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ABSTRACT 
The Small Size Soccer Robots MQP is an interdisciplinary first-year project that aims to design, 

fabricate, and test a multi-robot system for the international RoboCup Soccer League, targeting 

the Small Size League competitions. This project unites Robotics Engineering, Computer 

Science, Mechanical Engineering, and Electrical and Computer Engineering teams to develop a 

team of small autonomous robots adept at playing soccer with a golf ball. The Small Size League 

highlights intelligent multi-robot/agent collaboration and control within a dynamic environment, 

employing a hybrid centralized/distributed system. The project encompasses various tasks, such 

as designing, fabricating, and integrating the robot's structural and electromechanical 

components, including the chassis, ball control, and drive systems. The team also designs, 

assembles, and implements the robot's electrical circuits, featuring the processor, motor 

controllers, solenoids, and power distribution, while developing corresponding firmware for 

seamless integration. Additionally, the team crafts software to govern robot movement and 

execute strategic game tactics, ensuring a competitive performance in the RoboCup Small Size 

League. 
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EXECUTIVE SUMMARY 
This MQP is the first year of a highly probable legacy project tasked with forming the 

groundworks of the WPI RoboCup Small Size League program. To expedite results and to add 

simplicity to organization, the team split up into three sub-teams: Mechanical Engineering, 

Electrical and Computer Engineering, and Computer Science. The goal of the project was to 

create a modular foundation of a prototype system that will be the basis for future testing, 

validation, and improvement. The prototype consists of a chassis skeleton constructed from 

custom fabricated aluminum components, a drive system based upon performance oriented 

brushless DC motors, and a ball control assembly with bespoke components printed using high-

grade resin materials. All of which were designed and fabricated from scratch.  

The mechanical engineering sub-team was mainly tasked with supplying the team with a 

functional prototype to use in their physical integration and testing stages. This prototype system 

would enable future project groups to have a solid foundation of experimental context for the 

system that would inform their further development and optimization of the system in 

preparation for international competition. The team found that the development of such a 

prototype was a task that necessitated a deep understanding of system requirements, previously 

successful design and fabrication strategies, and expertise in a variety of engineering applications 

such as designing for manufacturability and CNC milling. 

The main goal of the Electrical and Computer Engineering sub-team was to power, 

control, and communicate with all the necessary components needed to play a match in the Small 

Size League. A secondary goal was to design and test reliable firmware and hardware that can be 

modular in the future for easy substitution as more data is collected and components need 

updating. The team approached these ambitious objectives by planning to design hardware and 

develop both firmware and software concurrently to maximize the short time spanned by the 

MQP project. 

The main goal of the Computer Science sub-team was to develop and test a software 

system, built in a modular manner, that was capable of learning, strategizing, and motion 

planning completely autonomously. A secondary goal was to instantiate a simulated testing 

environment that included real-world physics. To accomplish this, the team chose to divide and 

conquer by breaking up into two smaller teams: Strategy and Navigation, that would both 

develop and test their results in a nearly parallel way.  

To test that the project objectives were satisfied, the prototype underwent: a stress 

analysis in simulation, electromechanical iterations, firmware fine tuning, and strategizing in a 

simulated environment. The tests verified that the prototype was functioning properly and fully 

autonomous with a master to agent relationship. At the end of this project’s first year, the team 

was able to create a robot in a modular setup as well as a developed codebase with the necessary 

class structure to set the foundation of a highly potential WPI RoboCup Small Size League 

program.
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CHAPTER 1 INTRODUCTION 
RoboCup was founded with the goal of advancing the state of the art of autonomous intelligent 

robots. The first official RoboCup soccer games were played in 1997, with over 40 teams and 

5,000 spectators in attendance. Since its strong start, the league has grown into an international 

event where top teams of six autonomous robots compete against others in their size class. This 

academic year, AY2022-23, is the inaugural year of WPI’s RoboCup Small Size League (SSL) 

Soccer Robotics team. The team of Robotics Engineering, Electrical and Computer Engineering, 

Computer Science, and Mechanical Engineering students developed a prototype autonomous 

soccer robot as part of their Major Qualifying Project (MQP), laying the groundwork for future 

MQP teams to continue these efforts in hopes of competing on the international RoboCup stage. 

The goal for the first year of the program is to design, build, and test a prototype robot for 

demonstration during Project Presentation Day in April.  

The MQP group was first divided into sub-teams, Mechanical Engineering, Electrical and 

Computer Engineering, and Computer Science, that were to be responsible for certain aspects of 

the overall system. The Mechanical Engineering (ME) sub-team is responsible for the 

development of the physical structure and assemblies within the robot including chassis, drive 

system, and ball control. The Electrical and Computer Engineering (ECE) sub-team is 

responsible for the development of the electronic components of the robot including the PCBs 

and their associated software and firmware. The Computer Science (CS) sub-team is responsible 

for the programming of the robots themselves as well as the overall strategy system. This 

includes motion planning, game state analysis, and strategy. 

We split our team into three sub-teams: mechanical engineering, electrical and computer 

engineering, and computer science. Sub-teams conducted research of Team Description Papers 

(TDPs) of previously successful programs to build a fundamental knowledge base of designs, 

strategies, and solutions to common issues. From this review, sub-teams decided on the best 

options to pursue for this project and set the development of the system in motion.  

The ME sub-team determined the chief objectives of the project to be:  

1. Design or identify suitable solutions for: 

a. Chassis- base plates, standoffs, mounting interfaces 

b. Drive System- omni-wheels, drive motors, motor mounts 

c. Ball Control- solenoids, dribbler motor, dribbler, kicker, chipper, ball control 

superstructure 

2. Fabricate or otherwise acquire the above components. 

3. Assemble above systems and integrate with ECE components. 

4. Test prototype and refine design.  

By using the manufacturing facilities in Washburn shops, Higgins Rapid Prototyping 

Laboratory, and Innovation Studio’s Makerspace in conjunction with resources such as 

SolidWorks 3D CAD and Esprit CAM software at our disposal as WPI students and securing 

partnerships and sponsorships with companies and organizations such as PCB, the ME sub-team 

made progress towards fulfilling these objectives. 
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The ECE sub-team identified the following objectives:  

1. Design and implement circuits capable of: 

a. Powering circuits and electrical hardware 

b. Operating robot hardware 

c. Communicating with master controller 

2. Develop firmware capable of interpreting and executing tasks from master controller 

The CS sub-team determined the main objectives to be: 

1. Install and be able to use a simulation program for testing purposes 

2. Determine and use a path planning algorithm to traverse the field  

3. Develop a game-play strategy, capable of: 

a. Analyzing the game state of the board 

b. Assigning roles to robots 

c. Creating plays and be able to select from them 

d. Calculating the probability of successful shots and passes 

4. Support ECE with firmware development and communication protocols  

With a large team, split into sub-teams, collaboration can sometimes be challenging. This 

team excelled at collaboration and made the necessary integrations of the physical robot, the 

electromechanical system, and the system architecture. The integration of each sub-team’s 

developments enabled the combined testing of each sub-team’s contributions. Whether it was 

testing that the circuit boards could power and control the mechanical system or that the on-

board communication protocol could receive the transmission from the software architecture, or 

even that the coded robot kinematics matched with the manufactured robot. All together the team 

designed, tested, and validated in unison while developing in parallel. 

The following chapters will outline our complete background research, design process, 

testing, results, and conclusions that capture the overall progress of this project.
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CHAPTER 2 BACKGROUND 
Each sub-team read a multitude of Team Description Papers (TDPs) and existing solutions 

available by SSL teams over a wide range of years. From these TDPs, as well as some 

supplementary material, we were able to come up with a starting point for our designs. The 

following sections cover our research in each aspect of the project.  

2.1 MECHANICAL BACKGROUND 
The Mechanical sub-team was tasked with providing the physical platform with which the ECE 

and CS sub-teams were to use to accomplish the common tasks within the game, including 

moving, turning, shooting, passing, and dribbling. The sections that follow introduce the 

fundamental mechanical subsystems that the sub-team identified as essential and reports the 

decision-making process for design and component related matters related to each subsystem. 

2.1.1 CHASSIS 
The design of the chassis of a Small Sized Soccer Robot is integral to its success. The chassis 

provides a solid and reliable base from which the rest of the robot can perform. Without a well 

designed and constructed chassis, the robot can hit many roadblocks and problems that will halt 

its success within the competition. In the RoboCup rules, there are aspects of the chassis or size 

of the robot that fall into pre-made design constraints, one example of this is the robot’s size. The 

dimensions of the robots allowed to compete are already set out for us but what is left for us to 

decide is things such as material and construction among other things. After looking at many 

previous competing robots, we have narrowed it down to a general shape and look but we can 

achieve that look different in many ways. 

2.1.1.1 CHASSIS MATERIAL 

The design of the chassis of a Small Sized Soccer Robot is integral to its success. The chassis 

provides a solid and reliable base from which the rest of the robot can perform. Without a well 

designed and constructed chassis, the robot can hit many roadblocks and problems that will halt 

its success within the competition. In the RoboCup rules, there are aspects of the chassis or size 

of the robot that fall into pre-made design constraints, one example of this is the robot’s size. The 

dimensions of the robots allowed to compete are already set out for us but what is left for us to 

decide is things such as material and construction among other things. After looking at many 

previous competing robots, we have narrowed it down to a general shape and look but we can 

achieve that look different in many ways. 

2.1.1.1.1 PLASTIC 

Plastic is the first option we looked at for the chassis of our robot. Plastic is a very interesting 

material and offers quite a few benefits. Such things as its extremely high manufacturability and 

low weight were very appealing in the decision process. Along with these two attributes, there 

was also the very low predicted cost which was also appealing to the team. Although these three 

criteria were happily met, they were weighed out by the cons. These cons were mainly the 

extremely poor durability of 3D printed plastic which could not withstand any sort of contact or 

heavy weight the robot would experience. The second con was its poor recoverability. The 
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problem of not easily switching out any critically broken plastic would cause any success of the 

robot to falter. 

2.1.1.1.2 STEEL 

The second material we looked at was steel. Steel was almost the exact opposite of plastic in the 

way it met the defined criteria. While the durability of the plastic was low, steel was the exact 

opposite and has the highest durability of all the materials looked at. Along with high durability, 

it also has a relatively low cost and much better recoverability. Unfortunately, because of its high 

durability, it does suffer in manufacturability, which is important for us as we are a first -year 

team with little experience and equipment available. This lack of manufacturability along with 

low adaptability were the factors that drove us to our decision. 

2.1.1.1.3 ALUMINUM 

The final material we investigated is aluminum which is also the material we have decided to go 

with. There are many reasons for this decision, but the biggest factors were its very high 

durability which will allow the robot to be heavier and survive any contact made, as well as its 

manufacturability. The combination of these two criteria is a very big reason for our team's 

decision because we can now make a robot that is durable but also can be made with the tools 

that are available to us. 

2.1.1.1.4 CHOOSING A MATERIAL 

With our criteria met we were happy to see our literature review aligned with our choice. 

Aluminum was a recurring choice with most RoboCup teams like the University of Adelaide for 

example (UAdelaide, 2005). Having chosen a material, we then moved on to the next aspects of 

our robot chassis we needed to choose. 

TABLE 2.1 CHASSIS MATERIAL DECISION MATRIX 

Criteria Weight Plastic Aluminum Steel 

 1-10 Score Weighted Score Weighted Score Weighted 

Cost 7 9 63 9 63 8 56 

Weight 8 8 64 7 56 5 40 

Manufacturabilit
y 

7 9 63 8 56 6 42 

Adaptability 5 7 35 7 35 6 30 

Durability 9 2 18 9 81 10 90 

Recoverability 6 2 12 8 48 7 42 

Total Score   255  325  300 

2.1.1.2 CHASSIS LAYERS 

All robot designs in TDPs change from year to year and look a little different as you look from 

team to team. With the material of the chassis chosen we now had to evaluate how we wanted 

our chassis to look. From our literature review, we found three options that have been used over 

the years which were different ways to stack the components of your robot. These included 

having the robots consist of one layer with all components on one baseplate, two layers that 

would allow a place for the PCB and other electronics to rest, or three layers that would give the 
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robot plenty of space for everything. After creating the decision matrix in Table 2.1, we decided 

to go with the double-layer design. 

2.1.1.2.1 SINGLE BASE 

The single base plate layer design was immediately seen as the most complicated of the three. 

The intention of the design is to have a singular base plate that will encompass all the internals of 

the robot. This would include the drive system and ball control mechanisms along with all 

electronics required to power and control the robot. The benefits of this design are its low cost 

and weight due to it being a single layer. These, however, are the only benefits of this design. 

The negatives greatly outweigh the positives such as terrible recoverability since if something 

breaks in the chassis it can’t be replaced since it is all one unit. Additionally, it is a huge design 

challenge for us as a first-year team to make a single-layer design that can house everything that 

needs to be within the robot.  

This design has been used many times in the past by multiple different teams. Below is a 

figure from an old 2014 SKUBA design which was a single-layer robot (Sukvichai & 

Panyapiang, 2014). As seen in the photo they have found a way to fit everything they need for 

the robot within a single layer of the robot. This design is quite old as they have changed their 

chassis as time has gone on. 

 

FIGURE 2.1 3D MODEL OF 2014 SKUBA ROBOT 

2.1.1.2.2 TRIPLE LAYER 

The next design is the triple-layer design of the chassis. The triple-layer design was found to be 

the least desirable option for the chassis after using the decision matrix and looking at examples 

of its use. The triple-layer design offers lots of space for all the internals of the robot but that 

seems to be the only positive. It is much heavier than the other two designs and lacks the other 

two’s stability. For these reasons we have decided that the positives of allowing us to have more 

freedom of where to place things in the robot are heavily outweighed by the overall 

complications it would cause.  

The triple-layer design, however, has been used in the past. Below is a figure from the Georgia 

Tech RoboJackets team in the year 2007 which is the first TDP of theirs we have available 

(Bardagjy et al., 2007). While their first design was triple-layered, the next year they changed 

their design to a more compact double-layer design. 
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FIGURE 2.2 3D MODEL OF 2007 ROBOJACKETS DESIGN 

2.1.1.2.3 DOUBLE LAYER 

The final layer design we looked at is the double-layer design. This design was quickly agreed 

upon as the best design for our first-year robot. From the decision matrix, you can see it has a 

relatively high value for all the criteria with an emphasis on stability and weight. These two 

criteria, however, were not the deciding factors. The reason we chose this over the other two was 

that it offered the most stability with relatively easy manufacturability along with enough room 

for us to have all the mechatronics housed on the first layer of the robot with a given space on the 

second layer for the PCB and any other electronics.  

The double-layer design is a widely used design with multiple different RoboCup teams 

including the two figures below. Figure 2.3 shows the RoboJackets change from their first-year 

triple-layer design to their later double-layer design (Bardagjy et al., 2007), (Bardagjy et al., 

2008). Figure 2.4 shows the 2014 CMDragons (Biswas et al., 2014) two-layer design they used. 

With these two examples and many other team examples, we plan to use these two-layer designs 

which give one space for mechatronics and another for the PCB. 

 

FIGURE 2.3 GEORGIA TECH ROBOJACKETS 2007 ROBOT (LEFT) AND 2008 ROBOT (RIGHT) 3D MODEL 
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FIGURE 2.4 2014 CMDRAGONS DOUBLE LAYER ROBOT 

TABLE 2.2 CHASSIS LAYERS DECISION MATRIX 

Criteria Weight Base Plate Double Plate Triple Plate 

 1-10 Score Weighted Score Weighted Score Weighted 

Recoverability 6 4 24 8 48 7 42 

Stability 6 7 42 9 54 6 36 

Manufacturabilit
y 

8 6 48 6 48 5 40 

Cost 7 8 56 7 49 6 42 

Weight 8 8 56 7 56 6 48 

Total Score   234  255  208 

2.1.1.3 CONNECTION POINTS 

The final physical aspect of the chassis design is the connection points of the two layers of the 

robot. Since we have decided upon using a double-layer design for our robot, we must now find 

a way to functionally connect these two plates. After extensive literary research, we have come 

up with two options to connect these two plates. The option consists of standoffs and plates. 

After creating the decision matrix below we decided to go with the standoffs. 

2.1.1.3.1 PLATES 

The first connection design we looked at was connection plates. Connection plates are specially 

designed and manufactured plates that are connected to the two plates with nuts and screws to 

create a strong connection. These plates offer the best stability between layers and are extremely 

durable. These plates also offer a good amount of recoverability as they can be easily changed 

out, but their poor manufacturability makes it hard to have replacements on hand. Another big 

problem with these plates is the weight they will add to the robot which is unnecessary to our 

design.  

The plate connection design has been used before as shown in the figure below 

(UAdelaide, 2005). From what you can see, the plates offer a solid connection point that can be 

easily replaced if need be. Also, from the image, you can see an exact “black box” space where 

all the internals will fit. 
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FIGURE 2.5 ADELAIDE PLATED CHASSIS DESIGN 

2.1.1.3.2 STANDOFFS 

The second option for connection points was metal standoffs. These standoffs would be female 

to male standoffs which would be secured by nuts and bolts. These standoffs are a great 

alternative to the plates as they offer relatively the same support and stability but cut down on the 

overall weight considerably. Along with less weight, they are also cheaper and are readily 

available to purchase whereas we would need to manufacture custom plates. These standoffs also 

take up less room on the robot itself which leaves more room for the internals to be worked in.  

These standoffs have been researched and are highly spoken about by other RoboCup 

teams. Below is an image from the CMDragons team which shows one of their robots without a 

cover and standoffs can be seen on the bot (CMDragons, 2014). 

 

FIGURE 2.6 CMDRAGONS CHASSIS STANDOFFS 

TABLE 2.3 CHASSIS CONNECTION POINTS DECISION MATRIX 

Criteria Weight Standoffs Plates 

 1-10 Score Weight Score Weight 
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Recoverability 5 9 45 8 40 

Manufacturability 6 8 48 6 36 

Stability 9 8 72 9 81 

Cost 7 9 63 7 49 

Weight 8 8 64 6 48 

Durability 8 6 48 9 72 

Total Score   340  255 

2.1.2 BALL CONTROL 
In the small size soccer robot league, the ball control is reliant on complex mechanisms in small 

packaging. There are three ways the robot interacts with the ball. The kicker mechanism is used 

for direct kicks along the ground using a punching action. The kicker is often employed for 

passes, free kicks, and shots on goal. The chipper mechanism is used for parabolic kicks of the 

ball. The chipper is advantageous to have for kicking the ball over a blocking opponent robot or 

out of a crowded part of the field. The final mechanism is the dribbler which uses a roller to 

contact the ball while the robot is in motion. The dribbler is used to maintain contact and control 

of the ball while the robot is in motion on the field. The league functions off iteration so as a 

team just starting, we are relying on existing and former teams' TDPs. 

  While this means the selection process could have included countless designs and 

possible decision matrices it is important to note our limitations. We are a first-year team and 

have no first-hand experience with these robots or designs. Additionally, our ability to 

manufacture components ourselves is limited by our facility's capabilities. Finally, our budget 

limits what vendors are possible for stock or outsource manufacturing.  

To alleviate some of these limitations we will be testing and experimenting with ball-

controlling mechanisms designs. This will be important for us to get an understanding of how the 

ball and robot interact physically in front of us. We plan to start with 3D-printed prototypes of 

each component and will then work to replace that with newly machined components. It may be 

shown that the 3D print will be a sufficient material choice, but we will not know until later. 

Changes in the chosen material and design may then change to reflect any new information we 

learn along the way. 

2.1.2.1 KICKER 

There are two main kicker designs teams use, an angle kicker and a straight kicker. When 

deciding between kickers there were two main criteria manufacturability and adaptability. As a 

first-year team, we are looking to limit the amount of added complexity of each mechanism. The 

thought process behind it is as a first-year team with limited manufacturing capabilities we want 

to be able to produce a functional robot. We also are prioritizing adaptability for a similar reason. 

Due to our team's limited first-hand experience, we are making the most educated decisions we 

can, but we want room to improve our designs if necessary. 

2.1.2.1.1 ANGLE KICKER 

An angle kicker rotates along a central axis changing the distribution angle of the ball. The 

advantage of this is that a robot can distribute the ball at multiple angles without moving the 

physical robot. For this to be possible the front of the robot needs to be open or have a wide slot 
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so the kicker can swing left to right to change the distribution point on the face of the robot. Out 

of the TDPs evaluated only one team had a confirmed angle kicker. Aside from the added 

complexity to the actual kicker, the other mechanisms of the dribbler and chipper would also 

need modified designs to work with the moving kicker. It also means that rather than trying to 

perfect one kick, multiple kicks at different angles would need to be programmed and simulated. 

 

FIGURE 2.7 MULTI-ANGLE KICKER FROM OP-AMP 2017 

2.1.2.1.2 STRAIGHT KICKER 

The other design is that of a straight kicker which is mounted to hit the ball in the center of the 

face of the robot. One of the largest factors that led to choosing the straight kicker was the 

simplicity of both the design and manufacture. The straight kicker being mounted in one position 

allows there to be more room surrounding the mechanism. This will help with the adaptability of 

the robot. The saved space can then be used by the ECE sub-team or allow for design revisions 

later down the line. The straight kicker also means that each of the ball-controlling mechanisms 

is not as constrained by each other's design as with an angle kicker. For these reasons, we chose 

the straight kicker based on the criteria in a decision matrix found in Table 2.4. 

 

FIGURE 2.8 STRAIGHT KICKER TIGERS 2020 

TABLE 2.4 KICKER DESIGN DECISION MATRIX 
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Criteria Weight 
Multi-Angle Kick 
(OP-AmP) 

Straight Kick 
(TIGERs, KIKS, 
SRC, CMDragons) 

 1-5 Score Weighted Score Weighted 

Cost 3 2 6 3 9 

Weight 3 2 6 4 12 

Manufacturability 5 2 10 5 25 

Adaptability 4 5 20 2 8 

Fixability 3 3 9 3 9 

Popularity 2 3 6 4 8 

Total Score   57  71 

2.1.2.1.3 PLUNGER 

An additional decision matrix was created for the shape of the plunger used in the kicker. There 

are two commonly seen types of plungers, parabolic, and flat plate. Our robots are using the flat 

plate plunger. We chose this one because it would likely be easier to manufacture than a 

parabolic plate. Additionally, while some teams have experienced success using a parabolic 

plunger others noted that it led to inconsistencies in the kicks. This same thought process carried 

through to the fixability criteria. Since the flat plunger is easier to manufacture it should be easier 

for us to either fix or replace that component should anything happen while in use. The plunger 

will likely be made from aluminum, but further evaluation will be carried out. 

 

FIGURE 2.9 FLAT PLATE KICKER ROBOJACKETS 2013 
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FIGURE 2.10 PARABOLIC PLATE KICKER TIGERS 2020 

TABLE 2.5 KICKER PLUNGER DECISION MATRIX 

Criteria Weight 

Parabolic Plate 
(RoboJackets, TIGERS, 
RoboDragons, SRC, 
ITAndroids, SKUBA) 

Flat Plate (RoboJackets, 
RoboTeam Twente, Immortals, 
OP-AmP, CMDragon) 

 1-5 Score Weighted Score Weighted 

Cost 3 3 9 3 15 

Weight 3 3 9 4 15 

Manufacturabilit
y 

5 3 15 5 25 

Adaptability 4 3 12 2 12 

Fixability 3 4 12 3 15 

Popularity 2 5 10 4 10 

Total Score   67  92 

2.1.2.2 DRIBBLER 

The dribbler is crucial to the robot's ability to control the ball throughout the game. The dribbler 

allows the robot to have possession of the ball between passing or kicking the ball. It consists of 

a roller that maintains contact with the ball while the robot is in motion. Importantly the material 

of the roller needs to have high enough friction with the ball that there is no slippage. To design a 

dribbler one of the first decisions to be made is what kind of roller will be used. For this, a 

decision matrix was used shown in Table 2.6. There are a variety of shapes a roller design can 

have, however, due to the limitations of both machining and experience we chose to focus our 

efforts on understanding the more common designs from TDPs. An evaluation of five different 

roller shapes was carried out. 
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FIGURE 2.11 HOURGLASS (LEFT) AND THREADED STRAIGHT (RIGHT) ROLLERS ROBOTEAM TWENTE 2022 

 

FIGURE 2.12 CROWNED PULLEY ROLLER ROBOTEAM TWENTE 2022 

 

FIGURE 2.13 SEGMENTED ROLLER KIKS 2022 

 

FIGURE 2.14 STRAIGHT ROLLER ROBODRAGONS 2022 

The five different designs are hourglass, straight, threaded straight, crowned pully, and 

segmented. Each of them has its benefits and disadvantages both on and off the field. Of these 

five the hourglass and crowned pulley have the most complex fabrication process followed by 

the threaded straight. This is due to their unique shapes and the need for their material to have a 

grip. If these were made from aluminum these would be suitable parts for a lathe. However, 

because we want a material with higher friction like silicon or rubber, they are a challenge for 

clean turning on the lathe. These materials also take longer to turn, decreasing the efficiency of 

manufacturing. Notably, both the straight and segmented designs offer more flexibility with the 

fabrication process. Finally, additional criteria were placed on finding a design that was reliable 

and had models already out there to guide our design choices. All these factors lead to the 
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selection of a straight bar which can be aluminum tubing with a rubber coating. The exact high 

friction outside of the roller will be tested as we move into manufacturing. 

