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Abstract 

The focus of this project was the design and implementation of a maritime radar 

simulation developed in MATLAB to aid in the understanding of the effects of ocean waves on 

radar. The purpose of this simulation is to be used as a toolbox for the future development of 

detection algorithms for small boats on or near the ocean surface. The need for such toolbox is 

highlighted by two factors. First, little data exists pertaining to radar clutter resultant from deep 

ocean waves. Second, small water craft used for drug running, smuggling, and piracy pose an 

increasing threat to national security and military assets. Such threats can be reduced by using 

our toolbox to develop better detection algorithms. The team delivered three simulations to the 

MIT Lincoln Laboratory staff. The first simulation focused on the integration of a one-

dimensional ocean model and a chirp radar model. The second deliverable extended the first 

simulation to include a two-dimensional ocean model and a boat wake model. The third 

simulation introduced a phased array radar model. These simulations were verified against 

publicly available data and models.  
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Executive Summary 

Currently, small boats and semi-submersible vessels are a threat faced by enforcement 

agencies due to their use in drug-running, smuggling, and piracy. Moreover, there exist 

significant risks to U.S. naval assets from small boats loaded with explosives. A recent instance 

of this problem was the attack on the USS Cole in 2000, where a small boat loaded with 

ordinance exploded against the destroyer’s hull; the aftermath is shown in Figure 1. 

 

Figure 1. Damage to USS Cole after small craft bombing ([Image of USS Cole], 2012). 

In order to thwart such attacks and threats, enforcement agencies are interested in the 

detection of small boats. For the last fifty years, the problem of detecting large targets with radar 

has been well understood; however, there is little understanding and data supporting the 

detection of small boats on the ocean using radar. These detection problems are compounded by 

the fact that rough seas can severely inhibit the detection performance of small boats. A useful 

tool to gain understanding of a problem without data is a simulation. Although many radar 

simulations have been made in the past, they do not account for small vessels and oceanic 

factors. 

The purpose of this project was to develop a robust MATLAB package for use in 

modeling radar returns from a maritime environment with small boats. The model is comprised 

of three major parts: the radar, the ocean, and the target simulations.  The objective was to 

provide an easy to use graphical user interface into which radar, target, and ocean parameters 

could be input to produce one of three different ocean/radar simulations selected by the user. In 
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addition, the simulation leverages parallel compute processes to reduce computation time and 

make the product more useful. Using the data returned from our simulation, signal processing 

experts at MIT Lincoln Laboratory can develop better processing algorithms for the detection of 

small vessels under various sea conditions.  

There are two important components of this project, the first of which is the radar 

simulation. Radar, which is an acronym for RAdio Detection And Ranging, refers to a target 

detection system that has been used since World War II to determine the range, velocity, 

azimuth, and elevation of objects. Radar returns of a pulse compressed chirp radar system were 

modeled in the frequency-pulse-time domain using the electromagnetic signal time delay to point 

targets. Using an inverse Fourier transform over frequency and velocity of propagation of 

electromagnetic waves, we were able to model range processing. Similarly, we used a Fourier 

transform over time and the Doppler shift to extract velocity information from the target. Later, 

we modeled the phase shift between successive elements of a phased array radar to resolve 

targets in azimuth as well. The output of such radar processing is the range time intensity, which 

describes the range vs. time relationship; and the range Doppler profile, which relates range and 

velocity of targets.   

The second major component of this project is the ocean surface model. The ocean is a 

very large and complex fluid system that is still not fully understood by experts in the field. 

There are many instances of energy transfer into the ocean from weather patterns, earthquakes, 

boats, and various other ocean disturbances. The nonlinear nature of these disturbances makes 

the system very complex and difficult to model. However, we used knowledge of fluid 

mechanics and oceanography to model the ocean surface height. Specifically, we modeled a one-

dimensional ocean surface as a sum of sinusoids defined in amplitude and frequency by the 

Pierson-Moskowitz power spectral density. Next, the wave height of the ocean was scaled via the 

Beaufort scale. We modeled a quasi-two-dimensional ocean by replicating the one-dimensional 

model and optionally adding Gaussian variance and smoothing.  

The MATLAB packages produced included models which simulate a one- and quasi-

two-dimensional ocean as well as a chirp radar. These models were combined to produce radar 

returns for both the one- and two-dimensional oceans. Specifically, each sampled point on the 

ocean was considered as a scattering point target. More point targets were added to the 



8 

 

simulation to represent boats and their wakes. The motion of the boats was modeled by basic 

kinematics equations allowing for each target to have an initial velocity as well as a constant 

acceleration. In addition, boat wake was modeled via the cusp wave crests of the Kelvin wake. 

Finally, the ocean scattering characteristics were calibrated to publically available ocean 

scattering distributions. The two models are illustrated in Figure 2 and Figure 3. 

 

Figure 2. Visual representation of non-scanning radar and one-dimensional ocean integration. 

 

Figure 3. Visual representation of non-scanning radar, quasi-two-dimensional ocean, and target integration. 

The group was successful at delivering both one-dimensional and two-dimensional 

integrated models to MIT Lincoln Laboratory. In addition, a phased array component simulation 

was developed and the framework for integration with the quasi-two-dimensional ocean was 

completed. The LLGrid, a supercomputer at Lincoln Laboratory, was leveraged for parallel 
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computing. Using our models and final simulations, we were able to produce time series plots of 

the:  

 one-dimensional ocean surface, 

 quasi-two-dimensional ocean surface, 

o uniformly extrapolated 

o uniformly extrapolated with additive independent variance 

o uniformly extrapolated with additive correlated variance 

  range time intensity plots and range Doppler profiles of 

o small boats, 

o one- and two-dimensional ocean surfaces, 

o small boats and ocean surfaces, and 

o small boats, their wake, and the quasi-two-dimensional ocean surface; and 

 range angle plots and range Doppler profiles (phased array radar) of small boats 

and their wake. 

A sample of these time series plots are provided in the accompanying attachment to this report. 

The framework of our model was constructed such that it is easy for a user to produce these plots 

quickly with parallelization and easily using our graphical user interface. The quasi-two-

dimensional ocean generation graphical user interface is shown in Figure 4 and a sample range 

time intensity plot and range Doppler profiles are shown in Figure 5 and Figure 6. 

 

Figure 4. The quasi-two-dimensional ocean surface generation user interface. 
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Figure 5. Range Doppler profile of one-dimensional ocean and two targets. The solid circle highlights an accelerating 

target while the dashed circle highlights a target with constant velocity. 

 

Figure 6. (left) Range time intensity plot of one-dimensional ocean surface with no targets; (right) range Doppler 

profile of quasi-two-dimensional surface with correlated variance and one target with wake (range = 1300 m, 

traveling toward the radar at 10 m/s at a 30 degree angle relative to the radar). 
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Bold indicates a random process or variable. The symbol (⃑⃑  ⃑) indicates a vector. 

 
∆𝑓   Frequency domain sample interval (Hz)  

Δ𝑚  Difference between computed and empirical modes  

𝜆  Wavelength (m) 

𝜆0  Center frequency wavelength (m)  

𝜆𝑐𝑢𝑠𝑝  Cusp wave wavelength (m)  

𝜇  Mean (units same as data)  

𝜼  Ocean surface height (m) 

𝛈𝟐𝐃  Two-dimensional ocean surface height (m)  

𝛈𝟐𝐃𝐕
  Two-dimensional ocean surface height with variance (m)  

𝛈𝟐𝐃𝐕𝐒
  Two-dimensional ocean surface height with variance and smoothing (m)  

𝜼𝒔𝒄𝒂𝒍𝒆𝒅  Scaled ocean surface (m) 

𝜃  Phased array scan angle (degrees)  

𝜃𝑘𝑒𝑙𝑣𝑖𝑛  Kelvin arm angle (degrees)  

𝜃𝑠[𝑡𝑠]  Phased array radar scan angle as function of slow time  

Θ𝐿𝐾𝐴  Left kelvin arm angle (degrees) 

Θ𝑅𝐾𝐴  Right kelvin arm angle (degrees)  

𝜎  Radar cross section (m
2
), standard deviation (units same as Data)  

𝝈𝜼  Standard deviation of ocean surface (m) 

𝜎2𝐷  Two-dimensional standard deviation (m) 

𝜎0  Normalized radar cross section (unitless)  

𝜏  Target index (unitless)  

𝜑   Doppler phase shift (rad)  

𝜙  Ocean frequency phase (rad) 

𝜙𝑐𝑢𝑠𝑝  Cusp wave propagation angle (degrees)  

𝜙𝑖  Phased array phase shift (rad) 

𝜔  Angular frequency (rad/s) 

𝜔0  Center angular frequency (rad/s) 

𝜔99%  Frequency containing 99% of power of the Pierson-Moskowitz spectrum (rad/s) 

𝜔𝑑  Doppler angular frequency (rad/s)  

𝜔𝑚  Pierson-Moskowitz maximum angular frequency (rad/s) 

𝓇𝑛[𝑡𝑠]  Modified target range (see Appendix A.3) (m)  

𝑎  Acceleration (m/s
2
)  

𝐴  Ocean wave scaling amplitude (m) 

𝐴𝑓  Radar interrogation area (m
2
)  

𝐵  Bandwidth (Hz)  

𝐵𝑤  Beam width (rad)  

𝑐   Speed of electromagnetic signals in a vacuum (m/s)  

𝑐𝑝𝑐(𝑡)  Pulse compressed chirp signal 

𝑐(𝑡)   Chirp signal  

𝑑  Distance between adjacent phased array antennas (m)  
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ℱ  Fourier transform  
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2
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𝐺(𝜔)  Pierson-Moskowitz spectrum (W/rad/s)  

ℎ  Radar height (m)  

�⃑⃑�   Cusp wave crest vector  

𝐻𝑆  Significant wave height (m)  

𝐻𝑆(𝐵𝑒𝑎𝑢𝑓𝑜𝑟𝑡) Beaufort scale significant wave height (m)  

𝑯𝑆(𝑜𝑐𝑒𝑎𝑛 𝑚𝑜𝑑𝑒𝑙)    Ocean model significant wave height (m)  

𝐻𝑆(𝑠𝑐𝑎𝑙𝑒) Significant wave scale (Unitless) 

𝐻𝑥  X component of cusp wave crest vector (m) 

𝐻𝑦  Y component of cusp wave crest vector (m)  

𝑘  Wavenumber for non-dispersive waves (1/m) 

𝑘0  Center wavenumber (1/m) 

𝑘𝑑  Wavenumber for dispersive waves (1/m) 

ℓ  Phased array transmitting element index  

𝐿𝑅𝑂𝐼  Kelvin arm length existing within the region of interest (m)  

𝑚𝑐  Computed mode of the sea scattering distribution  

𝑚𝑒  Empirical mode of a distribution  

𝑛  Phased array antenna receiving element index  

�⃑�   Normal unit vector to surface 

𝑛𝑅𝑂𝐼 𝑒𝑛𝑑 Ending cusp wave crest number within the region of interest  

𝑛𝑅𝑂𝐼 𝑠𝑡𝑎𝑟𝑡 Starting cusp wave crest number within the region of interest  

𝑁  Number of samples, number of cores  

N(μ, 𝜎2) Normal distribution 

𝑁𝜔  Number of angular frequencies  

𝑁𝜔99%   Index of ocean sampling limiting frequency  

𝑁𝐸  Number of phased array antenna elements  

𝑁𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 Number of sampling points required to avoid ocean repetition  

𝑁𝑅𝑂𝐼  Number of targets existing in the region of interest  

𝑁𝑡𝑠  Number of slow times  

NΤ  Number of targets  

𝑃  Portion of code that can be made parallel 

𝑃𝑃𝑇  Position of point target (m) 

𝑃𝑅𝐹     Pulse repetition frequency (Hz)  

𝑟   Range (m)  

𝑟𝜏  Range to target (m)  

𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 Alias-free range (m)  

𝑟ℓ Phased array range from a transmitting antenna to a target (m)  
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𝑟ℓ,𝜏[𝑡𝑠]  Distance from transmitting element to moving target (m)  

𝑟𝑛  Phased array range from a target to a receiving antenna (m)  

𝑟𝑛,𝜏[𝑡𝑠]  Distance from a moving target to receiving element (m)  

𝑟𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 Ocean repetition distance (m) 

𝑟𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  Radar range resolution (m)  

𝑟𝑅𝑂𝐼  Region of interest radius (m)  

RAP  Range angle plot  

𝑅𝐷𝑃  Range doppler profile  

𝐑𝐆𝐌  Random gaussian matrix 

𝑅𝑠  Radar start range (m)  

𝑅𝑇𝐼  Range time intensity 

𝑅𝑇𝐼𝑚𝑠  Mode shifted range time intensity  

𝑅𝑇𝐼𝑚𝑠,𝑑 Mode shifted and dilated range time intensity  

𝑅𝑇𝐼𝑚𝑠,𝑑,𝑚𝑠2 Calibrated range time intensity (twice mode shifted and dilated)  

𝑠𝜏  Target slope (unitless) 

𝑡  Time (s) 

𝑡0  Initial time (s) 

𝑡𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 Alias-free time (s) 

𝑡𝑓  Fast time (s) 

𝑡𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Radar time resolution (s) 

𝑡𝑠  Slow time (s) 

𝑇  Chirp signal duration (s)  

𝑇𝑑𝑤𝑒𝑙𝑙  Dwell time (s) 

𝑇𝑃  Pulse width (s)  

𝑢( )  Unit step function 

𝑢𝑙𝑜𝑠⃑⃑ ⃑⃑ ⃑⃑  ⃑  Radar line of sight unit vector 

𝑈(𝑎, 𝑏) Uniformly distributed random variable between 𝑎 and 𝑏   

𝑣  Velocity (m/s) 

𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 Alias-free velocity (m/s)  

𝑣𝑝ℎ𝑎𝑠𝑒  Phase velocity (m/s)  

𝑣𝑟  Radial velocity (m/s) 

𝑣𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Velocity resolution (m/s)  

𝑉  Radar return (V)  

𝑉𝑏𝑜𝑎𝑡  Boat velocity (m/s)  

𝑉𝑐𝑢𝑠𝑝  Cusp wave velocity (m/s)  

𝑉𝑤𝑖𝑛𝑑  Wind velocity (m/s)  

𝑊𝜔  Windowing function over frequency  

𝑊𝑛  Windowing function over elements 
𝑊𝑡𝑠  Windowing function over slow time 

𝑥𝜏  Absolute target distance (m) 

𝑦𝜏  Absolute target cross-distance (m)  

𝑦𝐸  Absolute element cross-distance (m)  

𝑧   Radar signal two-way travel distance (m)  
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1 Introduction 

Currently, small boats and semi-submersible vessels, such as that depicted in Figure 7, 

are a threat faced by enforcement agencies due to their use in drug-running, smuggling, and 

piracy. Moreover, there exist significant risks to U.S. naval assets from small boats loaded with 

explosives. A recent instance of this problem was the attack on the USS Cole in 2000, where a 

small boat loaded with ordinance exploded against the destroyer’s hull; the aftermath is shown in 

Figure 8. 

 

Figure 7. Semi-Submersible vessel ([Image of semi-submersible vessel], 2012). 

 

Figure 8. Damage to USS Cole after small craft bombing ([Image of USS Cole], 2012). 

In order to thwart such attacks and threats, enforcement agencies are interested in the 

detection of small boats. For the last fifty years, the problem of detecting large targets with radar 

has been well understood; however, there is little understanding and data supporting the 

detection of small boats on the ocean using radar. These detection problems are compounded by 
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the fact that rough seas can severely inhibit the detection performance of small boats. A useful 

tool to gain understanding of a problem without data is a simulation. Although many radar 

simulations have been made in the past, they do not account for small vessels and oceanic 

factors. 

1.1 Purpose 

The purpose of this project was to develop a robust software package for use in modeling 

radar returns from a maritime environment with small vessel targets. The model is comprised of 

three major parts: the radar, the ocean, and the target simulations.  The objective was to provide 

an easy to use graphical user interface into which radar, target, and ocean parameters could be 

input to produce one of three different ocean/radar simulations selected by the user. In addition, 

the simulation leverages parallel compute processes to reduce computation time and make the 

product more useful. Using the data returned from our simulation, signal processing experts at 

MIT Lincoln Laboratory can develop better processing algorithms for the detection of small 

vessels under various sea conditions.  

1.2 Scope 

This project focused on three areas of investigation including the basics of radar, 

oceanography, and parallel computing. Both single antenna chirp radar as well as phased array 

radar were explored and modeled for later combination with ocean surface models. Deep sea 

ocean waves described in amplitude by the Beaufort scale and in frequency composition by the 

Pierson-Moskowitz spectrum were used to construct a simulated ocean. These models require 

enormous data sets which in turn create the requirement for algorithmic efficiency and 

parallelization. MIT Lincoln Laboratory has its own high performance computing cluster, the 

LLGrid, which was utilized to operate on the large data sets in a reasonable amount of time i.e. 

minutes instead of hours. These tasks can then be translated into the following project 

deliverables: 

 Non-scanning one-dimensional ocean radar scattering simulation: This simulation is the 

model of chirp radar interrogating a one dimensional ocean. The ocean has a given length 

which is sampled in wave height at a fixed spatial interval. This model is limited to a 

target moving toward or away from the radar and can only be used for range and velocity 

processing. 
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 Non-scanning quasi-two-dimensional ocean radar scattering simulation: This model 

employs the radar specified above; however, the ocean consists of replications of the one-

dimensional ocean orthogonal to the wave propagation direction. The ocean has optional 

Gaussian variance which is dependent on the time and location of the ocean surface. 

Targets on this ocean support cross-sea movement and optional wake. 

 Phased array radar scattering simulation: This is a component model which uses phased 

array radar on boats and optional wake. The phased array enables range, velocity, and 

azimuth processing. 

 Graphical user interface: The three models are accessible through a graphical user 

interface with input validation. Through the interface, the user can select the model to run 

as well as specify parameters such as wind speed and radar pulse reputation frequency.  

 Parallelization: Each of the three models was parallelized to leverage multiple cores 

present on the majority of computers today as well as the MIT Lincoln Laboratory 

compute cluster, LLGrid. 

1.3 Sponsor 

MIT Lincoln Laboratory, founded in 1951, is known for its ground breaking work in 

radar. The Laboratory was commissioned to enhance the United States air defense. Today, there 

is still a heavy focus on radar and related fields at MIT Lincoln Laboratory. Group 105, the 

group supporting this MQP, focuses on airborne radar systems and techniques. Recently, group 

105 has increased their focus on advanced maritime radar processing. 
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2 Non-Scanning, One-Dimensional Ocean Radar Scattering Simulation 

The first deliverable in this project was a non-scanning radar simulation which 

interrogates a one-dimensional ocean. A visual representation of this simulation is shown in 

Figure 9. The simulation features up and down sea propagation as well as targets with initial 

distance, velocity, and acceleration. The non-scanning, one-dimensional ocean case is the most 

fundamental simulation and can be used as a toolbox for future small boat detection algorithm 

improvement. This simulation is extended in Chapters 3 and 4 for the case of a two-dimensional 

ocean.  

 

Figure 9. Visual representation of non-scanning radar, one-dimensional ocean, and target integration. 

2.1 Background 

This subsection focuses on the background necessary for the implementation of the first 

deliverable. Radar fundamentals are first discussed followed by the relevant principles of 

oceanography. Finally, we discuss the background necessary to integrate radar and ocean 

concepts into a single model with realistic outputs. 

2.1.1 Radar. 

Radar, which is an acronym for RAdio Detection And Ranging, refers to a target 

detection system that has been used since World War II to determine the range, velocity, 

azimuth, and elevation of objects. Specifically, radar uses electromagnetic energy to detect 

targets of interest, which include aircraft, vehicles, people, and even the natural environment. 

Today, radar technology is used in applications ranging from automotive parking devices to 

monitoring the potential launch of guided missiles. Figure 10 shows just one of these 

applications. 
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Figure 10. Terminal Airfield Surveillance Radar. An example of a radar used for airport surveillance (Wolff, 2012). 

One of the primary reasons that radars are so prevalent in our society is that radars are 

resistant to adverse weather conditions that affect competing technology such as optical and 

infrared sensors. In this project, we focused on the simulation of small boats in a maritime 

environment. As such, radar is essential because of the relatively high frequency of occurrence of 

unfavorable weather conditions. In fact, there are “no competitive techniques that can accurately 

measure long ranges in both clear and adverse weather as well as can radar” (Skolnik M. , 2001, 

p. 2). 

Shown in Figure 11, the general principle of radar operation is the same for all radars. An 

important component is the antenna, which can act as a transmitting antenna or a receiving 

antenna. Often, a single antenna is used on a time shared basis to perform both functions. First, 

electromagnetic energy is radiated into space from a transmitting antenna. Next, some of the 

energy reaches a target, where a portion of the energy is reradiated, or scattered, back toward the 

radar. This back-scattered energy is referred to as the echo signal. Then, a fraction of the echo 

signal is collected by the receiving antenna. Finally, the received energy is processed based on 

the end requirement of the user (Toomay & Hannen, 2004, pp. 3-4). 
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Figure 11. General principle of radar operation. A signal is transmitted and a reflected echo signal is received 

(Skolnik M. , 2001, p. 2). 

 The radar antenna is characterized by an antenna pattern, also called the radiation pattern. 

This characteristic refers to the angular dependence of the signal strength of transmitted and 

returned echo signals (Toomay & Hannen, 2004, p. 19). Antenna patterns are generally used to 

describe the antenna hardware that a radar system uses. These patterns will be discussed in 

further detail in Section 4.1. 

Another important characteristic of radar antennas is the polarization used for the 

transmitted electromagnetic wave. This polarization is defined as the orientation of the electric 

field. Although many polarizations exist, including linear, circular, and elliptical, “most radar 

antennas are linearly polarized” (Skolnik M. , 2001, p. 545). Furthermore, linear polarization is 

most common for maritime radar applications. Two linear orientations are important to maritime 

radar: vertical, denoted as VV, and horizontal, denoted as HH. Polarization is particularly 

important for radar scattering from the ocean surface, next discussed in Section 2.1.3. 

2.1.1.1 Chirp signals and pulse trains. 

With such a wide variety of capabilities, there exist several different types of radar. These 

types are best differentiated by the number and location of antennas and the type of waveform 

radiated. When comparing these types of radar, there is always a tradeoff between complexity 

and capability. Perhaps one of the largest differences is between Continuous Wave (CW) radar 

and pulse train radar. CW radar sends a constant, relatively low power signal for a long duration, 

while pulse radar sends short-duration, relatively high power signals repeatedly. Although CW 

radars are relatively easy and cheap to implement, they lack the ability to detect range easily. 
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Pulse train radar does not have this limitation; thus, it is more suitable for the maritime 

environment. Pulse train radar often uses a monostatic antenna configuration; that is, the transmit 

and receive functions are time shared with a single antenna. In the maritime environment, this 

configuration is often advantageous because the phase centers of the transmit and receive 

antennas are the same, which leads to more accurate measurements. 

As shown by the black dark bold line in Figure 12, a pulse train is a periodic rectangular 

envelope waveform in time. In this project, we considered a pulse train to be a sequence of 

pulsed waveforms. The period of the pulse train is an important parameter which is equal to the 

reciprocal of the pulse repetition frequency (𝑃𝑅𝐹). Another important parameter for pulse train 

radar applications is the bandwidth of the pulsed waveform, which has significant impact on 

range resolution, as discussed later. Pulse trains are particularly important to radar because “it is 

a convenient method of increasing the signal duration without a proportionate decrease in the 

bandwidth” (Rihaczek, 1969, p. 287). Increased signal duration is beneficial because it is directly 

related to increased total energy on scattering targets, which increases detection performance. 

The negative ramifications of a decrease in bandwidth are discussed in the following paragraphs. 

When describing pulse train radar systems and associated processing algorithms, it is 

very important to distinguish between slow and fast time. Figure 12 helps to show the difference. 

Slow time refers to pulse-to-pulse time; whereas, fast time refers to inter-pulse time. 

 

Figure 12. A simple pulse train. Thicker, green lines represent slow time and thinner, blue lines represent fast time. 

Pulse width, 𝑇𝑃 is the inverse of pulse repetition frequency. 

Radar systems that use pulse trains can use a variety of waveforms. The most important 

specification for such pulsed waveforms is the bandwidth of the signal as range processing is not 

possible with waveforms that have infinitesimally small bandwidth. For example, Figure 13a 

depicts a signal with infinitesimal bandwidth. It is impossible to determine with certainty the 
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center point, or time origin, of this sinusoidal waveform; thus, it would not be suited for radar 

applications. On the other hand, a filled frequency spectrum waveform, shown in Figure 13b, 

would be ideal for radar range processing because there is a non-repeating waveform with most 

of the power contained within a short time interval. In addition, such peaks are advantageous 

because they allow better separation of two returns, which is related to the time resolution of 

signals: 

 𝑡𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
1

𝐵
 (2 - 1)  

where 𝐵 represents the bandwidth of the signal. Unfortunately, “such broadband signals are 

entirely impractical to transmit” because of the DC component and spectral requirements 

(Rihaczek, 1969). A practical signal with similar unambiguous properties is a narrowband signal, 

shown in Figure 13c. The time function of this signal is amplitude modulated, and the envelope, 

represented by the dotted line, can be used for detection after demodulation. 

 

Figure 13. Relationship between frequency spectrum and time origin ambiguities. (a) Time origin ambiguity of a 

single spectral line; (b) lack of time origin ambiguity by means of a filled spectrum; (c) lack of time origin ambiguity 

of a narrow-band frequency spectrum (Rihaczek, 1969, p. 4). 



30 

 

For this project, we consider only the chirp waveform for pulse train radar because it is 

best suited for the maritime environment (Skolnik M. , 2001, p. 341). A chirp signal is a 

frequency modulated sinusoidal signal, as shown in Figure 14c and as described by Equation (2 - 

2): 

 𝑐(𝑡) = sin (2𝜋 (𝑓𝑖 +
𝑓𝑟𝑎𝑡𝑒

2
𝑡) 𝑡) (2 - 2)  

where 𝑓𝑖 is the starting frequency and 𝑓𝑟𝑎𝑡𝑒 is the rate of frequency modulation expressed by: 

 𝑓𝑟𝑎𝑡𝑒 =
𝐵

𝑇
 (2 - 3)  

such that 𝑇 is the duration of the chirp signal. Note that the frequency spectrum ranges from 𝑓𝑖 to 

𝑓𝑖 + 𝐵. In this report, we use 𝑓0 to describe the center frequency of such a signal such that 𝑓𝑖 + 𝐵 

equals 𝑓0 +
𝐵

2
. Figure 14a shows that the amplitude of a chirp signal is constant over time. In 

addition, the figure shows the relationship between start time, end time, and duration. Figure 14b 

shows the linear frequency modulation in time of the chirp signal. Although these signals can be 

modulated in other ways (quadratic and exponential modulation is common), we use linear 

modulation in this project. If 𝑓1 and 𝑓2, the bandwidth of the chirp, are chosen sufficiently close 

to each other, the bandwidth of the signal satisfies the aforementioned narrow-band frequency 

spectrum that is desired (as in Figure 13c). The time function in Figure 14c does not suggest easy 

distinguishability of the time origin. A common practice is to use pulse compression to improve 

distinguishability (Skolnik M. , 2001, p. 342). Pulse compression works by advancing lower 

frequency content and delaying higher frequency content. The result is shown in Figure 14d, and 

is clearly unambiguous.  
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Figure 14. Linear chirp wave characteristics. (a) Amplitude-time dependence; (b) frequency-time dependence; (c) 

representation of waveform; (d) pulse compressed chirp waveform (Skolnik M. , 2001, p. 344). 

