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Abstract 
 

 

       The present study utilizes the ultrasonic travel-time technique to diagnose grid-

generated turbulence.  The statistics of the travel-time variations of ultrasonic wave 

propagation along a path are used to determine some metrics of the turbulence.  The 

motivation for this work stems from the observation of substantial delta-t variation in 

ultrasonic measuring devices like flow meters and circulation meters.  Typically, 

averaging can be used to extract mean values from such time series.  The corollary is that 

the fluctuations contain information about the turbulence.  

       Experimental data were obtained for ultrasonic wave propagation downstream of a 

heated grid in a wind tunnel.  Such grid-generated turbulence is well characterized and 

features a mean flow with superimposed velocity and temperature fluctuations.  The 

ultrasonic path could be perpendicular or oblique to the mean flow direction.  Path 

lengths were of the order of 0.3 m and the transducers were of 100 kHz working 

frequency.  The data acquisition and control system featured a very high-speed analog to 

digital conversion card that enabled excellent resolution of ultrasonic signals.  

       Experimental data for the travel-time variance were validated using ray acoustic 

theory along with the Kolmogorov “2/3” law.  It is demonstrated that the ultrasonic 

technique, together with theoretical models, provides a basis for turbulent flow 

diagnostics.  As a result, the structure constant appearing in the Kolmogorov “2/3” law is 

determined based on the experimental data. 

       The effect of turbulence on acoustic waves, in terms of the travel time, was studied 

for various mean velocities and for different angular orientations of the acoustic waves 
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with respect to the mean flow.  Average travel time in the presence of turbulence was 

shorter then in the undisturbed media.  The effect of the time shift between the travel 

times in turbulent and undisturbed media is associated with Fermat’s principle. 

       The travel time and log-amplitude variance of acoustic waves were investigated as 

functions of travel distance and mean velocity over a range of Reynolds number varying 

from 4000 to 20000.  Experimental data are interpreted using classical ray acoustic 

approach and the parabolic acoustic equation approach together with the perturbation 

method.  It was experimentally demonstrated that there is a strong dependence of the 

travel time on the mean velocity even in the case where the propagation of acoustic 

waves is perpendicular to the mean velocity. The effect of thermal fluctuations, which 

result in fluctuations of sound speed, was studied for two temperatures of the grid: 59  

(no grid heating) and 159 .  A semi analytical acoustic propagation model that allows 

determination of the spacial correlation functions of flow field is developed based on the 

classical flow meter equation and statistics of the travel time of acoustic waves traveling 

through the velocity and the thermal turbulence.  The basic flow meter equation is 

reconsidered in order to take into account sound speed fluctuations and turbulent 

velocity.  The resulting equation is written in terms of correlation functions of travel time, 

sound speed fluctuation and turbulent velocity fluctuations.  Experimentally measured 

travel time statistics data with and without grid heating are approximated by Gaussian 

function and used to solve the integral flow meter equation in terms of correlation 

functions analytically. 
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Chapter 1.   Introduction 

 

 

       This research investigates the influence of heated and non-heated grid-generated 

turbulent flow on acoustic wave propagation. An acoustic wave carries some structural 

information of the turbulent medium as a result of interaction with the medium so thus it 

is possible to use some statistical characteristics of the acoustic wave as a diagnostic tool 

to obtain some statistical information about the medium. Our interest in studying the 

acoustic waves moving in a turbulent media is predicated on the fact that this problem is 

found in many practical problems of atmospheric and oceanic acoustics and 

aeroacoustics. Among these problems are noise pollution near highways, airports and 

factories; acoustic remote sensing and tomography of the atmosphere and ocean; 

detection, ranging and recognition of helicopters, aeroplanes, rockets and explosive 

sources; and the study of noise emitted by nozzles and exhaust pipes.    

       The motivation of this study is recognition of the fact that ultrasonic technology is 

evolving rapidly and technical advances offering great potential for performing 

experimental investigations of statistical characteristics of turbulence in laboratory 

conditions with high precision and non-invasively. Measuring flow parameters in 

turbulent medium non-invasively and rapidly by means of ultrasound dating back to 

experiments performed by Schmidt in 1970; demonstrated that ultrasonic flowmeters 

provide many potential advantages over traditional techniques. The transit-time method is 

the most widely used technique for ultrasonic flow metering. The principle is based on 

modification of the time of flight of the ultrasound by the fluid velocity along the line of  
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Figure 1.1  Ultrasonic flowmeter. 

 

the flight path between the two ultrasonic transducers as shown in Figure 1. The basic 

flowmeter equation is 

'.sin  where uUu
uc

ds
c

dsdt
T

R

T

R

T

R

+=
+

=
⋅+

= ∫∫∫ β
eu

     ( 1.1) 

The transit times and the differential time of flight are functions of the fluid velocity. 

Therefore this method results in measurement of very short time delays of about a few 

nanoseconds. Advances in computing capabilities offer prospects for utilizing the 

ultrasonic technique in turbulent flow diagnostics in laboratory conditions. 

       The first objective of the work is to apply travel-time ultrasonic technique for data 

acquisition in the grid-generated turbulence produced in a wind tunnel. This work 

expands the previous experimental work by Weber [1994] that utilized the ray trace 

method to examine the effect of flow turbulence on sound waves propagation across a 

velocity field.     

The second objective is to implement two basic approaches of theory of sound wave 

propagation in moving inhomogeneous media for data interpretation, the classical ray 

acoustic approach, and modern, parabolic equation approach. Using these two approaches 
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for interpretation of experimental measurements of travel time and wave amplitude an 

investigation of the effect of turbulence on ultrasound wave propagation was conducted. 

The work also demonstrates that combination of ultrasonic technique with one of the 

theoretical models can be used to perform flow diagnostics. 

       Despite the advances in computing technology and consequently improvements in 

measuring travel-time, ultrasonic flowmeter accuracy has not improved very much at all. 

The explanation may lay in the effect of turbulence on ultrasound waves, namely velocity 

and density fluctuations. To examine this possibility, the basic ultrasonic flowmeter 

equation is reconsidered, where the effects of turbulent velocity and sound speed 

fluctuations are included. The result is an integral equation in terms of correlation 

functions of travel time, turbulent velocity and sound speed fluctuations. The third 

objective is to develop an acoustic propagation model that allows determination of the 

spatial correlation functions of travel time, turbulent velocity, sound speed fluctuations 

and their spectra based on measured experimentally travel-time, thus identifying the 

effect of sound speed fluctuations.  

       The intention to utilize ultrasonic methodology for turbulent flow diagnostics is also 

motivated by the difficulty of obtaining laboratory measurements of time-of-flight 

variance indicated by the dearth of data.  Although a large number of atmospheric 

measurements were made, they suffered from a lack of reliability and accuracy in 

addition to poor characterization of the turbulence. The problem of travel-time 

fluctuations is equivalent to the problem of finding the auto-correlation functions of these 

fluctuations, which involves enormous amounts of experimental data and a large amount 

of computational work. From the point of view of repeatability of experiments, it is much 

 
3



more complicated and time-consuming to conduct outdoor experiments as compared to 

those performed under convenient laboratory conditions. On the other hand, current 

ultrasonic flow metering technology benefits from simple design and ease of operation 

assuring high measurement precision. 

  

1.1  Theoretical, Computational and Experimental Issues in a Theory of Sound 

Propagation in a Moving Random Media 

       Our interest is concentrated on the effect of turbulence on sound wave propagation. 

The random changes of velocity and temperature produced by turbulence are very rapid 

and affect the sound propagation. This area of research lies on the boundary between 

acoustics and aerodynamics. The present research is a result of experimental and 

theoretical approaches. The literature review presents both classical and new results of 

the theory of sound propagation in media with random inhomogeneities of sound speed, 

density and medium velocity.   

   1.1.1  Review of Theoretical Investigations 

       The classical theory of wave propagation in turbulent media considers wave 

propagation in isotropic or locally isotropic and homogeneous random media and based 

on statistical representation of the turbulence [Chernov, 1960; Tatrskii, 1961, 1971; 

Ishimaru, 1978]. The statistical moments of phase and log-amplitude fluctuations of a 

sound wave propagating in the turbulent atmosphere have been calculated by Tatarskii 

[1961] using the ray approximation and the Rytov method [Monin and Yaglom, 1981; 

Brown and Hall, 1978]. Ray acoustics have been a standard approach for rigorous 

consideration of sound wave parameters for outdoor experiments. The main advantages 
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of the ray theory of wave propagation are the clarity of its physics and relative simplicity. 

The main results of geometrical acoustics were obtained before the mid-1940s and 

summarized in the book by Blokhintzev [1953]. Nevertheless, until recently there was no 

detailed treatment of geometrical acoustics in an inhomogeneous moving medium. The 

main ideas are systematically reviewed in monograph by Ostashev [1997].    However, in 

most cases, all scales of heterogeneities must be considered and mathematical conditions 

for ray solutions are seldom met outdoors. Moreover, for example, in statistical 

tomography in seismic media, all scales of heterogeneities are present so that scattering 

occurs rapidly and geometrical optics fails [Samuelides, 1998; Iooss, 2000].  

       The modern theory of sound propagation in a moving random medium has been 

developing intensively since mid-1980s. The governing system of linearized system of 

equations of fluid dynamics, which allows description of the propagation of sound waves 

in moving media, is rather complicated. Scientists have been trying to reduce it to a 

single equation using various approximations and assumptions about a moving medium. 

The most widely used single equation approaches in atmospheric acoustics are: Monin’s 

equation [Tatarskii, 1961], Pierce’s equation [Pierce, 1990], parabolic equation [Rytov et 

al., 1978]. The statistical characteristics of sound waves propagating in a moving random 

medium with an arbitrary state equation have been calculated by the ray acoustics 

method, Rytov and parabolic-equation methods. Efforts focusing on the stochastic 

Helmholtz equation and its parabolic approximation are especially of interest.  

       The parabolic equation method is a very powerful method in the theory of wave 

propagation. In certain cases it allows significant simplification of an analytical or 

numerical solution of the problem. For describing acoustics in a moving medium, several 
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parabolic wave equations have been obtained [Godin, 1987; Nghiem-Phu and Tappert, 

1985, Ostashev, 1987, Robertson et al., 1985]. In this approach the small perturbation 

method is the most used solution to the parabolic approximation [Rytov et al., 1978; 

Ostashev, 1997; Samueldis, 1998]. Clifford and Lataitis [1983] used the Rytov method to 

calculate phase and log-amplitude fluctuations of the direct and ground-reflected waves 

due to refractive index fluctuations. They followed Tatarskii, who considered the case, 

when refractive index fluctuations are caused by temperature fluctuations. Furthermore, 

Clifford and Lataitis calculated mean squared sound pressure by an energy conserving 

approach. They presented a formula for mean squared sound pressure for a Gaussian 

correlation function of refractive index fluctuations. These results made a significant 

contribution to the development of atmospheric acoustics. Since the publication by 

Clifford and Lataitis paper, the theory of atmospheric acoustics has been developed 

significantly.  

       The effect of wind velocity and temperature fluctuations on the statistical moments 

of a sound field was studied by numerous authors: Ostashev [1997, and references 

therein], Ostashev and Wilson [1999]; Ostashev et al. [2001], Blanc-Benon et al. [1991], 

Wilson [2000, and references therein]. Generalization of the theory by Clifford and 

Lataitis was found in Ostashev and Goedecke [1998]; Ostashev et al. [2001]. The Rytov 

approximation permits one to deal with log-amplitude and travel time fluctuations. 

Lately, two effects of random heterogeneities have been investigated. First, the velocity 

shift, which states, that the apparent velocity of the wave is greater than the average 

sound velocity of the non-turbulent medium. This is in accordance with Fermat’s 

principle, which states that the wave path minimizes the travel time of the wave [Landau 
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and Lifshitz, 1959]. This effect was discovered in the late 1980’s. The particular interest 

to this effect lies in the area of surface seismic deterministic methods [Boyse, 1986, 1994; 

Roth, 1993; Wielandt, 1987; Iooss and Galli, 2000]. Theoretical methods are based on 

small perturbations in geometrical optics [Snieder and Aldridg, 1995 Boyse and Keller, 

1994]. The results showed that if the magnitude of the heterogeneities is sufficiently 

small, the relative velocity shift increases linearly with the propagation distance. In 

seismology the determination of travel time is an important issue. Hence, the second 

effect is the linear increase of the first-order travel-time variance with the propagation 

distance [Chernov, 1960]. However, nonlinear effects appear at certain propagation 

distances [Karweit et al., 1991; Iooss, 2000]. Overall, since the mid 1980s the rigorous 

theory of line-of sight sound propagation through media with random inhomogeneities of 

medium velocity, temperature has been developed; the statistical characteristics of the 

sound wave have been calculated using the Born approximation, by ray, Rytov and 

parabolic-equation methods, by the theory of multiple scattering and the diagram 

technique [Ostashev, 1997]. Statistical characteristics are obtained for different models of 

the random fields of velocity and temperature; homogeneous turbulence, homogeneous 

and isotropic turbulence, turbulence with the Kolmogorov spectrum and Gaussian 

correlation functions [Ostashev, 1997].  

       Further extension of our knowledge of sound propagation in the turbulent 

atmosphere requires the validation of theory by experiments carried out outdoors and in 

wind tunnels. Until recently, although a large number of atmospheric measurements were 

made, they suffered a lack of reliability and accuracy in addition to poor characterization 

of the turbulence. Laboratory experiments, despite there crucial importance, are 

 
7



extremely rare. The objective in this dissertation is to demonstrate that ultrasonic 

technology can be effectively utilized for data acquisition and flow diagnostics in 

laboratory conditions.  

   1.1.2  Review of Experimental Issues in Waves Propagation in Random Media 

       We consider a locally isotropic, passive temperature field coupled with a locally 

isotropic velocity field, which is realized by introducing a heated grid in a uniform flow 

[Yeh and Van Atta, 1973 and references therein]. If temperature fluctuations are 

sufficiently small then density is effectively constant and buoyancy forces are negligible. 

Statistical turbulence data from hot and cold wire anemometry that describe the 

temperature and velocity field downstream of a heated grid in a low speed wind tunnel 

are typically given in the form of downstream decay of turbulence intensities, energy 

spectra, autocorrelations, spatially separated cross correlations, phase, coherence     

[Comte-Bellot and Corrsin, 1971; Yeh and Van Atta, 1973; Sepri, 1976; Warhaft and 

Lumley, 1978; Sreenivasan et al, 1980; Van Atta, 1991; Nelkin, 1991; Sreenivasan and 

Antonia, 1997; Warhaft (and references therein), 2000]. 

       The influence of turbulence on sound wave propagation has been studied by a 

number of authors, who conducted a variety of experiments and provided a wide range of 

experimental and analytical results in this area for the last fifty years. The book by 

Tatarskii [1971] and paper by Brawn and Hall [1978] present a detailed review of the 

research into sound propagation in turbulent atmosphere prior to the mid 1970. Recently 

outdoor sound propagation in a turbulent medium has received serious attention. 

Measurements of the intensity fluctuations in the atmosphere or ocean have been 

obtained by Daigle et al. [1978, 1983, 1986]; Ewart et al. [1986]. Experimental 
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measurements of sound propagation through the atmosphere with particular emphasis on 

amplitude and phase fluctuations due to atmospheric turbulence were performed by Bass 

et al, [1991 and references therein]. Particular interest to large-scale turbulence was paid 

by Chessel, [1976]; Roth [1983], Wilken, [1986]. Noble et al.[1992] provided 

experimental evidences that large eddies cause phase fluctuations over a broad range of 

frequencies. The acoustic propagation model that incorporates the current state of 

understanding of a large-scale atmospheric turbulence structure was developed by Wilson 

and Thompson [1994, references therein]. 

        It has been emphasized that sound propagation is sensitive to random variations in 

the effective refractive index, which is a function of temperature and medium velocity 

fluctuations. Di Iorio and Farmer [1996] showed that the velocity fluctuations can be 

dominant source of acoustic scattering and in their 1998 paper they showed that the 

random variations in temperature also contribute to the total scattered signal. Although a 

large number of atmospheric measurements were made, the uncertainties with regard to 

relevant environmental parameters, namely velocity and temperature variations, make it 

difficult to assess their individual influence on acoustic wave propagation. Moreover, 

outdoor experiments suffered a lack of reliability and accuracy in addition to poor 

characterization of the turbulence. The problem of phase fluctuations is equivalent to the 

problem of finding the auto-correlation functions of these fluctuations, which involves 

enormous amounts of experimental data and a large amount of computational work. From 

the repeatability of experiments point of view, it is much more complicated and time-

consuming to conduct outdoor experiments compared to those performed under 

convenient laboratory conditions. The challenge in conducting laboratory experiment is 
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first the fact that there is a dearth of reliable data collected in well-controlled 

experimental conditions. Secondly, to demonstrate that rapidly evolving computational 

technology and ultrasonic technique provide great potential for conducting acoustic 

experiments in laboratory conditions that will lead to further extension of knowledge of 

sound propagation in the turbulent atmosphere. The propagation of sound waves through 

turbulent velocity fields has been previously investigated under laboratory conditions. Ho 

and Kovasznay [1974] made such measurements across an air jet over an extremely short 

propagation distance. Blanc Benon in his work in 1981 generated an approximately plane 

acoustic wave with a pistonlike sound source and aimed it across jet-generated air flows. 

In his later work, in 1993 together with Juve he presented experimental results for the 

variance of the normalized intensity fluctuations and for the probability functions of 

acoustic waves that propagate through thermal grid-generated turbulence. Experimental 

data were obtained by varying both the frequency of the wave and the distance of 

propagation. Although review of the literature reveals a substantial improvement in the 

understanding of the sound propagation in the turbulent atmosphere, it is obvious that 

experimental investigations performed in laboratory conditions are very rare. 

