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Abstract

There is an increasing amount of evidence in scientific research and in-

dustrial engineering indicating that the graphic processing unit (GPU) has

a higher efficiency and a stronger ability over CPUs to process certain com-

putations. The heat equation is one of the most well-known partial differen-

tial equations with well-developed theories, and application in engineering.

Thus, we chose in this report to use the heat equation to numerically solve

for the heat distributions at different time points using both GPU and CPU

programs.

The heat equation with three different boundary conditions (Dirichlet,

Neumann and Periodic) were calculated on the given domain and discretized

by finite difference approximations. The programs solving the linear sys-

tem from the heat equation with different boundary conditions were imple-

mented on GPU and CPU. A convergence analysis and stability analysis for

the finite difference method was performed to guarantee the success of the

program. Iterative methods and direct methods to solve the linear system are

also discussed for the GPU. The results show that the GPU has a huge ad-

vantage in terms of time spent compared with CPU in large size problems.

Key words: GPU, Heat equation, CPU, linear systems.
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1 GPU computing

1.1 Introduction of GPU

Everything a computer does is controlled by its Central Processing Unit (CPU),

which is the brain of a computer. All computations were done by CPU several

years ago, but with new technology, computations are now faster on a GPU. A

graphics processing unit (GPU), is a specialized electronic circuit designed to

rapidly manipulate and alter memory to accelerate the creation of images in a

frame buffer intended for output to a display. The term GPU was popularized

by Nvidia in 1999, who marketed the GeForce 256 as ‘the world’s first GPU’,

or Graphics Processing Unit, a single-chip processor with integrated transform,

lighting, triangle setup/clipping, and rendering engines that are capable of pro-

cessing a minimum of 10 million polygons per second [18].

GPUs were initially used for rendering graphics for video games only. Ren-

dering a figure from stored data requires many calculations. The GPU takes much

less time to render a vivid picture of high quality in comparison to CPU. Look at

Figure 1 [11] shown below, the picture rendered by the GPU is also perfect in

detail and saved a lot of time, which means GPUs are absolutely qualified for

rendering and even a better choice. As technology has advanced, the large num-

ber of cores in GPUs relative to CPUs was exploited by developing computational

capabilities for GPUs so that they can process many parallel streams of data si-

multaneously, no matter what that data may be. The use of the GPU to accelerate

non-graphics computation has drawn much attention [3]. While GPUs can have

hundreds or even thousands of stream processors, they each run slower than a

CPU core.
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Figure 1: The left picture is rendered by CPU and the right one is by GPU. It’s
hard to tell the difference between them, but the GPU takes less time to render
the graphic in comparison to the CPU. Figure taken from [11].

Modern GPUs are very efficient at manipulating computer graphics and im-

age processing. The highly parallel structure of GPUs makes them more effective

than general-purpose CPUs for algorithms where processing of large blocks of

data is done in parallel. Additionally, modern GPUs run 10,000s of threads con-

currently [18].

1.2 GPU vs CPU

A simple way to understand the difference between a CPU and a GPU is to

compare how they process tasks. Basically, CPUs and GPUs have significantly

different architectures that make them better suited to different tasks. As shown

in Figure 2 [14], a CPU consists of a few cores optimized for sequential serial pro-

cessing while a GPU has a massively parallel architecture consisting of hundreds

of smaller cores. Although GPUs have a large amount of cores, all of these cores

share the same device memory, which means input and output data from GPU

takes extra time. Therefore, for problems with frequent data changing , the GPU

is not a smart choice. The structure of the GPU enables them to handle large

amounts of data in many streams and deal with multiple tasks simultaneously,
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performing relatively simple operations on them. However, it can be hard to deal

with complex processing. A CPU is much faster on a single stream and can per-

form complex operations more easily, but cannot efficiently handle many streams

simultaneously [15].

Figure 2: The CPU on the left has several cores that share the same memory in
a cache and one machine may have several caches. The GPU on the right has
hundreds of cores but all the cores share one device memory. Figure taken from
[14].

1.3 GPU Programming

One would have to program an application specifically for a GPU for it to

work, and significantly different techniques are required to program GPUs. These

different techniques include new programming languages, modifications to ex-

isting languages, and new programming strategies that are better for expressing a

computation as a parallel operation to be performed by many stream processors.
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Frameworks such as CUDA and OpenCL enable programs to be written for

GPUs, and the nature of GPUs make them most suited to highly parallelizable

operations [9]. CUDA, which stands for Compute Unified Device Architecture,

is a parallel computing platform and programming model created by NVIDIA

and implemented by the graphics processing units (GPUs) that they produce.

MATLAB is a high-level language and interactive environment for numerical

computation, visualization, and programming [9]. It can support CUDA kernel

prototyping and development by providing an environment for quick evaluation

and visualization using the CUDA Kernel object. MATLAB can be used to [2] :

1. Write prototype code to explore algorithms before implementing them in

CUDA.

2. Quickly evaluate CUDA kernels for different input data.

3. Analyze and visualize kernel results.

4. Write test harnesses to validate that kernels are working correctly.

By calling gpuArray in MATLAB we can operate arrays by passing it to the

GPU, or using one of the methods defined for gpuArray objects to establish an

array directly on the GPU. Parfor is a MATLAB loop command for the state-

ments that could be executed in parallel. All work is completed by a cluster of

workers where each worker has its own unique workspace which are identified

and reserved with the parpool command. Parpool starts a pool using the default

cluster profile, with the pool size specified by your parallel preferences and the

default profile [17]. If we want to have a certain number of workers or run a cer-

tain profile (a profile is a local modification), it is easy to call it directly using the

MATLAB commands. In the following example code, we start a parallel pool of

16 workers using a profile called myProf .
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1 parpool ( ’ myProf ’ , 1 6 )

We are going to show the different performances between GPU and CPU by

the same test case using the fast Fourier transform. A fast Fourier transform (FFT)

is an algorithm to compute the discrete Fourier transform (DFT) from consecu-

tive data. FFT is used widely in many scientific, engineering and mathematical

applications. The DFT is defined by the following formula [19]:

Xk =
N−1∑
n=0

xne
−i2πk n

N k = 0, 1, ..., N − 1 (1)

where xn is the nth element of the original vector and Xk is the kth element of the

vector after FFT, as usual i =
√
−1.

Note that the algorithms could be parallel since for each Xk, we could do

the summation independently. That’s why FFT is a good test case for GPU ver-

sus CPU. FFT is a method to compute the same results in O(NlogN) operations

while by using Equation (1) directly requires O(N2) operations [19]. There are N

outputs Xi, and each output requires a sum of N terms. By recording the run-

ning time of the FFT code using CPU and GPU separately, we will see how they

perform. The code is shown below, here fft is a MATLAB command to do a

FFT for the random initial vector x. Tic, toc are the start and end of a MATLAB

timer to record running time of the program. To make it a fair comparison, we

run the code three times for each size of data, then calculate the average com-

puting time, all the data are shown in Table 1. In Figure 3 we observe that, for

small size problems, the time cost for the GPU and CPU calculation are almost

the same. However, from Table 1, we know as the vector size goes to 107 or larger,
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the GPU takes approximately 5 percent of the time as the CPU did. We find that

when computing the FFT, the GPU can have a dramatic advantage in terms of

computation time compared with the CPU for big data.

1 %−−−Code f o r FFT

M=1000

3 t i c

x=rand (M, 1 ) ;

5 f f t ( x ) ;

cpu time=toc

7

t i c

9 xx=gpuArray . rand (M, 1 ) ;

f f t ( xx ) ;

11 gpu time=toc

vector size 103 104 105 106 107 108

GPU time 0.000397 0.000463 0.000740 0.000817 0.000802 0.12102

CPU time 0.000150 0.000618 0.005042 0.055253 0.562628 2.60096

Table 1: CPU and GPU average computing time of FFT.
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Figure 3: Time spent by the CPU and GPU in computing the fast Fourier trans-
form. The slope of the GPU is flat. This shows that the computation time is much
smaller for the GPU for a larger number of points. This will be a big advantage
for problems of large size.
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2 The Heat Equations

2.1 Introduction

The heat equation is a parabolic partial differential equation that describes the

distribution of heat (or variation in temperature) in a given region over time. This

equation is often used to construct models of the most basic theories underlying

physics and engineering [10, 13] . The heat equation is given by:

ut = αuxx, u(x, 0) = sin (2kπx) (2)

with x ∈ [0, 1], t ∈ [0, T ], the boundary condition is given by

u(0, t) = u(1, t) = 0.

Here, α is a positive constant, k is an integer, and u(x, 0) is the initial condition of

equation (2). The material property α is the thermal diffusivity. It is the thermal

conductivity divided by the volumetric heat capacity. The formula of α is

α =
k

ρcp
,

where k is thermal conductivity, ρ is density and cp is specific heat capacity [10].

This is a model of transient heat conduction in a slab of material. The domain of

the solution is a strip of width 1 that continues indefinitely in time. In a practical

computation, the solution is obtained only for a finite time, up to time T .

The exact solution is given by the following equation:

u(x, t) = e−α4k
2π2tsin (2kπx) .
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If we set α = 1 and k = 1, the graph of the solution to the heat equation is shown

in Figure 4.

Figure 4: Exact solution to heat equation e−4π
2tsin(2πx) with 100 points in x-

coordinate and 300 time steps .

We can verify equation (2) by taking partial derivatives of the exact solution:

ux = 2kπcos(2kπx)e−α4k
2π2t,

uxx = −4k2π2sin(2kπx)e−α4k
2π2t.

Looking at the left hand side of equation ( 2),

ut = −4k2π2αsin(2kπx)e−α4k
2π2t.

Thus, we have verified that ut = αuxx for the test case.

Actually, it’s very hard to get the exact solution for different combinations of

initial conditions and boundary conditions though the test case is simple. There-

fore, we need to approximate the solution using numerical methods [10]. Of

14



course there are a lot of different approaches to solving the heat equation numer-

ically, including: finite differences, finite elements, spectral methods, and collo-

cation methods. In this report, we will focus on finite differences methods.

2.2 Domain Discretization

We begin our discussion of numerical methods for partial differential equa-

tions by getting started solving a problem numerically. We consider the following

one dimensional heat equation:

ut = αuxx, (3)

ux(0, t) = χ, ux(1, t) = ω with x ∈ [0, 1], t ∈ [0, T ], (4)

u(x, 0) = f(x), (5)

where α is a constant coefficient and f(x) is an independent function correspond-

ing to initial conditions.

The finite difference method obtains an approximate solution for (x, t) at a

finite set of x and t [13]. We first partition the intervals [0, 1] and [0, T ] into respec-

tive finite grids as follows. We divide the interval 0≤x≤ 1 such that

xi = i4x, i = 0, 1, 2, ...,M, where 4x =
1

M
,

and M is the total number of spatial nodes, including those on the boundary.

Similarly we partition [0, T ] as

tn = n4t, n = 1, 2, ..., N, where 4t = T

N
.
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2.3 Finite Difference Approximations

We now have a grid that approximates our domain. The next step is to ap-

proximate the solution on this grid.

The finite difference method involves using discrete approximations such as

a Taylor expansion of f(x) at x0:

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n.

From the Taylor series, we can get the following equation by setting x0 + h = x,

f(x0 + h) = f(x0) + f ′(x0)h+O(h2).