2.1.1.2 Non-Scanning radar and processing techniques. 

In this report, we first investigate the case for non-scanning radar. In this context, we use 

this term to describe monostatic chirp waveform pulse train radar with uniform antenna pattern. 

In a monostatic radar system, the transmit and receive antennas are at the same, fixed location, 

which implies that the total travel distance 𝑧 of any signal from the transmitter to the target to the 

receiver is: 

  𝑧 =  2𝑟 (2 - 4)  

where 𝑟 is the one-way range to target (see Figure 11). A uniform antenna pattern is a constant 

amplitude radiation pattern with no dependence on angle, which implies that the non-scanning 

radar has no ability to resolve targets in azimuth. On the other hand, the non-scanning radar is 

capable of range and velocity detection through range and Doppler processing, respectively. For 



32 

 

example, consider two targets 5 km away from a non-scanning radar which are both travelling 

toward the radar at the same speed where one target is at 0 degrees relative to the radar and the 

other is at 10 degrees relative to the radar. Both targets will be located in the same range and 

velocity bins; therefore, the targets are not resolved. 

 Using radar, range can be found based on the time difference between transmission of the 

signal and the arrival of the echo. This process is illistrated in Figure 15. Electromagnetic waves 

are non-dispersive in air; therefore, they travel at the same speed. The symbol 𝑐, known as the 

speed of light, has a value of 299792458 𝑚/𝑠, which is the speed of electromagnetic waves in a 

vacuum. Using simple kinematics, and substituting Equation (2 - 4), 

 𝑟 =
𝑐𝑡

2
    (2 - 5)  

where 𝑡 is the elapsed time between transmission and reception of the radar signal. The notion of 

time resolution discussed in the previous section can be extended to range resolution by 

substituting 𝑡 in Equation (2 - 5) with 𝑡𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in Equation (2 - 1): 

 𝑟𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑐

2𝐵
    (2 - 6)  

Radar engineers typically use the term “range bin” to specify the interval of physical ranges that 

map to a specific discrete range. 

 

Figure 15. Range processing (Wolff, 2012). 

In range processing, there exists an unambiguous range over which the received signal is 

associated with the transmitted pulsed radar signal. In maritime radar, relatively shorter ranges 
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(less than 20km) are expected, and range will generally alias in discrete Fourier processing 

(discussed in Section 2.2.1.2) before it becomes theoretically ambiguous. The aliasing time is 

(Lathi, 2005, p. 542): 

 𝑡𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 =
1

∆𝑓
  (2 - 7)  

where Δ𝑓 is the sample interval of the frequency domain. Similarly, the notion of alias-free range 

can be extended with substitution of Equation (2 - 5): 

 𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 =
𝑐

2∆𝑓
  (2 - 8)  

These concepts are similarly discussed by Skolnik (2001, p. 2). 

In addition to range information, velocity information is another useful result of radar 

processing. Doppler processing is the method used to determine the velocity of moving targets. 

This process is performed over multiple pulses, thus over slow time. The central theory 

underlying Doppler processing is the Doppler shift, which is the change in frequency of a wave 

due to relative motion. In this case, the Doppler shift is not measured relative to the previously 

discussed chirp waveforms. Instead, the Doppler shift is measured according to the shifted pulse 

train frequency. This change of frequency can be determined by finding the rate of change of 

phase (Skolnik M. , 2001, p. 105). A derivation of Doppler shift follows: The round trip total 

phase change 𝜑 of the pulsed signal with wavelength 𝜆 for a target at range 𝑟 is 

 𝜑 = 2𝜋 ∙
2𝑟

𝜆
=

4𝜋𝑟

𝜆
 (2 - 9)  

The rate of change of phase rate, as described, is equal to Doppler angular frequency: 

 𝜔𝑑 =
𝑑𝜑

𝑑𝑡
=

4𝜋

𝜆
∙
𝑑𝑟

𝑑𝑡
=

4𝜋𝑣𝑟

𝜆
= 2𝜋𝑓𝑑 (2 - 10) 

where 𝑓𝑑 is the Doppler frequency shift and 𝑣𝑟 is the radial velocity. Rearranging Equation (2 - 

10): 

 𝑓𝑑 =
2𝑣𝑟

𝜆
=

2𝑓𝑖𝑣𝑟

𝑐
 (2 - 11) 

For radar, Doppler shift is the measured quantity and velocity is the desired result: 

 𝑣𝑟 =
𝑓𝑑𝑐

2𝑓𝑖
 (2 - 12) 

Positive velocities represent targets moving toward from the radar; inversely, negative velocities 

represent targets moving away the radar. 



34 

 

 Similar to range processing, resolution and alias-free range are important to Doppler 

processing. The velocity resolution is given by: 

 𝑣𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑐

2𝑓0𝑇𝑑𝑤𝑒𝑙𝑙 
 (2 - 13) 

where the signal frequency spectrum ranges from 𝑓0 −
𝐵

2
 to 𝑓0 +

𝐵

2
 and 𝑇𝑑𝑤𝑒𝑙𝑙 is the time on 

target, in other words, the interval of slow time over which Doppler processing is computed. 

When discretized, velocity resolution can be expressed as 

 𝑣𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑐 ∙ 𝑝𝑟𝑓

2𝑓0𝑁 
 (2 - 14) 

where N is the number of pulses in the sample of time. The alias-free velocity can be determined 

by: 

 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = ±
𝑐 ∙ 𝑝𝑟𝑓

4𝑓0 
 (2 - 15) 

The full alias-free range is described by 𝑐 ∙ 𝑝𝑟𝑓/(2𝑓0), but it is common to split this range into 

positive and negative velocities. 

One very important approximation that is used for modeling Doppler response is the 

quasi-static approximation. This approximation allows the assumption that the target does not 

move during inter-pulse time (Griffiths, 1999).  Consider a target moving toward a radar. 

Electromagnetic energy is sent from the transmitting antenna at some time 𝑡0. At this time, the 

target is at range 𝑟. Because the energy is travelling at the speed of light, it takes a fraction of a 

second to reach the target; call this time 𝑡𝜀. Of course, the target has been moving during this 

fraction of a second; called the radial distance travelled 𝑟𝜀. In this scenario, the result of range 

processing would indicate that the target is at range 𝑟 − 𝑟𝜀 at time 𝑡 + 𝑡𝜀. Using this information, 

it is possible to modify Equation (2 - 5). However, this adjustment is not necessary in our 

simulation because 𝑟𝜀 is insignificantly small, and therefore, has negligible effects. Using the 

quasi-static approximation, we can model the range of a moving target with Equation (2 - 5). 

2.1.2 One-dimensional ocean model. 

The ocean is a very large and complex fluid system that is still not fully understood by 

experts in the field. There are many instances of energy transfer into the ocean from weather 

patterns, earthquakes, boats, and various other ocean disturbances. The nonlinear nature of these 

disturbances makes the system very complex and difficult to model. However, there is a general 
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understanding and knowledge of fluid mechanics and oceanography that can be used to describe 

a basic ocean. Ocean waves have a significant effect on radar returns, and therefore, are 

important to our model. Work toward this model started with research into oceanography and 

ocean sea states. 

Unlike electromagnetic waves in air, deep ocean waves are dispersive, that is, the 

velocity of ocean wave propagation is not constant for different frequencies or wavelengths. The 

dispersion of ocean waves depends on the depth of the ocean. Specifically, as the depth 

increases, the water waves are more dispersive. In this project, we consider the deep water 

dispersion case which requires that the depth of the ocean be greater than half of one wavelength 

of the largest ocean wave. Additionally, we use the term phase velocity to describe the velocity 

at which the crest of an ocean wave travels.  

The dispersion relation for deep water waves is described by Equation (2 - 17) where 𝑘𝑑 

is the wave number for dispersive waves, or spatial frequency, described by Equation (2 - 16), 𝑔 

is the acceleration of gravity, and 𝜆 is the wavelength of a wave. These equations show that 

angular frequency of an ocean wave has a nonlinear relation to wavelength, and is proportional 

to acceleration of gravity. 

 𝑘𝑑 = 
2𝜋

𝜆
 (2 - 16) 

   

 𝜔2 = 𝑘𝑑𝑔 =
2𝜋𝑔

𝜆
 (2 - 17) 

The general velocity of a wave can be described as the product of the wavelength and the 

frequency as in (2 - 18). From this equation, we can derive the equation for phase velocity of a 

dispersive wave at a given angular frequency, wave number, or wavelength, as shown in 

Equation (2 - 19). 

 𝑣 = 𝜆𝑓 (2 - 18) 

   

 𝑣𝑝ℎ𝑎𝑠𝑒 = 
𝑔

𝜔
= √

𝑔

𝑘𝑑
= √

𝜆𝑔

2𝜋
 (2 - 19) 

Equation (2 - 19) shows that the phase velocity of a given ocean frequency is inversely 

proportional to the angular frequency. Squaring both sides of Equation (2 - 19) shows that 

wavelength is proportional to the phase velocity squared. 



36 

 

With the aid of these equations, we can now emphasize the importance of the dispersion 

relation. Figure 16 shows two graphs: a graph of the phase velocity versus wavelength of an 

ocean wave and a graph of the angular frequency versus wavelength. In Figure 16a, notice that 

the phase velocity of different waves is not constant, in opposition to the electromagnetic wave 

case in air. Figure 16b illustrates that angular frequency is inversely proportional to the square 

root of the wavelength. These plots highlight that for a very short wavelength, the wave will have 

a relatively low phase velocity and high angular frequency, as one would expect. 

 

 

Figure 16. Graphical representation of the dispersion relation. Figure 16(a) shows the phase velocity vs. wavelength 

of an ocean wave. Figure 16(b) shows the angular frequency vs. wavelength of an ocean wave. 

Ocean waves are created primarily by a wind blowing over the ocean. There is an energy 

transfer from the wind to the ocean that varies with wind speed. The energy transfer also depends 

on the length and width of ocean over which the wind is blowing. The fetch is the length over 

which the wind blows. The duration of time over which the wind blows is another factor that 

affects the ocean waves. The duration is important in developing a sea, as longer times allow for 

more energy to be transferred into the sea. A fully developed sea occurs when the energy transfer 

reaches equilibrium with energy losses due to friction and other internal losses. (Kanevsky, 2009, 

p. 9) 
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Short wavelength waves, referred to as capillary waves, are created initially when the 

ocean is subjected to wind. Capillary waves have wavelengths of a few centimeters with 

frequencies greater than 48 Hz. For longer durations of constant wind speeds, energy is 

transferred to longer wavelength waves called capillary-gravity waves with frequencies between 

5 and 48 Hz. This process continues to transfer energy into even longer wavelength waves called 

gravity waves with frequencies less than 5 Hz. Gravity waves can become hundreds of meters 

long during this process. At some point in time, the sea state will finally be considered a fully 

developed sea. We only consider the case of a fully developed sea in our model. (Kanevsky, 

2009, pp. 14-15) 

A fully developed sea can be described by its spectral composition. The Pierson-

Moskowitz spectrum was developed in 1964 and is a well-known approximation for the power 

spectral density of a fully developed sea. The spectrum is an approximation because it is an 

idealized best-fit curve of empirical results. The Pierson-Moskowitz spectrum is a function of 

angular frequency at a specified wind speed and is described by the following equations: 

 𝐺(𝜔) = 8.1 × 10−3𝑔2𝜔−5𝑒

 

−1.25(
𝜔𝑚
𝜔

)
4

 
(2 - 20) 

   

 𝜔𝑚 =
0.83𝑔

𝑉𝑤𝑖𝑛𝑑
 (2 - 21) 

where  𝑉𝑤𝑖𝑛𝑑 is the velocity of the wind, 𝑔 is the acceleration due to gravity, 𝜔𝑚 is the maximum 

angular frequency, and 𝜔 is the angular frequency (Kanevsky, 2009, pp. 14-15). Figure 17 shows 

the spectrum resultant from various wind speeds.  
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Figure 17. Power spectral density of ocean waves represented by the Pierson-Moskowitz spectrum. Plotted for wind 

speeds of 1, 5, 10, 15, 20, 25, and 30 knots. 

As can be seen in Figure 17, the peak of the spectrum at lower wind speeds has relatively 

low power and high frequency. As the wind speed increases the peak of the spectrum increases 

in power while decreasing in frequency. This dependence is expected, as at higher wind speeds 

the ocean waves are composed of longer wavelength waves with higher amplitudes. (Kanevsky, 

2009, p. 15) 

The Beaufort wind scale relates the dependence of the ocean surface amplitude on wind 

speed in deep water. This scale is universally used by the maritime community and has been 

significantly updated since its creation. The Beaufort scale maps ocean roughness into 13 

categories from degree 0 (calm) to degree 12 (hurricane). The National Oceanic and 

Atmospheric Administration (NOAA) lists degree, description, wind speed, and wave height of 

the categories in the scale. Table 1, shown below, summarizes this relationship (The Beaufort 

Wind Scale, 2007). 

Table 1. Beaufort wind scale. 

Degree Description Wind Speed (knots) Wave Height (m) 

0 Calm 0 0 
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1 Light Air 1-3 0.1 

2 Light Breeze 4-6 0.2 - 0.3 

3 Gentle Breeze 7-10 0.6 - 1 

4 Moderate Breeze 11-16 1 - 1.5 

5 Fresh Breeze 17-21 2 - 2.5 

6 Strong Breeze 22-27 3 - 4 

7 Near Gale 28-33 4 - 5.5 

8 Gale 34-40 5.5 - 7.5 

9 Strong Gale 41-47 7 - 10 

10 Storm 48-55 9 - 12.5 

11 Violent Storm 56-63 11.5 - 16 

12 Hurricane Over 73 Over 16 

 

Significant wave height (SWH) is used in oceanography as a standard measure of relative 

wave height. Significant wave height is defined as the mean of the highest one-third of ocean 

waves measured from crest to trough. It can also be approximated by four times the standard 

deviation of the ocean surface, as shown in Equation (2 - 22)  (Kanevsky, 2009, p. 16): 

 𝐻𝑆 ≈ 4𝜎 (2 - 22) 

The significant wave height can be used to validate the correlation between wind speed and 

statistical ocean surface height measurements through the Beaufort scale. 

2.1.3 Integration and calibration. 

As claimed in Chapter 1, the problem of detection of small boats on rough ocean surface 

is not well understood. However, work has been performed to begin understanding the radar 

scattering phenomenology of the ocean. A useful term when describing this phenomenology is 

ocean clutter, which describes the radar return of the ocean. In Section 2.2.2, techniques for 

calibrating the significant wave height of the ocean to known heights using the Beaufort scale 

were presented. In the exact same manner, there exists scattering characteristics from collected 

data to which it is possible to calibrate simulated radar scatter. 
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One major characteristic suggested by ocean scatter data is the correlation between radar 

return signal strength and the slope of the ocean. More specifically, the power of radar returns is 

directly proportional to the ocean wave slope. This phenomenon can be most simply described 

by ray optic theory. In the maritime environment, radars are elevated and angled down toward 

the ocean. Another characteristic descriptor of maritime radar applications is a relatively low 

grazing angle, which is the angle of incidence of the transmitted electromagnetic waves to a flat 

ocean surface (Skolnik, 2008, p. 15.9). As shown in Figure 18, when the slope of the ocean is 

relatively high and positive, a relatively high amount of energy returns to the receiving antenna. 

On the other hand, when the slope of the ocean is low or negative, less energy returns. 

 

Figure 18. Effect of ray optics on ocean interrogation. Ocean modeled from 1000 to 2000 m. The shaded V represents 

the location and angle of a radar. The dark, black line represents high back-scatter on a high, positive-sloped section 

of ocean. The dotted, red line represents low back-scatter on a low, positive-sloped section of ocean. 

 Radar Cross Section (RCS) is an important parameter for target modeling. RCS, denoted 

as 𝜎, helps describe the detectability of a target to radar. A higher RCS indicates a more 

detectable target. Some factors that affect the radar cross section include the material, the 

absolute size of the target, the incident angle, the reflected angle, and the polarization. In effect, 

RCS is a measure of the power of the return signal from a target. It is often beneficial to model 

the normalized RCS, that is (Skolnik, 2008, p. 15.7): 

 𝜎0 =
𝜎

𝐴𝑓
 (2 - 23) 

where 𝐴𝑓 is the surface area of the interrogated environment. The full ramifications of cross 

section are out of the scope of our project; thus, we limit our background of the subject to just 

what is necessary for modeling. 
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 In reality, the ocean is a dynamic system with two-dimensional propagation. For this first 

deliverable, we model only one-dimensional propagation. Although one-dimensional 

propagation is a very crude approximation to a two-dimensional model, there are many 

advantages to such a model. The biggest advantage is that the up-sea and down-sea propagation 

(one-dimensional propagation toward or away from the radar, respectively) are the most 

stressing cases for target detection. These directions of propagation are the most stressing cases 

because the ocean has the highest cross section as compared to other directions of propagation. 

Therefore, the relatively highest amount of energy is returned to the receiver, and it is more 

difficult to distinguish a target in higher ocean clutter. 

One of the most important characterizations of radar scatter is the distribution of power 

content. In 1984, Ewell, Tuley, and Horne investigated this distribution and the associated 

statistics of both VV and HH polarized radar using X-band radar at a grazing angle of five 

degrees (pp. 100-104). In addition, the compressed pulse length was 10 ns and the radar had 2.4 

degrees of azimuth beam width (discussed in Section 4.1). Wind speed ranged from 13-24 knots. 

Ewell et al. found that the distribution was roughly log-normal, as shown by Figure 19. A log-

normal distribution is Gaussian on a logarithmic scale. This distribution is specified by two 

parameters: standard deviation, 𝜎; and mean, 𝜇. 

 𝑓(𝑥; 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒

(ln(𝑥)−𝜇)2

2𝜎2 ,     𝑥 > 0 (2 - 24) 

 A Rayleigh distribution also approximated the ocean scattering statistics, but the log-

normal distribution is more convenient for distribution fitting during modeling. Long (2001), 

compiled the data from Ewell et al. and performed more detailed statistics, shown in Table 2. In 

our representation of these data, we assumed a linear relation between wind speed and the mean 

and standard deviation intervals reported by Long. The probability density functions and 

cumulative density functions for these data are shown in Figures 20 through 22. 
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Figure 19. Ocean scattering distribution. The solid line represents the actual data, and the dashed lines represent fitted 

log-normal and Rayleigh distributions (Long, 2001, p. 239).  

Table 2. Log-Normal parameters for ocean scattering at various polarizations and wind speeds (Long, 2001). 

Polarization 
Wind Speed 

(knots) 
Mean 

𝜎0 (𝑑𝐵) 
Standard Deviation 

𝜎0 (𝑑𝐵) 

Vertical 

13 -34.3 3.2 

18.5 -29.55 3.35 

24 -24.8 3.5 

Horizontal 

13 -45.1 6.1 

18.5 -37.7 6.6 

24 -30.3 7.2 
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Figure 20. VV polarized log-normal probability density function. The plots on the left show a normal scale and the 

plots on the right show a log-normal scale. 

 

Figure 21. HH polarized log-normal probability density function. The plots on the left show a normal scale and the 

plots on the right show a log-normal scale. 
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Figure 22. Cumulative distribution functions of log-normal ocean scatting parameters.  

2.2 Methods 

In this section, we present the implementation of both the radar model and the ocean 

model in the case of a non-scanning, one-dimensional ocean scattering simulation. We conclude 

the section with a discussion of how the two component models interact together and a 

discussion of their combination into a single software simulation package. 

2.2.1 Radar. 

In this section, we explore the methods of modeling non-scanning radar. We break this 

discussion into five parts: 1) chirp waveform modeling; 2) target modeling; 3) range processing; 

4) Doppler processing; and 5) range-Doppler processing.  

2.2.1.1 Chirp waveform modeling. 

Recall that chirp waveforms are often used for pulse train radar in the maritime 

environment. Our goal is to model the returned pulse compressed chirp waveforms. It is possible 

to model the chirp signal and perform pulse compression using a matched filter. However, a 

simpler method that is approximately equivalent is to use a stepped frequency representation of 

the chirp waveform whose matched filter is an inverse Fourier transform. First, the time and 

frequency representations of a chirp signal with center frequency 20 𝐺𝐻𝑧 and bandwidth 
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20 𝐺𝐻𝑧 were plotted, as shown in Figure 23. Such a large bandwidth was chosen only for 

demonstration purposes. Because the signal is modeled discretely, the chirp signal is accurately 

termed a stepped frequency waveform. Specifically, the discrete implementation implies that the 

frequency vs. time relation in Figure 14b is a step function. In MATLAB, Figure 23a was 

computed using discrete time and Equations (2 - 2) and (2 - 3). Figure 14b was generated by 

taking the discrete Fourier transform (DFT). In this paper, all DFTs were implemented using a 

fast Fourier transform (FFT). 

 

Figure 23. Time and frequency representation of 10 − 30 𝐺𝐻𝑧 chirp waveform. (a) Shows the time representation 

and (b) shows the single-sided frequency representation. In (b), the blue, solid line represents the single-sided 

frequency domain of the chirp waveform and the red, dashed line represents what we use to model a pulse 

compressed chirp waveform.  

A stepped frequency waveform was modeled as a frequency shifted 𝑔𝑎𝑡𝑒 function (a 

𝑟𝑒𝑐𝑡 function). Pulse compression for the stepped frequency waveform is achieved via an 

inverse Fourier transform. The inverse Fourier transform of a 𝑔𝑎𝑡𝑒 function starting at 𝜔1 and 

ending at 𝜔2 is an amplitude scaled, modulated, normalized 𝑠𝑖𝑛𝑐 function, as denoted by 

Equation (2 - 25) and derived in Appendix A.1. This type of time domain signal is exactly the 

desired form shown in Figure 14d.  
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 𝑐𝑝𝑐(𝑡) = ℱ−1[𝑢(𝜔 − 𝜔1) − 𝑢(𝜔 + 𝜔2)] = 𝐵 ∙ 𝑒𝑗𝜔0𝑡𝑓𝑠𝑖𝑛𝑐(𝐵𝑡𝑓) (2 - 25) 

Where  𝑐𝑝𝑐(𝑡) is the pulse compressed chirp signal, 𝜔 is the angular frequency, 𝜔0 is the center 

angular frequency (𝜔0 =
𝜔2−𝜔1

2
= 2𝜋𝑓0), and 𝑡𝑓 represents fast time. Due to the simplicity of 

this approximation, it is more convenient to represent and discuss the chirp signal in the 

frequency domain. Moreover, because the chirp signal is real-valued, the conjugate symmetry 

property holds (Lathi, 2005, p. 682): 

 𝑋(−𝜔) = 𝑋∗(𝜔) (2 - 26) 

The conjugate symmetry property allows us to represent the pulse compressed chirp waveform 

simply with a single-sided frequency spectrum. 

2.2.1.2 Range processing. 

Recall that range processing is predicated on the time difference of transmitted and 

received radar signals, and serves the purpose of finding the range response. To accomplish 

range processing, it was first necessary to model the time delay of chirp signals. Modeling the 

time delay was performed by using a time shifting transfer function in the frequency domain 

(Lathi, 2005, p. 705): 

 𝑓(𝑡𝑓 − 𝑡0) ⇔ 𝐹(𝜔)𝑒−𝑗𝜔𝑡0   (2 - 27) 

where 𝑡0 is the time shift in fast time, 𝑓 is a generic function, and 𝐹 is the Fourier transform of 𝑓. 

In this case, we know that the time shift is defined by the range to a target. Solving Equation (2 - 

5) for 𝑡 and substituting in Equation (2 - 27): 

 𝑓 (𝑡𝑓 −
2𝑟

𝑐
) ⇔ 𝐹(𝜔)𝑒−2𝑗𝜔𝑟/𝑐 = 𝐹(𝜔)𝑒−2𝑗𝑘𝑟 (2 - 28) 

Recognize that the non-dispersive wavenumber, 𝑘 = 𝜔/𝑐, is a function of 𝜔, but we leave the 

radar return equation in terms of 𝑘 for simplicity. We can now apply this time shift function to 

chirp waveforms. The chirp radar range processing system model is represented in Figure 24, 

where 𝐶𝑝𝑐(𝜔) represents the Fourier transform of 𝑐𝑝𝑐(𝑡). 

 

Figure 24. Representation of the range processing system. The “black box” represents a system with the indicated 

transfer function. 

𝑒−2𝑗𝑘𝑟 
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𝑐𝑝𝑐 (𝑡𝑓 −
2𝑟

𝑐
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We denote the (discretized) radar return of a stationary point target at range 𝑟 as 

 𝑉[𝜔] = 𝐶𝑝𝑐[𝜔]𝑒−2𝑗𝑘𝑟 (2 - 29) 

To further simplify processing, we note that if we limit our consideration of the frequency 

domain to only the range from 𝜔1 to 𝜔2, then 𝐶𝑝𝑐[𝜔] = 1 and Equation (2 - 29) simplifies to: 

 𝑉[𝜔] = 𝑒−2𝑗𝑘𝑟,     𝜔1 ≤ 𝜔 ≤ 𝜔2 (2 - 30) 

 In this consideration, no information or accuracy is lost because the amplitude spectrum is 0 

outside of this range. In every following radar return equation in this paper, we assume 𝜔1 ≤

𝜔 ≤ 𝜔2 

All values must be discretized and wave number must be sampled in order to model the 

radar returns in MATLAB. Wave number was approximated by equal space sampling the 

angular frequency spectrum 𝑁 times, then dividing by 𝑐. Given the maximum desired alias-free 

range and radar bandwidth, 𝑁 can be found according to: 

 𝑁 = ⌈
𝐵

Δ𝑓
⌉ + 1 = ⌈

2𝐵 ∙ 𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒

𝑐
⌉ + 1 (2 - 31) 

The next step in range processing was to find the time response of the radar return. The 

analytical solution can be easily extended starting with Equation (2 - 25) and applying Equation 

(2 - 27): 

 𝑐 (𝑡𝑓 −
2𝑟

𝑐
) = ℱ−1[𝑉(𝜔)] = 𝐵 ∙ 𝑒𝑗𝜔0(𝑡−

2𝑟
𝑐

)𝑠𝑖𝑛𝑐 (𝐵 (𝑡𝑓 −
2𝑟

𝑐
)) (2 - 32) 

In modeling, the determination of time response of the radar return from the frequency 

representation is performed using the inverse discrete Fourier transform (IDFT). In 

implementation, we used the inverse fast Fourier transform (IFFT).  It is this underlying discrete 

Fourier transform that causes aliasing discussed in Section 2.1.1.2. To efficiently use the IFFT, 

and additionally gain interpolation, the radar return vector is zero padded to the next power of 2 

above the size of the radar return vector. 

The resulting function from the previous step is available in the fast time domain. We 

convert from (fast) time to range using (2 - 5). In summary, the processing flow is depicted in 

Figure 25. Note that we represented the power in dB and scaled the maximum power to 0 dB. 
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Figure 25. Work flow diagram of range processing. (top) Time response and (bottom) range response of target 500 𝑚 

away from radar.  

The process just described always produces a range response that starts at 0 range and 

extends to the alias-free maximum range. A caveat to range processing is that it can become very 

computationally intensive if high alias-free maximum range is desired because 𝑁 becomes large. 

This caveat can be avoided if a start range of 0 is not required by multiplying by an extra time 

shift transfer function in the radar return: 

 𝑉[𝜔] = 𝑒−2𝑗𝑘𝑟𝑒−2𝑗𝑘∙𝑅𝑠 (2 - 33) 

where 𝑅𝑠 is the new start range. 