   1.1.3  Review of Experimental Issues in Ultrasonic Technique 

       The breakthrough in the problem of measuring flow parameters in a turbulent 

medium using sound was made by Schmidt [1970, 1975], who discovered the possibility 

of measuring flow parameters non-invasively and without perturbation by means of 

ultrasound. His concern was in connection with his efforts to measure the circulation 

associated with aerodynamic surfaces in a wind tunnel. Johari and Durgin [1998] 

reported a number of applications that extended Schmidt’s initial work. Specifically, they 
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investigated unsteady flow about an airfoil, the trailing vortex from a delta wing, and 

swirling free-surface flows.  

     During the past twenty five years ultrasonic technology has progressed very rapidly 

and has been used to improve flow measurement accuracy, specifically the development 

of the equipment capable of measuring the very small time differences associated with 

changes in the ultrasound wave propagation time resulted in measuring devices with 

accuracy of the order of 0.25%. An exhaustive review of recent works on theory, 

techniques and applications of ultrasonic measurements is presented in the book by 

Lynnworth [1989]. The study of the transmission and attenuation of the signal and noise 

mechanism performed by Brassier et al. [2001] gives us a preferred choice of the 

frequency at which ultrasonic transducers can be operated. In their work authors 

presented an innovative prototype of the ultrasonic flow meter using optimal choice of 

ultrasonic frequency, the design and the “echo process”. With improved technology we 

are now able to measure volumetric flow rate and other flow parameters in pipes and 

conduits reliably and accurately in laboratory scale apparatus.  

       The intention to utilize the principles of the ultrasonic flowmeter for turbulent flow 

diagnostics is motivated first by its advantages over traditional methods. The principle 

advantages include noninvasiveness, relatively simple operation/installation, fast 

response, high date rate, maintenance of long term accuracy be maintained, low 

production cost, unit-to –unit interchangeability. Secondly, our interest in the ultrasonic 

technique is substantiated by its broad range of applications in many engineering and 

scientific fields. Potential applications include, but not limited to marine aviation, 

meteorological and industrial areas [Kits van Heyningen, 1987]. Other potential 
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applications are: high accuracy sensors as part of a wind shear warning system for 

airports and for meteorological stations where maintenance and/or environmental 

considerations make mechanical devices impractical [Lynnworth, 1989]. The National 

Institute of Standards and Technology investigates ways to reduce the uncertainty and 

improve the operational capability of flow calibration facilities. As understanding of 

ultrasonic metering methods spreads through the flow metering community, these 

methods may evolve into primary flow standards [Mattingly and Yeh, 2000]. There are 

fundamental theoretical and computational issues related to the ultrasonic flowmeter 

technique that must be understood and in some instances resolved. Industrial flowmeters 

are designed for idealized flows: usually a mean velocity profile while turbulence 

including velocity and temperature fluctuations is ignored. The presence of secondary 

flows is known to cause significant metering inaccuracies, so it is clear that non-ideal 

flows are of concern for accurate measurements. Yeh and his colleagues [Yeh and Espina, 

2001; Yeh et al., 2001] have been working to develop an intelligent ultrasonic flow meter 

that can identify swirl and cross flow characteristics and appropriately influence 

volumetric flow rate calculations. The objective in this thesis is to account for some of 

the aforementioned shortcomings by identifying the effect of turbulence on ultrasound 

wave propagation including the effect of velocity and density fluctuations on travel time 

of ultrasound wave. Our theoretical formulation of the basic ultrasonic flowmeter 

includes sound speed fluctuations and velocity fluctuations terms. 
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   1.1.4  Review of Numerical Works in Modeling of Sound Propagation in Moving 

Random Media 

       Another rapidly developing approach, besides analytical and experimental, is the 

numerical one. Calculation of sound propagation in atmosphere requires accurate 

representation of turbulence spectrum. The complexity of the turbulence dynamics, 

however, makes development of turbulence models for propagation calculations difficult. 

Another practical difficulty is that turbulence modeling is associated with fully three-

dimensional spatial models of the turbulence. Structure along the direction of 

propagation, as well as in the direction transverse, must be known. Some initial efforts in 

multidimensional modeling of sound propagation in atmosphere have been made by 

Kristensen et al. [1989]; Mann, [1994]; Peltier et al. [1996]; and Wilson [2000]. 

Recognition of the fact that large eddies, belonging to the energy-containing subrange, 

play a significant role in acoustic scattering favors a Gaussian model over the 

Kolmogorov one [Wilson and Thomson, 1994; Daigle et al., 1983; Jojnson et al.]. To 

reconcile the Kolmogorov and Gaussian approaches, recent investigators used a von 

Karman model for the turbulence spectrum (Wilson, 2000 and references therein). The 

effect of turbulence on sound propagation through numerical simulations was 

investigated in works by Karweit et al. [1991 and references therein], Ph. Blanc-Benon et 

al. [1991,1995], Chevret [1996], Ioos et al [2000] analytically and numerically studied 

the high frequency propagation of acoustic plane and spherical waves in random media. 

Using ray acoustics and a perturbation approach they obtained the travel time variance at 

the second order and demonstrated nonlinear behavior of travel time variance at large 

propagation distances. 
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1.2  Objectives and Approach 

       The primary goal of this work is to determine turbulent flow characteristics from the 

statistics of travel-time variations. The thesis includes theoretical modeling, experimental 

measurements, and comparison (interpretation) of experimental data with known 

theoretical, numerical and experimental data. 

The theoretical modeling includes: 

1. Development of an acoustical propagation model that allows determination of the 

spatial correlation functions of travel time, turbulent velocity, sound speed 

fluctuations and their spectra based on measured experimentally travel time. 

2. Derivation of the flowmeter equation in terms of cross correlations of travel time, 

turbulent velocity and sound speed fluctuations. 

3. Application of the spectral analysis as a technique in obtaining integral solutions 

for the correlation functions, which are of interest in themselves. 

4. Development of a methodology for spectral analysis of isotropic homogeneous 

turbulence.    

The experimental investigation is primarily concerned with application of the travel time 

ultrasonic technique for data acquisition in the grid-generated turbulence produced in a 

wind tunnel. The ultrasonic technique implementation includes two different 

experimental setups for both heated and non-heated grid-generated turbulence: 

1. Travel time versus travel distance (downstream and upstream propagation of 

ultrasound with respect to the mean velocity vector); 
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2. Travel time versus mean flow velocity (perpendicular propagation of ultrasound 

waves with respect to the mean velocity vector). 

The experimental data validation is based on well-known Kolmogorov law, derived 

purely from the dimensional analysis. The interpretation of experimental data includes: 

a) Ray acoustics approach for travel time interpretation and determination of 

structure constant. 

b) Stochastic Helmholtz equation, its parabolic approximation and the small 

perturbation method as a solution to the parabolic approximation for log-

amplitude, travel-time variations interpretations. 

c) Demonstration of Fermat’s principle. 

d) A Gaussian turbulent spectra model for travel-time sound propagation.    

       The thesis is organized as follows. In Chapter 2 we review several topics from the 

theory of random fields and turbulence theory. In Chapter 3 we present the fundamental 

equations of the acoustics of a moving inhomogeneous medium with its further two 

approximations: ray acoustics and stochastic Helmholtz equation along with Rytov 

approach. In Chapter 3 we also review some physical and mathematical issues of the 

theory of sound propagation in a random media. In Chapter 4 we present description of 

experimental apparatus, generation of grid-generated turbulence using grids, ultrasonic 

system, data acquisition and analysis system. Chapter 5 is devoted to the analysis of 

experimental data, discussion of results and comparisons with theoretical and numerical 

data. Conclusions and recommendations are presented in Chapter 6.
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Chapter 2.   Isotropic Turbulence  

 

 

       In this chapter we give a brief exposition of some topics from the theory of random 

fields and turbulence theory, which are necessary in the following experimental and 

theoretical analysis. We give special attention to the representation of isotropic 

turbulence by means of correlation functions, spectral expansions based on the 

wavelength scale. Review of isotropic, homogeneous turbulence characteristics is 

followed by the outline of length scales in turbulent flows and corresponding turbulence 

spectrum models. The second part of the chapter is devoted to the generation of 

approximately isotropic homogeneous turbulence in a wind tunnel by means of a grid. 

The relations for decay of velocity, temperature fluctuations, integral length scale 

downstream of a grid are presented.  

2.1  Statistical Characteristics of the Medium 

       In what follows we repeatedly need basic information about the statistical properties 

of developed turbulent flow. In this chapter we present only those results of statistical 

theory of random functions and fields, which are important for our purposes, and refer to 

the original sources [Kolmogorov, 1941, 1963; Obukhov, 1941; Loitsyanskii, 1939, 

Batchelor, 1953; Tatarskii, 1961, 1971; Monin and Yaglom, 1981; Landau and Lifshitz, 

1959; Stratonovich, 1961] for more detailed information.    
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   2.1.1  Stationary Random Functions 

       The curve shown in Figure 2.1 serves as an example of realizations of random 

functions. The value of any such function at a fixed instant of time is a random variable, 

which can be decomposed into mean value and fluctuation 

( ) =U+u'u t           ( 2.1) 

The probability density function B(u) defines probability of finding u(t) between u and 

 [Tennekes and Lumley, 1972] u + ∆u

( ) (1lim
T

)B u u t
T→∞

∆ ≡ Σ ∆         ( 2.2) 

 

u∆

( )B u

tt∆

( )u t

 

 

 

 

 

Figure 2.1  Example of realizations of random function u(t). 

 

 The basic features of Probability density function are . But to  ( ) ( )0,    1B u B u du
+∞

−∞

≥ =∫

completely specify the random function u(t) it is not enough to know only the probability 

density function, B(t,u); one must know all possible multidimensional probability 

distributions, i.e. all the probabilities 1 2 1 2( , ,..., ; , ,..., )N NB t t t u u u  [Tatarskii, 1971]. 

However, in applications it is 
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difficult to determine all the functions. It is customary used simpler characteristics of the 

random field. They are called moments. The first moment is the mean value 

( )U uB u du
+∞

−∞

≡ ∫ .         ( 2.3) 

The second moment is a variance – mean square departure from the mean 

( ) ( ) ( ) ( )
22 2 2

1 1, ' = 'K t t u u t u t u B u duσ
+∞

−∞

 = ≡ − =  ∫1 1 .    ( 2.4) 

The square root of variance is called standard deviation or rms amplitude. The joint 

moment is 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2, ,M t t u t u t u u B u u du du
+∞ +∞

−∞ −∞

≡ = ∫ ∫ .     ( 2.5). 

The most important characteristic of a random function is its correlation function 

[Tatarskii, 1961]   

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )

1 2 1 2 1 1 2 2 1 2 1 2

1 2 1 2

, ' ' ,

,

K t t u t u t u u u u B u u du du

M t t u t u t

+∞ +∞

−∞ −∞

≡ = − −

= −

∫ ∫ =

2

.  ( 2.6) 

A random function u(t) is called stationary if its mean value does not depend on the time 

and if its correlation function  depends only on a difference  [Tatarskii, 

1961], i.e. 

1 2( , )K t t 1t t−

         ( 2.7). 1 2 1 2( , ) ( )u uK t t K t t= −

For stationary random functions u(t) there exist expansions in Fourier integrals, namely a 

stationary random function can be represented in the form of a stochastic Fourier-Stieltjes 
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integral with random complex amplitudes ( )ϕ ω , where ω  is the frequency of the wave 

[Tatarskii, 1961] 

( ) i tu t e dωϕ ω
+∞

−∞

= ∫ .          ( 2.8) 

Using the inverse Fourier transform, the function ( )ϕ ω  can be expressed as follows: 

1( ) ( )
2

i tu t e dtωϕ ω
π

+∞
−

−∞

= ∫ .        ( 2.9) 

The spectral density of the stationary random function u(t) by definition is [Rytov et al., 

1978] is 

( ) ( ) ( )1
2

i t
u uK t e dtωω

π

+∞
−

−∞

Φ = ∫ .       ( 2.10) 

In its turn, a correlation function  can be written as ( )uK t

 ( ) ( ) i t
u uK t e dωω ω

+∞

−∞

= Φ∫ .        ( 2.11) 

Hence,  and  are Fourier transforms of each other. ( )uK t ( )u tΦ

   2.1.2  Random Functions with Stationary Increments 

       In order to describe random functions that are more general then stationary random 

functions, in turbulence theory a so-called structure function can be used instead of 

correlation function [Kolmogorov, 1941; Obukhov, 1941]. The basic idea consists of the 

following. In the case when u(t) represents a non-stationary random function, the 

difference ( ) ( ) ( )uf t u t u tτ= + −  can be considered instead of the random function u(t). 

The advantage of this technique is in the fact that for values of τ  , which are not too 
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large, slow changes in the function u(t) do not affect the value of this difference, and it 

can be a stationary random function  at least approximately. In the case where f(t) is a 

stationary random function, the function u(t) is called a random function with stationary 

increments. The function of arguments t  where t  and  take the values 1 2, t 1 2t

1 1 2 2, , ,t t t tτ τ+

( )

+  is called the structure function of a random process and has the 

following form 

1 2, =uD t t u

1 2( , )uK u= r r

1 2( , ) (u uK Kr r



( )
( )3

1
2

u
π

Φ =k

)uK r

( ( )

( ) ( ) 2
2t u t− 1 .       ( 2.12) 

   2.1.3  Homogeneous and Isotropic Random Fields 

       For a random field u(r) (random function of three variables) a correlation function 

can be defined as [Tatarskii, 1961] 

1 1 2 2( ) ( ) ( ) ( )u u u−   −  r r r r .      ( 2.13) 

 In the case of random fields the concept of stationarity generalizes to the concept of 

homogeneity. A random field is called homogeneous if its mean value is a constant and if 

its correlation function satisfies the relation 

1 0 2 0, )= + +r r r r .       ( 2.14) 

Hence, the correlation function of a homogeneous random field depends only on 1 2−r .  r

The spectral density function in a case of homogeneous random field is 

( ) 3i
uK e dω

+∞
−

−∞
∫ rr .       ( 2.15) r

For even correlation functions ( ) (uK − =r , in particular, for correlation functions of 

a real or isotropic field, spectral density is also even, )u uΦ − = Φr r . In this case, the 
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correlation function and spectral density can be expressed through cosine Fourier 

transform: 

( )
( ) ( )3

1( ) cos
2

u K d
π

+∞

−∞

Φ = ⋅∫ ∫ ∫k k r u r r .       ( 2.16) 

A homogeneous random field is called isotropic if the correlation function  

depends only on 

( )uK r

r = r , i.e. only on the distance between the observation points. In order 

to derive an expression for the spectral density function in isotropic random field in the 

integral (2.16) the spherical coordinates can be introduced and the angular integration 

carried out. As a result we obtain an expression 

 ( )2
0

1( ) sin( )
2u uk rK r k

kπ

∞

∫ r drΦ = .       ( 2.17) 

   2.1.4    Locally Homogeneous and Isotropic Random Fields 

       A very rough approximation for the spatial structure of atmospheric turbulence may 

be obtained by applying the method of structure functions [Kolmogorov, 1941, Tatarskii, 

1961]. The advantage of this approximation is in the fact that the difference between the 

values of the field u(r) at two points r r  is mainly affected by inhomogeneities of the 

field u with characteristic size less than distance 

1 2,

1 2−r r . If the distance is not too large, 

the largest inhomogeneities have no effect on ( ) ( )u r1u −r 2 , and therefore the structure 

function depends only on the difference 1 2−r r : 

( ) ( ) ( ) (2
1 2 1 2 1 2, =uD u u D− =  r r r r r r )u − .      ( 2.18) 
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This local dependence is the basis of the concept of local homogeneity [Kolmogorov, 

1941, Tatarskii, 1961]. A random field u(r) is said to be locally homogeneous in the 

region G if the distribution functions of the random variable ( ) (1u u−r r )2  are invariant 

with respect to shifts of the pair of points , as long as these points are located in the 

region G. Thus, the mean value and the structure function (2.15) of locally homogeneous 

random field depend only on 

1 2,r r

21 −r  [Kolmogorov, 1941, Tatarskii, 1961]. The 

relationship between the spectral density function and the structure function can be 

obtained as 

r

( )( ) 2 1 cos ( )uD
+∞

−∞

= − ⋅ Φ∫ ∫∫r k r u dk k .       ( 2.19) 

        A locally homogeneous random field is said to be locally isotropic in the region G if 

the distribution functions of the quantity ( ) ( )1 u−r r

1 2

2u  are invariant with respect to 

rotations and mirror reflections of the vector −r , as long as the points  are located 

in G [Kolmogorov, 1941, Tatarskii, 1961]. The structure function of a locally isotropic 

random field depends only on 

r 1 2,r r

1 2−r r : 

( ) ( ) ( )[ ] ( )rDuuD u
2

u =−+= 11 rrrr .      ( 2.20) 

In the case where the field is locally isotropic, equation (2.19) is 

2sin( ) 8 1 ( )u
krD r k k dk

kr
π

+∞

−∞

 = − Φ 
 ∫ u .       ( 2.21) 

   2.1.5  Frozen Turbulence Hypothesis 

       Under some conditions, sound passes through the turbulence in a time that is short 

compared to the timescales characteristic of the evolution of the turbulence. In such cases 
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the turbulence can be imagined as “frozen” during passage of the acoustic wave. If a real 

field u(t,r) is stationary in time and homogeneous in space, it is described by means of 

space-time correlation function 

1( ,  ) ( , ) ( , )uK t u t t u t= +1r r + r r ,       ( 2.22) 

assuming ( ) 0u =r . G. Tylor’s hypothesis [Tennekes and Lumley, 1972] states that the 

entire spatial pattern of a random field is transported with the mean wind velocity U,  

( ,  ') ( - ',  )u uK t t K Ut+ =r r t .        ( 2.23). 