O(h2) is the truncation error of the approximation, where the big O corresponds

to the error term. The significant terms can be written explicitly, and the least-

significant terms can be summarized in a single big O term. For example, we

expand ex at x = 0:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ ... as x→ 0, (6)

ex = 1 + x+
x2

2!
+O(x3) as x→ 0, (7)

ex = 1 + x+O(x2) as x→ 0. (8)

We can then approximate f ′(x) by following equation:

f ′(x) =
∂f

∂x
≈ f(x+ h)− f(x)

h
+O(h). (9)

In order to get a second order approximation, we expand f(x + h) and f(x − h)
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as follows:

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2 + f ′′′(x)h3 +O(h4),

f(x− h) = f(x)− f ′(x)h+ f ′′(x)h2 − f ′′′(x)h3 +O(h4).

To offset f ′(x)h and f ′′′(x)h3, we add these two equations together to get:

f(x+ h) + f(x− h) = 2f(x) + f ′′(x)h2 +O(h4), (10)

f ′′(x)h2 = f(x+ h) + f(x− h)− 2f(x) +O(h4). (11)

Finally, we get the approximation,

∂2f

∂x2
≈ f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2). (12)

This is a centred finite difference approximation with 2nd order accuracy. Thus,

approximation of ut(x, t) could be un+1
k −unk
4t with 1st order accuracy. Then the PDE

in Equation (3) can be discrectized and approximated at the point (k4x, n4t) by

un+1
k − unk
4t

= α
unk+1 − 2unk + unk−1

4x2
. (13)

2.4 Boundary Conditions

We will study the three different boundary conditions. For each boundary

condition, we have a slightly different numerical method to approximate the so-

lution.

Dirichlet Boundary Conditions: This is the case when the boundary of the rod

has a constant temperature. This can be considered as a model of an ideal cooler
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having infinitely large thermal conductivity,

u(0, t) = χ, u(1, t) = ω.

Neumann Boundary Conditions: If we have a constant heat flux at the boundary

then it will be Neumann Boundary Conditions. If the flux is equal to zero, the

boundary conditions describe the ideal heat insulator with heat diffusion [13],

ux(0, t) = χ, ux(1, t) = ω.

Periodic Boundary Conditions: We can use this boundary condition when we

have an infinite length rod where we have periodic copies along the length,

u(0, t) = u(1, t).

2.4.1 Dirichlet Boundary Conditions

For the 1-d case. We consider the Forward in Time Central in Space Scheme

(FTCS) where we replace the time derivative by the forward differencing scheme

and the space derivative by the central differencing scheme. This yields,

un+1
k − unk
4t

= α
unk+1 − 2unk + unk−1

4x2
,

un+1
k − unk =

(
α4t
4x2

)
(unk+1 − 2unk + unk−1),

un+1
k =

(
α4t
4x2

)
unk+1 +

(
1− 2

(
α4t
4x2

)
)unk +

(
α4t
4x2

)
unk−1

)
.
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Now we will denote (α4t4x2 ) as θ. So the formula will be rewritten as :

un+1
k = θunk+1 + (1− 2θ)unk + θunk−1. (14)

This equation only works on the interior nodes, namely for i = 1, 2, ...,M − 1 and

for n = 1, 2, ...., N . Let i = 0 correspond to x = 0 and i = M correspond to x = 1.

Since the initial condition is given by u(x, 0) = f(x), numerically we have

u1i = f(xi), i = 0, 1, 2, ...,M.

Moreover, the boundary conditions u(0, t) = χ, u(1, t) = ω become

uj0 = χ ujM = ω, j = 1, 2, ..., N.

The explicit nature of the difference method can then be expressed in matrix form

as:



un+1
1

un+1
2

...

...

un+1
M−1


=



1− 2θ θ 0 . . . . . . . . . . . . . . . 0

θ 1− 2θ θ 0 . . . . . . . . . . . . 0

0 θ 1− 2θ θ 0 . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . 0 θ 1− 2θ θ

... . . . . . . . . . . . . . . . 0 θ 1− 2θ





un1

un2
...
...

unM−1


.

By doing the iterative multiplication we will have the numerical approximation

of all the points on the grid.

Instead of the FTCS, one could have alternatively considered the following

Backward in Time Central in Space (BTCS) differencing scheme, also called an
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implicit method. The finite difference approximation is:

un+1
k − unk
4t

= α
un+1
k+1 − 2un+1

k + un+1
k−1

4x2
,

un+1
k − unk =

(
α4t
4x2

)
(un+1

k+1 − 2un+1
k + un+1

k−1),

unk =

(
1 + 2

(
α4t
4x2

))
un+1
k −

(
α4t
4x2

)
un+1
k+1 −

(
α4t
4x2

)
un+1
k−1 .

Noting that the spatial derivative term is now differenced at the new time step.

Again using (α4t4x2 ) = θ, we can rewrite the equation as:

unk = −θun+1
k+1 + (1 + 2θ)un+1

k − θun+1
k−1 . (15)

The matrix form will be:



un1

un2
...
...

unM−1


=



1 + 2θ −θ 0 . . . . . . . . . . . . . . . 0

−θ 1 + 2θ −θ 0 . . . . . . . . . . . . 0

0 −θ 1 + 2θ −θ 0 . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . 0 −θ 1 + 2θ −θ

... . . . . . . . . . . . . . . . 0 −θ 1 + 2θ





un+1
1

un+1
2

...

...

un+1
M−1


.

Solving the linear system in iterative manner, we will have the approxima-

tions un+1. Noting that we already have u1 as initial conditions and u0, uM as

boundary conditions. Starting at the initial condition u1, then we will have u2

by solving the equations. For each time step, the linear system is solved in an

iterative manner to obtain the approximations of u2, u3,...., uN−1, uN .
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2.4.2 Neumann Boundary Conditions

We next consider what changes are necessary to consider Neumann bound-

ary conditions, which means that a boundary condition on the derivative ux is

given rather than a condition on the value of u itself. We introduce a boundary

condition treatment by considering the following problem. The equation (3) and

the initial condition in (5) are as described earlier. Now the boundary condition

is

ux(0, t) = χ, ux(1, t) = ω.

To approximate the Neumann Boundary Condition, we derive a second order

approximation. If we apply a centered difference at the boundary, the operator

will be outside of the domain. Thus, placing a ghost point is needed and the

approximation of the boundary condition will be :

u1 − u−1
24x

= χ and
uM+1 − uM−1

24x
= ω, (16)

where u−1 and uM+1 are ghost points. By the explicit approximation mentioned

before, we know un+1
0 is approximated by un−1, un0 and un1 . Also, un+1

M approxi-

mated by unM−1, u
n
M and unM+1 as follows:

un+1
0 = θun−1 + (1− 2θ)un0 + θun1 , (17)

un+1
M = θunM−1 + (1− 2θ)unM + θunM+1. (18)

Now, use u−1 = u1 +2χ4x and uM+1 = uM−1 +2ω4x from equation (16) into the
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above equation to offset the ghost points:

un+1
0 = θ(u1 − 2χ4x) + (1− 2θ)un0 + θun1 ,

un+1
0 = 2θun1 + (1− 2θ)un0 − 2θχ4x,

un+1
0 + 2θχ4x = 2θun1 + (1− 2θ)un0 .

Similarly, we have the approximation of uM :

un+1
M + 2θω4x = 2θunM + (1− 2θ)unM−1.

For the explicit method, we obtain the following system of equations:



un0

un1

un2
...

unM−1

unM


=



1− 2θ 1 + θ 0 . . . . . . . . . . . . . . . 0

θ 1− 2θ θ 0 . . . . . . . . . . . . 0

0 θ 1− 2θ θ 0 . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . 0 θ 1− 2θ θ

... . . . . . . . . . . . . . . . 0 1− 2θ 1 + θ





un+1
0 + 2θχ4x

un+1
1

un+1
2

...

un+1
M−1

un+1
M + 2θω4x


.

This is because we have

un+1
k = θunk+1 + (1− 2θ)unk + θunk−1

for k = 1, 2, ...,M−1, we use the derived finite difference expression (17) and (18)

for u0 and uM .
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2.4.3 Periodic Boundary Conditions

Let’s consider the linear system

A−→u =
−→
b .

First of all, we will introduce a homogeneous system. A system of linear equa-

tions is homogeneous if
−→
b is zero vector:

a11u1+a12u2+ . . .a1nun = 0

a21u1+a22u2+ . . .a2nun = 0

...
...

...

am1u1+am2u2+ . . .amnun = 0

where aij is the element in the ith row and jth column of A. Thus, the homoge-

neous system will be rewritten as:

A−→u =
−→
0 ,

where A is an m by n matrix, ~u is a column vector with n entries, and ~0 is the zero

vector with m entries.

There is a close relationship between the solution to a linear system and the

solutions to the corresponding homogeneous system. For the linear system A~u =

~b (for nonzero~b), the entire solution can be described as

~u = ~uH + ~uP ,

where ~uH is a solution to A~u = ~0 and ~uP is a particular solution to A~u = ~b.
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To solve the linear system with periodic boundary conditions, we seek solu-

tions of the form:

~u = β~uH + ~uP .

Let the linear system have periodic boundary conditions and work on a grid that

is indexed i = 0, ...,M . Periodic boundary conditions implies that the solution is

equal at the first and last grid point as u0 = uM . We will use an implicit method

to show how to solve this problem.

First of all, we will solve the homogeneous system letting the right hand side

be the zero vector and uH0 = uHM = 1. Setting up an (M − 1) by (M − 1) linear

system since uH0 = uHM . For the heat equation ut = αutt, based on Equation (13),

we have

uH,ni = −θuH,n+1
i−1 + (1 + 2θ)uH,n+1

i − θuH,n+1
i+1 , where θ =

α4t
4x2

.

Noticing that uH0 = uHM = 1 and ~R = 0. Thus for i = 1,

uH,n1 = −θuH,n+1
0 + (1 + 2θ)uH,n+1

1 − θuH,n+1
2 ,

0 = −θ + (1 + 2θ)uH,n+1
1 − θuH,n+1

2 ,

θ = (1 + 2θ)uH,n+1
1 − θuH,n+1

2 .

Also for i =M − 1:

uH,nM−1 = −θu
H,n+1
M−2 + (1 + 2θ)uH,n+1

M−1 − θu
H,n+1
M ,

0 = −θ + (1 + 2θ)uH,n+1
M−1 − θu

H,n+1
M ,

θ = (1 + 2θ)uH,n+1
M−1 − θu

H,n+1
M .
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While for i = 2 :M − 2, the equation will be

0 = −θuH,n+1
i−1 + (1 + 2θ)uH,n+1

i − θuH,n+1
i+1 .

The linear system is



1 + 2θ −θ 0 . . . . . . . . . . . . . . . 0

−θ 1 + 2θ −θ 0 . . . . . . . . . . . . 0

0 −θ 1 + 2θ −θ 0 . . . . . . . . . 0

... 0
. . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . . . . . . . 0

... . . . . . . . . . . . . . . . −θ 1 + 2θ −θ

... . . . . . . . . . . . . . . . 0 −θ 1 + 2θ





uH1

uH2
...
...
...
...

uHM−1



=



θ

0

...

...

...

0

θ


We denote the coefficient matrix as D. Then, DuH,n = ~R and we can solve uH,n

for i = 1 : M − 1. Next, we wish to find a particular solution. Here we use the

correct right hand side from the problem and assume uP0 = uPM = 0.

