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Abstract

Complex event processing (CEP) has become increasingly important in modern applications,

ranging from supply chain management for RFID tracking to real-time intrusion detection. These

monitoring applications must detect complex event pattern sequences in event streams. However,

the state-of-art in the CEP literature such as SASE, ZStream or Cayuga either do not support the

specification of nesting for pattern queries altogether or they limit the nesting of non-occurrence

expressions over composite event types. A recent work by Liu et al proposed a nested complex

event pattern expression language, called NEEL (Nested Complex Event Language), that supports

the specification of the non-occurrence over complex expressions. However, their work did not

carefully consider predicate handling in these nested queries, especially in the context of complex

negation. Yet it is well-known that predicate specification is a critical component of any query

language. To overcome this gap, we now design a nested complex event pattern expression lan-

guage called NEEL+, as an extension of the NEEL language, specifying nested CEP queries with

predicates. We rigorously define the syntax and semantics of the NEEL+ language, with partic-

ular focus on predicate scoping and predicate placement. Accordingly, we introduce a top-down

execution paradigm which recursively computes a nested NEEL+ query from the outermost query

to the innermost one. We integrate predicate evaluation as part of the overall query evaluation

process. Moreover, we design two optimization techniques that reduce the computation costs for

processing NEEL+ queries. One, the intra-query method, called predicate push-in, optimizes each

individual query component of a nested query by pushing the predicate evaluation into the pro-

cess of computing the query rather than evaluating predicates at the end of the computation of that

particular query. Two, the inter-query method, called predicate shortcutting, optimizes inter-query

predicate evaluation. That is, it evaluates the predicates that correlate different query components

within a nested query by exploiting a light weight predicate short cut. The NEEL+ system caches

values of the equivalence attributes from the incoming data stream. When the computation starts,

the system checks the existence of the attribute value of the outer query component in the cache

and the predicate acts as a shortcut to early terminate the computation. Lastly, we conduct exper-
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imental studies to evaluate the CPU processing resources of the NEEL+ System with and without

optimization techniques using real-world stock trading data streams. Our results confirm that our

optimization techniques when applied to NEEL+ in a rich variety of cases result in a 10 fold faster

query processing performance than the NEEL+ system without optimization.
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Chapter 1

Introduction

1.1 Motivation

Complex event processing (CEP) has become increasingly important in modern applications, rang-

ing from supply chain management for RFID tracking to real-time intrusion detection [20, 2, 14].

These monitoring applications submit complex queries to track sequences of events that match a

given pattern on real time event streams. These complex patterns often correspond to the arbitrary

nesting of sequence operators and the flexible use of negation in such nested sequences. For ex-

ample, consider reporting contaminated medical equipments in a hospital [4, 7, 6]. Let us assume

that the tools for medical operations are RFID-tagged. The system monitors the histories of the

equipment (such as, records of surgical usage, of washing, sharpening and disinfection). When a

healthcare worker puts a box of surgical tools into a surgical table equipped with RFID readers, the

computer would display approximate warnings such as “This tool must be disposed”. The query

Q1 = SEQ (Recycle r, Washing w, NOT SEQ(Sharpening s, Disinfection d, Checking c), Operat-

ing op) Where ([ID] (equality on ID) and op.ins-type = “surgery”) in Figure 1.1s expresses this

critical condition that after being recycled and washed, a surgery tool is being put back into use

without first being sharpened, disinfected and then checked for quality assurance. Such complex

sequence queries contain equality checks on variable attributes and complex negation specifying
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the non-occurrence of composite event instances. In this example query, the predicates requires

equality on all event IDs of both the positive events and the negative composite event of sharpened,

disinfected and checked subsequences.

The state-of-art CEP systems (such as SASE [20] and ZStream [14]) do not support nested CEP

queries. Cayuga [2] only allows sub-queries in the FROM clause (of standard SQL [10]). It also

doesn’t support applying negation over composite event types. While CEDR [3] allows applying

negation over composite event types within their proposed language, the execution strategy for

such nested queries is not discussed. In short, processing techniques and optimization mechanisms

for nested CEP queries have not been proposed by these state-of-the-art solutions.

In a recent work by Liu et al [12], a nested CEP language NEEL(Nested Complex Event Lan-

guage) was proposed, which supports the nesting of Sequence, AND, OR and Negation expres-

sions. [13] introduces an iterative nested execution strategy for processing nested event queries

expressed in NEEL [12]. However, their work did not carefully consider predicate handling in

these nested queries in the context of negation (i.e. non-occurrence). Yet, most queries in practice

indeed involve predicate specifications. For instance, in Figure 1.1, we are looking for operating

tools that match the specified pattern. However, without specifying the equality on the ID attribute,

the query would return results composed of event instances that might have different id values. For

example, a match of the example query could be < Recycle,Washing,Operating >, with the

Recycle event on tool 1, the Washing event on tool 2 and the Operating event on tool 3. Such

matchings are clearly not meaningful. The CEP system would trigger a lot of false alarms. In-

stead, we are only interested in whether a given operating tool is under a particular sequence of

actions - meaning the equality predicates among all event instances are critical for the correct se-

mantics in this application context. Due to the presence of non-existential operators (NOT queries)

in NEEL, integrating predicates into NEEL queries is not straightforward. For example, in a nested

query written in NEEL syntax: q = SEQ(A, !B,C;A.id = B.id), if there is no B existing be-

tween A and C, the predicate makes no sense since it cannot be evaluated. Therefore, supporting

predicates in nested CEP queries pose several subtle challenges as we will explain below.
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OperatingRecycle Washing

WinSeq(Recycle r, Washing w, , Operating o)

WinSeq(Sharpening s, Disinfection d, Checking c)

Sharpening Disinfection Checking

(r.id = w.id = o.id and o.ins_type = surgery”)

(s.id = d.id = c.id=o.id)

!

