase, with no increase from the gastric to the intestinal phase (Figure 7). In contrast, 

the pACT + sucrose experiment demonstrated little change in AN content in the liquid fraction 

from the oral to the gastric phase, but a significant increase from the gastric to the intestinal 

phase (Figure 7).  

 Both the pACT + sucrose and pACT + canola oil digestions had a positive effect on FLV 

content. The intestinal liquid fractions for these experiments contain more than twice the FLV 

content than the pACT alone (Table 7). 

 Addition of different grain meals to pACT yielded varying AN levels for the intestinal 

liquid fractions. The pACT + white rice combination showed no significant decrease in the 

release of AN (Figure 8, light pink bar). However, pACT + millet and pACT + cornmeal 

combinations decreased AN release in the intestinal liquid fraction (Figure 8, light purple bar and 

light brown bar). The pACT + cornmeal combination showed the greatest reduction with an 

average 0.7 mg AN/g DW in the intestinal liquid fraction, a 50% decrease compared to the 

pACT alone (Figure 8, light brown bar vs. light green bar). 

 The ‘meal’ experiments showed no statistically significant variance in FLV content 

present in the liquid fraction in all phases when compared to the pACT (Table 8). 
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Figure 7: Sucrose and oil had no negative effect on AN release. A) AN content for the solid 

and liquid fractions of the intestinal phase for the sucrose and canola oil experiments in mg AN/g 

DW B) AN content for the solid and liquid fractions of the gastric phase for the sucrose and 

canola oil experiments in mg AN/g DW C) AN content for the solid and liquid fractions of the 

oral phase for the sucrose and canola oil experiments in mg AN/g DW.      

Table 7: The intestinal liquid fraction of the pACT + sucrose and pACT + canola oil 

experiments showed significantly higher FLV content than the pACT. 

Experiment Averages     

(mg FLVs/g DW 
Oral Liquid Gastric Liquid Intestinal Liquid 

pACT 0.089 0.118 0.101 

pACT + Sucrose 0.113 0.229 0.207* 

pACT + Canola Oil 0.084 0.091 0.203* 

* Indicates statistically significant at p≤0.05; n = 3.  

s= Solid Fraction 

l= Liquid Fraction 

O= Oral Phase 

G= Gastric Phase 

I= Intestinal Phase 

WP= Whole Plant, pACT (digested) 

S= Sucrose (digested) 

Co= Canola Oil (digested) 

*= Statistically Significant 

Compared to WP Equivalent, p≤0.05 

* 

p=0.1 

* 

* 
* 

A 

B C 
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Figure 8: Rice had no negative effect on AN release, but millet and cornmeal decreased AN 

release A) AN content for the solid and liquid fractions of the intestinal phase for the meal 

experiments in mg AN/g DW B) AN content for the solid and liquid fractions of the gastric 

phase for the meal experiments in mg AN/g DW C) AN content for the solid and liquid fractions 

of the oral phase for the meal experiments in mg AN/g DW. 

Table 8: The ‘meal’ + pACT digestion experiments demonstrated no significant effect on 

FLV release compared to pACT. 

Experiment Averages      

(mg FLVs/g DW) 
Oral Liquid Gastric Liquid Intestinal Liquid 

pACT 0.089 0.118 0.101 

pACT + Millet 0.108 0.067 0.116 

pACT + White Rice 0.162 0.061 0.156 

pACT + Cornmeal 0.129 0.100 0.205 

* Indicates statistically significant at p≤0.05; n = 3. 

s= Solid Fraction 

l= Liquid Fraction 

O= Oral Phase 

G= Gastric Phase 

I= Intestinal Phase 

WP= Whole Plant, pACT (digested) 

ML= Millet (digested) 

WR= White Rice (digested) 

CM= Cornmeal (digested) 

*= Statistically Significant 

Compared to WP Equivalent, p≤0.05 

* 

* 

* * 

p=0.1 
p=0.06 

A 

B C 
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4.4 AN Losses During Digestion 

 The combined liquid and solid fractions for both the oral phase and gastric phase of the 

pACT (Figure 9, green bars), and the oral, gastric, and intestinal phases of the pACT + sucrose 

(Figure 9, orange bars) experiment samples have AN values similar to the total AN present in the 

undigested plant extract control (Figure 9, gray bar). However, in all of the other experiments, 

between 30 and 70% of the original AN in the plant material was unrecovered from the sum of 

the solid and liquid phases after digestion (Figure 9), including the gelatin capsule experiments 

(Figure 6). 