 

2.2  Turbulence Spectral Models for Sound Propagation in Inhomogeneous Media 

       In this subsection, isotropic models for the turbulence spectrum are presented on the 

basis of the turbulence scales. 

   2.2.1  Length Scales in Turbulent Flows 

       No one model exists to accurately describe the entire turbulence spectrum in all 

flows. It is important to know, which portion of the spectrum contributes significantly in 

a given problem. There are three primary spectral subranges: the energy containing 

subrange, the inertial subrange and the dissipation subrange, that are characterized by 

their own length scales: Integral, Taylor and Kolmogorov respectively [Tennekes and 

Lumley, 1972]. These subranges are schematically demonstrated in Figure 2.2. Whereas 

the integral length scale  is a characteristic length scale of the largest, most energetic, 

and least dissipative motions, the Kolmogorov microscale 

0L

η  is the characteristic of the 

23 



smallest, most dissipative, and least energetic motions. The integral length scale is 

defined by 

0 2
0

1 ( )uL K r
σ

∞

= ∫ dr .           ( 2.24) 

where uKu  ,'22 =σ  are the variance and autocorrelation of a velocity component (or 

temperature), and r is the spatial displacement. By definition, the Kolmogorov microscale 

is 

( )1/ 43 /η ν ε= ,          ( 2.25) 

where ε  is a mean dissipation rate of turbulent kinetic energy. For velocity fluctuations, 

for example, 21.5 /u d u dtε = − . In atmospheric turbulence, η  is of order 1 to 10 mm, 

many orders of magnitude smaller than . The inertial subrange consists of turbulent 

motions having scales  between 

0L

L 0 and L η . The Taylor microscale Tλ  falls within the 

inertial subrange and is given in the isotropic turbulence by [Tennekes and Lumley, 1972] 

2
2 15 u

T
σλ ν
ε

= .          ( 2.26)  

The dissipation subrange can generally be ignored [Wilson et al, 1999] for the prediction 

of acoustic propagation. For most frequencies the motions in the dissipation subrange are 

very small compared to the acoustical wavelength and hence unimportant. Therefore, the 

energy-containing and inertial subranges of atmospheric turbulence play the primary role. 

It was demonstrated [Lawrence and Strohbehn, 1970; Wilson and Thompson, 1994] that 

large scale energetic motions are responsible for phase fluctuations, while smaller scale 

motions derive the amplitude fluctuations. However, the interplay between the 
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propagation geometry, refraction, scattering, and frequency complicates the idealized 

picture.  

k
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Figure 2.2  Spectral view of three subranges of turbulence and corresponding length 

scales.  

 

   2.2.2  Isotropic Turbulence Spectrum Models 

Inertial Subrange Model 

       Kolmogorov’s original hypothesis [Kolmogorov, 1941] implies that the structure 

function, defined as ( ) ( ) ( ) 2
=uD L u L u− 0   , is proportional to . Specifically, 2/3L

( ) 2 2/3
' ,  u uD r C r r l= 0>>

<

,        ( 2.27) 

where  is the structure-function parameter for the longitudinal velocity fluctuations. 

The equation (2.27) is so called the Kolmogorov “2/3” law and is valid in the inertial 

subrange. Based on Tatarskii, [1961], a general function  

2
uC

2( ) ,0 2D r C rµ µ= < ,        ( 2.28) 

corresponds to the 3-D spectral density function 
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2 ( 3
2

( 2)( ) sin
4 2

k C µµ πµ
π

)k − +Γ +  Φ =  
 

.       ( 2.29) 

 Consequently, the 1-D density for the inertial part of the spectrum is 

2/3 5/3( )
2u uk kα ε −Φ = ,         ( 2.30) 

where α  is a constant, whose value for atmosphere is approximately 0.52 [Högström, 

1996]. 

For , structure function has a following form [Rytov et al., 1978] 0r << l

0<<

0>

( ) 4/32 2
' 0 ,  u uD r C l r r l−= ,        ( 2.31) 

Finally, at  the structure function approaches the asymptotic value  0r L>>

( ) 2 2/3
' 0 ,  u uD r C L r L= > ,        ( 2.32) 

Figure 2.3 depicts a real structure function along with three approximations expressed by 

equations (2.27, 2.31, 2.32) [Rytov et al., 1978]. 

 

( )D ∞

( )D r 2~D r 2/3~D r

0l 0L
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Figure 2.3  Structure function with three limit approximations.  
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Gaussian Model 

       The starting point for the Gaussian model is the longitudinal velocity correlation 

function 

G

G

2
2

2expu
rK
l

σ
 

= −
 

 ,         ( 2.33) 

where  is the Gaussian length scale parameter. Fourier transformation yields the 

spectrum 

Gl

G

2 22
G

G ( ) exp
42

k llk σ
π

 
Φ = −

 
 .        ( 2.34) 

       The Gaussian spectrum of inhomogeneities of the medium is very convenient for 

analytical studies of wave propagation in random media. It allows accounting of the 

effects of the largest inhomogeneities in a medium on the statistical moments of a sound 

field [Rytov et al, 1978; Ostashev, 1997]. The Gaussian model is best suited for the 

energy containing subrange. The Gaussian length scale parameter is the scale of the 

largest inhomogeneities in a turbulent medium that affect the statistical moments of a 

sound field [Ostashev, 1997]. In many practical cases l  is of the order of , however, 

 can be less than . More advanced procedures for determination of the length scale 

are described in Wilson [2000]. 

G 0L

Gl 0L

Von Karman Model 

       The von Karman model incorporates both the energy-containing and inertial 

subranges [Ostashev, 1997]. The model is presented in many different, and not always 
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equivalent, forms in the literature. The correlation function for spatial separation parallel 

to the direction of the velocity fluctuations, based on Wilson [2000] is 

V

1/32

V

2
1
3

u
LK
l

σ  
=     Γ 

 

.         ( 2.35) 

The 1-D Fourier transform of the above correlation function is 

( )
( ) ( )V

2
V

v 5/ 62 2

5 / 6
( )

1/ 3 1

lk
k l

σ
π
Γ

Φ =
Γ +

.       ( 2.36) 

A reasonable approach for determining the parameters in the von Karman model is to set 

2σ  to the actual variance of the field and then choose l  to match the Kolmogorov model 

in the inertial subrange. The von Karman model reduces, by design, to the inertial 

subrange model. Qualitative comparison of three primary turbulence spectra is sketched 

in Figure 2.4 [Wilson, 1999].  
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Figure 2.4. Comparison of three 1-D primary turbulence spectra  and the 

corresponding length scales 
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2.3  Wind Tunnel Turbulence 

        The following section is devoted to the description of the turbulence that may be 

generated experimentally by the insertion of a grid into a low speed wind tunnel. The 

actual experimental procedure is described in Chapter 5, while the theoretical issues are 

considered here. Homogeneous, isotropic turbulence is considered an idealization that, at 

most, can be achieved approximately in laboratory experiments. 

   2.3.1    Description of Ideal Grid Turbulence 

     The traditional method of generating, approximately, isotropic turbulence is by means 

of a grid: a rectangular array of bars placed at the entrance of the test section [Batchelor, 

1953; Comte-Bellot and Corrsin, 1966]. In practice the flow in a wind tunnel is 

constrained by walls forming a finite boundary to the fluid motion. Boundary layer 

effects are almost negligible for measurements made near the centerline of the tunnel. We 

consider a fluid flow of infinite extent in its three spatial directions and being unconfined 

by any boundaries. In the plane 0x x=  a uniform grid is inserted. The grid is 

characterized by two parameters: mesh size M and rod diameter D. The grid is imagined 

to be of infinite extent in the plane such that the origin for the x-axis would be 

indiscernible. The mean flow velocity is normal to the grid and is constant in time and 

space (except in the immediate neighborhood of the grid). Sufficiently downstream of the 

grid, the statistics of turbulence shall be assumed to be independent of (t,y,z) the cellular 

flow generated by the grid having been consumed by the overall turbulent field. The 

turbulence thus produced is statistically stationary, homogeneous with respect to 

translations in the planes normal to the x-axis, and it decays in the downstream direction 

of the grid. The above model shall be called ideal grid turbulence. For the generation of 
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thermal turbulence, the grid should be considered as being uniformly heated. Although 

the thermal turbulence generated by heating the grid may exhibit large fluctuations, the 

heat addition is small, so that there is no transfer of energy from thermal turbulence to 

mean temperature. The thermal turbulence thus behaves like a passive scalar convected 

by the mean velocity and is dissipated by conduction to the ultimate state of uniform 

mean temperature [Sepri, 1976, Mydlarskii and Warhaft, 1998]. Since our research work 

is not focused on investigation of turbulence characteristics, and the statistics of isotropic 

turbulence are well known, we do not intend to go any further into representation of 

equations of turbulence and statistics of turbulent flow. We limit ourselves to the 

definitions and references. 

   2.3.2  The Decay of Flow Parameters Downstream of the Grid.      

The Decay of Velocity Fluctuations 

       The downstream decay of the mean-squared streamwise turbulent velocity behind the 

unheated grid is a relation of the type (Sreenivasan et al, 1980; Comte-Bellot & Corrsin, 

1966; Kistler et al., 1954; Mills et al., 1958; Yeh & Van Atta, 1973; Warhaft & Lumley, 

1978 (a,b)) 

2
0

12

nxu x
U M M

α
−

= −
 


 ,         ( 2.37) 

where 1 00.04, / 3, 1.2x M nα = = =  are constants chosen to give the maximum possible 

straight line fit to the experimental data in logarithmic co-ordinates [Sreenivasan et al, 

1980]. 

The Decay of Temperature Fluctuations 
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The downstream decay of 2'T  behind the heated grid is described by the relation of the 

type 

( )
41 ,124.0,' 0

2

2

.m
M
x

M
x

T
T m

==





 −=

∆

−

ββ ,      ( 2.38) 

where ,mβ  were chosen as a best fit for experimental data [Sreenivasan et al, 1980] 

The downstream development of the integral length scale 

       The expression for downstream decay of the integral length scale is 

4.0
013.0

−







 −=

M
x

M
x

M
L .        ( 2.39) 

The constants are chosen based on the best fit to the experimental data obtained by 

Sreenivasan et al, [1980], Kistler et al, [1954], Mills et al, [1958], Yeh & Van Atta, 

[1973]. 
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Chapter 3.   Sound Propagation in a Moving Random 

Media 

        

 

       In this chapter, we present a derivation of the equations describing the propagation of 

acoustical waves in inhomogeneous moving media. The main equations were obtained in 

the literature by the mid forties [Blokhintzev, 1953; Kolmogorov, 1941; Chernov, 1960; 

Tatarskii, 1961, 1967, 1971] while some of them have been derived just recently [Rytov 

et al, 1978; Ostashev, 1997; Wilson, 1999, 2000]. The propagation of a sound wave in an 

inhomogeneous moving medium is completely described by the system of linearized 

equations of fluid dynamics. Then, starting from the general system of equations using 

several assumptions with defined ranges of applicability, two well known approximate 

theories of wave propagation, namely ray acoustics and the Rytov method are developed. 

The statistical moments of a sound fields are calculated using these two approaches, 

mainly following the reviews of published works [Tatarskii, 1967, 1971; Rytov, 1978; 

Ostashev, 1997]. The eikonal equation and Fermat’s principle [Blokhintzev, 1953; 

Landau and Lifshitz, 1959; Wilson, 1992] are discussed in application to the stationary, 

inhomogeneous moving medium. The theory of travel-time fluctuations of sound waves 

due to turbulence in the atmosphere based on a law, established by Obukhov [1941] and 

Kolmogorov [1941], known as “2/3” law, is developed and the physical and mathematical 

issues related to basic flowmeter equation are addressed. In subchapter 3.6 the classical 

flowmeter equation is reconsidered in a form that includes turbulent velocity and sound 
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speed fluctuations. The result is an integral equation in terms of correlation functions for 

travel time, turbulent velocity and sound speed fluctuations. Hence, the effect of velocity 

and temperature fluctuations on acoustic wave propagation will be investigated. The 

effect of these two factors in application to the flowmeter equation as well as a new 

formulation of the classical flowmeter equation that has not been studied previously in 

the literature will be shown. 

 

3.1  The Aerodynamic Equations of a Compressible Gas 

       Any medium, in which sound is propagated, whether it is a gas, a liquid, or a solid, 

has an atomic structure. However, it has been shown [Leontovich, 1936; Blokhintzev, 

1953] that for a gas, if 1/ cf τ<<  (where f is the sound frequency and cτ  is the mean time 

between collisions) the gas can be regarded as a continuous medium, which is 

characterized by certain constants. Such a method of analysis is used in the theory of 

aerodynamics [Blokhintzev, 1953]. The aerodynamic equations of a compressible gas are 

taken as a basis of the theoretical analysis of the problem of the acoustics of a moving 

medium. The aerodynamic equations of a compressible gas are expressed in three 

fundamental conservation laws. 

Continuity Equation 

Assuming that there are no chemical reactions, the continuity equation is 

( ) 0=⋅∇+
∂
∂ Vρρ

t
.         (3.1) 

Momentum Equation 

The general form of the momentum equation of is: 

33 



( ) ( ) gt
ρ ρ∂

+ ∇ ⋅ = ∇ ⋅ +
∂

V VV P F .       (3.2) 

The pressure tensor is: 

{ } .3,2,1,, where, =+−== jippp ijijijij τδP ,     ( 3.3) 

where 





=
≠

=
ji
ji

ij  if 1
 if 0

δ  . 

The term pij is the ij th components of the stress tensor acting on the area perpendicular to 

ej with the direction given by ei. The term τ ij  is the ij th components of the viscous stress 

tensor T  in accordance with Stokes theory, expressed for Newtonian fluids as 

.3,2,1,,,
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j

i
v δµT ,     ( 3.4) 

where µ  is a viscosity coefficient. v

Energy Equation 

( ) ( ) ( ) ( )t tE E p
t

ρ ρ∂
+ ∇ ⋅ = −∇ ⋅ + ∇ ⋅ + ∇ ⋅

∂
V V T V q .    ( 3.5) 

The total specific energy Et is obtained as a sum of the specific internal energy e and the 

specific kinetic energy 

E e V
t = +

2

2
.          ( 3.6) 

The heat transfer by conduction per unit mass is given by Fourier’s Law as 

Tæ∇−=q ,          ( 3.7) 
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where the thermal conductivity æ is given by κρ 0cæ = , and κ  is thermal diffusivity and 

 is specific heat at constant pressure. To the three basic laws of hydrodynamics there 

must be added a constitutive equation such as the equation of state of the gas, which 

connects the pressure, the density and the temperature: 

pc

( , )p Z Tρ= .          ( 3.8) 

From the first law of thermodynamics we have for the energy per unit mass 

de TdS pdVol= − ,         ( 3.9) 

where S is the entropy, and Vol is a specific volume (Vol 1/ ρ= ). Then 

2

de dS dVol dS p dT p T
dt dt dt dt dt

ρ
ρ

= − = + .      ( 3.10) 

On the other hand, 

( ) 2

d p
dt t dt

p dρ ρ ρ ρ
ρ ρ

∂ ∇ ⋅
= + ⋅∇ = − ∇ ⋅ ⇒ = −

∂
VV V ρ .    ( 3.11) 

The effect produced by viscosity and heat conduction in general energy balance usually 

appears as small corrections [Blokhintzev, 1953] thus the process of sound propagation in 

air is considered adiabatic. Consequently, for adiabatic processes we have 

2

pde p d dp pe
dt dt

ρ
ρ ρ ρ

= ⇒ = ∫ − ,        ( 3.12) 

The quantity 2

pde p d p dpw e
dt dt

ρ
ρ ρ ρ

= ⇒ = + = ∫  is known as enthalpy. If the process is 

non-adiabatic, then equation (3.10) must be used. Then we get from equations (3.5) and 

(3.10)  
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( )1 1dST
dt ρ ρ

= ∇ ⋅ + ∇ ⋅q T V .        ( 3.13) 

If we neglect æ and µ , since the effect produced by them in the general energy balance 

usually negligible, we have 

0dS S S
dt t

∂
= + ⋅∇ =

∂
V ,         ( 3.14) 

i.e., the motion of fluid is adiabatic. If the motion is also irrotational, ∇×  then the 

Bernouilli theorem holds. It is convenient to introduce the velocity potential by putting 

, momentum and energy equation (3.5) leads to 

0=V

Π−= gradV

( )
ρ
p

t
∇

−=



 Π∇+

∂
Π∂

−∇ 25.0 .       ( 3.15) 

Taking into consideration that p w
ρ

∇
= ∇ , integration of equation (3.15) yields 

( )25.0 Π∇−
∂
Π∂

== ∫ t
pw

p ρ
.        ( 3.16) 

If the compressibility of the fluid is also neglected, then
0

pw const
ρ

= + , consequently, 

( ) const
t

p +Π∇−
∂
Π∂

= 20
0 2

ρ
ρ ,       ( 3.17 

and for stationary flow, 

( )
22

2
020 V

constconstp
ρρ

−=Π∇−= .      ( 3.18). 

The fact that the entropy of an ideal fluid ( )0æ == µ  undergoing motion remains a 

constant, makes it expedient to replace the variables ( ),Tρ  in the equation of state (3.8) 
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by variables ( ) . , Sρ

3.2  The Acoustic Equations in the Absence of Wind 

       An oscillatory motion with small amplitude in a compressible fluid is called a sound 

wave. The vibrations of the medium can be represented as acoustic vibrations under the 

following assumptions: 

1.  Vibrations are small, so that any changes of state of the gas in an arbitrary small 

volume can be neglected. 