 Consider the case of two point targets. The radar returns of these targets can be modeled 

as a sum of each individual radar response: 

 𝑉[𝜔] = 𝑒−2𝑗𝑘∙𝑅𝑠(𝑒−2𝑗𝑘𝑟1+𝑒−2𝑗𝑘𝑟2) (2 - 34) 

where 𝑟1 and 𝑟2 represent the range of the first and second target, respectively. This concept of 

multiple targets can be extended where 𝜏 is the target index and NΤ is the number of total targets: 

 𝑉[𝜔] = 𝑒−2𝑗𝑘∙𝑅𝑠 ∑𝑒−2𝑗𝑘𝑟𝜏

NΤ

𝜏=1

 (2 - 35) 

Now consider two targets that are close to each other in range. The side lobes of the 𝑠𝑖𝑛𝑐 

function make it harder to distinguish two close targets. For example, consider an attempt to 

𝑉[𝜔] = 𝑒−2𝑗𝑘𝑟 

ℱ−1 𝑉[𝜔] 

= 𝑐(𝑡𝑓 − 𝑡𝑜) 

𝑟 =
𝑐 ∙ 𝑡𝑓

2
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distinguish the two targets in Figure 26 using a threshold detection algorithm. The minimum 

threshold level that could be chosen is −13.2 𝑑𝐵. However, this minimum threshold level can be 

lowered through sidelobe reduction (Levanon, 1988, p. 271). Sidelobe reduction is accomplished 

through frequency domain windowing: 

 𝑉[𝜔] = 𝑊𝜔[𝜔]𝑒−2𝑗𝑘∙𝑅𝑠 ∑𝑒−2𝑗𝑘𝑟𝜏

NΤ

𝜏=1

 (2 - 36) 

where 𝑊𝜔[𝜔] is a window function over angular frequency. A common window that is used in 

this application is the Hamming window because it significantly reduces sidelobe levels while 

maintaining much of the main beam width. The example presented in Figure 26 with Hamming 

windowing is shown in Figure 27. Note that distance on the abscissa is directly related to time. In 

particular, the maximum sidelobe is −42.4 𝑑𝐵 and the beam width increased by approximately 

46%. Kaiser windowing, shown in Figure 28, is also used throughout this project for optimal 

sidelobe reduction (which is often more important than main beam width). For the Kaiser 

window, the maximum sidelobe is −92.4 𝑑𝐵 and the beam width has increased by 122% 

relative to the non-windowing example. 

 

Figure 26. Range response of two close targets. Target 1 and target 2 are located 500 and 502 m away from the radar, 

respectively. In this example, the center frequency was 10 GHz and the bandwidth was 1 GHz. 
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Figure 27. Range response of two close targets, Hamming windowed. Target 1 and target 2 are located 500 and 502 

m away from the radar, respectively. The center frequency was 10 GHz and the bandwidth was 1 GHz. 

 

Figure 28. Range response of two close targets, Kaiser windowed (𝛼 = 12). Target 1 and target 2 are located 500 and 

502 m away from the radar, respectively. The center frequency was 10 GHz and the bandwidth was 1 GHz. 
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We note that the power of the transmitted signal decreases inversely proportional to the 

square of the one-directional range, which implies that we should have modified (2 - 30) to the 

form: 

 𝑉[𝜔] =
𝑒−2𝑗𝑘𝑟

𝑟4
 (2 - 37) 

Although such modification would make our model more physically realistic, we choose to omit 

this consideration because the effects of the 1/𝑟4 term are often filtered out in radar processing. 

By not modeling the 1/𝑟4 term, we eliminate the need to filter in our simulation. 

2.2.1.3 Doppler processing. 

Doppler processing was modeled using the quasi-static approximation such that a target 

in motion could be considered as a stationary target at every slow time. This approximation 

allows a linear time invariant system representation of Doppler processing. To model movement 

in range, we simply use 

 𝑟[𝑡𝑠] = 𝑑0 + 𝑣𝑡𝑠 +
𝑎𝑡𝑠

2

2
 (2 - 38) 

where 𝑑0 represents initial distance, 𝑣 represents the velocity of a target, 𝑎 represents the 

acceleration of a target, and 𝑡𝑠 represents slow time. In a one-dimensional model, cross range is 

not measured, so the direction of movement can only be toward (positive velocities) or away 

(negative velocities).  

 The radar return concept can be extended from Equation (2 - 30) for a moving target. 

Here, we fix angular frequency to 𝜔0, the center angular frequency, and by relation, we fix wave 

number to 𝑘0. We vary slow time instead of angular frequency.  

 𝑉[𝑡𝑠] = 𝑒−2𝑗𝑘0𝑟[𝑡𝑠] (2 - 39) 

Notice that this signal is of the form of a frequency shift in the frequency domain. Doppler 

processing also supports the radar return of multiple targets: 

 𝑉[𝑡𝑠] = ∑𝑒−2𝑗𝑘0𝑟𝜏[𝑡𝑠]

NΤ

𝜏

 (2 - 40) 

In Appendix A.2, we solve for the analytical solution of the Doppler frequency 

representation of this radar return using a discrete Fourier transform (DFT). In implementation, 

we used the fast Fourier transform (FFT). We limit 𝑟(𝑡𝑠) to 𝑣𝑡𝑠 for simplicity of derivation, and 
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will later show the effect of acceleration and initial distance on the Doppler response. Frequency 

𝜔𝑑 is the Doppler angular frequency and 𝑇𝑝 is the inter-pulse time (
1

𝑝𝑟𝑓
): 

𝑉(𝑡𝑠) ⇔  𝜋𝑇𝑝𝑒
−𝑗(2𝑘0𝑣+𝜔𝑑)𝑡0𝑠𝑖𝑛𝑐 (

(2𝑘0𝑣 + 𝜔𝑑)𝑇𝑝

2𝜋
) = 𝑉(𝜔𝑑 + 2𝑘0𝑣) (2 - 41) 

The analytical solution is an amplitude scaled, modulated 𝑠𝑖𝑛𝑐 function in Doppler frequency. 

Naturally, the Doppler frequency domain ranges from 0 to 𝐹𝑠,𝐷𝑜𝑝𝑝𝑙𝑒𝑟.  The function is circularly 

shifted by 𝐹𝑠,𝐷𝑜𝑝𝑝𝑙𝑒𝑟/2 so that the domain effectively ranges from −𝐹𝑠,𝐷𝑜𝑝𝑝𝑙𝑒𝑟/2  to 𝐹𝑠,𝐷𝑜𝑝𝑝𝑙𝑒𝑟/2. 

This circular shift allows us to model targets moving both toward and away from the radar. The 

final step is to use the Doppler shift, Equation (2 - 12), to convert Doppler frequency to radial 

velocity. 

 Because the form of the Doppler processing 𝑠𝑖𝑛𝑐 function is the same as the form as the 

range processing 𝑠𝑖𝑛𝑐 function, the discussion on the use of windowing for sidelobe reduction 

applies to Doppler response sidelobe reduction as well: 

 𝑉[𝑡𝑠] = 𝑊𝑡𝑠
[𝑡𝑠]∑𝑒−2𝑗𝑘0𝑟𝜏[𝑡𝑠]

NΤ

𝜏

 (2 - 42) 

In summary, the processing flow is depicted in Figure 29. 
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Figure 29. Work flow diagram of Doppler processing. (top) Doppler frequency response and (bottom) velocity 

response of target traveling away from radar at 30 𝑚/𝑠, 𝑓0 = 10 𝐺𝐻𝑧. 

When a target is accelerating, the same Doppler processing algorithm is used. As shown 

in Figure 30, the peak of the Doppler response is wider than the Doppler response peaks for 

targets with no acceleration. The fundamental reason for this effect is that the target is traveling 

at a range of velocities during the dwell time. For example, in Figure 30, the target starts at a 

velocity of 5 𝑚/𝑠 and has an acceleration of 5 𝑚/𝑠2. The dwell time is 1 𝑠, and in that time 

range, the velocity ranges from 5 𝑚/𝑠 to 10 𝑚/𝑠. Notice that it is more difficult to distinguish 

this range of velocities when the response is windowed. 
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Figure 30. Doppler response of a decelerating target un-windowed (top) and Hamming windowed (bottom). 

Parameters used to generate this response include: 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 15
𝑚

𝑠
, 𝑇𝑑𝑤𝑒𝑙𝑙 = 1 𝑠, 𝑓0 = 10 𝐺ℎ𝑧, 𝑑0 = 500𝑚, 𝑣 =

5 𝑚/𝑠, 𝑎 =  5 𝑚/𝑠2 

2.2.1.4 Range-Doppler processing. 

Range-Doppler processing is a combination of range processing and Doppler processing. 

The quasi-static approximation, i.e. we assume no change in range during slow time intervals, is 

maintained for simplicity. Specifically, range-Doppler processing is a combination of Equations 

(2 - 36) and (2 - 42). That is, radar returns must be generated in both frequency and slow time: 

 𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∑𝑒−2𝑗𝑘𝑟𝜏[𝑡𝑠]

NΤ

𝜏=1

 (2 - 43) 

In MATLAB, Equation (2 - 43) is computed using a three-dimensional matrix: the first 

and second dimensions vary angular frequency and slow time, respectively, and the third 

dimension represents the radar returns of different point targets. This 3D matrix space is 

represented in Figure 31. The third dimension is summed to produce the two-dimensional matrix 

𝑉(𝑤, 𝑡𝑠).  
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Figure 31. MATLAB matrix implementation. 

The following pages further illustrate the processing. By performing an IFFT over 

angular frequency, range responses in slow time result, and can be visualized using a Range 

Time Intensity (RTI) plot, shown in Figure 32. RTI plots are constructed according to Figure 33. 

On the left, each graph represents a range response for consecutive slow time. These responses 

are placed side by side, and visualized using a 3D surface plot. The RTI plot is the top-down 

view of that 3D surface plot. The color represents magnitude in dB related by the colorbar. 

 

Figure 32. Range time intensity plot for target starting at a range of 500 𝑚 with velocity 5 𝑚/𝑠 toward the radar and 

no acceleration. 
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Figure 33. Generation of range time intensity plot. 

 Next, a DFT over slow time is performed on the RTI, and Doppler frequency is converted 

to radial velocity, as represented by Equation (2 - 44). The result is a range-Doppler profile 

(RDP), shown in Figure 34. Now, a point target can be resolved in both range and velocity in this 

range-Doppler space. Notice that two distinct targets at the same range can be distinguished by 

their velocities using a RDP. 

  ℱ𝑡𝑠
[𝑅𝑇𝐼(𝜔, 𝑡𝑠)] = 𝑉[𝑟, 𝑓𝑑] → 𝑉 [𝑟,

𝑓𝑑𝑐

2𝑓0
] = 𝑅𝐷𝑃[𝑟, 𝑣𝑟] (2 - 44) 
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Figure 34. Example of a range-Doppler profile for a target starting 500 𝑚 away from radar and travelling away at 

5 𝑚/𝑠 with no acceleration. 𝑓0 = 10 𝐺𝐻𝑧, 𝐵 = 50 𝑀𝐻𝑧, 𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1500 𝑚, 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 15 𝑚/𝑠. 𝑇𝑑𝑤𝑒𝑙𝑙 =

0.1 𝑠, Kaiser windowing. 

 Figure 34 represents a RDP for the time period only between 0s and 0.1𝑠. Next, through 

simple iteration techniques, we generated a time-series of RDPs. When played in a movie, it is 

possible to see the distance vs. time and velocity vs. time kinematics underlying the target. Note 

that a vectorized computational approach could have been used instead of an iterative approach 

for each RDP dwell interval. This process was designed with iteration to reduce memory 

constraints, thus allowing much more stressing radar resolutions. The overall work flow diagram 

is shown below. 
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Figure 35. Range-Doppler processing work flow diagram. 
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2.2.2 One-dimensional ocean model. 

Modeling the ocean is a crucial element of our radar scattering simulation for small boat 

detection. The ocean is particularly important because the power from radar returns of the ocean 

masks the radar return of small boats. As will be discussed in Section 2.2.3, ocean propagation 

toward or away from the radar is the most important case to study; thus, it is sufficient to model 

only a single dimension of the ocean. Before radar returns from the radar can be generated, it is 

first necessary to get a better understanding of ocean phenomenology and develop a model of the 

ocean surface.  

The goal of creating an ocean model was to develop an algorithm to stochastically create 

a simulated ocean surface based on a set of input parameters. Thereafter, we used this ocean 

surface to extract point targets and incorporate with the radar simulation. Because we planned to 

integrate this model with radar simulations, some radar parameters were necessary so that the 

ocean was generated for compatible time indices. Besides these parameters, the ocean model is a 

stand-alone function independent of radar processing. 

There are nine inputs into our algorithm comprised of the: 

 ocean wind speed(s), 

 starting distance of the ocean, 

 ocean length, 

 ocean sampling resolution, 

 ocean propagation direction, 

 simulation duration, 

 alias-free maximum velocity of radar system, 

 center frequency of the radar, and 

 toggle that determines if the ocean should be plotted. 

The ocean wind speeds are used to produce the spectral composition of the ocean. The starting 

distance, length of the ocean, and the ocean sampling resolution were used to create a discretized 

distance vector. Time was discretized based on the center frequency, alias-free velocity, and the 

simulation duration. The propagation direction of the ocean specifies whether the waves 
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propagate up-sea or down-sea i.e. toward or away from the radar. The user also has the option of 

plotting the results using a toggle variable in order to visually inspect the ocean surface. 

The first step toward the development of an ocean surface model was to use the spectral 

composition of a fully developed sea to generate waves. More specifically, we modeled the 

ocean using a sum of randomly phased sinusoids with scaled amplitudes to match the Pierson-

Moskowitz spectrum. Before we explain the ramifications of this summation, we explain the 

function used to create a single frequency component of the ocean. The height of an ocean 

surface for a single ocean frequency as a function of time and distance is given by:  

 𝜼[𝑥, 𝑡𝑠] = 𝐴 cos(𝜔𝑡𝑠 − 𝑘𝑑𝑥 + 𝝓) (2 - 45) 

where 𝑥 is the horizontal distance to a point on the ocean surface, 𝑡𝑠 is the time instance of the 

ocean surface, 𝜔 is a single angular frequency,  𝐴 is the amplitude or height of the wave, 𝑘𝑑 is 

dispersive wave number, and 𝝓 is a phase shift. Note that it is only necessary to generate the 

ocean surface for instances of slow time. In this report, we use boldface to represent random 

variables and processes. According to Kinsman (2002), the energy of a wave is proportional to 

the amplitude squared (p. 153). Thus, the amplitude 𝐴 is proportional to the square root of the 

power of the Pierson-Moskowitz spectrum at the single frequency 𝜔, as seen in Equation (2 - 

46). We use this proportionality as equality, and later, we will describe how we correct this 

approximation through scaling. 

 𝐴 ∝ √𝐺(𝜔) (2 - 46) 

The wave number 𝑘𝑑 is given by the dispersion relation: 

 𝑘𝑑 =
𝜔2

𝑔
 (2 - 47) 

The phase shift 𝝓 is a uniform random variable between 0 and 2π as shown in Equation 

(2 - 48). This random variable will introduce a random starting phase of the wave and is 

necessary when adding multiple ocean frequencies together to add variations between different 

generations of the ocean surface. 

 𝝓 = 𝑈(0, 2𝜋) (2 - 48) 

Equation (2 - 45) is analogous to an amplitude scaled, time shifted plane wave. In terms 

of the ocean, the equation shows that when 𝑡 is constant and 𝑑 is variable, 𝜂 represents a single 

frequency ocean surface at a fixed time across all distance. On the other hand, when 𝑑 is constant 
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and 𝑡 is variable, 𝜂 represents the ocean surface height as a function of time at a single location. 

The last example would be similar to the movement of a buoy in time. 

Now that we have explained the equation of ocean surface height for a single ocean 

frequency, we explain how we created an ocean with many spectral components. The ocean 

surface as a function of time and distance and spectral components from the Pierson-Moskowitz 

spectrum is described by the linear sum of sinusoids equation below. 

 𝜼[𝑥, 𝑡𝑠] = ∑𝐴𝑖 cos(𝜔𝑖𝑡𝑠 − 𝑘𝑖𝑥 + 𝝓𝒊)

𝑁

𝑖

 (2 - 49) 

where 𝐴𝑖, 𝜔𝑖, 𝑘𝑖, and 𝝓𝒊 are now indexed for each frequency and change for each 𝑖. 𝑁 equally 

spaced frequency components are used.  These indexed terms represent the same values and are 

described the same as they are in Equations (2 - 46) through (2 - 48). There are two primary 

limits that we must address. The first is finding a maximum frequency limit and the second is 

finding the necessary number of equally spaced frequencies 𝑁 to model. 

 We chose to limit the maximum frequency sampled in the Pierson-Moskowitz spectrum 

to ninety-nine percent of the total power in the spectrum. This limit was found analytically. By 

taking the integral of the PM spectrum equation, we derived the power in the angular frequency 

band between zero and the angular frequency 𝜔, as shown in Equation (2 - 50). Note that 𝐺(𝜔) 

refers to the PM spectrum from Equation (2 - 20) and 𝜔𝑚 refers to maximum frequency based on 

wind speed shown in Equation (2 - 21).  

 ∫ 𝐺(𝜔)
𝜔

0

 𝑑𝜔 =
1.62𝑥10−3𝑔2

𝜔𝑚
4

𝑒−1.25(
𝜔𝑚
𝜔

)
4

 (2 - 50) 

Next, we found the total power in the ocean by setting 𝜔 equal to ∞; the results are shown in 

Equation (2 - 51).  

 ∫ 𝐺(𝜔)
∞

0

 𝑑𝜔 =  
1.62𝑥10−3𝑔2

𝜔𝑚
4

 (2 - 51) 

A useful method for limiting the spectral composition of the ocean is to find the frequency which 

results in ninety-nine percent of the total power of the spectrum when used as an upper bound in 

Equation (2 - 50). To find this frequency, denoted 𝜔99%, we used Equation (2 - 52).  

 0.99 =  
∫ 𝐺(𝜔)

𝜔99%

0
 𝑑𝜔

∫ 𝐺(𝜔)
∞

0
 𝑑𝜔

= 𝑒
−1.25(

𝜔𝑚
𝜔99%

)
4

 (2 - 52) 
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Substituting in Equations (2 - 50) and (2 - 51) into Equation (2 - 52)  and solving for 𝜔99% 

results in Equation (2 - 53). This equation represents the maximum frequency that we needed to 

model to obtain ninety-nine percent of the power as a function of wind speed in 𝑚/𝑠. 

 𝜔99% = 𝜔𝑚  (
−1.25

𝑙𝑛(0.99)
)

1
4

=
2.772 𝑔

𝑉𝑤𝑖𝑛𝑑
 (2 - 53) 

The plot of this function, as shown in Figure 36, indicates that the maximum frequency 

containing ninety-nine percent of the power decreases inversely proportionally to the wind 

speed. Also notice that the frequency drops significantly until approximately 5 knots, where it 

begins dropping at a much slower rate. Later, we use this fact to simplify processing. 

 

Figure 36. Frequency containing ninety-nine percent power of Pierson-Moskowitz spectrum versus wind speed. 

The relationship between the frequency containing ninety-nine percent power and wind 

speed can be intuitively verified by inspecting a plot of the PM spectrum in power vs. wind 

speed, as shown in Figure 37. The analysis of this figure leads to the fact that there is more 

power located at lower frequencies for higher wind speeds; therefore, the frequency containing 

ninety-nine percent of the power for higher wind speeds is relatively lower than the frequency 

containing ninety-nine percent power for lower wind speeds, as Figure 36 suggests. 

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20
Frequency Containing 99 Percent Power vs Wind Speed

F
re

q
u

e
n

c
y
 (

H
z
)

Wind Speed at 10 Meters Above Ocean Surface (knots)



63 

 

 

Figure 37. Pierson-Moskowitz power spectral density of ocean in watts. Plotted for three wind speeds of 13, 18.5, and 

24 knots. 

Using the frequency limit, we completed our ocean surface definition by modifying 

Equation (2 - 49) to: 

 𝜼[𝑥, 𝑡𝑠] = ∑ 𝐴𝑖 cos(𝜔𝑖𝑡𝑠 − 𝑘𝑖𝑥 + 𝝓𝒊)

𝑁𝜔99% 

𝑖=1

 (2 - 54) 

where 𝑁𝜔99% is the index of the limiting frequency. 

After we determined the frequency limit for our ocean surface definition, we realized that 

that there was a distance at which the ocean repeated within the generated ocean distance if not 

enough PM sample points were chosen. This ocean repetition looked extremely unnatural. To 

solve this problem, an arbitrarily large number could be chosen for the number of sampling 

points; however, this resulted in long computation times. To determine the number of 

frequencies necessary to produce an ocean model that does not contain repetition, we used 

numerical measurements. Although we know that we can solve for the period of a summation of 

sinusoids using the least common multiple method, the method relies on known frequencies 
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which have been sampled in our case. We started by generating an ocean with varied numbers of 

sampling frequencies, visually measured the repetition distances, and recorded the 

measurements. Next, we repeated this process for several ocean wind speeds, and created a 

scatter plot of these data. We noticed that there was a square root relationship between the ocean 

repetition distance, denoted as 𝑟𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑜𝑛, and number of sampling points used. However, the 

relationship was not exactly square root; in fact, we noticed that it was of the form: 

 𝑁𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑟𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 = 𝑎 + 𝑏√𝑟𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑜𝑛 (2 - 55) 

We used a second order polynomial fitted function to determine the values for the fit parameters 

𝑎 and 𝑏 for a wind speed of twenty-four knots. The empirical measurements as well as the 

polynomial fitted equations are shown in Figure 38. Next, we expanded the above equation by 

adding dependence of wind speed, which was determined through pattern matching methods 

(𝑉𝑤𝑖𝑛𝑑 is specified in knots here). In addition, we added a safety factor of 1.2. 

 𝑁𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑟𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑉𝑤𝑖𝑛𝑑 = ⌈1.2 ∙
24

𝑉𝑤𝑖𝑛𝑑
(𝑎 + 𝑏√𝑟𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑜𝑛)⌉ (2 - 56) 

We use Equation (2 - 56) to select the minimum number of sampling points required based on 

the ocean length input, which ensured that the number of sampling points chosen was neither too 

large nor too small. 
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Figure 38. Pierson-Moskowitz sampling points as a function of ocean repetition distance. 

 After we could describe the ocean surface in terms of a sampled limit of PM spectral 

components using Equation (2 - 54), it was necessary to scale the ocean height. As expressed 

earlier, scaling is essential because Equation (2 - 46) is an approximation. Recall that the 

Beaufort scale correlates wind speed ranges to significant wave height ranges. Using the 

midpoints of each wind speed range and wave height range, we developed a fourth order 

polynomial fitted equation that describes the dependence of wind speed on significant wave 

height. The plot of the midpoints and polynomial fitted equation can be seen in Figure 39 and the 

equation is related via: 

𝐻𝑆(𝐵𝑒𝑎𝑢𝑓𝑜𝑟𝑡) = 7.41𝑥10−4 𝑉𝑤𝑖𝑛𝑑
4 − 8.40𝑥10−5 𝑉𝑤𝑖𝑛𝑑

3 + 5.20𝑥10−3 𝑉𝑤𝑖𝑛𝑑
2

+ 6.14𝑥10−2 𝑉𝑤𝑖𝑛𝑑 − 3.12𝑥10−2 
(2 - 57) 

where 𝑉𝑤𝑖𝑛𝑑 is the wind speed above the ocean.  
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Figure 39. Beaufort Scale. Black points represent the midpoint of each degree of the Beaufort scale. The red line 

indicates a fourth order polynomial fitted line that describes the significant wave height by wind speed. 

In order to scale our ocean model to the Beaufort scale, it was necessary to determine the 

significant wave height generated from our ocean model. Calculating significant wave height 

was possible using Equation (2 - 22). According to the National Data Buoy Center (2011), the 

significant wave height is measured by buoys on the ocean surface, which implies that the 

standard deviation should be calculated over time (National Oceanic and Atmospheric 

Administration). The ergodic theorem permits the standard deviation to be also calculated over 

distance (Papoulis, 2002, p. 276). To obtain accurate results, we chose to perform a two-

dimensional standard deviation operation across distance and time. This process is described by 

Equation (2 - 58).  

 𝝈𝜼 = 𝜎2𝐷(𝜼[𝑑, 𝑡𝑠]) (2 - 58) 

Using Equation (2 - 22) and (2 - 58) we can find the significant wave height of our ocean model 

as shown in Equation (2 - 59). 
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 𝑯𝑆(𝑜𝑐𝑒𝑎𝑛 𝑚𝑜𝑑𝑒𝑙) ≈ 4𝝈𝜼 (2 - 59) 

Finally, using the empirical significant wave height 𝐻𝑆(𝐵𝑒𝑎𝑢𝑓𝑜𝑟𝑡) and the computed ocean model 

significant wave height 𝐻𝑆(𝑜𝑐𝑒𝑎𝑛 𝑚𝑜𝑑𝑒𝑙), we found the ratio to scale the modeled ocean to the 

ocean data. The equations used to find the ratio and scale the modeled ocean are described in 

Equations (2 - 60) and (2 - 61). 

 𝐻𝑆(𝑠𝑐𝑎𝑙𝑒) = 
𝐻𝑆(𝐵𝑒𝑎𝑢𝑓𝑜𝑟𝑡)

𝑯𝑆(𝑜𝑐𝑒𝑎𝑛 𝑚𝑜𝑑𝑒𝑙)
 (2 - 60) 

   
 𝜼𝒔𝒄𝒂𝒍𝒆𝒅[𝑥, 𝑡𝑠] = 𝐻𝑆(𝑠𝑐𝑎𝑙𝑒) ∙ 𝜼[𝑥, 𝑡𝑠] (2 - 61) 

Figure 40 shows the result of scaling the surface of a modeled ocean to fit the significant wave 

height expected from a given wind speed. Figure 40a is the modeled ocean before scaling and 

Figure 40b is the ocean after scaling. Note the difference in y-axis scales. 

 

Figure 40. Scaling wave height comparison. Figure 40a shows an ocean before scaling for a wind speed of 24 knots 

with a significant wave height of 58.9 m. Figure 40b shows the ocean scaled for 24 knots with a significant wave 

height of 3.54 m. Note the difference in y-axis scales. 

 One method of code verification for our ocean model was to take a two-dimensional DFT 

of 𝜼. This process converts the time axis to angular frequency and the distance axis to wave 
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number, which is a spatial frequency. A plot of the two-dimensional DFT as well as the expected 

dispersion relation is shown in Figure 41. The expected dispersion relation, from Equation (2 - 

17), as a function of wavenumber is given by:  

 𝜔 = √𝑘𝑑𝑔 (2 - 62) 

Figure 41 shows a set of high amplitude vertical regions that represent each of the frequencies of 

the sampled PM spectrum. We will refer to these regions as bars. 

 

Figure 41. Two-dimensional FFT of the ocean surface in terms of the spatial and radial frequency. The bars represent 

frequencies following the dispersion relation. The overlaid black line represents the expected dispersion relationship. 

 Figure 41 verifies four aspects of our ocean model. First, the bars follow the dispersion 

relation represented by the black line, which proves that the dispersion relation was applied 

correctly. Second, bars are limited at a frequency that corresponds to 𝜔99% for that ocean surface 

and proves that the cutoff frequency calculation is correct. Third, the intensity of the bars show 

that the power falls off as the frequency increases which proves that the model follows the PM 

spectrum equation. Finally, the number of bars represent the number of frequencies (𝑁𝜔99%
) 

produced in our model and can be verified by counting. After analyzing these aspects using 
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multiple test cases, we were able to verify that all four parameters followed the model we had 

chosen. 

 Now that we could describe the ocean surface in terms of a scaled, sampled limit of PM 

spectral components using Equation (2 - 54), it was possible to create point targets using the 

ocean surface, which are later used to integrate the ocean surface and radar. Figure 42 shows a 

visual representation of an ocean model over a distance of one kilometer with a wind speed of 24 

knots and sampled every 1 𝑚. 

    

Figure 42. Ocean surface model. This ocean covers 1000 meters with a wind speed of 24 knots. 