 

Figure 9: Up to 70% of the original AN in the plant material was unrecovered from the 

sum of the solid and liquid phases after digestion. Combined AN totals for the solid and liquid 

fractions of each digestive phase of the dietary inclusion experiments. 

 

 

 

 

 

s= Solid Fraction 

l= Liquid Fraction 

O= Oral Phase 

G= Gastric Phase 

I= Intestinal Phase 

PE= Plant Extract Control, pACT (undigested) 

WP= Whole Plant Control, pACT (digested) 

S= Sucrose (digested) 

Co= Canola Oil (digested) 

M= Millet (digested) 

WR= White Rice (digested) 

CM= Cornmeal (digested) 
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5 Discussion 

 The digestive system is a complex process involving the release and interaction of many 

molecules as material becomes digested. Compounds become absorbed into the bloodstream 

during the intestinal phase making bioavailability critical and more probable for material that 

becomes soluble in the liquid fraction. Therefore, the pACT + sucrose, pACT + canola oil, and 

pACT + white rice combinations demonstrated the greatest potential for bioavailability 

suggesting that they may provide the more effective food combinations for oral delivery of dried 

leaves of A. annua. Results indicated that the use of vegetarian or gelatin capsules are not 

recommended delivery methods for pACT because they reduced AN availability in the intestinal 

liquid fraction by more than 50%. On average, the pACT + millet and pACT + cornmeal 

combinations also demonstrated less AN release in the intestinal liquid fraction compared to 

pACT alone. However, this reduction was not statistically significant therefore no definitive 

recommendation can be made regarding these dietary inclusions. 

 The previous results revealed that up to 50% of the original AN in the plant material was 

unrecovered from the sum of the solid and liquid phases after digestion. A study conducted by 

Iskra (2000), characterized peroxidases in hairy root cultures of A. annua L. and studied their 

involvement in the degradation of AN. He found that the total degradation of AN required the 

presence of both absorbic acid and iron (III). He also showed that AN degradation was affected 

by pH and that peroxidase has a maximum activity for AN degradation around neutrality. During 

digestion, the processed material reaches a neutral pH during the intestinal phase, which is also 

the longest period in the overall digestion process. Therefore, if peroxidase is present in the plant 

material, it is possible that AN becomes degraded during digestion. This could account for the 

unrecovered AN that was noted. Peroxidase assays will be run in future studies to determine if 
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the enzyme plays a role in AN degradation that is evident in this study, and to determine if 

degradation can be reduced. 

 A recent study conducted by Weathers et al. (2001) demonstrated the efficacy of pACT 

bioavailability in mice. When 31 μg of pure AN was administered to mice, the drug was 

undetectable in the blood up to 60 minutes whereas feeding mice dried A. annua leaves, 

containing an equivalent 31 μg of AN, produced a maximum concentration of 0.087 mg l
-1

 of 

AN in blood at 30 minutes. It took 1,400 μg of pure AN to reach a blood concentration of 0.074 

mg l
-1

. When pure AN was combined with glandless A. annua (data not shown), a mutant that 

produces no AN, significantly less AN was released into the intestinal liquid fraction compared 

to pACT. This reduction in the bioavailablity of pure AN is consistent with the findings of the 

mouse study. Additionally, pure AN does not contain any plant material and thus cannot be 

degraded by peroxidase. However, the AN totals for the pure AN digestion were relative to the 

pACT totals suggesting that it is not peroxidase but rather an element of the digestive process 

that is reducing the recovery of significant amounts of AN from the total that is available in the 

intact plant. 