TABLE 2.6 DRIBBLER ROLLER DECISION MATRIX 

Criteria Weight 
Hourgla
ss  

Straight  
Threaded 
Straight  

Crowned 
Pulley 

Segmented  

 1-5 
Sc
or
e 

Wei
ght
ed 

S
c
o
r
e 

Wei
ghte
d 

S
c
o
r
e 

Weight
ed 

S
c
o
r
e 

Weight
ed 

S
c
o
r
e 

Weighted 

Cost 3 3 9 5 15 4 12 3 9 5 15 

Weight 3 3 12 4 12 4 12 2 6 5 15 

Manufacturabilit
y 

5 2 10 5 25 4 20 2 10 4 20 

Adaptability 4 2 8 3 12 3 12 2 12 2 12 

Fixability 3 5 15 5 15 5 15 5 15 4 12 

Popularity 2 3 6 4 8 5 10 1 2 1 2 

Total Score   62  87  81  54  76 

2.1.2.3 CHIPPER 

The chipper gives the robot a tactical advantage by getting the ball out of a congested field of 

play. Whereas the kicker is a direct pass forward along the ground the chipper allows for the ball 

to take parabolic flight. The ball can be chipped over an opponent or used to pass the ball out of 

the opponent's reach. The chip kicker works by contacting the underside of the ball and lifting it 

into the air. The chip kicker can either be a solid piece of metal like aluminum machined into a 

wedge shape or it can be a modular design that is assembled. The chipper can then be mounted 

onto either the dribbler or kicker mechanisms. These four design choices were evaluated through 

the criteria in the design matrix presented in Table 2.7. 

 

FIGURE 2.15 MODULAR PACKAGED WITH KICKER SRC 2020 
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FIGURE 2.16 MODULAR PACKAGED WITH DRIBBLER ER-FORCE 2022 

 

FIGURE 2.17 SOLID PACKAGED WITH KICKER ROBOTEAM TWENTE 2022 

 

FIGURE 2.18 SOLID PACKAGED WITH DRIBBLER ROBOJACKETS 2019 

 

TABLE 2.7 CHIP KICKER DESIGN DECISION MATRIX 

Criteria 

W
e
i
g
h
t 

Hourglass  Straight  
Threaded 
Straight  

Crowned Pulley 
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1
-
5 

S
c
o
r
e 

Weighte
d 

Score Weighted 
Scor
e 

Weighted Score Weighted 

Cost 3 5 15 5 15 1 3 1 3 

Weight 3 3 9 5 15 2 6 3 9 

Manufacturabili
ty 

5 5 25 5 25 2 10 4 20 

Adaptability 4 4 16 3 12 3 12 2 8 

Fixability 3 3 9 4 12 2 6 2 6 

Popularity 2 2 4 4 8 2 4 4 8 

Total Score   78  87  41  54 

For our team, we chose to go with a modular chip kicker design that will be mounted as 

part of the dribbler mechanism. This choice made sense for our team from both a manufacturing 

standpoint as well as a cost one. To design and fabricate a solid chipper wedge, we would need 

to use a larger amount of stock material as well as follow a more complex machining process. 

The chip kicker is a small component in an already small robot so any milling into a shape would 

be on a small scale. Given our manufacturing limitations and lack of experience in making, we 

opted for the seemingly easier design for manufacturing. The chipper will likely be made from 

aluminum, however, if the 3D-printed parts prove reliable, we hope to move forward with those. 

2.1.3 DRIVE SYSTEM 
The drive system is the collection of mechanical and electromechanical components that provide 

the robot with the means to maneuver the playing field. This includes drive motors, wheels, and 

suspension, which facilitate the robots’ motion and turning as informed by their programming. 

While these components are secondary to the robots’ code in terms of game strategy, a robot’s 

performance in executing that strategy can only be as effective as the design of its drive system. 

It is imperative to the success of a team to design and implement a sufficiently sophisticated and 

robust subsystem. 

2.1.3.1 WHEELS 

Wheels are the primary contact with the playing surface of our robot. Wheels can make or break 

the effectiveness of the overall drive system. Careful selection of wheel design is paramount to 

designing a high-functioning team of robots whose movements are consistent and sharp.  

There are a variety of wheel types to choose from. Some designs are more widely used 

than others and are therefore being considered more heavily for a team in its infancy. The goal 

for an effective wheel design is one that translates the input from hardware and software into 

physical movement the most efficiently. Frequent choices for this include Mecanum and Omni-

Directional wheels. Traditional wheels are included in this discussion for comparison. 
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FIGURE 2.19 WHEEL TYPES WE CHOSE FROM MECANUM (LEFT), TRADITIONAL (MIDDLE), OMNI-DIRECTIONAL 

(RIGHT) 

The criteria used to select between these three designs are accessibility, cost, durability, 

weight, adaptability, turf performance, and agility. Accessibility encompasses the ease of 

acquisition with regards to purchasing or sourcing through sponsorship as well as access to 

fabrication machines and materials. Time is factored into the accessibility criteria. Cost is the 

rating of a design based on how low the price is when considering the purchase of completed 

parts or raw materials and processing costs. Durability speaks to the resilience of a design to 

degradation or damage that will adversely impact performance. Weight is the lightness of a 

design. Adaptability is the ability to modify or optimize the design for the system’s needs. Turf 

performance factors in the ability of a design to resist negative impacts due to the playing surface 

such as grip or turf getting stuck in rollers. Agility describes the ability of a design to facilitate 

rapid movements and changes in direction. 

TABLE 2.8 WHEEL DECISION MATRIX 

Criteria Weight 
Omni-
Directional 

Mecanum Traditional 

 1-10 Score 
Weight
ed 

Score 
Weight
ed 

Score 
Weight
ed 

Accessibility 7 9 81 9 81 9 81 

Cost 8 8 48 6 48 8 48 

Durability  9 7 56 6 48 8 64 

Weight 8 5 40 6 48 7 56 

Adaptability 7 5 35 5 35 4 28 

Turf 
Performance 

8 6 48 5 40 8 64 

Agility 9 9 81 8 72 2 18 

Total Score   394  328  295 

Omni-Directional wheels are the standard for high-performing teams in the Small Sized 

Soccer Robot League. They provide the same functionality as Mecanum wheels while being 

significantly simpler to adapt or manufacture. There is also a wide existing selection of these 

parts from a variety of suppliers to choose from. 
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2.1.3.2 WHEEL CONFIGURATION 

Wheel configuration influences the maneuverability of a robot. Some configurations are more 

articulate and conducive to precise movement than others. Wheel layout must be compatible with 

wheel selection as well as hardware and software design.  

The predominant designs for wheel layout are three-wheel Omni-Directional and four-

wheel Omni-Directional. There is room for adaptations in wheel offset and angle within these 

designs, which is factored into the decision matrix in Table 2.9. An obsolete configuration is 

included in this design matrix for comparison, as differential-based rear-wheel drive and front 

wheel steering was only briefly used early in the Small Sized Soccer Robot League.  

The selection criteria for configuration include cost, weight, adaptability, simplicity, and 

agility. Adaptability is where the offset and angle optimizations are factored in. Simplicity 

describes the resistance of the design to issues related to unnecessary complexity. 

TABLE 2.9 WHEEL CONFIGURATION DECISION MATRIX 

Criteria 
Weigh
t 

Front Steer/RWD 
(obsolete in Small 
Soccer Robot 
League) 

Three Wheel O-D 
(UAdelaide 2005, 
Tech United 
Eindhoven 2017) 

Four Wheel O-D 
(Robojackets 2007-
2019, SKUBA 2010-
2014, CMDragons 
2009-2016, 
EagleKnights 2006) 

 1-10 Score Weighted Score Weighted Score Weighted 

Accessibility 8 6 48 7 56 8 64 

Cost 8 6 48 6 48 7 56 

Durability  7 4 28 7 49 7 49 

Weight 6 8 48 7 42 8 48 

Adaptability 9 3 27 7 63 8 56 

Total Score   199  183  259 

Like wheel selection, the four squarely opposed wheel configuration is the norm for use 

with Omni-Directional wheels in successful teams. This design offers the same maneuverability 

as other Omni-Directional configurations while eliminating complexity caused by asymmetry 

associated with triangular three-wheel designs. Four squarely opposed wheels also unlock speed 

capabilities with an additional drive motor. There is also potential for optimization with angular 

and positional offsetting of wheels. 

2.1.3.3 SUSPENSION 

Suspension systems in Small Sized Soccer Robots are an uncommon choice. Teams rarely 

implement them due to their relatively small impact on their envelope in the internals of the 

robot. However, if implemented effectively, their benefits can outweigh their drawbacks: 

TABLE 2.10 PROS VS. CONS OF USING SUSPENSION 

Pros Cons 

• Reduces bouncing due to uneven 
wheels 

• Can introduce instability if not 
calibrated properly  



 

 
19 

 

• Keeps wheels in solid contact with turf 
for maximum grip  

• Can be adjusted to preference 
depending on the system  

• Reduce rigidity/stress on chassis and 
adjacent components 

• Unpredictable variance in 
kicking/dribbling due to rocking of 
chassis 

• Introduces potentially unnecessary 
complexity to design (most teams 
have wheels and motors hard 
bracketed to chassis) 

Options for suspension systems include coil overs, sway bars, and double wishbone. Suspension 

systems are more frequent in the middle-sized soccer robot league. There is little precedent for 

suspension in Small Size Soccer Robots, so a ‘no suspension’ option was included in the 

decision matrix (Table 2.11) for comparison. 

 

FIGURE 2.20 COILOVER SUSPENSION [20] 

 

FIGURE 2.21 SWAY BAR SUSPENSION (LEFT) AND A DOUBLE WISHBONE SUSPENSION (RIGHT) 

The selection criteria for a suspension system include accessibility, cost, durability, 

weight, adaptability, size, and simplicity. The size criteria refer to the spatial envelope 

requirement of the design, which speaks to the design’s potential to avoid obstruction by other 

internal subsystems or from obstructing other internal subsystems. 

TABLE 2.11 SUSPENSION DECISION MATRIX 

Criteria Weight Coilovers Sway Bars 
Wishbone 
(Hybrid) 

None 

 1-10 Score 
Weig
ht 

Score 
Weig
ht 

Score 
Weig
ht 

Score Weight 
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Accessibility 7 7 49 6 42 6 42 10 70 

Cost 8 6 48 6 48 5 40 9 72 

Durability 7 6 42 7 49 5 35 7 49 

Weight 6 7 42 8 48 5 30 10 60 

Adaptability 6 7 42 7 42 8 48 6 36 

Size 8 6 48 7 56 5 40 9 72 

Simplicity 8 6 48 7 56 5 40 10 80 

Total Score   319  309  267  333 

The potential benefits of a suspension system are slightly outweighed by their 

introduction of unnecessary complexities. As a point of improvement down the line for a more 

mature team, a suspension system can have subtle benefits. For a team in its infancy such as 

ours, the implementation of more advanced mechanical subsystems such as double wishbone 

designs can do more harm than good by taking focus away from establishing a strong 

fundamental mechanical base. Most successful teams also opt to not include suspension systems 

in their designs. 

2.1.3.4 MOTORS 

Motor selection for Small Size Soccer Robots is very important as the motors provide the 

actuation and allow the robot to move and perform higher-level functions. DC brushless motors 

are the optimal choice for this application because they provide a reasonable amount of torque, 

have long lifespans (no brush friction/wear), and require less maintenance than traditional DC 

motors.  

The selection criteria for motors are more empirical than the rest of the design, which 

include motor cost, voltage (24V), power rating (between 50 and 70 watts), motor weight, rated 

angular velocity (ideally between 4500 and 6000 RPM), and rated nominal torque (around 60 to 

130mNm). The selection criteria were formed largely around the existing motor specifications in 

the league. The Maxon EC-45 is common within the league due to its flat, compact design and 

reliability, so this was used as the general standard. Furthermore, teams use different power 

ratings of the EC 45, so we chose 50W as the middle ground (teams range from 30-70W). The 

three main candidates for motor selection are the Maxon EC 45 (50W), the DF 45 (65W), and 

the EC24527 (62.2W). 

TABLE 2.12 MOTOR DECISION MATRIX 

Criteria Weight DF-45 Maxxon EC-45 EC24527 

 1-10 Score Weighted Score Weighted Score Weighted 

Cost 9 8 72 6 54 TBD TBD 

Weight 6 8 48 7 42 9 54 

Torque  8 9 72 10 80 9 72 

RPM 8 9 72 8 64 9 72 

Voltage 7 10 70 10 70 10 70 

Power 8 7 56 8 64 7 56 

Total Score   390  374  TBD 
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The motor selection for our drive system is the DF 45 due to it meeting all design criteria 

and being cost-effective compared to other similarly specked motors, for $148.70 per unit. The 

EC 45 is priced at $218.09 for a single unit, meaning the DF 45 is $69.39 cheaper per unit. The 

DF 45 also has a slightly lower nominal torque rating than the EC 45 (130mNm vs 144mNm) 

which substitutes for a higher nominal angular velocity (4840 RPM vs 4500 RPM). It is also 

110g lighter than the EC 45, a saving of 440g per robot.  

 If the EC2457 can beat out the DF 45 in price, this is our optimal choice, because it 

matches or is slightly better than both the DF 45 and the EC 45 in nearly every category and 

could potentially save even more money. 

2.2 ELECTRICAL BACKGROUND 
To complete a literature review for this project, we researched existing Team Description Papers 

(TDPs). A TDP is an official paper each SSL team must submit to be eligible to compete in the 

league. It describes the design of the team’s system, like a concise version of the MQP report. 

These papers are publicly available and describe general system architecture that is an excellent 

starting point for research. These TDPs have been published once a year, dating back to 1996, so 

there was a vast amount of knowledge to pull from. Analyzing a single team and following its 

progress throughout the years was a very effective mechanism for determining what design 

choices went well and what didn’t. Also, as the years go on, the TDPs shorten in length and 

description as they tend to remark more deeply on the novel portions of their systems.  

The kicking system of the soccer robots have been described frequently in the TDPs. To power 

the kicking mechanism, teams typically use capacitor banks of 200V capable of kicking the ball 

between 10 and 20 m/s. Teams began to add chipping mechanisms to their kicking systems after 

several years of the league’s existence. These feature wedges at an angle capable of lifting the 

ball in the air and shooting it over robots. [4] Earlier in competitions, “it was common for teams 

to encounter voltage drops when their kicker solenoid was activated. This plagued teams who 

would sometimes face brownouts because of kicking the ball. The solenoid current draw could 

cause a voltage drop low enough that would cause the processor to fall into sleep mode or, in the 

worst cases, turn off completely.” [5] Teams solved this problem by either isolating the kicking 

circuit or partitioning the power supply into a kicking battery and a non-kicking battery.  

The dribbling module is less sophisticated electrically than the kicking module, and remains 

similar between each team, even over time. Teams use a single BLDC motor to control the 

dribbler, which is a rotating shaft that comes in various shapes (see the mechanical engineering 

MQP report for more information). The only main difference electrically is the choice of using 

closed-loop encoder feedback for precise prescribed angular velocities, or open-loop control 

systems calculated based on the rated load for the motor. The main factors at play for this 

decision are cost and complexity of design. 

The most variation in sub-system design for electrical modules is found in the power distribution 

module of the robot: the onboard battery charging circuitry is often different. “Some teams had 

battery cells designed to be easily removable from the robot chassis and opted to charge the 

batteries outside the robot on a dedicated battery charger. Others integrated a basic charging 

circuit onto their robot, allowing the robot to be charged over a simple DC voltage input.” [5] 
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This decision is one rooted in preference and cost, rather than performance of the robots, as the 

method of charging the cells will not change the way the power distribution occurs. 

In terms of the drive system, throughout the years there were numerous mechanical 

configurations that were tried, such as wheel type, orientation, number of wheels etc. On the 

electrical side of things, the system is controlled by brushless direct current motors (BLDC) for 

their long lifespan and ease of control in custom applications. The main differences in drive 

systems occurs in the implementation of the motor control: teams either using electronic speed 

controllers, integrated circuits, or custom BLDC control circuits designed by the team. Teams 

that created custom BLDC drive circuits often used FPGAs, which are expensive, and were used 

on teams that had the budget to implement them. 

In conclusion of the literature review, we became equipped with the electrical module and 

component options and benefitted from knowing how they performed. The remaining key factor 

for the choice of components was cost, as the budget was quite limited for this project.  

2.2.1 ROBOT REQUIREMENTS 
The next step for us was to lay out all the basic desired requirements necessary to accomplish the 

goal of the project. These goals were kept broad so that the team could change course when 

needed. The goals contain smaller sub-goals that are described in the System Requirements, 

section 3.1.1.1. 

2.2.1.1 POWER BOARD 

The robot requires a power board capable of supplying power to all components on the robot, 

even when operating under strenuous conditions, and must have the ability to do all this and last 

for an entire robocop game. The drive motors typically draw a large amount of current when 

operating under load, and sometimes have peak current draw. However, peak currents are 

unlikely to happen on all motors simultaneously, but the power board should be capable of 

providing the necessary current to all motors under load while dealing with one motor drawing a 

peak current.  

The board should also be capable of providing appropriate voltages for the motors as well as 

several other components, particularly 5V and 3.3V to logic driven devices such as processors 

since these are common operating voltages. Motor voltage ratings do not need to be met as 

stringently as any current ratings, so the voltage for the selected motors should be approximately 

met. 

Robocup matches in the small size league last ten minutes standard, and fifteen minutes if the 

game goes into overtime. The robots should always be prepared to go into overtime, so the 

power board should be designed to operate the robots for a minimum of fifteen minutes. 

2.2.1.2 KICKER BOARD 

To operate the solenoids for chipping and kicking the ball, a kicker board needs to be designed. 

Solenoids for this application need to draw a lot of current, and that is only possible if the 

resistance of the solenoid is overcome by a large voltage. This voltage is typically greater than 

what the voltage on the power board would provide, so the kicker board needs to be capable of 

converting the voltage from the power board to a much higher voltage. It must be able to operate 
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the solenoids at this voltage and at high currents, as well as operate the solenoids in a relatively 

frequent manner. 

2.2.1.3 PROCESSOR BOARD 

A processor board is necessary to turn decisions made by software into actions utilizing 

hardware. This board requires several aspects of functionality, which can be summarized into 

executing firmware quickly, wireless communicating with a master controller, controlling the 

motion of the robot, and controlling the hardware for ball manipulation. This board was the focus 

of Noah Page and was completed by him early in the project. Refer to his report for greater detail 

regarding its design and component selection. 

2.2.2 COMPONENT SELECTION 
The following sections describe the process and decisions for selecting specific components for 

the power and kicker boards, as well as additional components to operate the three phase motors. 

2.2.2.0 BATTERY CELLS 

It was important to have battery cells capable of high continuous discharge current and a 3-amp 

power storage capacity, all at a moderate price point. The Molicel P28B was selected due to its 

unique material properties that allow it to meet the requirements, with a large thermal safety net. 

Cells with a similar discharge rate to the Molicel P28B do not satisfy the requirements for 

storage capacity, which is why all other options were eliminated. 

2.2.2.1 VOLTAGE REGULATORS 

Voltage regulators are essential for the power board to provide voltages lower than the voltage of 

the battery pack. Three voltages are necessary for boards and components to function: 12V, 5V, 

and 3.3V. Other considerations were price and availability, mainly to preserve the budget for 

more expensive items. The LT2575-5 LDO was selected for 12V and 5V, while the LD1117V33 

was selected for 3.3V. These regulators were selected because they were the cheapest and most 

available compared to other models. 

2.2.2.2 BATTERY MANAGEMENT 

A battery management chip is an important component used to monitor the voltage and current 

of the battery cells. The BQ76925 front end multiplexer was chosen because of its low cost 

compared to other models and ability to work with our selected cell type. 

2.2.2.3 SOLENOIDS 

It was found during research that many competing robots use solenoids to propel the ball with 

the forces required to be able to play the game. These teams however made custom solenoids. 

This option was not an option for the team due to the lack of manpower and knowledge for that 

that, so solenoids available on the market were researched. The solenoids from the magnetic 

sensor systems series S-20-100-H push type were selected. In the purchasing options, there are a 

few strands, so there are four options in relation to duty cycle. These change the number of turns 

in the solenoid when selecting. For the desired configuration, the pulse solenoid was chosen. The 

plunger for the solenoid weighs about 0.34kg, which is nearly negligible in this case with a 

change to 0.35 kg. 
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2.2.2.4 CAPACITORS 

Large capacitors are necessary for the kicker board to operate the solenoids efficiently. The 

capacitors need to satisfy the following conditions: a voltage rating of 250V, a discharge current 

of 15 amps, and operate at a temperature greater than 75 Celsius. After researching capacitors, 

the Nichicon LGG2D152 was chosen because it met the voltage rating and discharge current 

requirements and operates at a temperature of 85 degrees Celsius, while having the best purchase 

price compared to other models. 

2.2.2.5 ENCODERS 

The encoders need to be able to attach to the motor axles being used and fit within a compact 

area, while having good resolution and reasonable price.  After extensive research, only two 

encoders were found that fit the dimension of requirements of 6mm or less in thickness between 

the motor bracket and wheel and can fit on a 4mm diameter shaft. The first option was the E4T 

from USDigital, which could have a pulse resolution between 256 and 2048. The second option 

was the CUI Devices AMT-112Q-V, which features a programmable PPR between 128 to 4096, 

with an interchangeable grip for differing shaft sizes between 3 and 7 mm. 

TABLE 2.13 ENCODER DECISION MATRIX 

Criteria Weight E4T AMT-112Q-V 
 1-5 Score (1-5) Weighted Score (1-5) Weighted 

Shaft 
Diameter 

5 4 20 5 25 

Thickness 5 5 25 20 20 
Resolution 4 4 16 5 20 

Cost 3 2 6 3 9 
Total Score   67  74 

The AMT-112Q-V was chosen over the E4T because the AMT-112Q-V fits the criteria better. 

The AMT-112Q-V is $34.95 per unit, while the E4T is $37.00 per unit. The AMT-112Q-V has 

better resolution and is more flexible regarding what shaft it can fit on, providing greater 

flexibility for development. The one benefit the E4T has over the AMT-112Q-V was its smaller 

thickness. However, this difference in thickness is small and was not a significant factor in the 

decision matrix. 

2.2.2.6 CHARGING IC 

To charge the capacitors to high voltages, an IC designed for this task is needed. The LT3751 

was arbitrarily chosen to be the intended IC, but that chip had supply shortages, so its simpler 

counterpart was chosen, the LT3750.  The LT3750 is an isolated capacitor charger and is used to 

boost the voltage from the VCC input. 

2.2.2.7 HIGH POWER TRANSISTOR 

There are three main options available for high power transistors: power BJTs, IGBTs, and 

power mosfets. Each class of transistor fills a similar role but has different properties to fill that 

role. Three properties had to be met: high switching frequency, voltage dependent output, and 

consistent switching delays. Out of each three types of transistors the best one was IGBT as its 

output is dependent upon input collector voltage and it is not dependent upon its input current. 
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The requirements for IGBTs were broken down into properties such as voltage and continuous 

output current. After further researching and eliminating several other options, the IKW7560T 

was selected. It has a max voltage rating of 600 volts and a current amperage of 75 watts. 

2.2.2.8 MOTOR CONTROLLERS 

In order to operate the three-phase drive and dribbler motors, motor controllers and electronic 

speed controllers (ESCs) were researched. These devices needed to meet the design criteria, 

which included voltage (24V), current(3A-4A), cost, and simplicity. Using these specifications, 

the search was narrowed down to two devices: the Allegro A3930/3931 motor controller, and the 

Cyclone CY-35A ESC. 

TABLE 2.14 MOTOR CONTROLLER DECISION MATRIX 

Criteria Weight A3930/3931 CY-35A 

 1-5 Score (1-5) Weighted Score (1-5) Weighted 
Voltage 4 5 20 5 20 
Current 4 4 16 5 20 

Cost 3 2 6 4 12 
Simplicity 5 1 5 3 15 

Total Score   47  67 

The device selected to operate the three phase motors is the CY-35A due to it meeting the design 

criteria better than the A3930/3931. Both devices meet voltage and current requirements 

adequately, but the CY-35A is a better choice for cost and complexity. At $10.25 per unit, the 

ESCs are relatively cheap, even with an additional investment cost of $14.39 for a device to flash 

the firmware on the ESCs. This is considerably less costly than the A3930/3931. While the IC 

costs $6.50 per unit, other components would have to be purchased per unit in order to assemble 

a circuit and make the chip functional. Additionally, a custom PCB would have to be designed in 

order to implement the circuit, which is much more expensive compared to the ESCs. 

2.3 SOFTWARE BACKGROUND 
For the software research, we identified the following game aspects: 

• Vision Module 

• Strategy 

• Controls 

• Communications 

• Testing and Simulation 

2.3.1 VISION MODULE 
The Vision Module takes camera data from SSL Vision to tell the master where the robots and 

ball are located. This section will cover our research into SSL Vision. 