Figure 43 shows a visual representation of the same ocean model over a distance of forty meters 

with a wind speed of 24 knots. Notice that this figure has a one to one axis ratio and is more 

physically realistic. 
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Figure 43. Ocean surface model. This ocean covers 40 meters with a wind speed of 24 knots. This is a one to one 

aspect ratio. 

2.2.3 Integration and calibration. 

The non-scanning radar described in Section 2.2.1 can be integrated with the one-

dimensional ocean model described in Section 2.2.2 to produce our first deliverable, the non-

scanning, one-dimensional ocean radar scattering simulation. An in-depth discussion of 

integration and calibration methods follow.  

We present the overall work flow for the non-scanning one-dimensional ocean scattering 

simulation in Figure 44. This flow is presented first to help delineate the complexities of the 

simulation. The general method was to compute the RTI for both the ocean and the targets 

independently, and then to sum them and find the RDP of the total. One particularly important 

aspect to notice is that processing was conducted independently for the ocean and the targets and 

are later summed in time. Moreover, the radar returns of the entire ocean duration were 

generated and calibrated at once, but the radar returns of the targets were generated for dwell 

intervals.  
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Figure 44. Overall work flow diagram for the non-scanning one-dimensional ocean model. The left pane shows user 

inputs, the middle pane shows algorithmic flow, and the right pane shows simulated outputs. 
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Two requirements led us to design our computation architecture around the use of 

independent target and ocean returns. The first requirement was to create robust, easy to use 

code. Independently computed returns for the targets and ocean allow the architecture to be more 

compartmentalized and flexible at a minor speed cost. In addition, these characteristics were very 

important in our computational architecture design because 1) compartmentalized architectures 

are relatively less complex and more capable than un-compartmentalized architectures, and 2) 

algorithms can be more generic and modifiable. While these advantages do not benefit this first 

deliverable, the advantages will become very apparent in the transition to the second deliverable.  

The small loss in computational speed is not worth the added benefits of flexibility. The second 

requirement that led our architecture design was our sponsor’s request that a calibrated ocean 

may be saved. A saved calibrated ocean is beneficial because it is often more useful to vary 

target parameters than ocean parameters. It is not worth the time to re-generate and re-interrogate 

an ocean every time target parameters need to be varied because of the relatively long time it 

takes to construct the ocean data. In addition, another added benefit to independent RTI 

computation is that it is often useful to see the radar response of just one of the two scattering 

sources. 

The first step in this algorithm was to generate a one-dimensional ocean surface, which 

was completed using the results of Section 2.2.2. Large models are memory bound during 

computation, as will be discussed in Section 5.2. If memory constraints allow, multiple oceans 

can be generated at the same time. In addition, every algorithmic process presented below 

supports computation given multiple oceans. Simultaneous ocean calculation is advantageous 

because the user can be sure that the same ocean generation parameters are being used and the 

processing will take less time. We observe a processing performance increase in this case 

because the computations are vectorized across different oceans. In fact, the only computations 

that are not vectorized in this project are dwell intervals (to allow for larger models) and ocean 

calibration (because the functions used do not support vectorization). 

The next step was to generate the radar scattering of the ocean surface, which was 

accomplished by considering every point in the ocean surface, 𝜼[𝑥, 𝑡𝑠], as a point target. 

According to our discussion of radar processing and the quasi-static approximation in Section 
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2.2.1, we needed to determine only the range from each ocean point target to the radar as a 

function of slow time (for both range and Doppler processing, see Section 2.2.1.4). We 

distinguish the horizontal distance, 𝑥, from the range, 𝑟, in Figure 45. As this figure suggest, the 

radar is raised and is looking down at the ocean at a specified grazing angle. The static height, ℎ, 

of the radar was computed via 

 ℎ =
𝑜𝑐𝑒𝑎𝑛𝑆𝑡𝑎𝑟𝑡 + 𝑜𝑐𝑒𝑎𝑛𝐿𝑒𝑛𝑔𝑡ℎ

2
 tan (𝑔𝑟𝑎𝑧𝑖𝑛𝑔𝐴𝑛𝑔𝑙𝑒) (2 - 63) 

This ensured an exact grazing angle at the middle of the ocean. We used this geometry to 

compute the range to each point target in slow time given the height of the radar, and the ocean 

surface: 

 𝑟𝜏[𝑡𝑠] = √(ℎ − 𝜼[𝑥, 𝑡𝑠])2 + 𝑥2 (2 - 64) 

Note that radar returns were not calculated directly with Equation (2 - 43) at this point. 

 

Figure 45. Non-scanning, one dimensional ocean radar return geometry. 

After that, a modification is made to Equation (2 - 43) to correlate the ocean scattering 

strength to the slope of the ocean, as discussed in Section 2.1.3. To compute the slope of a point 

on the ocean, a simple first difference calculation using the previous and next distance sample, 

denoted as 𝑥−1 and 𝑥+1 respectively, was used. This process was extended to every point for 

every slow time: 

 

𝑥 (𝑚) 

ℎ (𝑚) 

𝑟𝜏 (𝑚) 
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 𝑠𝜏[𝑡𝑠] =
𝜼[𝑥+1, 𝑡𝑠] − 𝜼[𝑥−1, 𝑡𝑠] 

𝑥+1 − 𝑥−1
 (2 - 65) 

The previous or next distance sample is not valid for the end points. In these two cases, 𝑥 

replaces 𝑥−1 and 𝑥+1, respectively. Notice that both positive and negative slopes are calculated 

using Equation (2 - 65). We noticed that the computed ocean scattering distributions (discussed 

next) fit better to the empirical distribution using positive and negative slopes compared to using 

modified slopes (positive only, absolute value, etc.). Using this slope, Equation (2 - 43) was 

modified:  

 𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∑𝑠𝜏[𝑡𝑠] 𝑒
−2𝑗𝑘𝑟𝜏[𝑡𝑠]

NΤ

𝜏=1

 (2 - 66) 

Such slope correlation was verified by visually checking for correlation, as shown in Figure 46. 

In our integration of radar and ocean, we considered the variable 𝑅𝑠 in the equation above to be 

the range to the closest point of the ocean. In addition, we calculated 𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 as the furthest 

point of the ocean. At this point, our model was capable of simulating radar returns of the ocean 

surface. These returns were range processed using an IFFT to obtain a RTI of the ocean surface.  

 

Figure 46. Comparison between slope (in blue) and radar return strength (in red). 

The ocean scattering statistics of the RTIs of the ocean surface that our model produced 

did not correlate well to actual ocean clutter statistics, as shown in Figure 47. The distributions 
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were plotted on a logarithmic scale to simplify processing. Note that the distribution presented is 

just one example: the computed ocean scattering distribution is a stochastic process. In addition, 

this is just one of the six empirical probability density functions (see Table 2). In order to make 

the calculated distribution fit to the empirical distribution reported by Long, the calculated 

distribution was calibrated.  

 

Figure 47. Computed vs. empirical ocean clutter distribution. The blue histogram shows a histogram of the computer 

sea clutter distribution and the red envelope represents the empirical clutter distribution reported by Long. The 

computed clutter distribution was generated with the following parameters: ocean generated from 1000 𝑚 to 

2000 𝑚, 𝑓0 = 10 𝐺ℎ𝑧, 𝐵 = 1 𝐺ℎ𝑧, 𝐴𝐹𝑀𝑅 = 1050 𝑚, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑝𝑟𝑓 = 20 𝐻𝑧, downsea propagation, 

wind speed  = 13 𝑘𝑛𝑜𝑡𝑠. 

The first step in the calibration algorithm was to calibrate the mode of the computed 

scattering distribution to the mode of the empirical distribution. In order to attain this result, the 

computed and empirical distribution modes were found, differenced, and then subtracted from 

each point of the ocean RTI in range and slow time.  The mode of a log-normal distribution can 

be found according to (Wikipedia, 2012): 

 𝑚𝑜𝑑𝑒 = 𝑒𝜇−𝜎2
 (2 - 67) 



76 

 

For the empirical distribution, this was possible because mean, 𝜇, and standard deviation, 𝜎, 

were known; we denote this empirical mode as 𝑚𝑒. However, for the computed distribution, 𝜇 

and 𝜎 are not known, so we found the mode more indirectly. Simply finding the most occurring 

power within histogram bins is problematic in two regards: first, the binning distorts the location 

of the actual mode; second, the computed distributions are sometimes skewed to one side, so the 

mode is not a good representation of center location. 

A better center location was found using the following algorithm: first, the computed 

distribution was binned with very small bin intervals (on the order of 2000 bins). Because the 

distribution is stochastic, there are often large bin to bin variations. In order to reduce this 

variance, a fifth order infinite impulse response Butterworth low pass filter with cutoff frequency 

at one percent of the normalized frequency was applied both in the forward and reverse time 

directions to achieve zero phase filtering. The filter characteristics are shown in Figure 48. The 

startup transient to this filter is shown in Figure 49 in green. This transient does not significantly 

affect the envelope in the regions that are used to find the center location of the distribution. The 

filter produces low pass filtered histogram envelopes of the computed ocean scatter distribution. 

Next, the goal is to find two points in power on opposite sides of the peak of the envelope which 

correspond to 2/3 of the maximum frequency. The fraction 2/3 was chosen because it is far 

enough below the peak to be affected less by skewed distributions, while it is high enough above 

the non-Gaussian relation toward the bottom of the distribution. Two black arrows identify these 

two points in Figure 49. These two points were found using a find-closest algorithm, described in 

Appendix C. The average location of these two points was taken and is the estimated mode of the 

computed sea scattering distribution, denoted 𝑚𝑐.  
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Figure 48. Magnitude and phase response of Butterworth lowpass filter.  

 

Figure 49. Computed distribution center location determination. The star represents the location of the center of the 

distribution.  
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The difference between the computed and empirical modes was taken according to: 

 Δ𝑚 = 𝑚𝑐 − 𝑚𝑒 (2 - 68) 

This difference is the amount of required shift. The mode-shifted RTI, written as 𝑅𝐼𝑃𝑚𝑠, is: 

 𝑅𝑇𝐼𝑚𝑠[𝑟, 𝑡𝑠] = 𝑅𝑇𝐼[𝑟, 𝑡𝑠] − Δ𝑚 (2 - 69) 

The result is shown in Figure 50. 

Inspection of Figure 50 shows that the calibration algorithm was not done: the widths of 

the computed and expected distributions were not the same (in this case they are fairly close, but 

consider the shape of the HH polarized case, where the distribution width spans up to 100 dB). 

Thus, it was necessary to dilate the mode shifted, computed ocean scattering distribution. This 

was accomplished by taking the ratio of lengths indicated in green in Figure 50. More 

specifically, the same 2/3  of max frequency method was used to find a point to the left of the 

peak for both distributions. Because the modes were already known, the absolute values of the 

differences between the modes and these new left peak points are the indicated lengths. Each 

value in the mode shifted RTI is multiplied by this dilation factor, called 𝑔, to produce the 

dilated, mode shifted, RTI, denoted as 𝑅𝑇𝐼𝑚𝑠,𝑑: 

 𝑅𝑇𝐼𝑚𝑠,𝑑[𝑟, 𝑡𝑠] = 𝑔 ∙ 𝑅𝑇𝐼𝑚𝑠[𝑟, 𝑡𝑠] (2 - 70) 
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Figure 50. Mode-shifted, computed vs. empirical ocean clutter distribution. 

The result is shown in Figure 51. Clearly, the dilation factor multiplication unaligned the 

modes. To further calibrate the mode shifted, dilated RTI, the mode-shifting algorithm described 

above was leveraged again to re-standardized the mode of the distributions. By denoting this 

second mode shift as Δ𝑚2 and the mode shifted, dilated, mode shifted sea clutter range time 

intensity as 𝑅𝑇𝐼𝑚𝑠,𝑑,𝑚𝑠2, we write: 

 𝑅𝑇𝐼𝑚𝑠,𝑑,𝑚𝑠2
[𝑟, 𝑡𝑠] = 𝑅𝑇𝐼𝑚𝑠,𝑑[𝑟, 𝑡𝑠] − Δ𝑚2 (2 - 71) 
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Figure 51. Mode-shifted, dilated, computed vs. empirical ocean clutter distribution. 

We can express the entire calibration routine as: 

 𝑅𝑇𝐼𝑚𝑠,𝑑,𝑚𝑠2
[𝑟, 𝑡𝑠] = (𝑔 ∙ (𝑅𝑇𝐼[𝑟, 𝑡𝑠] − Δ𝑚)) − Δ𝑚2 (2 - 72) 

Note that this process can be simplified by first dilating and then shifting the computed 

distribution. Future revisions can make this modification. The final, calibrated RTI is shown in 

Figure 52. Clearly, the two distributions are very well aligned.  
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Figure 52. Mode-shifted, dilated, mode-shifted computed vs. empirical ocean clutter distribution. 

Next, RTIs of simulated targets were computed as outlined in Section 2.2.1.4. We 

calculate the range of the boat as if it were on the ocean surface. That is, we apply Equation (2 - 

64) to incorporate the ocean height at the target location for target range processing. In addition, 

we further scale the RTI according to Equation (2 - 23) where the area 𝐴𝑓 is given by: 

 𝐴𝑓 =
𝛼 𝑐 𝑟 𝐵𝑤

2𝐵
 (2 - 73) 

Note that there is no area or beam width for the one-dimensional ocean. In this case (and in the 

second deliverable), the 𝐵𝑤 is arbitrarily set. In the third deliverable, the specified 𝐵𝑤 is chosen. 

To merge the RTI of simulated targets and the calibrated RTI of the ocean, simple 

addition was used. Addition is valid because RTIs are fundamentally Fourier transforms, which 

is an integral function. Because integrals are linear in their function space, the sum of the integral 

of two functions is the same as the integral of the sum of the functions. Analogously, the sum of 

two RTIs is the same as the RTI of the sum of point targets: 

 𝑅𝑇𝐼𝑡𝑎𝑟𝑔𝑒𝑡𝑠+𝑜𝑐𝑒𝑎𝑛[𝑟, 𝑡𝑠] = 𝑅𝑇𝐼𝑡𝑎𝑟𝑔𝑒𝑡𝑠[𝑟, 𝑡𝑠] + 𝑅𝑇𝐼𝑜𝑐𝑒𝑎𝑛[𝑟, 𝑡𝑠] (2 - 74) 



82 

 

Finally, the RTI of the targets and ocean can be Doppler processed to produce range 

Doppler profiles. Furthermore, a time series of RDPs can be created in the same manner as 

discussed in Section 2.2.1.4. Some examples of these plots are shown in the following results 

section. 

2.3 Results and Discussion 

In this chapter, we have presented the background and methods for a non-scanning, one-

dimensional ocean scattering simulation. Under time and computation constraints, we were very 

successful in developing a useful, easy to use, robust, and computationally effective simulation. 

Overall, this simulation also proved to be an excellent platform to experiment with parallelism 

and GUI because of its stability and ease of scalability. In this section, we first recount the major 

subcomponent results and then present the capabilities of the non-scanning, one-dimensional 

ocean scattering simulation. As we present results, we discuss the ramifications of our work. We 

particularly focus on the discussion of accuracy and verification of our model.  

First, we presented the radar return equation as a function of frequency and slow time 

according to Equation (2 - 43) and its associated results: the RTI and RDP time series. An 

example RDP time series with two accelerating point targets is included in the accompanying 

attachment to this report. Figure 53 shows a different example of the RTI and RDP than those 

shown in Section 2.2.1.4. We note that such processing results are easily validated via 

comparison to known trajectories and to similar plots found in the literature. We believe that our 

method of producing these plots balanced complexity and constraints very well because we 

chose a modeling approach that produced verifiable results while limiting complexity. For 

example, we reduced complexity through approximation in processing which had negligible 

effects on the end result. Using a gate representation of the chirp waveform and pulse 

compression via Fourier transform instead of the chirp waveform and matched filter exemplifies 

such approximations. Another example of an approximation that led to less complexity was our 

decision to not model the range dependence of radar return power (see Equation (2 - 37)). We 

neglected modeling this phenomenon because the dependence of range on radar return power is 

commonly filtered out in radar processing. 
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(a) 

 

(b) 

 

Figure 53. Example of a range time intensity plot (a) and range-Doppler profile (b) for two targets. One target starts 

1200 𝑚 away from the radar and is travelling away at 10 𝑚/𝑠 with no acceleration. The other target starts 1700 𝑚 

away from the radar, travels toward the radar at 5 𝑚/𝑠, and has acceleration of 10 𝑚/𝑠2 away from the radar. Other 

parameters include: 𝑓0 = 10 𝐺𝐻𝑧, 𝐵 = 50 𝑀𝐻𝑧, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1000 𝑚, 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 =

15 𝑚/𝑠, 𝑇𝑑𝑤𝑒𝑙𝑙 = 0.1 𝑠, Kaiser windowing. 
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After developing a radar processing simulation, we developed a one-dimensional ocean 

model. Sample ocean surfaces for wind speeds of 13, 18.5, and 24 knots are shown in Figure 54. 

A time series movie of a sample ocean surface can be found in the accompanying attachment to 

this report.  

 

Figure 54. Comparison of three ocean surfaces with 13, 18.5, and 24 knot wind speeds, respectively. The distance 

resolution is 1 𝑚 and the ocean length is 1000 𝑚. 

We verified two aspects of our ocean model. The first verification was the distribution of 

wave heights. We confirmed that the distribution of wave heights matched the distribution 

described by the Beaufort scale. This match was easily verified because we directly scaled the 

significant wave height (see Equation (2 - 61)). A plot of the distributions for wind speeds of 13, 

18.5, and 24 knots are shown in Figure 55. To generate this figure, a histogram with 10,000 bins 

was applied to an ocean with a length of 500 km and centimeter distance resolution was 

generated. We notice that the distribution is Gaussian. Recall that the wave height function is a 

sum of a series of randomly phased sinusoids. The Central Limit Theorem states that the 

distribution of the sum of a series of independent, identically distributed random variables is 

approximately Gaussian (Papoulis, 2002).  
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Figure 55. Wave height distribution of three ocean surfaces with 13, 18.5, and 24 knot wind speeds, respectively. The 

distance resolution is 1 𝑐𝑚 and the ocean length is 500 𝑘𝑚. The blue region represents the histogram of the wave 

heights of the ocean and the overlaid black envelope represents fitted Gaussian distributions. 

We note that this scaling was necessary due to the Pierson-Moskowitz amplitude scaling 

approximation that we used. The first approximation was that we evenly sampled the Pierson-

Moskowitz spectrum and derived the power of each sinusoid from the square root of the sampled 

value. This square root of the sampled value was an approximation itself. A more accurate 

representation would have considered a scaling factor, density, and the acceleration due to 

gravity (Kinsman, 2002). Ideally the ocean model would not require scaling. To form a more 

accurate model, we recognize the Pierson-Moskowitz spectrum is a density function; thus, the 

power of each sinusoid is more accurately represented by the area surrounding the frequency 

sample (a Riemann sum method or similar). Such a method would more accurately portray the 

wave heights. As a result, it may not be necessary to scale the wave heights to the Beaufort scale. 

We also verified that the power spectral density of our ocean surface matched the Pierson-

Moskowitz spectra using a Welsh periodiogram. Three oceans were used composed of a distance 

of 10 km with 1m resolution and 4000 seconds with 1 s resolution. The Welsh periodiogram was 
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defined by eight sections of approximately 2200 ocean distance samples, with 50% overlap, 

Hamming windowing, and taken for each time instant. It was then averaged across time to 

produce the result. The power spectral density (PSD) of the ocean was scaled to the PM 

spectrum. The results are shown in Figure 56. The scale between the actual and expected PSDs is 

insignificant because only the shape is important for our model. Notice that the power spectral 

density (PSD) of the ocean is seemingly comprised of many impulse functions due to the 

sampling of the PM spectra as presented in Section 2.2.2. 

 

Figure 56. Power spectral density of the ocean model versus PM spectrum for wind speeds of 13, 18.5, and 24 knots. 

We believe that this model approximates the surface and the propagation of the ocean to 

the required standard for later integration with radar processing; thus, it is a desirable balance of 

complexity and constraints for this project. More specifically, we could have developed a more 

rigorous ocean model that, for example, included capillary wave interactions (greater than 48 Hz 

ocean waves). However, the extra amount of time to develop and compute such model would not 

be significantly advantageous because our computational constraints limit the distance resolution 

of the ocean (more distance resolution leads to more point targets, which drastically increases 

computation time and, more importantly, memory required). With such limited distance 

resolution, the simulation would not be able to resolve capillary waves. 

Once the ocean model and radar simulation were complete, they were combined to find 

the RTI of the ocean surface. After that, the RTI was slope scaled and calibrated to ocean 

scattering distributions found in literature. We compare un-calibrated and calibrated ocean 

surface RTI plots below in Figure 57. We note that mode shifting in the calibration algorithm is 

equivalent to adjusting the gain of the radar or scaling up all clutter cross sections. We believe 
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that the resultant calibrated RTI is an accurate representation of the ocean scatter from an ocean 

surface, according to the distributions we found in the literature. However, the very fact that our 

scattering distribution did not fit distributions found in literature and that it was necessary to 

scale our model suggests a limitation in our simulation. Specifically, we did not model the 

effects of polarization. We expect that had we modeled these effects, our generated ocean 

scattering distributions would have had much better fit to those found in literature. Future work 

should consider such effects. In turn, the method we chose to model polarization (scaling to 

known distributions) is dependent on the accuracy of the data found in the literature. Another 

contributing factor that made it necessary to calibrate the ocean scattering distributions is that the 

Pierson-Moskowitz spectra is only an approximation because it is result of a curve fitted to 

empirical data. A power spectral density that is better matched to realistic ocean waves may 

produce ocean scattering distributions that are more log normal. Unfortunately, a major 

limitation is that there are little data available in the public domain. Furthermore, we note that the 

linear interpolation that we assumed for the data reported by Long may be invalid. Specifically, 

we noticed that the ocean scattering distributions appeared less log-normally distributed as the 

wind speed increased. Thus, to make our simulation useful to our sponsor in the future, we 

developed an easy way to modify the calibration distributions.  
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Figure 57. Comparison between uncalibrated (left) and calibrated (right) RTIs of the ocean surface. Parameters 

include: 𝑓0 = 10 𝐺𝐻𝑧, 𝐵 = 50 𝑀𝐻𝑧, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1000 𝑚, 

𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 15 𝑚/𝑠 , 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 13 𝑘𝑛𝑜𝑡𝑠, VV polarized. 

Finally, we modeled targets on the ocean surface. The target height was set to the height 

of the ocean at the location of the target. In addition, the cross section of the targets was set to the 

mean cross section of the radar scatter. Future work should explore cross section modeling in 

more depth. A kinematic distance vs. time plot of two sample targets is shown in Figure 58. A 

sample RTI plot of the ocean surface with these two targets is shown in Figure 59. A sample 

RDP of the same two targets on the ocean surface is shown in Figure 60. A time series movie of 

this RDP can be found in an accompanying attachment to this report. We see that most of the 

power of the RDP is located at low velocities. Thus, it is more difficult to detect a slow boat as 

compared to a fast moving boat. Such time series of RDP of targets and the ocean surface will 

help our sponsor develop algorithms to better detect small boats on the ocean surface.  
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Figure 58. Distance vs. time for two sample targets. One target starts 1200 𝑚 away from the radar and is travelling 

away at 10 𝑚/𝑠 with no acceleration. The other target starts 1700 𝑚 away from the radar, travels toward the radar at 

5 𝑚/𝑠, and has acceleration of 10 𝑚/𝑠2 away from the radar.  

 

Figure 59. Range time intensity plot of ocean surface and two targets. The same parameters as in Figure 57 and 

Figure 58 were used. Notice the similarity between this figure and Figure 58. 
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Figure 60. Range Doppler profile of ocean and two targets. Parameters include: 𝑓0 = 10 𝐺𝐻𝑧, 𝐵 = 50 𝑀𝐻𝑧,  

𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1000 𝑚, 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 15 𝑚/𝑠, 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 24 𝑘𝑛𝑜𝑡𝑠, 𝑡 = 0 𝑡𝑜 0.5 𝑠, VV 

polarized. The same targets as in Figure 58 were used. The solid circle highlights an accelerating target while the 

dashed circle highlights a target with constant velocity. 

Finally, we note that the method used to generate the motion of the point targets on the 

ocean surface is flawed for Doppler generation. We came to this realization after noticing that 

the computed velocity information of the ocean surface was inconsistent with expected ocean 

surface velocity information. Specifically, our model predicts velocities under 1 m/s, while we 

expect velocities up to 2 m/s (D. Blejer, personal communication, September 27, 2012). Recall 

that we generated ocean surface point targets which vary in height as a function of time. This 

description perfectly lends itself to ocean surface shape and characteristics and range processing. 

However, it inaccurately measures the Doppler information of the ocean because the point 

targets are stationary in distance (yet, not stationary in range – see the discussion surrounding 

Figure 45). Thus, we only calculated the vertical velocities of the ocean, and not the propagation 

components. We have adjusted our model through velocity scaling to more accurately portray the 

Doppler phenomenology of the ocean. A more accurate, yet more complicated model may be a 

Lagrangian mechanics particle model with use of the material derivative (Currie, 1974, pp. 6-8). 

Future work can investigate Legrangian mechanics further. 
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3 Non-Scanning, Quasi-Two-Dimensional Ocean Radar Scattering 

Simulation 

In order to better model the real-world, it is useful to simulate the radar returns of a target 

on a two-dimensional surface, visually represented in Figure 61. A one-dimensional ocean model 

limits target modeling to one-dimensional movement. With a two-dimensional ocean model, it is 

possible to more accurately model target movement. In addition, the extra degree of spatial 

freedom allows boat wake modeling, as discussed in Sections 3.1.2 and 3.2.2.  

 

Figure 61. Visual representation of non-scanning radar, quasi-two-dimensional ocean, and target integration. 

3.1 Background 

Following is the background that pertains to modeling a quasi-two-dimensional ocean 

model and small boat wake model. We then discuss use of the Kelvin wake cusp wave crest as a 

method for modeling the wake of a boat moving at constant velocity. 

3.1.1 Quasi-two-dimensional ocean model. 

Similar to the one-dimensional ocean model discussed in Sections 2.1.2, there are many 

existing two-dimensional ocean models. One of the most popular and accurate models is the 

Phillips model, which supports multi-directional ocean propagation directions (Tussendorf, 

2001; Mitchell, 2005). In this model, the relative power of each of these propagation directions is 

a function of wind speed and wind direction. While implementing such a two-dimensional ocean 
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model would be ideal, the Phillips model would also add complexity that is out of the scope of 

this project. An ocean model that is suitable for our scope is the quasi-two-dimensional ocean 

model, which considers ocean propagation in one direction. The unidirectional propagating 

ocean represents the most extreme ocean clutter scenarios. Because the radar returns of the ocean 

are the strongest in the up-sea and down-sea cases, the one-dimensional propagation of the quasi-

two-dimensional ocean models these cases very well (D. Blejer, personal communication, 

August 8, 2012). If a detection algorithm works well for the quasi-two-dimensional ocean, it will 

likely work well for multi-directional propagating two-dimensional oceans.  

3.1.2 Small boat wake model. 

Wakes are defined as patterns produced by moving objects in a fluid. This project refers 

to wake as the water patterns developed by moving boats. In this context, there are four primary 

types of wake: turbulent wake, Kelvin wake, narrow-V wake, and internal wake. Although each 

of these types of wakes cause detectable patterns in radar, turbulent, narrow-V, and internal 

wakes are not considered in our model because the Kelvin wake has the largest effect on radar 

returns, and thus is most likely to be mistaken for a small vessel. The complexity of the model 

can be reduced by only considering Kelvin wake.  
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Figure 62. Example of Kelvin wake and turbulent wake. A) Kelvin envelope from bow, B) Kelvin envelope from 

stern, C) Kelvin wake transverse wave, D) turbulent wake, and E) turbulent region along side of ship (Jackson & 

John, 2004, p. 285). 