RFID readings

Complex Events

Figure 1.1: Nested Query Q1

1.2 Problems to be Tackled

As stated above, most queries in practice involve predicate specifications. However, there is no

existing system that processes a nested CEP query with negative expressions and predicates.

Problem 1: There is no syntax and semantics defining the nested query that supports predicate

specification, especially the meaning of predicates under the negation scope. As the example stated

at the end of last chapter shows, integrating predicates into nested CEP queries is not straightfor-

ward. Therefore, we need to define correct syntax and semantics to address that.

Problem 2: There is no existing system supports processing nested queries with predicates.

The existing systems either process flat queries with predicates or nested queries without queries.

Therefore, there is also a need for developing a query processing model that correctly processes

nested CEP queries with predicates. While the top-down iterative execution paradigm adopted

from the NEEL system will be applied here to process the nested CEP queries, we now consider

predicate evaluation processing integrated into the iterative process model.

Problem 3: The iterative process integrated with predicate evaluation contains two phases.

It first computes the an individual query component and then run the predicate evaluation on the

resulting matches. However, this might involve unnecessary computation as the predicates might

be able to terminate the computation in an earlier stage without computing the whole matches.

Therefore, optimization techniques are needed to reduce the computation costs.
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1.3 Task Accomplished

In this thesis we work with a new language, called NEEL+, which extends the NEEL system to

support predicates both syntactically and semantically. The language design is based on the work

by Prof. Dougherty. To support the processing of the queries expressed in the new language,

we design a processing framework that correctly handles these NEEL+ queries. Moreover, we

investigate methods that avoid re-computations when dealing with queries with predicates. Lastly,

we evaluate the NEEL+ system with optimization techniques against that without optimization

techniques. In short, we accomplish the following tasks:

1. Present Syntax and Semantics of NEEL+: Define the syntax and semantics of NEEL+ for

nested queries with predicates.

2. Design the Processing Model of NEEL+: Design a processing model for NEEL+ queries,

such as iterative processing and predicate handling.

3. Develop Optimization Strategies: Develop optimization approaches for NEEL+ queries,

such as intra-query predicate optimization and inter-query predicate optimization

4. Develop the System: Implement the system, including the processing engine and the opti-

mization techniques.

5. Experimental Evaluation:Compare the performance of optimized NEEL+ against that with-

out optimization.
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Chapter 2

Syntax and Semantics of NEEL+ Language

This chapter gives an introduction of the NEEL+ language on which the work of this thesis is built.

The language definition is based on the notes by Professor Dan Dougherty from the Computer

Science Department of WPI.

2.1 Syntax of NEEL+

To fully understand the language description, one should have the intuition of the terms target

variable and free variable. These terms are introduced in order to support meaningful predicates

in a query. Target variables are the variables that we match against primitive events in the input

stream in order to compute the result of the query. Free variables in a query is the set of variables

bound to predicates. The target variables of a query are also free variables, but when looking at a

sub-query, the target variables of the outer query might be free in the context of the sub-query.

The syntax of NEEL+ queries is defined as below:

• A simple query is an expression of the form (A x) : α(x, y⃗) where A is a primitive event

type, x is a variable of type A and α is a boolean combination of atomic formulas.

FV ((A x) : α(x, y⃗)) = {x, y⃗} and TV (A x) : α(x, y⃗) = {x}

• If q is a query, then !q is a query.
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TV (!q) = ∅ and FV (!q) = FV (q) \ TV (q)

• Suppose that q1, . . . , qn are queries, then

– AND(q1, . . . , qn) is a query, with

– TV (AND(q1, . . . , qn)) =
∪
{TV (qi)|1 ≤ i ≤ n}

– FV (AND(q1, . . . , qn)) =
∪
{FV (qi)|1 ≤ i ≤ n}

• Suppose that q1, . . . , qn are queries, then

– OR(q1, . . . , qn) is a query, with

– TV (OR(q1, . . . , qn)) =
∪
{TV (qi)|1 ≤ i ≤ n}

– FV (OR(q1, . . . , qn)) =
∪

{FV (qi)|1 ≤ i ≤ n}

• If q is a query and x is a variable, then

– (∃x.q) is a query, with

– TV (∃x.q) = TV (q) \ {x}

– FV (∃x.q) = FV (q) \ {x}

• Suppose that for each 1 ≤ i ≤ n, qi is a query; then

– SEQ(q1, . . . , qn) is a query. If qi has a ! before it, qi is called the negative part,

otherwise qi is called the positive part. For every query p in the positive part, and every

r in the negative part, TV (r)
∩
FV (p) = ∅.

This restriction amounts to the requirement that no query in the positive part can make

reference to the target variable of a query in the negative part.