 As noted earlier, the capsule experiments demonstrated that nearly 70% of the total AN 

was unrecovered. When gelatin capsule material was added to pACT and immediately extracted 

without any digestion, AN yield was equal to that of the plant extract indicating that its loss was 

not a function of the capsule, but rather a result of the digestive process. Gelatin capsules mainly 

consist of proteins from animal byproducts and are easily digested and absorbed. Urea, which is 

released in the oral phase, affects the pH behavior of gelatin by increasing the intrinsic pk of the 

acidic groups of the proteins by 0.45 units (Jana et al., 1993). AN can be degraded at extremes of 

pH (Iskra et al., 2000), so gelatin in combination with urea may influence AN degradation. On 
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the other hand, when the pACT + vegetarian capsule was extracted without any digestion, there 

was significant loss of AN. Vegetarian capsules are mainly made of cellulose and these 

molecules bind strongly to each other. Although most mammals have a limited ability to digest 

cellulose, this does not explain the loss of AN in the presence of these capsules (Terry et al., 

2006). 

 Flavonoid analysis revealed that the digestion supplements, in combination with pACT, did 

not have a negative effect on FLV release. On the other hand, FLV release was significantly 

enhanced after digestion of pACT with sucrose or with canola oil. Considering that FLVs are 

reported to act synergistically with AN in killing malaria parasites (Liu et al., 1992) this is a 

favorable result. The amount of FLVs released in the intestinal liquid fraction of the pACT + 

canola oil experiment was more than two-fold that of the pACT. Quercetin is normally present in 

canola oil (Chen et al., 1996). Quercetin was used to generate the standard curve for the 

colorimetric assay analysis of the FLV content, so it is possible that the quercetin present in the 

canola oil may be slightly skewing the results to a higher level and that the actual FLVs released 

form pACT are a bit lower than we measured. Palm oil, peanut oil, and sunflower oil are 

accessible in Africa while canola oil is not. However, studies have shown that palm, peanut and 

sunflower oils, like canola oil, naturally contain quercetin (Arsic et al. 2010). 
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6 Conclusions and Future Work 

 Sucrose demonstrated comparatively high AN and FLV content in the intestinal liquid 

fractions in this study. Since A. annua is a very bitter tasting plant, sucrose can make the delivery 

much more palatable, especially for pediatric patients. It is also commonly used in tea as a 

prophylactic which may be useful against malaria. Small amounts of sucrose may be an effective 

palatable delivery method if further research supports that it will not significantly increase the 

parasitic growth of malaria. White rice also showed no negative reduction in the release of AN. 

White rice is a relatively cheap and available staple food and may be an effective dietary 

supplement used in the delivery of A. annua treatment. Canola oil was also found to release 

relatively high amounts of AN as well as FLVs in the intestinal liquid fraction, compared to 

pACT alone. It has the potential for use as a binder in the production of A. annua tablets for drug 

delivery. Although canola oil, specifically, is not used in malaria endemic countries, the data do 

suggest that oil is not problematic in AN and FLV release. Oils such as sunflower oil, peanut oil, 

and palm oil more common to malaria infested areas should be tested. 

 This ex vitro study is an indication of how A. annua will be processed through the 

digestive tract and can suggest what contents become bioavailable. However, these conclusions 

cannot be verified until tested in vivo. Future studies are recommended to test AN and FLV 

bioavailability using a human intestinal Caco-2 cell line. 
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Appendices 

Appendix A: Digestion results for AN analysis. 

pACT: 

mg AN/g DW 
Os  Ol  Gs  Gl  Is  Il  

Replicate 1 7.38 0.43 5.20 0.87 2.01 1.79 

Replicate 2 2.63 0.54 6.38 0.78 2.59 2.22 

Replicate 3 6.37 0.85 5.06 0.78 2.12 1.15 

Average  5.46 0.61 5.55 0.81 2.24 1.72 

Standard deviation  2.50 0.21 0.73 0.05 0.31 0.54 

Standard Error 1.44 0.12 0.42 0.03 0.18 0.31 

 

WP+VC: mg AN/g 

DW 
Os  Ol  Gs  Gl  Is  Il  

Replicate 1 3.51 0.63 2.25 0.54 2.65 0.23 

Replicate 2 2.31 0.12 1.68 0.23 2.17 0.23 

Replicate 3 1.20 0.41 1.84 0.44 2.05 0.56 

Average  2.34 0.39 1.92 0.41 2.29 0.23 

Standard deviation  1.15 0.26 0.29 0.16 0.31 0.19 

Standard Error 0.67 0.15 0.17 0.09 0.18 0.11 

 