 Under the assumption that a boat has a constant velocity, constant direction, and is in 

deep water, Kelvin wake is predictable. A Kelvin wake consists of transverse and divergent 

waves that are produced by the movement of a boat through water. As seen in Figure 63, these 

waves form a 38.94 degree V shaped pattern behind the boat called the Kelvin envelope. The 

38.94 degree angle is valid for a wide range of boat velocities and shapes due to the dispersion 

relation of deep water waves (Whitham, 1999, p. 409). Therefore, in our model, we always use 

this angle. There are two Kelvin envelopes that are produced by each boat, one from the bow and 

one from the stern of the boat. The Kelvin envelope produced from the bow of the boat is much 

larger in amplitude than the Kelvin envelope from the stern of the boat; thus, we focus on 

modeling only the former. 
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Figure 63. Kelvin wake representation. Circles represent location of the crests of the cusp waves (Hennings, 

Romeiser, Alpers, & Viola, 1999, p. 2522). 

 Furthermore, Kelvin envelopes are composed of two Kelvin arms, formed by the arms of 

the V-shaped pattern. Thus, each arm is angled 19.47 degrees from the center of the Kelvin 

envelope. The Kelvin arms are formed by cusp waves, which are the superposition regions of 

transverse and divergent wave fronts. The highest peaks formed by such superpositions are 

referred to as cusp wave crests, as shown by the circles in Figure 63.  

 The cusp wave crests are particularly important to our radar target model. Because the 

cusp wave crests generate the largest positive perturbations on the ocean surface, they produce 

the largest radar returns. Thus, to reduce complexity, we consider it sufficient to only model cusp 

wake crests in order to model boat wakes. 

Cusp waves are always angled at a 35.26 degree offset from the direction of travel of the 

boat, and face outward on each Kelvin arm: 35.26 degrees is the propagation angle of the cusp 

wave. The orientation of the cusp waves can be seen in Figure 64. The cusp waves occur at 

intervals along the Kelvin arms based on the velocity of the boat.  
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Figure 64. Example of Kelvin wake ("Particles and Waves", n.d.). 

 The angle of each Kelvin arm and the angle of the cusp wave propagation direction do 

not depend on velocity; however the cusp wave phase speed and wavelength do depend on 

velocity. According to Hennings, Romeiser, Alpers, and Viola (1999), these values are described 

by, 

 𝑉𝑐𝑢𝑠𝑝 = 𝑉𝑏𝑜𝑎𝑡 cos𝜙𝑐𝑢𝑠𝑝 (3 - 1)  

   

 𝜆𝑐𝑢𝑠𝑝 =
2 𝜋 𝑉𝑐𝑢𝑠𝑝

2 

𝑔
 (3 - 2)  

where 𝑉𝑐𝑢𝑠𝑝 is the phase speed of the cusp wave, 𝜆𝑐𝑢𝑠𝑝 is the wavelength of the cusp wave,  𝑉𝑏𝑜𝑎𝑡 

is the velocity of the boat in meters per second, 𝑔 is the acceleration of gravity, and 𝜙𝑐𝑢𝑠𝑝 is the 

propagation angle of the cusp wave (p. 2520). 

3.2 Methods 

First, we discuss the extrapolation of a one-dimensional ocean through orthogonal 

duplication resulting in a quasi-two-dimensional ocean. Then, we add random height variability 

to the ocean and present surface smoothing. The addition of boat wake to the ocean surface and 

final integration of the radar, boat wake, and ocean into a single model are also presented. 

3.2.1 Quasi-two-dimensional ocean model. 

The quasi-two-dimensional ocean was generated using an algorithm that converts the 

one-dimensional simulated ocean model into a quasi-two-dimensional propagating ocean. The 
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model requires the output of the one-dimensional ocean model. We developed three options for 

the quasi-two-dimensional ocean model as requested by the sponsor. This model uses the stored 

one-dimensional ocean height as a function of distance and time. These data and cross-sea input 

parameters define the quasi-two-dimensional ocean model. Note that in our quasi-two-

dimensional ocean model, we refer to the x dimension as the up/down sea direction and we refer 

to the y dimension as the cross-sea direction. 

There are ten inputs to our algorithm comprised of: 

 Cross-sea range 

 Cross-sea distance resolution 

 Wave type toggle 

o uniformly extrapolated 

o uniformly extrapolated with additive independent height variance 

o uniformly extrapolated with additive correlated height variance 

 Amount of random height variance  

 Time smoothing interval 

 Cross-sea smoothing interval 

 Up/Down-sea smoothing interval 

 Plotting toggle 

 Ocean select 

 Small ocean plot toggle 

 Small ocean plot bounds 

The cross-sea range and distance resolution inputs are used to create a discretized cross-sea 

distance vector. Toggle wave type input allows the user to select from the three following ocean 

options: uniform waves (Figure 66), uniform waves with added independent random height 

variance (Figure 67), and uniform waves with added correlated random height variance (Figure 

68). The amount of random variance desired in the ocean is specified as a fraction of significant 

wave height. Time, cross-sea, and up/down-sea smoothing intervals specify time or distance over 

which smoothing is performed. The plotting toggle allows the user to selectively plot the two-

dimensional ocean. Ocean select specifies which of the previously generated one-dimensional 

oceans to use as a basis for the quasi-two-dimensional model. The small ocean plot toggle and 
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plot bounds allow the user to plot a smaller region of the full ocean as well as define the smaller 

region bounds. Small region plots allow for the user to verify the behavior of the ocean from a 

zoomed in perspective and allow the simulation to stay within memory constraints. 

The first of the wave type options produces a uniform wave ocean model. This ocean 

model is the foundation for all three surface options of the quasi-two-dimensional ocean model. 

The uniform wave ocean model is initially produced from the one-dimensional ocean by 

replicating the one-dimensional ocean along the cross-sea (y) dimension. Each replication of the 

one-dimensional ocean model is spaced as defined by the cross-sea distance resolution. Figure 65 

illustrates the replication of the one-dimensional ocean along the y-axis, parallel to the x-axis. 

We define the origin of the ocean at the center of the y extents and at the initial x location. In 

MATLAB, we performed this operation by repeating 𝜼[x, ts] row-wise (first dimension) where 

𝜼[x, ts] was a two dimensional matrix with x in one dimension and ts in the other dimension. 

This process is described by: 

 𝜼𝟐𝐃[x, y, ts] = [

𝜼[x, ts]
𝜼[x, ts]

⋮
𝜼[x, ts]

]       (3 - 1)  

where the number of rows is equal to the number of elements in the discretized cross sea distance 

vector. 
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Figure 65. Representation of replication of one-dimensional ocean surface in the cross-sea direction. The black 

arrows show the directions of replication. 

The result of such replication causes the ocean surface to have uniformly propagating 

waves in the up-sea and down-sea directions without variation of ocean height in the cross-sea 

direction. The radar is located at some height at the origin. Figure 66 shows a 100 square meter 

close up of a uniform wave two-dimensional ocean model.  



99 

 

 

Figure 66. Plot of 200-square meter region of interest (ROI) plot of a uniform wave quasi-two-dimensional ocean 

surface. Parameters include: 𝑥 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 𝑚, 𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 10 𝑚,𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 13 𝑘𝑛𝑜𝑡𝑠. 

The uniform wave quasi-two-dimensional ocean served as the foundation for the second 

of the wave type options, achieved by adding independent random height variance. Adding 

variance to the 𝛈𝟐𝐃 ocean model was accomplished by adding an independent random Gaussian 

number to the height of each point of the ocean in time. An equation that represents a quasi-two-

dimensional ocean model with variance is characterized by the following equations: 

 𝜼𝟐𝐃𝐕
[x, y, ts] = N(𝛍, 𝝈2)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑎𝑛𝑑 𝑡𝑠 (3 - 2)  

   
   𝝁 =  𝛈𝟐𝐃[x, y, ts] (3 - 3)  

   
 𝝈 = 𝑝 ∙ 𝑯𝒔 (3 - 4)  

where 𝑁(𝜇, 𝜎2) represents a Gaussian distribution with mean 𝜇 and variance 𝜎2. In Equation (3 - 

2), the mean of the distribution is given by the two-dimensional ocean heights in time and the 

standard deviation is given by the term 𝑝 ∙ 𝐻𝑠, a fraction of the significant wave height. Notice 

that the mean of the Gaussian variable is a random process. To add variance in MATLAB, we 

generated a three dimensional random Gaussian matrix with the same dimensions as 𝜼𝟐𝐃, then 

performed an element-by-element addition. To produce the Gaussian variance matrix, we first 
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generated a standard normal distribution matrix, and then scaled this matrix by the standard 

deviation. Figure 67 shows an example of a uniform wave quasi-two-dimensional ocean model 

with variance. 

 

Figure 67. Plot of 200-square meter ROI of a uniform wave quasi-two-dimensional ocean surface with variance. 

Parameters include: 𝑥 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 𝑚, 𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 10 𝑚,𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 13 𝑘𝑛𝑜𝑡𝑠, 𝜎 = 𝐻𝑠/15. 

 The third and last of the wave type options produces a uniform wave two-dimensional 

ocean model with variance and smoothing. Note that we do not use 𝜼𝟐𝐃𝐕
 as the basis for the 

smoothed ocean. Instead, we generate an interpolated random Gaussian matrix and sum it with 

𝛈𝟐𝐃. The interpolation inherent in the Gaussian matrix produces the effect of smoothing. The 

inputs up/down-sea, cross-sea, and time smoothing intervals define the dimensions of a three-

dimensional random Gaussian matrix, denoted as 𝐑𝐆𝐌. There is one random height generated 

for every interval distance or time. Thus, the dimensions of 𝐑𝐆𝐌 are defined by the number of 

intervals within the ranges of x, y, or t, respectively. 

                                                              𝐑𝐆𝐌 =  N(0, 𝝈2) (3 - 5)  

  
 𝝈 = 𝑝 ∙ 𝑯𝒔 (3 - 6)  
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The Gaussian random matrix is then three dimensionally cubic spline interpolated for each 𝑥, 𝑦, 

and 𝑡𝑠. The resultant matrix of the interpolation has the same dimensions as 𝜼𝟐𝐃, and is 

represented by: 

𝐑𝐆𝐌𝐢𝐧𝐭𝐞𝐫𝐩 = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛3𝐷,𝑠𝑝𝑙𝑖𝑛𝑒(𝑹𝑮𝑴)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑥, 𝑦, 𝑎𝑛𝑑 𝑡𝑠 (3 - 7)  

This interpolated random Gaussian matrix is added to 𝛈𝟐𝐃 producing: 

 𝛈𝟐𝐃𝐕𝐒
[x, y, ts] = 𝛈𝟐𝐃[x, y, ts] + 𝐑𝐆𝐌𝐢𝐧𝐭𝐞𝐫𝐩 (3 - 8)  

Without smoothing, waves typically are very choppy because they change for each x and y 

position, and at each time instant. With smoothing, the ocean surface does not vary as quickly 

and appears more realistically. Note that  𝛈𝟐𝐃𝐕𝐒
 has correlated noise, whereas 𝛈𝟐𝐃𝐕

 has 

uncorrelated noise. The spline interpolation parameters manipulate the correlation of the noise. 

Figure 68 shows an example of a uniform wave two-dimensional ocean model with variance and 

smoothing. 

 

Figure 68. Plot of 200-square meter ROI of a uniform wave quasi-two-dimensional ocean surface with variance and 

smoothing. Other parameters include: 𝑥 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 𝑚, 𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 10 𝑚,𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 13 𝑘𝑛𝑜𝑡𝑠, 

𝜎 = 𝐻𝑠/2, 𝑥 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 100 𝑚, and 𝑦 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 200 𝑚. 

Figure 69 shows how the smoothing process affects the ocean over 1000 square meters of 

an ocean with the same input variables as the ocean in Figure 68. Notice that the smoothing 
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affect is more apparent in the latter plot because the 𝑦 smoothing interval was relatively large 

relative to the size of the region of interest. 

 

Figure 69. Large ocean plot of the uniform wave quasi-two-dimensional ocean model with variance and smoothing. 

Other parameters include: 𝑥 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 𝑚, 𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 10 𝑚,𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 13 𝑘𝑛𝑜𝑡𝑠, 𝜎 = 𝐻𝑠/2, 𝑥 

𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 100 𝑚, and 𝑦 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 200 𝑚. 

3.2.2 Boat wake model. 

The goal of the following methods was to develop an algorithm that generates point 

targets that represent cusp wave crests based on given boat and radar information. The boat 

parameters produced the locations of cusp wave crests while the radar information was used to 

determine the spatial bounds within which cusp wave crests were generated. In order to 

implement a wake model, we first determined the cusp wave crest geometry, then generated 

point targets within the radar bounds, and finally, added amplitude decay to the cusp wave crests. 

 There are three inputs to our algorithm comprised of the: 

 Boat vector(s), 

 Slow time vector, and 

 Radar viewing bounds. 
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The boat vector(s) contained the initial positions, velocities, and directions for a set of boats. The 

algorithm is designed to generate the cusp wave crests for each slow time within a given radar 

dwell time such that the timing information matches the radar timing information. The slow time 

vector represents this interval of time.  The radar viewing bounds are very important to the 

computational speed of our algorithm. If the target or any of its associated wake is outside of the 

radar viewing bounds, it is not necessary to compute the radar returns of those point targets 

because the radar returns will not significantly affect the received energy.  

3.2.2.1 Determining cusp wave crest geometry. 

The first step in the boat wake generation process was to determine the cusp wave crest 

geometry. We first present the geometry for a boat traveling toward or away from the radar, then 

we extend the wake model to simulate a boat traveling in any direction. Using the propagation 

direction of the cusp wave and the Kelvin arm angle for a boat traveling away from the radar, we 

constructed a diagram to determine the distance relationship between cusp wave crests, as seen 

in Figure 70. We refer to the left Kelvin arm as the arm that extends behind the port side of the 

boat and the right Kelvin arm as the arm that extends behind the starboard side of the boat. 
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Figure 70. Geometry of cusp wave crest locations. The upside down V represents the Kelvin envelope. The vertex of 

the Kelvin envelope begins at the bow of the boat, represented by the blue pentagon. The angled lines on the Kelvin 

envelope represent the localized intersections between the Kelvin envelope and the cusp waves. The locations of 

these intersections represent the locations of the cusp wave crests of the Kelvin wake. 

The interval at which the cusp wave crests repeat on each Kelvin arm depends on the 

velocity of the boat. For a given constant boat velocity, each cusp wave is separated by a 

constant offset described by the vector �⃑⃑�  along the Kelvin arm. This distance was determined 

using the wavelength of the cusp wave from Equation (3 - 2), the propagation angle of the cusp 

wave, denoted as 𝜙𝑐𝑢𝑠𝑝, and the angle of the Kelvin arm, represented by 𝜃𝑘𝑒𝑙𝑣𝑖𝑛: 

 ‖�⃑⃑� ‖ =  
𝜆𝑐𝑢𝑠𝑝

cos(𝜃𝑘𝑒𝑙𝑣𝑖𝑛 + 𝜙𝑐𝑢𝑠𝑝)
 (3 - 9)  

 It was important that we could find Cartesian components that composed the vector �⃑⃑�  to 

be able to replicate the cusp wave crest on our ocean efficiently. The distance between each cusp 

wave was broken into x-y components of �⃑⃑�  that describe the change in distance between the 

location of one cusp wave crest and the next. These values were used to determine the position of 
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each subsequent cusp wave crest by using multiples of  𝐻𝑥 and Hy from a start position. In 

Figure 71, point 𝐴 represents the position of one cusp wave crest location while point 𝐵 

represents the next cusp wave crest location along the Kelvin arm. 

 

Figure 71. Geometry representing offset between two cusp wave crests. Point 𝐴 represents the current cusp wave 

crest location. Point 𝐵 represents the next cusp wave crest position. 𝐻 is the distance between the two cusp wave 

crests. 

Trigonometry can be applied to determine the 𝐻𝑥 and 𝐻𝑦 values. For the simple case where 

the boat is traveling toward or away from the radar, the components are symmetric and can be 

described by Equations  (3 - 10) and (3 - 11):  

 𝐻𝑥 = ‖�⃑⃑� ‖ sin 𝜃𝑘𝑒𝑙𝑣𝑖𝑛, (3 - 10) 

   

 𝐻𝑦 = ‖�⃑⃑� ‖ cos 𝜃𝑘𝑒𝑙𝑣𝑖𝑛. (3 - 11) 

 Next, we established a method for calculating cusp wave crest locations for a boat 

traveling at any angle. In the previous case, we were able to exploit the fact that the Kelvin 

envelope was symmetrical about a coordinate axis. Thus, each Kelvin arm had the same angle 

with respect to the coordinate axis and the same values for Hx and Hy. However, this symmetry 

does not apply when the boat is traveling at an arbitrary angle. 

 To extend this model to simulate the wake of boats traveling in an arbitrary direction, we 

use the following transformations:  

Table 3. Transformations for cusp wave offsets for left and right Kelvin arms. 

 Left Kelvin Arm (LKA) Right Kelvin Arm (RKA) 

Θ Φ + (180 − 𝜃𝑘𝑒𝑙𝑣𝑖𝑛) Φ + (180 + 𝜃𝑘𝑒𝑙𝑣𝑖𝑛) 

𝐻𝑥 ‖�⃑⃑� ‖ cos Θ𝐿𝐾𝐴 ‖�⃑⃑� ‖ cos Θ𝑅𝐾𝐴 

𝐻𝑦 ‖�⃑⃑� ‖ sinΘ𝐿𝐾𝐴 ‖�⃑⃑� ‖ sinΘ𝑅𝐾𝐴 
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where Φ denotes the angle at which the boat is traveling in a polar coordinate system such that 

the origin is located at the radar. The transformed angle of each Kelvin arm, is denoted as Θ, 

defined by  Φ + 180° ± 𝜃𝑘𝑒𝑙𝑣𝑖𝑛 where positive 𝜃𝑘𝑒𝑙𝑣𝑖𝑛 is the “right” Kelvin arm and vice versa. 

The left and right Θ can then be substituted into Equations (3 - 10) and (3 - 11) to produce the 

correct offsets in a Cartesian coordinate space. 

3.2.2.2 Generating wake point targets. 

 The overall goal for the wake model was to generate wake point targets for use in the 

radar simulation, within the radar interrogation bounds. Because the radar returns generated from 

targets outside of the radar bounds do not significantly affect the RTI and RDP, we do not 

include these targets in our model. In turn, our model requires less computation due to the 

decrease in the number of point targets. 

We chose an iterative algorithm to add successive point targets at the cusp wave crest 

locations. Using this method, we determined four cases to account for: 

 Boat and both Kelvin arms within radar bounds, 

 Boat outside of radar bounds with both Kelvin arms in radar bounds, 

 Boat outside of radar bounds with one Kelvin arm in radar bounds, and 

 Boat and both Kelvin arms outside of radar bounds. 

The last two cases are difficult to account for with an iterative algorithm because there are no 

point targets along the Kelvin arm(s) to successively add. For these cases, the Kelvin arm does 

not intersect the radar interrogation bounds. 

In order to simplify these cases for our iterative process, we developed a method to create 

a subset of points within a region of interest (ROI) that includes the radar bounds. Each Kelvin 

arm is processed individually within this algorithm. The process involved establishing an ROI 

around the radar bounds, determining the number of point targets that are possible within this 

ROI for each Kelvin arm, and then iteratively checking and adding points that are contained 

within the radar bounds. Another method of finding candidate cusp wave crest locations is by 

finding the intersections of the Kelvin arms with the radar bounds initially; however, this latter 

approach is more complex computationally than the ROI method. Additionally, the iterative 

process does not consider Kelvin arms that do not intersect the ROI.  
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We used a circular ROI which was a highly effective shape because it was generalized to 

both the phased array and non-scanning radar cases. Figure 72 depicts how our algorithm 

accounts for each Kelvin arm. Observe Boat A which is located outside of the ROI where neither 

Kelvin arm enters the ROI.  Boat A does not contain a subset of cusp wave crests that are within 

the bounds of the ROI so it was not considered. Boat B has one Kelvin arm that enters the ROI 

but does not enter the radar bounds. This Kelvin arm has a subset of possible cusp wave crests 

that are contained in the ROI. The green line in the figure below represents the locus of possible 

cusp wave crest locations. These locations are iteratively checked to determine if they are within 

the radar bounds. For this Kelvin arm, the intersecting line within the ROI does not intersect the 

radar bounds, so no points are saved. The Kelvin arm from Boat B that does not enter the ROI 

will not be considered. Boat C has one Kelvin arm that enters the ROI. The subset of possible 

cusp wave crests that exist within the ROI are iteratively checked. In this case, the Kelvin arm 

intersects both the radar bounds and the ROI and the points along it are saved. The red line 

represents this intersection. 



108 

 

 

Figure 72. ROI and radar bounds example. Boat A has two Kelvin arms outside the ROI. Boat B has one Kelvin arm 

inside the ROI and outside the radar bounds. Boat C has one Kelvin arm that enters both the ROI and the radar 

bounds. Blue lines represent the locus of cusp wave crests that are not iteratively processed. Green lines represent the 

locus of cusp wave crests that are iteratively processed by not saved (not within radar bounds). Red lines represent 

the locus of cusp wave crests that are iteratively processed and saved because they are within the radar bounds. The 

radar is in the center of the ROI 

  Next we present our algorithm to determine the subset of cusp wave crest point targets 

for each Kelvin arm. First, we define the position of the bow of the boat as the origin and 

construct a circle at the radar. This geometry is shown in Equation (3 - 12), where 𝑥0 and 𝑦0 

represent the initial x and y positions of the boat and 𝑟𝑅𝑂𝐼 represents the radius of the circular 

ROI:  

 𝑟𝑅𝑂𝐼
2 = (𝑥 + 𝑥0)

2 + (𝑦 + 𝑦0)
2. (3 - 12) 

We substituted Equations (3 - 13) and (3 - 14) into Equation (3 - 12) to convert this function 

from Cartesian to polar form: 

 𝑥 = 𝑟 cos 𝜃 (3 - 13) 
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 𝑦 = 𝑟 sin 𝜃 (3 - 14) 

Next, we simplified the polar form of Equation (3 - 12) to produce the quadratic equation shown 

in Equation (3 - 15). Applying the quadratic formula to Equation (3 - 15) and solving for 𝑟 

results in equation (3 - 16). 

 𝑟2 + 2𝑟(𝑦0 sin 𝜃 + 𝑥0 cos 𝜃) − 𝑟𝑅𝑂𝐼
2 + 𝑥0

2 + 𝑦0
2 = 0 (3 - 15) 

   

       𝑟(𝜃) =  −𝑦0 sin 𝜃 − 𝑥0 cos 𝜃 

                       ±√(𝑦0 sin 𝜃)2 + (𝑥0 cos 𝜃)2 + 2𝑥0𝑦0 sin 𝜃 cos 𝜃 + 𝑟𝑅𝑂𝐼
2 − 𝑥0

2 − 𝑦0
2 

(3 - 16) 

The analysis of Equation (3 - 16) allowed us to determine a subset of possible point targets, as 

explained below. The results of this equation must be interpreted differently depending on if the 

boat is located inside or outside of the ROI. We will refer to the positive square root function of 

Equation (3 - 16) as 𝑟𝑝𝑜𝑠(𝜃) and the negative square root function as 𝑟𝑛𝑒𝑔(𝜃).  

 If the boat is located inside the ROI, 𝑟𝑝𝑜𝑠(𝜃) represents the distance from the boat to an 

edge of the ROI. Inputting the angle of �⃑⃑�  into 𝑟𝑝𝑜𝑠(𝜃) determines the length of Kelvin arm that 

exists within the ROI, denoted as 𝐿𝑅𝑂𝐼. The floor of the division of 𝐿𝑅𝑂𝐼 by ‖�⃑⃑� ‖ results in the 

number of point targets that exist within the ROI (denoted as 𝑁𝑅𝑂𝐼) for a Kelvin arm:  

 𝑁𝑅𝑂𝐼 = ⌊
 𝐿𝑅𝑂𝐼

‖�⃑⃑� ‖
⌋ = ⌊

𝑟𝑝𝑜𝑠(∠�⃑⃑� )

‖�⃑⃑� ‖
⌋  (3 - 17) 

Starting from the boat position and iteratively moving down the Kelvin arm until reaching 𝑁𝑅𝑂𝐼 

by adding �⃑⃑�  successively, we can check to see if each point target is within bounds of the radar. 

The set of valid point targets within the radar bounds can then be input into the radar simulation. 

Figure 73 shows the distance from a boat to the edge of the ROI. The black dot represents 

the position of the boat within the ROI and the x represents the center of the ROI (location of the 

radar). Both Figure 73 and Figure 74 show red dots which represent the projections from the boat 

along angles 0, 90, 180, and 270 degrees that were used for basic code verification. 



110 

 

 

Figure 73. Distance from a boat to the edge of the ROI in polar form. The boat is shown centered at (0,0) whereas the 

radar is located at the x position. 

 

 

Figure 74. Distance from a boat to the edge of the ROI over 360 degrees. The ROI has a radius of 1500 m with the 

boat being located inside of the ROI at position (825, 1000). The red points are located at 0, 90, 180, and 270 

degrees. 

 If the boat is located outside of the ROI, there are two conditions associated with the 

results of 𝑟𝑝𝑜𝑠(𝜃) and 𝑟𝑛𝑒𝑔(𝜃) after inputting the angle of �⃑⃑� . If 𝑟𝑝𝑜𝑠(∠�⃑⃑� ) and 𝑟𝑛𝑒𝑔(∠�⃑⃑� ) are 

imaginary or negative, the Kelvin arm does not enter the ROI. If 𝑟𝑝𝑜𝑠(∠�⃑⃑� ) and 𝑟𝑛𝑒𝑔(∠�⃑⃑� ) are 
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positive, the Kelvin arm enters the ROI. In this case, the length of the Kelvin arm that exists in 

the ROI , denoted as 𝐿𝑅𝑂𝐼, is given by: 

 𝐿𝑅𝑂𝐼 = 𝑟𝑝𝑜𝑠(∠�⃑⃑� ) − 𝑟𝑛𝑒𝑔(∠�⃑⃑� ) (3 - 18) 

The first point target that exists within the ROI occurs at 𝑛𝑅𝑂𝐼 𝑠𝑡𝑎𝑟𝑡 successive point target 

positions away from the boat, and is given by:   

 𝑛𝑅𝑂𝐼 𝑠𝑡𝑎𝑟𝑡 = ⌈
𝑟𝑛𝑒𝑔(∠�⃑⃑� )

‖�⃑⃑� ‖
⌉ (3 - 19) 

The last point that exists within the ROI occurs at 𝑛𝑅𝑂𝐼 𝑒𝑛𝑑 successive point target positions away 

from the boat, and is given by: 

 𝑛𝑅𝑂𝐼 𝑒𝑛𝑑 = ⌊
𝑟𝑝𝑜𝑠(∠�⃑⃑� )

‖�⃑⃑� ‖
⌋ (3 - 20) 

The number of point targets that exist in the ROI along this locus is: 

 𝑁𝑅𝑂𝐼 = 𝑛𝑅𝑂𝐼 𝑒𝑛𝑑 − 𝑛𝑅𝑂𝐼 𝑠𝑡𝑎𝑟𝑡 + 1 (3 - 21) 

A general equation to find the position of a successive point target away from the boat, 

denoted as 𝑃𝑃𝑇, with the successive point target number, denoted as 𝑛𝑃𝑇, is defined by: 

 𝑃𝑃𝑇 = 𝑛𝑃𝑇 ∙ �⃑⃑�  (3 - 22) 

With these equations, we are able to iteratively check to see if each point target is within bounds 

of the radar. If the point target is within bounds of the radar, it can be later input into the radar 

simulation. 