– TV (SEQ(q1, . . . , qn)) =
∪

{TV (qi)|1 ≤ i ≤ k},where qi belongs to the positive part

and k is the size of the positive part

– FV (SEQ(q1, . . . , qn)) =
∪
{TV (qi)|1 ≤ i ≤ n}

6



Consider the query Q1 below:

Q1 = ∃ c : SEQ((A a), !(B b : b.id = a.id), (C c))

When we see from the perspective of the whole query Q1, the only target variable is ’a’ and the

only free variable is also ’a’. From the perspective of the subquery ((B b) : b.id = a.id) the target

variable is ’b’, and both ’a’ and ’b’ are free. In the !-expression !((B b) : b.id = a.id) ’a’ is free, but

there are no target variables. In SEQ((A a); !((B b) : b.id = a.id); (C c)) the target variables are ’a’

and ’c’, and these are the free variables as well.

Take Query Q2 as example:

Q2 = SEQ((A a, !B b, !SEQ(C c, D d), E e)

Q2 is a nested query. The target variables and free variables of Q2 are both ’a’ and ’e’. The positive

part of Q2 are ’A a’ and ’E e’, while the negative part of Q2 are ’B b’ and ’SEQ(C c, D d)’.

Take another query Q3 as example:

Q3 = SEQ((A a: a.id = b.id), !SEQ(B b, C c), D d)

Query Q3 is not a valid query, as we stated that no query in the positive part can make reference

to the target variable of a query in the negative part. Since b is a free variable from the negative

part, the predicate a.id = b.id must be attached to the variable in the !SEQ query.

2.2 Semantics of NEEL+

In order to introduce the semantics of NEEL+, we first introduce the concept of binding. Let

H be an event history, which is an ordered set of primitive event instances. Then a binding is

a mapping from the target variables to the event instances in the history, with timestamp of the

events in increasing order. For example, let H be [a1 a2 b3 c4], where the subscript stands for time

7



stamp. Let a query be SEQ(A a, B b), where a and b are the target variables. Then <a1, b3> is a

binding and <a2, b3> is another one. Both of them have event B’s timestamp later than event A’s

timestamp. The meaning of a query q over a history is defined as a set of bindings. If the query

only contains positive parts, the bindings will only include the target variables of the query. In the

case of a query containing negative parts, the concept of extension of a binding will be introduced.

Let q be a query and let β0 be a binding whose domain is TV(q). We define a binding β as an

extension of binding β0 if the domain of β is a superset of β0. By superset, we mean that β is a

binding with domain equal to TV(p)
∪

TV(r), where p stands for the positive part of q and r stands

for the negative part of q without the negation (”!”). If such extension is found, the binding β0 will

be rejected.

We can use a game between player P(os) and player N(eg) to better explain the semantics. Let

the history be H = [a1, b2, e3, c4, d5], where the subscript stands for the timestamp. Let the query

be Q = SEQ(A a, !SEQ(B b, C c), D d). Moves by players are as below: 1. For player P(os), mask

all negative expressions (only consider the positive part of Q). P(os) plays (a− > a1, d− > d5)

on Q1 = SEQ(A a, D d) 2. For play N(eg), mask the negation symbol (”!”) only. N(eg) plays

(a− > a1, b− > b2, c− > c4, d− > d5) on the Q2 = SEQ(A a, SEQ(B b, C c), D d). The winning

condition of this game is that the other player cannot move. In this example, N(eg) plays the last

step (w− > a1, x− > b2, y− > c4, z− > d5) while the P(os) cannot make another move, as the

P(os) player has no more negation to mask in order to find a binding against N(eg)’s move. The

P(os) player loses and therefore (w− > a1, z− > d5) is not returned.

More precisely, let q be a query and let β be a binding over history H whose domain includes

TV (q). We will shortly define what it means for a binding β to satisfy a query q in history H ,

denoted H, β |= q. Anticipating this definition we define the meaning of a query as follows.

Definition 1 (Semantics of Queries) Let q be a query and let H be a history. The meaning of q

on H , written q[H], is the set of those bindings β0 such that

• the domain of β0 is a subset of TV (q), and
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• there is an extension β of β0 such that H, β |= q.

It remains to define H, β |= q. Since this will be an inductive definition, we need to define

H, β |= q even when the domain of β includes free variables of q that are not target variables.

Definition 2 Let H be a history, let q be a query, and let β be a binding over H . We define

H, β |= q

by induction on the level of nesting of negations, with a sub-induction on the size of q.

• Case: q is (A x) : α(x, y⃗)

H, β |= q if α(x, y⃗) is true in H under β.

• Case: q is AND(q1, . . . , qn)

H, β |= q if for each i, H, β |= qi

• Case: q is OR(q1, . . . , qn)

H, β |= q if for some i, H, β |= qi

(This OR case is the fact that the domain of β doesn’t have to include all the TV qi, since as

long as there is a qi that has matches, the OR would have return value.)

• Case: q is (∃x.p)

Let β−x be the binding obtained by removing x from the domain of β. Then H, β |= q if there

is an extension β+ of β−x such that H, β+ |= p.

• Case: q is SEQ(q1, . . . , qn)

– For each i, let βi be the binding for qi. Let Ci be the range of βi, which is a sequence of

timestamps in increasing order. Ci.ts and Ci.te are defined as the beginning timestamp

and ending timestamp.

Now we say that H, β |= SEQ(q1, . . . , qn) if for each 1 ≤ i < n:
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1. H, β |= Qi for each i 1, Ci.te ≺ Ci+1.ts

– Let the positive part of q be ⟨p1, . . . , pk⟩. Then we say that H, β |= SEQ(q1, . . . , qn) if

1. H, β |= SEQ(p1, . . . , pk), and

2. for no extension β+ of β do we have H, β+ |= masknegation(SEQ(q1, . . . , qn)),

where masknegation() masks the negation (”!”) in the negative parts of q.