2.3.1.1 SSL VISION 

Small Size League Vision (SSL Vision) is the shared vision system software developed by 

RoboCup, and now the standard in competitions (Zickler, Bruce, Biswas, Licitra, & Veloso, 
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2009). It is an open-source software developed in C++ that utilizes the Qt toolkit, which is a 

toolkit specializing in creating graphical user interfaces and cross-platform applications (Zickler, 

Laue, Birbach, Wongphati, & Veloso, 2009). According to RoboCup SSL’s vision system 

document published in 2009, they use multiple plugins to process the camera data. It begins by 

taking the camera image and using a lookup table to label different objects on the field based on 

color. It goes through each pixel to create a threshold image. Then, similar colors are grouped 

into regions and the plugin calculates the bounding boxes and centroids of each region. A pattern 

detection plugin is used to identify the location and orientation of the robots using the colored 

dots on top of the robots (Zickler, Laue, Birbach, Wongphati, & Veloso, 2009). Finally, the 

information is shared with the teams via network. Teams can choose how to use this information. 

For example, the 2009 CMDragons team uses the information in one of their two clients – the 

client that deals with graphical interfaces for controlling and monitoring. In 2010, Skuba  used 

SSL Vision in one of their three servers, the vision servers which feed information into their 

controller. In general, having this SSL Vision shared system allows for easy calibration and 

interchangeability with different image processing plugins (Zickler, Bruce, Biswas, Licitra, & 

Veloso, 2009). 

 

FIGURE 2.22 ROBOCUP SSL VISION SYSTEM (MARTINEZ-GOMEZ, L ET AL., 2005).  

The SSL Vision System is responsible for collecting field data such as position of the 

ball, positions of the soccer robots, and velocities of them. These data will be sent to the robots 

and used as inputs to our AI system. 

2.3.2 STRATEGY MODULE 
The strategy module contains all the decision making and planning needed to determine what 

each of the individual agents should do. There are three main sections in most SSL teams’ code 
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structures. First comes the building blocks: Tactics and Skills. These are the base functionalities 

of the agents that can be combined to form more complex roles and strategies. Next comes the 

methods of determining which of these tactics and skills should be used in the Heuristics section.  

Finally comes the Role Assignment section which chooses which agent will take on each of the 

designated roles built from Tactics and Skills, then selected by the Heuristics section.  

2.3.2.1 TACTICS AND SKILLS 

The CMDragons created the STP Architecture, or Skills, Tactics, and Plays Architecture that 

modern teams use to implement their strategies. Tactics and Skills are used for implementing 

individual robot behavior to achieve a role. Multiple robots performing roles in parallel creates a 

play. Tactics and Skills are low-level primitive behaviors of the robots that are carried out in 

parallel by each robot to achieve the selected play. There can be multiple Skills in a Tactic, and 

multiple Tactics in a role, depending on the play’s complexity. 

Skills are the lowest-level control behaviors implemented in the robots, such as 

navigating to a point safely (implemented using the RRT algorithm), shooting a ball with a 

specified velocity, dribbling the ball up the field, or chip-kicking a ball to a certain location. 

Skills may be performed in series to implement a Tactic. Skills make basic use of the hardware 

and are the building blocks for more complex behaviors. 

A Tactic helps a robot fulfill a certain role, such as being an attacker, defender, or 

goalkeeper (Bowling, 2016). It is a macro of skills that one robot carries out to achieve a plan or 

play. Examples from the CMDragons and the Robojackets include a goalkeeper blocking shots 

(combination of moving to point multiple times), two robots passing the ball to each other 

(moving to points, using shooting mechanism to pass), defenders preventing passing/shooting 

(moving to points), a robot retrieving a loose ball (moving to point and dribbling), and attacking 

robots moving the ball to the goal to shoot and score goals (moving, dribbling, kicking) (Zickler, 

Bruce, Biswas, Licitra, & Veloso, 2009; Bardagjy et al., 2008). From their 2019 TDP, ETDP 

defines a “harass” tactic, which determines the opposing robot to harass to attempt to intercept a 

pass or force a turnover (Bootsma et al., 2019). 

2.3.2.2 HEURISTICS 

Like determining roles for individual robots, the overall optimal play that is chosen also needs 

some form of heuristic(s) to be based on. A heuristic is a technique designed to solve a specific 

problem faster. Many variables in the world state are used as heuristics to determine which play 

the strategy controller converges on. For example, in 2016, the CMDragons used an 

aggressiveness level, fulfilled by several “applicability conditions” as their heuristic to determine 

their play in any situation. These conditions were ball possession, field region, and a calculated 

opponent’s level of aggression.  
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FIGURE 2.23 BALL POSSESSION CALCULATION BY CMDRAGONS 

Referring to Figure 2.24, ball possession is broken up into a piecewise function of time. 

To determine which state the ball possession is in, CMDragons keeps track of the amount of time 

the ball is near either team (taken from an arbitrary reference time), defined as “t us near” and “t 

them near”, where “near” is an experimentally determined distance between the ball and either 

team. They then compare “t us near” and “t them near” to a predetermined constant time 

threshold and use a combination of these comparisons to determine the ball possession. The 

“ourB” ball possession state means that the CMDragons have possession of the ball, since the 

ball has been close to them longer than the time threshold, and close to their opponents less than 

the time threshold. “theirB” means their opponents have the ball, “contendedB” means it is 

undecided who has the ball and likely will be decided soon. “looseB” refers to a ball that is not 

near either team and therefore the ball is up for grabs. Finally, “ballP(t-1)” occurs when none of 

the above conditions are satisfied, which means the current ball possession is set as the same as 

the previous ball possession.  

The field region used to calculate the aggressiveness level is simply which half of the 

field is the ball on: CMDragon’s half, or their opponent’s half. The opponent’s level of 

aggression is determined by the number of their robots in their defensive half field. If they have 

all robots in their half, aggressiveness is set to defense, otherwise it is set to 0. Furthermore, 

these conditions break down into detailed functions. For example, ball possession is calculated 

based on the time the ball spends near either team in conjunction with its distance relative to 

each team (each variable has their own adjustable threshold). The combination of these many 

variables makeup the heuristic that then allows the team to determine which play to use, and 

subsequently which roles to assign to each robot (Mendoza et al., 2016).  
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FIGURE 2.24 GAME CONDITIONS THAT TRIGGER ROBOJACKET'S ACTIONS 

Another way to decide how to determine what play to implement is the division of 

potential circumstances as demonstrated by the RoboJackets. Their team breaks down the game 

into a set of game conditions based on factors like ball possession, field side, and referee input. 

These instances have a set strategy to go with them and are designed to optimize the outcome 

and lead to more goals scored. Referring to the table in Figure 2.25, we can see what game 

conditions (heuristics) choose the corresponding actions for the RoboJackets. For example, if the 

ball is in the RoboJacket’s possession, and is on their side of the field, their action should be to 

clear the zone. If it is their opponent's possession and is on the RoboJacket’s side of the field, the 

play is to defend the goal. Setting up a matrix like this is very simple and can help discretize a 

very complex game. 

Another important and powerful play selection heuristic that can be implemented is 

reinforcement learning. When used in the context of the RoboCup, this would factor in previous 

plays within a game to learn the opponent’s strategy and to adapt to it as the game moves on. A 

popular reinforcement learning algorithm is Q-learning, which is a model-free reinforcement 

algorithm that learns the value of an action in a particular state. Q-learning has been used in other 

Robocup leagues to further certain abilities of participating robots such as “shooting the ball 

while walking.” Q-learning can also be helpful to filter out noise by fine-tuning control 

parameters after several iterations (Fadelli & Xplore, 2021).  

2.3.2.3 ROLE ASSIGNMENT 

In RoboCup, a robot may need to fulfill different roles, or positions, throughout the game 

depending on who has possession or the current play. These roles can look different depending 

on the team's playbook. For example, in 2010, Skuba had predetermined plays with specific 

positions (Wasuntapichaikul et al., 2010). Each role contains the set of tactics and skills 

necessary to execute the role.  After the roles that need to be fulfilled have been determined, the 

next step is to assign a role to each of the agents on the field. Efficiency is a priority in this stage 

as it cuts down on the time necessary for all agents to move to their assigned positions and 

therefore makes it more likely to be successful against the opposing team.  

Most teams use some variation of the Hungarian Algorithm. The Hungarian Algorithm 

calculates the cost of a robot fulfilling a role, and then when the costs of all robots are calculated, 
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it chooses the minimum cost solution. The cost determination is where the teams seem to differ 

the most. 

A simple way of calculating the cost is by using distance. This is what MRL did in 2019; 

they had a role assigner module that calculated the cost based on the distance between the robots' 

current position, and target location of the role being assigned. One issue with this is sometimes 

a robot may be close to a position, but since it was previously a defender, it may not be the best 

fit to leave the defense area and become an “active” role (Ganjali et al., 2019). For this reason, 

they sorted all their possible positions into two groups: one for defenders and regional roles, 

second for markers, stop cover, active, and positioner roles. Now, after they calculate the cost, 

they make sure that a robot is only switched into either the same role or a role in that group.  

 

FIGURE 2.25 THE TIERING SYSTEM USED BY GEOGIA TECH'S ROBOJACKETS 

RoboJackets also used a Hungarian algorithm in 2020, however they used a tiered 

method of assigning that made sure the most critical roles were optimally assigned (Almagro et 

al., 2020). They made tiers based on what the role required: direct interaction, probable 

interaction, unlikely interaction but part of the play, and formation controlled. Formation 

controlled agents are not likely to interact with the ball in the immediate future, but instead the 

robots set up to be in default positions waiting until they become pertinent to the play, though 

they have default behavior also associated with the formation position. This could be staying in a 

certain zone and blocking the most likely shot on goal, for example. 

Using the tiers, they assign all the roles in the highest tier first using distance from the robot to 

the desired location. Once all tier one roles are assigned, they move on to the next tier, and this 

process continues until all the roles have been fulfilled.  

The RoboTeam Twente, however, ran into the issue that they used different types of 

robots (Bos et al., 2020). Since there was no longer a homogenous pool to choose from, they had 

to take into account the skill level of each robot. This led them to come up with a bit more 

complicated of a cost equation that calculated the cost of the robot traveling to a location and the 

reward for the robot performing that action. Ultimately, the cost considers a specific robot's 

distance to the ball, proficiency in completing that task, and the importance of that task. The 

importance of the task is predetermined and then used in the equation to make sure it’s 

completed by the best suited robot. They created an equation that takes all these factors into 

account to assign the cost of different roles for different robots and calculated it by simulating 

multiple practice scenarios and seeing how different robots act in different positions. 
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2.3.3 NAVIGATION MODULE 
The navigation module contains all the planning and calculations needed to establish each 

agent’s obstacle-avoidance path as well as the set of wheel speeds required to follow their 

respective path. There are two main sections that make up the navigation module: Path Planning 

and Motion Control.  

2.3.3.1 PATH PLANNING 

Once a destination has been determined by the Strategy Module, a path must be planned, starting 

from where an agent currently is and ending at the specified destination. To figure this path out, 

many teams use the Rapid-exploring Random Tree (RRT) algorithm on their master for their 

real-time path planning. RRT is a tree search algorithm.  A Tree is classified as a starting point, 

an end point, and its branches. For our use, we called points, Nodes, and the branch that connects 

two Nodes, we called Links. Therefore, our Tree is a starting Node, an end Node, and a list of 

Links. RRT uses randomization to generate Nodes and then attempts to Link the Nodes to the 

preexisting Tree. By solely relying on randomization, one can generate a random path from the 

starting Node to the end Node.  

However, a random path is not necessarily the best path. For now, the best path is the 

shortest path. To make the path shorter, we used a similar cost evaluation as the A-Star algorithm 

(A*). The cost is the distance from the current Node of the Tree to the end Node. By updating 

the cost, after Linking a Node to the Tree, we can choose to only add a new Node if its cost was 

less than the last Node. This would mean the new Node is moving closer to the end Node. By 

using this cost evaluation with the previous functionality, we create a new algorithm called RRT-

Star (RRT*). With this, one can produce a shorter and more efficient path.  

Though the path is shorter and more efficient, it is yet to be optimal. An optimal path is 

an efficient path that avoids obstacles. An obstacle can be defined as both a teammate, an 

opposing team bot, or even the boundary lines. If the generated nodes, within the path, fulfilled 

the proper criteria (ie. closer to the goal and did not cross obstacles) then the outputted path 

would be the quickest path between the starting point and the goal all while avoiding obstacles. 

This optimized path would look similar to Figure 2.27 taken from an article written by Tim 

Chinenov, a Software Engineer for SpaceX. 
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FIGURE 2.26 VISUALIZATION OF RRT* (CHINENOV, 2019) 

2.3.3.2 MOTION CONTROL 

Generating a path is just the first challenge of the Navigation Module. In order to follow the 

generated path, the wheel speeds of the agents must be calculated and maintained using 

kinematics and control theory.  

Figure 2.28 below shows the kinematic transformation matrix used by Kasetsart 

University’s team, SKUBA, to go from a desired linear velocity (X velocity, Y velocity, 

Rotational Z velocity) to the four-wheel velocity (wheels 1-4) that would enable the robot to 

travel at the desired linear velocity. 

 

FIGURE 2.27 THE KINEMATIC TRANSFORMATION MATRIX USED BY KASETSTART UNIVERSITY'S SKUBA 

Control Theory refers to the use of a control system on a dynamic system. A control 

system uses controllers within a control loop to manage, command, direct, or regulate the 
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behavior of the system. A controller monitors the controlled variable and compares it with the 

setpoint. The difference between the actual and the desired value of the variable is called the 

error. This error is applied as feedback to generate an action or an adjustment that brings the 

controlled variable to the same value as the setpoint. This described control loop is called 

feedback control. A feedback control loop involves taking measurements using a sensor and 

making calculated adjustments to keep the measured variable within a set range or as close to the 

setpoint as possible. An example of a controller would be the thermostat controlling the 

temperature of one's home (Simrock 2019).  

In this project’s case, the agents are the dynamic systems, the controlled variable is their 

velocity, and the controller used to control their velocities is called a proportional-integral-

derivative (PID) controller. A PID controller is a compensator that uses error, the difference 

between the desired output and the actual output, while taking into account the past dynamics 

(through integration) of the system as well as anticipates the future dynamics (through 

derivatives) of the system. The controller then uses the proportional aspect to give weight to the 

feedback of the compensations the controller is applying. One may use a PID controller on the 

motors to regulate the velocity output depending on the error of destination of the robot. By 

controlling the motors, we will be able to turn tightly, move fluently, and stop accurately at high 

speeds to reach our destination. 

Teams in the SSL can choose to use any or all components of PID (ie. P, I, D, PI, PD, ID, 

PID) to control their motors. Using more of a proportional gain increases the control signal for 

the same level of error. This causes the system to react more quickly resulting in a faster time to 

reach the desired output (rise time) but also tends to overshoot the desired output. The addition 

of an integral gain eliminates the overall error over time. Resulting in a faster rise time, however, 

causes the system to react slower, causing a slower settling time as well as a longer time to react 

to an overshoot. Lastly, adding a derivative gain manages the effects of large errors on the 

system causing a lower overshoot and a faster adjustment time from overshoot to the desired 

output (settling time) all while having little to no effect on the rise time and overall error. 

 

FIGURE 2.28 PARAMETERS OF PROPORTIONAL, INTEGRAL, AND DERIVATIVE GAINS (DRIVER PID SETTINGS, 

2012) 

2.3.3.3 EMBEDDED FIRMWARE 

The robots use firmware to enable the hardware to interface with the onboard software. When it 

comes to controlling the robot, the data gathered from the hardware through the firmware will 

mainly consist of voltage readings from our drive train as well as data readings from the 

gyroscope of the inertial measurement unit (IMU). The voltage readings will be used in our 

above-mentioned PID controller. As for the gyroscope data, it will be used to better estimate the 
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robot’s orientation angle. This estimation will be an average between the angle reading from the 

field camera and the angle reading from the IMU.  

2.3.3.4 POSITION ESTIMATION 

One problem with the current SSL vision system is the latency. It takes time to process the video 

and to send the data to the master in charge of the six agents. In this time, the agents are still 

moving, meaning the Strategy and Controls modules would be operating on positions that are out 

of date, thereby any decisions made would not be optimal to the current situation. 

One way to combat this is to predict the current positions and orientations of the agents 

based on previous vision data such as positions and velocities. The Kalman filter is commonly 

used by multiple teams to estimate the exact and current positions of the agents. State space 

variables, such as position and velocity, are tracked and estimated using weighted averages. 

Noise is addressed by the weights of the measurements to account for the differences in certainty 

in measurements. This filter can run in real-time, which is an important quality for any algorithm 

in this area. 

Some teams, like SKUBA and RoboJackets have gone further and used a modified Multi-

Hypothesis Extended Kalman Filter (MHEKF) to more accurately predict the current positions of 

the agents by running multiple extended Kalman Filters in order to increase the probability that 

one of them converges on the correct positions. Multi-Hypothesis Extended Kalman Filter is a 

variant of the Extended Kalman Filter that calculates the chances of a robot’s real-time location 

at a certain position using a multi-model probability distribution. It could be very effective when 

predicting the positions of soccer robots and the field, especially when the SSL vision data is 

lagging behind. 

2.3.4 COMMUNICATIONS 
Communications between each device on the field are also crucial to teamwork and data 

processing. There are a few ways for robots to communicate with robots. No rule restricts teams 

from using other kinds of communications. However, ball and robot movement detection, which 

are performed by an SSL-vision system, require signal transmission based on a UDP network. In 

addition, other components of the SSL software such as AutoRef are using TCP network 

parameters. Hence, TCP and UDP wireless communications are both required by the 

competition.  

TCP and UDP refer to two different packet formats used in network communication. A 

data packet in network communication has two major parts: headers and payloads. TCP/IP 

headers contain the destination and intermediate IP or MAC addresses. UDP headers contain 

source and destination port numbers. Apart from that, they both contain a payload where all 

information is stored. When transmitting TCP or UDP packets, the receiver should parse the 

headers and extract data from the payloads. In RoboCup SSL vision, information such as the 

position and velocity of the ball is packed up in a TCP/IP packet and sent to the robots through 

wireless network communication. 

Network-based communications using TCP or UDP are much more reliable and faster. 

The only difference between TCP and UDP is that TCP sends data and simultaneously checks 

errors for the signal but UDP has limited error checking functions. Furthermore, TCP guarantees 
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the delivery of the packets, but UDP does not. TCP is better for sending signals that contain 

detailed information at the cost of a slower speed while UDP is better for sending signals that are 

less detailed but needs to be sent urgently. 

2.3.5 TESTING AND SIMULATION 
Robot software development usually requires a full functional real robot for testing. However, 

developers may suffer from all kinds of hardware problems which would cause the testing to 

become inaccurate and time consuming. A handy real-world simulator will make software 

development for robots a lot easier because we no longer need to worry about hardware failure 

and testing can be done without the need for an actual field which we don’t have yet.  

A good simulator for RoboCup Small-Size Soccer League must have great solutions to 

the omni-directional movement structure and ball kicking or dribbling mechanism, especially 

when the opponent’s robots are trying to contest for the ball. These two features are rather 

important because they are very unusual compared to other moving mechanisms or structures in 

many real-world physics simulators, which means it could be very hard or impossible to 

simulate. In addition, incorrect simulation means meaningless testing without the actual robots 

and fields, which would ultimately affect our deliverables. 

grSim and ER-Force are designed specifically for the RoboCup SSL and maintained by 

the teams. They are automatically subject to SSL-simulation-protocol. Non-SSL simulators such 

as NVIDIA PhysX 4 need modifications to implement SSL-simulation-protocol. In the literature 

review, we will focus on grSim, ER-force, and PhysX. Other open-source simulators such as 

UberSim, SimRobot, and Gazebo are also available on the internet. It is certainly not impossible 

for us to use them, but they have no significant advantages over either grSim, ER-force, or 

PhysX in terms of robot soccer simulation and therefore not wasting time introducing them 

individually. 

grSim is a 3D simulator mainly written in C++. It is developed by Amirkabir university’s 

small size soccer robot team named “Parsian”. What makes this simulator brilliant is the careful 

treatment of omni-directional drive and kicking mechanism. To reduce the deficiencies of 

modeling omni-directional movement, wheels are constructed as solid cylinders attaching to the 

robot’s chassis with an ODE’s (Open Dynamic Engine) Hinge joint in grSim. An angular motor 

with configurable limited torque is attached to each joint (Monajjemi, Koochakzadeh, & 

Ghidary, 2012). To simulate the sub-wheels’ movement, an additional type of friction other than 

tangential and perpendicular friction is added to the wheels. By configuring the size of the 

additional friction, omni-directional movement can be achieved. In terms of the kicking 

mechanism, a cylinder spinning backward is added to simulate the actuator on the robot. In 

reality, the mechanics are designed in a special way to prevent the soccer ball from spinning 

sideways. It would be rather deficient to create an exact model in the simulator and apply physics 

to it. However, grSim allows the users to configure frictional force on each direction to make 

sure the ball is not spinning sideways similar to the omni-directional drive. Furthermore, the 

grSim is supported on all platforms and the GUI interface looks very straight forward.  

ER-force is a simulator developed by the ER-force team in 2019 and released as an open-

source simulator for RoboCup SSL recently. The developers of the simulator had experience 

using grSim and found it unable to meet their requirements. They suggested this simulator is 
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better than grSim in most aspects. One of the key improvements ER-force simulator has over 

grSim is the ability to simulate vision noise (Bergmann et al., n.d.). In reality, it is very common 

that part of the ball detection data package could consist of noise. The noise affects the 

detections for position, rotation, and area. By modeling the noise with Gaussian Distribution and 

also accounting for the latency of the vision system, the movement of the ball and robots can be 

reflected on the simulator concisely. In addition, developers can also implement their high-level 

features such as robots that can be dragged around on the field on the top of the SSL-simulation-

protocol. Trajectory planning for the ER-force is also well-developed, making it accurate and 

realistic. Like grSim, ER-force is also supported on all platforms. Apart from all of the nice 

things that the ER-force has, the modeling of the dribbling or kicking mechanism is not as good 

as grSim. According to the ER-force developers, modeling the mechanism as a rigid body and 

‘gluing’ the ball to it meets their requirements. This is far worse than grSim’s method of adding a 

frictional force that does not exist in reality to simulate the mechanism that prevents the ball 

from moving sideways. 

NVIDIA PhysX 4 is a powerful open-source industrial-level real-world engine. The key 

advantage of using PhysX as a simulator is that we do not have to worry about the inaccuracy of 

simulating omni-drive movements and dribbling mechanisms. The engine itself can guarantee a 

very realistic simulated environment that is far beyond the requirements of the RoboCup SSL 

competition. This would boost our software development speed by a lot if we know how to use it 

properly. Hence, the only problem this simulator has is the steep learning curve. We not only 

have to model everything from scratch, but also have to think of a way of making it subject to the 

SSL-Simulation-protocol. Currently, only the CMDragons team is using PhysX as their 

simulator. If we were to do the same, it would take either too much time or too much workload 

for team members to code it regarding the scope of this project, even if we only use existing 

APIs. In addition, we are completely on our own if the CMDragons team does not wish to help 

us. 

CHAPTER 3 DESIGN AND DEVELOPMENT 
We conducted the design and development of the mechanical, electrical, and software systems in 

our sub-teams. The following sections provide a description of the overall system, design 

concepts and prototypes, and details of the development of each subsystem. 

3.1 SYSTEM OVERVIEW 

3.1.1 MECHANICAL OVERVIEW 
 The system is designed to be capable of linear translation as well as rotation around a carpeted 

playing surface as per RoboCup regulation. This is achieved via four brushless DC motors paired 

with omnidirectional wheels. The robot is also equipped with a ball control system designed to 

interact with and manipulate the ball. The core functionalities of this module are to dribble the 

ball by rotating a cylinder that keeps the rotation of the ball in phase with the robot’s motion, 

chip the ball by sweeping a plate at an angle under the ball, and kick the ball by thrusting a bar 

into it.   

Per the official RoboCup Small Size League Rules, the robot must:  
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• Fit inside a 0.18 meters wide and 0.15 meters high cylinder at any point in time. 

• Be fully autonomous 

• Not pose danger to itself, another robot, or humans.  

• Not damage or modify the ball or the field. 

The dribbling device must: 

• Not elevate the ball from the ground. 

• Not take full control of the ball by removing all of its degrees of freedom. 

• Not cover more than 20% of the ball surface 

3.1.2 ECE SYSTEM OVERVIEW 

 

FIGURE 3.1 SYSTEM ARCHITECTURE BLOCK DIAGRAM 

The system in Figure 3.1 is the architecture diagram used when we initially started to break our 

work into a bunch of different components on and off robot. Outside of the AI system, we have 

the router and wireless interface that allows us to communicate with all our robots. On the robot, 

we broke it down into modules of power management, kicker, dribbler, drivetrain and the main 

processing module. Next, we broke down each module into their individual requirements to 

serve their purpose. Drivetrain must be to able drive the robot at the desired high speeds, 

precisely. The dribbler module’s purpose is to essentially develop the electronics to interface and 

be able to drive the ball, by keeping it within the chassis as the soccer robot moves. The kicker is 

the module with the drivers needed to actuate the kicker and chipper mechanisms. Finally, the 

main processing module contains the wireless communication, robot identification, debug 

circuitry, clocks, and the main processor. 

3.1.2.1 SYSTEM REQUIREMENTS 

The system requirements were broken down by the power module above which would be done 

by the tasks based on our extensive research of the TDP's and other circuitry of similar robots. 