For i = 1:

uP,n1 = −θuP,n+1
0 + (1 + 2θ)uP,n+1

1 − θuP,n+1
2 ,

uP,n1 = (1 + 2θ)uP,n+1
1 − θuP,n+1

2 .

Also for i =M − 1 :

uP,nM−1 = (1 + 2θ)uP,n+1
M−1 − θu

P,n+1
M .
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For i = 2 :M − 2 :

uP,ni = −θuP,n+1
i−1 + (1 + 2θ)uP,n+1

i − θuP,n+1
i+1 .

The linear system will be

DuP,n+1 = uP,n,

which gives us the particular solution for i = 1 :M−1. Now, we are setting out to

determine ~u, where: ~u = β~uH + ~uP . We can use the periodic boundary condition

information at uM to solve for β :

−θun+1
M−1 + (1 + 2θ)un+1

M − θun+1
M+1 = unM ,

−θ(uP,n+1
M−1 + βuH,n+1

M−1 ) + (1 + 2θ)(uP,n+1
M + βuH,n+1

M )− θ(uP,n+1
M+1 + βuH,n+1

M+1 ) = unM ,

β(−θuH,n+1
M−1 + (1 + 2θ)uH,n+1

M − θuH,n+1
M+1 ) = unM + θuP,n+1

M−1 − (1 + 2θ)uP,n+1
M + θuP,n+1

M+1 ,

β =
unM + θuP,n+1

M−1 − (1 + 2θ)uP,n+1
M + θuP,n+1

M+1

−θuH,n+1
M−1 + (1 + 2θ)uH,n+1

M − θuH,n+1
M+1

,

β =
unM + θuP,n+1

M−1 − (1 + 2θ)uP,n+1
M + θuP,n+1

1

−θuH,n+1
M−1 + (1 + 2θ)uH,n+1

M − θuH,n+1
1

since uP,n+1
M+1 = uP,n+1

1 and uH,n+1
M+1 = uH,n+1

1 . Thus, we have β, then plug ~uH and ~uP

in to get ~u:

~u = β~uH + ~uP .

Now we have solved the heat equation with periodic boundary conditions in 1-D.
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2.5 Convergence, and Stability

2.5.1 Convergence

Definition: We can say a finite difference scheme is a convergent scheme if for

any x and t, (k4x, (n + 1)4t) will converge to (x, t). unk converges to the exact

solution u∗ as4x and4t converges to 0 [6, 13].

For an explicit method, first of all we denote vnk as

vnk = unk − u ∗nk where u∗nk = u∗(k4x, n4t).

For the heat equation, we can express un+1 in terms of un using an explicit finite

difference approximation as :

u∗n+1
k = (1− 2θ)u∗nk + θ(u∗nk+1 + u∗nk−1) +O(4t2) +O(4t4x2).

By subtracting the exact solution with the approximation, we have

vn+1
k = (1− 2θ)vnk + θ(vnk+1 + vnk−1) +O(4t2) +O(4t4x2).

Taking norms and using the triangle inequality, we can rewrite as:

‖vn+1
k ‖ ≤ (1− 2θ)‖vnk‖+ θ‖(vnk+1‖+ ‖vnk−1‖) +O(4t2 +4t4x2),

≤ (1− 2θ)V n + 2θV n +O(4t2 +4t4x2),

≤ V n +O(4t2 +4t4x2).
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We denote V n as supk{‖vnk‖} and this gives us

V n+1 ≤ V n +O(4t2 +4t4x2),

≤ V n−1 + 2O(4t2 +4t4x2),

≤ V 0 + (n+ 1)O(4t2 +4t4x2),

= (n+ 1)O(4t2 +4t4x2) (Since u0 = u∗0).

The error of this approximation will be

unk − u∗nk ≤ (n+ 1)O(4t2 +4t4x2)→ 0 as 4t,4x→ 0

which shows that the explicit method is a convergent method [7]. The conclusion

still holds for an implicit method.

2.5.2 Stability

Definition: A finite difference scheme is said to be stable if for any positive time

T , there is a constant K which is independent of n, k and for any initial data u0

we have [12] :

‖uk‖ ≤ K‖u0‖ ∀ 0 ≤ k4t ≤ T.

The problem of stability is pervasive in the numerical solution of partial differ-

ential equations. Proving stability directly from the definition is quite difficult.

Instead, it is easy to use tools from Fourier analysis to evaluate the stability of

finite difference schemes [13].

As we know, the general solution to the heat equation can be decomposed

into a sum over the various Fourier modes ,
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unk = Zneiξxk . (19)

The Von Neumann stability criteria is for any norm of ‖Z‖ , we have [8]

‖Z‖ ≤ 1 +4γ

with γ an independent constant of k, 4t and 4x. As a consistent scheme con-

verges for4t,4x→ 0, and the boundary may be limited to

‖Z‖ ≤ 1. (20)

The equation of all un+1
k could be rewritten in Fourier form [8]

un+1
k = (1− 2θ)unk + θunk+1 + θunk−1,

Zn+1eiξxk = (1− 2θ)Zneiξxk + θZneiξxk+1 + θZneiξxk−1 ,

= Zneiξxk(1− 2θ + θei4x + θe−i4x).

Based on eiθ = cosθ + isinθ, the formula will be

Zn+1eiξxk = Zneiξxk(1− 2θ + 2θcos4x),

= Zneiξxk(1− 2θ(1− cos4x)),

= Zneiξxk(1− 4θsin24x
2

).

(21)

Since θ = α4t
4x2 is positive, we have the conclusion that

1− 4θsin2

(
4x
2

)
≤ 1. (22)
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This satisfies the condition in (20), and according to (21) and (22) we have the

following inequality:

Zn+1eiξxk ≤ Zneiξxk ,

Z ≤ 1.

Thus,

‖uk‖ ≤ ‖uk−1‖,

‖uk‖ ≤ K‖u0‖,

which shows the scheme is stable.

Richard Courant, Kurt Friedrichs, and Hans Lewy have pointed out that a

great deal can be learned by considering the domains of dependence of a par-

tial differential equation and of its discrete approximation. This requirement is

known as the Courant-Friedrichs-Levy or CFL condition [5].

For the heat equations with the three boundary conditions we mentioned be-

fore, the CFL condition for one dimension is :

θ =
α4t
(4x)2

≤ 1

2
.

This tells us a relationship between4t and4x. In order to be stable, we need to

set up 4t and 4x properly. For two dimensions, since the scheme is related to

not only4x but also4y, the CFL condition will be:

θ =
α4t

(4x)2 + (4y)2
≤ 1

2
.
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For the more common situation of i dimensions, we have

α
n∑
i=1

4t
(4xi)2

≤ 1

2
.

It should be noted that the CFL criteria is a necessary, but not a sufficient stability

condition.
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3 Solving Linear Equations

3.1 Iterative Methods

An iterative method is a mathematical procedure that generates a sequence of

improving approximate solutions for problems. Generally, an iterative method

includes the termination criteria and an initial guess. An iterative method is

called convergent if the corresponding sequence converges for given initial ap-

proximations [6, 12].

An iterative method for solving a linear system Ax = b (with A a square in-

vertible matrix and b a vector), constructs an iteration series that under some

conditions converges to the exact solution x for the system Ax = b. Thus, it is

necessary to choose a starting point x0 and iteratively apply a rule that computes

xi+1 from an already known xi. A starting vector x0 is usually chosen as some

approximation of the solution x∗. The following is an iterative update:

xi+1 = Bxi + Cb i = 1, 2, ...,

where B,C ∈ Rn×n, i ∈ N. Different choices of B and C define different iterative

methods [1].

We can rewrite A in terms of three submatrices D,L, U, as

A = D + L+ U,

where the only nonzero entries inD are the diagonal entries inA, the only nonzero

entries in L are entries in A below the the diagonal, and the only nonzero entries

in U are entries in A above the diagonal [16].
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D =



a1,1 0 0 . . . . . . 0

0 a2,2 0 . . . . . . 0

0 0 a3,3 . . . . . . 0

... . . . . . . . . . . . . 0

... . . . . . . . . . an−1,n−1 0

... . . . . . . . . . 0 an,n


L =



0 0 0 . . . . . . 0

a2,1 0 0 . . . . . . 0

a3,1 a3,2 0 . . . . . . 0

... . . . . . . . . . . . . 0

an−1,1 an−1,2
. . . . . . 0 0

an,1 an,2 . . . . . . an,n−1 0



U =



0 a1,2 a1,3 . . . . . . a1,n

0 0 a2,3 . . . . . . a2,n

0 0 0 . . . . . .
...

... . . . . . . . . . . . . an−2,n

0
. . . . . . . . . 0 an−1,n

0 0 . . . . . . 0 0


3.1.1 Convergence

Suppose the sequence {xi}∞i=0 converges to x, where

xi+1 = Bxi + Cb. (23)

If xi converges to x as i→∞, then x satisfies the equation:

x = Bx+ Cb. (24)

Subtracting (24) from equation (23)

xi+1 − x = B(xi − x),
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and we will have following inequality by taking norms :

‖xi+1 − x‖ ≤ ‖B‖‖xi − x‖.

Suppose ‖B‖ < 1, which means

‖xi+1 − x‖ < ‖xi − x‖.

Starting from an initial guess x0, we get x1 − x = B(x0 − x). We will have a

monotonically decreasing sequence {‖xi−x‖}∞i=0 [1], and the error in the approx-

imations is decreasing. Then:

xi+1 − x = B(xi − x),

= B2(xi−1 − x),

= Bi+1(x0 − x).

Since ‖B‖ < 1,

‖xi − x‖ ≤ ‖B‖‖xi−1 − x‖ ≤ ..... ≤ ‖B‖i‖x0 − x‖.

Notice that ‖x0 − x‖ is a constant and ‖B‖i → 0 as i → ∞. So ‖B‖ < 1 is a

necessary condition for convergence [1].

3.1.2 Jacobi Iterative Method

The Jacobi method is motivated by the following observation. Let A have

nonzero diagonal elements (the rows of any nonsingular matrix can be reorga-

nized to achieve this) [1] . Then Ax = b can be rewritten as Dx + (L + U)x = b,
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thus ,

x = D−1(−L− U)x+D−1b.

Replacing x on the left-hand side by xi+1 and x on the right-hand side by xi leads

to the iteration formula of the Jacobi method:

xi+1 = −D−1(L+ U)xi +D−1b. (25)

This formula also could be written as

x
(k+1)
i =

1

aii
(bi −

∑
i 6=j

aijx
(k)
j ) i, j = 1, 2...n. (26)

The Jacobi method converges for any starting vector x0 as long as ‖D−1(L+U)‖ <

1 [5] . This condition is satisfied for a relatively large class of matrices including

diagonally dominant matrices (matrices A such that
∑n

j=1,j 6=i |Aij| ≤ |Aii| for i =

1, . . . , n ).

3.1.3 Gauss-Seidel Iterative Method

Analogous to the Jacobi method, we can rewrite Ax = b as (L+D)x+Ux = b,

which further implies x = (L+D)−1[−Ux+ b]. This leads to the iteration formula

of the Gauss-Seidel method:

xi+1 = (L+D)−1b− (L+D)−1Uxi, (27)
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or the recurrence would be:

x
(k+1)
i =

1

aii
(bi −

∑
i<j

aijx
(k+1)
j −

∑
i>j

aijx
(k)
j ), i, j = 1, 2...n. (28)

The main difference to the Jacobi method is that the Gauss-Seidel method is cal-

culating a more efficient version of equation (26).