2.  Frequencies under consideration are in the audible range (classical acoustics), or near 

it (ultrasonic). 

Based on aforementioned assumptions the terms of the second order can be neglected. 

The relative changes in the fluid density and pressure are assumed to be small, namely 

aappp ρρρ +=+= 00 , ,        ( 3.19) 

where  is the excess pressure, ap 0ρ  is the density at 0p p= , 0T T=  and  ( is a 

small velocity). In a similar fashion, we have for the temperature, entropy and energy 

aVV = aV

aaa eeeSSSTTT +=+=+= 000 ,, .       ( 3.20) 

We then get from equations (3.1, 3.2) 

Continuity Equation 

00 =⋅∇+
∂

∂
a

a

t
Vρ

ρ
.         ( 3.21) 

Momentum Equation 

0
3
12

0 =⋅∇∇+∇+−∇=
∂

∂
aaa

a p
t

VV
V

µµρ .      ( 3.22) 
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The closure relation for an ideal gas is p RTρ= , where R is the gas constant per unit 

mass. In terms of  this becomes ( , Sρ )

0

0

exp
v

0p S Sp
c

γ
γρ

ρ
 −

= 
 



v

,        ( 3.23) 

where  is the specific heat at constant volume and vc /pc cγ =  is the ratio of the specific 

heats. The condition that the linearized equations of motion (3.21, 3.22) should be 

applicable to the propagation of sound waves is that the velocity of the fluid particles in 

the wave should be small compared with the velocity of sound: V c<<

0

. This condition 

can be obtained, for example, from the requirement that ρρ <<a .    

Energy Equation 

For small changes in the state, equation (3.23) leads to [Blokhintzev, 1953] 

v
aaa

v
aa c

p
hhSc

c
pp

p 020

0

0 ...;... =++=++= ρρρ
ρ

γ .    ( 3.24) 

For , the only term left is the one, which represents the small change in pressure 

for small adiabatic expansions or compressions. The quantity 

0=aS

0

0

pc γ
ρ

=  is adiabatic 

sound velocity. The second term represents the change in pressure produced by the influx 

or outflow of heat. The entropy changes satisfy equation (3.14), which, neglecting 

quantities of second order, may be written in the form 

a
a T
t

S
T 2

0
0

æ
∇=

∂
∂

ρ
.         ( 3.25) 

Temperature changes T  can be expressed in terms of the changes in the density and 

entropy. Consequently, from equation (3.9) 

a
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eT
S ρ

∂ =  ∂ 
.                                                                  ( 3.26) 

The energy of an ideal gas is given by 

( ) ( ) ( vav cS
ppTce /exp

11 0

1
0

γ

γ

ργ
ρ

ργ −
=

−
==

−

) .      ( 3.27) 

Since  
aS

e
S
e

∂

∂
=

∂

∂
, equation (3.26) can be written in the form 

( ) ( ) ( ) ργργ
ρ

γ

γ

v
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v c
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c
p
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/exp
1 0
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−
=

−
=

−

,      ( 3.28) 

i.e. for small changes of density and entropy 

( ) ...
1 0

2
0

2
0

0 +
−

+=
ργ

ρ
ρ
ρ

v

a

v

a
a c

p
c
p

T .       ( 3.29) 

Here the first term represents the change in temperature, which follows from the adiabatic 

expansion or compression of gas, while the second represents the change in temperature 

due to a change in the entropy Substituting in equation (3.25) leads to 

( )
vaa

a cS
t

S

0
1

2
1

2 1,
ρ

γ
κκρκκ

−
=∇+∇=

∂
∂

.      ( 3.30) 

Equations (3.21, 3.22, 3.30) together with the equation of state (3.24) govern the 

propagation of sound in a medium at rest, taking viscosity and heat conduction into 

account. In all instances, in which sound absorption is not a matter of concern the 

viscosity and thermal conductivity of the air can be ignored. Putting ( )0æ == µ  leads to 

, i.e. adiabatic sound propagation, and the governing equations are 0=aS

00 =⋅∇+
∂

∂
a

a

t
Vρρ ,         ( 3.31) 
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a
a p

t

V
−∇=

∂

∂
0ρ ,          ( 3.32) 

aa cp ρ2= .           ( 3.33) 

These equations can be solved using the velocity potential. Setting 

aa
a

a t
p Π−∇=

∂
Π∂

= V ;0ρ         ( 3.34) 

satisfies the equation (3.31). Then from equations (3.32, 3.33) the wave equation for the 

potential is obtained 

01
2

2

2
2 =

∂
Π∂

−Π∇
tc

a
a .         ( 3.35) 

The wave is called plane wave if all its quantities depend only on one coordinate, for 

example x-coordinate. That is, the flow is homogeneous in the yz-plane. The wave 

equation (3.35) becomes 

01
2

2

22

2

=
∂
Π∂

−
∂
Π∂

tcx
aa .         ( 3.36) 

The solution of the equation (3.36) has the following form 

( ) ( ctxfctxfa ++−=Π 21 ) .         ( 3.37) 

The distribution of the other quantities aaa Vp ,, ρ  in a plane wave is given by functions 

having the same form. If 2 0f =  then, for density ( )ctxfa −= 1ρ . Expression 

(1 )f x ct− represents a traveling plane wave. Since only x
a

x ∂V Π∂=  is non-zero 

component of fluid velocity in a sound wave, sound wave in a fluid are longitudinal. In 

the case of monochromatic waves all quantities are periodic (harmonic) functions of the 

time. For example, velocity potential has the following form 
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( ) ([ tizyxre aa )]ω−Π=Π exp,,0 ,       ( 3.38) 

where ω  is the frequency of the wave. The function 0φ  satisfies the equation 

( ) 0/ 0
22

0 =Π+∆Π aa cω ,        ( 3.39) 

which is obtained by substitution of equation (3.38) into the wave equation. In the case of 

a monochromatic traveling plane wave, propagating in a positive direction of x-axis is 

considered, the potential is of the form 

(([ cxtiArea /exp −−=Π ))]ω ,       ( 3.40) 

where A is a constant called the complex amplitude. Writing this as iA ae α=  with real 

constants a and α    

[ ]αωω +−=Π tcxaa /cos ,        ( 3.41) 

where a is called amplitude of the wave, and the argument of the cosine is called the 

phase. If n  is a unit vector in the direction of propagation, then the vector  

( ) ( )/ 2 /cω π λ= =k n n

))]

        ( 3.42) 

is called the wave vector, and its magnitude k the wave number. In terms of this vector 

equation (3.40) can be written as 

(([ tiArea ω−⋅−=Π rkexp .       ( 3.43) 

Any wave can be represented as a sum of superimposed monochromatic waves with 

various wave vectors and frequencies. The decomposition of a wave into monochromatic 

waves is an expansion as a Fourier series or integral. 
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3.3  Fundamental Acoustic Equations of the Moving Medium 

       Acoustic phenomena become more complicated in the presence of airflow. In the 

general case, strictly speaking, it is not possible to distinguish acoustic phenomena from 

the non-linear processes, which take place in a moving medium. For example, a current 

of pulsating velocity acts on a microphone placed in the flow as if it were sound of the 

corresponding frequency (provided that the frequency of these pulsations is sufficiently 

high) although the velocity of propagation of these pulsations is different from the 

velocity of sound. The relation between the pressure of these pulsations and their velocity 

is non-linear and fundamentally different from the relation between the pressure and 

velocity of sound wave. In order to distinguish sound propagation in a medium from 

acoustic phenomena arising in the same medium as a result of motion of the medium, the 

motion is considered to be frozen, i.e. it is assumed that motions in the flow are 

sufficiently slow that 

1/ fτ >>           ( 3.44), 

where τ  is the time for an appreciable change in the state of flow [Tatarskii, 1961]. 

Supposing sound is propagated in the medium, the state of which is described by the 

variables , , ,V p Sρ . The original state of the medium is considered as steady state and 

the sound is regarded as a small perturbation, so that all the variables under consideration 

have small fluctuations: aaaa SVp ,,, ρ . In order to obtain the equations of the sound 

wave, the following replacements are introduced [Blokhintzev, 1953] 

aaaa SSSpppVVV +=+=+=+= ,,, 00 ρρρ      ( 3.45) 
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Limiting ourselves to the linear approximations, the terms of higher order of the 

relatively small quantities aaaa SVp ,,, ρ . In addition, the irreversible processes, which 

take place in sound propagation, are neglected. This means that in linear equations for 

aaaa SVp ,,, ρ  the terms that are proportional to viscosity and thermal conductivity are 

neglected. Under the listed assumptions the fundamental acoustic equations of the 

moving medium are [Blokhintzev, 1953]  

0=⋅∇+⋅∇+∇⋅+∇⋅+
∂

∂ VVVV aaaa
a

t
ρρρρρ ,     ( 3.46) 
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a VV .        ( 3.48) 

The equations of state are 
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The linear character of the system of equations (3.46-3.49) requires small disturbances to 

remain small in time, i.e. initial state is stable. The choice of thermodynamic variables 

, Sρ  is extremely useful for general theoretical considerations. For final numerical 

calculations, however, the variables ,Tρ  are more convenient. The quantities 

,
S

S∇
p
ρ

 ∂
 ∂ 

 in terms of the variables p and T can be found in the following way.     

       The closed system of the linearized equations of fluid dynamics (3.46-3.49) gives the 

starting equations for describing sound propagation in a moving medium. The first two 

equations of this system were used in the first papers on acoustics in a moving medium. 
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All equations of this system were derived and used for the study of sound propagation by 

Blokhintzev. In the system of fundamental equations (3.46-3.49) there are five unknown 

even if one variable is eliminated by means of equation (3.49). The system therefore is 

exceedingly complicated. The fundamental difficulty lies in the fact that as soon as the 

pressure in the medium appears as a function of two coordinates , Sρ  or ,Tρ , then even 

in a quiescent medium, where there are no vortices and no current at all, the right hand 

side of equation (3.46) will still not be a total differential and therefore sound will be 

rotational. Important simplifications are obtained in the case when the changes in 

aaaa SVp ,,, ρ  are small over one wavelength of the sound. This approach is called ray 

acoustics [Kolmogorov, 1941]. 

 

3.4  Ray Acoustics Approach        

       The basic characteristics of sound propagation in the atmosphere are determined by 

slow changes in the state of the medium, for example, wind force, temperature and 

density of the air. Under these conditions it is expedient to make use of the methods of 

ray acoustics. In the following, the basic equations of ray acoustics are introduced in the 

form that Blochintzev derived them. Starting with the system of equations (3.46-3.49), it 

is assumed that flow parameters undergo only small changes within a single wavelength. 

In order to make use of this fact in an approximate theory of sound propagation, it is 

assumed that 
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,       ( 3.50). 
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where ω  is a sound frequency, 0 0 0/ 2 /k c 0ω π λ= =

0k

 is the wave number in the 

undisturbed state of the medium, W  is called the eikonal. The following assumptions are 

made in order to derive the system of ray acoustic equations [Blokhintzev, 1953]. The 

quantities  are considered to be slow changing functions of the 

coordinated and time. The value of  is considered to be large, so that the phase  

changes very rapidly. The solutions for fluctuations of ambient flow parameters 

0000 ,,, aaaa SpV ρ

aS

0k W

aV ,aap ,, ρ  will be sought in the form of a series of inverse powers of the large 

parameter ik  0
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Substituting (3.50) in equations (3.46-3.49) leads to the following system 
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Substituting (3.51) into system of equations (3.52-3.54) and collecting coefficients for 

like powers  the following two system of equations for zero and first power of ik  

were obtained 
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30'' bqS a = ,          ( 3.60) 

Here  are the values of b b  obtained upon substitution in them zero 

approximations for V  from equations (3.55-3.57). Solution of the system 

of ray acoustic equations (3.55-3.57) leads to the eikonal equation and consequently to 

the flowmeter equation. From the system of ray acoustic equations (3.58-3.60) an 

equation for determination of sound pressure can be obtained. We conclude this 

'
3

'
2

'
1 ,, bbb 1 2 3, ,b

0000 ,,, aaaa Sp ρ
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subchapter with a list of assumptions that define the range of applicability of the ray 

acoustic approach [Rytov et al, 1978]: 

,  where  is a characteristic inhomogenuity sizel lε ελ>>      

,  where  is a travel distance;  is a first Frenel zonel L L Lε λ λ>>  

   3.4.1     Eikonal Equation 

       We are concerned with a derivation of eikonal and flowmeter equations. In the 

following, the derivation obtained by Blokhintzev is reproduced. Solution of the equations 

(3.55-3.57) leads to the equation that connects particle velocity with pressure 

( )
ρ

0
0

'' a
a

p
q
W∇

=V .         ( 3.61) 

By simultaneous solution of equations (3.56, 3.57) the equation of surface of constant 

phase (W ) is obtained const=

2
2

2

qW
c

∇ = .          ( 3.62)    

For V  it follows from equation (3.54) that  0=

22
20

2 2

cq
c c

ε= = ,          ( 3.63), 

where ε  is the index of refraction of sound waves. The expression known as the eikonal 

equation is 

2 2W ε∇ = .          ( 3.64) 
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 Substituting q from (3.54) into equation (3.62) and solving (3.62) for WW
n

∂
∇ =

∂
, where 

W
n

∂
∂

 denotes differentiation in the direction of the normal to the surface of constant 

phase, we get 

0

n

cWW
n c V

∂
∇ = =

∂ +
,         ( 3.65) 

where V  is the projection of the wind velocity on the normal to the wave front, shown in 

Figure 3.1 

n

Wave front 

nV

c

f nc= +V V

V

S c= +V V

 

 

 

 

 

 

Figure 3.1.  Kinematic relations in a geometrical theory of sound propagation. 

Knowing  W
n

∂
∂

, we can determine the phase velocity of the wave V . The equation of the 

moving phase surface is  

f

0t k W constωΦ = − = .        ( 3.66) 

If we differentiate equation (3.66) with respect to time we find 

0 0 0f
W dt Wk k
n dn n

ω ω∂ ∂
− = −

∂ ∂
V =

nV

. On the basis of equation (3.65) we will obtain 

equation for the phase velocity of the wave 

f c= +V ,          ( 3.67) 
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i.e. the phase velocity of the wave is equal to the local sound velocity plus the normal 

component of the flow velocity. Kinematic relation is shown in Figure 3.1. Formula 

(3.66) is one of the original assumptions in a geometrical theory of sound propagation.  

   3.4.2  Fermat’s Principle 

       Surfaces of constant phase are given by W const= , and therefore define the wave 

fronts defined by equation (3.66) and shown in Figure 3.2 [Bergmann and Schaefer, 

1999]. The direction of propagation  is normal to the phase surfaces. It is the gradient 

of the phase surfaces 

n

gradW
gradW

=n           ( 3.68) 

or, with equation (3.64) 

gradWε =n .          ( 3.69) 

2W

1W

0W

E
n

n

E

Wave front

Figure 3.2.  Surfaces of constant phase in an inhomogeneous medium. The rays are the 

curves perpendicular to the surfaces W const= . 
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The beam propagation is in the direction of n . The curves, orthogonal to the phase 

surfaces are called beams or rays,  is the tangential vector to the beams. The difference 

of two adjoining eikonals , whose distance along a beam is ds , is 

n

dW

dW gradW ds= ⋅n , or with equation (3.69) 

dW dsε= .          ( 3.70) 

The integral is the length of the optical path between a transmitter (T) and a receiver (R) 

( ) ( )
T

travel path= ds
R

W T W Rε = −∫ .         ( 3.71) 

Fermat’s principle is a principle of extremum and says that the travel path between 

transmitter and receiver always is an extremum [Bergmann and Schaefer, 1999]. The 

length of the travel path, measured along a ray is always shorter then any other path 

T T

R R
rayS curveC

ds dsε ε≤∫ ∫ ,         ( 3.72) 

where curve C is an arbitrary path. In terms of the travel time equation (3.72) has the 

following form 

( ) ( )2 1 2 1rayS curveC
t t t t− < − .        ( 3.73). 

 

3.5  Turbulence of the Atmosphere, Travel-time Fluctuations, Kolmogorov’s “2/3” 

law. 

        In the preceding section we considered the propagation of sound in a slowly 

changing medium state. In a real atmosphere such characteristics give very general 

characteristics of sound propagation. In fact, in addition to the slow changes of the state 
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of the atmosphere, there take place much more rapid changes, which are produced by 

random fluctuations of the ambient temperature and wind velocity, i.e. by the turbulence 

of the atmosphere. These changes are very rapid and their effect on sound propagation 

cannot be treated by the methods of ray acoustics, since the dimensions of the region 

under consideration can be comparable with the wavelength. As the waves propagate 

through the medium, there occur scattering of the waves, fluctuations of amplitude, 

phase, frequency and other wave parameters [Tatarskii, 1961]. In this subsection we are 

interested in the phase or travel-time fluctuations.  Since ray acoustics theory is not 

sufficient, the theory of wave propagation in turbulent media is founded on the statistical 

representation of isotropic and homogeneous turbulence together with Kolmogorov’s 

“2/3” law, which states that the velocity fluctuations at two different points are 

proportional to the distance between these points to the power 2/3, and therefore 

sometimes it is called “2/3 law” [Kolmogorov, 1941, 1963; Obukhov, 1941]. For small 

time intervals it is expedient to consider turbulence to be superimposed on the mean 

wind, i.e. the change in the mean wind will fall outside of small units of time of the 

observation [Blokhintzev, 1953]. The sound propagates a distance  across the turbulent 

flow from a speaker to microphone, as shown in Figure 3.3. The flowmeter equation may 

be used to derive an expression for a travel time of a wave, traveling from a speaker to a 

microphone  and in opposite direction  [Krasil’nikov, 1949]. Flowmeter equation 

follows directly from eikonal equation (3.65). Travel times may be written as  

L

1t 2t
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,     ( 3.74) 
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β
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Figure 3.3   Sketch of experimental setup. 