WP+gC: mg AN/g 

DW 

 

Os  

 

Ol  

 

Gs  

 

Gl  

 

Is  

 

Il  

Replicate 1 3.28 0.52 2.10 0.77 1.92 0.77 

Replicate 2 2.16 0.55 1.80 0.70 1.33 0.70 

Replicate 3 2.19 0.53 1.77 0.59 1.16 0.53 

Average 2.54 0.54 1.89 0.69 1.47 0.74 

Standard deviation 0.64 0.02 0.19 0.09 0.40 0.12 

Standard Error 0.37 0.01 0.11 0.05 0.23 0.07 

 

WP+S: mg AN/g 

DW 

 

Os 

 

 

Ol   

 

Gs  

 

Gl   

 

Is   

 

Il   

Replicate 1 3.71 1.43 3.29 1.31 3.00 1.41 

Replicate 2 5.32 0.64 4.10 1.32 4.65 1.78 

Replicate 3 6.01 0.86 3.34 0.92 3.44 1.48 

Average  5.01 0.97 3.57 1.18 3.70 1.59 

Standard deviation  1.18 0.41 0.45 0.23 0.85 0.20 

Standard Error 0.68 0.24 0.26 0.13 0.49 0.11 
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WP+M: mg AN/g 

DW 
Os  Ol  Gs  Gl  Is   Il     

Replicate 1 3.23 0.71 2.99 1.39 3.00 0.96 

Replicate 2 3.10 0.40 3.48 0.51 1.87 1.20 

Replicate 3 1.96 0.53 3.19 0.62 2.78 0.81 

Average  2.76 0.55 3.22 0.84 2.55 0.99 

Standard deviation  0.70 0.15 0.25 0.48 0.60 0.20 

Standard Error 0.40 0.09 0.14 0.27 0.35 0.11 

       

WP+WR: mg AN/g 

DW 
Os  Ol  Gs  Gl  Is  Il  

Replicate 1 3.34 0.86 3.02 0.67 2.97 2.50 

Replicate 2 3.12 0.87 2.13 0.78 2.06 0.92 

Replicate 3 4.89 0.98 4.39 0.80 1.45 0.65 

Average  3.78 0.91 3.18 0.75 2.16 1.36 

Standard deviation  0.96 0.07 1.14 0.07 0.77 1.00 

Standard Error 0.56 0.04 0.66 0.04 0.44 0.58 

       

WP+Co: mg AN/g 

DW 
Os  Ol  Gs  Gl  Is  Il    

Replicate 1 1.62 0.90 2.05 1.67 1.28 1.71 

Replicate 2 4.05 0.70 2.25 1.35 1.70 1.25 

Replicate 3 3.96 1.06 1.64 1.33 1.88 1.25 

Average  3.21 0.88 1.98 1.45 1.62 1.40 

Standard deviation  1.38 0.18 0.31 0.19 0.31 0.26 

Standard Error 0.79 0.10 0.18 0.11 0.18 0.15 

       

WP+CM: mg AN/g 

DW 
Os  Ol  Gs  Gl  Is  Il  

Replicate 1 1.38 0.74 1.91 0.95 1.12 0.68 

Replicate 2 1.93 0.75 2.25 0.79 1.71 0.77 

Replicate 3 1.95 0.86 1.62 0.74 1.53 1.08 

Average  1.75 0.78 1.93 0.83 1.45 0.73 

Standard deviation  0.32 0.07 0.31 0.11 0.30 0.21 

Standard Error 0.19 0.04 0.18 0.06 0.17 0.12 
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Appendix B: Digestion results for FLV analysis. 

pACT: mg FLV/g DW  Ol  Gl  Il  

Replicate 1 0.058 0.211 0.074 

Replicate 2 0.063 0.069 0.142 

Replicate 3 0.145 0.074 0.087 

Average 0.089 0.118 0.101 

Standard Deviation 0.049 0.081 0.036 

Standard Error 0.028 0.047 0.021 

 