For example, consider reporting contaminated medical equipments in a hospital [4]. Let us

assume that the tools for medical operations are RFID-tagged. The system monitors the histories

of the equipment (such as, records of surgical usage, washing, sharpening and disinfection). The

query in Fig 2 expresses the critical condition that after being recycled and washed, a surgery tool

is being put back into use without first being sharpened, disinfected and then checked for quality

assurance. When written in NEEL+ syntax, the query is as below:SEQ((Recycle r:r.id = w.id),

(Washing w:w.id = o.id), !SEQ((Sharpening s:s.id = d.id), (Disinfection d:d.id = c.id), (Checking

c:c.id = o.id)), Operating o). The target variable binding of the above query is <r,w,o>. Suppose

we have found the binding β0, the extension β of β0 is binding of the query formed by masking the

negation. In this case, the target variable of the new formed query would be <r,w,s,d,c,o>. Let

the history be H = [r1, w2, s3, d4, c5, o10]. Therefore we would have binding β0 as <r1, w2, o10>

and β as <r1, w2, s3, d4, c5, o10>. When such β is found, the binding β0 would be rejected since

the negation indicates that such an extension β is not supposed to be found.

1yes, we mean β, not βi
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Chapter 3

Processing Model for NEEL+ Language

3.1 System Design

We first briefly introduce the architecture of CHAOS [8], upon which we built our system. Fig-

ure 3.1 shows the CHAOS platform and its integration with the enterprize applications. When data

streams from sensors are read into the input stream queues of the CHAOS platform, the first unit

provides data reduction functionality to summarize or significantly reduce the data volume to be

processed by the following units. The Complex Event Processing component processes the refined

data stream and searches for patterns that match the user defined query.

Our focus is on the Complex Event Processing component. The NEEL+ system is built upon

the CHAOS platform with the capability of processing nested CEP queries with predicates. The

design of the NEEL+ system can be seen in Fig 3.2, which fits in the Complex Event Processing

component in CHAOS architecture.

Query Parser parses the user input query from its textual format into the system’s data struc-

tures.

Physical Plan Generator contains two sub-components: Plan Optimizer and Execution Plan Gen-

erator. The Execution Plan Generator component takes in the parsed query and generates the
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Figure 3.1: CHAOS Architecture

processing plan for the query, including the query processing order, predicate evaluation strategy

from the Plan Optimizer and the related data structures to support the process. The Plan Optimizer

takes in the statistics gathered by the Query Executor and decides what predicate process strategy

to use. The main goal of the optimization techniques is to reduce computation. This is achieved

by deciding where to place the predicates, when to evaluate them and what kind of data to cache

to obtain more efficient processing.

Query Executor contains three sub-components. The Physical Operator processes the query on the

input stream using an iterative paradigm, which will be introduced below. The Predicate Evaluator

is a subcomponent of the Query Executor and is responsible for processing the predicates. The

Statistic Gatherer continuously gathers statistics from the input data stream or the computational
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Figure 3.2: NEEL+ System Design

results and feeds them back to the plan optimizer to generate or update optimization strategies.

Figure 3.3: Major Class Diagram
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Figure 3.4: Example Query 1

Figure 3.3 shows the major class diagram of the NEEL+ system. We will use the query in

Figure 3.4 to illustrate the interactions among the classes. Figure 3.4 shows a nested query, with a

!SEQ sub-query nested between variable d and a and a SEQ sub-query nested between variable s

and i. The target variables of the outer SEQ query are d, a, s and i. The target variables of the first

SEQ sub-query (i.e. !SEQ) are y and ii. The target variables of the second SEQ sub-query are p

and c.

QueryInfo: The input textual query will be parsed into the QueryInfo data structure by the Query

Parser component introduced in the system design. Each Physical Operator and the information in

it is corresponding to a QueryInfo object, with information like target variables, negative variables,

children queries, predicates and result buffer for this query. In Figure 3.4, three QueryInfo objects

will be created and stored since there are three SEQ queries in total.

• targetVariable: The target variables of a query are the variables that we match against prim-

itive events in the input stream in order to compute the result of the query. They are the

variables without a ”!” in front of them. In Figure 3.4, the target variables of the outer SEQ

query are d, s, and i. The target variables of the first SEQ sub-query (when considered

without ”!”) are y and ii. The target variables of the second SEQ sub-query are p and c.

• negativeVariables: The negative variables are those variables that are not being returned, but

used to filter out the results of the target variable matching. They are the variables with a ”!”

in front of them. In Figure 3.4, only the first query has a negative variable, namely, a.

• childrenQuery: It stores the QueryInfo objects that are nested under the current QueryInfo

object. In Figure 3.4, the childrenQuery data structure of the first QueryInfo object contains
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two objects, which are the QueryInfo objects of !SEQ and SEQ sub-queries. The children-

Query data structures of the two sub-queries are both empty since the two sub-queries don’t

have any nested queries.

• predicates: It stores the predicates attached to the variables of the current queryInfo object.

In Figure 3.4, the outer SEQ query has one predicate i.id = d.id attached to the variable i.

The first SEQ sub-query has a correlated predicate y.id = d.id attached to the variable y.