 

where  is a travel time in the undisturbed media, U  is a mean velocity, c  is a sound 

speed,  are fluctuations along the sound path. In Equation (3.74) we neglected the 

terms of order U c . Then, for the time difference we find: 

0t

u′

2/ ,  /U c

( )' '
2 1 0 1 22 2

0 0

1 12
L L

t t t t u u dy udy
c c

∆ = + − ≈ − = ∆∫ ∫ .     ( 3.75) 

However, the turbulent velocity fluctuations on which travel time of the wave depends 

appear as a random function of time and position.  Then, from Equation (3.75) 

( ) ( )2
4

0 0

1 ' '' ' '
L L

t dy dy u y u
c

∆ = ∆ ∆∫ ∫ 'y .             ( 3.76) 

where the overscore indicates time averaging. The principal change in the total velocity 

 is due to the drift of the turbulence in the mean flow, so that the change in the velocity u
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u  in the time t  can be represented as the result of a displacement of the turbulence in a 

small distance  as shown in Figure 3.4 for the case of perpendicular direction 

of the sound wave [Krasil’nikov, 1949, 1963]. The under integral term in Equation (3.76) 

is: 

( ) utδ ϑ =

) ( )

( )

'

'',

',0

0 ',

u y

u y

=

= +

) 2 2 2' C R=

( ) ( ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

' ' ', '',0 '',

', 0 '', ', '', 0 ',0 '',

u y u y u y u y u y

u y u y u y u y u y u y u y

δ δ

δ δ δ

∆ ∆ − − =      

− −
. ( 3.77) 

δ

To take into account the correlation of fluctuations at different points of the flow we use 

the “2/3” law obtained independently by Kolmogorov [1941] and Obukhov [1941]. 

Following this law, one may get:  

Transducer 1 

Transducer 2 

y′

δ

y′′

U

1R
2R

ϑ  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.  Sketch for the basic relations for the ultrasound measurement. 

  

( ) ( 3' 'u y u y− ,        ( 3.78) 
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where constant C  is the characteristic of turbulence having a dimension of 1 2/3 -1cm s×  

and  is a distance between the points  and . However, based on the hypotheses of 

isotropy of the turbulence the left side of Eq. (3.78) may be written as following  

R 'y ''y

( ) ( ) ( )( ) ( ) ( )2 22 2/3 ' 2C R u y u y u y u y u y′′ ′ ′ ′′= − = −   



.    ( 3.79) 

Based on the Figure 3.4 it is seen that 

( ) ( )( ) ( ) ( )(1 , , ,0 ,0 , ,R R y y R y y )δ δ′ ′′ ′ ′′= = ,      ( 3.80) 

( ) ( )( ) ( ) ( )(2 ,0 , ,0 , , ,R R y y R y y )δ δ′ ′′ ′ ′′= = ,      ( 3.81) 

Simple geometry for small ϑ  gives the following: 

( 22 2
1 )R y yδ ′ ′′= + − ,         ( 3.82) 

( 22
2 )R y y′′ ′= − .         ( 3.83) 

Now making use of the 2/3 law and equations (3.82), (3.83), one obtains for equation 

(3.77): 

( ) ( ) { } ( ) ( )( ){ }1/32 /3 22 2/3 2/3 2 2
1 2 0.5 2 2u y u y C R R C y y y y δ′ ′′ ′ ′′ ′ ′′∆ ∆ = − = − − − − + . ( 3.84)  

Substitution of the Equation (3.84) into Equation (3.76), and integration yields the 

following result: 

2
2 2 5/3

2

1t C L const
c

δ ∆ =  
 

.        ( 3.85) 

in which the  was determined experimentally in the works by Obukhov [1951] to be 

equal to 3. Then, for the standard deviation the following expression takes place 

[Krasil’nikov, 1949]  

const
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 ( )
12 2 6

2

13t CL
c

5
σ δ = ∆ =  

 
.       ( 3.86) 

Limits of Applicability of Geometrical Optics and Kolmogorov’s law 

       The theory of travel-time fluctuation, which we have just considered was based on 

the equations of geometrical optics, statistical description of the turbulence and 

Kolmogorov’s “2/3” law. The area of validity is defined by the following limits [Rytov et 

al, 1978] 

1.   lελ <<  

If there is a geometrical object with dimension lε  is located on the propagation path of a 

plane wave. At a distance  from the obstacle we obtain its image with the same 

dimension 

L

lε . At the same time diffraction of the wave by the obstacle will occur. The 

angle of divergence o the diffracted wave by the obstacle will be of order ~ / lα λ . At a 

distance  from the obstacle the size of the distracted bundle will be of order L

/ l~L Lα λ

/L l

. In order to neglect by diffraction effects it is necessary for the relation 

lε ελ <<  to hold. Consequently, the second condition is  

2.  L lελ <<  

Parameter Lλ  is called the first Fresnel zone. The second condition applies restrictions 

on the length of the travel path, i.e. 2 /criticalL L lε λ<< = . In the Chapter 4 it will be shown 

based on our experimental data and supported by theoretical evidences [Rytov et al, 1978] 

that for travel time variances in the presence of small diffraction effects, the ray acoustic 

analytical approach may be considered as valid one for prediction of the travel time 
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variance. Consequently, the area of applicability of the ray acoustic approach for 

calculation of travel time can be broader than the rigorous sufficient conditions define. 

       

3.6  Travel-time Statistics of Acoustic Waves as an Experimental Tool for Diagnostic 

of Turbulent Medium. 

       The fact that an acoustic wave carries some structural information regarding the 

turbulent medium, after interaction, makes it possible to use the statistical characteristics 

of the acoustic wave as a diagnostic tool to obtain some statistical information about the 

medium. We consider isotropic homogeneous turbulence. The original goal of the 

following theoretical derivations was firstly, to develop a methodology for determination 

of correlation functions of turbulent velocity and sound speed fluctuations. Secondly, to 

demonstrate quantitatively that effect of thermal fluctuations is as important as the effect 

of velocity fluctuations on acoustic wave propagation. The ultrasonic flowmeter equation 

is reconsidered, where the effects of turbulent velocity and sound speed fluctuations are 

included [Andreeva and Durgin, 2001, 2002, 2003]. The result is an integral equation in 

terms of correlation functions for travel time, turbulent velocity and sound speed 

fluctuations. 

      We start with a classical equation for the flowmeter in the form it was derived in 

equation (3.74) applied to waves traveling downstream shown in Figure 3.5 

( ) sin ;'sin1
20 uUudyuU

c
t

uc
dyt

s s

+=++≈
−

= ∫ ∫ ββ ' .    ( 3.87) 

In the experiment the only parameter that is measured is the travel time of ultrasound 

pulses . Our intention is to construct a correlation function of the travel time using ( )t s
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experimental data. The data from experiments performed for a finite number of different 

lengths , ,  etc are collected. For each of these lengths 700 realizations were 

completed, in other words, ultrasonic pulse traveled 700 times from the transmitter to the 

receiver. For instance, for two lengths ,  we have two columns of travel times,  

and . We multiply corresponding elements from  and t , average it over 700 

realizations to get the product 

s

)

's ''s

s 's )(st

'(st )(st )'(s

)'()( stst . Proceeding with the described operation for the 

rest of the travel path lengths we obtain a correlation function of travel time  as follows  t

( ), s′ N
∑ t s

=

'u c

( )+ dxc'

∫





=
s

1−

U +

β

+

c

dx

sin β

β

c

dx

sin
2

β

U

sin

uc + s 's ''s

( ) ( )
t

t s
K s

N

′
,        (3.88) 

where N is a number of realizations. Our objective here, then, is to construct spatial 

correlation functions for turbulent velocity  and sound speed fluctuations ' . 

Speaker
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β

 

 

 

 

 

Figure 3.5.  Scheme of experimental setup. 

 

Perturbation analysis applied to (3.87) leads to the following expression: 

∫ ∫
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(3.89) 
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Here we assumed that terms '/u c  and '/c c  are the same order infinitesimal compare to 

unity. In order to construct the correlation function we introduce new variable:  

( ) ( ) ( )ststst −=0
.         (3.90) 

where angular brackets mean an operation of time averaging. Consequently, 

( ) ( ) ( ) ( )0 0
2 2

1 1 ;   
s s

t s u c dx t s u c dx
c c ′

′ ′ ′ ′ ′ ′= − + = − +∫ ∫  .    (3.91) 

Then, 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

0 0
4

4
'

1

1 '

s s

s s

t s t s u x u x c x c x dxdx
c

c x u x u x c x dxdx
c

′

 
′ ′ ′ ′ ′ ′ ′= + 


 

′ ′ ′ ′ ′ ′+ + 
 

∫ ∫

∫ ∫

′ +
 .     (3.92). 

       In the Equation (3.92) the first two terms represent the auto correlation functions of 

turbulent velocity and sound speed fluctuations respectively. The second two terms are 

cross correlation functions of turbulent velocity and sound speed fluctuations. In the 

classical theory of isotropic, homogeneous turbulence cross correlation between velocity 

and temperature, and, consequently between velocity and sound speed must necessarily 

vanish everywhere. For the velocity measurement used here, the data were collected in 

the isotropic region of flow, so that u  and '  are not correlated. Consequently, the space 

correlation function of time can be defined from the following equation 

' c

( ) ( ) ( )( ) 







+== ∫ ∫

s s
cut dxdxxxKxxK

c
ssKstst

'
''4

00 '',',1',)'()( . 

 

 (3.93) 

It was observed experimentally [Sepri, 1976] that the velocity statistics were identical 

within experimental limits with and without grid heating. It is important to emphasize 

that the space correlation function  alone can be defined based on data from ( , ')uK x x
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room temperature experiments. Then, data from heated air experiments can be used to 

identify  knowing  that is taken unchanged from the room temperature 

experiment and .    

( , ')cK x x

K

( , ')uK x x

( ', sst

λ

l Lλ

2 2
0 0/l L Lλ λ< < Dif− ction region

)

 

3.7  Parabolic Equation Approximation 

       As it was mentioned in section 3.2 the closed system of linearized equations (3.46-

3.49) is rather complicated. One of the simplifications, the ray acoustics approach, was 

discussed and applied in the previous subsection. Nevertheless, scientists have been 

trying to reduce the system to a single equation, which would be simpler then for analysis 

then the starting system. There are various approximations or assumptions about a 

moving medium in use, such as the Andreev-Rusakov-Blokhintzev equation for 

irrotational flow, Monin’s equation for dry air, Goldstein equation for sound waves in 

parallel shear flow, equation for acoustical and internal gravity waves in a stratified 

moving medium, derived by Ostashev [1997], parabolic equation method approximation. 

These are only a few approximations existing up to date. Because of the specifics of our 

research work, namely, when limits of applicability of ray acoustics theory are violated, 

i.e. 

1.  lε >>  

2.  ε <<  

3.   / fra

If this is the case, then effects of small diffractions must be taken into account. The 

parabolic equation exhibits a perfect fit for this situation. The parabolic equation method 
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is very powerful method in the theory of wave propagation. We do not intend to rederive 

the parabolic equations, but rather reproduce it in the form it was derived by Rytov [1978] 

from the Helmholtz equation 

( )( ) 0~12 =++∆ urku ε          ( 3.94) 

where  is the wave field,  is the wave number and u k ( )[ ] εεεε /~ −= r  reflects the 

relative fluctuations of dielectric permeability [Rytov, 1978]. We consider a plane wave 

propagating along the direction x . Let u  be such that ( )ikxA exp0u = . We assume that l  

is the smallest correlation length. We study only the high-frequency propagation, . 

This condition allows us to neglect, explicitly, the backscattered parts of the wave in the 

Helmholtz equation. It is useful to express the solution of equation (3.94) in the following 

form: 

1>kl

),( ),exp(),(),( zyikxxvxu == rrr        (3.95) 

Here is complex wave amplitude. Substitution of the equation (3.95) in (3.94) 

leads to the parabolic wave equation [Rytov, 1978] 

( r,xv )

( ) 0,~2 2
2

2

2

2

=+
∂
∂

+
∂
∂

+
∂
∂ vxk

z
v

y
v

x
vik rε .       (3.96) 

 In a turbulent medium there are inhomogeneities with different scales, which are greater 

than the inner scale of turbulence, l , and smaller than the outer scale, : . It 

has been shown, [Ostashev, 1997] that in a turbulent medium the range of applicability of 

the parabolic equation is given by inequality 

0 0L 00 llL >>

λ>>0L . The parabolic equation cannot be 

solved exactly in a general case. As the velocity fluctuations are small 

( 21,  where =  ε εσ σ ε<< ), the parabolic equation can be solved using a perturbation 
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method or, so called, the first order Rytov approximation. The method of perturbations is 

perfectly suited for investigating such wave parameters as the phase difference and the 

log-amplitude. Introducing the complex amplitude ( )r,xv  as follows 

( )r,x

 ,
y z

∂
+ ∆

rrr (exp),(ln),((exp),( 0
0

0 A
A
xAxiAxv Φ=








+= φ .    (3.97) 

It follows from equation (3.97) that ( )0/ln Av=Φ . Here kxW −=φ  - phase difference, 

and ( ) χ≡0/ln AA - log-amplitude. Substitution (3.97) into (3.96) leads to the equation for 

the complex phase.  

 ( )
2 2

2 2
2) , 0,  ik k x 22 (

x y z
ε⊥ ⊥ ⊥ ⊥

∂Φ ∂ ∂ ∂
+ ∆ Φ + ∇ Φ + = ∇ = = +

∂ ∂
r%

∂ ∂ ∂
.  (3.98) 

Solution can be expressed as a power series 

2
1 2 ...ε εσ σΦ = Φ + Φ + .        (3.99) 

Substituting into the parabolic equation and keeping terms up to second order gives: 

( )21
1

22
2 1

2 ,

2 (

ik k x
x

ik
x

ε⊥

⊥ ⊥

∂Φ
+ ∆ Φ = −

∂

∂Φ
+ ∆ Φ = − ∇ Φ

∂

r%

)

.       (3.100) 

The problem of phase and log-amplitude fluctuations is considered using these equations. 

Equations (3.100) are solvable and valid only when the small fluctuations regime holds 

[Rytov, 1997] i.e. 

2 2
1  or k 2

1ε εσ λ⊥ ⊥∇ Φ << ∇ Φ << σ .       (3.101) 

Consequently, the parabolic approximation neglects the backscattered part of the wave. 

Rytov’s approximation says that the wave field u  is not different from the 
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monochromatic wave , which propagates in the background homogeneous 

medium. Using the Rytov approximation, explicit equations for the phase  of a sound 

wave and its log-amplitude 

)exp(ikx

Φ

χ  are obtained.  

2 2

2 21 sinF

F

K KK
K K

2 2

2 21 sinF

F

K KK
K K

 
 
 

e k her

1/3

       The equations for the variances of the log-amplitude and phase fluctuations of a 

plane wave in a moving random medium derived by means of Rytov method, have the 

following form [Ostashev, 1997] 

2 2
2

0

(0, )
2 eff
k xπχ

∞  
= − Φ

 
∫ ,     (3.102) K dK

2 2
2

0

(0, )
2 eff
k xπφ

∞

= + Φ∫ .     (3.103) K dK

Here  is a wave number. Note, that 2 / ,  wherFK k x= 2 / ,  w e F F FK L Lπ λ= =  

is the scale of the first Fresnel zone. effΦ  is the three-dimensional spectral density of the 

random field ε  and is called an effective function. The equations for statistical moments 

of φ  and χ  are valid for an arbitrary spectra of inhomogeneities in moving random 

medium. For our purpose we use Kolmogorov and Gaussian spectra of medium 

inhomogeneities. The Markov approximation for the effective spectral density is 

[Ostashev, 1997] 

x

2 1(0, )eff effK AC K −Φ = ,        (3.104) 

where A is a numerical coefficient, and C  is, so called, effective structure parameter, 

given by 

2
eff

2
2 2

2

22
3

v
eff

CC C
cε

ε

= + .         (3.105) 
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Here 2Cε  and  are the structure parameters of the random field [Ostashev, 1997]. 

Substituting (3.104) into (3.102) results into formula for the variance of the log-amplitude 

fluctuations for a plane wave: 

2
vC

 
2

2 2 7
2

220.077
3

vCC k
cε

ε

χ
 

= + 
 

/ 6 11/ 6x .       (3.106) 

Substitution of (3.104) for the Kolmogorov spectrum into the integral for phase 

fluctuations results in a divergent integral. Therefore, 2φ  can be determined neither for 

a plane nor for a spherical wave [Ostashev, 1997]. The formula for an effective spectral 

density for the Gaussian spectrum is 

(
2 2 23

2
3/ 2 2

0

(0, ) exp / 4
8

v
eff

K llK
cε

ε

σσ
π

 
Φ = + − 

 
)2 2K l .     (3.107) 

For plane wave propagation, the variances of the log-amplitude and phase fluctuations 

are [Ostashev , 1997] 

22 2
2 2

2
0

4arctan arctan1 1
8

vk lx D D
D Dε c

σπχ σ
    = − + −   
    

 ,    (3.108) 

22 2
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4arctan arctan1 1
8

vk lx D D
D Dε c

σπφ σ
    = + + +   
    

 .    (3.109) 

In equations. (3.108) and (3.109) ( )24 /D x kl=  is the wave parameter used in the theory 

of waves in random media [Chernov, 1961] and vσ  is a sound scattering cross section due 

to the velocity fluctuations. Equations (3.108) and (3.109) in their original version were 

given for  [Rytov, 1978]. 2 0vσ =
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Chapter 4. Experimental Apparatus 

  

 

      The experiment was performed in a low-speed tunnel. The turbulence was produced 

by a grid. The ultrasonic technique was employed for diagnostic and determination of the 

statistics of grid-generated turbulence. The following chapter is devoted to the description 

of the experimental apparatus: wind tunnel, grid, ultrasonic system and data acquisition 

and analysis system. The major steps of the performance of ultrasonic measurement 

system with a discussion of each component of the system, namely, ultrasonic flowmeter, 

Data Acquisition Cards, LabVIEW software and characteristics of each component are 

summarized in this chapter. This chapter is concluded with description of LabVIEW Vi - 

the block diagram of the OSCOPE module, responsible for driving data acquisition cards, 

and analyzing acquired.        