In Jacobi’s method, the values of xki obtained in the kth iteration remain un-

changed until the entire (k + 1)th iteration has been calculated. With the Gauss-

Seidel method, we use the new values xk+1
i as soon as they are known. For exam-

ple, once we have computed xk+1
1 from the first equation, its value is then used in

the second equation to obtain the new xk+1
2 [1].

3.2 Direct Methods

3.2.1 Gaussian Elimination

Gaussian elimination (also known as row reduction) is an algorithm for solv-

ing systems of linear equations. It is usually understood as a sequence of opera-

tions performed on the associated matrix of coefficients. This method is named

after Carl Friedrich Gauss [4].

To illustrate with an example, we look at the following equation system for

the system

2x+ 5y = 12,

x− 3y = −5,
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First, we can rewrite the matrix in augmented matrix form,

2 5 12

1 −3 −5

 .
Then, we can use row operations to put the matrix in echelon form,

2 5 12

1 −3 −5

→
1 −3 −5
2 5 12

→
1 −3 −5
0 11 22

→
1 −3 −5
0 1 2


Here, row 1 has been exchanged with row 2 since the first element of row 2 is

1. Next, we calculate Row 2 -2 (Row 1) in order to let the first element of row 2

become 0. Notice the second element and third element of row 2 could be divided

by 11, so we will rewrite them as 1 and 2. Now, our equations are:

x− 3y = −5,

y = 2.

It’s easy to solve the equation since we know the value of y to get:

1 −3 −5
0 1 2

 =⇒ x = 1, y = 2.
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4 Comparison

4.1 Multiplication

To optimize our algorithm, we need to make comparisons solving the heat

equation with different boundary conditions on both the GPU and CPU. For all

explicit methods, to get every un we need to do a multiplication between a large

size matrix and a vector. To complete the multiplication directly on the CPU is not

a smart choice since we can use row-based, column-based, or even a block-based

strategy. A row-based multiplication with matrix of size n×n could be multi-

plication of a vector with n different vectors. Obviously, it’s a parallel strategy.

But as we mentioned before, copying data and transferring data to the GPU will

take extra time. Thus to make a complete fairly comparison we need to record

not only computing time but also the data transfer time. Code for this is in the

Appendix 6.1 matrix multiplication.

In Table 2, we record the calculating time ofAxwhereA is a n×nmatrix and x

is a n×1 vector on the CPU and GPU. This is a common calculation in an explicit

method. Figure 5 gives us a more direct observation.

size 300 625 1250 2500 5000 10000 15000
GPU computing time 0.0021 0.0025 0.00877 0.03292 0.1271 0.5046 1.1337
CPU computing time 0.0034 0.0510 0.1293 0.3972 1.8483 12.4439 39.4346
GPU total time 0.0027 0.0051 0.018571 0.08522 0.4380 2.5915 7.7294
CPU total time 0.0053 0.0595 0.165447 0.538 2.4119 14.6855 44.4883

Table 2: Time spent in seconds to complete multiplication by CPU and GPU.
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Figure 5: The plots show the calculation time spent by GPU is much less than
CPU. The difference is significant when the size is larger than 10000 of data points.
Although GPU takes extra time to transfer data, it’s still a faster method com-
pared with CPU. The graph on the left shows only the computing time and the
graph on the right shows the total time, including data transfer.

Looking at Table 2 and Figure 5 , when the size of matrix is 300 × 300, com-

puting time for both the CPU and GPU calculations are almost the same. But

as the size grows to tens of thousands, the time spent for the GPU calculation

is much less than the CPU. The GPU spent nearly 1 sec for size 15000 compared

with 39 sec by CPU. Noticing that the total time of GPU calculation when the

size is 15000, we find that the declare and gather time are the majority of the total

time. Computing time is still small but the input and output time between device

memory and GPU plays an important role.

4.2 Solving Linear Systems

Solving the heat equation with an explicit method, we will calculate many

multiplications since we are solving un from un = Aun−1 where A is a square

coefficient matrix. The previous results showed the advantage of GPUs. But

for the implicit method, we are solving un from un−1 = Aun, which means we

are solving a system of linear equation in the form Ax = b instead of a matrix
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multiplication.

Let’s see the performance of the CPU and GPU for the Gauss-Seidel Method.

Here we set up A as an n×n random matrix and b as a random vector with n

dimensions. The code for this is in Appendix 6.2 Gauss− Seidel Method.

Size 50 125 250 500 1000 2000 4000

GPU time 0.2548 0.6221 1.2271 2.4433 4.8946 9.7800 20.3150

CPU time 0.0043 0.0089 0.0163 0.0497 0.1168 0.3200 1.3923

Table 3: CPU and GPU computing time of Gauss-Seidel Method in seconds.

Figure 6: Solving linear system using Gauss-Seidel Method by CPU is always
faster than GPU regardless of the size of the problem.

Looking at Table 3 and Figure 6, we find that solving the linear system Ax = b

by Gauss-Seidel Method on the CPU and GPU separately, no matter the size of

the system, the CPU takes less time since the method is not parallel. As we said,

the GPU performs better than CPU for parallel method, while the Gauss-Seidel

Method is a one-thread method.
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The GPU is a better choice for multiplication Ax while the CPU runs faster for

solving linear equations un−1 = Aun by the Gauss-Seidel Method. But we need to

point out the fact that when solving un−1 = Aun, the square coefficient matrixA is

fixed and nonsingular. According to the following equations, we know once we

have the inverse ofA, the problem will be almost the same one as multiplications.

un−1 = Aun

A−1un−1 = A−1Aun

un = A−1un−1

According to Table 2, we know the time for GPU to calculate a multiplication like

Ax of size 2500 using a row-based strategy is 0.08522 sec and 0.4380 sec for size

5000. In contrast, from Table 3,we know the CPU takes 0.32 sec to solve a linear

system like Ax = b of size 2000 with the Gauss-Seidel Method, 1.39 sec for a size

of 4000. We can see the fact that the GPU takes less time to do the calculation. The

main problem left is the time it takes to calculate A−1.

Size 300 625 1250 2500 5000 10000
time spent 0.0097 0.0196 0.0412 0.1549 0.7199 4.2432

Table 4: GPU computing time in seconds for a matrix inverse by Gaussian Elimi-
nation method.

Table 4 shows the GPU computing time of a matrix inverse by Gaussian Elim-

ination method. From the data, we can say if we are solving the heat equation

with size no more than 10000 or only several time step like only u1, u2, ..., u5, us-

ing CPU with the Gauss-Seidel Method is a wise choice that takes less time. On

the contrast, when the problem size is very large and the number of time steps to

be evaluated is large, the GPU with inverse A is a more practical choice.
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4.3 Heat Equation

Finally, let’s see how the GPU perform in the 1-D heat equation with differ-

ent boundary conditions compared with the CPU. We set up time steps N as

20 for all boundary conditions with both implicit and explicit methods. Codes

can be found in Appendix 6.3 1D Neumann BC, 6.4 1D Dirichlet BC and 6.5

Periodic BC.

Table 5 shows us the time for the CPU and GPU to complete an entire program

of the 1-D heat equation approximation with different number of points M for

the spatial discretization.. In the table, for short, we define Exp as the explicit

method, Imp as the implicit method, Neu as the Neumann boundary condition,

Dir as the Dirichlet boundary condition. As an example, Exp Neu CPU means

the time for the CPU to calculate the heat equation with Neumann boundary

condition by an explicit method. The reason why we don’t have the data for

implicit method for size 10000 is because it will run out of machine memory.
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Size 300 625 1250 2500 5000 10000

Exp Neu CPU 0.0055 0.0110 0.0213 0.0898 0.3785 1.4320

Exp Neu GPU 0.0166 0.0205 0.0377 0.1009 0.3522 1.1239

Imp Neu CPU 0.0181 0.0821 0.2697 1.0198 3.8142

Imp Neu GPU 0.0227 0.0456 0.0817 0.2512 1.0641

Exp Dir CPU 0.0051 0.0101 0.0193 0.0838 0.3145 1.2320

Exp Dir GPU 0.0136 0.0198 0.0307 0.0902 0.3122 1.1129

Imp Dir CPU 0.0173 0.0791 0.2433 1.008 3.4112

Imp Dir GPU 0.0207 0.0421 0.0794 0.2311 1.01

Periodic CPU 0.0092 0.0259 0.0812 0.3828 1.8442

Periodic GPU 0.0667 0.0891 0.1326 0.2993 1.1353

Table 5: The heat equation with three different boundary conditions in one di-
mension on GPU and CPU. All time steps are 20 and calculation time is reported
in seconds.

Figure 7: For the Neumann boundary condition in 1-D, time spent by the GPU
and CPU are almost the same with the explicit method (left), but the GPU is
significantly faster than CPU with implicit method (right).
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Figure 8: The left figure is using the explicit method while the right one is using
the implicit method. The result of Dirichlet B.C in 1-D are similar to Neumann
B.C. The GPU is faster when we look at the implicit method.

From Table 5, we know for both the Neumann and Dirichlet boundary con-

ditions, using the explicit method takes shorter time for both the GPU and CPU

than the implicit method. Time for the GPU to do the calculation is nearly the

same with the CPU. Looking at the Figure 7 and Figure 8, the GPU line is not far

away from the CPU line though the time for the GPU to complete the calculation

is much less than for CPU when the problem size is large. Also, the table and

figures tell us that with the implicit method the calculation time of the CPU is

almost three times of the GPU for both Neumann and Dirichlet conditions.

When the problems turn to 2 Dimensions, let’s see how the final results vary.

Codes are much more complicated in 2-D, we have to reflect all points of 2-D to

a matrix according to some strategies, thus the inner points will initialized by the

boundary conditions compared with 1-D problems. Codes are in the Appendix

6.6 2D Neumann BC and 6.7 2D Dirichlet BC. For the GPU part, since we are

using the explicit method, all the multiplication are calculated by row- based

strategy. Table 6 is the calculation time with the explicit method and Table 7 is

with the implicit method. 40 × 40 means there is a 40 point partition in x and 40
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point partition in y. Figure 9 is the graphic of Table 6 and Figure 10 is the graphic

of Table 7.

Size 40× 40 60× 60 80× 80 100× 100 120× 120 140× 140 160× 160

Exp Dir CPU 0.0288 0.1483 0.3867 0.8266 1.6590 2.9204 4.8497

Exp Dir GPU 0.0274 0.0850 0.1991 0.4384 0.8597 1.5299 2.5686

Exp Neu CPU 0.0308 0.1521 0.4043 0.8606 1.8659 3.1287 5.1815

Exp Neu GPU 0.0292 0.08901 0.2110 0.4884 0.9091 1.7298 2.7686

Table 6: The heat equation with the Neumann B.C and Dirichlet B.C in two di-
mensions with the explicit method. All time steps are 20 and calculation time is
reported in seconds.