We consider two scenarios for radar bounds that must be iteratively checked: square (for 

non-scanning radar, see Section 2.1.1) and circular sector (for phased array radar, see Section 

4.1). Using the square radar bounds, we included only cusp wave crest point targets that exist 

within the bounds of the quasi-two-dimensional ocean. We chose to position the origin of ROI 

circle at the same location as the origin of the quasi-two-dimensional ocean model. With the 

position of the ROI and the bounds of the ocean, we define the radius of the ROI to be the length 

from the origin to the furthest ocean surface position from the origin, given by: 

 𝑟𝑅𝑂𝐼 = √max (|𝑦|)2 + max (𝑥)2 (3 - 23) 

We then must check every cusp wave crest point target within the ROI along each Kelvin arm 

and add the point targets that fit the requirements: 

 min (𝑦) ≤ 𝑃𝑃𝑇,𝑦 ≤ max (𝑦) 
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 min(𝑥) ≤ 𝑃𝑃𝑇,𝑥 ≤ max(𝑥) 

where 𝑃𝑃𝑇,𝑦 is the 𝑦 position and 𝑃𝑃𝑇,𝑥 is the 𝑥 position of the cusp wave crest point target.  

 Using the circular sector bounds, we include only cusp wave crest point targets that exist 

within the bounds of the phased-array radar viewing angle of ±45°. Because a circular sector is a 

portion of a complete circle, we define the 𝑟𝑅𝑂𝐼 to be: 

 𝑟𝑅𝑂𝐼 = 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 (3 - 24) 

where 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 is √𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒
2 − ℎ2. We then must check every cusp wave crest point target 

within the ROI along each Kelvin arm and add the point targets that fit the requirements: 

 −45° ≤ ∠𝑃𝑃𝑇 ≤ 45° 

 ‖𝑃𝑃𝑇‖ ≤ 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 

It is not necessary to check for the second requirement because the process of limiting the point 

targets to within the ROI inherently insists by Equation (3 - 24) that the magnitude of the 

position is within the alias-free maximum distance. 

Figure 75 shows four boats each traveling at various velocities and angles and exactly 

where there cusp waves would be located using a phased-array radar. 
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Figure 75. Model of multiple boats and their wakes traveling at various velocities. Boat traveling A) 10 knots at 45 

degrees, B) 15 knots at 90 degrees, C) 20 knots at 0 degrees, and D) 30 knots at 180 degrees. The black bold lines 

represent the scanning bounds for the radar. 

 The next step that is necessary is preparing for the propagation of these cusp waves for 

each slow time of the radar. Each cusp wave propagates at the velocity of the boat, so the 

position of every cusp wave crest also propagates at the same velocity. The standard kinematic 

equations for position shown in Equations (3 - 25) and (3 - 26) can be used to determine the 

position at each subsequent slow time: 

 𝑥 = 𝑥0 + 𝑣𝑥𝑡𝑠 (3 - 25) 

   

 𝑦 = 𝑦0 + 𝑣𝑦𝑡𝑠 (3 - 26) 

  Finally, we added decay to the cusp wave crests to make them more realistic for our 

model. According to Landau and Lifshitz, dissipation of ocean waves follows the equations (as 

cited in Chryssostomidis & Liu, 2011): 

 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑑𝑒𝑐𝑎𝑦 = 𝑒−𝛾𝑡 (3 - 27) 

   

 𝛾 = 2𝑣𝑘2 =
2𝑣𝜔4

𝑔2
 (3 - 28) 
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The above equation was used to add decay to the cusp wave crest amplitudes in our boat wake 

model. Because the cusp waves travel at the group velocity, we substituted Equation (3 - 29) into 

Equations (3 - 27) and (3 - 28). Simplifying the result led to Equation (3 - 30). 

 𝜔 = 
2𝜋𝑉𝑐𝑢𝑠𝑝

𝜆𝑐𝑢𝑠𝑝
 (3 - 29) 

   

 
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑑𝑒𝑐𝑎𝑦 = 𝑒

−(
32𝜋4𝑉𝑐𝑢𝑠𝑝

5

𝜆𝑐𝑢𝑠𝑝
4𝑔2

)𝑡 

 
(3 - 30) 

An example of the decay of the boat wake coefficients in time is shown in Figure 76. 

 

Figure 76. Amplitudes of dampening boat wake coefficients for various velocities in time. 

The cusp wave crest amplitude coefficient is a scale factor between 0 and 1. Cusp wave 

crests are discrete points along these curves. Each cusp wave crest was considered an indexed 

time period away from the boat described by equation: 

 𝑡𝑖 =
‖�⃑⃑� ‖𝑐𝑜𝑠 (𝜃𝑘𝑒𝑙𝑣𝑖𝑛) ∙ 𝑖

𝑉𝑏𝑜𝑎𝑡
 (3 - 31) 
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where 𝑖 is the index number of the cusp wave crest behind the boat. Substituting Equation (3 - 

31) into Equation (3 - 30) yields: 

 
𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑑𝑒𝑐𝑎𝑦 = 𝑒

−(
32𝜋4𝑉𝑐𝑢𝑠𝑝

5

𝜆𝑐𝑢𝑠𝑝
4𝑔2

)(
‖�⃑⃑� ‖ cos(𝜃𝑘𝑒𝑙𝑣𝑖𝑛)∙𝑖

𝑉𝑏𝑜𝑎𝑡
) 

 
(3 - 32) 

Each cusp wave crest was given an associated index and the resulting coefficients of Equation (3 

- 32) were applied to the amplitudes of the cusp wave crests in time.  

 The very act of modeling Kelvin wake cusp wave crests adds substantial computation 

because each one needs to have its radar returns generated. To reduce the number of cusp wave 

crests, and thus computation, we limit the generation of cusp wave crests to those which have 

coefficients above 0.005. 

 Figure 77 shows the results of these methods using non-scanning radar with a boat 

traveling toward the radar at 20 knots. The left plot is a RDP of the boat and wake and the right 

plot is the actual positions of the point targets. The bow of the boat is located at the point of the 

V shaped pattern. A time series of this example is located in the accompanying attachment to this 

report. Notice that the cusp wave crests across from one another on opposite Kelvin arms are not 

resolved in the RDP because they occupy the same range and velocity bins. 
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Figure 77. Range Doppler profile for a boat with cusp waves traveling at 20 knots toward the radar. Other parameters 

include: 𝑓0 = 10 𝐺𝐻𝑧, 𝐵 = 100 𝑀𝐻𝑧, 𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1500 𝑚, 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 70 𝑚/𝑠, 𝑑0 = 700 𝑚, 

 𝑉𝑏𝑜𝑎𝑡 = 10.288 𝑚/𝑠 (20 𝑘𝑛𝑜𝑡𝑠). 

3.2.3 Integration. 

To integrate the quasi-two-dimensional ocean, non-scanning radar, targets, and their 

wakes, the same computing architecture from the non-scanning, one-dimensional ocean radar 

scattering simulation was used as a base. This section explains the important differences and 

modifications that were essential to implement for MATLAB integration. The chosen 

architecture allowed easy addition of more complicated processes and also allowed us to 

leverage previous functionality. Figure 78 shows the modified program architectural flow, with 

green boxes that indicate major new inputs, processing steps, and outputs, and with blue, dashed 

boxes that indicate modified processes.  
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Figure 78. Overall work flow diagram for the non-scanning quasi-two-dimensional ocean model. The left pane shows 

user inputs, the middle pane shows algorithmic flow, and the right pane shows simulated outputs. The green boxes 

represent new and the blue, dashed boxes represent modified processes in comparison to Figure 44. 
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The first major change in the architecture was the addition of the quasi-two-dimensional 

ocean model. As discussed in Section 3.2.1, this quasi-two-dimensional ocean is an extrapolation 

of the one-dimensional ocean, so it takes the one-dimensional ocean as a direct input. Of course, 

this extrapolation has process-specific inputs that are required and allows us to plot the ocean 

surface in three dimensions (𝑥, 𝑦, height). The primary output of this second process block is a 

MATLAB matrix cube which contains the quasi-two-dimensional ocean heights for 𝑥, 𝑦, and 𝑡. 

The third processing block, “Generate radar returns of the ocean surface” was originally 

developed to accept a one-dimensional ocean as input (a two-dimensional MATLAB matrix 

representing ocean heights for 𝑥 and 𝑡). However, it had to be modified to accept a two-

dimensional ocean. This modification is accomplished rather simply by modifying Equation (2 - 

64) to incorporate cross-sea distance, 𝑦: 

 𝑟𝜏[𝑡𝑠] = √(ℎ − 𝜼[𝑥, 𝑡𝑠])2 + 𝑥2 + 𝑦2 (3 - 33) 

In addition, the one-dimensional slope scaling technique that was used required modification. 

Instead of using the slope of the ocean, we used the dot product of the normal unit vector and the 

radar line of sight unit vector at each position of the ocean. Figure 79 shows normal unit vectors 

overlaid on a sample ocean surface. Then, we took the product of the result of the dot product 

and the radar return. That is, for every point on the ocean surface, we performed the following: 

                        𝑉[𝜔, 𝑡𝑠] = 𝑒−2𝑗𝑘∙𝑅𝑠 ∑(�⃑� (𝑥, 𝑦, 𝑡𝑠) ∙ 𝑢𝑙𝑜𝑠⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝑥, 𝑦, 𝑡𝑠)) 𝑒
−2𝑗𝑘𝑟𝜏[𝑡𝑠]

NΤ

𝜏=1

 (3 - 34) 

Where �⃑� (𝑥, 𝑦, 𝑡𝑠) is the normal unit vector and 𝑢𝑙𝑜𝑠⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝑥, 𝑦, 𝑡𝑠) is the radar line of sight unit vector 

at coordinate position (𝑥, 𝑦) and slow time 𝑡𝑠. 
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Figure 79. Surface normals drawn on a 50𝑥100 𝑚 grid of ocean surface. Parameters include:  

𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = 13 𝑘𝑛𝑜𝑡𝑠, 𝑥 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 𝑚, 𝑦 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 10 𝑚, variance and smoothing toggled on, 

𝑥 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 100 𝑚, 𝑦 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 200 𝑚  

The last major addition to the architecture was to include boat wake. In our architecture, 

we generate boat wake after the targets are generated because the boat wake is dependent on the 

position and velocity of the targets. We consider boat wake as additional point targets. After that, 

the subsequent processing blocks do not need modification because they were already capable of 

multi-target range return generation. In fact, because there is a summation over targets when 

generating range returns, there is absolutely no difference in output size with or without toggled 

boat wake. Note that the boat itself is still modeled, as discussed in Section 2.2.3. 

It is important to emphasize that the same calibration routine is used for the one-

dimensional and two-dimensional ocean radar returns. Using the same calibration routine is valid 

because the computed radar scattering distribution is similarly shaped after dot product scaling. 

In addition, the calibration routine accepts radar returns as input, and the radar returns are the 

same size in the one- and two-dimensional ocean cases (adding targets in the cross-sea direction 

adds more targets, but radar returns are summed through targets). 
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3.3 Results and Discussion 

In the background and methods of this chapter, we have discussed the development of a 

non-scanning, quasi-two-dimensional ocean scattering simulation. By leveraging the architecture 

of the non-scanning, one-dimensional ocean scattering simulation, we were successful at 

extending the one-dimensional model to a two-dimensional model. The parallelization and 

graphical user interface make this simulation practical and easy to use (discussed in Sections 5.3 

and 6.2). Because the one-dimensional algorithms are used in part to generate the two-

dimensional model, the verifications discussed in Section 2.3 also apply to the two-dimensional 

model. In this section, we focus on the verification and results of the modifications described in 

Section 3.2.3.  

Similar to the verification of range and Doppler processing in the one-dimensional case, 

it was simple to verify such processing in the two-dimensional simulation. In particular, we were 

able to easily verify the modification described by Equation (3 - 34) and the geometry of the 

Kelvin wake by comparing the locations of target power in RTI plots and RDPs to expected 

range bins. We show an example of RTI plots and RDPs with boat and wake later in this section.  

After we verified that the dot product of the ocean surface normal unit vectors and the 

radar line of sight unit vectors corresponded to the slope of the ocean, we verified that dot 

product scaling had beneficial effects on the ocean scattering distribution. Recall that computed 

ocean scattering distribution is mode shifted and dilated to fit the empirical radar scattering 

characteristics of the ocean. The operation of dot product scaling mode shifts and dilates the 

computed scattering distribution such that the computed distribution is a better fit to the 

empirical distribution (prior to log-normal calibration). A comparison between the un-scaled 

ocean scattering distribution and the dot product scaled distribution of the same quasi-two-

dimensional ocean is shown in Figure 80. Notice that the un-scaled distribution spans 

approximately 35 𝑑𝐵 while the scaled distribution spans approximately 40 𝑑𝐵. Because the 

empirical distribution spans approximately 60 𝑑𝐵, the dot product scaling increased the width of 

the distribution toward the expected width. Also notice how the mode of the un-scaled 

distribution is approximately 10 𝑑𝐵  and the mode of the scaled distribution is approximately 

−10 𝑑𝐵. The mode of the empirical distribution is approximately −21 𝑑𝐵, so the dot product 

scale shifted the mode toward the expected mode. Finally, notice that the dot product scaled 

distribution is less skewed, and thus, more Gaussian in shape. Although we only show one 
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comparison for dot product scaling, we found that it is effective for all wind speeds and both HH 

and VV polarization. 

 

Figure 80. Calculated ocean scattering distributions for uniform quasi-two-dimensional ocean surface with no surface 

normal scaling (left) and with surface normal scaling (right). Parameters include: 𝑓0 = 10 𝐺𝐻𝑧, 
  𝐵 = 100 𝑀𝐻𝑧, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1000 𝑚, 𝑝𝑟𝑓 = 40 𝐻𝑧, duration = 5 𝑠, wind speed =

13 𝑘𝑛𝑜𝑡𝑠, 𝑅𝑠 = 1000 𝑚, downsea propagation, VV polarization, cross sea range = 200 𝑚, cross sea resolution 

= 10 𝑚, Gaussian variance added to ocean, variance = 1/3 𝐻𝑠, cross sea smoothing intervals =  5, sea smoothing 

intervals = 10, time smoothing period = 3 𝑠, no windowing. 

Figure 81 shows the RTI plots of the un-scaled and scaled distributions. Note how it is 

easier to distinguish the time smoothing property in the scaled case. We notice a significant 

difference when comparing RTI plots of the two dimensional surface with RTI plots of a one-

dimensional surface. Specifically, it is more difficult to distinguish propagation, or group, 

velocity of the waves as a function of time. That is, there is no clear slope as was evident in one-

dimensional RTI plots such as Figure 57. We believe that the primary reason for this difference 

is that the same range bin corresponds to many different waves, as depicted in Figure 83. In fact, 

we hypothesize that this effect also causes the nulls and high power regions in uniform quasi-

two-dimensional oceans with low cross distance range, as highlighted in Figure 82 (note the 

relatively low cross range of 200 𝑚). In this case, we think the nulls and high power regions 

occur where the same range bin represents exactly the wavelength of the dominant frequency 
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component of the ocean at that range. The cross distance range governs the distance (toward or 

away from the radar) range of the range bins.   

 

Figure 81. Comparison between RTI plot of a uniform quasi-two-dimensional ocean with no scaling (left) and dot 

product scaling (right). The same ocean and radar parameters as used in Figure 80 were used. 
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Figure 82. RTI of uniform quasi-two-dimensional ocean. Nulls and high power peaks are highlighted by the solid 

blue ellipses. Parameters include:  : 𝑓0 = 10 𝐺𝐻𝑧,   𝐵 = 100 𝑀𝐻𝑧, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 =

1000 𝑚, 𝑝𝑟𝑓 = 20 𝐻𝑧, 𝑇𝑑𝑤𝑒𝑙𝑙 = 10 𝑠, wind speed = 13 𝑘𝑛𝑜𝑡𝑠, 𝑅𝑠 = 1000 𝑚, dowqnsea propagation, VV 

polarization, cross sea range = 200 𝑚, cross sea resolution = 10 𝑚, no Gaussian variance or smoothing, no 

windowing. 
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Figure 83. Overhead view of uniform quasi-two-dimensional ocean. Each point along each circular line would fall 

into the same range bin in an RTI and RDP. Here, the lines span many waves. At further distances (in x), the 

curvature would not be so great, and the locus of points which correspond to the same range bin may span exactly 

one wave and produce effects such as those in Figure 82. 

Recall that three quasi-two-dimensional ocean models were developed: uniform, uniform 

with variance, and uniform with variance and smoothing. In the figures below, we show the RTI 

plot and RDP for each of these models. The same one-dimensional ocean surface was used as the 

base for each generation. A boat and its resulting wake were modeled on the surface of these 

ocean surfaces. The kinematics of the modeled boat are shown in Figure 84. 
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Figure 84. (Left) boat kinematics and (right) actual position of boat and its associated wake for the examples of 

Figure 85, Figure 86, and Figure 87. The boat started 1300 𝑚 away from the radar with a velocity of 10 𝑚/𝑠 toward 

the radar at an angle of 30 degrees relative to the radar. The radar cross section of the boat was set to 10 times the 

mean radar cross section of the ocean. The radar cross section of the first cusp wave crests was set to 1/5 the cross 

section of the boat.  

 

Figure 85. RTI (left) and RDP (right) of a uniform quasi-two-dimensional ocean with a target and wake. Solid blue 

circles highlight the boat and wake. Parameters include: 𝑓0 = 10 𝐺𝐻𝑧,   𝐵 = 100 𝑀𝐻𝑧, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 =
5°, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1000 𝑚, 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 15 𝑚/𝑠, 𝑇𝑑𝑤𝑒𝑙𝑙 = 0.2 𝑠, wind speed = 24 𝑘𝑛𝑜𝑡𝑠, 𝑅𝑠 = 1000 𝑚, upsea 

propagation, VV polarization, cross sea range = 1000 𝑚, cross sea resolution = 10 𝑚, no Gaussian variance or 

smoothing, no windowing. The boat and wake of Figure 84 were used in these plots.  
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Figure 86. RTI (left) and RDP (right) of a uniform quasi-two-dimensional ocean with variance, target, and wake. 

Solid blue circles highlight the range of the bow of the boat. The same boat, uniform quasi-two-dimensional ocean, 

and radar parameters as were used in Figure 85 were used as a base model to generate these plots. The variance 

added to the ocean was: variance = 1/3 𝐻𝑠. 

 

Figure 87. RTI (left) and RDP (right) of a uniform quasi-two-dimensional ocean with variance, smoothing, target, 

and wake. Solid blue circles highlight the boat and wake. The same boat, uniform quasi-two-dimensional ocean with 

variance, and radar parameters as were used in Figure 85 were used as a base model to generate these plots. The 

smoothing cross sea smoothing intervals =  5, sea smoothing intervals = 10, time smoothing period = 3 𝑠, no 

windowing. 

We notice differences when comparing the RTI plots and RDPs of the three quasi-two-

dimensional ocean surfaces to each other. Most notably, the RTI plot and RDP of the uniform 
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quasi-two-dimensional ocean with variance looks drastically different than the other RTI plots 

and RDPs. Although the distribution of the RTI of all three of these examples have been matched 

to the empirical scattering distribution (including the case with variance), we believe the RTI and 

RDP of the ocean with variance is inaccurate. Unfortunately, there is little data to compare 

against in the public domain, so we cannot make this claim with evidence.  

Because this two-dimensional ocean model is so connected to the one-dimensional 

model, it has the same limitations. Particularly, a Lagrangian mechanics model must be 

developed to generate more accurate RDPs. In the future, we also suggest the development of a 

two-dimensional ocean surface using the Philips model, which considers multi-directional 

propagation.   
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4 Phased Array Simulation 

The non-scanning radar simulation previously discussed is a very capable model and aids 

in the understanding of maritime ocean scattering and allows for the development of small boat 

detection algorithms. However, phased array radar allows an extra degree of spatial freedom, and 

thus, enhances potential small boat detection performance. Therefore, it is important to develop a 

phased array simulation. In this section, we present background and methods on phased array 

antenna theory. As a future extension, it is possible to simulate ocean scatter using phased array 

radar as represented in Figure 88.  

 

Figure 88. Visual representation of phased array radar, quasi-two-dimensional ocean, and target integration. 

4.1 Background 

Phased array radar consists of an array of antennas. This array can be one or two-

dimensional, each dimension adding an extra degree of spatial freedom. In this discussion, we 

consider only the one-dimensional phased array that resolves in azimuth. Each of these antennas 

can be polarized HH or VV, and one polarization is used for the entire array. Phased array radars 

are very important in the maritime setting because the extra degree of freedom allows the 

determination of a target on a two-dimensional map. Because targets are always on or near the 

ocean surface, this two-dimensional map works well to identify the position of the target. Figure 

89 shows an example of a phased array radar. 
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Figure 89. One-Dimensional phased array radar mounted on an airplane([Image of one-dimensional phased array], 

2012). 

Phased array radars work by varying the phase of the transmitted or received 

electromagnetic signals. These signals superimpose in free space according to N-slit diffraction. 

The overall effect of this superposition is an angled plane wave and a radiation pattern that is 

reinforced in a desired direction and suppressed in undesired directions. An example angled 

wave front is shown in Figure 90 and an example radiation pattern is shown in Figure 91. The 

angle of the resulting plane wave is called the scan angle, denoted 𝜃. By changing the phase 

variation, the radiation pattern can be altered to scan at different angles. Because this change of 

phase variation can occur rapidly with electronic variable phase shifters, it is possible to 

electronically scan in angle.  

 

Figure 90. Phased array plane wave formation. (a) Waves emanating from discrete sources in a phased array interfere 

to create a plane wave that appears to come from a distant source behind the array (corresponds to a scan angle of 0°). 
(b) By emitting waves with different phase shifts, the array sources create a plane wave that propagates at an angle to 

the array surface (Wowk, 2007). 
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Figure 91. Example of a phased array antenna pattern at a scan angle of 0°. 

 The physical spacing and length of phased array radar determines its beam width, number 

of elements, and phase shift. Figure 92 shows the geometry that is described. Generally, the 

distance, 𝑑, between adjacent antennas is: 

  𝑑 =
𝜆0

2
 (4 - 1)  

where 𝜆0 is the center frequency wavelength. The beam width, denoted 𝐵𝑤, is the range of angles 

such that the amplitude of the antenna pattern is above −3𝑑𝐵. This beam width is approximated 

by: 

 𝐵𝑤 ≈
𝜆0

𝐷
 (4 - 2)  

where 𝐷 is the total array length. The beam width is particularly important because the beam 

width is the angle resolution. Using the element spacing described by Equation (4 - 1), it is 

possible to determine the number of elements, 𝑁𝐸, required for an array with a given array 

length.  

 𝑁𝐸 = ⌈
𝐷

𝑑
⌉ (4 - 3)  
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Because it is impossible to have a fraction of an antenna, the ceiling function is taken. Using 

Equations (4 - 2) and (4 - 3), it is possible to determine the number of elements required given a 

desired beam width: 

 𝑁𝐸 = ⌈
𝜆0

𝑑𝐵𝑤
⌉ (4 - 4)  

 The phase shift between successive elements is (Monzingo & Miller, 1980, p. 50): 

  ∆𝜙 =
2𝜋𝑑

𝜆
sin(𝜃𝑠[𝑡𝑠]) =

2𝜋𝜆

2𝜆
sin(𝜃𝑠[𝑡𝑠]) = 𝜋 sin(𝜃𝑠[𝑡𝑠]) (4 - 5)  

where 𝜃𝑠[𝑡𝑠] denotes the scan angle of the phased array radar as a function of slow time (recall 

that phased array radars can electronically scan in time). Thus, the phase shift at element 𝑛 is: 

 𝜙𝑖 = 𝑛 ∙ 𝜋 sin(𝜃𝑠[𝑡𝑠]) (4 - 6)  

These parameters fully define the background necessary to simulate phased array radar. 

 

Figure 92. A phase-steered radar array (Toomay & Hannen, 2004, p. 31). 

4.2 Methods 

We now discuss the methods and simplifying assumptions used when implementing the 

phased array radar in MATLAB. Through the simplifying assumptions, we were able to realize 

4000 times less computation. In this methods section, we first extend the radar equation for 

multiple antennas. After that, we add the effect of the phase shift on the radar return equation. 

Next, we investigate computational improvements to phased array processing. After radar returns 

have been generated, the same range, Doppler, and range-Doppler methods presented in Sections 

𝜃 
𝜙 
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2.2.1.2 to 2.2.1.4 apply to the phased array radar. Finally, through a discussion of phased array 

scanning, we extend the concept of the range time intensity plot to a range-angle plot. 

In phased array radar, each antenna in the antenna array transmits simultaneously (and 

has a phase delay). An antenna of a phased array is called an element. After the transmitted 

signals scatter from targets and return to the phased array, each element receives each 

transmitted pulse. To help clarify the complexity of this process, consider the case where only 

one element is transmitting and the signal is received by each element (including the transmitting 

antenna), as shown in Figure 93. In the non-scanning radar case, there was only one antenna, and 

thus, one path for total travel distance. Now, there are multiple paths.  

 

Figure 93. Antenna array with seven elements. The v shapes represent the elements, where the darker v shape at far 

left represents the transmitting element. Straight line paths are shown to the target, represented by the circle.  

To use the radar return equation of the form of Equation (2 - 43), the total travel distance 

is required. In the non-scanning radar use of this equation, the total travel distance was given by 

Equation (2 - 4). Here, the total travel distance described by Equation (2 - 4)  is only the case for 

the path from the transmitting element to the target and then back to the transmitting element. 