Lastly, the second SEQ sub-query also has a correlated predicate p.id = i.id attached to the

variable p

• resultBuffer: It stores the matching results from the target variables of the current queryInfo

object to the input stream. In Figure 3.4, the result buffer of the outer SEQ query stores

the results when computing those <d, s, i> sequences. The result buffer of the first SEQ

sub-query stores the result when computing those <y, ii> sequences. The result buffer of

the third query stores those <p, c> sequences. The query executor will manage these buffer

based on the query plan. It will terminate the computation and clear the buffer or keep the

buffer for joining purpose based on the status of the negative query’s resultBuffer

PhysicalOperator: Each PhysicalOperator object is associated with one single QueryInfo object.

The PhysicalOperator is the generalization of three concrete classes: SEQOperator, ANDOperator

and OROperator. In the example, the nested sub-queries are all SEQ expressions. Therefore,

each QueryInfo is associated with a SEQOperator object. The concrete operator is responsible for

processing its corresponding query.

PredicateEvaluator: It is utilized by the PhysicalOperator object during the computation of a

valid binding. It takes in the predicate objects and the computed bindings and returns a boolean

value indicating whether the predicate evaluation passes or not.
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3.2 Processing Paradigm

3.2.1 Iterative Execution Paradigm

Following the principle of nested query execution for SQL queries [17, 16, 19, 18], in NEEL+ we

execute nested CEP queries using an iterative execution strategy. First we maintain run time stacks

that keep track of incoming events. We define the last event of the outermost query expression

as the trigger event, which will trigger the computation to start. The computation starts when

the trigger event arrives and finds all possible matches within the predefined window size. The

main processing flow is to evaluate the outer query first followed by its inner sub-queries. After

computing an outer query, the predicates associated with this query will be evaluated. When

computing an inner query, the computed results from the outer query will be passed down for the

correlated predicate evaluation. Also, more stringent window constraints from outer queries will

be passed down to inner queries. These sub-queries compute results involving events within the

substream constrained by the constraint window. The results of positive inner queries are passed

up and joined with the results of the outer query. The outer sequence result is filtered if the result

set of any of its negative sub-queries is not empty.

3.2.2 Processing Nested Queries with Negation

Negative queries merely behave as complex filters, filtering out the positive components if a bind-

ing for the negative part is found within a stipulated time interval. For example, a flat SEQ query

has a negative !A between positive B and C event types, b and c are stored in the targetVariable

object while a is stored in the negativeVariable object of the current queryInfo object. We first

evaluate the query without the negative expression, i.e., compute the bindings for <b,c>. We store

the resulting bindings in the resultBuffer object of the current queryInfo object. Then we iterate

the bindings in this resultBuffer to check if an A event occurred between the qualified B and C

events. If such an occurrence exists, such bindings for <b,c> are discarded.

A sub-query as a whole could also be negated. For example, SEQ(A a, ! SEQ(B b, C c), D
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d). For each binding of outer query SEQ(A a, D d), we pass it down for the search of SEQ(B b, C

c) bindings occurring between such A and D events. If none exists, then the passed down <a,d>

binding is returned, otherwise it is filtered out.

3.2.3 Predicate Testing

We have three types of predicates: unary predicates, binary predicates related to the variables

within the same query component and binary predicates across different query components, which

we will refer to as correlated predicates. For the first and second type of predicates, predicate

testing will be done when the target variable bindings of the query component have been found.

The constructed binding will be kept if it satisfies the predicate conditions. Later it would join

the bindings passed up by sub-queries to form the final result for the whole query. Otherwise

the binding will be filtered out. For the last type, namely correlated predicates, information from

the corresponding variables on the upper query component is required. In order to evaluate these

predicates, the bindings from the corresponding query component are stored and passed down to

the computation of the children queries. Therefore, when the children queries are being computed,

they can access the binding information from the upper query components.

SEQ(Recycle r, (Washing w: w.id = r.id),
! SEQ((Sharpening s: s.id =o.id),

(Disinfection d : d.id = s.id), 
(Checking c: c.id = s.id)),

(Operating o: o.id = w.id, o.ins-type = “surgery”))

Figure 3.5: Example Query 2

Consider the query in Figure 3.5. We will illustrate how to evaluate the three types of predicates

using Figure 3.5. Let H = [r1 w1 s1 d1 c1 o1 r2], where the subscript stands for the id value and

their timestamp is in increasing order. When trigger event o1 arrives, we start constructing the

binding for the outermost query component. Each event contains several attributes such as event
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name, id, timestamp and so on. When the sequence <r1, w1, o1> is constructed, it will be stored

in the resultBuffer object of the QueryInfo object corresponding to the outermost SEQ query. The

predicate o.ins− type = ”surgery” will be first tested by the PredicateEvalutor. If the ins-type of o1

is not equal to surgery, the constructed binding will be filtered. If the unary predicate is satisfied,

then the binary predicate on this query component such o.id = w.id and w.id = r.id will be tested.

They are all satisfied as their id values are all 1. Therefore, the binding <r1, w1, o1> will be stored

in the resultBuffer object of the current QuqryInfo object. Since the binding of the outer query

is found, it will be passed down to the nested subquery for further computation. The subquery is

computed under the time constraint bound by the w1 and o1 event pair. We start with the last event

c1 in the inner query and repeat the same sequence construction process. When the binding <s1,

d1, c1> is found, we start to evaluate the predicates of the current query component. For c.id =

s.id and d.id = s.id, it’s the same as described above. For evaluating s.id = r.id, we require the

information from the binding passed down by the outer query. They are all satisfied since their id

values are all 1. Since the sub-query is a negative query, the found binding will not be stored in the

resultBuffer object. However, binding <r1, w1, o1> will be rejected since we have found a match

in the nested negative subquery and the resultBuffer object of the outermost SEQ query component

will be cleared.