Figure 9: In 2D explicit case, no matter the size of the problem, the GPU took
nearly half time as CPU did. The heat equation with Dirichlet B.C on the left and
Neumann B.C on the right.
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Size 40× 40 60× 60 80× 80 100× 100

Imp Dir CPU 0.1792 1.8424 3.7297 11.4264

Imp Dir GPU 0.1211 0.6151 2.0244 5.7823

Imp Neu CPU 0.1831 1.9441 3.8212 13.1431

Imp Neu GPU 0.149 0.67 2.1541 5.9801

Table 7: The heat equation with the Neumann B.C and Dirichlet B.C in two di-
mensions with the implicit method. All time steps are 20 and calculation time is
reported in seconds.

Figure 10: In 2-D implicit case, GPU is still faster than CPU, but the time to com-
plete the calculations and the problem size are not linearly related. The left figure
is the Dirichlet B.C and the right is the Neumann B.C.

From Table 6 and Table 7, the 2-D problem, we observe that the implicit method

still takes a longer time to complete the calculation for both the GPU and CPU.

In 2-D, the calculation time of the GPU is half of the calculation time of the CPU

with explicit method. Both Figure 9 and Figure 10 show us that the GPU is much

better than the CPU in terms of calculation times. For both the implicit and ex-

plicit methods, the GPU calculated the solution faster than the CPU for a large

number of points. Hence, if we are dealing heat equations on a fine grid with

thousands or millions of discretization points, of course GPU will cost less time.
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For small size like hundreds or even less, time spent by GPU is almost the same

with CPU.
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5 Conclusion

The results in this report are from the codes in MATLAB that were written and

summarized in the Appendices. For this code, we find that solving the heat equa-

tion with various boundary conditions, the implicit method and explicit method

have differences on the GPU and CPU. Although in doing matrix multiplications,

the GPU takes much less time than the CPU does, the advantage is not that re-

markable when the data transferring time is taken into consideration. The GPU

can solve the heat equation with an explicit method in a shorter time than the

CPU, but the advantage is not as obvious as the implicit method.

For implicit method, if we use the Jacobi iterative method or the Gauss-Seidel

iterative method, the CPU is always faster than the GPU regardless of problem

size. Because they are methods run by a single core and can’t be parallelized. But

if we choose a row-based strategy, we find that the GPU showed a huge supe-

riority compared with the CPU. Because for the CPU to solve a linear system as

Ax = b, it takes much longer time even the data transferring time of the GPU is

taken into considerations. As the the size of problem goes to larger or the dimen-

sions goes to larger (both of these mean the size of the matrix goes to larger), the

GPU will be a better choice compared with the CPU in terms of calculation time.

Using other methods to solve complete the multiplication and solve the linear

systems with CUDA provided by Nvidia, or other parallel computing platform

besides CUDA, may cause different results. For a matrix with certain properties,

we may have a different result as solving the dense matrix with Gauss-Seidel

method [5]. The results from this report might not be true for all cases and the

codes could be written more optimally.
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6 Appendix

6.1 matrix multiplication

1 c l e a r

c l c

3

t i c

5 L=10000

7 A=gpuArray . rand ( L , L ) ;

B=gpuArray . rand ( L , 1 ) ;

9 c r e a t t i m e =toc

11 t i c

C=A*B ;

13 n=norm (C, ’ f r o ’ ) ;

compute time=toc

15

t i c

17 D=gather ( n ) ;

gather t ime=toc

19 t o t a l t i m e = c r e a t t i m e +compute time+gather t ime

21 f i d = fopen ( ’ data . t x t ’ , ’ a ’ ) ;

f p r i n t f ( f id , ’ The s i z e of matr ices i s \n%f \n ’ ,L ) ;

23 f p r i n t f ( f id , ’ Time c o s t s by computing i s %f \n ’ , compute time ) ;

f p r i n t f ( f id , ’ Time c o s t s by gather ing i s %f \n ’ , gather t ime ) ;

25 f p r i n t f ( f id , ’ Tota l time c o s t s i s %f \n ’ , t o t a l t i m e ) ;

f c l o s e ( f i d ) ;
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c l e a r

2 c l c

4 t i c

L=5000*3

6 A=rand ( L , L ) ;

B=rand ( L , 1 ) ;

8 C=A*B ;

cpu time=toc

10

f i d = fopen ( ’ data . t x t ’ , ’ a ’ ) ;

12 f p r i n t f ( f id , ’ The s i z e of matr ices i s \n%f \n ’ ,L ) ;

f p r i n t f ( f id , ’ Time c o s t s by c r e a t i n g i s %f \n ’ , c r e a t t i m e ) ;

14 f p r i n t f ( f id , ’ Tota l time c o s t s i s %f \n ’ , t o t a l t i m e ) ;

f p r i n t f ( f id , ’ Time c o s t s by computing i s %f \n ’ , cpu time ) ;

16 f c l o s e ( f i d ) ;

6.2 Gauss-Seidel

1

c l e a r

3 c l c

5

t i c

7 n=50; % s e t up the s i z e of matrix

nOnes = ones ( n , 1 ) ;

9 AA = diag (12 * nOnes , 0 ) − diag ( nOnes ( 1 : n−1) , −1) − diag ( nOnes ( 1 : n−1) ,

1 ) ;

52



% s e t up a diagonal matrix

11 A=gpuArray (AA) ;

13 b=gpuArray . rand ( n , 1 ) ; % the b of equation Ax=b

x=gpuArray . zeros ( n , 1 ) ; % the f i n a l r e s u l t

15 x1=gpuArray . zeros ( n , 1 ) ; % r e s u l t of l a s t s tep

x2=gpuArray . zeros ( n , 1 ) ; % r e s u l t of t h i s s tep

17 D=gpuArray . zeros ( n , 1 ) ; % the diagonal elements

19

D=diag (A) ;

21 A=A−diag (D) ;

D=1./D;

23 t o l =10; % i n i t i a l t o l e r a n c e

x1=x ;

25 count =0; % count #

x2=x ;

27 while t o l >10ˆ−10

x2=x1 ;

29 f o r k =1:n %main method

x ( k ) =(b ( k )−A( k , : ) * x ) *D( k ) ;

31 end

x1=x ;

33 t o l =max( abs ( x1−x2 ) ) ;

count=count +1;

35 end

count ;

37 time=toc

39 max( abs (AA* x−b ) ) % check the answer
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1

c l e a r

3 c l c

5

t i c

7 n=50; % s e t up the s i z e of matrix

nOnes = ones ( n , 1 ) ;

9 AA = diag (12 * nOnes , 0 ) − diag ( nOnes ( 1 : n−1) , −1) − diag ( nOnes ( 1 : n−1) ,

1 ) ;

% s e t up a diagonal matrix

11 A=AA;

13 b=rand ( n , 1 ) ; % the b of equation Ax=b

x=zeros ( n , 1 ) ; % the f i n a l r e s u l t

15 x1=zeros ( n , 1 ) ; % r e s u l t of l a s t s tep

x2=zeros ( n , 1 ) ; % r e s u l t of t h i s s tep

17 D=zeros ( n , 1 ) ; % the diagonal elements

19 D=diag (A) ;

A=A−diag (D) ;

21 D=1./D;

t o l =10; % i n i t i a l t o l e r a n c e

23 x1=x ;

count =0; % count #

25 x2=x ;

while t o l >10ˆ−10

27 x2=x1 ;

f o r k =1:n %main method

29 x ( k ) =(b ( k )−A( k , : ) * x ) *D( k ) ;

end
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31 x1=x ;

t o l =max( abs ( x1−x2 ) ) ;

33 count=count +1;

end

35 count ;

time=toc

37

max( abs (AA* x−b ) ) % check the answer

6.3 1D Neumann BC

1 func t ion exp neu 1d cpu

%−−−−−−−−Coded junchi Zhang

3 %−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

c l e a r

5 c l c

7

9 t i c

ch i =0;

11 omega=2;

13 %−−−−−def ine the the length and s teps

alpha =1;

15 X=1;

%# of grid points on the domain , 1−d l i n e

17 M=10000

%spacing between the M points on the 1−d l i n e
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19 dx=X/M;

21 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

23 N=20;

%−−−−s e t up the boundary condi t ions

25 A=zeros (M+1 ,N+1) ;

f o r i =1:M+1

27 A( i , 1 ) = cos ( pi * ( i −1) * dx ) +1+(( i −1) * dx ) ˆ 2 ;

end

29

%−−−−put the d i f f e r e n c e method in a matrix

31 t h e t a =( dt * alpha ) / ( ( dx ) ˆ 2 ) ;

D=zeros (M+1 ,M+1) ;

33 D( 1 , 1 ) =1−2* t h e t a ;

D( 1 , 2 ) =2* t h e t a ;

35 D(M+1 ,M) =1−2* t h e t a ;

D(M+1 ,M+1) =2* t h e t a ;

37 f o r i =2:M

D( i , i ) =1−2* t h e t a ;

39 D( i , i −1)= t h e t a ;

D( i , i +1)= t h e t a ;

41 end

43

%−−−−c a l c u l a t e a l l points

45 f o r i =2:N+1

A( : , i ) =D*A( : , i −1) ;

47 A( 1 , i ) =A( 1 , i )−2* ch i * dx * t h e t a ;

A(M+1 , i ) =A(M+1 , i )−2*omega* dx * t h e t a ;

49 end
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51 f o r i =1:M+1

f o r j =1 :N+1

53 Exact A ( i , j ) =exp((−pi ) * pi * ( j −1) * dt ) * cos ( pi * dx * ( i −1) ) +1+(dx * ( i −1) )

ˆ 2 + 2 * ( j −1) * dt ;

end

55 end

time=toc

funct ion exp neu 1d gpu

2 %−−−−−−−−Coded junchi Zhang

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

c l c

6

8

t i c

10 ch i =0;

omega=2;

12

%−−−−−def ine the the length and s teps

14 alpha =1;

X=1;

16 %# of grid points on the domain , 1−d l i n e

M=625*2*2*2

18 %spacing between the M points on the 1−d l i n e

dx=X/M;

20

%−−−s e t up the proper dt
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22 dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

N=20;

24 %−−−−s e t up the boundary condi t ions

A=zeros (M+1 ,N+1) ;

26 f o r i =1:M+1

A( i , 1 ) = cos ( pi * ( i −1) * dx ) +1+(( i −1) * dx ) ˆ 2 ;

28 end

30 %−−−−put the d i f f e r e n c e method in a matrix

t h e t a =( dt * alpha ) / ( ( dx ) ˆ 2 ) ;

32 D=zeros (M+1 ,M+1) ;

D( 1 , 1 ) =1−2* t h e t a ;

34 D( 1 , 2 ) =2* t h e t a ;

D(M+1 ,M) =1−2* t h e t a ;

36 D(M+1 ,M+1) =2* t h e t a ;

f o r i =2:M

38 D( i , i ) =1−2* t h e t a ;

D( i , i −1)= t h e t a ;

40 D( i , i +1)= t h e t a ;

end

42

AA=gpuArray (A) ;

44 DD=gpuArray (D) ;

%−−−−c a l c u l a t e a l l points

46 f o r i =2:N+1

AA( : , i ) =DD*A( : , i −1) ;

48 AA( 1 , i ) =AA( 1 , i )−2* ch i * dx * t h e t a ;

AA(M+1 , i ) =AA(M+1 , i )−2*omega* dx * t h e t a ;