  

4.1  Wind Tunnel 

       The experiments were carried out in a wind tunnel of  length with a 

rectangular test section. The AEROLAB low turbulence, low speed, 

research tunnel is of the Eiffel or Open Circuit type. The airspeed is infinitely variable 

from 0 to 80 mph. The tunnel achieves a high energy ratio through its large contraction 

ratio, 16:1, its small angle diffuser and efficient fan system. The high energy ratio is  

45.25′′

11.75 x 11.62′′′′
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Transducer 2

Transducer 1Grid 

Figure 4.1. Sketch of the low turbulence, low speed research tunnel together with        

experimental setup.  

 

important in indicating low aerodynamic losses, which are associated with intermittency 

and unsteadiness. The fan operated in an acoustically treated section to reduce the noise 

level. The tunnel is equipped with an aluminum honeycomb and four turbulence 

management screens, which can be removed through the entrance section. An orifice ring 

encircles the contraction and the upstream end of the test section to provide the 

differential pressure used to measure airspeed. 

   4.1.1  Boundary Layer 

       Air flowing into a test section forms a boundary layer on the walls of the tunnel. It is 

determined that for this flow the boundary layer displacement thickness is given by 

2/1* 0033.0~ xδ           ( 4.1), 
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where x  is a distance downstream the tunnel. It can be estimated that the maximum 

displacement thickness  corresponding to the measurements taken at  

 downstream the grid. Consequently, the effect of boundary layer results in 7% 

change in mean velocity U  and in 0.05% in the total velocity which is a sum of the 

velocity of a sound wave and a mean velocity.  

m0031.0~*δ

mx .0= 89

 

4.2  The Grid    

       The turbulent velocity and turbulent temperature fluctuations are simultaneously 

generated by a bi-planar grid composed of 18 round chromalox heating rods, model 

TSSM 14XX [Sreenivasan, 1980], placed at the entrance of the test section. To insure 

uniformity of the grid, the heating rods were inserted in hollow aluminum rods with 

diameter of  positioned 10.25′′ ′′  between centers. The mesh, M, was therefore 1′′  and the 

grid solidity was 0.64. The rods are all heated evenly; hence the thermal mesh size is 

equal to that of the momentum. The grid power was regulated by variable transformator. 

The heated grid surface temperature was measured by thermocouple, while mean air 

temperature of the tunnel flow is measured by thermometer. Overall, the grid structure 

resembles the features of the grid used by Sreenivasan, who performed measurements of 

turbulence decay in the wind tunnel with similar geometry. It has been experimentally 

verified [Sreenivasan, 1980; Yeh and van Atta, 1973; Sepri, 1976; Mohammed and 

LaRue, 1990] that this particular choice of the grid geometry together with geometry of 

the tunnel, insures that in the region '25 '' 40 '−  the turbulence can be considered 

approximately isotropic.    
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4.3  Description of the Ultrasonic System 

   4.3.1  Transit Time Flowmeters 

       Measurements were performed by means of an ultrasonic system. The transducer is 

one of the most critical components of any ultrasonic system. A transducer is any device 

that converts one form of energy to another. An ultrasonic transducer converts electrical 

energy to mechanical energy, in the form of sound, and vice versa. The main components 

are the active element, backing, and wear plate as shown in Figure 4.2. The active 

element, which is piezo or ferroelectric material, converts electrical energy such as an 

excitation pulse from a flaw detector into ultrasonic energy. The backing is usually a 

highly attenuative, high density material that is used to control the vibration of the 

transducer by absorbing the energy radiating from the back face of the active element. 

The basic purpose of the transducer wear plate is to protect the transducer element from 

the testing environment. In the case of contact transducers, the wear plate must be a 

durable and corrosion resistant material in order to withstand the wear caused by use on 

materials such as steel. For our application we use Low Frequency Narrowband 

Transducers, meant for use in pairs for through transmission in materials with working 

frequency of 100KHz. The ultrasonic flowmeter utilizes two transducers functioning both 

as a transmitter and as a receiver, as shown in Figure 4.3. The principle is based on 

modification of the time of flight of the ultrasound by the fluid velocity along the line of 

the flight path between the two transducers. The method results in measurement of very 

short time delays of about a few nanoseconds. 
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Figure 4.2.  Design characteristics of an ultrasonic transducer 

 

        A great deal of attention should be paid to selecting the proper transducer for the 

application. The optimal choice of ultrasonic frequency depends on two factors. 

Consistent with absorption factor and minor fluid turbulence the highest practical 

frequency should be used. The lower limit is related to the vortex size, which, in turn, is 

related to the size of the vortex-generating strut [Lynnworth, 1989]   

1/ ;  / , ( ) 2k L ck c f f Hzλ πω= = = =       ( 4.2). 

Transducer 2  

 

 

 

 

 Transducer 1 

Figure 4.3.  Transit-time ultrasonic flowmeter.    
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   4.3.2  Data Acquisition and Analysis System 

       Measurement devices, such as general-purpose data acquisition (DAQ) devices and 

special-purpose instruments, are concerned with the acquisition, analysis, and 

presentation of measurements and other data you acquire. Acquisition is the means by 

which physical signals, such as voltage, current, pressure, and temperature, are converted 

into digital formats and brought into the computer. Popular methods for acquiring data 

include plug-in DAQ and instrument devices. Data analysis transforms raw data into 

meaningful information. This can involve such things as curve fitting, statistical analysis, 

frequency response, or other numerical operations. DAQ devices are devices that connect 

to the computer allowing the user to retrieve digitized data values. These devices 

typically connect directly to the computer’s internal bus through a plug-in slot. With 

DAQ devices, the hardware only converts the incoming signal into a digital signal that is 

sent to the computer as shown in Figure 4.4. The DAQ device does not compute or 

calculate the final measurement. That task is left to the software that resides in the 

computer. The same device can perform a multitude of measurements by simply 

changing the software application that is reading the data. Before a computer-based 

system can measure a physical signal, a sensor or signal conditioning must convert the 

physical signal into an electrical one, such as voltage or current. The software controls 

the DAQ system by acquiring the raw data, analyzing the data, and presenting the results. 

The role of software is crucial. Software takes the raw data and presents it in a form of a 

graph, chart etc. The software controls the DAQ system, telling the DAQ device when to 

acquire data. DAQ software includes drivers and application software. Drivers are unique 

to the type of the device and include the set of commands the device accepts.  
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Figure 4.4.  DAQ System Components 

 

Application software (in our case LabVIEW) sends the commands to the drivers, such as 

acquire a transducer reading and return the reading, then displays and analyzes the data 

acquired. Lab VIEW includes a set of Vis that let us configure, acquire data from and 

send data to DAQ devices. LabVIEW DAQ Vis makes calls to the NI-DAQ Application 

Program Interface (API). The NI-DAQ API contains the tools and basic functions that 

interface to DAQ hardware. Lab VIEW instrument drivers simplify instrument 

programming to high-level commands, so there is no need to learn the low-level 

instrument-specific syntax needed to control the instrument. Figure 4.5 shows the 

relationship between LabVIEW, driver software, and measurement hardware. 

 70



      In general, the ultrasonic measurement system works as follows. A piezoelectric-

based ultrasonic transducers are placed on the tunnel in a diagonal mode. The transducer-

transmitter is electrically excited by a voltage from a pulser and transforms the voltage 

into a high frequency mechanical wave (vibration). The wave is transmitted through the 

air in the tunnel to the second transducer-receiver, where it is converted from mechanical 

back to electrical form. The received signals are sent to a PC-based 1 GHz analog-to-

digital (A/D) converter for digitization. The digitized waveform is output from the A/D 

converter for digital processing and display. 

 

Personal Computer DAQ Hardware 

DAQ Driver Software

LabVIEW 
 

 

 

 

  

 

 Figure 4.5. Relationship between LabVIEW, Driver Software, and Measurement 

Hardware 

 

       The LabVIEW program performs the major functions necessary to control the A/D 

converter (via a custom software driver). In addition, the software is responsible for 

analyzing the measurement data generated by the experiment, as well as displaying and 

storing the results of the analysis. 

      In our application an ultrasonic measurement system consisted of the following parts: 
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Hewlett-Packard programmable signal generator, model 3314A, power amplifier, model 

50A15, Panametrix Low Frequency Narrowband Transducers, National Instrument 

PCI/PXI-6711/6713 Analog Voltage Output Device for PCI/PXI (NI DAQ), LabVIEW 

Software, CompuScope 82G Analog Input DAQ (CS DAQ). Ultrasonic bursts were 

generated using a programmable signal generator, and a power amplifier. Received 

signals were amplified and sampled using high-speed data acquisition equipment. A 

transmit/receive switch protected the receiver from transmitted signal. The enabling pulse 

is started by the first positive voltage step in the four-pulse burst of square waves. The 

burst was 100  frequency and had 50  amplitude produced by a function 

generator, which, in turn, was driven by NI DAQ.  The four-pulse burst was sent to the 

transducer-transmitter through the amplifier. Figure 4.6 demonstrates a four-pulse burst 

coming out of the transducer-transmitter. 
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Figure 4.6.  Four-pulse burst of square shape waves. 
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       The NI DAQ allows one to detect the burst departure time extremely accurately. The 

pulse was generated with a repetition frequency of 500 cycles/second.  The ultrasound 

beam, send by the first transducer was received by the second one. The main problem 

was to measure travel time t  with a high precision. The analog data, then, from the 

second transducer was connected to a CSDAQ with a large acquisition memory and wide 

analog bandwidth that transformed analog data to digital data and transferred data from 

CS DAQ card to the PC memory with the resolution of . Both DAQ cards were 

installed inside the PC. Digital representation of the experimental data, provided by the 

DAQs allowed determination of the travel time t  very precisely. Figure 4.7 

demonstrates a typical data representation obtained from CS DAQ, transferred to the PC 

and processed in Excel. The acquisition rate was 50000000 samples/s. Two signals 

shown in Figure 4.7 are received signal e  and transmitted signal .  
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Figure 4.7. Typical data representation obtained from CompuScope 82G DAQ, 

transferred to the PC and processed in Excel. Signals e  and  are received and 

transmitted signals respectively. 
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For this case, the ultrasonic signal traversed the flow perpendicular to the mean flow. 

Approximately 0.9 ms was required. A magnification of the transmitted and received 

bursts is shown in Figure 4.8. The block diagram of analog and digital processing is 

shown in Figure 4.9.The OSCOPE subVI module is the heart of the ultrasonic 

measurement system. When the main VI is started, waveform acquisition begins 

immediately in the background and the waveforms are placed in a queue. The block 

diagram of the OSCOPE module is presented in Appendix A. 
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Figure 4.9. Block diagram of analog and digital processing. 
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Chapter 5.  Experimental Results and Discussion 

 

 

       In this chapter we present the most important aspect of the dissertation: application 

of the travel-time ultrasonic technique for data acquisition in a grid-generated turbulence 

and analysis of the experimental data. 

 

5.1  Application of Travel-time Ultrasonic Techniques for Data Acquisition 

       We consider here a locally isotropic turbulent flow, which can be approximately 

generated by introducing a grid into a uniform flow. At a sufficient distance downstream 

from the grid the flow becomes locally isotropic and a power law spectral representation 

is applicable. Studies that permit identification of the downstream position where the 

flow be considered nearly homogeneous and locally isotropic are described in detail by G 

Corrsin; Uberoi and Wallis [1967], Comte-Bellot and Corrsin [1971] Mohamed and 

LaRue [1990]. In order to collect experimental data in nearly isotropic and homogeneous 

portions of flow, the locations of transducers as well as mean flow speed were chosen 

using the criteria established by Mohamed and LaRue. Specifically, experimental data 

were collected in the  portion of the test section. The specific grid structure as 

well as the tunnel geometry were essentially the experimental setups used by previous 

investigators to insure that turbulence level and other statistical characteristics of the 

turbulence were the same as measured by Yeh and van Atta [1973], Sepri [1976], 

25 '' 42 ''−
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Sreenivasan et al, (and references therein) [1980]. In the present study we assume, that 

the basic characteristics of ultrasound propagation in the turbulence are determined by 

slow changes in the state of medium (mean speed, temperature, and density of the air). It 

seems reasonable to assume that ultrasonic pulses have negligible effect on the turbulence 

because they are at very high frequency, low power, and propagate in very short bursts. 

Under these conditions, it is expedient to use the method of ray acoustics. However, as 

shown in Chapter 2, the method of ray acoustics has a limitation in terms of the length of 

the travel path. When diffraction effects are of importance the parabolic equation along 

with the Rytov approximation method is very powerful for describing waves propagation. 

This approach allows investigation of the effect of turbulence in terms of travel time and 

log-amplitude variance. 

       An important contribution of the present work is the recognition of the effect of 

turbulent fluctuations on acoustic wave propagation. Specifically, in Chapter 2 we 

reformulated the original flowmeter equation in order to account for both velocity and 

sound speed fluctuations. Experimental data obtained from heated- and non-heated grids 

supplements the theory of the Chapter 2, which together formulate a methodology for 

determination of the correlation functions and spectra of turbulent velocity and sound 

speed fluctuations.   

     In the experimental apparatus each transducer acted both as a transmitter and as a 

receiver. The difference in transit times along the path were measured and more than 700 

realizations achieved. For each mean velocity and separation distance data were collected 

for 45 sec. The data file for each measurement sequence was about 15Mb. The transit 

time for the ultrasound pulse was determined from the correlation function  
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( ) ( )12 1 2( )K t e t e tτ= + ,                ( 5.1) 

where is a cross correlation function of  received and transmitted waves and 

 shown in Figure 4.7. By definition  

)t(K12 1e

2e

( ) ( ) ( )12 1 2 1 2
0

( ) , ,K t e t e t p e e t dtτ
∞

= +∫ ,               ( 5.2) 

where ( 1 2, , )p e e t  is a probability density function. However, assuming the process to be 

ergodic, spatial averaging may be replaced by averaging over the time: 

( ) ( )12 1 2
0

1( )
T

K t e t e t dt
T

τ= +∫ .                ( 5.3) 

Hence, the travel time  may be determined as nt

12 12max ( ) ( )nK t K t= .                 ( 5.4) 

The numerical computation of the cross correlation function involves the computation of 

average products among the sample data values [Bendat and Piersol, 1971]. Namely, we 

consider  data values {N } , 1, 2,...,nx n = N  sampled at equally spaced time intervals dt  

from a transformed record ( ) ( )x t x ndt= . The cross correlation function of ( )x t  can be 

estimated from the sample values at the time delay  by rdt

( )12
1

1 , 0,1,2,...,
N r

n n r
n

K rdt x x r m
N r

−

+
=

= =
− ∑ .              ( 5.5) 

The number of real multiply-add operations required to compute the cross correlation 

estimate is approximately , assumingNm N m<<

12

. The numerical code, which was used 

to calculate the cross correlation function K  included module CCF from IMSL Fortran 
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library. Module CCF serves to compute the sample cross correlation functions of two 

stationary time series. The text of the numerical code is presented in the Appendix B. 

 

5.2  Ray Acoustics Approach 

       In this chapter the analysis of the effects that turbulence have on acoustic signals 

developed in the contest of ray acoustics. Structure constant entering Kolmogorov’s law 

is determined using statistics of the travel time [Andreeva and Durgin, 2003(a), 2003(b)].  

   5.2.1  Travel time fluctuations as a function of a separation distance . L

       Figure 5.1 represents a schematic diagram of the experimental setup. Nine cases of 

different distances L were studied. Geometrical parameters are listed in the Table 5.1 and 

it can be seen, that the angle with respect to the mean flow varied so, that the mean flow 

component along the path also varied. The mean velocity during the experiment was 

, which corresponded to a Reynolds number based on the mesh size of 

. The signal was sent in a direction opposite to the inlet flow. From theoretical 

point of view, one may expect that the travel time will increase with distance. In Figure 

5.2 the travel time data in disturbed medium is plotted along with data collected in  

3.5 / secU m=

Re 7000≅

 

 

 

 

 

Figure 5.1. Sketch of wind-tunnel test section 
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undisturbed medium and compared with theoretical estimation of the travel time without 

taking into account the effect of turbulence, namely, ( ) sin
theoretical

t L c U β= − . Figure 5.3 

demonstrates well-expected result of significant decrease of mean travel time in presence  

β (deg) 0 5 10 15 20 25 30 35 40 

L (m) 0.33 0.3335 0.3395 0.3483 0.3603 0.3758 0.3955 0.42 0.45

Table 5.1.  Geometrical parameters. 

 

of turbulence. The decrease due to turbulence is 5% or greater. The uncertainty in 

measurements of the ambient temperature is at most 3.5%, which would introduce an 

uncertainty in the mean travel time determination of only 0.2%. Similarly, the uncertainty 

in measurements of the travel distance 0.3%, which would introduce an uncertainty in the 

measurement of the travel time of approximately 0.3%. Figure 5.3 demonstrates the 

travel time standard deviation as a function of traveled distance. The result obtained by 

Kolmogorov and Obukhov predicts that the standard deviation should increase in 

proportion to the square root of a distance, which is depicted by the solid line. Therefore, 

the experimental data is plotted together with 1 2L  curve in order to verify that the 

standard deviation obtained experimentally is indeed proportional to 1 2L . Although the 

standard deviation is increasing with distance, the scattering of the data can be clearly 

seen. The scattered data must be interpreted with some caution and may not be 

inconsistent with the theoretical analysis, but rather may be due to the uncertainty of the 

measurements, which were found to be around 20%. 
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Figure 5.2.  Average travel time versus a path length, m/s5.3=U . 