3.2.4 Query Processing Algorithm

The process algorithm is listed in Algorithm 1.

3.2.5 Example for Illustrating the Process Algorithm

We will use the example query in Figure 3.4 to illustrate the processing algorithm for better under-

standing of how the processing algorithm works.

The query plan of the nested query with three SEQ operators is shown in Figure 3.6. As defined

in the previous chapter, the trigger event is the incoming event that starts the computation of the

query. The trigger event of this query is INTC. The computation starts when the trigger event
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Algorithm 1 processQuery
Require: QueryInfo q {t is the trigger tuple, left and right are the bounding timestamps}

1: ResultBuffer parentResult, finalResult
2: parentResult = computeSingleQuery(q) {computeSingleQuery() computes the bindings of a

individual query component}
3: parentResult = evaluatePredicate(q, parentResult)

{if there is no valid binding, return null}
4: if parentResult.size = 0 then
5: return null;
6: end if
7: if q.subQuery.size() ̸= 0 then
8: HashMap<childId, ResultBuffer> childResult

{recursively call the compute processs}
9: for each ri in parentResult do

10: for each qi in q.SubQuery do
11: childResult.put(qi.Id, processQuery(qi))
12: end for
13: finalResult.add(join(childResult, ri)) {join the current binding with the list of chil-

dResults, and add it to the finalResult list}
14: end for
15: else
16: return parentResult
17: end if
18: return finalResult

Figure 3.6: Example Query 3

comes.

The steps can be enumerated as follows:

1. Compute positive parts of the query. Mask all the negative parts of the current query under
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Figure 3.7: Query Plan with Negative Parts Masked

Figure 3.8: Query Plan with Unmasked Negative Parts

computation and construct the new query plan. Compute the query according to the new

formed query plan. In Query 3 (Figure 3.6), when taking away all the negative parts, namely

!AMAT a and !SEQ((Y HOO y : y.id = d.id), RIMM ii), the query plan is shown in

Figure 3.7. Then we compute the bindings according to the query plan above, we get a

list of bindings for the target variables <d, s, p, c, i>. When computing the positive parts,

namely SEQ(DELL d, MSFT s, SEQ((IPIX p : p.id = d.id), CSCO c), (INTC

i : i.id = d.id)), we will have the following situations:

• Flat query. For example, SEQ(DELL d, MSFT s, INTC i). In this case, we use

the processing method introduced in SASE [20] to compute the bindings for this query

when the trigger event of type INTC arrives.

• A query with nested positive queries. For example, SEQ(DELL d,MSFT s, SEQ(IPIX

p, CSCO c), INTC i). In this case, we first compute the sequences <d, s, i>. For

each result obtained, we compute the nested query, which is SEQ(IPIX p, CSCO c),
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using the same method we discuss in the flat query situation. Then we join both result

sets by the time constraints from the upper query, in this case, timestamps of variable

d and r are the constraints for the nested SEQ sub-query SEQ(IPIX p, CSCO c).

If the sub-queries are further nested, we recursively repeat the same process until the

lowest sub-query has been computed.

2. Evaluate predicates for the computed bindings and filter out bindings that fail the predicate

evaluation. In Figure 3.7, we have two predicates, i.id = d.id and p.id = d.id. If both

predicate tests return true, the binding will be kept, otherwise it will be filtered.

3. Now only mask the negations (”!”) from Query 3(Figure 3.6), we get a new query plan as

shown in Figure 3.8. Then we compute bindings for this query plan, which are the extensions

of the bindings computed based on Figure 3.7. For each of the bindings computed in step 2,

we compute the extensions and we will get a set of extensions that match the input stream to

the target variables in query plan 2, i.e. <d, a, y, ii, s, p, c, i>. Those bindings computed in

step 2 that have extensions are the ones potentially to be filtered. Now it remains to run the

predicate tests for the extensions. In this case, there is only one predicate to be evaluated in

the new computed extensions, namely y.id = d.id.

4. Evaluate predicates for the computed extensions. If the extensions pass the predicate evalua-

tion, the binding from Figure 3.7 should be filtered out, because the predicates are under the

negation(”!”) condition. In Figure 3.8, the extensions are computed based on the bindings

passed down from the the computational result of Figure 3.7. Therefore, when we evaluate

the predicate y.id = d.id, we can access the information of the variable d to perform the

evaluation. If the predicate test returns true, the binding will be filtered since we have found

the extensions with all predicate conditions satisfied.
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Chapter 4

Optimization Strategies for Processing

NEEL+ Queries

The throughput of a given query is mainly decided by the data distribution of the data stream and

the resulting selectivity of predicates. In ZStream [14], they use the tree-based query plans for

both the logical and physical representation of the squery patterns. Several equivalent physical tree

plans with different evaluation costs can be constructed for one logical CEP query. They capture

the runtime behavior of a physical plan. They then choose the optimal one with lowest cost.s In

this thesis, since we focus on supporting predicates for nested complex event processing, our opti-

mization techniques fall on optimizing the predicate processing in nested CEP context. Also, due

to the high volume of high speed-data streams and the large window sizes in many large deploy-

ments of applications, many results will be generated in a sliding window. Therefore, the main

factor that affects the throughput of the CEP queries is effectively filtering via the predicates. This

is where we develop optimization techniques to improve the system performance. We accordingly

do not focus on the issue of join ordering tackled in ZStreem [14], but instead use the NFA-based

approach–a fixed order evaluation as done in NEEL [12] and SASE [20]. Our goal is to reduce the

computation costs and to avoid re-computation. To achieve this, two techniques are proposed.
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4.1 Intra-Query Approach: Predicate Push-in