50 end

52 f o r i =1:M+1

58



f o r j =1 :N+1

54 Exact A ( i , j ) =exp((−pi ) * pi * ( j −1) * dt ) * cos ( pi * dx * ( i −1) ) +1+(dx * ( i −1) )

ˆ 2 + 2 * ( j −1) * dt ;

end

56 end

58 time=toc

funct ion imp neu 1d cpu

2 %−−−−−−−−Coded junchi Zhang

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

c l c

6 t i c

ch i =0;

8 omega=2;

10 %−−−−−def ine the the length and s teps

alpha =1;

12 X=1;

%# of grid points on the domain , 1−d l i n e

14 M=300

%spacing between the M points on the 1−d l i n e

16 dx=X/M;

18 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

20 N=20;

%−−−−s e t up the boundary condi t ions

22 A=zeros (M+1 ,N+1) ;
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f o r i =1:M+1

24 A( i , 1 ) = cos ( pi * ( i −1) * dx ) +1+(( i −1) * dx ) ˆ 2 ;

end

26

%−−−−put the d i f f e r e n c e method in a matrix

28 t h e t a =( dt * alpha ) / ( ( dx ) ˆ 2 ) ;

D=zeros (M+1 ,M+1) ;

30 D( 1 , 1 ) =1+2* t h e t a ;

D( 1 , 2 ) =−2* t h e t a ;

32 D(M+1 ,M) =−2* t h e t a ;

D(M+1 ,M+1) =1+2* t h e t a ;

34 f o r i =2:M

D( i , i ) =1+2* t h e t a ;

36 D( i , i −1)=−t h e t a ;

D( i , i +1)=−t h e t a ;

38 end

40

%−−−−c a l c u l a t e a l l points

42 f o r i =2:N+1

44 veca=A( : , i −1) ;

veca ( 1 ) =veca ( 1 )−2* ch i * dx * t h e t a ;

46 veca (M+1)=veca (M+1)−2*omega* dx * t h e t a ;

A( : , i ) =D\veca ;

48 end

50 f o r i =1:M+1

f o r j =1 :N+1

52 Exact A ( i , j ) =exp((−pi ) * pi * ( j −1) * dt ) * cos ( pi * dx * ( i −1) ) +1+(dx * ( i −1) )

ˆ 2 + 2 * ( j −1) * dt ;
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end

54 end

time=toc

funct ion imp neu 1d gpu

2 %−−−−−−−−Coded junchi Zhang

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

c l c

6 t i c

ch i =0;

8 omega=2;

10 %−−−−−def ine the the length and s teps

alpha =1;

12 X=1;

%# of grid points on the domain , 1−d l i n e

14 M=300

%spacing between the M points on the 1−d l i n e

16 dx=X/M;

18 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

20 N=20;

%−−−−s e t up the boundary condi t ions

22 A=zeros (M+1 ,N+1) ;

f o r i =1:M+1

24 A( i , 1 ) = cos ( pi * ( i −1) * dx ) +1+(( i −1) * dx ) ˆ 2 ;

end

26
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%−−−−put the d i f f e r e n c e method in a matrix

28 t h e t a =( dt * alpha ) / ( ( dx ) ˆ 2 ) ;

D=zeros (M+1 ,M+1) ;

30 D( 1 , 1 ) =1+2* t h e t a ;

D( 1 , 2 ) =−2* t h e t a ;

32 D(M+1 ,M) =−2* t h e t a ;

D(M+1 ,M+1) =1+2* t h e t a ;

34 f o r i =2:M

D( i , i ) =1+2* t h e t a ;

36 D( i , i −1)=−t h e t a ;

D( i , i +1)=−t h e t a ;

38 end

40 AA=gpuArray (A) ;

DD=gpuArray . eye (M+1)/gpuArray (D) ;

42 veca=gpuArray . zeros (M+1 ,1) ;

%−−−−c a l c u l a t e a l l points

44 f o r i =2:N+1

46 veca=AA( : , i −1) ;

veca ( 1 ) =veca ( 1 )−2* ch i * dx * t h e t a ;

48 veca (M+1)=veca (M+1)−2*omega* dx * t h e t a ;

AA( : , i ) =DD* veca ;

50 end

52 f o r i =1:M+1

f o r j =1 :N+1

54 Exact A ( i , j ) =exp((−pi ) * pi * ( j −1) * dt ) * cos ( pi * dx * ( i −1) ) +1+(dx * ( i −1) )

ˆ 2 + 2 * ( j −1) * dt ;

end

56 end
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time=toc

6.4 1D Dirichlet BC

func t ion exp dir 1d cpu

2 %−−−−−−−−Coded by junchi

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

6 c l c

t i c

8 %−−−−−def ine the the length and s teps

alpha =1;

10 X=2;

%# of grid points on the domain , 1−d l i n e

12 M=80;

%spacing between the M points on the 1−d l i n e

14 dx=X/M;

16 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

18 N=15;

%−−−−s e t up the boundary condi t ions

20 A=zeros (M+1 ,N+1) ;

f o r i =1:M+1

22 A( i , 1 ) = s in ( pi * ( i −1) * dx ) +1;

end

24 f o r i =1:N+1

A( 1 , i ) =1 ;
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26 A(M+1 , i ) =1 ;

end

28 %−−−−put the d i f f e r e n c e method in a matrix

a =1−2*(( dt * alpha ) /(dx ) ˆ 2 ) ;

30 b=( dt * alpha ) /(dx ) ˆ 2 ;

D=zeros (M+1 ,M+1) ;

32 D( 1 , 1 ) =a ;

D( 1 , 2 ) =b ;

34 D(M+1 ,M) =b ;

D(M+1 ,M+1)=a ;

36 f o r i =2:M

D( i , i ) =a ;

38 D( i , i −1)=b ;

D( i , i +1)=b ;

40 end

%−−−−c a l c u l a t e a l l points

42 f o r i =2:N+1

A( : , i ) =D*A( : , i −1) ;

44 A( 1 , i ) =1 ;

A(M+1 , i ) =1 ;

46 end

48 f o r i =1:M+1

f o r j =1 :N+1

50 Exact A ( i , j ) =exp((−pi ) * pi * ( j −1) * dt ) * s i n ( pi * dx * ( i −1) ) +1;

end

52 end

54 time=toc
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func t ion exp dir 1d gpu

2 %−−−−−−−−Coded by junchi

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

6 c l c

t i c

8 %−−−−−def ine the the length and s teps

alpha =1;

10 X=2;

%# of grid points on the domain , 1−d l i n e

12 M=80;

%spacing between the M points on the 1−d l i n e

14 dx=X/M;

16 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

18 N=15;

%−−−−s e t up the boundary condi t ions

20 A=zeros (M+1 ,N+1) ;

f o r i =1:M+1

22 A( i , 1 ) = s in ( pi * ( i −1) * dx ) +1;

end

24 f o r i =1:N+1

A( 1 , i ) =1 ;

26 A(M+1 , i ) =1 ;

end

28 %−−−−put the d i f f e r e n c e method in a matrix

a =1−2*(( dt * alpha ) /(dx ) ˆ 2 ) ;

30 b=( dt * alpha ) /(dx ) ˆ 2 ;

D=zeros (M+1 ,M+1) ;
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32 D( 1 , 1 ) =a ;

D( 1 , 2 ) =b ;

34 D(M+1 ,M) =b ;

D(M+1 ,M+1)=a ;

36 f o r i =2:M

D( i , i ) =a ;

38 D( i , i −1)=b ;

D( i , i +1)=b ;

40 end

AA=gpuArray (A) ;

42 DD=gpuArray (D) ;

%−−−−c a l c u l a t e a l l points

44 f o r i =2:N+1

AA( : , i ) =DD*AA( : , i −1) ;

46 AA( 1 , i ) =1 ;

AA(M+1 , i ) =1 ;

48 end

50 f o r i =1:M+1

f o r j =1 :N+1

52 Exact A ( i , j ) =exp((−pi ) * pi * ( j −1) * dt ) * s i n ( pi * dx * ( i −1) ) +1;

end

54 end

56 time=toc

6.5 Periodic BC

1 func t ion PeriodicBC cpu
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%−−−−−−−−Coded by junchi

3 %−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

c l e a r

5 c l c

t i c

7 %−−−−−def ine the the length and s teps

alpha =1;

9 X=1;

%# of grid points on the domain , 1−d l i n e

11 M=625*2*2*2

%spacing between the M points on the 1−d l i n e

13 dx=X/M;

15 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

17 N=20;

%−−−−s e t up the boundary condi t ions

19 A=zeros (M+1 ,N+1) ;

21 f o r i =1:M+1

A( i , 1 ) = s in ( 2 * pi * ( i −1) * dx ) ;

23 %above i s the i n i t i a l condi t ion a t t =0

%s o l u t i o n : e ˆ ( ) * s i n ( )

25 end

27 f o r i =1:N+1

%BC at x =0 , e ˆ ( ) * s in ( 0 ) =0

29 A( 1 , i ) =0 ;

%BC at x =1 , e ˆ * s i n ( 2 * pi ) =0

31 A(M+1 , i ) =0 ;

end
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33 %−−−−put the d i f f e r e n c e method in a matrix

a =1+2*( ( dt * alpha ) /(dx ) ˆ 2 ) ;

35 b=−(dt * alpha ) / ( ( dx ) ˆ 2 ) ;

37 D=zeros (M−1,M−1) ;

D( 1 , 1 ) =a ;

39 D( 1 , 2 ) =b ;

D(M−1,M−1)=a ;

41 D(M−1,M−2)=b ;

43 f o r i =2:M−2

D( i , i ) =a ;

45 D( i , i −1)=b ;

D( i , i +1)=b ;

47 end

%−−−s e t the RHS of the homogeneous equat ions

49 R=zeros (M−1 ,1) ;

R( 1 , 1 )=−b ;

51 R(M−1 ,1)=−b ;

%−−−−c a l c u l a t e a l l points

53 invD=eye (M−1)/D;

f o r i =2:N+1

55 %−−the homogeneous one

57 XH( 1 , 1 ) =1;

XH(M+1 ,1) =1;

59

XH( 2 :M, 1 ) =invD *R ;

61 %−−the p a r t i c u l a r one

XP ( 1 , 1 ) =1;

63 XP(M+1 ,1) =1;
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%below i s new l i n e of code bringing in i−1 column , which should be

data

65 %values a t previous time step

67 RH=A( 2 :M, i −1) ;

RH( 1 ) =RH( 1 )−b ;

69 RH(M−1)=RH(M−1)−b ;

XP ( 2 :M, 1 ) =invD *RH;

71

%below l i n e was what was there − bringing a v e c t o r s of zeros

73

%−−−the c o e f f i c i e n t

75 beta =(A(M+1 , i ) +b *XP(M)−a *XP(M+1)+b *XP ( 2 ) ) /(−b *XH(M) +a *XH(M+1)−b *XH( 2 ) ) ;

A( : , i ) =XP+beta *XH;

77 end

f o r i =3:N+1

79 A( 2 , i −1)=A( 2 , i −1)+b ;

A(M, i −1)=A(M, i −1)+b ;