To be more thorough than the previous section, first, the master controller module consists of the 
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AI. The master control is handled purely by the software. Next, the physical connection between 

the hardware and the software is handled by a router system which consists of PCB design on the 

circuit boards, and essentially the requirements to follow in this section were the drivers 

necessary to communicate with multiple robots concurrently, and to be able to accurately 

communicate messages to and from the AI system, so that we can properly manage the robots on 

the field.   

The power management module was broken down into the power systems and the battery 

management sub-system. The power system was required to power an assortment of voltage 

levels ranging from 3.3 volts to 5 volts, and 22.2 volts. This needed to be done in a manner that 

reduces noise to a minimum, and to be able to prevent burnouts from high voltage changes. The 

battery management module performs the function of communicating with the AI to provide 

insights on the state of the robots internally.   

The goal of the drivetrain was to develop a motor driver that can control the robot and work with 

a PID controller to have precise and fast movement that works well under load and is responsive 

to step inputs. The dribbler builds on top of the drivetrain as much of the circuitry is reused. The 

main difference in circuitry between the drivetrain and dribbler module is that we do not need a 

closed feedback loop to control the ball well. However, there is still some outside math that 

needs to be done for the robot to maintain possession of the golf ball while driving. 

The kicker is the final portion of the system of the robot. Its system requirements are first, fine-

tuned control over operating a solenoid at the speeds required that needed by the software to 

move the golf ball. It also requires being monitorable during operation. To perform such a task, 

we need to be able to have control over the amount the capacitors are charged and the rate at 

which they can discharge at the voltage and current requirements needed. This must occur 

without causing too much thermal interruption to the other components that exist within the 

kicking system (both electrical and mechanical), and outside of the kicking system. 
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3.1.3 SYSTEM OVERVIEW OF SOFTWARE ARCHITECTURE 

 

FIGURE 3.2 SOFTWARE ARCHITECTURE OVERVIEW 

As seen in Figure 3.2 above, we designed an architecture that takes SSL Vision and the Game 

Information as inputs. SSL Vision is fed into our vision module, which outputs positions, 

velocities, and orientations of both teams as well as the ball. Our strategy module handles the 

evaluation of the game state, selecting a play from our playbook, and assigning roles and tactics. 

Our control module turns this information into velocities and angles to send to the robots through 

our communications system. 

To design our code structure, we split up the work into two main modules: navigation and 

strategy. Navigation had to do with moving a robot to a point, and motion planning given two 

points and a set of obstacles. The strategy module aims to tackle decision making in gameplay, 

such as which robot should be assigned which position, analyzing the field, calculating 

probabilities, and selecting plays. Our overall UML diagram is shown in Figure 3.3 below. 
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FIGURE 3.3 THE UML DIAGRAM OF ALL CLASSES IMPLEMENTED IN OUR FINAL DESIGN. 

3.2 CONCEPTUAL DESIGNS AND PROTOTYPING/MODELING FEASIBILITY 
The following sections outline the sub-teams’ conceptual designs. We begin with a progression 

of our mechanical CAD designs as well as the modeled feasibility of the design. 

3.2.1 CAD V1.0 
To start off we used our initial design for the CAD as shown in the figure below. This design was 

created from all of the efforts of our research in A term and was the proposed product we 

planned to produce. From the figure you can see the top and bottom plate which were planned to 

be manufactures using a mill to cut from solid aluminum stock but also four aluminum L 

brackets which were to be secured to the top plate of the robot and would hang down. These L 

brackets were to be cut from aluminum blocks using a mill just like the top and bottom plates. 

Along with these we had also discussed the kicking mechanisms which included a main kicker 

base and within it was the dribbler, kicker, and chipper. These can be seen at the front of the 

design and were to be manufactured in Washburn as well and cut from aluminum stock or 3D 

printed. 
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FIGURE 3.1 SOLIDWORKS CAD MODEL ONE 

3.2.2 CAD V2.0 
After multiple weeks in phase two the team realized that the design, we made needed to be 

tweaked so that manufacturability could be easier and plausible for the team. Looking below at 

Figure 25 you can see the changes between this new updated CAD and our previous version. To 

start off the base change that can be seen is the obvious color changes on the model itself. We 

color coded the different parts of the robot so that they could easily be differentiated. To start the 

green box on the top of the robot is a “black box” of the PCB meaning it is just a place holder for 

the actual PCB that had yet to be designed at this point in time. Under the top plate you can see 

four bronze cylinders which are the motors which connect to the obvious omnidirectional wheels 

present. Along with those the last color change is with the kicker mechanism. The dribbler is 

yellow while the kicker is red so that you can easily see the distinction between the two.  

The real design change here that is to be pointed out is the wheel mounts. As seen in the figure 

below, the hanging L-bracket wheel mounts that were fastened to the top plate have been 

changed to smaller L-brackets which are now fastened to the base plate rather than the top. These 

brackets were changed from four-inch-tall brackets to two-inch-tall brackets because 

manufacturability became a large roadblock here. With the previous design we either had to 

manufacture the brackets or buy them and then drill the holes into them. After looking online, 

they did not sell four-inch tall L-brackets which left us with the need to manufacture them. After 

talking with Washburn supervisors, we decided that manufacturing these parts would entail 

purchasing very expensive aluminum stock blocks along with an arduous milling process. With 

this knowledge we decided to change them to smaller brackets that would be fastened onto the 

baseplate and ones that could be purchased online. 
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FIGURE 3.4 SOLIDWORKS CAD MODEL TWO 

3.2.3 CAD V3.0 
The third CAD iteration which is shown in the figures below, has the most changes made from 

the previous two iterations. These changes can be broken down into multiple different parts with 

the first being the top and base plates of the robot. The entire shape of the baseplate has been 

changed. The major change from the original design to the current design is the chape in which 

the design now holds. Before the changes the baseplate was very sharp and jagged around the 

edges and stock was only taken off where clearance needed to be for the robot. This left the base 

plate to be thicker than needed and weigh much more than it needed to. In this third CAD 

iteration the baseplate was changed to a much smoother and streamlined shape. This was for two 

different reasons with the first being all of the sharp edges smoothed out so that the mill could 

cut the plate much easier. The second being to save space and cut off access stock so that the 

baseplate would be lighter. Another change to the baseplate is a fifth hold was added to that extra 

support could be added to the design to make it much more rigid and durable.  

The next change in this CAD iteration is the top plate of the robot. The reasons for the top plate’s 

changes are much simpler than the change for the base plate. The top plate now has holes cut 

into it in the middle of the plate, the reason for this was we wanted to cut down the overall 

weight of the top plate along with allow more air flow to come through the plate and cool down 

the PCB and batteries. Heat management measures were also implemented in the form of heat 

sinks mounted on the baseplate near high thermal components like the two solenoids.  

The standoffs used to mount the baseplates on are two inches shorter than in previous iterations. 

This was made possible by redesigning the ball control module that aligned the solenoids side-

by-side rather than on top of one another. Combined with the cutouts on the top plate, this 

greatly reduced the overall weight and lowered the center of gravity of the design, leading to a 

faster and more agile robot. 
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FIGURE 3.5 SOLIDWORKS CAD MODEL THREE ISO VIEW 

Below you can see a top-down view of the CAD in the figure below. This top-down view truly 

shows the shape of the bottom plate along with the locations of all the inner working parts. You 

can see at the top of the figure is the kicking mechanism and you can also see that at the center of 

the robot are the kicking mechanism solenoids which will sit in the robot side by side to each 

other. 

 

FIGURE 3.6 SOLIDWORKS CAD MODEL THREE TOP VIEW 

While in the above figure you are able to get a look at where the solenoids sit in the robot, you 

are unable to see how they are mounted. In the figure below, you can see a close up look at the 

solenoid holder. This piece has been especially designed so that the solenoids can be placed 

directly in them and held perfectly in place on the baseplate of the robot. 



 

 
44 

 

 

FIGURE 3.7 SOLIDWORKS CAD MODEL THREE SOLENOID HOLDER 

The kicker mechanism which is in the front of the robot was redesigned from the original design 

to better fit the space constraints and manufacturability along with how it will perform. The first 

part of this mechanism is the dribbler which is shown below in the figure below and is colored 

yellow in the CAD design. This dribbler was specially designed with the hourglass shape so that 

the ball we be held directly in the middle of it and be centered perfectly for the kicker and 

chipper. 

 

FIGURE 3.8 DRIBBLER MODEL 

The next mechanism is the custom kicker in the figure below which is colored and orange-red. 

This kicker is different from the original flat plate because it is now curved so that the ball can 

find itself placed directly in the middle of the surface. When placed directly in the middle of the 

kickers surface we can optimize the accuracy of the kicker and in the program for more accurate 

results in testing and competition. 



 

 
45 

 

 

FIGURE 3.9 KICKER MODEL 

The final mechanism of the kicker module is the chipper which is shown in the figure below and 

is colored green in the CAD. This design is the most dramatically different from the original. We 

changed the motion of the chipper from a swinging motion to a now horizontal translation. Using 

a push type solenoid, the chipper will be pushed forwards and the angled plate on the bottom that 

will strike the ball will hit the ball at an angle and send it flying into the air rather than on the 

ground. This was the decision because of its ease creation in terms of solenoids and connection 

pieces. 

 

FIGURE 3.10 CHIPPER MODEL 

3.2.4 CAD V3.1 
The updates to the CAD in this iteration mostly came in the form of ball control module 

improvements. These modifications to the design predominantly came from structural integrity 

issues (documented in section 3.2.5 Collision Analysis) in the motor and solenoid mount 

superstructure stemming from material and spatial constraints. The dribbler assembly mounting 

structure was particularly flimsy and would frequently deform plastically along the intersection 

between it and the solenoid housing structure, resulting in excess friction caused by the dribbler 

bar rubbing against the opposing mounting hole. The drive motor adjacent to the ball control 

assembly would also rub against one of the solenoids due to poor tolerancing of mounting holes 

in the baseplate.  
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With the updated superstructure came slight modifications to the dribbler, kicker, and chipper 

ball control components, which were also simplified for ease of manufacturing purposes. The 

dribbler is smaller in diameter in this iteration to account for the new placement of the dribbler 

motor gear design, and now features a knob at one end to prevent it from sliding out of the mount 

during operation. The kicker is also thinner to make room for the new dribbler assembly and has 

integrated mounting screw holes. The chipper is significantly less complex in geometry, with a 

less rounded, sweeping design in favor of a simpler to manufacture block configuration. The 

stem of the chipper that attaches to the solenoid shaft was extended to make the shipping face as 

close to the ground as possible to create better angled contact with the ball and was similarly 

fitted with set screw holes. 

 

FIGURE 3.11 UPDATED BALL CONTROL MOUNT 

 

FIGURE 3.12 SIMPLIFIED CHIPPER 
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FIGURE 3.13 SIMPLIFIED KICKER 

 

FIGURE 3.14 SIMPLIFIED DRIBBLER 

Furthermore, the team experimented with alternative rapid prototyping methods and different 

materials for these components, particularly the new mounting superstructure. Early prototypes 

were printed in the Innovation Studio’s 3D Printing Lab in PLA. Later iterations of the design 

were printed using the Higgins Rapid Prototyping Lab in rigid resin materials. This proved to 

significantly increase the strength of the structure and resulted in better fitment of components 

such as the dribbler motor and solenoids due to the higher precision tolerance capabilities of the 

more advanced printers.  

 

FIGURE 3.15 RIGID RESIN BALL CONTROL MOUNT 



 

 
48 

 

The dribbler bar was determined to be acceptable when printed using consumer grade 3D 

printers in PLA plastic. Further improvements of the dribbler can be made in the form of a 

rubber sheath or added ribbing based on future testing. The kicker was intended to be machined 

in aluminum, however, due to personnel complications, it was determined that an acceptable 

stop-gap solution would be to print it out of PLA as well and attach a small plate to the kicking 

surface to avoid chipping. These improvements will develop as testing dictates and permits. 

Finally, the chipper was determined to require the strength of a metal material, and thus needed 

to be machined. This fabrication was outsourced to PCBWay and the part was received at the 

end of C-Term.  

 

FIGURE 3.16 NEW KICKER 

 

 

FIGURE 3.17 NEW DRIBBLER 

 

FIGURE 3.18 NEW CHIPPER 
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3.2.5 COLLISION ANALYSIS 
Collision load analysis was conducted in this version of the robot on newly developed and 

previously unanalyzed components such as the ball control mount for verification purposes to 

demonstrate that the robot would not fail structurally in the event of a collision with a robot of 

40kg (medium sized league upper limit) at increasing speeds up to a maximum of 15 m/s. In 

these simulations, the structure is fixed in all six degrees of freedom at its base where it would be 

mounted to the baseplate and simulated impacts are applied normal to the side face of the mount 

at its exposed corner and normal to the front face of the mount to simulate a direct frontal and 

side impact. This analysis was conducted to observe the structure’s potential behavior under a 

worst-case impact condition in which a competitor collides with the robot at a theoretical weak 

point. The result of a minimum factor of safety of 1.4 and 1.9 for the resin material indicates that 

this redesigned component is acceptably prepared for such an unrealistic loading scenario.  

 

FIGURE 3.19 SIDE COLLISION SIMULATION - FACTOR OF SAFETY 
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FIGURE 3.20 FRONTAL COLLISION SIMULATION - FACTOR OF SAFETY 

3.2.6 ECE CONCEPTUAL DESIGN 
Our conceptual design involved taking each module pictured in the system architecture in figure 

3.1 and then using the development board to prototype the circuits we needed to prototype each 

module or sub-module. We implemented the system architecture into its pieces by first bread-

boarding them, where we would also start with the initial design of drivers. From there, we 

worked on the schematic design and the PCB layout design. 

3.2.6.1 DEVELOPMENT BOARD 

To validate circuits and components that would later be embedded in the custom PCBs, the team 

would need a development board. The development board needed to be equipped with a plethora 

of IO, the peripherals that would be used on the processor board, and an identical processor to 

the ones that would be placed in the processor board, as there would be no need to change 

firmware. Due to supply issues, we couldn’t always obtain the exact variant of a chip and had to 

settle for variants that were almost identical, which was reflected in the firmware.  

The board we settled on working with was the SAMV71 Xplained Ultra Evaluation Board. It 

features the 32-bit ARM Cortex-M7 Processor, an on-board embedded debugger, and the 

additional peripherals to extend the board’s features. The Xplained Ultra evaluation board is 

compatible with Microchip Studio’s Atmel Start API, which makes creating drivers much 

simpler. Atmel Start allows the user to select the board, processor, desired driver/middleware 

type, and configuration related criteria, and gives a baseline for the requested driver code. 
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FIGURE 3.21 SAMV71 XPLAINED ULTRA EVALUATION BOARD 

 

FIGURE 3.22 MOTOR CONTROLLER PROTOTYPE CIRCUIT 

3.2.7 ECE HARDWARE FUNCTIONALITY 
The following sections describe calculations and designs made to create circuity necessary for 

robot functionality. 
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3.2.7.1 SOLENOIDS 

 

FIGURE 3.23 FORCE VS STROKE DISTANCE OF SOLENOID 

Figure 3.23 shows the force curves of each of the constraints are based on the pulse. Calculations 

are based off the curve for the 3500 ampere turns, and as this is run at 20.0 volts, which gives an 

estimated current draw of 1.6 Amps after scaling. With a force of 20.85 newtons launching the 

golf ball at approximately 0.45 meters per second, the time of contact was calculated to be 

0.0010865 seconds, which is equivalent to 1/936 seconds. Then, with the 20 newtons, a 

predictable model can be derived to give forces for all possible amperages. These can be 

characterized by the following equations seen in solenoid section of the appendix. 

3.2.7.2 PROCESSOR BOARD 

The Processor Board was designed by Noah Page. It handles all functionality of all board s in the 

PCB stack. Please refer to Noah’s published report for an in-depth analysis. We tested and 

verified its design in the term following his departure from the team. 

3.2.7.3 POWER BOARD 

The power board contains all voltage supplies and OBO to get the power requirements needed as 

it streams off 22.2 volts to the motors, 12 volts to the kicking board, 5 volts to all ICs that require 

it and 3.3 volts to the processors. Next there are fuses on board to limit the amount of current 

drawn by systems which allows 30 amps to the motors and 10 amps to the kicker board. This 

limits overcurrent draw and offers overcurrent protection on the system such as the wheels and 

the capacitor charger, like in cases when it possibly short circuits or malfunctions. This protects 

against overcurrent draw and damaging the ICs in the process. 
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FIGURE 3.24 ALTIUM GENERATED PNG OF POWER BOARD 

3.2.7.4 KICKER BOARD 

The charging circuitry pictured in Figure 3.25 is used to run the LT3750, a chip specked out due 

to functional requirements. In the current configuration there are a few equations that justify the 

alternative behavior which comes with the RV out and RCM resistors. The current sensing 

resistors between the RV out and RCM resistors source and the leave of the transistors are 0.08 

ohms. This alters the minimum current, whereas the 60.4K ohms in the RV out alters the total 

voltage out of the chip to 250V. The 40K32 changes the minimum pulse duration. From that, the 

efficiency is derived based on the capacitor sizes. The math for the equations characterizing this 

directly can be found in the appendix. This configuration runs off 7 amps and a maximum 

current charge time of 9 seconds to reach 250 volts. The transformer allows for a maximum of 10 

amps to be pulsed through it, which is not reached. The S3J directs the current towards the 

capacitors allowing the configuration in the solenoid below in figure Zeta. The capacitor 

charging chip charges by setting kick charge high. On the processor it requires about 0.8 volts to 

be turned on, so using the normal 3.3 Volt DIO of the SamS70 chip works. The chip can be 

directly driven as its impedance is isolated from the rest of the chip and power amplification. 



 

 
54 

 

 

FIGURE 3.25 ALTIUM SCHEMATIC OF SOLENOID RELEASE CIRCUITRY 

In the capacitor charger, the most interesting part is the IGBTs. The IGBT is essentially a cross 

between a power BJT and a power MOSFET that has the responsiveness of a BJT, but also has 

the drive properties of a MOSFET, essentially allowing to control the amperage across by 

changing the voltage. It has the switching speed of the BJT which is better than what would 

normally be considered of a power MOSFET of equal ratings. One of the drawbacks of these 

chips is that it's recommended to use an IGBT driver as it has special properties such as if the 

voltage is ever within range there's a dead zone that's quite large. Driving this with essentially 

anything under 5 volts would draw half an amp of current at most and so it is recommended to 

use a PWM signal to drive the transistor. This can be done by routing the PWM signal into a 

IGBT driver that raises the voltage to 12 volts allowing us to ignore the low voltage behavior of 

the IGBT.  Then after analyzing the data sheet and through some testing we came to find out that 

due to the unique properties of the IGBT we needed an antiparallel diode. 
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FIGURE 3.26 VOLTAGE DIVIDER FOR CURRENT MEASUREMENT 

After reading the data sheet and computing values, which can be found in the appendix, and 

selecting a few options, the best performance was achieved with the SMBJ13CA diode.  Not 

having the diode led to inconsistent behaviors and the damaging of a transistor.  The diode needs 

to be tied to the emitter and gate to have any influence and generate the proper behavior from the 

IGBT. To choose the PWM period it is recommended to look at the image above for all possible 

characterizations of the transistor, as well as the time to discharge the capacitor. The solenoid has 

a resistance of 4 ohms meaning that it allows up to 62.5 amps to be driven through it. This 

empties the capacitor in .016 seconds. Combining that with the response rate of the 

FAN3229TMX IGBT driver, a period of 10KHz was decided upon. For reference, in a closed 

circuit the transistor has a turn on delay of 32 ns and turn off delay of 363 ns. As this turn on 

delay is 0.3 percent of the period and the turn off delay 363ns, these are not negligible amounts 

but modellable in the firmware. The diode is in the place of an isolator to allow for any charge on 

the solenoid activation that ends up being stored in it to be emptied safely, as an inductors charge 

tend to be stored. This prevents drawbacks to the system and acts as a safety barrier. Please find 

the relevant calculation for the kicker circuit in the Appendix. 

Figures 3.26 and 3.27 describe the voltage divider in op-amp RC filter used to monitor the 

current on the kicker board as this provides an inference for the current voltage rating and the 
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amount of charge after a kick has been fired. This is hooked up to an ADC on the processor 

board. This brings the 250-volt range down to 3.3 volts, where 3.3 represents a maximum of 251 

volts. Then, we use an RC filter to smooth out the signal. This reduces the noise coming from the 

capacitors, meaning when the solenoid fires it slowly decreases to not get an immediate jump. 

Another portion is used to prevent the large amount of noise that happens when firing. 

 

FIGURE 3.27 OP-AMP WITH RC FILTER FOR MEASURING CHARGE OF KICKER BOARD 

 

FIGURE 3.28 ALTIUM GENERATED PNG OF KICKER BOARD 

3.3 FIRMWARE AND DRIVERS 
An integral portion of the overall project was developing the firmware drivers to abstract 

communication with the hardware from the Computer Science sub-team such that their focus 
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could shift to tactics and gameplay. These drivers were started in Atmel Studio and fleshed out in 

Microchip Studio’s IDE. The drivers cover a variety of low-level functions and are managed by a 

main firmware loop that processes commands sent from the master device.  

The two largest challenges faced in this stage of development were scarcity of documentation of 

such software and writing on-board navigation for the robots. Often, the best solution to 

problems with no reference information was to sift through thousands of lines of auto-generated 

driver example code, or to scour decade-old forums. For implementing navigation, PID control 

has been transplanted to a lower level in terms of code structure in order to solve this problem 

because the master device is incapable of sending such a high volume of datagrams at a high 

frequency to 6 total robots. 

3.3.1 MAIN LOOP 
The Main Loop of the firmware delegates which necessary tasks must be performed depending 

on the commands from the master device. After initializing all relevant hardware in the first loop 

iteration, the main loop polls for a Noah’s Packet Protocol datagram. If a datagram is available, 

the firmware parses it and sets certain flags and stores data as received by the datagram to be 

dealt with using the driver code. The main loop then determines if it is time to perform new PID 

calculations for the motor controllers depending on a flag set by a 10 millisecond timer. These 

calculations are government by the velocity outputs of the navigation code. The main loop then 

then performs all other relevant tasks given by the NPP, such as charging kicking solenoids, 

reading power cell voltages, and so on. 

3.3.2 MOTOR CONTROLLER 
The motor controller driver was written using a PID controller to maintain all four motors 

simultaneously to obtain the desired velocities of each. The motor controller receives target 

velocities to produce the segmented path calculated by the RRT algorithm (rapidly exploring 

random trees). The controller operates at 100 Hz and utilizes both proportional and integral terms 

to obtain a velocity between positive and negative 10 meters per second.  

Every 10 milliseconds, the controller calculates the differences in target and current speeds using 

the encoder driver, then updates the effort signals accordingly. Since the robot uses electronic 

speed controllers (ESC) that consume pulse-position modulation input rather than pulse-width 

modulation input, the motor controllers use the length of a PWM signal rather than its duty cycle. 

Furthermore, the ESCs do not center the bi-directional motor efforts at a logical 50% duty cycle 

of the PWM signal. Therefore, the error in speed needed to be mapped to the error in PWM 

signal, centered at an experimentally determined 0% motor effort value. This linear mapping of 

speed to PWM is treated as the proportional term of the PID control. It was determined 

experimentally by finding the PWM dead-band zone of the motor, the PWM zero value, and the 

PWM signals that produced the closest values to +/- 10 meters per second. Tabulated below are 

these PWM values and their corresponding velocities.  

TABLE 3.1 VELOCITY TO PWM MAPPING 

 Measurement ID 
 PWM 

Minimum 
Dead-band 
Minimum 

Zero Dead-Band 
Maximum 

PWM 
Maximum 
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PWM Value 4635 4854 4908 4962 4962 

Velocity 
(m/s) 

-10 0 0 0 10 

Using the PWM values in the table above, the dead-band correction is +/- 54 (depending on the 

direction of motion), the zero value is 4908, and the slope to linearly map these quantities is 

calculated to be 27.25. In algebraic terms, (PWM Error) = (Zero Value) ± (Dead-band) ± 

KP*(Velocity Error). In numerical terms, this correction is (PWM Error) = 4908 ± 54 ± 

27.25*(Velocity Error). 

The integral term is calculated as the total sum of velocity error before it is mapped to PWM 

error, with a KI value of 1.0. 

3.3.3 ENCODERS 
The encoder driver is responsible for maintaining the encoder count for every motor on the 

agent. The encoders have quadrature outputs, which are referred to as A and B output signals. 

Signal A leads signal B with a 90-degree phase difference. A change in these signals trigger 

interrupts which either incremented or decremented the encoder counts, depending on the current 

and previous values of A and B. In the below table, each state value, written in blue text, is 

comprised of two bits. The leftmost bit refers to the signal from channel A, and the rightmost bit 

refers to the signal from channel B. 

TABLE 3.2 QUADRATURE ENCODER LOGIC TABLE  

 New State 

Old 

State 

  00 01 10 11 

00 0 -1 +1 X 

01 +1 0 X -1 

10 -1 X 0 +1 

11 X +1 -1 0 

At interrupt time, the program compares these two states and determines how to handle the 

count:  

• 0 – no rotation, do not change count. 

• +1 – counterclockwise rotation, increment by 1. 

• -1 – clockwise rotation, decrement by 1. 

• X – not a possible signal transition, handle error accordingly. 

Since the processor was having difficulties with higher encoder resolutions, the encoders are 

configured to 256 PPR (pulses per resolution), or 1.4 degrees of the shaft per pulse. The 

maximum resolution for the purchased encoders is 2048, or 0.176 degrees of the shaft per pulse. 