WP+S: mg FLV/g DW  Ol  Gl  Il    

Replicate 1 0.098 0.174 0.227 

Replicate 2 0.082 0.193 0.190 

Replicate 3 0.161 0.322 0.206 

Average 0.113 0.229 0.207 

Standard Deviation 0.042 0.080 0.019 

Standard Error 0.024 0.046 0.011 

 

WP+gC: mg FLV/g DW Ol  Gl  Il  

Replicate 1 0.076 0.158 0.148 

Replicate 2 0.129 0.200 0.121 

Replicate 3 0.111 0.103 0.182 

Average 0.105 0.154 0.150 

Standard Deviation 0.027 0.049 0.030 

Standard Error 0.015 0.028 0.018 

 

WP+VC: mg FLV/g DW  Ol  Gl  Il  

Replicate 1 0.224 0.138 0.086 

Replicate 2 0.178 0.026 0.105 

Replicate 3 0.178 0.567 0.198 

Average 0.193 0.244 0.130 

Standard Deviation 0.027 0.285 0.060 

Standard Error 0.015 0.165 0.035 

 

 

WP+CM: mg FLV/g DW  Ol  Gl  Il  

Replicate 1 0.150 0.142 0.134 

Replicate 2 0.116 0.079 0.206 

Replicate 3 0.121 0.079 0.274 

Average 0.129 0.100 0.205 

Standard Deviation 0.018 0.037 0.070 

Standard Error 0.011 0.021 0.040 
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WP+M: mg FLV/g DW Ol  Gl  Il    

Replicate 1 0.105 0.098 0.100 

Replicate 2 0.100 0.037 0.142 

Replicate 3 0.119 0.066 0.105 

Average 0.108 0.067 0.116 

Standard Deviation 0.010 0.030 0.023 

Standard Error 0.005 0.018 0.013 

 

WP+WR: mg FLV/g DW Ol  Gl  Il  

Replicate 1 0.134 0.053 0.158 

Replicate 2 0.164 0.079 0.156 

Replicate 3 0.187 0.050 0.153 

Average 0.162 0.061 0.156 

Standard Deviation 0.026 0.016 0.003 

Standard Error 0.015 0.009 0.002 

 

WP+Co: mg FLV/g DW Ol  Gl  Il  

Replicate 1 0.087 0.074 0.251 

Replicate 2 0.087 0.095 0.148 

Replicate 3 0.079 0.103 0.211 

Average 0.084 0.091 0.203 

Standard Deviation 0.005 0.015 0.052 

Standard Error 0.003 0.009 0.030 
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Appendix C: The ex vitro digestion protocol for A. annua developed from the SOP of the In 

vitro Digestion for Porridge protocol by Ferruzzi lab at Purdue University based on the 

methods of Kean et al. (2011). 

 
Ex vitro digestion of A. annua  In vitro digestion for Porridge  

Stock solutions:  

0.9% NaCl; 100 mM NaHCO3; 1.0 M HCl; 0.1 M HCl; 1.0 M NaOH; 0.1 M NaOH 

Enzymes and bile solutions:  

- Pepsin solution: 10 mg/mL Pepsin in 1.0M HCl 

- Pancreatin-Lipase solution: 20 mg/mL Pancreatin (in 100 mM NaHCO3), 10 

mg/mL Lipase (in 100 mM NaHCO3) 

- Bile solution: 30 mg/mL Bile Extract (in 100 mM NaHCO3 

Preparation of oral phase base solution (q.s. to 1 L with DI water): 

- Potassium Chloride 1.792g 

- Sodium Phosphate 1.776g 

- Sodium Sulfate 1.140g 

- Sodium Chloride 0.596g                                 

- Sodium Bicarbonate 3.388g  

Prepare material: 

 

- Make 0.36 g of A. annua + 1.64 

mL DI water (equivalent to 25% of 

the porridge)  

- Use all the prepared for digestion 

 

 

- Porridge =10 g flour + 45 mL DI 

water 

- Use 8 g of the prepared porridge for 

digestion  
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Oral phase  

1. Warm bath to 37°C. 

 

2. Prepare oral phase base solution 

(use lesser): with 10 mL base 

solution in beaker with stir bar, add 

4mg/ 0.004 g urea, 0.3 mg/ 0.0003 

g uric acid, and 0.5 mg/ 0.0005 g 

mucin. 