 

0.E+00

1.E-06

2.E-06

3.E-06

4.E-06

5.E-06

6.E-06

0.31 0.34 0.37 0.4 0.43 0.46
L  (m)

 (s
)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

 L
1/

2

Experiment, left axis Theory, right axis

 

 σ

Error of about 20% of data 
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   5.2.2  Transit Time Fluctuations as a Function of the Mean Velocity U . 

       For this case we used two transducers placed at a distance  from each other with 

the direction of mean flow perpendicular to L. The Reynolds number based on the mesh 

size 

L

M  varied from 4016 to 20080. Following the procedure described in the foregoing 

section the cross correlation function  of two signals  for U  was 

obtained and is shown in Figure 5.4. After calculation of the travel time t  for each 

sample using formula we calculated the averaged travel time 

12K 21 e,e 4 (m/sec)=

t< >  and deviation of the 

transit time σ  for each velocity.  
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Figure 5.5.  Averaged travel time as a function of the mean velocity, 0 m,33.0 == βL .  
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Figure 5.6. Standard deviation of the travel time versus mean velocity, 0 m,33.0 == βL . 

 

illustrates that experimental results are in fairly good accordance with theoretical 

predictions, namely, standard deviation is proportional to . After validation of  ( 5/ 6U t< >)

our experimental results we may determine the turbulent constant  from equation (3.85) C
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Figure 5.7. Variation of the structure constant C  versus mean velocity, 0 m,33.0 == βL . 

2
2 2 5/3

2

1t C L const
c

δ ∆ =  
 

        ( 5.6) 

 In accordance with equation (5.6) with the quantities entering into this formula obtained 

from experiment one can determine the value of turbulent characteristic . Figure 5.7 

shows the variation of the structure parameter  as a function of a velocity.  Evidently, 

the constant  increases with mean flow. This result is consistent with results obtained 

earlier by Krasil’nikov [1947, 1949, 1953, 1963] and Oboukhov [1951].  

C
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5.3  Parabolic Equation and Perturbation Method (Rytov’s Method) 

       The effect of turbulence on acoustic waves in terms of the travel time is studied for 

various mean velocities and for different angular orientations of the acoustic waves with 

respect to the mean flow. The effect of the time shift between the travel times in turbulent 

and undisturbed media, associated with Fermat’s principle is observed experimentally. 

       This chapter discusses the situation when mathematical conditions for ray acoustics 
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are violated and ray acoustics approach is no longer valid. Rytov’s approach is used to 

study the influence of turbulence on acoustic wave propagation in terms of second 

moments of travel time and log-amplitude fluctuations. Statistical moments obtained 

experimentally are compared with theoretical results from literature [Andreeva and 

Durgin, 2003]. 

   5.3.1  Travel Time Fluctuations as a Function of Mean Velocity and Travel 

Distance. 

      We consider a locally isotropic turbulent flow generated by a grid at room 

temperature. The experimental setup shown in Figure 5.8 serves for investigation of the 

averaged travel time as a function of a mean velocity U , that changes from 1m/s to 

10m/s, so that the Re number based on the grid space size changes from 4016 to 20080. 

The path length stayed unchanged. Acoustic waves were sent upstream and downstream 

with respect to the mean flow. Travel time for both cases is plotted in Figure 5.9 along 

with the theoretical estimates for the travel times in the undisturbed medium. The effect 

of the travel-time shift  between t∆ t  and t , where  is travel time in undisturbed 

media is observed.  
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Figure 5.8.  Diagrams of the experimental setup that serves to investigate the average 

travel time as a function of a mean velocity U  
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Due to the fast path effect, the effective velocity is higher than the mean velocity of the 

medium. Indeed, 0tt ≤  and 
0t

X
t
X

≥  [Iooss, 2000]. The experimental setup shown in 

Figure 5.10 serves to illustrate the influence of the travel distance varying from 0.33m to 

0.45m. The mean velocity was unchanged, 3.5 m/s. Another interesting effect of acoustic 

wave propagation is the linear increase of travel time variance with distance [Chernov, 

1960]. Nonlinear effects become apparent at a certain propagation distances both in the 

numerical experiments by Karweit et al, [1991] and in the work by Iooss et al, [2000].  
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Figure 5.9.  Experimental data for mean travel time as a function of mean velocity for 

upstream and downstream propagation plotted along with theoretical estimates for the 

travel times in undisturbed medium. 
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Figure 5.10. Diagram of he experimental setup that serves to study the influence of the   

travel distance, . L

 

In our experiment due to the limited size of the wind tunnel we did not reach the 

distances where these nonlinear effects could be observed. In Figure 5.11 we compare 

our experimental data firstly with theoretical results obtained by Iooss et al [2000]. In 

their work, the authors were investigating travel time using a geometrical optics 

approach, which neglects all diffraction phenomena. They developed a theoretical model 

for the second order travel time variance for the plane waves. Secondly, we compare our 

results with solution of the parabolic equation for the travel time variance of a plane wave 

in a moving random media, derived by means of the Rytov method and Markov 

approximation for the Gaussian spectrum of medium inhomogeneities, modified Equation 

(3.109), derived in Chapter 3.7 

22 2
2 2

2
0

4arctan arctan1 1
8

vk lx D D
D Dε c

σπφ σ
    = + + +    
    

, ( )24 /D x kl=   ( 5.7) 

During the experiment we did not have the ability to measure all flow parameters 

appearing in the Equation (5.7). Consequently, for the comparison, we simply reproduce 

the arctangent behavior of the travel time variance, namely, 
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( ) ( xxtt arctan~22 −−≡τ ) . For demonstration purposes, all the analytical lines 

start from the same point. We observe that nonlinear effects of second order travel 
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Figure 5.11. Experimental data for the travel time variance versus normalized travel 

distance /x M . Rytov solution and theoretical model by Iooss et al. 2000 are plotted for 

comparison. 

 

time variance do not appear at such short distances. Moreover, comparison of the travel 

time variance obtained using the Rytov method and ray acoustic approach reveals, that 

some of the results of geometric acoustics are acceptable even beyond the area of the 

validity of the approach. It has been shown by Rytov [1987] that ray acoustics is accurate 

enough for phase difference calculations, since the account for diffraction effects matters 

only in numerical coefficients. 

   5.3.2  Travel-time and Log-Amplitude Variances 

       The large-scale, energetic motions drive acoustic phase fluctuations, while  
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Figure 5.12. Experimental data for the log-amplitude variance as a function of travel 

distance. Rytov solution for Kolmogorov spectra, Gaussian spectra and Frauhofer 

diffraction are plotted for comparison. 

 

smaller-scale motions drive the amplitude fluctuations [Wilson, 2000]. The energy-

containing subrange play the primary role in the experiment reported here. For our 

experimental conditions the smallest, Kolmogorov, scale is l , while the 

largest, integral scale has a size of the grid spacing, 

m4
0 106.5 −⋅≈

m0 0.025L = . The diffraction region 

is approximately defined as , so that according to the geometry of the 

experiment our experimental domain falls into the diffraction region. Figure 5.12 shows 

experimental data for log-amplitude variations plotted along with theoretical results, 

Equation (3.108), derived in Chapter 3.7 for Kolmogorov spectra, Gaussian spectra and 

its limiting case, Frauhofer diffraction for  

λλ // 2
0

2
0 LLl <<

D >> 1
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4arctan arctan1 1
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vk lx D D
D Dε c

σπχ σ
    = − + −    
    

, ( )24 /D x kl=   ( 5.8) 

 In case of D close to 1, which is the case in our experiment, the non-linearity due to 

arctangent is well established. The general form of the log-amplitude variance in the case 

of Gaussian spectra, which takes into consideration small diffraction effects, is the best fit 

for our data. For demonstration purposes, all the analytical lines start from the same 

point.   

5.4  Methodology for Determination of Statistical Characteristics of Grid Generated 

Turbulence 

       Experimental data were obtained for ultrasonic wave propagation downstream of a 

non-heated and heated grid in a wind tunnel for different angular orientations of the 

acoustic waves with respect to the mean flow. Since travel time fluctuations contain 

information about the turbulence the developed methodology suggests using statistics of 

travel time fluctuations for recovering of the correlation functions and spectra of 

turbulent velocity and sound speed fluctuations [Andreeva and Durgin, 2001, 2002,2003 

(c)].  

   5.4.1  Methodology for Determination of Correlation Functions of Velocity and 

Acoustic Waves Fluctuations 

       The velocity and temperature fluctuations were generated simultaneously using a 

heated grid. Nine cases of different distances L for two different temperatures 

and , are studied.  The defined temperatures correspond to the T 59 F= o T 159 F= o
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temperature of aluminum rods of the grid. The angle β  in Figure 5.1 is changed from 0 

to 40 degrees with 5-degree step. It was experimentally demonstrated that for an open 

loop tunnel thermal stratification is not significant even for low-speed flows, and also that 

the mean air temperature is independent of downstream location within the range 

considered [Yeh and van Atta, 1973; Sepri, 1976]. In the earlier works [Yeh and van Atta, 

1973; Sepri, 1976] it was found that near the grid the wall temperature is higher than that 

of the fluid because of the radiation from the hot grid. Therefore, the measurements were 

collected at , where radiation effects are negligible.    "45  "25/ ÷=Mx

M

Pr R

( )
'

'4
0 0

1 , '
s s

t K x x
c

= ∫ ∫

       The mean flow velocity was 5.3=U  m/s. During the recording of turbulent data the 

low velocity was chosen in favor of higher velocity in order to maximize the effect of 

temperature fluctuations. The Reynolds number  based on Re M  and U  was about 

6000 and the corresponding Péclet number e ~ 4350M MPe = ;  for the 

working fluid air. Following the strategy described in the Section 3.6 we first use 

flowmeter integral equation for the case of temperature of , 

Pr = 0.725

59 Fo

( )59 , 'F
uK s s dxdx ' .       ( 5.9)  

        In many practical problems, the form of the correlation function is not known. 

However, its general shape is often approximated by a Gaussian function. It is very 

convenient for analytical studies of wave propagation in random media, and, besides, it 

allows taking into consideration the effect of the largest inhomogeneities in a medium on 

the statistical moments of a sound field [Ostashev, 1997]. In addition, the combination of 

numerical simulations and analytical approximations confirmed that a sound pulse tend to 
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effectively obey Gaussian statistics [Dacol, 2001]. We represent the correlation function 

in equation (5.9) by 

( ) ( )( ) ( )259 2 2 2 2 2

59 59
, ' exp ' / exp /F

t t tF F
K s s s s l lσ σ= − − = −τ .   ( 5.10) 

Here 2
tσ  is a variance of travel time fluctuations. Selection of l  is problematic. In some 

applications  is chosen to be equivalent to a Taylor microscale. A better procedure is to 

choose  on the basis of the integral length scale of the turbulence [Ostashev, 1997]. 

Since we are considering travel time fluctuations in, rigorously speaking, diffractive 

media in the approximation of ray acoustics, we should realize that there is some 

uncertainty up to some numerical coefficient [Rytov et al, 1978]. Figure 5.13 

demonstrates correlation function of travel time obtained using experimental data as a 

function of separation distance compared with Gaussian curve providing the best fit. The 

experimental data allow us to determine the unknown coefficients,  and 

. Integration of equation (5.10) with known 

l

l

0.0036

2 9.85 15t eσ = −

2l = 2
tσ  and  leads to the following 

form of correlation function of turbulent velocity 

2l

( ) ( ) (
2 2

59 4 2 2 4 2 2 259 59
' 2 42 exp / 4 exp /t tF F F

uK c l c
l l

σ σ
τ τ τ

  
  = − − −
    

o o o )lτ




.  ( 5.11) 

It is apparent that the correlation function of turbulent velocity is no longer Gaussian, 

although a Gaussian part is present in the first term in equation (5.11) and the second 

term vanishes rapidly with distance. Figure 5.14 shows the correlation function of 

turbulent velocity for our particular experimental data. The variance of velocity 

fluctuations is 
2

2 4
' 22 0.0801t

u c
l
σσ = = . At the same time we know, that 

0.52
'u uσ ′= , 
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meaning that for our experimental conditions we have very small values of 

, which is in a very good correspondence with data [Sepri, 1976]. The 

ratio of a turbulent velocity to the mean velocity is 

722 109.6~/' −⋅cu

%6~%100/' ⋅= Uuα , which is 

typical for experiments performed in grid turbulence. Figure 5.15 shows the cross 

correlation function of travel time at temperature 159F, again along with Gaussian 

function providing the best fit 

( )159 2, 'F
t t F

K s s

9 0.12 0.15

ussian Function

( 2 2

159
exp / lσ τ= − .       ( 5.12) )
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Figure 5.13. Correlation function of travel time obtained from experimental data  

collected at temperature of 59  along with Gaussian function providing the best fit. 

The mean flow velocity is 

Fo

5.3=U  m/s. 
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Figure 5.14. Experimentally obtained correlation function of turbulent velocity. 
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Figure 5.15. Correlation function of travel time obtained from experimental data 

collected at temperature of 159  along with Gaussian function providing the best fit. 

The mean flow velocity is 

Fo

5.3=U  m/s. 
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The unknown coefficient is determined to be 2

159
2.05E-13t F

σ = . In accordance with the 

methodology, the next step is to find the correlation function of sound speed fluctuations. 

Correlation function of sound speed fluctuations can be found from the following 

equation 

( ) ( ) ( )∫ ∫=−
s s

c
F
t

F
t dxdxxxK

c
ssKssK

'
'4

59159 ',1',',
oo

' ,     ( 5.13) 

where 

( ) ( ) ( ) ( )( )
( )

2159 59 2 2 2

159 59

2 2 2

, ' , ' exp ' /

exp /

F F
t t t tF F

t

K s s K s s s s l

l

σ σ

σ τ

− = − − −

= ∆ −

o o

o o
=

.  ( 5.14) 

Figure 5.16 shows the difference in correlation functions that appear in equation (5.14).  
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Figure 5.16. Difference in travel time correlation functions corresponding to temperatures 

and 159 . Fo

 

Substitution of equation (5.13) into equation (5.14) yelds 
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( ) ( ) (
2 2

4 2 2 4 2
' 2 4, ' 2 exp / 4 exp /t t

cK s s c l c l
l l
σ στ τ

  ∆ ∆
= − − −  

  
)2 2τ




2s

.   ( 5.15) 

Figure 5.17 shows the correlation function of sound speed fluctuations. The variance of 

the sound speed fluctuations is . Neglecting humidity 

fluctuations, a speed of sound fluctuation is given to the first order by 

2 4 2 2 2
' 2 / ~ 1 /c tc l mσ σ= ∆

( )0.5 0.52
0 0/ 2c c T T′ = 2′  [Wilson, 2000], where T  is a representative value of the 

temperature. Turbulence-level  measurements made with heating the grid are consistent 

with results of Yeh and Van Atta [1973], namely 

0

55.0295.02 10~PrRe/';10~Re/' −− TCu p ββ .     ( 5.16) 
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 Figure 5.17. Correlation function of sound speed fluctuations. 

 

where β  is a coefficient of thermal expansion for air, C  is a specific heat and p R  is a 

universal gas constant.  
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       In the Table 5.1 we compare the basic flow parameters of the flow conditions such as 

standard deviation of velocity fluctuations uσ , rate of dissipation uε , Kolmogorov length 

scale , with corresponding wave number , time scale kl kk kτ , velocity scale , Taylor 

microscale 

kv

Tλ  with corresponding Reynolds number Reλ , and Reynolds number based 

on the mesh size M and mean velocity U. Standard deviation of turbulent velocity is 

recovered from travel time measurements, consequently it is extremely important to 

measure the length of a travel path precisely, otherwise small inconsistency in measuring 

the travel distance results in considerable errors in determination other flow parameters. 

Standard deviation of velocity fluctuations is almost three times as higher as it was 

experimentally measured by Yeh and van Atta [1973]. Exceedingly high Reynolds 

number  is a consequence of a rough approximation of the standard deviation 

of turbulent velocity. 

4~ 00λR

   5.4.2  Spectrum of Grid-Generated Turbulent Flow. 

       Early works on wave propagation in random media were based on 3-D Gaussian 

turbulence models [Wilson, 2000]. As it was mentioned above, the model has an 

advantage of analytical convenience. However, one range of turbulence structure it does 

not capture is the inertial subrange, where energy is proportional to the wave number 

raised to the  power, which exists in high Reynolds number flows, such as 

atmosphere [Wilson, 2000]. For the present experimental conditions an inertial subrange 

is not expected in the power spectrum. Under similar conditions Van Atta and Chen 

[1968] reported the absence of an inertial subrange in their velocity spectra for unheated 

grids. Yeh and Van Atta [1973], Sepri [1976] observed no inertial subrange in the velocity  

5 / 3−
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Experiment Yeh and van Atta [1973] 

U  3.5 m/s U  4.0 m/s 

M  m21054.2 −⋅  M  m2104 −⋅  

D  m31035.6 −⋅  D  m3100.8 −⋅  m 

0.52'u uσ =  0.28 m/s 
0.52'u uσ =  0.09 m/s 

ν  5 21.55 10 /m s−⋅  ν  5 21.55 10 /m s−⋅  

uε  322 /105.3 sm−⋅  uε  322 /1056.4 sm−⋅  

( ) 25.03/νε ukk =  1m 1771 −  ( ) 25.03/νε ukk =  -11872m  

kkl /10 ==η  m4106.5 −⋅  1/k kl k=  m41034.5 −⋅  

( )0.5/k uτ ν ε=  1-2 s102.1 −⋅  ( )0.5/k uτ ν ε=  1-2 s101.87 −⋅  

( )0.5
k u kv ε τ=  m/s102.7 -2⋅  ( )0.5

k u kv ε τ=  m/s102.88 -2⋅  

( )
1
215 /T u uλ ν ε σ=

 
m/s102.28 -2⋅  ( )

1
215 / 'T u uλ ν ε=  36.25 10 m−⋅  

Re /M UM ν=  ~6000 Re /M UM ν=  ~10500 

R u Tλ /σ λ ν=  ~400 R ' /Tuλ λ ν=  35.2 

 

Table 5.2   Basic Parameters of the Flow Conditions for Heated Grid Turbulence at   

x/M=30. (Comparison with Yeh and Van Atta, 1973). 