We define the one directional range from transmitting element ℓ to a stationary target as 𝑟ℓ and 

the one directional range from the stationary target to receiving element 𝑛 as 𝑟𝑛, as shown in 

Figure 93. Note that 𝑟ℓ = 𝑟𝑛 when 𝑛 = ℓ. The total travel distances for the paths from the first 

transmitting element are given by: 
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  𝑟1 + 𝑟𝑛,    𝑛 = 1, 2, … ,𝑁𝐸 (4 - 7)  

Equation (4 - 7) can be extended for synchronously transmitting elements: 

 𝑟ℓ + 𝑟𝑛,   𝑛 = 1, 2, … ,𝑁𝐸;  ℓ = 1, 2, … ,𝑁𝐸 (4 - 8)  

The total number of paths is 𝑁𝐸
2. When the target is moving, we define 𝑟ℓ,𝜏[𝑡𝑠] as the distance 

from the transmitting element to the moving target 𝜏 and 𝑟𝑛,𝜏[𝑡𝑠] as the distance from 𝜏 to a 

receiving element in slow time. Furthermore, we express the height of the radar as ℎ; absolute 

target distance as 𝑥𝜏, absolute target cross-distance as 𝑦𝜏 , absolute element distance as 0, and 

absolute element cross-distance as 𝑦𝐸. We set the absolute position of the middle most element 

to the origin. Using these definitions and the Pythagorean Theorem, we further define 𝑟ℓ,𝜏(𝑡𝑠): 

𝑟ℓ,𝜏[𝑡𝑠] = 𝑟𝑛,𝜏[𝑡𝑠] = √ℎ2 + (𝑦𝐸 − 𝑦𝜏)2 + 𝑥𝜏
2     𝑛 = ℓ = 1, 2, … ,𝑁𝐸  (4 - 9)  

We can now update the radar scattering equation, Equation (2 - 43), to: 

𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∑∑ ∑ 𝑒−𝑗𝑘(𝑟ℓ,𝜏[𝑡𝑠]+𝑟𝑛,𝜏[𝑡𝑠])

𝑁𝐸

𝑛=1

𝑁𝐸

ℓ=1

NΤ

𝜏=1

  

𝑛 = 1, 2, … ,𝑁𝐸;  ℓ = 1, 2, … ,𝑁𝐸 

(4 - 10) 

The phase shift must also be implemented according to the path of the signal. Extending 

Equation (4 - 6), we found the total phase shift of a given path from transmitting element ℓ to 

receiving element 𝑛 as: 

(𝑛 + ℓ) 𝜋 sin(𝜃𝑠[𝑡𝑠]),    𝑛 = 1, 2, … ,𝑁𝐸;  ℓ = 1, 2, … ,𝑁𝐸                       (4 - 11) 

We add this phase shift to the absolute phase term −𝑘(𝑟ℓ,𝜏[𝑡𝑠] + 𝑟𝑛,𝜏[𝑡𝑠]) to update the radar 

scattering equation again: 

𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∙ 

∑∑∑𝑒−𝑗(𝑘(𝑟ℓ,𝜏[𝑡𝑠]+𝑟𝑛,𝜏[𝑡𝑠])+(𝑛+ℓ) 𝜋 sin(𝜃𝑠[𝑡𝑠]),)

𝑁𝐸

𝑖=1

𝑁𝐸

ℓ=1

NΤ

𝜏=1

,                         

𝑛 = 1, 2, … ,𝑁𝐸;  ℓ = 1, 2, … ,𝑁𝐸 

(4 - 12) 

The peak of the antenna pattern allows distinguishability of targets in angle similar to 

how the peaks in range response allowed distinguishability in range. Similar to range and 

Doppler processing discussed in Sections 2.2.1.2 and 2.2.1.3, windowing enhances detection 

probabilities. Windowing in azimuth is possible by windowing over elements. The radar 

scattering equation for phased array radar is updated to: 
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𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∙ 

∑∑ ∑ 𝑊𝑛,ℓ[𝑛, ℓ]𝑒−𝑗(𝑘(𝑟ℓ,𝜏[𝑡𝑠]+𝑟𝑛,𝜏[𝑡𝑠])+(𝑛+ℓ) 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

𝑁𝐸

ℓ=1

NΤ

𝜏=1

 ,     

𝑛 = 1, 2, … ,𝑁𝐸;  ℓ = 1, 2, … ,𝑁𝐸 

(4 - 13) 

 Although Equation (4 - 13) has many components, it can be modeled relatively simply in 

MATLAB. Specifically, a five dimensional matrix could be generated with dimensions 

representing angular frequency (or, wavenumber), slow time, transmitting element index, 

receiving element index, and target index. After this matrix is generated according to the radar 

return equation, a sum could be applied across the last three dimensions to return a function of 

angular frequency, slow time, and mode, as desired.  

Equation (4 - 13) was verified by finding the antenna pattern produced by the equation 

and comparing it to phased array antenna patterns found in literature. The antenna pattern can be 

found in simulation by fixing scan angle and generating the radar returns of a target traveling a 

circular arc centered on the radar. The signal strength as a function of the angle of the target to 

the radar is the antenna pattern in the plane of the target. The normalized two-way (transmit and 

receive) antenna pattern for phased array radar using a scan angle of 20° is shown below. Note 

that the first sidelobe has a height that is -26.4 dB down from the main lobe. 
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Figure 94. Two-way antenna pattern for a phased array using a scan angle of 20°. Other parameters include: 𝑓0 =
10 𝐺ℎ𝑧, 𝐵 = 100 𝑀𝐻𝑧, 𝐵𝑊 = 2°. 

While Equation (4 - 13) is easily computed using MATLAB, it is not computationally 

efficient due to the sheer number of computations required. In fact, using big O notation, we 

realize that this function is 𝑂(𝑁𝜔 ∙ 𝑁𝑡𝑠 ∙ 𝑁𝐸
2 ∙ NΤ) given that 𝑁𝜔 is the number of angular 

frequencies and 𝑁𝑡𝑠 is the number of slow times. The number of computations necessary could 

be reduced after noting the symmetry inherent in the element to element travel paths and after 

using the distributive property. That is, Equation (4 - 13) is equivalent to: 

𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∙ 

∑(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝑟𝑛,𝜏[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

 ,                    

𝑛 = 1, 2, … ,𝑁𝐸 

(4 - 14) 

Now, the number of computations necessary is 𝑂(𝑁𝜔 ∙ 𝑁𝑡𝑠 ∙ 𝑁𝐸 ∙ NΤ). Thus, 𝑁𝐸 times less 

computations are necessary. For reference, when the desired angle resolution (beam width of the 

main beam) is approximately 2°, 57 elements are required. In this case, using Equation (4 - 14) 

instead of Equation (4 - 13) yields on the order of 57 times less computation; thus theoretically, 

57 times less computation duration. In reality, the MATLAB multi-dimensional vectorization 
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tools have a small amount of built in parallelization, so the computational time decrease is less 

(in this case, on the order of 20 times less). With smaller desired angle resolution, proportionally 

more elements are required, and more time is saved.  

Further improvements are possible after rearranging Equation (4 - 14) to: 

𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∙ 

(∑𝑒−2𝑗𝑘𝑟0,𝜏[𝑡𝑠]

NΤ

𝜏=1

)(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝓇𝑛[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2

 

𝑛 = 1, 2, … ,𝑁𝐸 

(4 - 15) 

This rearrangement is derived in Appendix A.3. Please refer to the appendix for the definition of 

𝓇𝑛[𝑡𝑠]. The reorganization reduces the computation to 𝑂(𝑁𝜔 ∙ 𝑁𝑡𝑠 ∙ 𝑁Τ + 𝑁𝜔 ∙ 𝑁𝐸 ∙ 𝑁𝑡𝑠). Thus, 

Equation (4 - 15)  takes 
𝑁𝜔∙𝑁𝐸∙𝑁Τ

𝑁Τ+𝑁𝐸
 times less computation than Equation (4 - 14). We also note that 

we recognize the rightmost term of Equation (4 - 15) as the definition of the antenna pattern. 

We make one final computational improvement by noting that the antenna pattern does 

not appreciably change with 𝑘 for narrowband signals. For example, Figure 95 shows two 

overlaid antenna patterns at the extents of a 100 𝑀𝐻𝑧 bandwidth signal with a center frequency 

of 10 𝐺𝐻𝑧. Clearly, the difference between the two antenna patterns is small. Thus, we can 

approximate 𝑘 by 𝑘0, the center wavenumber: 

𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑅𝑠 ∙ 

(∑𝑒−2𝑗𝑘𝑟0,𝜏[𝑡𝑠]

NΤ

𝜏=1

)(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘0𝓇𝑛[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2

 

𝑛 = 1, 2, … ,𝑁𝐸 

(4 - 16) 

This function is 𝑂(𝑁𝜔 ∙ 𝑁𝑡𝑠 ∙ 𝑁Τ + 𝑁𝐸 ∙ 𝑁𝑡𝑠), which requires approximately 𝑁𝐸
2 less 

computations than the original phased array radar return equation, Equation (4 - 13) (assuming 

𝑁𝜔 ∙ 𝑁Τ ≫ 𝑁𝐸). For a moderate beam width, the use of this function corresponds to 

approximately 4000 times less computation than the original phased array radar return equation. 
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Figure 95. Two antenna patterns with different center frequencies. The solid blue line represents the antenna pattern 

for a center frequency of 10 GHz and the red markers represent the antenna pattern for a center frequency of 

10.1GHz. The beam width was 7 degrees in both cases. Clearly, there is not a significant difference between the two 

antenna patterns.  

After the radar returns are generated, the same range-Doppler processing techniques that 

were presented in Section 2.2.1.4 can be applied to generate RTIs and RDPs. Because the scan 

angle of the radar is a function of slow time, the slow time axis of the RTI can be transformed to 

scan angle. The result is referred to as a Range Angle Plot (RAP), and is very useful because it 

allows target distinguishability in both range and angle. With these two parameters, it is possible 

to locate a target in two-dimensional space.  

4.3 Results and Discussion 

Similar to the discussion of RTI and RDP in Section 2.2.1.4, the RAP and RDP of the 

phased array simulation can be broken into dwell times and a time series can be created. The 

time series movies of the RAP and RDP for this example can be found in the accompanying 

attachment to this Major Qualifying Project report. Example time slices for the RAP and RDP 

are shown in Figure 96 and Figure 97, respectively. 

-40 -30 -20 -10 0 10 20 30 40
-80

-70

-60

-50

-40

-30

-20

-10

0
Signal strength vs. angle

Scan angle (degrees)

S
in

g
a
l 
s
tr

e
n
g
th

 (
d
B

)



138 

 

 

Figure 96. Example of phased array range angle plot. The parameters used to generate this plot were: 𝑓0 =

10 𝐺𝐻𝑧, 𝐵 = 50 𝑀𝐻𝑧, 𝑟𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1400, 𝑣𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 20
𝑚

𝑠
, 𝐵𝑊 = 2°, ℎ = 200𝑚.  Target parameters include: 

𝑑0 = 1100 𝑚, 𝑉𝑏𝑜𝑎𝑡 = 10 𝑚/𝑠, traveling away from radar at 0 degree angle, Kaiser windowing. 

 

Figure 97. Example of phased array range Doppler profile. The parameters of Figure 96 were used. 
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 We were very successful at developing a computationally efficient phased array radar 

simulation capable of producing the radar returns of boats and their wakes (ocean clutter was not 

modeled in this simulation). The computation speed can be further improved via parallelization 

as discussed in Section 5.2.2. Such computational improvements are critical to enable realistic 

computation of a phased array radar interrogating a quasi-two-dimensional ocean model. With 

this phased array simulation, the quasi-two-dimensional ocean model, and the architecture 

framework discussed in Section 3.2.3, we recommend the development of a phased array quasi-

two-dimensional ocean scattering simulation as a future extension to this project. 
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5 Parallelization 

Processing time is a significant consideration when modeling maritime radar due to the 

large volumes of data. An ocean can be modeled as a set of points sampled from a simulated 

ocean. These oceans can be tens of kilometers on each axis and sampled at sub-meter intervals. 

Furthermore, an ocean may be simulated for large extents of time with high time resolution. This 

huge amount of data and computation are compounded more by the radar simulation. First, radar 

pulses are sent up to thousands of times per second for our application. Next, each of the 

thousands of reflected pulses must be sampled thousands of times. Phased arrays further 

exacerbate the problem as there are many antennas each performing these operations. The angle 

and range resolution required by the maritime processing environment require tens to hundreds 

of antennae and even more samples per pulse. This large number of samples equates to trillions 

of calculations of processing for one second of simulated radar time. 

5.1 Background 

These enormous calculations highlight the need to optimize computation efficiency. 

Efficiency can be enhanced through both more efficient or simplified algorithms and through the 

use of parallel processing. More efficient and simplified algorithms for our application are 

discussed in Section 4.2. Parallelization is generally broken into two categories, data parallelism 

and task parallelism. Task parallelism focuses on the parallel distribution of tasks across multiple 

processors whereas data parallelism distributes data across processors. For example, running a 

job that requires hundreds of different operations distributed over many processors to be 

executed on one set of data would be task parallelism while a large set of data distributed over 

many processors with one set of operations would be data parallelism.  

In the past, most parallel processing was performed on large expensive computers or a 

computer cluster, many of which leverage multiple processors. In recent years, multiple core 

processors have become prevalent even for personal workstations. MIT Lincoln Laboratory has 

both of these technologies as well as two MATLAB libraries for parallelization. The first library 

is pMatlab for use on a compute cluster called LLGrid or on a workstation. The laboratory also 

has a license for the MATLAB Parallel Computing Toolbox. By leveraging the ability to 

parallelize processing and computation among many different processors or cores, our model 
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realized significant speedups in overall computation times. Furthermore, parallelization 

considerably aids in the usability of the software and bolsters this model for use in research and 

further development.  

One of the major limitations of parallel processing lies in the serial portion of the code. 

Amdahl’s law (Amdahl, 1967, pp. 483-485) states that the theoretical maximum overall speedup 

is: 

𝑆(𝑁) =
1

(1 − 𝑃) +
𝑃
𝑁

 

where 𝑁 is the number of processors/cores and 𝑃 is the portion of code that can be made parallel. 

In practice, however, speedups close to those predicted by Amdahl’s law are hard to realize due 

to additional setup required in the program to support parallelism and bus limitations. 

 The MATLAB parallel computing toolbox allows for easy parallelization using parallel 

“for” loops (parfor) and the spdm command. Both commands rely on “pools” of “workers.” 

A worker can be either a node on a computing cluster or a thread which is scheduled to run on a 

logical processor within a multicore computer. A pool constitutes a collection of these workers 

and may consist of either local workers or nodes on a computer cluster. The parfor command 

operates by splitting a “for” loop by iteration and allocating portions of the total iterations to 

individual workers. A loose visual interpretation of a parfor is show in Figure 98. The spmd 

command is an acronym for “single program multiple data”. As suggested by the acronym,  each 

worker executes the same program on different data. Most programs leverage the command by 

distributing pieces of a large set of data to each worker. This process is illustrated in Figure 99. 

In the figure inside of the node boxes, the variable distributionScheme (a parameter passed to 

zeros function) refers to how the data are distributed to the workers. Data may be distributed in 

a block, cyclic, or block cyclic scheme as shown in Figure 100. 
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Figure 98. MATLAB command parfor distributing “for” loops to multiple workers. 
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Figure 99. Method used by MATLAB command spmd and pMatlab for distributing data to multiple workers or 

nodes. Each box represents a different processor on a workstation or compute node on a cluster. Note that the code is 

the same for each node but the data is different. 

 

Figure 100. Matrix data distribution schemes. 

In effect, the parfor operation is a simplified spmd command in that there is one 

“program” within the “for” loop which executes on different data. When using parfor, the data 
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are sent as needed to the workers rather than all at once as in the spmd command, which can 

lead to higher communication overhead compared to the spmd command. These capabilities can 

be extended through the use of the MATLAB Distributed Computing Server which distributes 

the parallel code and data to machines in a cluster similar to the LLGrid. 

 Recall that our other parallel computing option is the LLGrid. The LLGrid was 

constructed in 2003 and is composed of 750 Dell PowerEdge 2850s. Each node contains two 

Intel Xeon 3.2 GHz single-core processors. We were allocated 64 of these processors for the 

duration of the project. There are two methods of interfacing with the LLGrid. In the first 

method, the user provides a function which is called on each node of the cluster. This method 

requires that all data which are to be passed out of the function are written to disk within the 

function, slowing subsequent computation. Additionally, parallelization of small regions within a 

set of computations is difficult because a function must enclose the computations.  The second 

method has an environment setup script which evaluates an entire script in parallel with 

distributed data structures. This method is identical to the theory behind the spmd command in 

the Parallel Computing Toolbox; again, Figure 99 illustrates this concept. Using distributed data 

structures, it is possible to perform many computations on a set of data before finally 

reconstructing the distributed data into a data set with the entire results of the computation. 

Given the nature of our project, the second method is optimal due to the ease at which data can 

be distributed for computation. The largest considerations when using the parallel MATLAB 

solutions of the MIT Lincoln Laboratory is the setup time and communication overhead. Our 

tests found a significant amount of setup overhead when starting a parallel job.  Additionally, 

small jobs are significantly impacted by communication between processing nodes. 

5.2 Methods 

Performance enhancements required a thorough understanding of the code, its structure, 

and the underlying theory which the code expresses. The team was able to implement a parallel 

version which leveraged pMATLAB and the LLGrid. The first step to implementation was to 

understand where parallelization was needed through profiling. 

5.2.1 Profiling 

Often the first step in improving the performance of a program is to “profile” the 

program. Simple statistical profiling can be performed by having the code under test interrupted 
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at regular intervals and sampled for their place in execution. From the samples, “hot spots” 

within the code can be identified by virtue of a larger number of samples occurring at a specific 

point in the code. MATLAB provides the profile function to perform real time profiling on 

MATLAB functions or scripts. The MATLAB profiler is somewhat more complex than a simple 

statistical profiler but the same general theory holds. Analysis and enhancement were performed 

in the logical order which the different sub-modules of the simulation are run according to Figure 

78. Using the ocean model, we will discuss the process of profiling and, in turn, parallelization. 

These processes hold for the other sub-modules of the simulation. 

 After profiling the ocean model, it was apparent that the calculation and summation of 

the different wave components consumed the majority of time. The MATLAB profiler displays 

this information in two different ways: 1) by tabulating the results sorted by most time spent on 

an individual line (Figure 101), and 2) by adding profiling statistics inline with the code (Figure 

102). The tabulated version is useful to determine the computationally intensive sections of code. 

These sections may then be further analyzed for restructuring/optimizing in the inline statistics 

version. The first column of numbers in Figure 102 is the amount of time spent on that line. The 

next column of numbers is the number of times the line is called. It is apparent that, for this 

ocean, the nested loops resulted in twenty iterations of the code. Also notice how a red hue is 

added to lines which require significant time where the shading darkness increases for lines with 

more time. 

 

 

Figure 101. Listing of lines where the most time was spent. 
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Figure 102. Code with inline profiling statistics. 

 From the summary of lines consuming the most time, we observe that most (greater than 

69 percent) of the time is spent in the loops summing the cosine components of the waves 

together. Analysis of the code within the loops reveals that there exists no inter-loop 

dependencies i.e. any one loop does not depend on the results of a prior loop. This lack of 

interdependency suggests the workload is embarrassingly parallel (Harwood, 2003). 

5.2.2 Parallelization 

An embarrassingly parallel problem is defined as a computational problem which is 

easily subdivided into parallel tasks. Radar processing is considered an embarrassingly parallel 

problem as it is easily decomposed into smaller parallel subtasks. The simulation of an ocean is 

also an embarrassingly parallel problem as the ocean can be broken down into spatial regions 

and/or temporal regions which can be computed independently. Embarrassingly parallel tasks 

gain substantial speedup easily through parallelization. An additional benefit of sub-dividing the 

calculations is the reduction of system memory needed.  

For example, consider a one-dimensional ocean that is 10 km long. This ocean is sampled 

at one meter intervals and every 2,000
th

 of a second for 10 seconds. The resulting matrix to hold 

the ocean would be size 20,000 by 10,000 with each element consuming 8 bytes. The resulting 

matrix would be approximately 1,526 Megabytes. This matrix consumes less than the amount of 

random access memory (RAM) standard with computer systems sold today (2012); however, 

during intermediate processing steps, an additional dimension is added to this matrix. Our model 
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regularly has up to 126 component frequencies which compose this dimension. In this case, the 

computation requires a matrix that is 20,000 by 10,000 by 126 resulting in the intermediate 

matrix approximately 188 Gigabytes in size which is significantly larger than the available RAM 

in typical computers today. This large matrix highlights the need for subdividing a job into 

smaller, more manageable sizes. The simplest way of subdividing the job is to iterate over one of 

the dimensions of the matrix.  It is ideal if the dimension chosen does not result in inter-iteration 

dependencies. In the case of the ocean model, all of the component frequencies are summed as 

part of each iteration; therefore, the dimensions containing time or distance are better choices to 

iterate over than component frequencies.  

A more complex, yet faster option is to distribute the data to multiple physical computers. 

Both pMatlab and the Parallel Computing Toolbox support distributed matrices. Figure 103 

shows an example of how the matrices are distributed in pMatlab and a very similar scheme is 

used in the Parallel Computing Toolbox. On the other hand, parallel processing using the 

parfor command does not allow the programmer to determine the distribution of data to each 

of the workers. Within the parfor command, new data are supplied to a worker every time it 

completes an iteration of the “for” loop.  
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Figure 103. Serial and distributed matrices. The matrix on the left is a serial matrix whereas the matrix on the right is 

a distributed pMATLAB matrix (Byun, 2012). 

All of our models are easily parallelized by subdividing over either distance, time, or 

both. The choice of this subdivision is performed dynamically by evaluation of the resulting sub-

matrix sizes. It is ideal to operate on as large of a matrix as possible within the memory limits of 

the system to reduce communication overhead, and thus, realize speedups. Figure 104 illustrates 

the memory usage over time for the largest ocean our test computer could generate. Region 1 is 

the orthogonal replication of the ocean. Region 2 is the calculation of the dot product of the 

surface normal unit vector and the radar line of sight unit vector. Region 3 is the calculation of 

the radar returns described in Equation (3 - 34) over a portion of the total simulated time and a 

single wave number. Region 4 is the repetition of the aforementioned calculation for each wave 

number. Regions 2, 3, and 4 repeat over each portion of the total simulated time. Once the 

computations have been performed, the data are aggregated, as shown in Figure 105.  
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Figure 104. Memory usage over time for a two dimensional ocean. Parameters include: 𝑓0 = 10 𝐺𝐻𝑧,   𝐵 =
100 𝑀𝐻𝑧, 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 = 5°, 𝑂𝑐𝑒𝑎𝑛 𝐿𝑒𝑛𝑔𝑡ℎ = 1000 𝑚, 𝑝𝑟𝑓 = 2000 𝐻𝑧, simulation time = 3.85 𝑠, wind speed 

= 24 𝑘𝑛𝑜𝑡𝑠, 𝑅𝑠 = 1000 𝑚, upsea propagation, VV polarization, cross sea range = 1000 𝑚, cross sea resolution 

= 10 𝑚, No Gaussian variance or smoothing, no windowing. 
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Figure 105. Aggregation of a distributed matrix. pMatlab and codistributed Parallel Computing Toolbox matrices are 

recombined at the end of processing using a method similar to that depicted above. 

We investigated two primary methods of parallelization using pMatlab: 1) launching one 

function multiple times where each launch of the function is treated as a separate job with one 

worker and 2) one script may be launched and treated as one job with many workers. We found 

our application to be better suited to be executed using the latter method with one job and many 

workers. Each sub-job is a separate instance of the script running, whereas each node executes 

the entire script. Only when the data are distributed does pMatlab see significant returns in terms 

of reduction of compute time and memory usage. 

5.3 Results and Discussion 

Overall, we were successful at implementing a parallel solution in pMatlab. This 

parallelism allows our simulation to be easier to use by the Lincoln staff. In our investigation, we 

found the Parallel Computing Toolbox to be lacking for our application. We first discuss the 

shortcomings of the Parallel Computing Toolbox and then we discuss our findings with pMatlab. 

We explored three different methods of parallelization: pMATLAB, Parallel Computing 

Toolbox parfor statements, and Parallel Computing Toolbox spmd statements. The MATLAB 
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Parallel Computing Toolbox provides the natively interpreted parfor and spmd commands for 

parallel computing. Native interpretation is advantageous because the code runs without 

substantial modification and is easy to implement; thus, it is a significant architectural boon in 

terms of maintainability. On the other hand, pMatlab parallel implementation requires significant 

modification. The modification necessary is shown in Appendix D, which consists of example 

code for the three parallelization techniques as well as a single threaded version for reference. 

Despite the drawback of modification, our tests found pMatlab to be a superior method because 

we were unable to realize major increases in performance with the MATLAB Parallel 

Computing Toolbox as observed in the data from Table 4.  

Our analysis of the Parallel Computing Toolbox revealed the primary cause of low 

performance gains with this toolbox. Through profiling, we determined the way in which the 

toolbox distributes and aggregates data to be incompatible with our data structure. 

Communication between threads required such a significant amount of time that even with eight 

parallel threads, the non-parallel code still preformed the simulation with little performance 

decrease. A further factor in understanding the results in Table 4 is for each additional worker, 

memory usage increases linearly. This in turn mandates significantly more RAM be installed in 

computers simulating large oceans. In addition, we found that the Mathworks documentation and 

analysis tools were severely lacking for the Parallel Computing Toolbox. An example of this 

deficiency was the lack of documentation related to communication overhead. Inversely, the 

onsite help available with pMatlab proved to be invaluable in the development and execution of 

our model because the LLGrid staff were able to work through our issues and propose solutions 

quickly. 

Table 4. Parallel Computing Toolbox Speedups. Computers used are those denoted in Table 6. The code snippets in 

Appendix D were used in this test. 

 Single Threaded parfor spmd 

Computer 1 72.02 (s) 70.54 (s) 92.46 (s) 

 Speedup 1.02x 0.77x 

Computer 2 21.16 (s) 12.89 (s) 18.57 (s) 

 Speedup 1.64x 1.14x 

Parallelization of the loops within the simulation allowed us to realize speedups of up to 

60 times with 64 processors, a result close to the theoretical limit. These gains were realized 
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through the use of pMatlab on the LLGrid. Figure 106 shows the dependence of processing time 

of the ocean generation loop found in Appendix D as a function of the number of LLGrid 

processors available for 4, 8, 16, 32, and 64 processors. We could not measure processing time 

for fewer processors due to memory constraints. Figure 107 shows a plot of speedup vs. number 

of processors for the data shown in Figure 106 with linear extrapolation of the speedup for the 

one and two processor cases. Both figures were generated using the parameters specified in 

Table 5. The speedup and estimated time were based on the projection of time to generate an 

ocean on one processor.  

 
Figure 106. Processing time vs. Number of CPUs. 
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Figure 107. Speedup vs. Number of CPUs of the generation of ocean heights. The speedup was not measured for less 

than four processors due to memory constraints. Values for one or two processors are estimated. The number pairs 

near the data points are of the form (number of CPUs, speedup). 

Table 5. Parameters used in testing the LLGrid speedup 

Parameter Value 

Ocean propagation direction Upsea 

Radar Offset 1000 m 

Ocean Length 10000 m 

Spatial Ocean Sampling 1 m 

Windspeeds [13 18.5 24] knots 

Center Requency 10e3 MHz 

Bandwidth 100 MHz 

PRF 2000 Hz 

Grazing Angle 5° 

Simulation Time 10 (s) 

Compute Method pMATLAB 

Use LLGrid Yes 

Number of CPUs Varies (4-64) 

 

Comparing the LLGrid with 64 available nodes to the LLGrid with only one available 

node resulted in impressive speedups; however, it is important to compare the LLGrid to the 

workstations available at MIT Lincoln Laboratory. The sample workstations in Table 6 and the 
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parameters in Table 5 were used to benchmark the speedup provided by the LLGrid as compared 

to the workstations. The parameters were the same except Compute Method on the workstations 

(set to Normal) and the Number of CPUs on the LLGrid (set to 64). The results are shown in 

Table 7. 

Table 6. Test Computer Configurations 

Computer 1 

Computer Model 

Number 

Dell Precision WorkStation 490 

Operating System Microsoft Windows 7 Enterprise SP1 

Processor Intel Xeon 5160 @ 3.00 GHz 

Logical Processors 2 

Memory 8192MB 

MATLAB Version R2012a (7.14.0.739) win64 
 

Computer 2 

System Model Dell Precision WorkStation T5500 

Operating System Windows 

Processor 2x Intel Xeon X5677 @3.47GHz 

Logical Processors 8 

Memory 12288 MB 

MATLAB Version R2012a (7.14.0.739) win64 
 

Computer 3 

System Model Dell Precision WorkStation T5400 

Operating System CentOS release 5.8 (Final) 

Kernel Version 2.6.18-308.13.1.e15 

Processor 2x Intel Xeon X5460 @3.16GHz 

Logical Processors 8 

Memory 8982 MB 

MATLAB Version R2012a (7.14.0.739) glnxa64 

Table 7. Compute time for different computer configurations 

 Time (s) Speedup 

Computer 1 6039.31 1 

Computer 2 2066.605 2.92 

Computer 3 1683.058 3.59 

LLGrid (64 workers) 772.753 7.82 

Computer 1 was the slowest of our test systems and was used as a speedup reference.  

Table 7 shows that the LLGrid was 7.82 times faster than Computer 1. A speedup of 7.82 is 

moderate; however, this speedup is for the entire simulation where not only the ocean is 

generated, but the radar returns are generated and calibrated. Part of the entire simulation is 
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executed on the computer submitting the job which may reduce the overall speedup. Due to part 

of the task running on the host computer, speedup may be limited by the serial portions masking 

the speedup provided by the grid. If, in Figure 108, task A is the serial portion to be completed 

on the desktop while task B is the portion executed on the LLGrid it is apparent why the speedup 

appears to be lacking. Performance gains should be more apparent with larger models. 