The processing algorithm in Chapter 3 evaluates predicates for each query after the bindings of that

query have been computed. However, it is not necessary to always compute the whole bindings first

since the predicate might be related to variables in the early computation stage. If we evaluate the

predicates at an early stage, we can avoid further computation if the predicate evaluation were to

fail and thus filter the partial binding. Hence, instead of evaluating predicates after the computation

of the whole binding, we optimize the query processing by pushing the predicate evaluation into

the computation process. Consider the example in Figure 4.1:

SEQ(Recycle r, Washing w,(Operating o: o.id = w.id,))

Figure 4.1: Example Query 4

The default process is to compute bindings for <r,w,o> first, and then to test the predicate o.id

= w.id. As we have noticed, the predicate only includes Washing and Operating events. According

to the computation paradigm introduced in Chapter 3, we start computing backwards when we

meet the trigger event “Operating”. When the computation reaches the “Washing”, we will have

the information for running the predicate o.id = w.id. If this condition is not satisfied, we can filter

out this result without further computing the remainder of this binding. The idea is to push the

predicate evaluation into the computation process and thus have the predicates evaluated as soon

as the computation stage has the data the predicates need. This approach saves the computation

costs by early terminating the computation process.

In this example, the predicate is attached to the event type “Operating”. Here we cannot eval-

uate the predicate o.id = w.id because the ”Washing” event is not yet been identified in our partial

binding. This means we need to check if there is any predicate ready to run whenever the com-

putation reaches a new event type. To avoid repeatedly checking available predicates, we now

introduce the predicate relocation procedure.

There are two kinds of predicates in NEEL+, unary predicates and binary predicates. When
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relocating predicates, we only consider binary predicates because a unary predicate is only related

to one single variable and thus no relocation is needed. Since a binary predicate is related to

two variables, the predicate can be attached to either variable by our syntax (see Section 2). To

support predicate relocation, the optimizer introduced in the Chapter 3 will determine where the

predicate should be placed at compile time. It starts by checking each variable that has predicates

attached. If the predicates attached to a variable has reference to another variable that is in the later

computation stage, namely we cannot access the information of the that variable, the optimizer

will will relocate the predicates to that variable. Therefore, we can have all predicates evaluated

when the computation reaches the variable that the predicates are attached to.

Next we discuss predicates correlating different query components of a nested query. Consider

a correlated predicate example:

SEQ(Recycle r, Washing w,
SEQ(Sharpening s, Disinfection d),

(Operating o: o.id = d.id))

Figure 4.2: Example Query 5

Figure 4.2 is a query with a positive sub-query. The predicate is valid as the d.id in the outer

query references to the variable d in the positive sub-query. When the predicate is attached to the

variable in the outer query, it cannot be tested even if the results of the outer query are computed,

as it requires data from the inner query. In order to be consistent with the idea: whenever we reach

a variable that contains predicates, it has all the data required to evaluate the predicates, we need

to relocate the predicate to the variable in the inner query. When the computation reaches variable

d in the inner query, we can run the predicate test immediately. If this is not satisfied, we can stop

the computation rather than going on to compute <s, d>.

Lastly, we will discuss the case of a query with a negative sub-query. If a predicate is correlating

the outer and inner queries, predicate relocation is unnecessary because the NEEL+ syntax makes

it necessary to attach such predicate to the variables in the negative query. As we have discussed

in Chapter 2, no query in the positive part can make reference to the target variable of a query in
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the negative part. Therefore, if there is such correlated predicate, it will always be attached to the

variable in the negative part.

4.2 Inter-query Approach: Shortcuting Inter-query Predicates

In some cases [15], we might collect or estimate statistics about the incoming data stream. This

provides foundation for an informed decision to change our execution plan in order to achieve a

less time consuming execution.

In order to introduce our technique, we first introduce two terms-inner variable and outer vari-

able.

Definition 3 Inner Variable: The variable in the predicate that references to the variable of a

inner sub-query component.

Definition 4 Outer Variable: The variable in the predicate that references to the variable of a

outer query.

For example, in Figure 4.3, ”ii” is the inner variable while ”d” is the outer variable.

Figure 4.3: Inner Variable V.S. Outer Variable

Now we introduce our shortcuting inter-query predicate (SIP) optimization technique. For a

nested query with inter-query predicates, suppose we have collected statistics about the CEP query

that the domain size of the inner variable attribute (DSI) is much smaller than domain size of the

outer variable attribute (DSO), for example, DSI
DSO

< 20%. When the inner variable’s correspond-

ing event comes, we buffer the different attribute values of the event in the data structure shown
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in Figure 4.4. During the computation started from the trigger event, when the outer variable’s

corresponding event comes, we first check if the attribute value exists in the cache. If not, we can

terminate the computation without completing the whole nested query. If the incoming attribute

value exists in the cache, we need to keep on computing as the basic system does. Therefore, in

this technique, the worst case is to compute like the basic system does plus spending extra costs on

maintaining the cache. However, given certain statistics, we might greatly reduce computation.