81 end

83 f o r i =1:M+1

85 A( i , 1 ) = s in ( 2 * pi * ( i −1) * dx ) ;

%above i s the i n i t i a l condi t ion a t t =0

87 %s o l u t i o n : e ˆ ( ) * s i n ( )

end

89 f o r i =1:M+1

f o r j =1 :N+1

91 Exact A ( i , j ) =exp((−pi ) * ( pi ) * 2 * 2 * ( j −1) * dt ) * s in ( 2 * pi * dx * ( i −1) ) ;

end

93 end

69



time=toc

1 func t ion PeriodicBC gpu

%−−−−−−−−Coded by junchi

3 %−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

c l e a r

5 c l c

t i c

7 %−−−−−def ine the the length and s teps

alpha =1;

9 X=1;

%# of grid points on the domain , 1−d l i n e

11 M=300

%spacing between the M points on the 1−d l i n e

13 dx=X/M;

15 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

17 N=20;

%−−−−s e t up the boundary condi t ions

19 A=zeros (M+1 ,N+1) ;

21 f o r i =1:M+1

A( i , 1 ) = s in ( 2 * pi * ( i −1) * dx ) ;

23 %above i s the i n i t i a l condi t ion a t t =0

%s o l u t i o n : e ˆ ( ) * s i n ( )

25 end

27 f o r i =1:N+1

%BC at x =0 , e ˆ ( ) * s in ( 0 ) =0
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29 A( 1 , i ) =0 ;

%BC at x =1 , e ˆ * s i n ( 2 * pi ) =0

31 A(M+1 , i ) =0 ;

end

33 %−−−−put the d i f f e r e n c e method in a matrix

a =1+2*( ( dt * alpha ) /(dx ) ˆ 2 ) ;

35 b=−(dt * alpha ) / ( ( dx ) ˆ 2 ) ;

37 D=zeros (M−1,M−1) ;

D( 1 , 1 ) =a ;

39 D( 1 , 2 ) =b ;

D(M−1,M−1)=a ;

41 D(M−1,M−2)=b ;

43 f o r i =2:M−2

D( i , i ) =a ;

45 D( i , i −1)=b ;

D( i , i +1)=b ;

47 end

%−−−s e t the RHS of the homogeneous equat ions

49 R=zeros (M−1 ,1) ;

R( 1 , 1 )=−b ;

51 R(M−1 ,1)=−b ;

%−−−−c a l c u l a t e a l l points

53 XH=gpuArray . zeros (M+1 ,1) ;

XP=gpuArray . zeros (M+1 ,1) ;

55 RH=gpuArray . zeros (M+1 ,1) ;

AA=gpuArray (A) ;

57 DD=gpuArray . eye (M−1)/D;

f o r i =2:N+1

59 %−−the homogeneous one
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61 XH( 1 , 1 ) =1;

XH(M+1 ,1) =1;

63

XH( 2 :M, 1 ) =DD*R ;

65 %−−the p a r t i c u l a r one

XP ( 1 , 1 ) =1;

67 XP(M+1 ,1) =1;

%below i s new l i n e of code bringing in i−1 column , which should be

data

69 %values a t previous time step

71 RH=AA( 2 :M, i −1) ;

RH( 1 ) =RH( 1 )−b ;

73 RH(M−1)=RH(M−1)−b ;

XP ( 2 :M, 1 ) =DD*RH;

75

%below l i n e was what was there − bringing a v e c t o r s of zeros

77

%−−−the c o e f f i c i e n t

79 beta =(AA(M+1 , i ) +b *XP(M)−a *XP(M+1)+b *XP ( 2 ) ) /(−b *XH(M) +a *XH(M+1)−b *XH( 2 ) )

;

AA( : , i ) =XP+beta *XH;

81 end

f o r i =3:N+1

83 AA( 2 , i −1)=AA( 2 , i −1)+b ;

AA(M, i −1)=AA(M, i −1)+b ;

85 end

87 f o r i =1:M+1
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89 A( i , 1 ) = s in ( 2 * pi * ( i −1) * dx ) ;

%above i s the i n i t i a l condi t ion a t t =0

91 %s o l u t i o n : e ˆ ( ) * s i n ( )

end

93 f o r i =1:M+1

f o r j =1 :N+1

95 Exact A ( i , j ) =exp((−pi ) * ( pi ) * 2 * 2 * ( j −1) * dt ) * s in ( 2 * pi * dx * ( i −1) ) ;

end

97 end

time=toc

6.6 2D Neumann BC

2 func t ion exp neu 2d cpu

%−−−−−−−−Coded by junchi Zhang

4 %−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

c l e a r

6 c l o s e a l l

c l c

8

10 t i c

%−−−−−def ine the the length and s teps

12 alpha =1;

X=1;

14 Y=1;

%# of grid points on the domain x

16 M=40;
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%# of grid points on the domain y

18 L=40;

% # of time step

20 N=20;

22 %spacing between the M points on x

dx=X/M;

24 %spacing between the M points on x

dy=Y/L ;

26

%−−−s e t up the proper dt

28 dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

30 %−−−−denote t o t a l points as tp

tp =(M+1) * ( L+1) ;

32

34 %−−−−put the d i f f e r e n c e method in a matrix

bx =( dt * alpha ) /(dx ) ˆ 2 ;

36 by=( dt * alpha ) /(dy ) ˆ 2 ;

a =1−2*(( dt * alpha ) /(dx ) ˆ 2 ) −2*(( dt * alpha ) /(dy ) ˆ 2 ) ;

38

40 D=zeros ( tp , tp ) ;

%−−−−s e t up the boundary condi t ions

42 A=zeros ( tp ,N+1) ;

f o r j =1 :L+1

44 f o r i =1:M+1

A( ( j −1) * (M+1)+i , 1 ) = cos ( pi * ( i −1) * dx ) * cos ( pi * ( j −1) *dy ) ;

46 end

end
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48

50 f o r i =1:N+1

f o r j =1 :M+1

52 A( j , i ) = ( ( j −1) *dy ) ˆ 2 ; %the boundary condi t ions of bottom

A( L * (M+1)+ j , i ) =2+(( j −1) *dy ) ˆ 2 ; %the boundary condi t ions of top

54 end

f o r k =1:L

56 A( k * (M+1) , i ) =2+((k−1) * dx ) ˆ 2 ; %the boundary condi t ions of r i g h t

A( k * (M+1) +1 , i ) = ( ( k−1) * dx ) ˆ 2 ; %the boundary condi t ions of l e f t

58 end

end

60

62 % s e t up the c o e f f i c i e n t matrix f o r the e x p l i c i t p ar t s

f o r j =1 :L−1

64 f o r i =2:M

D( j * (M+1)+i , j * (M+1)+ i ) =a ;

66 D( j * (M+1)+i , j * (M+1)+i −1)=by ;

D( j * (M+1)+i , j * (M+1)+ i +1)=by ;

68 D( j * (M+1)+i , j * (M+1)+i−M−1)=bx ;

D( j * (M+1)+i , j * (M+1)+ i +M+1)=bx ;

70 end

end

72

% s e t up the c o e f f i c i e n t matrix f o r the boundary p ar t s

74 f o r i =1:M+2

D( i , i ) =a ;

76 D( tp+1−i , tp+1− i )=1−a ;

end

78 f o r i =1:L
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D( (M+1) * i , (M+1) * i ) =1 ;

80 D( (M+1) * i +1 , (M+1) * i +1)=1−a ;

end

82

84 %−−−−c a l c u l a t e a l l points by times the c o e f f i c i e n t matrix

%t i c

86 f o r p=2:N+1

A( : , p ) =D*A( : , p−1) ;

88

f o r j =1 :M+1

90 A( j , p ) =A( j , p )−2*dx * bx * ( ( j −1) *dy ) ˆ 2 ;

A( L * (M+1)+ j , p ) =A( L * (M+1)+ j , p )−2*dx * bx * ( 2 + ( ( j −1) *dy ) ˆ 2 ) ;

92 end

f o r k =1:L

94 A( k * (M+1) ,p ) =A( k * (M+1) ,p )−2*dy* by * ( 2 + ( ( k−1) * dx ) ˆ 2 ) ;

A( k * (M+1) +1 ,p ) =A( k * (M+1) +1 ,p )−2*dx * bx * ( ( ( k−1) * dx ) ˆ 2 ) ;

96 end

98 end

100

%cpu main computing time=toc ;

102

%−−−−−c a l c u l a t e the exac t points

104

%t i c

106 f o r k =1:N+1

f o r j =1 :L+1

108 f o r i =1:M+1
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Exact A ( ( j −1) * (M+1)+i , k )=−exp(−( pi ˆ 2 ) * ( k−1) * dt ) * s i n ( pi * ( i −1) * dx

) * s in ( pi * ( j −1) *dy ) ;

110 end

end

112 end

114 time=toc

6.7 2D Dirichlet BC

1 func t ion imp dir 2d cpu

%−−−−−−−−Coded by Junchi Zhang

3 %−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

c l e a r

5 c l o s e a l l

c l c

7

t i c

9 %−−−−−def ine the the length and s teps

alpha =1;

11 X=1;

Y=1;

13 N=20; % # of time step

15 %# of grid points on the domain x

M=160;

17 %# of grid points on the domain y

L=160;

19 %spacing between the M points on x
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dx=X/M;

21 %spacing between the M points on x

dy=Y/L ;

23 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

25

%−−−−denote t o t a l points as tp

27 tp =(M+1) * ( L+1) ;

29 %−−−−put the d i f f e r e n c e method in a matrix

bx=−(dt * alpha ) / ( ( dx ) ˆ 2 ) ;

31 by=−(dt * alpha ) / ( ( dy ) ˆ 2 ) ;

a =1+2*( ( dt * alpha ) /(dx ) ˆ 2 ) + 2 * ( ( dt * alpha ) /(dy ) ˆ 2 ) ;

33

35 cpu A=zeros ( tp ,N+1) ;

cpu D=zeros ( tp , tp ) ;

37 %−−−−s e t up the boundary condi t ions

39 f o r j =1 :L+1

f o r i =1:M+1

41 cpu A ( ( j −1) * (M+1)+i , 1 ) =−s in ( pi * ( i −1) * dx ) * s in ( 2 * pi * ( j −1) *dy ) ;

end

43 end

45 f o r i =1:N+1

f o r j =1 :M+1

47 cpu A ( j , i ) =0 ; %the boundary condi t ions of bottom

cpu A ( L * (M+1)+ j , i ) =0 ; %the boundary condi t ions of top

49 end

f o r k =1:L
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51 cpu A ( k * (M+1) , i ) =0 ; %the boundary condi t ions of r i g h t

cpu A ( k * (M+1) +1 , i ) =0 ; %the boundary condi t ions of l e f t

53 end

end

55

% s e t up the c o e f f i c i e n t matrix f o r the e x p l i c i t p ar t s

57 f o r j =1 :L−1

f o r i =2:M

59 cpu D ( j * (M+1)+i , j * (M+1)+ i ) =a ;

cpu D ( j * (M+1)+i , j * (M+1)+i −1)=by ;

61 cpu D ( j * (M+1)+i , j * (M+1)+ i +1)=by ;

cpu D ( j * (M+1)+i , j * (M+1)+i−M−1)=bx ;

63 cpu D ( j * (M+1)+i , j * (M+1)+ i +M+1)=bx ;

end

65 end

67 % s e t up the c o e f f i c i e n t matrix f o r the boundary p ar t s

f o r i =1:M+2

69 cpu D ( i , i ) =1 ;

cpu D ( tp+1−i , tp+1− i ) =1 ;