Assuming a maximum speed of 10m/s and an encoder resolution of 256, the number of interrupts 
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per second is: (10m/s) * (rev/π*0.004 m) * (256 pulses/rev) * 4 motors =  814,873 pulses/s = 

814,873 Hz. 

3.3.4 PWM 
This driver is responsible for five PWM signals utilized on the ATSAMS70N20 processor. Four 

of these signals are dedicated to operating the four drive motors on the robot. The fifth signal 

handles the speed of the dribbler motor. All signals provided by the PWM feature of the 

processor are sent to electronic speed controllers (ESCs) in order to use the three phase motors. 

The hardware dividers on all channels were set to 128 and the PWM signals were set to a period 

of 5856 pulses. This resulted in a desired PWM frequency of 200 Hz on all channels. To control 

the duty cycle of each signal, the number of pulses in a period would be adjusted. The equation 

for duty cycle is given as: Duty Cycle = Pulses/5856. 

3.3.5 BATTERY MANAGEMENT 
The battery management driver was written to work with the BQ76925 analog front end. The 

BQ76925 is, in essence, a multiplexer used to read the voltage, current, and temperature for 3 to 

6 series lithium-ion cells. For the project’s purposes, it was only used to read the voltage of all 6 

cells in the power system. The Battery Management driver utilizes the firmware’s I2C instance 

to communicate with the BQ76925, which returns an ADC reading representing the cell’s 

voltage. The voltage is then calculated and then evaluated.  

The slave device address of the BQ76925 and the device register address are combined to reduce 

communications overhead. Therefore, each register in the BQ76925 is treated as if it were its 

own 7-bit slave address (implying it were its own device), rather than a register on a device. The 

“device” address conforms to the below configuration: 

TABLE 3.3 BIT-SPECIFICATIONS FOR THE SLAVE ADDRESSES OF THE BQ76925 

B6  B5  B4  B3  B2  B1  B0  

0  1  Register Address  

Bits 5 and 6, by the manufacturer’s convention, are always 1 and 0, respectively. The remaining 

bits [4:0] are the 5-bit slave address, specified by the datasheet, show below. 

TABLE 3.4 BQ76825 REGISTER MAP 
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As an example, to reference the CELL_CTL device, which controls the cell that is output, bits 6 

and 5 would default to 0 and 1, as mentioned above. Then, referring to the register map, 0x01 is 

the address for CELL_CTL. Therefore, the remaining bits [4:0] would be filled with this value. 

 

 

TABLE 3.5 EXAMPLE ADDRESS REFERENCE TO CELL_CTL ON THE BQ76925 

B6  B5  B4  B3  B2  B1  B0  

0  1  0  0  0  0  1  

Please refer to the BQ76925 Driver Manual for more information on the functions and their 

descriptions for this driver. 

3.3.6 ADC 
The ADC driver utilizes three of ten analog-to-digital conversion (ADC) channels to read 

voltages on the kicker and power board. Two of the channels read the battery voltage and battery 

current on the power board to determine how much charge is left before the robot is inoperable. 

This information can be used in a game to decide to put the robot in a less taxing position if the 

battery is sufficiently low. The other channel utilized reads the voltage on the capacitors on the 

kicking board. The data provided here is used to decide whether or not the capacitors are 

sufficiently charged to operate the solenoids and kick or chip the golf ball at a desired velocity. 

3.3.7 TIMERS 
Two timers are implemented in the firmware with the purpose of triggering events in the main 

loop. Both timers operate in the same fashion, with only their period and which events they 

activate being the distinction between the two. After a timer finishes counting, it sets its flag 

high. The flag is then read in the main loop to determine its status. Once learning that the flag is 

high, it enters its designated section of the main loop. After completing this section, the flag is 

set low, and the main loop will not enter into this part again until the timer causes the flag to go 
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high. The first timer is set at a period of 10 ms and sets the flag for the PID controller. The 

second timer is set at a period of 100 ms and sets the flag for reading the ADCs. 

3.3.8 KICKER 
The kicker driver is developed to run the kicker board enabling of the boost converter, reading 

the current charge levels of the capacitors as the capacitor has a manual shut-off. That is 

achieved at max charge but since we need a higher level of control of the release of the 

solenoids. Then we have the IGBT driver which contains 2 methods to operate the solenoids. 

They run off a PWM low pulse so that means that it is configured in the migrant trip studio 

software and then if you were to run a normal PWM signal in that case so it doesn't your same 

reverted PWM signal and then whenever the signal goes low or is essentially on the kicker 

drained at a specific speed relative to the IGBT because we're using a 12 Volt driver the speed is 

relatively consistent throughout and we can't really change that using the voltage changes that are 

attributed to the characteristics of an IGBT So what we do instead is we pulse it and to post it 

because of the very quick discharge time on the PWM signal we have a very yeah essentially you 

have a 1/10th ms . And this allows us to control over shot power without degradation of current 

across. AS described before in conceptual design we there is delay for tun and turn off this can 

affect the power output by as much as 3.6% of the total period and with a simple offset this 

allows for us to accurately compensate for turn on and turn off delay as well as fall time and rise 

time.  There were very consistent values in our testing even when there were changes in 

temperatures and voltages. The values were also consistent with the datasheet, with only a few 

nanoseconds off the datasheet values. The method to enable the chip is called ‘charge enable’ 

and that essentially enables a chip’s input. The chip, when given high voltages, disables the 

temperature and safety circuitry for charging allowing for overvoltages, and temperatures to 

exceed safe limits. As such we enable this on the chip.  Then there is a method that we run to 

check the capacitor voltage levels called ‘checkChargeLevels’. A method that runs the operate 

Charging circuitry that has a few parameters and robot state checks. The last one we have is the 

IGBT state driver that operates each of them has a PWM that can be used to change the force 

requirement. 

3.3.9 BNO085 
The BNO085 IMU driver and nRF24 wireless module driver were written by ECE student Noah 

Page, who graduated midway through the project. These drivers are discussed at length in his 

published MQP paper. 

The BNO085 reads and transforms IMU data into the current heading of the robot in the soccer 

field frame, then outputs this in a global buffer. Since the heading is in the global buffer, it can 

be read at any time (which would be handled in a polling manner at the relative beginning of the 

main loop) and therefore does not interrupt the current procedure.  

The IMU has not been integrated into the main control of the robot yet, because the team was 

short on time and resources. Fortunately, SSL vision, the shared vision system of the Small 

Soccer League provides enough data to determine the heading of the robot with more accuracy 

than an IMU could. SSL receives a still image of the entire field, runs a processing algorithm, 

and returns a plethora of information of the game state, chiefly the positions and headings of 

each robot. The main caveat to the team not implementing the IMU for complementary control is 
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that the update frequency of the vision system is only 60 Hz, the typical shutter rate of a camera. 

This low frequency heading update means the robot, in between frames, must rely on its own 

kinematics without the complementary checking of the IMU. Future teams will implement this in 

the form of Kalman filters. The first case will occur when the robot receives a new heading 

update with SSL outputs, the kinematics, and the IMU as its inputs. The second and more 

frequent case will occur in between frames, with kinematics and IMU as the only inputs. 

3.3.10 NRF24 
The nRF24 module is used to communicate from the master to each agent individually at 2.4 

GHz. It was first written and tested for the Arduino Uno, and subsequently moved to be handled 

by the SAMV71. Eventually, the SAMV71 and SAMS70N20 were used to validate the sending 

and receiving capabilities of the wireless module in separate embedded systems. The datagram 

received by the agent is discussed in the following section. At the RoboCup, teams frequently 

report communications errors during competitions and must therefore be able to support multiple 

wavelengths, should they be asked by officials to change. The communication driver has not 

been tested in a high-noise setting, which will be vital to the success at the RoboCup. 

3.3.11 NPP 
NPP, or Noah’s Packet Protocol, is the byte-specification of the datagram transmitted to the 

agent and handled by the firmware. It has undergone several revisions, some occurring after 

Noah left the team. It was initially designed with a heavy emphasis on the IMU’s data; however, 

this quickly took a back seat to transmissions involving simpler navigation methods. The current 

iteration of NPP consists of thirteen used bytes, and is listed in Appendix X. 

Byte 0 contains a four-bit number of the robot ID the message is meant to be sent to. All robots 

will be receiving the same message, but the data in the message will only be processed if the 

target robot ID in byte 0 matches the robot ID on a robot set by the dip switch array. If the target 

robot ID does not match the robot ID, the message is ignored. 

Byte 1 through Byte 10Each drivetrain motor data and the dribbler motor data contain two bytes 

due to what the robot is receiving. The information being sent is a floating-point value of each 

motor’s rotational velocity measured in rad/s. The router converts this floating-point value into 

two bytes by multiplying the desired rotational velocity by 100 to make it an integer. This integer 

is then masked to separate it into two bytes, with the masking for bits 15:8 being shifted right 

eight bits. Once the robot receives this data, it converts the two bytes into a floating point by 

reversing the process in which it was originally converted. This conversion technique permits a 

range of -327.68 to 327.67 rad/s for the floating-point value. This range is adequate as the max 

rotational speed at which the motors would be operating is less than 300 rad/s. After 

extrapolating the rotational velocities, each motor is set to its respective velocity. 

For the kicker and chipper, a byte is designated for each. Each byte controls how hard the 

solenoids should kick or chip the ball, or if they should not be turned on at all. If a byte of 0 is 

sent, then the solenoids would not actuate. If a byte of 255 is sent, then the solenoids would 

actuate to the full potential of the kicker board. 
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3.3.12 OTHER PERIPHERALS 
Two other peripherals exist on the main board which the firmware interacts with: the dipswitch 

array, and the LEDs. The dipswitch array has each of its eight switches traced to GPIO pins on 

the processor. The processor reads the state of these eight switches and makes an eight-bit binary 

number with this information. The first switch is the least significant bit in this number, while the 

eighth switch is the most significant bit. This eight-bit number is then utilized by other pieces of 

the firmware. As mentioned previously in NPP, the first four bits are used to set the robot ID. 

This is accomplished by masking the eight-bit number with the hexadecimal value 0F. The latter 

four bits are for testing purposes, mainly setting PWM values using a switch statement. 

Extracting the latter four bits is done by masking the eight-bit number with the hexadecimal 

decimal value F0 and then shifting the number right by four bits. 

The four LEDs available on the processor board are each controlled by four GPIO pins on the 

processor. When one of the pins is set to a high state, its respective LED turns on. When set to a 

low state, the LED turns off. These LEDs act as debugging tools for testing other modules within 

the firmware. 
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3.3.13 ROUTER 
The router is based on the development board purchased after most of the components developed 

were moved to the prototype processor board. This will take some of the processing away from 

the AI and move it on to a processor that is not very strong but can still run in real time. The only 

drivers that carry over from the main board to the router code are the NRF driver. Beyond this, a 

separate driver is used to run the USB that is made by Microchip Studio. This process is carried 

out by essentially taking the root positions output by the AI and then running a loop that checks 

whether it needs to be given the next position, whether it has arrived at its destination, and what 

it is supposed to do. This is read from the microchip USB protocol. To connect the router to the 

AI center, the target USB port needs to be plugged into the USB computer, and then we find a 

need to inform Lib Serial of its properties so it can communicate over USB. On the harbor side, 

there are definitely a few limitations, as the current build rate is 38400, which allows us to send 

4800 bytes per second. Currently, we use a static message length of 256, which only allows us to 

send 18 messages per second. This is very limited, and could definitely use room for changes to 

open up this bandwidth. This can be resolved as the current router prototype is a rather quick 

construction of itself to interface a robot with the main AI.As of this time, the USB protocol only 

has three different types of messages being sent to the router and one being sent to the AI. The 

messages are an RT path update, a current update. The right path update is updating where the 

robots are supposed to go for the play to be evaluated, and then within those two messages, 

there's a breakup between a breaking message and a continuation message. The breaking 

message means that a new art path is being sent as the conditions of the game have changed. Pi is 

evaluating something else, and it has realized that we cannot keep doing the same thing, so it 

feeds the robot a new path, which empties the queue that currently exists on the router. The 

second root path update message is a continuation, and it's built as the non-breaking message 

besides the bit orientation in the first flight. All this does is add more paths to the existing you for 

rrt*. The next type of message is a current robot update, which contains all data currently 

relevant to the robot that the AI wants to do with it, such as the observation of position, 

orientation, LED states, and whether it is currently kicking or chipping. Then the last message is 

a status update of all the robots on the field, and it contains mostly battery cell voltages and 

current statuses of the robots, as feeding that back to the game would be very important later in 

development and a good feature to have. When a display platform for status information on the 

robot is eventually built, this will provide insight on game states when debugging and practicing. 

3.3.13.1 USB MESSAGES 
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The USB protocol only has three different types of messages being sent to the router and one 

sent to the AI. One message RRT path update, and one is a current update. The right path update 

is essentially updating where the robots are supposed to go for the play to be evaluated, and then 

within those two messages, there's a breakup between a breaking message and a continuation 

message. The breaking message means that a new RRT path is being sent, as the conditions of 

the game have changed. Pi is evaluating something else, and it has realized that we cannot keep 

doing the same thing, so it feeds the robot a new path, which empties the queue that currently 

exists on the router. The second root path update message is a continuation, and it's built as the 

non-breaking message besides the bit orientation in the first flight. This adds more paths to the 

existing for RRT*. The next type of message is a current robot update, which contains all data 

currently relevant to the robot that the AI wants to use, such as the observation of position, 

orientation, LED states, and whether it is currently kicking or chipping. Then the last message is 

a status update of all the robots on the field, and it contains mostly battery cell voltages and 

current statuses of the robots, as feeding that back to the game would be very important later in 

development and a good feature to have. The team, in the future, should build a display platform 

for status information on the robot. This is also very important to have, as it will provide insight 

on game states when debugging and practicing. 

3.3.13.2 WIRELESS MESSAGES 

For the router in the aforementioned configuration, we used a very similar packet protocol to the 

noise packet protocol that was developed when using and testing the router for NPP V1.2. It has 

a similar starting 12 bytes, but after that, we get into some debug features, which include the 

ability to change the activation states of all four LEDs from the router, so LED0 is byte 12 and 

LED3 is byte 16. The purpose of having control over the LEDs was to communicate data back to 

the ourselves, so we could display robot data. This allows us to be informed in real-time on robot 

states, as we do not have software that allows us to read into that; we can only otherwise look 

retrospectively at the logs to do that. This allows us to only update the code on the router while 

all the code is being transmitted to via the other wireless message, which is from the robot to the 

router. This message is very similar to the previous message except it carries battery voltages and 

current wheel speeds, so the first 12 bytes are built very similarly except instead of the desired 

wheel speed, we get the actual wheel speed of the chassis. The only other important states we 

currently communicate are battery voltage and current. We use the current charge of the battery 

as that can provide information to us when debugging and information to the AI itself if it needs 

to change roles. For example, if a robot is consuming too much current or it was not fully 

charged in practice, this will be communicated back, and the issue can be solved. It the power 

cells are too drained to be able to properly perform often, we can put the agent back on defense, 

where it will move less. 

3.3.13.3 PROCESSING 
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The router holds data structures within it, containing the RRT, game stats, time since last 

message and a few methods to exist in the RRT process. There are a few arrays that contain 

placeholder spaces to develop a RRT path and static space. This was developed for testing the 

robot within the last week of MQP so it's unfinished and not entirely fleshed out. The main 

processing loop one is done to remove the directing of robots and the continuous updating that is 

required to do so off the AI to the router as this is not a very intensive process but is very math 

heavy. For readability purposes, putting it on the router is better when it comes to the messaging 

protocol complexity. Then, after four-point interpretation to get robot velocities, that is what we 

send to the robot. We use the “moveTo” robot function that takes points in the original 

orientation to the next orientation indication, and from there, it derives velocities. This is very 

similar to the two methods in the code base for the AI systems, which takes positions and 

orientations and drives until we have velocities on the simulated robot. 

3.4 STRATEGY SOFTWARE MODULE 
Our strategy module is responsible for all logic relating to performing a complete play. This 

includes analyzing the GameState based on robot and ball positions, assigning roles, defining 

roles, and assigning plays. The following sections will go into detail about each of these aspects. 

3.4.1 PLAYBOOK STORAGE 
Storage of plays was another consideration when designing the system. Plays needed to be saved 

even when the system was not running. It was decided that CSVs would be the simplest way to 

store the different plays and lower-level structures.  Each line could represent an object, whether 

that is a Tactic, Role, or Play. From these CSVs they could be easily loaded into the code each 

time it is run without losing any data along the way. 

3.4.2 RUNNING PLAYS 
The task of running plays initiated some of the changes made to both Moves and Tactics. The 

new move functions made it possible for the development of the RunTactic() function. This 

function handles the initial task of assigning paths as well as monitoring when a skill should be 

completed according to the given threshold. This requires looping through the function so 

RunTactic(), and therefore RunPlay() which calls it for each robot, will be called constantly in 

our loop.   

Within RunPlay() several steps are taken to ensure each robot is attempting the appropriate task. 

First all the Tactics are pulled from the Playbook’s storage. Then the Role Assignment module 

determines which role should be associated with which robot. Next RunTactic() is called for 

each of the individual robots to make them move towards their assigned destinations. 

3.4.3 ROLE ASSIGNMENT 
As part of our Play class, role assignment is responsible for assigning six total roles, one of 

which is the goalie, for each play. The role of the robot determines which tactics and skills it will 

use, as well as where to go. The roles we outlined are as follows: 

• Goalie 

• Primary defense 

• Secondary defense 
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• Tertiary defense 

• Primary offense 

• Secondary offense 

• Tertiary offense 

• Formation controlled (offensive or defensive depending on situation) 

These roles are assigned based on the position of the robots relative to the ball, and the current 

gamestate. Table 3.6 below shows the decision process used to assign the roles, as well as the 

associated actions with each role. 

TABLE 3.6 DECISION PROCESS FOR ASSIGNING ROLES 

Assigning Offensive Roles 

Game state Role 
Robot-specific 
situation 

Action 

 
We have the ball 
OR ball is 
contested on 
opponent side 

 
Primary 
Offensive 

 
Robot has the 
ball (or is 
closest) 

If on our side:  
Pass ball to 
teammate 

If on opponent 
side: 

Pass or shoot 
depending on 
probabilities of 
success 

If contested: 
Approach ball to 
gain control over 
ball 

Secondary 
Offensive 

Robot is closest 
to primary 
offensive robot 

Get open for a pass, prioritizing 
forward movement toward goal 

Tertiary Offense 

Robot is second 
closest to 
primary 
offensive robot 

Get open for a pass, prioritizing 
forward movement toward goal 

Formation 
Controlled 
Defense 

Not an offensive 
player 

Stay towards midfield, one 
rightfield and one leftfield, 
prioritize on recovering balls that 
get out of play 

Assigning Defensive Roles 

Game state Roles 
Robot-specific 
Situation 

Action 

Opponent has 
ball or ball is 
contested on our 
side 

Primary Defense 
Closest to 
opponent with 
ball 

If opponent is 
moving toward 
our goal: 

Stay on middle 
side of them to 
push sideways 

If opponent is 
static:  

Get into position 
that blocks shot 
on goal 
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If contested: 
Approach ball to 
gain control over 
ball 

Secondary 
Defense 

Second closest 
to opponent with 
ball 

Block robot with highest probability 
of receiving passes/shooting on goal 

Tertiary Defense 
Third closest to 
opponent with 
ball 

Block next robot with highest 
probability of receiving 
passes/shooting on goal 

Formation 
Controlled 
Offense 

Not a defensive 
player 

Stay towards midfield, one 
rightfield and one leftfield, 
prioritize blocking back shots and 
recovering balls that get out of play 

In the beginning of the match, goalie is assigned to the robot closest to the goalzone. This 

remains the same robot throughout the entirety of gameplay. This is done to ensure no issues of 

awkward switches mid-play that may lead to an opening of the goal zone.  

To complete role assignment for the five field-playing robots, we first determine whether we are 

on defense or offense by using the game state analyzer to select which batch of roles to assign. 

We use defensive roles whenever we are in a state where the opposing team has possession of 

the ball. We use offensive roles whenever we are in a state where we have possession of the ball, 

the ball is considered “free,” or the ball is contested between teams. From there, the robot closest 

to the ball acts as the “primary” robot, and is responsible for immediate ball interaction, whether 

that is blocking the robot with the ball if on defense or passing/shooting if on offense. Secondary 

and tertiary roles are responsible for supporting the primary robot. On offense, this would be 

getting in front of the primary robot to get open to receive a pass. On defense, this would be 

going to opponents and blocking passes. These roles are chosen based on the second and third 

closest robots to the ball. Finally, the formation-controlled robots are chosen based on the two 

farthest robots. These robots are responsible for staying towards the midfield, and remaining 

open for a ball that may come loose from the active play area.  

All the roles, along with their associated IDs, are held in the Play class. Once a play is chosen, 

the tactics assigned to different roles are distributed to the appropriate robot. Since GameState is 

constantly reevaluated, so are plays and therefore roles. This ensures that roles will be reassigned 

according to the most current ball and robot locations. 

3.4.4 MOVES   
Moves are one of the most basic building blocks to the plays. They describe all positional and 

rotational changes that are to be made to a robot.  Initially we had designed the move objects to 

contain specific x and y coordinates for a robot to start at and move to. When it was time to 

implement this structure, the error in our logic became apparent: most of the time the specifics of 

the point to go to are not known before implementation and it frequently changes with each 

update or robot and/or ball movement. To accommodate this new realization, we adjusted the 

move class to reflect more general options for robot movement. Each move currently has a type 

which determines what kind of move it should make. Below is a table of all the possible 

MoveTypes and what they do. 
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TABLE 3.7 ALL POSSIBLE MOVE TYPES AND THEIR DESCRIPTION 

MoveType Action 

MOVE_TO_POINT Move to a specific point and orientation on 
the field  

MOVE_TO_BALL Move to the ball and line up the ball 
manipulator with the ball 

MOVE_TO_BLOCK Move to be in the path of a pass or to block 
off an area while in a formation  

MOVE_TO_PASS Move to a point that maximizes the 
probability of a successful pass to a teammate 

MOVE_TO_RECEIVE Move to a point that maximizes the 
probability of a successful reception of a pass 
from a teammate 

MOVE_WITH_BALL Dribble with the ball to a specific point on the 
field  

Each of the MoveTypes corresponds to a matching function that handles the calculation of where 

to go, unless it is directly inputted like in moveToPoint(). The functions also take in a range of x 

and y values that the robot can go to. The was designed to be able to cut down on the search area 

when looking for a pass and/or reception point. 

3.4.5 TACTICS 
As a reminder, the tactics class is the second level to the bottom of our code structure. It 

corresponds to the common skills of human soccer players such as receiving the ball. Each robot 

should have at least one tactic depending on the state of the game. The assignment of tactics is 

built around the roles. Different roles may be associated with different tactics. The effectiveness 

of tactics should be reflected directly in the behavior of the robots. It is one of the most important 

classes in our code structure.   

The Tactics class was redesigned to reflect the change in the Move class, as well as the removal 

of the Queues. It was decided that the gamestate changed too quickly to warrant a long string of 

moves, thresholds, and skills. Instead, one of each component is used to simulate a movement 

until a skill is performed. A skill like a chip or a kick would likely change the gamestate and/or 

the possessing robot, which would require a change of play. 

3.4.6 GOALIE TACTICS 
Unless our team possesses the ball, the goalie should always try to block the ball. The general 

idea is to use the robot to cover the goal as much as possible. The shooter should always aim for 

the center of the goal when shooting without the goalie or defender. This will allow the shooter 

to have a broader range for error and a higher successful rate of scoring. Taking the shooter’s 

viewpoint, the position of the goalie should always be on the line of the shooting trajectory 

assuming the ball is going straight to the center of the goal. Figure 3.29 demonstrates what it 

should look like.   
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FIGURE 3.29 BEST POSITION FOR THE GOALIE BASED ON GEOMETRY (GASPAR, 2015) 

The closer the ball possessor is to the goal, the harder the blocking is. The goalie’s positions 

should look like a semi-circle when connecting them with a curve. Hence, the ideal position for 

the goalie should be the intersection point of the semi-circle and the traveling trajectory of the 

ball, assuming the shooter is aiming for the center of the shooting window. This skill should be 

sufficient for standard gameplay. If the level of competition goes up or further development is 

required, we can also program the goalie to move toward the trajectory path of the ball after a 

shot is made and before it reaches the goal. 

3.5 NAVIGATION 
The ability to navigate the field autonomously without crashing into other robots or walls was a 

tremendous skill to have for this project. Navigation was split into two main areas: Path Planning 

and Motion Control. The goal was to create two main functions that would help us achieve the 

skill of precise navigation.  

3.5.1 PATH PLANNING 
The first function used RRT-Star (RRT*) to plan a path from a robot’s starting position to its end 

goal. The pseudocode in Figure 3.30 below outlines how the RRT* function was written. 
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FIGURE 3.30 PSEUDOCODE FOR RRT* 

The step distance is the distance between the Nodes along the path. This distance is equal to the 

radius of the robot. The path is a Tree of Nodes with the starting and ending Nodes as the starting 

and ending positions of the robot. New Nodes are added to the tree when their distance is less 

than the previous distance and the new Node is not located within an obstacle’s boundary. 