 

spectrum, however temperature spectra unexpectedly exhibited 5 / 3−  slope for a short 

range of wavenumbers, although authors noted that there were no satisfactory physical 
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explanation for the appearance of the temperature spectrum.  

       The one-dimensional energy spectra were directly calculated from analytical 

expressions of cross-correlation function of turbulent velocity and sound speed 

fluctuations.  

( ) ( )∫∫
+∞+∞

∞−

=−=Φ
0

)cos(1)exp(
2
1 τττ

π
τττ

π
dkKdikK ttt .    (5.17)   

The PSD of the travel time at the room temperature is 

( AakaART
t /exp

2
1 2−=Φ π
π

).       ( 5.18) 

The PSD of the turbulent velocity is 

( ) ( )

( ) ( )

24
2 259

'
0

24
2 2 259

4
0

( ) exp / cos

exp / cos

t F
u

t F

ck l
a

c l k d
l

σ
k dτ τ τ

π

σ
τ τ τ τ

π

+∞

+∞

Φ = −

− −

∫

∫

o

o

−

.     (5.19) 

Integration of Equation (5.16) yields to the final expression for the PSD of turbulent 

velocity 

( )
4 2 2

2 2 2
' 259

1( ) exp / 4
24u t F

c k kl k l
l

ω σ
π

 
Φ = − +

 
o  .      ( 5.20) 

As expected, the PSD of sound speed fluctuations will have the same form, the only 

difference will be in the numerical coefficient, 2
tσ∆   instead of 2

59t F
σ

o
. Figure 5.18 

shows typical spectra for turbulent velocity and sound speed fluctuations. It is remarkable 

that the spectral shapes appear unchanged at each of the locations, but that they appear to 

be shifted uniformly in magnitude.  The appearance of such difference was observed in 

experiments by Sepri [1971, 1976], who studied velocity and temperature spectra under 
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similar conditions. In Figure 5.19 we compare 1-D velocity spectra is compared with one 

obtained experimentally by Yeh and van Atta. Experiments by Yeh and van Atta were 

carried out in the 0.76m x 0.76m 9m test section of the low turbulence wind tunnel. The 

grid mesh size was M was 0.04m, with tubular rods of diameter of 0.008m. Comparison 

reveals good correspondence between the velocity spectra recovered from travel time 

measurements and the one, measured experimentally for the wave number up to 

. For the larger wave numbers the present velocity spectra is different from 

the measured velocity spectra. There are several aspects that may explain this difference. 

First, our velocity spectra are recovered from experimental data for travel time, modeled 

by the Gaussian function. Apriori, we did not expect to observe -5/3 slope corresponding 

to the inertial subrange exhibited by the velocity spectra data by Yeh and van Atta [1973]. 

Secondly, due to the fact that turbulent velocity spectra as well as the sound speed 

fluctuations spectra were drawn directly from travel time data, uncertainty in 

determination of a length of the travel path leads to considerable errors in modeling of the 

velocity spectra.    

1100k m−=
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Figure 5.18. 1-D energy spectra of turbulent velocity and sound speed fluctuations 
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experimentally measured travel time statistics with 1-D energy spectrum measured by 

Yeh and van Atta [1973] 
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Chapter 6.   Summary, Conclusions, Recommendations 

 

 

       In this work we have presented the development of a methodology based on 

ultrasonic technique for determination of turbulent flow characteristics from statistics of 

travel time variations. Several experimental results have been presented for the case of 

heated and non-heated grid experiments. In general these results appear as initially 

expected, and are in agreement with the conclusions of other investigators. The 

dissertation is a combination of theoretical and experimental work. Significant effort was 

put into the development of the methodology for determination of correlation functions 

and spectra of turbulent velocity and sound speed fluctuations based on the measurements 

of the travel time. Below we will summarize findings and outline possible directions for 

future research. 

 

6.1  Summary and Conclusions  

       In Chapter 1 the motivations for this research work were outlined. The review of 

classical and recent work in all, theoretical, experimental and numerical areas relevant to 

this dissertation was presented. The primary goals of the dissertation, objectives and 

methodology were formulated. 

       In the Chapter 2 a brief exposition of several topics from the theory of random fields 

and turbulent theory related to the following experimental and theoretical analysis were 
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given. 

Theoretical model 

       Chapter 3 was devoted to the derivation and analysis of the equations describing the 

propagation of acoustical waves in inhomogeneous moving media. Two well known 

approximate theories of wave propagation, namely ray acoustics and the Rytov method 

were presented. Statistical moments of a sound field were calculated using these two 

approaches following the reviews of published works. The theory of travel time 

fluctuations of sound waves due to the turbulence in the atmosphere based on the 

Kolmogorov’s “2/3” law was presented and the physical and mathematical issues related 

to the basic flowmeter equation were addressed. Special attention was put into the 

reformulation of the classical flowmeter equation in the form that includes turbulent 

velocity and sound speed fluctuations. The resulting integral equation in terms of 

correlation functions for the travel time, turbulent velocity and sound speed fluctuations 

is novel and important not only in the perspective of development of the methodology for 

spectral analysis of isotropic homogeneous turbulence but also as an important issue in 

achieving of a higher accuracy of ultrasonic devices.              

Experimental model 

      The ultrasonic technique was employed for diagnostics and determination of the 

statistics of grid-generated turbulence. Chapter 4 was devoted to the description of the 

experimental apparatus. The major steps of the performance of ultrasonic measurement 

system with a discussion of each component of the system, namely, ultrasonic flowmeter, 

Data Acquisition Cards, LabVIEW software and characteristics of each component were 

summarized in this chapter.   
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       Chapter 5 was devoted to the key aspect of the dissertation: application of the travel-

time ultrasonic technique for data acquisition in the grid-generated turbulence and 

analysis of the experimental data. The difficulty of obtaining laboratory measurements of 

phase or time of flight variance, as well as amplitude variance is indicated by the dearth 

of data. The chapter was opened with an overview of ultrasonic technique. The effect of 

turbulence on acoustic waves in terms of the travel time was studied for various mean 

velocities and for different angular orientations of the acoustic waves with respect to the 

mean flow. The overview was followed by the analysis of the effects that turbulence has 

on acoustic signals developed in the context of ray acoustic approach. Further, the 

situation when mathematical conditions for ray acoustics are violated and ray acoustic 

approach is no longer valid was discussed. Rytov’s approach was used to study the 

influence of turbulence in terms of second moments of the travel time and log-amplitude 

fluctuations. Comparison with theoretical results provided in literature was performed. In 

the second half of Chapter 5 experimental data were obtained for ultrasonic wave 

propagation downstream of a heated and non-heated grid for different angular 

orientations of the acoustic waves with respect to the mean flow. A new methodology for 

determination of correlation functions and spectra of turbulent velocity and sound speed 

fluctuations has been proposed. The travel time statistics are approximated by a Gaussian 

function. The coefficients and decay exponent of Gaussian function are determined by 

the experimental data. Originally meant for ideal flow ultrasonic flowmeter equation has 

been reformulated in terms of correlation functionsin order to account for turbulent 

velocity and sound speed fluctuations.    

.   
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1. It has been experimentally demonstrated that an ultrasonic travel-time method can be 

efficiently utilized for determination of turbulent flow statistical characteristics in 

laboratory conditions.  

2. Simple methodology using the ultrasonic technique together with Kolmogorov’s 2/3 

law was implemented for diagnostic of the grid-generated turbulent flow. 

a.  Methodology was validated using analytical estimates obtained from ray acoustic 

theory.  

b. In the experiment with different values of mean velocity, the experimental results 

have indicated that there is strong dependence on the former.  

c. The experimental results have shown that the ultrasonic method along with ray 

acoustic approach can be efficiently utilized for measuring characteristics of 

turbulent flow in laboratory scale, such as structure coefficient, C (m2/3/s). 

3. From the travel time measurements performed in both turbulent and non-turbulent 

media, Fermat’s principle is demonstrated.  

4. Using experimental data of travel time effect of turbulence on acoustic wave 

propagation has been demonstrated in terms of travel time variation and log-

amplitude variation. The experimental data have been interpreted using the ray 

acoustic method and diffraction theory, or Rytov’s method.  

a. It is clear from experimental results for travel time variance that in the presence of 

small diffraction effects, the ray acoustic approach is valid, so area of ray acoustic 

 105



approach is broader than the rigorous sufficient conditions defined, at least for 

travel-time fluctuations. 

b.  The experimental data confirm the Rytov theory in that amplitude variation is 

greatly influenced by diffraction effects. 

5.  Experimental data for the case of both, velocity and thermal turbulence interpreted 

using updated version of flowmeter equation, reveal a significant effect due to sound 

speed fluctuations, thus, sound speed fluctuations may not be neglected in the 

flowmeter equation as has often been supposed previously both in experiments and 

theory. 

6.  The results provided by the methodology appear to be consistent with the wealth of 

experimental data provided.  

7. Updated flowmeter technology has a great potential for flow metering in industrial 

facilities for various flow types, including non-ideal flows, thus reducing errors 

caused by disturbances of the flow profile. 

8. The combination of the proposed methodology together with ultrasonic technique 

benefits not only from high accuracy provided by high-tech equipment, but also 

offers a portable, simple in installation and use apparatus that can be used for 

turbulent flow diagnostic in commercial and non-commercial applications.  
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6.2  Recommendations 

1. The experimental data presented as well as their interpretation, are a subject to re-

examination in improved experimental conditions. Namely, 

• Well-controlled mean temperature  

• Stable wind tunnel flow at low speeds 

• Extremely accurate determination and control of a travel distance  

• Accurate determination of the temperature far downstream the grid, since small errors 

in temperature determination may lead to large errors in sound speed fluctuations  

2. In situ characterization of the turbulence as well as a good source of data for a 

comparison ultrasonic measurements could be combined probe studies (hot, cold wire 

anemometry). 

3. Along theoretical lines it would be useful to examine the von Karman spectrum for 

travel time experimental data approximation since the von Karman in many case, 

especially in a grid-generated turbulent flow it provides a fairly good approximation 

to the spectrum of turbulence [Ostashev, 1997; Wilson, 2000].  

4. The methodology developed based on the measurements of the travel time 

fluctuations at the receiver can be used to reconstruct not only velocity but also 

temperature field.  

5. The basic theory of wave propagation in turbulent media demonstrates the linear 
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increase of travel-time variance with the propagation distance [Chernov, 1960]. 

However, recent numerical and theoretical studies exhibit an almost quadratic growth 

of travel time variance with travel distance [Karweit et al, 1991; Iooss et al, 2001]. 

The reason for this behavior is not entirely understood yet, but it proved to be closely 

related to the occurrence of first caustics [Kulkarny and White, 1982; Blanc-Benon et 

al, 1991, Klyatskin, 1993]. It would be useful to perform similar experiments for 

larger travel distances in order to detect nonlinear behavior of travel time variance 

[Durgin, et al., 2004 (accepted)].      
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Appendix A 

The CS_SCOPE. VI is the actual interface to any version of the CompuScope high-speed 

data acquisition hardware. CS_SCOPE is the main interface between the CompuScope 

hardware installed in the computer and LabVIEW 

 

Figure 6.1 The CS_SCOPE. VI Front Panel. 
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The Gage Oscilloscope.VI is a program that uses the CompuScope modes to capture, 

transfer and display data acquired from CompuScope board.  

 

Figure 6.2. Gage Oscilloscope Sequence 0. 
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Figure 6.3. Gage Sample Oscilloscope. VI (demonstration mode). 
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Appendix B 

!The program calculates correlation function to find  
! the time interval between the sent and arrived signals 
 
   include '../Input/param.txt' 
  
 INTEGER    IPRINT, MAXLAG, K, NF, LL 
      PARAMETER  (IPRINT=0, MAXLAG=1000, NOBS=1024) 
      INTEGER    IMEAN, ISEOPT, NCOL, NROW 
 REAL       CC(-MAXLAG:MAXLAG), CCV(-MAXLAG:MAXLAG), 
Y(NOBS), 
     &           RDATA(1000,2), SECC(-MAXLAG:MAXLAG),XMEAN, 
     &           XVAR, YMEAN, YVAR, X(NOBS) 
      double precision XX(N),YY(N),TT(N) 
 EXTERNAL   CCF 
 
 kk=1 
 ikl=1 
!This part of the program opens two files, reads data, makes one file with 
!a proper time interval and calculates length of each vectors 
 
!FILE NAMES HAVE TO BE CHANGED/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\/\/\/\/\/ 
c   open(unit=3,file='../INPUT/TRDPR/DATA/ 
c     +A_10.txt',status='old') 
c   open(unit=5,file='../INPUT/TRDPR/DATA/ 
c     +B_10.txt',status='old')   
 
c if (ikl.eq.1) then 
c   open(unit=6,file='../INPUT/TRDPR/COM/ 
c     +AB_10.txt', status='unknown') 
   open(unit=7,file=' 
     +corel.txt', status='unknown') 
c endif 
********************************************************** 
c _______________________________________________________________ 
c if (kk.eq.1) then 
c   open(unit=9,file='../INPUT/RoomTemp/ 
c     +/Correlation/realcor_10.txt', status='unknown') 
c endif 
c _______________________________________________________________ 
    
c   open(unit=10, file='../INPUT/Dt(v)500/ 
c     +Amplitude/MAX_Amp_35.txt', status='unknown') 
c write(10,*)'   Max_Send             Max_Received ' 
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!THE LAST FILE IS THE ONE WITH PROPER TIME AND TWO COLUMNS OF 
DATA 
!/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ 
    
    
c     do i=1,N 
c    read(3,*,end=2) TT(i),YY(i) 
c   end do  
c  2   continue   
c     do i=1,N 
c   read(5,*,end=4) TT(i),XX(i) 
c   end do 
c  4   continue 
 
c     do j=1,N 
c   TT(j)=TT(2)*(j-1) 
********************************** 
c print*,'TT=',TT(2),TT(j) 
c if (TT(2).GT.1.e-5) then 
c print*,'j=',j 
c endif 
********************************** 
 
c if (ikl.eq.1) then 
c   write(6,8)TT(j),XX(j),YY(j) 
c  8   format(3x,3(E15.6,3x)) 
c endif 
c   enddo 
c   close(3) 
c   close(5) 
c   close(6) 
!/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/ 
!/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\\/\/\/\\/\/\/\/ 
  PI = 4.*atan(1.) 
  IMEAN = 1 
      ISEOPT = 0 
!===============================================================
====== 
! This block selects a data interval from all data  
c  NF=N/NOBS 
c  do LL=1,NF 
 
!===============================================================
======= 
c  do J=NOBS*(LL-1)+1,LL*NOBS  
c   X(-NOBS*(LL-1)+J)=1.*XX(J) 
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c   Y(-NOBS*(LL-1)+J)=1.*YY(J) 
c  end do 
 
 CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN, 
     &          YMEAN, XVAR, YVAR, CCV, CC, SECC) 
  
c S=0. 
 print*,XMEAN, YMEAN 
 do I=1,2*MAXLAG+1 
c 
c if (CC(I).GE.S) then 
c  S=CC(I) 
c  K=I 
c endif 
c if (kk.eq.1) then 
 write(7,*)(I-1)*0.1*PI,CC(I)  
c endif 
 end do 
c write(7,*)'delta_T',K*TT(2) 
  
 sum=0 
 do I=1,1024 
 sum=sum+Y(I) 
 enddo 
 averageY=sum/1024. 
 
 smaxX=0. 
 smaxY=0. 
  
 do I=1, 1024 
 if (abs (X(I)).GT.smaxX) then 
 smaxX=abs(X(I)) 
 endif 
 if (abs (Y(I)-averageY).GT.smaxY) then 
 smaxY=abs(Y(I)-averageY) 
 endif 
 end do 
 write (10,*)smaxX,smaxY 
c end do 
 end 
 
 
Make sure your input files are in ../Input/*.* directory! 
!========================================================== 
 
   open(unit=3,file='../INPUT/TRDPR/DATA/ 
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     +A_10.txt',status='old') 
   open(unit=5,file='../INPUT/TRDPR/DATA/ 
     +B_10.txt',status='old')    
   open(unit=4,file='../INPUT/param.txt', status='unknown') 
 
    i=1 
 1   read(3,*,end=10) t,t 
   i=i+1 
   goto 1 
 10   N1=i 
   j=1 
 2   read(5,*,end=20) t,t 
   j=j+1 
   goto 2 
 20   N2=j 
   if (N1.lt.N2) then 
   N=N1 
   else 
   N=N2 
   endif 
   Print*,'N=',N 
   write(4,5)N-1 
 5   format('       PARAMETER (N=',I8,')') 
 
   write(*,*)'File "param.txt" has been successfully created' 
   close(3) 
   close(4) 
   close(5) 
   end 
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