71 end

f o r i =1:L

73 cpu D ( (M+1) * i , (M+1) * i ) =1 ;

cpu D ( (M+1) * i +1 , (M+1) * i +1) =1;

75 end

77 invD=eye ( tp ) /cpu D ;

%−−−−c a l c u l a t e a l l points by times the c o e f f i c i e n t matrix

79 f o r i =2:N+1

cpu A ( : , i ) =invD * cpu A ( : , i −1) ;

81 end
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83 %−−−−−the exac t points

f o r k =1:N+1

85 f o r j =1 :L+1

f o r i =1:M+1

87 cpu Exact A ( ( j −1) * (M+1)+i , k )=−exp (−5*( pi ˆ 2 ) * ( k−1) * dt ) * s i n ( pi * ( i

−1) * dx ) * s in ( 2 * pi * ( j −1) *dy ) ;

end

89 end

end

91

c p u t o t a l t i m e =toc ;

93 Error=abs ( cpu A−cpu Exact A ) ;

Max Cpu Error=max(max( Error ) ) ;

95

97

f i d = fopen ( ’ data . t x t ’ , ’w’ ) ;

99 f p r i n t f ( ’ The arguments are M: %f L : %f N: %f \n ’ , M, L ,N) ;

f p r i n t f ( ’Max e r r o r of CPU r e s u l t i s %f \n ’ , Max Cpu Error ) ;

101 f p r i n t f ( ’ Tota l time c o s t s of CPU i s %f sec \n ’ , c p u t o t a l t i m e ) ;

f c l o s e ( f i d ) ;

func t ion imp dir 2d gpu

2 %−−−−−−−−Coded by Junchi Zhang

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

c l o s e a l l

6 c l c

80



8 t i c

%−−−−−def ine the the length and s teps

10 alpha =1;

X=1;

12 Y=1;

N=20; % # of time s teps

14 %# of grid points on the domain x

M=120;

16 %# of grid points on the domain y

L=120;

18 %spacing between the M points on x

dx=X/M;

20 %spacing between the M points on x

dy=Y/L ;

22 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

24

%−−−−denote t o t a l points as tp

26 tp =(M+1) * ( L+1) ;

28 %−−−−put the d i f f e r e n c e method in a matrix

bx=−(dt * alpha ) / ( ( dx ) ˆ 2 ) ;

30 by=−(dt * alpha ) / ( ( dy ) ˆ 2 ) ;

a =1+2*( ( dt * alpha ) /(dx ) ˆ 2 ) + 2 * ( ( dt * alpha ) /(dy ) ˆ 2 ) ;

32

gpu A=zeros ( tp ,N+1) ;

34 gpu D=zeros ( tp , tp ) ;

36 f o r j =1 :L+1

temp b=zeros (M+1 ,1) ;

38 f o r i =1:M+1
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temp b ( i )=−s i n ( pi * ( i −1) * dx ) * s i n ( 2 * pi * ( j −1) *dy ) ;

40 end

temp B ( j , : ) =temp b ;

42 end

f o r k =1:L+1

44 gpu A ( ( k−1) * (M+1) +1: k * (M+1) , 1 ) =temp B ( k , : ) ;

end

46

48

f o r i =1:N+1

50 f o r j =1 :M+1

gpu A ( j , i ) =0 ; %the boundary condi t ions of bottom

52 gpu A ( L * (M+1)+ j , i ) =0 ; %the boundary condi t ions of top

end

54 f o r k =1:L

gpu A ( k * (M+1) , i ) =0 ; %the boundary condi t ions of r i g h t

56 gpu A ( k * (M+1) +1 , i ) =0 ; %the boundary condi t ions of l e f t

end

58 end

60

62

% s e t up the c o e f f i c i e n t matrix f o r the e x p l i c i t p ar t s

64 f o r j =1 :L−1

f o r i =2:M

66 gpu D ( j * (M+1)+i , j * (M+1)+ i ) =a ;

gpu D ( j * (M+1)+i , j * (M+1)+i −1)=by ;

68 gpu D ( j * (M+1)+i , j * (M+1)+ i +1)=by ;

gpu D ( j * (M+1)+i , j * (M+1)+i−M−1)=bx ;
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70 gpu D ( j * (M+1)+i , j * (M+1)+ i +M+1)=bx ;

end

72 end

74 % s e t up the c o e f f i c i e n t matrix f o r the boundary p ar t s

f o r i =1:M+2

76 gpu D ( i , i ) =1 ;

gpu D ( tp+1−i , tp+1− i ) =1 ;

78 end

f o r i =1:L

80 gpu D ( (M+1) * i , (M+1) * i ) =1 ;

gpu D ( (M+1) * i +1 , (M+1) * i +1) =1;

82 end

84

%−−−−c a l c u l a t e a l l points by times the c o e f f i c i e n t matrix

86

gpu d=gpuArray ( gpu D ) ;

88 gpu inv d =( eye ( tp ) /gpu d ) ;

90

f o r i =2:N+1

92 gpu a ( : , i ) =gpu inv d *gpu A ( : , i −1) ;

end

94 Gpu A=gather ( gpu a ) ;

96

f o r k =1:N+1

98 temp c=zeros (M+1 ,L+1) ;

f o r j =1 :L+1

100 f o r i =1:M+1
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temp c ( i , j ) =k+i− j ;

102 end

end

104 temp C ( : , : , k ) =temp c ( : , : ) ;

end

106 f o r k =1:N+1

f o r j =1 :L+1

108 f o r i =1:M+1

gpu Exact A ( ( j −1) * (M+1)+i , k )=−exp (−5*( pi ˆ 2 ) * ( k−1) * dt ) * s i n ( pi * ( i

−1) * dx ) * s in ( 2 * pi * ( j −1) *dy ) ;

110 end

end

112 end

114 g p u t o t a l t i m e =toc ;

116

Error=abs (Gpu A−gpu Exact A ) ;

118 Max Gpu Error=max(max( Error ) ) ;

120 f i d = fopen ( ’ data . t x t ’ , ’w’ ) ;

f p r i n t f ( ’ The arguments are M: %f L : %f N: %f \n ’ , M, L ,N) ;

122 f p r i n t f ( ’Max e r r o r of GPU r e s u l t i s %f \n ’ , Max Gpu Error ) ;

f p r i n t f ( ’ Tota l time c o s t s of GPU i s %f sec \n ’ , g p u t o t a l t i m e ) ;

124 f c l o s e ( f i d ) ;

func t ion imp dir 2d gpu

2 %−−−−−−−−Coded by Junchi Zhang

%−−−−−−−−I n s t r u c t o r : Prof Sarah Olson

4 c l e a r

84



c l o s e a l l

6 c l c

8 t i c

%−−−−−def ine the the length and s teps

10 alpha =1;

X=1;

12 Y=1;

N=20; % # of time s teps

14 %# of grid points on the domain x

M=120;

16 %# of grid points on the domain y

L=120;

18 %spacing between the M points on x

dx=X/M;

20 %spacing between the M points on x

dy=Y/L ;

22 %−−−s e t up the proper dt

dt = ( ( dx ) ˆ 2 ) /(6* alpha ) ;

24

%−−−−denote t o t a l points as tp

26 tp =(M+1) * ( L+1) ;

28 %−−−−put the d i f f e r e n c e method in a matrix

bx=−(dt * alpha ) / ( ( dx ) ˆ 2 ) ;

30 by=−(dt * alpha ) / ( ( dy ) ˆ 2 ) ;

a =1+2*( ( dt * alpha ) /(dx ) ˆ 2 ) + 2 * ( ( dt * alpha ) /(dy ) ˆ 2 ) ;

32

gpu A=zeros ( tp ,N+1) ;

34 gpu D=zeros ( tp , tp ) ;
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36 f o r j =1 :L+1

temp b=zeros (M+1 ,1) ;

38 f o r i =1:M+1

temp b ( i )=−s i n ( pi * ( i −1) * dx ) * s i n ( 2 * pi * ( j −1) *dy ) ;

40 end

temp B ( j , : ) =temp b ;

42 end

f o r k =1:L+1

44 gpu A ( ( k−1) * (M+1) +1: k * (M+1) , 1 ) =temp B ( k , : ) ;

end

46

48

f o r i =1:N+1

50 f o r j =1 :M+1

gpu A ( j , i ) =0 ; %the boundary condi t ions of bottom

52 gpu A ( L * (M+1)+ j , i ) =0 ; %the boundary condi t ions of top

end

54 f o r k =1:L

gpu A ( k * (M+1) , i ) =0 ; %the boundary condi t ions of r i g h t

56 gpu A ( k * (M+1) +1 , i ) =0 ; %the boundary condi t ions of l e f t

end

58 end

60

62

% s e t up the c o e f f i c i e n t matrix f o r the e x p l i c i t p ar t s

64 f o r j =1 :L−1

f o r i =2:M

66 gpu D ( j * (M+1)+i , j * (M+1)+ i ) =a ;

86



gpu D ( j * (M+1)+i , j * (M+1)+i −1)=by ;

68 gpu D ( j * (M+1)+i , j * (M+1)+ i +1)=by ;

gpu D ( j * (M+1)+i , j * (M+1)+i−M−1)=bx ;

70 gpu D ( j * (M+1)+i , j * (M+1)+ i +M+1)=bx ;

end

72 end

74 % s e t up the c o e f f i c i e n t matrix f o r the boundary p ar t s

f o r i =1:M+2

76 gpu D ( i , i ) =1 ;

gpu D ( tp+1−i , tp+1− i ) =1 ;

78 end

f o r i =1:L

80 gpu D ( (M+1) * i , (M+1) * i ) =1 ;

gpu D ( (M+1) * i +1 , (M+1) * i +1) =1;

82 end

84

%−−−−c a l c u l a t e a l l points by times the c o e f f i c i e n t matrix

86

gpu d=gpuArray ( gpu D ) ;

88 gpu inv d =( eye ( tp ) /gpu d ) ;

90

f o r i =2:N+1

92 gpu a ( : , i ) =gpu inv d *gpu A ( : , i −1) ;

end

94 Gpu A=gather ( gpu a ) ;

96

f o r k =1:N+1

87



98 temp c=zeros (M+1 ,L+1) ;

f o r j =1 :L+1

100 f o r i =1:M+1

temp c ( i , j ) =k+i− j ;

102 end

end

104 temp C ( : , : , k ) =temp c ( : , : ) ;

end

106 f o r k =1:N+1

f o r j =1 :L+1

108 f o r i =1:M+1

gpu Exact A ( ( j −1) * (M+1)+i , k )=−exp (−5*( pi ˆ 2 ) * ( k−1) * dt ) * s i n ( pi * ( i

−1) * dx ) * s in ( 2 * pi * ( j −1) *dy ) ;

110 end

end

112 end

114 g p u t o t a l t i m e =toc ;

116 Error=abs (Gpu A−gpu Exact A ) ;

Max Gpu Error=max(max( Error ) ) ;

118

f i d = fopen ( ’ data . t x t ’ , ’w’ ) ;

120 f p r i n t f ( ’ The arguments are M: %f L : %f N: %f \n ’ , M, L ,N) ;

f p r i n t f ( ’Max e r r o r of GPU r e s u l t i s %f \n ’ , Max Gpu Error ) ;

122 f p r i n t f ( ’ Tota l time c o s t s of GPU i s %f sec \n ’ , g p u t o t a l t i m e ) ;

f c l o s e ( f i d ) ;
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