3. Weigh 0.36 g of A. annua + 1.64 

ml of water into a 50 ml centrifuge 

tube. 

 

4. Add 1.5 mL oral phase solution 2. 

5. Add 46.875 mg/ 0.0469 g of α-

amylase. 

6. Vortex for 2 minutes 

7. Blanket with nitrogen gas and cap 

tightly.   

8. Place vertically in 37 °C water bath 

for 10 minutes.  

9. Meanwhile, prepare pepsin solution 

 

 

1. Warm bath to 37°C. 

- Thaw canola oil and porridge. 

2. Prepare oral phase base solution: 

with 100 mL base solution in 

beaker with stir bar, add 40 mg 

urea, 3 mg uric acid, and 5 mg 

mucin. 

 

3. Weigh 8 g of porridge into a 50 mL 

centrifuge tube. 

- Add 0.4 g (5%w/w) canola oil 

using needle and syringe. 

4. Add 6 mL oral phase solution 2. 

5. Add 0.190 mg of α-amylase. 

 

6. Vortex for 2 minutes  

7. Blanket with nitrogen gas and cap 

tightly.   

8. Place horizontally in 37 °C water 

bath for 10 minutes.  

9. Meanwhile, prepare pepsin solution 

Gastric Phase  

 

10. Remove from water bath, place 

immediately on ice.  

11. Bring to 7.5 mL with saline 

(Assume 1 g food material = 1 

mL). 

12. Adjust pH to equal 4.0±0.1 using 

1.0 M HCl.  

13. Add 0.5 mL of 10 mg/mL Pepsin 

solution. 

14. Adjust pH to 2.5±0.1 using 1.0 M 

HCl. 

15. Bring up to 10 mL with saline 

16. Blanket with nitrogen gas, cap 

tightly, and place vertically in 37 

°C water bath. 

17. Incubate at 90 opm for 1 hr.  

18. Meanwhile, prepare bile extract 

(sonicate for 30 minutes). 45 

minutes into incubation, prepare 

Pancreatin-Lipase solution. 

 

 

10. Remove from water bath, place 

immediately on ice.  

11. Bring to 30 mL with saline 

(Assume 1 g food material = 1 

mL). 

12. Adjust pH to equal 4.0±0.1 using 

1.0 M HCl.  

13. Add 0.5 mL of 10 mg/mL Pepsin 

solution. 

14. Adjust pH to 2.5±0.1 using 1.0 M 

HCl. 

15. Bring up to 10 mL with saline 

16. Blanket with nitrogen gas, cap 

tightly, and place horizontally in 37 

°C water bath. 

17. Incubate at 90 opm for 1 hr.  

18. Meanwhile, prepare bile extract 

(sonicate for 30 minutes). 45 

minutes into incubation, prepare 

Pancreatin-Lipase solution. 
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Intestinal phase: 

 

19. Remove from water bath, place 

immediately on ice.  

20. Adjust pH to 4.0 ±0.1 using 

NaHCO3. 

21. Add 0.5 mL Pancreatin-Lipase 

solution. 

22. Add 0.75 mL Bile extract solution. 

23. Adjust pH to equal pH 6.5±0.1 

using NaHCO3. 

24. Bring to 12.5 mL with saline 

25. Blanket with nitrogen gas, cap 

tightly, and place vertically in 37 

°C water bath. 

26. Incubate at 90 opm for 2 hr 

 

 

19. Remove from water bath, place 

immediately on ice.  

20. Adjust pH to 4.0 ±0.1 using 

NaHCO3. 

21. Add 2 mL Pancreatin-Lipase 

solution. 

22. Add 3 mL Bile extract solution. 

23. Adjust pH to equal pH 6.5±0.1 

using NaHCO3. 

24. Bring to 50 mL with saline 

25. Blanket with nitrogen gas, cap 

tightly, and place horizontally in 37 

°C water bath. 

26. Incubate at 90 opm for 2 hr 

 