When developing the path planning pseudocode, there were two main issues. One issue was that 

the path would get stuck on the edge of an obstacle as avoiding it would be a further distance 

from the goal. To fix this issue, there was a small buffer added to the cost of the next iteration of 

the while loop. The second issue was that the resulting path was not smooth. To fix this issue, a 

polynomial of best fit was used to make it smoother. 

3.5.2 MOTION CONTROL 
The other main function was a move-to-point function that took in the coordinates and the 

direction a robot wanted to move to and then outputted the wheel speeds in order to move the 

robot to the desired coordinate. The pseudocode in Figure 3.31 below outlines how the move-to-

point function was written. 



 

 
72 

 

 

FIGURE 3.31 PSEUDOCODE FOR MOVETOPOINT 

When developing the motion control pseudocode, there was one main issue. The issue was that 

each point along the path was of equal distance. However, the error distance would approach 

zero as the agent moved closer to the point but would then grow as the next point is used as the 

error distance. This would cause the motion to consist of stops and starts. To combat this issue, 

there were two PID controllers used for each linear velocity (ie. Two controllers for X_velocity). 

However, the second controller used an overall distance between where the agent was and the 

last point along the path instead of the next point along the path. 

3.6 SYSTEM INTEGRATION 
[Describe integration activities and any changes in design resulting from interactions of 

subsystems. Detail how systems were integrated into overall robotic systems. Include challenges 

faced and how they were addressed] 

3.6.1 MECHANICAL PROTOTYPE 1 
After the team was finally able to finalize a design for the robot the next step was to come up 

with the first prototype of the robot. This process would end up being a much more laborious 

task than expected but was eventually figured out by the end of the term. This process’s largest 

bottleneck was learning how to use the CAM software required to cut the parts on an endmill and 

then learning how to use the special endmill itself. The program that needed to be learned was 

ESPRIT and this task ended up being much more difficult than initially anticipated. After 

multiple weeks, however the programs counter intuitive nature was figured out and multiple 

cutting files were made for the base and top plates. Next a session needed to be spent with a lab 

monitor in Washburn to become familiar with the V2 endmill. This was just one part of thus 

prototype as the CAD had to be perfected and analysis also had to be done on the parts before 

they were fabricated. Below we will go in depth a little more on the final CAD and also the 

analysis of the robot itself to show that our design would be able to theoretically perform its 

primary function.  

The first physical prototype of our robot is still currently in development as we wait for parts that 

have been ordered to be delivered but below, we will cover what we have gotten built. To start 

you can see the manufactured base plate in the figure below. This baseplate was cut using the V2 

Endmill in the Washburn shops. The process to cut this plate started with making an ESPRIT file 
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that consisted of the following commands. This plate is much trickier than expected to cut as the 

top indents which the motors will sit in had to be pocketed out by the mill first. As these were 

pocketed out, I also needed to outline the top half of the plate. Once the top half of the plate was 

outlined then I had to outline and cut the rest of the plate out all the way down to depth.  

The process for this is as follows, the first step in the manufacturing process for either of the 

plates is to first find a solid block to fixture the stock plate onto. The reason for this is because 

when the outside path of the plate is cut it will stay fixtured to the base plate instead of dropping 

away from the drill bit. To fixture the stock to the aluminum plate you cut the standoffs holes 

that are on the plate into the stock and match those onto the base block. Once these are drilled 

and tapped and match, you then screw the stock into the base block. Once this is fixed on you 

place and fixture the base block into the V2 mill. Once this is done you must probe the stock 

material that is fastened onto the block so that the machine knows where the stock is and can 

center itself upon it. Once this is done you must align your tools in the machine and then run the 

simulation (ESPRIT and CNC files will be attached in appendix). Once the simulation is set then 

the part is ready to be cut. 

 

FIGURE 3.32 BASE PLATE PROTOTYPE 

After the bottom plate was cut, we next needed to cut the top plate which is shown in the figure 

below. This cut was much simpler than the previous bottom plate. Like the bottom plate the 

stock was cut and fastened onto a larger base plate to secure the plate for the cut. Next the 

ESPRIT file was made and for this all that was needed was the outline to be cut and then the four 

pockets in the middle. This process was much simpler than the previous cut and was much more 

time efficient. 
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FIGURE 3.33 TOP PLATE PROTOTYPE 

Once both top and bottom plates of the robot were cut, they were assembled to form the chassis 

which can be seen in the figure below. In the figure you can see both the top and the bottom plate 

fastened together by five three-inch aluminum male-to-female standoffs. The holes in each plate 

are tapped with 10-32 holes so that the standoffs can be screwed right into each plate and will 

keep the chassis of the robot rigid and not lose. 

 

FIGURE 3.34 CHASSIS PROTOTYPE 

Finally, the last step of the chassis was next. This was cutting the L Brackets so that they could 

be attached to the base plate and then motors could also be attached to the wheels as well. This 

was originally thought to be one of the easier parts of the chassis. Shown in the figure above is 

the assembled chassis with the L Brackets attached to the base plate. As you’ll notice the Motor 

mount holes have not yet been cut in this prototype.  
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In the figure it’s clear to see the vision of what the chassis prototype should look like. Cutting the 

Motor mount holes changed the design and was a major cause of change between this prototype 

and the second. The reason for that change was because when the motor mount holes were cut, a 

drill press was used to make the holes. The thought process behind this was that we already had 

the drill bits in the correct sizes so why can’t we just layout the pattern and drill them. 

Unfortunately, this was a mistake because the hole patterns did not come up successfully and 

were uneven and messy. This can be seen in the figure below. The L Brackets were also 

accidentally bent while being clamped down to the bed of the drill press. With these challenges, 

we decided to make a CAM file and NC code to cut the Brackets for the second prototype.    

 

FIGURE 3.35 FIRST PROTOTYPE OF L BRACKETS 

With everything manufactured for the first time the first prototype of the robot was ready to be 

assembled. Once everything was placed together it was not the prettiest of products, but it 

performed in the primary function of being able to roll around as needed, which was a success 

for the first try.   

3.6.2 MECHANICAL PROTOTYPE 2 
With the first prototype assembled, it was evident that many changes needed to be made to better 

the robot’s chassis along with its performance. The smallest and first change was to make the 

tapped holes on the top plate through holes, so it was easier to attach the top plate to the 

standoffs. Once this was done more major changes needed to be made. The first of which was 

cleaning up the bottom plate. The first prototype of the bottom plate was much thicker than it 

needed to be. To remedy this, we manufactured another identical bottom plate and then planned 

the bottom surface with the mill to take of some of the material, giving us more clearance room. 

Another fix was also with the clearance of the robot. All the screws that attached any part of the 

chases together with the bottom plate protruded under the plate. To fix this we used a manual 

mill to surface these screws and make them flush with the baseplate.   

With those fixes accomplished, the most major change of the L Brackets needed to be made. 

This was much simpler than expected as all we needed to do was make an NC file for the Hass 

Mini Mills in Washburn shops. This file told the machine to use two different tools to drill the 

hole pattern into the L brackets which we had pre purchased. By fastening them into a vise 
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within the mill, all that needed to be done was to probe the Z and Y surfaces. The X surface was 

probed by using a different method called the x-min probe which would only probe one side of 

the bracket on the X axis. In the figure below, you can see what these newly machined L 

Brackets look like which compared to the old one, are significantly cleaner and more precise.   

 

FIGURE 3.36 MILL MACHINED L BRACKETS 

Once these changes were made, the newly manufactured second chassis prototype could be 

assembled. Show in the figure below, you can see how the second prototype looked after being 

assembled. The changes are evident in how the new L brackets are significantly better than the 

first prototypes and are also much straighter.    

 

FIGURE 3.37 SECOND PHYSICAL PROTOTYPE 

The final addition for this generation of the prototype robot was the updated ball control 

assembly. A geared dribbler system, bolstered mounting structures, and simplified geometries for 

ball control components such as the dribbler, kicker, and chipper highlight this subsystem 

iteration. These modifications were devised during the rapid prototyping phase of the system 

development in which design ideas were created in CAD, 3D printed, assessed for points of 

strength and weakness, and iteratively tweaked and improved, resulting in a compliant part.  
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Figure 3.38 Assembled Ball Control Module 

3.6.3 ELECTRICAL INTEGRATION 
Electrical Integration involved assembling the power board, kicker board, and processor board 

by soldering electrical components to their respective boards. The boards were ordered and 

manufactured by JLCPCB and PCBWAY, while components were ordered primarily from Digi-

Key. 

 

FIGURE 3.39 : FINISHED KICKER PCB
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FIGURE 3.40 FINISHED POWER PCB 

  

FIGURE 3.41 FINALIZED PROCESSOR BOARD 

3.6.3.1 ADCS 

While implementing firmware on the processor, an oversight was discovered regarding the ADC. 

Initially, the positive reference pin was to be set to 3.3 V using an external connector to another 
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board. However, during the design process the decision to set the positive reference voltage on 

another board was eliminated. Unfortunately, the processor boards were already designed and 

ordered. A remedy was made by soldering a wire from the positive reference voltage pin to 

another pin connected to the 3.3 V power on the board. 

3.6.3.2 ESCS 

Changes were made to the firmware to address an issue discovered with the ESCs. During prior 

testing with the ESCs, they only operated in one direction within a limited PWM duty cycle 

range. The lower limit of the duty cycle was 20%, at which point the ESCs will stop moving the 

motors. The upper limit was a duty cycle of 40%, causing the motor to spin at max speed. When 

the ESCs were incorporated into the drivetrain of the robot, the firmware on the ESCs was 

updated to allow bidirectional operation. However, doing this changed the PWM duty cycle 

range the ESCs accepted. It put the ESCs into a bidirectional mode which only supported pulse 

position modulation (PPM). The team did not have time to acquire a PPM to PWM converter for 

testing purposes, nor was there time to integrate it in the processor board. Through trial and 

error, it was found that the ESC could operate using PWM interpreted as PPM in a bidirectional 

manner, with roughly half the range representing velocity in one direction, and half the range the 

other. The “PPM” flashed to the ESC was the range of PWM pulses between 4286 and 5474, 

which correspond to a pulse range of between 3.6ms and 4.6ms based on a 200 Hz PWM 

instance. The firmware was updated to reflect this new range of accepted PWM signals. 
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CHAPTER 4 SYSTEM TESTING AND VALIDATION 
This chapter outlines how we tested and validated all sub-systems of the design. We include 

results from our tests as well as metrics to evaluate performance. 

4.1 TESTING MECHANICAL SYSTEM 

4.1.1 SYSTEM REQUIREMENTS 
The sub-team identified key system requirements for the shell that were necessary to other sub-

teams in this next phase.  

4.1.1.1 FUNCTIONAL REQUIREMENTS 

The functional requirements of the system are as follows: 

FR-I. The prototype must roll freely on a carpeted surface (analogous to the regulation RoboCup 

 playing field) without interference or hinderance from other components (bolts/threads 

from standoffs rubbing on surface, drive motors not rubbing against solenoids) 

FR-II. The prototype must support installation of electronic systems such as PCBs and batteries. 

FR-III. All subsystems of the prototype must be fully assembled and implemented such that the 

 operational requirements of the system can be satisfied.  

4.1.1.2 OPERATIONAL REQUIREMENTS 

The operational requirements of the system are as follows: 

OR-I. The prototype must operate (move, manipulate ball, communicate with code) as a physical 

 analogue of its virtual counterpart in grSim.  

OR-II. The prototype must provide an accurate and reliable physical basis for data collection that 

 indicates areas of improvement for electromechanical systems, programming, and other  

 physical parameters such as weight distribution and geometry. 

4.1.2 SYSTEM OUTCOMES 
The milestones we met during C-Term can be used to evaluate how well these requirements were 

addressed and fulfilled. Based on the progress reported in the sections above for this term, the 

system requirements are addressed as shown below: 

4.1.2.1 FUNCTIONAL REQUIREMENTS 

FR-I. The team demonstrated the prototype to roll freely upon its completion at the end of C-

 Term, and verified that the previously mentioned hinderances are not a factor on a 

carpeted  surface. 

FR-II. When installed, all electromechanical components’ electrical leads and connection points 

 are accessible and conveniently placed for integration with their corresponding hardware 

and  circuitry. Furthermore, threaded holes are placed on the top plate to mount any PCBs 

above the  robot using standoffs (which are in our possession) as specified by the ECE sub-

team.  
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FR-III. The prototype is assembled in our lab space in Unity Hall and ready for testing by the 

 other sub-teams to verify compliance with the operational requirements.  

4.1.2.2 OPERATIONAL REQUIREMENTS 

OR-I. This requirement will be evaluated in D-Term by the other sub-teams. The ME sub-team 

 will be on standby to support the successful integration and verification of this 

requirement.  

OR-II. This requirement will also be evaluated in D-Term by the other sub-teams. The ME sub-

 team will be on standby to support the successful evaluation of this requirement. 

4.1.3 PLANNED TESTING AND VALIDATION 
The ME sub-team supported the other sub-teams in integrating our work with theirs and ensuring 

that all needs were met by these teams in their testing and validation. The testing and validation 

activities are motor testing and tuning, ball control capabilities testing, vision testing, 

communication testing, and motion planning testing.  

Motor testing and tuning consists of installation and integration of drive motor into the 

associated circuit and characterization of their capabilities with respect to the desired 

performance of the prototype. The team was tasked with assisting in the installation, data 

collection, and speed/torque profile tuning of the motors.  

Ball control capabilities testing consists of performing routine actions with a regulation 

ball such as kicking, chipping, and dribbling. The team was tasked with assisting in the 

installation and tuning of the dribbler motor and solenoids, as well as characterizing and 

adjusting the performance of these components with respect to their interactions with the ball.  

Vision testing consists of mounting and testing of the camera vision system. The team 

was tasked with assisting in the installation of acceptable equipment to mount the camera vision 

system. The team has already identified a telescoping photography backdrop stands that may be 

acceptable for mounting the camera and has identified a carpeted space in the Sports and 

Recreation Center that can be booked for testing.  

Communication testing consists of ensuring that the prototype’s hardware and associated 

programming properly interacts with the camera vision system.  

Motion planning testing consists of ensuring that the electromechanical components such 

as drive motors behave as their programming and communication with camera vision system 

would suggest. For these final testing activities, as well as the previously mentioned ones, we 

will provide support to the sub-teams with any mechanical needs that may arise by performing 

supplementary simulations, analyses, and fabrication. 

While the above activites did not end up taking place in D-term due to budget, time, and 

supply chain related constraints, the ME sub-team was responsible for the creation of an 

additional two prototype robots in D-term to support presentation and demonstration activities. 

These robots were constructed using mostly 3D printed parts including base plates, top plates, 

motor mounts, and shells. Remaining leftover and unused prototype components from previous 

design iterations were salvaged and modified to create an additional shell for demonstration 
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purposes including base and top plates and standoffs. Supplementary ball control structures were 

printed to aid in demonstrations as well.   

4.2 TESTING ELECTRICAL SYSTEM 
The following sections describe the Electrical and Computer Engineering sub-team’s findings 

during testing of the processor board, the kicker board, the power board, and motor controller 

system. 

4.2.1 PROCESSOR BOARD 
The processor board being the brain of the robot had to have a lot of functionality, which 

required extensive testing to verify all aspects worked appropriately. Configuring the processor 

and uploading firmware to it went smoothly throughout the time of the MQP. The LEDs on the 

board used for debugging worked flawlessly. The processor had no issues reading the dipswitch 

array on the board. The PWM generators worked well, as did the logic converters used to bring 

the 3.3V logic of the processor up to 5V for the ESCs. The wireless communication module 

attached to the board was susceptible to noise while operating at 2.52GHz. However, if a signal 

was being constantly sent from the router the noise was negligible. The ADCs performed well 

and provided accurate readings within its operable range. The IMU on the processor board was 

not extensively tested or used due to a focus on other systems. Please refer to Noah Page’s report 

for more information regarding the IMU. 

TABLE 4.1 PERFORMANCE ANALYSIS OF PROCESSOR BOARD 

System System Performance 

Processor & Uploading Firmware Well 
Debugging LEDs Well 
Dipswitch Array Well 

PWM generators Well 
Logic Converters Well 

Wireless Module Okay 
ADC Well 
IMU Refer to Noah Page’s report 

4.2.2 KICKER BOARD 
The kicker board initially had a few issues during testing. In the first testing one of the capacitors 

was damaged because too much current was pulled from them which caused damage to 

components on the kicker board, the capacitors included. This was changed by adding multiple 

capacitiors to allow for more current draw at higher voltages. This also allowed the capacitors to 

keep cool within their safe operating temperatures, preventing further damage. On the kicker 

board, it was discovered that the voltage coming raw directly off the capacitor was very noisy. 

This was solved by putting the output into an RC filter of 1K ohms and 100 nano-farads, 

respectively. After adding the filter, testing showed a smoother signal without eroding our data 

delay, but consequently, it does mean that on boot there must be a grace period before acquiring 

accurate results, as the capacitor in the RC filter needs time to charge. 



 

 
83 

 

 

 

FIGURE 4.1 COMPARISON OF REAL LAUNCH SPEED (ORANGE) AND EXPECTED LAUNCH SPEED (BLUE) 

4.2.3 POWER BOARD 
When testing the power board, a few discrepancies were discovered. One of the LDOs being 

used did not supply the exact voltage originally intended. The regulator responsible for 5V 

power ended up producing 4.75V instead. The 12V regulator had an output of 11.9V on average 

as well. Despite these errors, the other boards utilizing the voltage from these regulators still 

operated well. The irregularities in the 5V regulator are likely due to the 3.3V regulator drawing 

from it. The 3.3V regulator performed well and without issue. The battery pack for the power 

board was designed with a nominal of 22.2V, considering the batteries being used. However, the 

batteries were able to be overcharged, bringing the total voltage up to 25.2V. This proved to be 

fine though, as the motors and voltage regulators were able to operate at 25.2V. 

TABLE 4.2 EXPECTED VOLTAGES VS. ACTUAL VOLTAGES ON THE POWER BOARD 

Expected Voltage Actual Voltage 

22.2V 25.2V 
12V 11.9V 
5V 4.75V 

3.3V 3.3V 

4.2.4 ESCS & MOTOR CONTROLLER 
Testing the ESCs and the motor controller involved several iterations of firmware in order to 

achieve optimal behavior and overcome unideal aspects. One aspect is that the PWM range of 

1188 total pulses is essentially cut in half since each direction reserves half of the resolution, or 

594. Furthermore, there is a deadband-zone on each side of the zero-effort value of 54, thereby 

decreasing the resolution of a single direction to 540 pulses. These pulses represent roughly 0 to 

10 meters per second, meaning our theoretical resolution of linear wheel velocity is 0.0185 m/s. 

It should be noted due to the deadband zone, the smallest linear velocity obtained is +/- 0.6 m/s, 

which is not the same as the resolution of the linear velocity. To be clear, the resolution of 

velocity is the change in velocity due to the respective change in PWM pulse steps. The 
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resolution holds until the linear speed approaches +/- 0.6 m/s, but beyond this threshold is either 

0.6 m/s or 0 m/s. This is an unacceptable minimum speed for future iterations of the project as 

there will be times when the robot needs to go slower than this (particularly in support roles) but 

not quite 0 m/s.  

With the above constraints put in place, we were then able to work on the PI controller. Due to 

delays in shipping and order errors, the encoders were not available until the final week of the 

MQP, leaving little time to determine a proper solution for the motor controller under load. 

Unloaded, the controller converged deftly on any value between +/- 10 m/s (minus the deadband 

zone), albeit there was often electrical noise between ESCs in which one ESC would catalyze 

another to begin rotating, even though in software it had been set to zero velocity. The root cause 

of this problem was never determined as the debugger broke 1 day before project presentation 

day. Please see the recommendations section for advice on the motor controller in both hardware 

and software. 

4.3 TESTING SOFTWARE 
To expedite the testing process of our software architecture, we first had to develop or modify a 

simulator. Simulation was a very important focus of this project as it enabled us to start testing 

our software architecture without the actual field equipment. When deciding what simulator to 

use, we found many reasons to choose grSim over the others. Most importantly, it was an official 

simulator backed and supported by RoboCup which means, in theory, there should be less 

problems with it. Also, it provided many basic features for a startup team and had the Simulation 

protocol already implemented. The overall process of the simulation can be boiled down to a 

feedback loop. During simulation, the simulator broadcasted the position information of the 

robots and the ball based on frames. In addition, the simulator reacted to the command it was 

receiving from our software libraries by updating the positions of the robots and the ball. The 

data that was being transferred during this process was also called the vision. 

There are four main requirements that make up a functional RoboCup simulator: send field 

information, receive field information, send robot commands, and receive robot commands. 

Based on our structure of communication, sending field information should be done by grSim. In 

other words, grSim should be able to broadcast field information without us needing to change 

anything. grSim keeps track of the position data for each robot and the ball using the OpenGL 

library. We validated this by checking line by line in the SSLWorld library. From the TDP of 

grSim, the developers have made grSim send field data based on the framerate of the simulator. 

We also proved this to be true after tracking down the details of the code, although there was no 

documentation or website to help us use the simulator. The vision data is broadcasted at the 

vision port approximately 60 times every second. 

Receiving field information is handled by the robot software we are developing throughout the 

term. To make life easier, we organized the code into libraries based on their purposes. For 

example, Navigation, Strategy, and Simulation are the three different libraries since they have 

three completely different purposes. The Simulation library will automatically listen to the 

broadcasting ports of grSim and store the field information as a private field if this object class 

has been initialized. In addition, we parse the information of the incoming data package using 

Google Protobuf based on the Simulation Protocol. Parsed field information including position 
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data of the robots and the ball will be stored in a private variable. There is no need to update 

these private variables manually since it updates itself whenever it reads newer information from 

the UDP sockets, the communication protocol grSim uses.  

Sending robot commands is also included in the Simulation library. We constructed a Google 

Protobuf message that conforms to the Simulation Protocol. Then, we created a UDP socket to 

set up communications between the simulator and our software. Finally, we sent the message to 

grSim’s IP address through the socket.  

Receiving robot commands was handled by grSim. grSim has a few port settings for receiving 

commands. Once the command message is delivered, grSim will automatically order the robot to 

do whatever the command message told it. After testing with multiple different commands, we 

were confident that grSim and the Simulation library worked well. The following testing of the 

software libraries was done on grSim. 

4.3.1 TESTING STRATEGY 
Testing the strategy module required the development of most of the following systems 

beforehand, as testing the entire strategy component tests the compatibility of each function. 

There were also some new features that came about when modifying the Move and Tactic 

classes. Testing the new functions that handle all the moves like goToPoint() and goToBall() 

were tested by using grSim to visually verify the accuracy of the robot’s path and destination. 

These functions were tested using multiple starting configurations to decrease the likelihood that 

the paths and destinations were correctly determined.  

Another way we have been testing the Strategy module is by using a test script and running it on 

the terminal. This has allowed us to input various configurations and to see how 

GameStateAnalyzer analyzes the data given. The goal of this script is to provide a 

comprehensive test of some of the units so identifying the bugs that pop up later will be a simpler 

task. 

4.3.1.1 TESTING PROBABILITY OF A PASS 

The numerical value of the probability of a pass being successful is dependent on a few 

variables: the closest robot from each team’s distance to intercept the ball, the two robot’s top 

speeds, and the speed of the ball. The speed of the ball is used to generate time driven parametric 

points used to determine when each robot can intercept. The robots’ respective distances to the 

ball’s path and top speeds are combined to create an estimate of how long it will take for the 

robot in question to intercept the ball. The difference between these two times is scaled to fit 

between 0 and 1, with values still outside of the range snapped to the nearest valid value.   



 

 
86 

 

                    

FIGURE 4.2 LOW(LEFT) VS HIGH(RIGHT) PROBABILITY OF A SUCCESSFUL PASS 

To test this functionality, two blue robots were set up to complete a pass. One yellow robot was 

placed at varying distances to the balls path to the second robot. We verified the accuracy of the 

probability of a pass by checking that the probability of a successful pass increased the further 

away from the ball’s path the yellow robot was. Since the probability value itself is arbitrary and 

only the relationship between two probabilities matter, this test was enough to properly verify the 

functionality of the function. 

4.3.1.2 TESTING PROBABILITY OF A SHOT 

                  

FIGURE 4.3 LOW(LEFT) VS HIGH(RIGHT) PROBABILITY OF A SUCCESSFUL SHOT ON GOAL 

The numerical value of the probability of scoring a goal is determined by two components: the 

probability of interception by the opposing team, and the probability of a goal from the given 

angle. The probability of interception by the opposing team is calculated similarly to the 

probability of a successful pass with the time to cross the goal line being substituted in for the 

time to be received by a teammate. The second component of the probability of a goal from the 

current angle is used to account for the difference in goal area available to be scored in. This 

probability is logarithmic to reflect both the minor changes in probability when the angle to the 

goal line is close to 90 degrees and the larger changes in probability when the angle to the goal 

line is close to 0 degrees.  

Each component of the probability was tested separately and then again together. First, 

we tested the logarithmic probability of a goal given the current angle by placing the robot at 

different points that formed different angles with the goal line and verifying that the probability 
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was larger when the angle was closer to 90 degrees to the goal line. Next, we tested the 

probability of interception by the opposing team in the same manner we tested the probability of 

a successful pass. When combined, the probability properly reflected the two components. 