Additionally, as more logical processors are available on a workstation, the gains provided by 

pMatlab on the LLGrid diminish rapidly. These diminishing gains were unexpected.  

 

Figure 108. Speedup gained by changing different parts of an algorithm. (Wikipedia, 2012) 

We determined three explanations for these diminishing gains. First, it is important to 

consider that unless MATLAB is launched with the parameter –singleCompThread, some 

of the MATLAB functions support parallelization natively (Mathworks). Our simulation makes 

extensive use of the function bsxfun which is one of the functions which MATLAB natively 

parallelizes. This native parallelization allows MATLAB to realize significant performance 

increases without any forethought on the designer’s part. Second, the quasi-serial MATLAB 

solution does not suffer from the same communication overhead as the LLGrid. Specifically, the 

LLGrid must write all variables to a network disk in between steps, while the serial solution 

maintains the variables in the RAM. Third, the processing nodes of the LLGrid are approaching 

nine years of age. By virtue of Moore’s law, a modern processor is approximately twenty-three 

times faster than an LLGrid node. From these results, we conclude that it is best to use the 

LLGrid when executing the simulation from older computers or on large data sets. However, 

new high performance workstations with at least eight logical processors may outperform the 

LLGrid. If LLGrid used modern processors and an updated network infrastructure, then speedups 

predicted by our model could be realized. In fact, Lincoln Laboratory has plans to upgrade the 

LLGrid within the next two years. 
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 Future extensions and improvements include evaluation of Mathworks and third party 

parallelization toolboxes for the addition of general-purpose computing on graphics processing 

units (GPGPU) and conversion of MATLAB code to MEX code written in C or C++. In fact, 

during research on multithreaded MATLAB functions, we found many of the functions we 

wished to preform, i.e. multi-dimensional variable expansion and ocean generation, already have 

commercial or documented solutions for GPGPU implementations. These technologies leverage 

the stream processing provided by a graphics processing unit which can provide up to 3,072 

(Nvidia) processing nodes per GPU. 
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6 Graphical User Interface 

6.1 Background 

 A graphical user interface (GUI) exists primarily to enhance the usability of software. 

MATLAB has extensive support for quickly producing usable GUIs in the form of the GUIDE, a 

GUI development environment. A useful function that can be performed by GUIs is input 

validation. Input validation is the process of checking the range of values input to a program for 

determining whether supplied values will crash the program or to check if the supplied values 

fall within the range valid for a particular problem. 

6.2 Methods and Results 

 The graphical user interface was designed using GUIDE to allow for easy use of 

the simulations. Four GUIs were developed: mergedModel1D, targetGUI1D, 

mergedModel2D, and targetGUI2D. The intended use of these interfaces is outlined in 

Figure 109. The GUIs disallow input values outside of a correct range i.e. a negative ocean 

length as shown in Figure 110. Additionally, the GUIs selectively enable and disable items 

depending on whether the items are valid for the given situation, as shown in Figure 111. The 

GUIs also have the ability to determine the amount of memory necessary to generate the given 

models and compare the needed memory to the available memory. Comparing the needed 

memory and available memory is then used to warn the user when the model would fail due to 

memory limitations. Memory limit warnings work for both the locally submitted jobs as well as 

the LLGrid jobs. Table 8 outlines the input bounds and notes for the input fields in the 

mergedModel1D while Figure 110 and Figure 111 depict the GUI. 
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Ocean Type

Generate 
ocean using 

mergedModel
1D

1-D

Generate 
target returns 

using 
targetGUI1D

Generate 
ocean using 

mergedModel
2D

2-D

Generate 
target returns 

using 
targetGUI2D

Done

 

Figure 109. GUI use flow diagram. 

 

Figure 110. Error resulting from out of bounds input. 
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Figure 111. Selectively disabled input fields. Here, the “Use LLGrid” checkbox and “Number of CPUs” field are 

disabled because the “Compute Method” is not set to “pMatlab.” This interface is used to generate 1-D oceans and 

calibrated range time intensity data. 
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Table 8. Available mergedModel GUI input variable bounds and notes. 

Property Bounds Notes 

Radar Offset 0 < 𝑣𝑎𝑙𝑢𝑒  

Ocean Length 0 < 𝑣𝑎𝑙𝑢𝑒  

Spatial Ocean Sampling 0 < 𝑣𝑎𝑙𝑢𝑒 < 𝑂𝑐𝑒𝑎𝑛 𝐿𝑒𝑛𝑔𝑡ℎ  

Center Frequency 0 < 𝑣𝑎𝑙𝑢𝑒  

Bandwidth 0 < 𝑣𝑎𝑙𝑢𝑒  

Grazing Angle 0 < 𝑣𝑎𝑙𝑢𝑒 < 45  

PRF/AFMR 0 < 𝑣𝑎𝑙𝑢𝑒  

Simulation Time 0 < 𝑣𝑎𝑙𝑢𝑒  

Number of CPUs 0 < 𝑣𝑎𝑙𝑢𝑒 If LLGrid is not selected the 

upper bound is the number of 

CPUs Available Locally. 

Requires pMATLAB to be 

selected under Compute 

Method to be enabled. 

Use LLGrid N/A Requires pMATLAB to be 

selected under Compute 

Method in order to be enabled. 

Plot Ocean N/A Requires Normal to be 

selected under Compute 

Method in order to be enabled. 

Plot RTI N/A Requires Normal to be 

selected under Compute 

Method in order to be enabled. 

Once an ocean or ocean set has been created, the user may add point targets with velocity 

and acceleration via the targetGUI1D. The targetGUI1D is shown in Figure 112. To use 

the GUI, users first select the ocean generated by mergedModel1D and select Load Saved 

Ocean under the File menu. Additionally, the user may select to save and load targets from 

the File menu as illustrated in Figure 113. Once an ocean has been loaded, the oceans available 
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are automatically populated into the ocean select menu presented in Figure 114. Table 9 lists the 

input bounds and notes for the targetGUI1D. 

 

Figure 112. Depiction of targetGUI1D.This interface consumes a previously generated 1-D ocean and returns 

range time intensity and range Doppler profile data and plots. Targets which move along the ocean may be added. 

 

Figure 113. Options under the File menu for the targetGUIs 
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Figure 114. Auto-populated ocean select menu. 

Table 9. Available targetGUI1D input variable bounds and notes. 

Property Bounds Notes 

Plotting Bounds RTI and 

RDP 

0 < 𝑣𝑎𝑙𝑢𝑒 Requires Plot Results to be 

selected. 

Start Time 0 ≤ 𝑣𝑎𝑙𝑢𝑒 < 𝐸𝑛𝑑 𝑇𝑖𝑚𝑒  

End Time 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 < 𝑣𝑎𝑙𝑢𝑒

< 𝑀𝑎𝑥 𝑇𝑖𝑚𝑒 

 

Dwell Time 0 < 𝑣𝑎𝑙𝑢𝑒 ≤  𝐸𝑛𝑑 𝑇𝑖𝑚𝑒  

Bandwidth 0 < 𝑣𝑎𝑙𝑢𝑒  

 The mergedModel2D and the targetGUI2D GUI were simply extensions of their 

one-dimensional counterparts. The mergedModel2D is shown in Figure 115 and 

targetGUI2D is displayed in Figure 116. Table 10 outlines the bounds and notes for the fields 

found in mergedModel2D.  
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Figure 115. The mergedModel2D user interface. This interface is used to generate 2-D oceans and calibrated range 

time intensity data. 

 

Figure 116. The targetGUI2D user interface. This interface consumes a previously generated 2-D ocean and 

returns range time intensity and range Doppler profile data and plots. Targets which move around the ocean may be 

added as well as boat wake. 
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Table 10. Input variable bounds and notes for mergedModel2D in addition to those found in Table 8. 

Property Bounds Notes 

Ocean 

Length Y 

0 < 𝑣𝑎𝑙𝑢𝑒 Requires Plot Results to be 

selected. 

Spatial 

Ocean 

Sampling Y 

0 ≤ 𝑣𝑎𝑙𝑢𝑒 < 𝑂𝑐𝑒𝑎𝑛 𝐿𝑒𝑛𝑔𝑡ℎ 𝑌  

Select Plot N/A This menu is active when the 

Compute Method is set to 

“Normal”. 

Y 

Smoothing 

Intervals 

0 < 𝑣𝑎𝑙𝑢𝑒 This field is active when “Variance 

with Smoothing” is selected in the 

Variance and Smoothing menu. 

X 

Smoothing 

Intervals 

0 < 𝑣𝑎𝑙𝑢𝑒 This field is active when “Variance 

with Smoothing” is selected in the 

Variance and Smoothing menu. 

Variance as 

Fraction of 

SWH 

0 < 𝑣𝑎𝑙𝑢𝑒 This field is active when 

“Variance” or “Variance with 

Smoothing” is selected in the 

Variance and Smoothing menu. 

Bounded 

Ocean Plot 

Size 

0 < 𝑣𝑎𝑙𝑢𝑒

< 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑂𝑐𝑒𝑎𝑛 𝐿𝑒𝑛𝑔𝑡ℎ 

This field is active when the Select 

Plot menu is set to “Bounded 

Ocean” 

Time 

Smoothing 

Interval 

0 < 𝑣𝑎𝑙𝑢𝑒 This field is active when “Variance 

with Smoothing” is selected in the 

Variance and Smoothing menu. 

 These graphical user interfaces provide the user with an easy to use interface. They 

provide warnings when improper variables are input and they alert the user to proper ranges for 

the values.  
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7 Conclusions and Future Extensions 

The goal of this project was to develop a simulation capable of generating the radar 

response of small boats and realistic ocean clutter. The objective of this project was to enable the 

development and test of detection algorithms for small boats on the ocean surface. After better 

detection algorithms are established, the threat to U.S. naval assets from small boats and the 

amount of drug-running, smuggling, and piracy can be reduced. In order to accomplish our goal 

and objective, we produced each of our deliverables: 

 Non-scanning one-dimensional ocean radar scattering simulation: A non-scanning chirp 

radar simulation capable of range and Doppler processing was integrated with a one-

dimensional ocean model defined by sum of sinusoids defined in amplitude and 

frequency by the Pierson-Moskowitz power spectral density. The ocean height was scaled 

according to the Beaufort scale and the radar returns of the ocean surface were calibrated 

to publicly available data. 

 Non-scanning quasi-two-dimensional ocean radar scattering simulation: The Non-

scanning one-dimensional ocean radar scattering simulation was extended to produce a 

more capable model. Specifically, a quasi-two-dimensional ocean model was developed 

via replications of the one-dimensional ocean. The two-dimensional ocean has optional 

Gaussian variance and smoothing. Targets on this ocean support cross-sea movement and 

optional wake. 

 Phased array radar scattering simulation: A computationally efficient phased array radar 

simulation was developed and integrated to include targets with wake. The phased array 

enables range, velocity, and azimuth processing. 

 Graphical user interface: An easy to use graphical interface was developed for the 

models. The interfaces provide easy access to all of the input parameters and performs 

input validation. 

 Parallelization: pMATLAB was leveraged for parallel computation using the LLGrid. 

Within the LLGrid, speedups of up to 60 times were observed. Moderate overall 

performance gains were recorded, but are limited to the hardware of the LLGrid. 
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Our product meets the customer requirements of MIT Lincoln Laboratory Group 105 to be 

robust, easy to use, accurate, and contain strong documentation. 

While developing our product, areas of improvement were recognized. One simple 

change that could be made to our model that would increase accuracy is to use more calibration 

data. In the project, we used the small ocean scattering data set compiled by Long. We also 

recognized that the calibration algorithm discussed in Section 2.2.3 could be improved to only 

require one mode shift. Also, the effects of polarization on radar returns could be modeled rather 

than directly calibrating to known data (Section 2.3). In addition, we recognized several major 

future extensions that would help to answer questions that arose during this work. The staff at 

MIT Lincoln Laboratory has also expressed interest in these extensions. We have organized 

these extensions by importance: 

1. Non-coherent integration: A common first step toward boat detection is non-coherent 

integration, a process which sums the RTI or RDP over dwell times. Because the power 

of the radar return from the boat is more constant in time than the power of the ocean 

clutter, the summation over dwell times substantially reduces the clutter from the ocean. 

2. Lagrangian mechanics and material derivative model: Our ocean model is a surface 

model such that each modeled point target is spatially stationary in x and y and varies in 

height. Thus, the Doppler returns inaccurately measure the velocity of height change. A 

more accurate model would consider a particle which can vary its x, y, and height values. 

This more accurate model may is possible using the material derivative. 

3. Phased array radar quasi-two-dimensional ocean scattering simulation: The phased array 

model of Chapter 4 and the quasi-two-dimensional ocean model of Section 3.2.1 can be 

integrated to model the ocean scattering that a phased array radar might see.  

4. Fluctuating target cross section (Swerling model): In our model, boats are modeled as 

point targets with a constant cross section. A more accurate model may include boats 

with cross sections that vary in time.  
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5. Two-dimensional phased array radar quasi-two-dimensional ocean scattering  simulation: 

Our one-dimensional phased array radar simulation (Chapter 4) can be extended to a two-

dimensional phased array radar simulation that is capable of resolving targets in range, 

velocity, azimuth, and elevation. This two-dimensional simulation can be integrated with 

the quasi-two-dimensional ocean to obtain the radar returns of the ocean surface. 

6. Two-dimensional phased array radar cross sea ocean scattering simulation: The two-

dimensional phased array simulation of (5) can be integrated with a more complex two-

dimensional ocean model, such as the Philips model, which more accurately represents 

the propagation of the ocean. 

7. GPGPU parallel implementation: Parallel processing on graphical processing units  might 

realize further parallel speedups. 
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Appendix 

Appendix A -  Derivations 

Appendix A.1 -  Equation (2 - 25) 

Let 𝐶(𝜔) be the Fourier domain representation of a chirp signal: 

𝐶(𝜔) = 𝑢(𝜔 − 𝜔1) − 𝑢(𝜔 − 𝜔2) 

where 𝜔 is angular frequency and 𝑢 is the Heaviside step function.  

Using the inverse Fourier transform, 

𝑐(𝑡) = ℱ−1[𝐶(𝜔)] =
1

2𝜋
∫ 𝐶(𝜔)𝑒𝑗𝜔𝑡𝑑𝑤
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2𝜋
∫ [𝑢(𝜔 − 𝜔1) − 𝑢(𝜔 − 𝜔2)] 𝑒

𝑗𝜔𝑡𝑑𝜔
∞

−∞

=
1

2𝜋
∫  𝑒𝑗𝜔𝑡𝑑𝜔

𝜔2

𝜔1

 

𝑐(𝑡) =
1

2𝜋
[
𝑒𝑗𝑤𝑡

𝑗𝑡
]
𝑤=𝑤1

𝑤2

=
1

2𝜋𝑗𝑡
(𝑒𝑗𝑤2𝑡 − 𝑒𝑗𝑤1𝑡)  

We now use a change of variables: 

𝜔1 = 𝑤0 − 𝜋𝐵    ↔     𝑓1 = 𝑓0 −
𝐵

2
 

𝜔2 = 𝑤0 + 𝜋𝐵    ↔     𝑓2 = 𝑓0 +
𝐵

2
 

Note that this form is directly related to the frequency representation as shown. 

𝑐(𝑡) =
1

2𝜋𝑗𝑡
(𝑒𝑗(𝜔𝑜+𝜋𝐵)𝑡 − 𝑒𝑗(𝜔𝑜−𝜋𝐵)𝑡) =

𝑒𝑗𝜔0𝑡

2𝜋𝑗𝑡
(𝑒𝑗(𝜋𝐵)𝑡 − 𝑒𝑗(−𝜋𝐵)𝑡) 

Recall Euler’s formula: 

sin(𝑧) =
𝑒𝑗𝑧 − 𝑒−𝑗𝑧

2𝑗
 

We can rearrange our work above to: 

𝑐(𝑡) =
𝑒𝑗𝜔0𝑡

𝜋𝑡
sin(𝜋𝐵𝑡) = 𝐵 ∙ 𝑒𝑗𝜔0𝑡 sinc(𝐵𝑡)  

Appendix A.2 -  Equation (2 - 39) 

Let 𝑉(𝑡𝑠) be the slow time Doppler radar return, then 

𝑉(𝜔𝑑) =  ℱ[𝑉(𝑡𝑠)] = ∫ 𝑒−2𝑗𝑘0𝑣𝑡𝑠𝑒−𝑗𝜔𝑑𝑡𝑑𝑡𝑠

𝑡2

𝑡1

= 𝑒−𝑗𝑡𝑠(2𝑘0𝑣+𝜔𝑑)𝑑𝑡𝑠  

where 𝜔𝑑 is the Doppler angular frequency. Let 𝑥 = 2𝑘0𝑣 + 𝜔𝑑 

𝑉(𝑤) = ∫ 𝑒−𝑗𝑥𝑡𝑠𝑑𝑡𝑠

𝑡2

𝑡1

 = [
𝑒−𝑗𝑥𝑡𝑠

−𝑗𝑥
]
𝑡𝑠=𝑡1

𝑡2

=
1

−𝑗𝑥
(𝑒−𝑗𝑥𝑡2 − 𝑒−𝑗𝑥𝑡1) 

We now use a charge of variables: 
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𝑡1 = 𝑡0 −
𝑇𝑝

2
 

𝑡2 = 𝑡0 +
𝑇𝑝

2
 

where 𝑡0 is the center time and 𝑇𝑝 is the pulse duration (
1

𝑝𝑟𝑓
). 

𝑉(𝑤) =
1

−𝑗𝑥
(𝑒

−𝑗𝑥(𝑡0+
𝑇𝑝

2
)
− 𝑒

−𝑗𝑥(𝑡0−
𝑇𝑝

2
)
1) =

𝑒−𝑗𝑥𝑡0

−𝑗𝑥
(𝑒

−𝑗𝑥(
𝑇𝑝

2
)
− 𝑒

𝑗𝑥(
𝑇𝑝

2
)
) 

Using Euler’s formula, 

𝑉(𝑤) = 2𝑒−𝑗𝑥𝑡0 sin (
𝑥𝑇𝑝

2
) = 𝜋𝑇𝑒−𝑗𝑥𝑡0𝑠𝑖𝑛𝑐 (

𝑥𝑇𝑝

2𝜋
)

= 𝜋𝑇𝑝𝑒
−𝑗(2𝑘0𝑣+𝜔𝑑)𝑡0𝑠𝑖𝑛𝑐 (

(2𝑘0𝑣 + 𝜔𝑑)𝑇𝑝

2𝜋
)  

Appendix A.3 -  Equation (4 - 15) 

We start with Equation (4 - 14): 

𝑉[𝜔, 𝑡𝑠] = 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑠𝑡𝑎𝑟𝑡𝑅 ∙ 

∑(∑ 𝑊𝑚[𝑛]𝑒−𝑗(𝑘𝑟𝑛,𝜏[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

 ,                    

𝑛 = 1, 2, … ,𝑁𝐸 

 

Here, we only show manipulations of the middle term: 𝑊𝜔[𝜔]𝑊𝑡𝑠
[𝑡𝑠]𝑒

−2𝑗𝑘∙𝑠𝑡𝑎𝑟𝑡𝑅 and 𝑛 are not 

modified:  

We redefine 𝑟𝑛,𝜏[𝑡𝑠] =  {
𝑟0,𝜏[𝑡𝑠] + 𝓇𝑛,𝑜[𝑡𝑠],        𝑁𝐸  𝑜𝑑𝑑

𝑟0,𝜏[𝑡𝑠] + 𝓇𝑛,𝑒[𝑡𝑠],      𝑁𝐸  𝑒𝑣𝑒𝑛
    

where  

𝓇𝑛,𝑜[𝑡𝑠] = (𝑛 − ⌈
𝑁𝐸

2
⌉) 𝑑 sin(𝜃𝑠[𝑡𝑠]), and 

𝓇𝑛,𝑒[𝑡𝑠] = (𝑛 −
𝑁𝐸 + 1

2
)𝑑 sin[𝜃𝑠]            

and generically, 𝑟𝑛,𝜏[𝑡𝑠] = 𝑟0,𝜏[𝑡𝑠] + 𝓇𝑛[𝑡𝑠] 

Where 𝑟0,𝜏[𝑡𝑠] is the distance to a target from the center of the phased array: 

𝑟0,𝜏[𝑡𝑠] = √ℎ2 + 𝑦𝜏
2 + 𝑥𝜏

2  
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∑(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝑟𝑛,𝜏[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

  

Substituting 𝑟𝑛,𝜏[𝑡𝑠] = 𝑟0,𝜏[𝑡𝑠] + 𝓇𝑛[𝑡𝑠]: 

∑(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘(𝑟0,𝜏[𝑡𝑠]+𝓇𝑛[𝑡𝑠])+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

 

Separating exponentials: 

∑(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝓇𝑛[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))𝑒−𝑗𝑘𝑟0,𝜏[𝑡𝑠]

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

 

𝑒−𝑗𝑘𝑟0,𝜏[𝑡𝑠] is not a function of 𝑛, so it can come out of the sum: 

∑(𝑒−𝑗𝑘𝑟0,𝜏[𝑡𝑠] ∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝓇𝑛[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

 

Distribute the square: 

∑𝑒−2𝑗𝑘𝑟0,𝜏[𝑡𝑠] (∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝓇𝑛[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2NΤ

𝜏=1

 

The right summation is not a function of 𝜏: 

(∑𝑒−2𝑗𝑘𝑟0,𝜏[𝑡𝑠]

NΤ

𝜏=1

)(∑ 𝑊𝑛[𝑛]𝑒−𝑗(𝑘𝓇𝑛[𝑡𝑠]+𝑛 𝜋 sin(𝜃𝑠[𝑡𝑠]))

𝑁𝐸

𝑛=1

)

2
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Appendix B -  Slope Scaling Comparison 

In this appendix, we show the difference between slope scaled RTI and un-scaled RTI. 

We used a single frequency ocean, shown below, for simplicity. The wind speed of this 

generated ocean was 24 knots, 𝑓0 = 10 𝐺𝐻𝑧, 𝐵 = 100 𝑀𝐻𝑧, 𝑑𝑎𝑙𝑖𝑎𝑠−𝑓𝑟𝑒𝑒 = 1000,  grazing angle 

= 5°. 

 

In the following two plots, the red line represents the power of the RTI in Watts vs. 

distance and the blue line represents the slope of the ocean vs. distance. Both of these plots 

represent the radar return strength and slope at 𝑡 = 0. The un-slope-scaled plot is shown first, 

and the scaled plot follows: 
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Un-slope-scaled: 

 

Slope-scaled: 
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Appendix C -  Find-Closest Algorithm 

The find-closest algorithm is used for ocean calibration routines. Specifically, it is used to find 

the index corresponding to the closest match of 𝑎𝑉𝑎𝑙𝑢𝑒 in 𝑎𝑉𝑒𝑐𝑡𝑜𝑟. The inputs are: 

 𝑎𝑉𝑒𝑐𝑡𝑜𝑟 - A vector of positive, real numbers to search through, 

 𝑎𝑉𝑎𝑙𝑢𝑒 - A value to search closest to. 

Using these inputs, we use the following process: 

1) Subtract 𝑎𝑉𝑎𝑙𝑢𝑒 from every element of 𝑎𝑉𝑒𝑐𝑡𝑜𝑟. 

a. Now, the closest element in 𝑎𝑉𝑒𝑐𝑡𝑜𝑟 to 𝑎𝑉𝑎𝑙𝑢𝑒 is the closest element to 0.  

2) Take the absolute value of 1). 

a. Now, the closest element in 𝑎𝑉𝑒𝑐𝑡𝑜𝑟 to 𝑎𝑉𝑎𝑙𝑢𝑒 is the lowest element. 

3) Take the minimum of 2). 

4) Find the index in 2) that is equal to 3). If a tie occurs, the first index is selected (for our 

application, this is preferred). 

This algorithm can be iterated to accommodate a vector of 𝑎𝑉𝑎𝑙𝑢𝑒s to search for within 

𝑎𝑉𝑒𝑐𝑡𝑜𝑟. Furthermore, the algorithm can be vectorized using singleton expansion, permutations, 

and a modulo operation. 
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Appendix D -  Example Parallelization of Ocean Generation 

Appendix D.1 -  Single Threaded Version 

%pre-allocate memory 

eta = zeros([length(t) length(d) length(oceans)]); 
for incd = 1:length(d) 

    %distance index. In this example we iterate over distance 
    d_ = startD+DSample*(incd-1); 

    %eta = A*cos(wt-kd+phi) 
    ysub = bsxfun(@times,k,d_); 
    ysub2 = bsxfun(@times,w,t); 
    ysub = bsxfun(@minus,ysub2,ysub); 
    ysub = bsxfun(@plus,ysub,phases); 
    ysub = cos(ysub); 
    ysub = bsxfun(@times,A,ysub); 
    %sum over frequencies 
    eta(:,incd,:)= sum(ysub,4); 
end 

Appendix D.2 -  SPMD Version 

%make a distribution scheme to distribute eta over the distance ‘dimension’ 
codist = codistributor('1d',2); 

%tell MATLAB this code should be performed in parallel 
spmd 
    etad = zeros([length(t) length(d) length(oceans)],codist); 
    for incd = drange(1:length(d)) 

        %distance index. In this example we iterate over distance 
        d_ = startD+DSample*(incd-1); 

        %eta = A*cos(wt-kd+phi) 
        ysub = bsxfun(@times,k,d_); 
        ysub2 = bsxfun(@times,w,t); 
        ysub = bsxfun(@minus,ysub2,ysub); 
        ysub = bsxfun(@plus,ysub,phases); 
        ysub = cos(ysub); 
        ysub = bsxfun(@times,A,ysub); 
        %sum over frequencies 
        etad(:,incd,:)= sum(ysub,4); 
    end 
end 

%gather the resulting data from each of the workers 
eta = gather(etad); 

Appendix D.3 -  Parfor Version 

parfor incd = 1:length(d) 

    %distance index. In this example we iterate over distance 
    d_ = startD+DSample*(incd-1); 

    %ysub = A*cos(wt-kd+phi) 
    ysub = bsxfun(@times,k,d_); 
    ysub2 = bsxfun(@times,w,t); 
    ysub = bsxfun(@minus,ysub2,ysub); 
    ysub = bsxfun(@plus,ysub,phases); 
    ysub = cos(ysub); 
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    ysub = bsxfun(@times,A,ysub); 
    %sum over frequencies 
    eta(:,incd,:)= sum(ysub,4); 
end 

Appendix D.4 -  pMatlab Version 

%pre-allocate eta 

eta = zeros(length(t), length(d), length(oceans),map3d); 

%get the indicies of the portion of the matrix which this node will 

%operate over 
my_ind_global = global_ind(eta, 2); 

%get the local piece of eta to operate on 

my_eta = local(eta); 
for incd = 1:length(my_ind_global) 

    %get the global index to index d with 
    gind = my_ind_global(incd); 

    %ysub = A*cos(wt-kd+phi) 
    ysub = bsxfun(@times,k,d(gind)); 
    ysub2 = bsxfun(@times,w,t); 
    ysub = bsxfun(@minus,ysub2,ysub); 
    ysub = bsxfun(@plus,ysub,phases); 
    ysub = cos(ysub); 
    ysub = bsxfun(@times,A,ysub); 
    %sum over frequencies 
    my_eta(:,incd,:)= sum(ysub,4); 
end 

%put the locally computed data back into eta 

eta = put_local(eta, my_eta); 

%aggregate all of the data into one matrix on the host process 
eta_final = oagg(eta); 

 