4.3.1.3 TESTING MOVING, PASSING, AND DRIBBLING 

Testing the actions of the robots in response to commands was done entirely within grSim due to 

hardware development constraints. Several move functions were developed in order to group like 

movements together, including moveToBall, moveToPoint, and moveToBlock. Passes were 

tested by running a tactic to move to the ball and then kick the ball in a specified direction to a 

waiting teammate. Dribbling was accomplished by spinning the dribbler while the ball was 

possessed by the given robot.  All these actions were verified by running them within the 

simulator and comparing the robots movements to what their expected actions were. Videos are 

available in the shared folder. 

4.3.2 TESTING ROLE ASSIGNMENT 
To assess the success of role assignment, we assigned roles to a multitude of gamestates and 

robot configurations and compared the results to the expected output. For all configurations, role 

assignment properly assigned expected roles. The following figures showcase some of these 

results. 

 

FIGURE 4.4 INITIALIZATION OF ROLES IN A NEW GAME 

Figure 4.4 above shows the initialization of roles in a new game from their default positions. The 

gamestate in this case is 8 meaning the ball is contested and the ball is on the opponent's side, 

which is how we evaluate a ball on the line. In this case, there is no goalie previously assigned so 

role assignment takes the robot closest to the goal and assigned it to goalie, in this case robot 5. 

Since the ball is contested, the remaining robots are assigned offensive roles. The primary 

offender is assigned to robot 3, which is closest to the ball. The secondary offender is assigned to 

the next closest robot, robot 1. For tertiary offender, there is a tie in distance between robot 2 and 
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0. In this case, role-assignment will choose the robot with the lower ID number by default and 

assign tertiary offender to robot 0. This leaves defenders 1 and 2 as open roles, which are 

assigned to robots 2 and 4. 

 

FIGURE 4.5 ROLE ASSIGNMENT IN OFFENSIVE GAMESTATE 

Figure 4.5 above shows role assignment in an offensive game state. In this case, the gamestate is 

identified as gamestate 6, meaning the blue team, us in this scenario, has possession of the ball 

and the ball is on the yellow teams, or opponents, side. Using this information, we begin to 

assign offensive roles. Robot 5 remains the goalie from its initial assignment. The primary 

offensive role is assigned to robot 3, which is closest to the ball. Secondary and tertiary positions 
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are assigned to robot 2 and 4, the two next closest robots to the ball. Finally, robots 1 and 0 are 

assigned to defense 1 and defense 2, the formation-controlled roles.  

 

FIGURE 4.6 ROLE ASSIGNMENT IN DEFENSIVE GAMESTATE 

Figure 4.6 shows how roles are reassigned when the robots shift into a defensive position. The 

gamestate in this case is 3 meaning that the opponents have possession of the ball, and the ball is 

located on our side. The goalie continues to remain the same, so again is assigned to robot 5. The 

remaining robots are assigned defensive roles. Like the above scenario, these are based on 

distance to the ball. Primary defender is assigned to robot 4, which is closest to the ball. 

Secondary and tertiary defenders are assigned to robots 3 and 0, the next two closest robots. 

Finally, offense 1 and 2 are assigned to robots 2 and 1. 

Overall, role assignment can successfully assign roles based on distance to ball and current 

gamestate. The next step in game play is assigning appropriate tactics to the roles. 

4.3.3 TESTING ROLE TACTICS 
The following sections outline the testing of different roles and their associated tactics. While not 

all roles are complete at the time of submission, tactics and game-play algorithms are thoroughly 

tested and working. 

4.3.3.1 TESTING PRIMARY OFFENDER 

The primary offender is responsible for, initially, traveling to the ball location if on offense. 

Figure 4.7 below shows an example of a primary offender role. 
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FIGURE 4.7 PRIMARY OFFENDER BEFORE MOVEMENT (LEFT) AND AFTER (RIGHT)    

As seen above, robot 3 is the closest robot to the ball. Once assigned to primary offender, it 

moves to the correct location near the ball, close enough to use the dribbler to hold the ball to 

itself. At this time, the decision-making algorithm was not advanced enough to be able to choose 

whether to pass or shoot the ball. However, we are capable of evaluating the probability of 

success of those options, which could be integrated at a later point. 

4.3.3.2 TESTING SECONDARY AND TERTIARY OFFENDERS 

The secondary and tertiary offenders are responsible for traveling up the sidelines, in front of the 

primary offender and ball, and remain open to receive a pass. Figure 4.8 below shows an 

example of the secondary and tertiary roles acting by themselves. 

  

FIGURE 4.8 SECONDARY AND TERTIARY OFFENDER BEFORE MOVEMENT (LEFT) AND AFTER (RIGHT)  

As seen in the figure above, the robots properly move to the correct side of the field, and then 

forward until they are closer to the goal than the primary offender. The robots are assigned to the 

left side or right side of the field based on their initial position, whether they are already on the 

left or right side. 

One issue is that when the ball is moved before the secondary and tertiary robots reach 

their final positions, this sometimes causes the robots to stop moving, or continue moving 

without a destination. We believe this is caused because the secondary and tertiary robots final 

positions are dependent on the ball location, and when it is moved, the calculations have to be 

redone, sometimes causing an error in the robot movement. This could also be caused by the 



 

 
91 

 

switching of roles before the previous robot has completed its movement. Figure 4.9 below 

shows an example of this error. 

 

FIGURE 4.9 ERROR WITH MULTI-ROBOT MOVEMENT AFTER BALL MOVES OR GAMESTATE REEVALUATED TO 

SOON 

While these positions are acting properly when moving on their own, when getting into multi-

robot movement, there are sometimes issues with how the movements are interpreted, and 

therefore incomplete movements. 

4.3.3.3 TESTING PRIMARY DEFENDER 

The primary defender must get in the way of the opposing team ball-possessing ball when on 

defense. Figure 4.10 below shows the primary defender role against an opposing team. 

 

FIGURE 4.10 PRIMARY DEFENDER BEFORE MOVEMENT (LEFT) AND AFTER (RIGHT) 

As seen in the figure above, robot 3 is successfully standing in front of the opposing teams 

offender. This robot successfully blocks off a front shot or pass from this robot throughout the 

game, preventing the opposing team from making an easy shot on goal. Combined with the 

goalies blocking, the opposing team will have a hard time making a successful shot on goal. 
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4.3.3.4 TESTING GOALIE DEFENDING TACTICS 

A basic test for goalie-defending tactics is to run it on grSim and see if the destination position of 

matches the expectation. We tested this tactic when the ball is in different positions on the field. 

We manually turn off the other robots and move them to the outside of the field in order to avoid 

unnecessary distractions. The outcome of this tactic should be a point closest to the ball on the 

semi-circle which shares the center point with the goal (and has a diameter equal to the length of 

the goal). Most of the results matched expectations. The following figures show the results that 

matched expectations. 

 

FIGURE 4.11 GOALIE WHEN BALL IS DIRECTLY IN FRONT OF IT 

 

FIGURE 4.12 GOALIE WHEN BALL IS AT A 45 DEGREE ANGLE FROM THE CENTER ON THE RIGHT-HAND SIDE 
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FIGURE 4.13 GOALIE WHEN THE BALL IS AT A 65 DEGREE ANGLE FROM THE CENTER ON THE RIGHT-HAND SIDE 

In fact, we have tested the code on both sides of the fields. The results are identical and there is 

no point in repeating them in the report. The problem arises when there is a corner ball, or the 

ball is close to the baseline on our side. The outcome of the goalie-blocking-ball tactic will 

command the robot to drive into one of the posts of our goal because it doesn’t consider the 

collision model of the robot. This bug has already been put on our schedule. It should be fixed in 

our next code release. Figure 4.14 demonstrates the struggling robot when he tries to drive to the 

post, but it physically cannot be exactly on point. 

 

FIGURE 4.14 GOALIE WHEN THE BALL IS ON THE BASE LINE. THE ROBOT RUNS INTO THE POST. IDEALLY, IT 

SHOULD STAY ROUGHLY AT THE POSITION WHERE THE ROBOT IN THE PREVIOUS FIGURE IS.
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4.3.4 TESTING NAVIGATION 
The goal of the Navigation Module was to have two main functionalities. The first was to plan 

the path and the second was to calculate the kinematics to move to each point along the path. 

Therefore, to test that this goal was reached, we created a way for the input to be the destination 

(X, Y, and Theta) then to use RRT* to create a path using the inputted X and Y and a robot’s 

starting point. Lastly, we used the points within the path outputted by RRT* with the inputted 

Theta to create an input for the move-to-point function. This process is then repeated for every 

point within the path. 

To test path planning, the team tested the RRT* function with multiple starting and end 

goal positions, as well as various amounts of distributed obstacles. The figures below show the 

blue robot 3 at the coordinate {X = -0.6, Y = 0}. As well as the yellow robots 3 and 1, at the 

coordinates {X = 0.6, Y = 0} and {X = 1.5, Y = 0} respectively. The plots of the resulting path 

of the blue robot moving to {X = 1, Y = 0} before and after smoothing are shown in Figures 4.15 

and 4.16.  

 

FIGURE 4.15 BLUE ROBOT'S PATH USING RRT* BEFORE A POLYNOMIAL CURVE OF BEST FIT IS APPLIED. 

 

FIGURE 4.16 BLUE ROBOT'S PATH USING RRT* AFTER A POLYNOMIAL CURVE OF BEST FIT IS APPLIED. 

To test the motion control, the team tested the move-to-point function with destinations 

consisting of various travel distances and turning angles. Each test would help tune the PID 

controllers.   
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CHAPTER 5 DISCUSSION 
In the following sections, we will discuss the results of each subsystem as described in Chapter 

4. 

5.1 MECHANICAL SYSTEM 
The mission for this MQP, in its first year, was to create a strong foundation in which future 

teams could build upon, ultimately leading to an established WPI RoboCup Small Size League 

team with continuity from year to year, similar in concept to WPI Formula SAE Electric Car 

MQP. In this way, the progress made this year was crucial to setting the precedent for future 

teams and allowing their work to be focused on more in-depth testing, validation, and system 

optimization, rather than development and production. Our current prototype provides a robust 

basis for experimentation and is designed to support improvements and optimizations with its 

modular design and capacity for weight reductions as the design becomes more developed and 

refined. 

Our resulting prototype is serviceable in comparison to how other RoboCup teams 

conceivably looked in their early developmental years. It is unrealistic to compare our progress 

this first year as a sub-team of three (at full strength) and limited budget with teams who have 

had the benefit of, in some cases, decades of developmental refinement and experience, with 

longstanding industry sponsorships, and much larger budgets and team sizes. With this in mind, 

the success of our sub-team can be best judged with respect to other high functioning, legacy 

RoboCup programs by the long-term outcomes of progress made in our eventual program's 

developmental years, and in the short-term by the prototype’s ability to garner student interest, 

university funding, and industry partnerships for the team. 

We secured a large partnership with German electronics manufacturer Nanotec that 

proved vital to the achievement of our goals. Nanotech provided us with an excess of drive and 

dribbler motors that amounted to thousands of dollars in hardware. Without this contribution, the 

team would be thoroughly past the budget. In the coming years, the small-size soccer team at 

WPI will be able to advertise Nanotec via decals on the PLA shell of the robot and on team 

members' jerseys. This important partnership provided insight into professional relationships in 

the industry with outside companies, as we were able to discuss needs and specifications for the 

project and come to a satisfactory agreement for both parties. 

The team also gained a smaller contribution from Chinese custom PCB-printing and CNC 

manufacturer PCBWay upon requesting monetary support. This MQP was advertised on their 

website's project sponsorship page to garner potential benefactors. The listing has gained over 

300 views to date and managed to get the support of PCBWay itself. The support was in the form 

of an account balance and coupons that were used in the fabrication of the final version of the 

chipper. The team is currently exploring the relationship with PCBWay further as it will be vital 

for both speed and quality of manufacturing future renditions of the robot when the need for 

improvement arises. Working with a CNC manufacturer directly decreases the time required to 

train and learn the manufacturing process with the positive tradeoff being more time and 
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manpower allocated to design, testing, and system analysis. The ultimate goal is to get all parts 

from PCBWay for free to maximize this tradeoff. 

The system’s performance cannot be compared to other teams at present because it has 

not been truly put to the test to this point. It is hard to quantitatively or qualitatively discuss the 

prototype's performance in general for this reason. Rather, it would be better to discuss the 

potential of the prototype to perform. Our system’s potential to perform routine game tasks such 

as maneuvering, kicking, and dribbling is present based on the robust and rudimentary design 

and construction of the constituent subsystems. Furthermore, a strength of these subsystems is 

their simplicity in that they will be easy to understand, troubleshoot, and improve by our and 

future teams. The subsystems’ ability to perform in conjunction with one another will be best 

evaluated in the testing and validation stage in the coming term.  

Our prototype consists of similar materials and was fabricated using many similar 

manufacturing methods to other major teams. However, the similarities generally end there. 

Major differences in our system compared to other teams relate to design complexity and 

component selection. Other teams, with the benefit of years and decades have had the ability to 

refine and fine-tune their designs, to the point of granular detail within subsystems that results in 

optimal performance. Our more rudimentary designs and solutions are reflective of 

comparatively minute development, experience, and team size. Similarly, while other teams were 

able to develop and implement bespoke components such as motors, plungers, and wheels, our 

team was constrained to consumer grade, mass production components that lacked the 

performance and refinement of the competitors.  

Overall, the success of our system was limited to factors such as budget, experience level, 

and personnel continuity. As a first-year team, budget and experience were bound to be factors. 

We often found ourselves opting for options with regards to electromechanical components and 

manufacturing methods that were not in the best interest of performance, but rather in price. For 

example, the solenoids we purchased are of considerably lower quality than other team’s 

solutions, yet they still took up a sizable chunk of our budget, forcing us to make further 

tradeoffs elsewhere that may hinder our prototype’s performance potential. Furthermore, our 

team had minimal fabrication experience, and this translated to setbacks related to part tolerances 

and interfacing issues. Finally, the sub-team underwent fluctuations in personnel numbers which 

led to continuity issues. 

5.2 ELECTRICAL SYSTEM 
The goal of the electrical sub-team MQP was to create the electronics and corresponding 

firmware layer of the robot to interface with the mechanical and computer science sub-teams’ 

contributions. We can power all the components on all boards created, can actuate the kicking 

and chipping mechanisms, are able to run the dribbler mechanism with the dribbler motor, can 

control the drive system with closed-loop feedback, and can communicate with the AI 

wirelessly. The team also integrated the electronic systems with the mechanical team’s drive 

system, chassis, and ball control module, and the computer science team’s codebase to create a 

working Small Size Soccer Robot Prototype. 

Compared to teams in their first year of development at the inception of Small Size 

League, we are quite far along as we were able to use proven data from years of winning 
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systems. This would not have been possible without the TDPs to reference, and the SSL Discord 

Server in which league members extend helping hands when needed. Compared to teams that 

actively play in the Small Size Soccer League, there is a gap that must be closed by the teams 

that succeed us. While the systems we designed are a solid foundation to build upon and provide 

all the basic functionality we described, they are not yet up to par with existing teams. 

Specifically, the drive system must be considerably more robust before the computer science 

team is able to perform the complex navigation it desires. The ESCs, as mentioned in the coming 

recommendations section, must be replaced with dedicated motor drivers that perform BLDC 

motor control for wheeled robots better. The PCB stack can also be consolidated to conserve 

height and obtain the low center of gravity the mechanical team desires, by combining the kicker 

and power boards.  

On the kicker board we do have more room in the power budget to upgrade the chip lt 

3751 and as well as a using temperature as the biggest reason that caused deviation in expected 

versus real results was due to a few ideas in place one is that a thermometer is required as 

solenoid heats up its resistance changes and requires a change to the model so when getting the 

resistance of  the solenoid changes and the amount of current and the emptying time of the 

capacitor changes cause even more deviation from real and expected. This is one of the causes 

for deviation in the times but also the solenoid is reverse engineered from force calculations as 

none of the parameters were actually available from the solenoid website and there is no 

description about how the coil is done so I recommend finding a different distributor as this led 

to us having to different curves to fit to as one of the solenoids is has a 4 ohm internal resistance 

instead of the allotted. This requires us to have to have multiple models of solenoids.    

5.3 SOFTWARE ARCHITECTURE 
Overall, the Computer Science sub-team’s goal was to test and develop a software system 

capable of playing a complete game of 6v6 soccer. To test the system, we were successfully able 

to set up grSim, our simulator. The in-house software architecture was designed with two main 

focuses: Strategy and Navigation.
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Since most of the tests were done on grSim before transferring onto the actual robots, the 
simulator worked reasonably well in terms of verifying the functionality of our software. One of 
the bright sides of grSim was the fact that it provided all the functionality we need based on our 
design of the robots. However, one of the worst things about grSim was the lack of 
documentation. Since the team who created and developed grSim was not maintaining the 
software anymore, there was no other method to learn grSim apart from trying everything 
ourselves. In addition, the grSim Github repository was not detailed enough to provide guidance. 
This partially explained why the team got stuck with grSim in the early phases of development. 
Furthermore, robot models in grSim were based on the creator’s design of soccer robots. They 
did not match ours and we accommodated this by creating transfer functions in the navigation 
library. There were also other minor mismatches between grSim robots and our actual design, 
but they could be handled from the software side and should be aware of when testing. 

The GameState was used to describe a set of like situations based on ball possession and 
location. We were able to successfully determine when the field was set up in each of the 
possible game states. This feature was tested thoroughly by setting up the field in many different 
configurations and verifying that the correct GameState had been evaluated.   

In terms of plays, we set up the foundation for them to be implemented early on by the 

next team. Individual tactics can be run on the simulator as well as the role assignment, which 

means the implementation of a full play should be relatively simple, since all the components are 

developed, they just need to be combined. 

 We tested our role assignment thoroughly in different GameStates to ensure that the roles 

being assigned were appropriate for the field’s setup. We successfully assigned offensive roles 

when on offense and defensive roles when on defense. Using a distance-to-ball algorithm, all 

roles were assigned as we expected. This testing shows that role-assignment performance is 

successful. 

 When it came to assigning role tactics, we were limited by time towards the end of the 

project. For offensive roles, we can successfully determine the appropriate location to travel to 

for the primary, secondary, and tertiary positions. The destinations that were tested were accurate 

for both the yellow and the blue team. The destinations put the robots in a position to pass up the 

field moving towards the goal, or even shoot the ball. By integrating the probability of a 

successful shot or pass, the role tactics would also be able to make the decision for themselves 

whether to shoot or pass the ball. The limitation to the offender role tactics was when it came to 

moving multiple robots. If the GameState was updated before a robot reached its final 

destination, there could be errors with an incomplete path, causing the robot to continue to move 

in its most recent direction and not stop. There is further testing to be done to determine the root 

cause of this error. The primary defender is responsible for shot or pass blocking. To do this they 

must also go to the correct location, however we expect that when additional defenders are in 

motion there may be similar errors to the one listed above. On the other hand, the blocking ball 

tactic for the goalie went as planned. By analyzing the shooting trajectory of the ball while it’s in 

the opponent’s possession, the strategy library was able to produce a tactic that allows the goalie 

to block the ball with the greatest chance. Section 4 included a detailed explanation of how 

things work. This tactic was also running fine while the program is making strategies for our 

robots. 



 

 
99 

 

To determine the best course of action, we developed a set of probability deducing 

functions to numerically gauge the likelihood of a positive outcome from a given move. Passing 

and shooting were two actions that required this kind of evaluation. The probability of a pass 

being successful was calculated by gauging how long it would take for each robot to move to a 

point that would intersect with the ball’s time driven parametric path.  

We tested our navigation module thoroughly. First, we tested path planning with varying 

amounts of obstacles to perfect obstacle avoidance. Then, we tested the motion control at 

different speeds, locations, and angles to guarantee a motion that was both controlled and 

efficient. In highlight of our successes, we were able to plan paths that were optimal and ensured 

obstacle avoidance and we were able to use the robot’s kinematics to go from linear velocities to 

four independent wheel velocities. As for the limitations, the overall movement system was the 

biggest hindrance. To be specific, the way the PID controllers were used was not reliable. As 

expected, the error for each PID controller would reset when processing the next point along the 

path. This would cause the motion to start then stop throughout the path. This was later bypassed 

by driving at slow speeds and using a directional coordinator. Meaning that as the next point 

along the path was processed the direction in which the robot drives was updated. This 

performed well; however, the precision of the path was not the best and the motion was 

susceptible to oscillation near the end of the path as the robot began to stop.  

 While we were not able play a complete game of soccer, we were able to set a strong 

foundation that can be built upon by teams. We were able to set up a simulator that met the 

requirements of testing a 6v6 soccer game, as well as individual functionality components. Using 

information sent from grSim, we were able to calculate and smooth ball and robot velocities as 

well as analyze the position of the ball and all 12 robots to accurately determine the state of the 

game. We developed the function to run individual tactics successfully, each of which is 

comprised of a move, skill threshold, and skill. Once the GameState was determined, we can 

assign each robot’s offensive or defensive position based on their distance to the ball and the 

goal. Due to limitations in time, we were not able to complete every role’s tactics, however we 

can identify proper destinations for primary, secondary, and tertiary offense, primary defense, 

and the goalie. This capability can be replicated to complete the destination calculation for other 

positions in the future. We were also able to create probability functions that calculate the 

probability of a successful pass or shot, which can eventually be integrated with role tactics to 

develop decision making algorithms for different positions. The functions created to find the best 

pass option will be used when implementing tactics that require a robot to move to an optimal 

passing position. Our robots are able to move to their dedicated positions while isolated using 

our navigation module. The navigation module ensures proper obstacle-avoiding paths and the 

ability to follow the generated path. However, there are limitations when it comes to GameState 

being reevaluated before a path is completed that sometimes prevent the robots moving to the 

correct locations.
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CHAPTER 6 CONCLUSION 
Over the course of four terms, this first-year MQP team researched, designed, developed, 

analyzed, fabricated, assembled, and integrated a prototype robot that has set the groundwork for 

an upcoming WPI RoboCup Small Size League program. The team was able to create a robot in 

a modular setup as well as develop a codebase with the necessary class structure to ensure all 

strategies and mechanics are tested and fine-tuned. The robot design consists of a mechanical 

system, an electrical system, and the software system to enable full autonomy with a master to 

agent relationship.  

The mechanical system includes a chassis consisting of a CNC machined base plate, top 

plate, and drive motor mounts, a ball control assembly including a bespoke dribbler motor and 

solenoid mount superstructure and custom fabricated kicker, dribbler, and chipper, and an offset 

omnidirectional wheel configuration independently driven by high performance brushless DC 

motors. One of the key outcomes of this project is this prototype, which is the physical basis for 

all testing and validation for the foreseeable future as the project progresses. Our contribution to 

this hopefully ongoing project is the fundamental theoretical, physical, and experimental 

knowledge of the system and the groundwork for WPI’s eventual permanent RoboCup Small 

Size League team. 

The electrical system is broken down into the hardware and the firmware. The hardware 

consists of the DF45 drive motors and encoders, the DF20 dribbler motors and encoders, the 

solenoids needed for chipping and kicking the ball, and the PCB stack, which contains the 

Processor, Power, and Kicker boards. The firmware was developed in Microchip Studio using an 

Atmel Start project. The project consists of 13 drivers written in C and C++ within a C++ 

environment for easy integration with the software system. 

The software system includes a well-established simulated environment that provides a 

safe way to test the algorithms and structures within the software architecture without using 

physical robots. This simulator can provide all the information available during a regulation 

match, as well as allow for control of all robots on the field through the same communication 

protocol.  

The tested software architecture is mainly comprised of two focuses: strategy and 

navigation, all written in a C++ environment. The strategy component interprets the game 

information provided by the simulator and then provides the structure of the plays to be run. A 

play can be further broken down into roles, tactics, and skills. The navigation aspect refers to the 

motion of the agents when carrying out a play. It is responsible for a robot to drive to its 

destination in a way that avoids obstacles. 

At a base level, the MQP is an extended period of experiential learning that capstones the 

WPI education. The team learned a lot throughout this process including what it takes to start 

something from scratch. What may seem to be a menial or trivial task can prove to be much 

more complex and intensive than at face value. We learned how to approach these complex tasks 

and leverage our strengths and weaknesses to get the job done. We also learned how to manage 
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unexpected circumstances and how to be flexible in the face of these circumstances for the 

betterment of the team. 
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CHAPTER 7 FUTURE RECOMMENDATIONS 

7.1 MECHANICAL RECOMMENDATIONS 
For further improvement, it is recommended the system be rigorously tested and verified to 

ensure that the team is getting the performance desired from their robots. From there, up to two 

full teams of seven optimized robots each are recommended to be fabricated so that game state 

testing and validation can be performed at full scale, perhaps by working up to this number 

through increasingly larger simulated competitions. Furthermore, it is recommended that future 

teams investigate and solidify a test field and camera vision system mount solution so that testing 

and validation can be reliably performed at will. These recommendations arise from activities 

that the team was unable to perform due to limitations related to time, budget, equipment or 

otherwise. Additionally, the ME subteam was able to scale up production of two additional 

prototypes using 3D printing in D-term, effectively doubling output in half of the time. It is 

recommended that future teams take advantage of these campus resources for rapid prototyping 

as it is cheaper and quicker while making the robots lighter as compared to the aluminum 

counterpart.  

7.2 ECE RECOMMENDATIONS 
Throughout a rigorous year of development, the team discovered several areas of improvement 

which were not acted on due to lack of time, funding, or a combination of the two.  Should this 

project be continued, these recommendations would serve as an important starting point for 

progress on the electrical and computer engineering side of the project. 

7.2.1 BOARD DESIGN 
In the future, it’s recommended using different connectors and integrating the board into a 

slightly larger form factor closer to 18 centimeters. This can be done by importing a DWG file to 

Altium. The team didn't learn of this until late in the MQP. This means a 18cm diameter circle 

can be put into the chassis’ four boards. 

7.2.2 MOTOR DRIVERS 
The nature and behavior of the ESCs was undesirable for developing the motor controller, as 

well as general operation limitations. Due to the ESCs having a dead-band, their behavior was 

not linear and made tuning the motor controller difficult. Additionally, the full potential and 

precision available from the PWM signals was not able to be used due to the limited range of 

duty cycles the ESCs accept. It is recommended that a switch be made from ESCs to motor 

controller ICs to allow for a linear behavior and to use the full range available from the PWM 

signals. 

7.2.3 MOTOR CONTROLLER DERIVATIVE TERM & I-LIMIT 
Due to the procurement of encoders in the last week of MQP and the figuring out of ESCs, the 

team was only able to get the motor controller working unloaded with only proportional and 

integral terms in the 4 days leading up to Project Presentation Day. To get the controller to 

stabilize and converge under the weight of the chassis, we recommend adding a derivative term 

to the controller. This will account for acceleration and therefore decrease the spikes in effort as 
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the controller works overtime. Furthermore, the I-limit of the controller should be implemented 

to ensure the controller doesn’t tend to positive or negative infinity. First, not having a limit will 

accumulate “integral windup” and make the controller response far larger than it should be, 

decreasing its stability. Second, as soon as the ESC receives a command out of its calibrated 

range, the motor will immediately halt, which could be very dangerous in the middle of 

operating (the robot may tip depending on the speed). 

7.2.4 ADDING A THERMISTOR TO SOLENOIDS  
When used for extended periods of time, the solenoids heat up quickly as they dissipate a lot of 

energy. The resistor in this case would be used to calculate a new model for the solenoid based 

on temperature. The heat of the solenoid affects how current flows through it which then affects 

the behavior of the plunger at known voltages. We would need to compensate for this on the 

hardware side to allow higher error tolerance for the software. This could result in failed passes 

due to the ball being kicked too fast.   

7.2.5 BNO085 INTEGRATION 
We recommends the BNO085’s use be fused with SSL vision and the kinematic model using the 

Kalman Filter to increase precision of motion as navigation becomes more fine-tuned. Although 

its development took a lot of time and effort, the BNO085 (IMU) is not currently in use by the 

main firmware loop. We made this decision because the vision system was not set up until the 

last week of MQP. Fortunately, for the foreseeable future, the shared vision system of the Small 

Soccer League provides enough data to determine the heading of the robot with more accuracy 

than an IMU could. SSL receives a still image of the entire field, runs a processing algorithm, 

and returns information of the current game state, chiefly the positions and headings of each 

robot. 

As the continuing team tests and develop the robots’ navigation further, higher precision 

between frames will be desired. The update frequency of the vision system is only 60 Hz, the 

typical shutter rate of a camera. This low frequency heading update means the robot, in between 

frames, must rely on its own kinematics without the complementary checking of the IMU, which 

will lead to considerable error depending on the speed of the robot. There will be two cases to 

implement the Kalman filter with the IMU with different weights, determined experimentally. 

The first case will occur when the robot receives a new heading update with SSL outputs, the 

kinematics, and the IMU as its inputs. The second case (in which the IMU’s data will be 

weighted heavier) will occur in between SSL frames, with kinematics and the IMU as the only 

positional inputs. 

7.2.6 ECE TEAM MEMBERS 
A major challenge we encountered throughout the project was the number of team members 

knowledgeable in certain facets of the project. These facets can be broken down into three areas 

of the ECE curriculum: power, microelectronics, and computer engineering. While all team 

members were well learned with computer engineering, and only one member experienced with 

microelectronics, none of the members were experienced with high voltage and high current 

systems prior to starting or joining the MQP. One of the team members had to learn about power 

electronics during the MQP, and while the power and kicker boards were able to be designed to a 

sufficient degree, it was still an undesirable situation. It is recommended to have a minimum of 
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three students with proficient knowledge in electronic computer engineering for the next year’s 

team, with at least one student having taken power electronics courses, one student having taken 

microelectronics courses, and one student having taken computer engineering courses. This will 

help divide the workload among the members and allow them to focus on their areas of 

expertise. 

7.2.7 TRANSITION TO MPLAB FROM MICROCHIP STUDIO 
The firmware was originally developed in Microchip Studio, but we ran into router 

complications as it is not supported on Ubuntu. Switching over to a different integrated 

development environment (IDE) called MPLab, will enable one to work with the router whilst 

using Ubuntu. This will require different compilers to be downloaded and it will have a different 

design structure built more on applications instead of tools that solve most of the problems you 

will find in Microchip Studio. 

7.3 SOFTWARE RECOMMENDATIONS 
Throughout our development, we have noted areas where improvements could be made. These 

recommendations pertain to the navigation module, multi-robot movement, plays, and strategy in 

general. 

7.3.1 NAVIGATION 
There are still some improvements to be made in both the path planning and the motion control 

areas of the navigation module. To improve the accuracy of paths, a Kalman filter should be 

implemented. The estimation of the other team’s upcoming position can be used to better tune 

the path planning. We have also created a way to check for oncoming collisions. However, this 

was never implemented. This method of collision detection can be used to recalculate paths if 

necessary.  

As for motion control, the PID controllers still need some work. The controllers use the 

distance between the robot’s current position and the robot’s end goal as well as the distance left 

to travel to the robot’s next point along the path to adjust the linear velocities of the robot. This 

has been the best implementation for the PID controllers; however, the tuning was never finished 

to create a stable outcome. Another area that must be investigated is the update rate of each 

robot’s position. Since the update rate of the robot’s position is limited to the framerate of the 

camera, a Kalman filter can also be used to predict where the robot is heading to. Lastly, there 

needs to be some error handling in the navigation module. This was later found to be essential 

for efficient testing of the rest of the strategy module. 

7.3.2 MULTI-ROBOT MOVEMENT 
To alleviate issues with running role tactics at the same time where multiple robots are moving 

towards different destinations, there needs to be some way to ensure that the robots do not get off 

course and continue movement towards the edge of the field. Two options we have considered 

are checking for path completeness, reducing the frequency of reevaluation and including stops 

after reevaluation. The first option would involve making sure all paths are complete before 

performing a reevaluation of game state and role assignments. This would ensure that all robots 

would arrive at their desired destinations before a switch occurs. To help with this, perhaps 

speeds could be adjusted to make it so all robot get to their destinations at the same time in order 
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to avoid having a robot sit still during game play. The other option would be to reduce  the 

frequency at which gamestate is analyzed, and therefore reduce the rate at which roles are 

reassigned. This would give the robots time to get to their destinations, or at least closer, before 

they switch roles. If the frequency of role assignment is reduced, it also may allow a robot to 

remain in it’s role longer, meaning less overall movement around the field and cleaner gameplay. 

While these options both involve changing the strategy code, there also could be a solution found 

in the navigation module to account for what to do when paths are not complete, or how to 

reevaluate paths to readjust to new destinations being found. 

7.3.3 REINFORCEMENT LEARNING 
Given the nature of soccer, where it is likely that other teams will show patterns in the strategy 

decisions their software makes, it would be prudent to implement reinforcement learning. This 

would track the outcome of each play implemented and give rewards for positive outcomes like 

regaining the ball or scoring goals and give negative rewards for negative outcomes like losing 

the ball or goals scored against us. These rewards could be used to rank the available plays for a 

given gamestate and help determine which should be used. Initially ranking plays based on a 

given database but slowly weighting the rewards that are awarded throughout a match more 

heavily would allow for the existing precedent to stand while being continuously modified by the 

newer patterns being displayed. 

7.3.4 SCOUTING UNIT 
Since other teams have been active in the league for years, there is a good amount of existing 

footage of games. This scouting data could be used to our team's advantage if we set up the code 

infrastructure to be able to learn from these past games. This would entail creating software 

capable of analyzing the patterns of other teams and storing that data to be used when our team is 

actually competing.   
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APPENDICES 
Noah’s Packet Protocol 

TABLE 0.1 NPP V1.2 

Noah’s Packet Protocol v1.2 
Byte 0: Information Byte 

Bits 7:4: Reserved Bits 3:0: Target Robot ID Number 

Bit 7: 
Set as 0 

Bit 6: 
Set as 0 

Bit 5: 
Set as 0 

Bit 4: 
Set as 0 

Bit 3: 
Target 
Robot ID 
MSB 

Bit 2: 
Target 
Robot ID 

Bit 1: 
Target 
Robot ID 

Bit 0: 
Target 
Robot ID 
LSB 

Byte 1: Drivetrain Motor 0 Data Byte 0 

Bit 7: 
Drive 
Motor 0 
Data 

Bit 6: 
Drive 
Motor 0 
Data 

Bit 5: 
Drive 
Motor 0 
Data 

Bit 4: 
Drive 
Motor 0 
Data 

Bit 3: 
Drive 
Motor 0 
Data 

Bit 2: 
Drive 
Motor 0 
Data 

Bit 1: 
Drive 
Motor 0 
Data 

Bit 0: 
Drive 
Motor 0 
Data 
LSB 

Byte 2: Drivetrain Motor 0 Data Byte 1 
Bit 15: 
Drive 
Motor 0 
Data 
MSB 

Bit 14: 
Drive 
Motor 0 
Data 

Bit 13: 
Drive 
Motor 0 
Data 

Bit 12: 
Drive 
Motor 0 
Data 

Bit 11: 
Drive 
Motor 0 
Data 

Bit 10: 
Drive 
Motor 0 
Data 

Bit 9: 
Drive 
Motor 0 
Data 

Bit 8: 
Drive 
Motor 0 
Data 

Byte 3: Drivetrain Motor 1 Data Byte 0 
Bit 7: 
Drive 
Motor 1 
Data 

Bit 6: 
Drive 
Motor 1 
Data 

Bit 5: 
Drive 
Motor 1 
Data 

Bit 4: 
Drive 
Motor 1 
Data 

Bit 3: 
Drive 
Motor 1 
Data 

Bit 2: 
Drive 
Motor 1 
Data 

Bit 1: 
Drive 
Motor 1 
Data 

Bit 0: 
Drive 
Motor 1 
Data 
LSB 

Byte 4: Drivetrain Motor 1 Data Byte 1 

Bit 15: 
Drive 
Motor 1 
Data 
MSB 

Bit 14: 
Drive 
Motor 1 
Data 

Bit 13: 
Drive 
Motor 1 
Data 

Bit 12: 
Drive 
Motor 1 
Data 

Bit 11: 
Drive 
Motor 1 
Data 

Bit 10: 
Drive 
Motor 1 
Data 

Bit 9: 
Drive 
Motor 1 
Data 

Bit 8: 
Drive 
Motor 1 
Data 

Byte 5: Drivetrain Motor 2 Data Byte 0 
Bit 7: 
Drive 
Motor 2 
Data 

Bit 6: 
Drive 
Motor 2 
Data 

Bit 5: 
Drive 
Motor 2 
Data 

Bit 4: 
Drive 
Motor 2 
Data 

Bit 3: 
Drive 
Motor 2 
Data 

Bit 2: 
Drive 
Motor 2 
Data 

Bit 1: 
Drive 
Motor 2 
Data 

Bit 0: 
Drive 
Motor 2 
Data 
LSB 

Byte 6: Drivetrain Motor 2 Data Byte 1 

Bit 15: 
Drive 
Motor 2 
Data 

Bit 14: 
Drive 
Motor 2 
Data 

Bit 13: 
Drive 
Motor 2 
Data 

Bit 12: 
Drive 
Motor 2 
Data 

Bit 11: 
Drive 
Motor 2 
Data 

Bit 10: 
Drive 
Motor 2 
Data 

Bit 9: 
Drive 
Motor 2 
Data 

Bit 8: 
Drive 
Motor 2 
Data 
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MSB 

Byte 7: Drivetrain Motor 3 Data Byte 0 
Bit 7: 
Drive 
Motor 3 
Data 

Bit 6: 
Drive 
Motor 3 
Data 

Bit 5: 
Drive 
Motor 3 
Data 

Bit 4: 
Drive 
Motor 3 
Data 

Bit 3: 
Drive 
Motor 3 
Data 

Bit 2: 
Drive 
Motor 3 
Data 

Bit 1: 
Drive 
Motor 3 
Data 

Bit 0: 
Drive 
Motor 3 
Data 
LSB 

Byte 8: Drivetrain Motor 3 Data Byte 1 

Bit 15: 
Drive 
Motor 3 
Data 
MSB 

Bit 14: 
Drive 
Motor 3 
Data 

Bit 13: 
Drive 
Motor 3 
Data 

Bit 12: 
Drive 
Motor 3 
Data 

Bit 11: 
Drive 
Motor 3 
Data 

Bit 10: 
Drive 
Motor 3 
Data 

Bit 9: 
Drive 
Motor 3 
Data 

Bit 8: 
Drive 
Motor 3 
Data 

Byte 9: Dribbler Motor Data Byte 0 
Bit 7: 
Dribbler 
Motor 
Data 

Bit 6: 
Dribbler 
Motor 
Data 

Bit 5: 
Dribbler 
Motor 
Data 

Bit 4: 
Dribbler 
Motor 
Data 

Bit 3: 
Dribbler 
Motor 
Data 

Bit 2: 
Dribbler 
Motor 
Data 

Bit 1: 
Dribbler 
Motor 
Data 

Bit 0: 
Dribbler 
Motor 
Data 
LSB 

Byte 10: Dribbler Motor Data Byte 1 
Bit 15: 
Dribbler 
Motor 
Data 
MSB 

Bit 14: 
Dribbler 
Motor 
Data 

Bit 13: 
Dribbler 
Motor 
Data 

Bit 12: 
Dribbler 
Motor 
Data 

Bit 11: 
Dribbler 
Motor 
Data 

Bit 10: 
Dribbler 
Motor 
Data 

Bit 9: 
Dribbler 
Motor 
Data 

Bit 8: 
Dribbler 
Motor 
Data 

Byte 11: Kicker Data Byte 

Bit 7: 
Kicker 
Data 
MSB 

Bit 6: 
Kicker 
Data 

Bit 5: 
Kicker 
Data 

Bit 4: 
Kicker 
Data 

Bit 3: 
Kicker 
Data 

Bit 2: 
Kicker 
Data 

Bit 1: 
Kicker 
Data 

Bit 0: 
Kicker 
Data 
LSB 

Byte 12: Chipper Data Byte 

Bit 7: 
Chipper 
Data 
MSB 

Bit 6: 
Chipper 
Data 

Bit 5: 
Chipper 
Data 

Bit 4: 
Chipper 
Data 

Bit 3: 
Chipper 
Data 

Bit 2: 
Chipper 
Data 

Bit 1: 
Chipper 
Data 

Bit 0: 
Chipper 
Data 
LSB 

Bytes 31:13: Reserved (Should all be set as 0) 

Minimum Trace Width Calculations 

TABLE 0.2 MINIMUM INTERNAL TRACE WIDTHS 

Minimum Internal Trace Widths 

Current 
Weight(oz/
ft2) 

Temp 
Delta 

Initial 
Temp Area  Width(mm) Width(mm) 

1 1 100 10 10.480893 7.622467637 

0.1936106
78 
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5 1 75 25 

12.104742

63 8.803449184 

0.2236076

09 

10 1 75 25 

20.007936
79 14.55122676 

0.3696011
6 

30 1 75 25 

44.372634
7 32.27100705 

0.8196835
79 

50 1 75 25 

64.262195
63 46.73614227 

1.1870980
14 

1 2 75 25 

3.7687931
92 1.370470252 

0.0348099
44 

5 2 75 25 

12.104742
63 4.401724592 

0.1118038
05 

10 2 75 25 

20.007936
79 7.275613379 

0.1848005
8 

30 2 75 25 

44.372634

7 16.13550353 

0.4098417

9 

50 2 75 25 

64.262195

63 23.36807114 

0.5935490

07 

1 3 75 25 

3.7687931
92 0.913646834 

0.0232066
3 

5 3 75 25 

12.104742
63 2.934483061 

0.0745358
7 

10 3 75 25 

20.007936
79 4.850408919 

0.1232003
87 

30 3 75 25 

44.372634
7 10.75700235 

0.2732278
6 

50 3 75 25 

64.262195
63 15.57871409 

0.3956993
38 

1 4 75 25 

3.7687931

92 0.685235126 

0.0174049

72 

5 4 75 25 

12.104742

63 2.200862296 

0.0559019

02 

10 4 75 25 

20.007936
79 3.63780669 

0.0924002
9 

30 4 75 25 

44.372634
7 8.067751763 

0.2049208
95 

50 4 75 25 

64.262195
63 11.68403557 

0.2967745
03 

1 6 75 25 

3.7687931

92 0.456823417 

0.0116033

15 

5 6 75 25 

12.104742
63 1.467241531 

0.0372679
35 
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10 6 75 25 

20.007936

79 2.42520446 

0.0616001

93 

30 6 75 25 

44.372634
7 5.378501175 

0.1366139
3 

50 6 75 25 

64.262195
63 7.789357046 

0.1978496
69 

 

TABLE 0.3 MINIMUM EXTERNAL TRACE WIDTHS 

Minimum External Trace Widths 

Current 
Weight(oz/
ft2) 

Temp 
Delta 

Initial 
Temp Area  Width(mm) Width(mm) 

1 1 100 10 

4.0288815
59 2.930095679 

0.0744244
3 

5 1 75 25 

44.167818

18 32.12204958 

0.8159000

59 

10 1 75 25 

114.89992
19 83.56357955 

2.1225149
21 

30 1 75 25 

522.89924
62 380.2903609 

9.6593751
67 

50 1 75 25 

1057.8310

03 769.3316384 

19.541023

62 

1 2 75 25 

4.7974381
96 1.744522981 

0.0443108
84 

5 2 75 25 

44.167818
18 16.06102479 

0.4079500
3 

10 2 75 25 

114.89992
19 41.78178978 

1.0612574
6 

30 2 75 25 

522.89924
62 190.1451805 

4.8296875
83 

50 2 75 25 

1057.8310
03 384.6658192 

9.7705118
08 

1 3 75 25 

4.7974381
96 1.16301532 

0.0295405
89 

5 3 75 25 

44.167818

18 10.70734986 

0.2719666

86 

10 3 75 25 

114.89992

19 27.85452652 

0.7075049

74 

30 3 75 25 

522.89924
62 126.7634536 

3.2197917
22 

50 3 75 25 

1057.8310
03 256.4438795 

6.5136745
38 
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1 4 75 25 

4.7974381

96 0.87226149 

0.0221554

42 

5 4 75 25 

44.167818
18 8.030512396 

0.2039750
15 

10 4 75 25 

114.89992
19 20.89089489 

0.5306287
3 

30 4 75 25 

522.89924
62 95.07259023 

2.4148437
92 

50 4 75 25 

1057.8310
03 192.3329096 

4.8852559
04 

1 6 75 25 

4.7974381
96 0.58150766 

0.0147702
95 

5 6 75 25 

44.167818
18 5.353674931 

0.1359833
43 

10 6 75 25 

114.89992

19 13.92726326 

0.3537524

87 

30 6 75 25 

522.89924

62 63.38172682 

1.6098958

61 

7.3.4.1.1 5

0 7.3.4.1.2 6 

7.3.4.1.3 7

5 

7.3.4.1.4 2

5 

7.3.4.1.5 1
057.83100

3 

7.3.4.1.6 128

.2219397 

7.3.4.1.7 3.

256837269 

7.4 LT 3750 CALCULATIONS 
CONSTANTS AND DEFINITIONS  

𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑜𝑖𝑙𝑠 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑜 sec𝑜 𝑛𝑑𝑎𝑟𝑦  =  𝑁  =  10  

𝑣0   =  𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑢𝑡 

𝐼𝑃𝑘   =  𝑝𝑒𝑎𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟 𝑑𝑟𝑖𝑣𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  =  𝑣𝑑𝑠 =  100𝑉  

Constants that are used in equations and are underdefined in the following equations. 

DETERMINING AVG CHARGING CURRENT  

𝐼𝐴 =
𝐼𝑃𝑘 ∗𝑣𝑡

2(𝑣0 +𝑁 × 𝑉𝑡 )
 

𝐼𝐴 =
22.2 ∗ 12

2(249+ 10 × 12𝑉)
 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡   =  𝐼𝐴   =  7.9937  

It is recommended solving for this value as it plays into the simulation as it plays into simulating 

the simulation of the temperature of the circuit. Ipk is pulled from the transistor datasheet as its 

peak current not it continuous current. 
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SETTING CURRENT LIMIT RESISTANCE VOLTAGE  

. 78𝑣/𝑚𝑜ℎ𝑚  ∗ 8 𝑚𝑜ℎ𝑚  =  6.24𝑉   

By picking a 8 mohm sets the stages minimum voltage on the pulse this plays into the 

efficiency of the power transfer between the stages. 

  

TRANSFORMER PRIMARY INDUCTANCE  

𝐿𝑝𝑟𝑖  ≥  
𝑣𝑜𝑢𝑡 ∗ 1𝑢𝑠

𝑁 ∗ 𝐼𝑝𝑘
 

𝐿𝑝𝑟𝑖  ≥  
250 ∗ 1𝑢𝑠

10 ∗ 22.2
 

𝐿𝑝𝑟𝑖  ≥  1.261   

Lpri is an output of the primary stage coil to secondary in this use case we have to select a 

transformer coil.   From this we selected the 2034-ald which has 4:1 coil ratio. 

OUTPUT DIODE SELECTIONS  

𝑃𝑒𝑎𝑘 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑛𝑔   ≥   
22.2

10
 

𝑝𝑟𝑓𝑐𝑟  >   =  2.22  

𝑃𝑒𝑎𝑘 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔   ≥   𝑣𝑜𝑢𝑡  +  𝑣𝑡𝑟𝑎𝑛𝑠 ∗ 𝑁  

𝑝𝑒𝑎𝑘 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑝𝑒𝑡𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔  ≥  370.78  

Recommended selection from this diodes found on Digi key is the murs160 from diode 

incorporated. It has a property that make the second stage more efficient that allows for a more 

efficient power transfer and generating less heat. 
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SETTING THE TARGET VOLTAGE  

 

𝑣0 = (1.24𝑣 ⋅
𝑅𝑣

𝑅(𝐵𝐶𝐼 )

∗ 𝑁) − 𝑣𝑑 

𝑣0 = (1.24𝑣 ⋅
60.4

2.49
∗ 10) − 50 

𝑣0 = 250.78 

 

CAPACITO R DISCHARGE TIME AND  MO NITO RING CIRCUITRY  

VOLTAGE DIVIDER  

𝑣𝑖𝑛/𝑣𝑜𝑢𝑡 = 𝑟2/(𝑟1 + 𝑟2) 

𝑣𝑖𝑛/𝑣𝑜𝑢𝑡 = (10𝑀+ 133𝑘)/133𝑘 

𝑣𝑖𝑛/𝑣𝑜𝑢𝑡  =  76.67  

The voltage divider moves the ratio that moves the 250V limit of the capacitors to a 3.3v 

maximum of the ADC. 

 

RC FILTER  

𝑅𝐶  =  1 ∗ 103 ∗ .1 ∗ 10−6  

𝑅𝐶   = .1𝑚𝑠    

2𝑝𝑖𝑅𝐶  =  . 2𝑝𝑖  

1/(2𝑝𝑖𝑅𝐶) = 1519ℎ𝑧 

An RC filter created to remove the noise of the charging circuit from the measurement of the 

capacitor charge detection. 

  

 

 

CAPACITOR DISCHARGE  CHARACTERISTICS  

                                    4  OHM 900 TURN SOLENOID  

𝜏  =  𝑅𝐶  
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𝜏  =  4 ⋅ 3.6 ⋅ 10−3 

𝜏  =  4 ⋅ 3.6 ⋅ 10−3 

𝜏  =  0.0144  

𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 ′𝑑𝑖𝑠𝑐ℎ arg𝑒′  𝑡𝑖𝑚𝑒  = − 5𝜏  =  . 072  

𝑉𝐶  =  𝑉𝑠 ⋅ 𝑒
−

𝑡
𝑅𝐶  

𝑉𝐶  =  250 ⋅ 𝑒
−

𝑡

4⋅3.6⋅10−3  

This is the approximate amount of time until a capacitor is adequately discharged in the 4 ohm 

consideration is an insight into the power drop off upon activation. These are the equations we 

use to model the discharge and to set the timings for current discharge. Problems exist as in the 

later stage of testing we ran into the issue of temperature changing the resistance of the solenoid. 

  

12 O HM 3510  TURN SO LENO ID  

 

𝜏   =  𝑅𝐶  

𝜏   =  12 ⋅ 3.6 ⋅ 10 −3 

𝜏   =  . 0432   

𝑉𝐶  =  250 ⋅ 𝑒
−

𝑡

12⋅3.6⋅10−3  

 

This calculation is like the above but has a 4 ohm 900 amperes turn except we have a second 

solenoid that was configured differently and has slightly different properties. These were 

characterized to be modeled and used on the robot as well. 

 

 

 

 