Figure 4.4: Data Structure for Equivalence Attribute Value

As the window keeps sliding, we need to maintain the data structure that stores the attribute

values of the variables that the predicate references to. The maintaince of the data structure consists

of three terms: insertion, update and purge.

(1) Insertion: When the inner variable’s corresponding event comes and if the attribute value is not

yet in the data structure in Figure 4.4, we insert the value with the corresponding event’s timestamp

into the hashtable as < V alue, T imestamp > entity.

(2) Update: When the inner variable’s corresponding event comes and if the attribute value exists

in the data structure in Figure 4.4, retrieve the < V alue, T imestamp > pair based on that attribute

value and update the ”Timestamp” with that of the incoming event.

(3) Purge: Whenever a new event comes, we will purge out those attribute values with expired

timestamps in the the data structure in Figure 4.4.

Figure 4.5: Example Query 6
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We illustrate this technique using the example in Figure 4.5. Let the data stream be [DELL1

DELL2 Y HOO3 IPIX4 CSCO5 RIMM6 INTC7 INTC8 INTC9], where the subscript stands

for the timestamp. Suppose these tuples all have the attribute transaction amount. As shown in

Figure 4.5, the predicate is r.amount = i.amount. Let the attribute value of INTC7, INTC8

and INTC9 be 100, 200 and 300, and the attribute value of RIMM6 be 100. Therefore, when

RIMM6 comes, the attribute value 100 will be cached. When we are computing the matching

pattern < d, s, i > for the outer query and when we reach INTC, we first check if the attribute

value of INTC exists in the buffer. For INTC8 and INTC9, since the attribute values are 200 and

300, we can immediately terminate the computation since further computation of the inner query

won’t get any matching due to the inequality of the attribute values. For INTC7, since it matches

the value in the buffer, we need to further compute the inner query. Overall, if the inner query is

selective enough, this optimization can greatly reduce the computation.

4.2.1 Discussion

The effectiveness of the SIP technique is based on the statistics of the incoming data streams. We

will discuss the Pros and Cons as below:

Pros: When the attribute’s domain size of the inner variable is much smaller than that of the outer

variable, our technique would be able to shortcut more, namely it can terminate more computation

at an earlier stage instead of finishing the computation then filter out the resulting bindings. There-

fore, it is worthwhile taking this technique under the condition that the attribute’s domain size of

the inner variable is much smaller than that of the outer variable.

Cons: When the attribute’s domain size of the inner variable is not much different from that of the

outer variable, our technique might not be as effective. We spend extra costs maintaining the cache

for those attribute values, yet most of the time the system cannot shortcut the predicates since the

inner variable and outer variable have more or less the same attribute domain sizes. Therefore, for

most of the time the system with the SIP will perform as the NEEL+ system without the optimiza-

tion technique does, yet it costs time maintain the cache. Maintain the data structure that stores the

27



attribute values would be the main overhead of this technique.
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Chapter 5

Cost Analysis for NEEL+ Query Processing

This chapter shows the algorithmic costs of the basic system and the optimization techniques.

It assumes that average statistics of the data have been collected. It will provide a theoretical

understanding of the efficiency of each technique based on the underlying data statistics.

Table 5.1: Terminology Used in Cost Estimation
Term Definition
Ccompute(qi) The cost of computing results for a query qi in-

dependently
NumE Number of total events received so far
NumRE Number of relevant events received of the types

in query set Q
Pei Selectivity of predicates attached to variable. If

there is no predicates attached to ei, the value is
set to 1.

PtEi,Ej Selectivity of the implicit time predicate of sub-
sequence (Ei, Ej). The default value is set to
1/2.

|Si| Number of tuples of type Ei that are in time win-
dow TWP . This can be estimated as arrival rate
* TWP * Pei

|Sqi | The number of results for a query qi
PCei The cost of evaluating predicates attached to ei.

If there is no predicates attached to ei, the value
is set to 1.

SCei The selectivity of the ”shortcut” correlated pred-
icate. If there is no such predicate attached to ei,
the value is set to 1.

Table 5.1 shows the cost factors in pattern evaluation. The CPU processing costs for an event

pattern are composed of three main terms: the cost to insert the input data (Cinsert), the cost to

generate results (Ccompute), and the cost to purge (Cpurge) (Equation 5.1).
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Cqi = Cinsert(qi) + Ccompute(qi) + Cpurge(qi)
(5.1)

(1) Cost of insert (Cinsert): The cost of insert Cinsert remains unchanged independent of the chosen

query evaluation method. Thus it can henceforth be ignored.

(2) Cost of compute (Ccompute): Computation costs depend on the actual pattern evaluation strat-

egy in use and is considered in depth below.

(3) Cost of purge (Cpurge): The cost of purge Cpurge remains unchanged independent of the chosen

query evaluation method. Thus it can henceforth be ignored.

Compute Cost for the Basic System. For a flat query qi = SEQ(E1 e1, E2 e2 ,..., Ei ei ,..., En

en), using stack-based pattern evaluation, Ccompute(qi) is formulated in Equation 5.2. The equation

is composed of two parts. The first part models the costs needed for computing the results of the

query and the second part models the costs needed for evaluating the predicates attached to each

variables.

Ccompute(qi) =(|Sn| ∗ |Sn−1| ∗ PtEn,En−1 + |Sn| ∗ |Sn−1| ∗ PtEn,En−1 ∗ |Sn−2| ∗ PtEn−1,En−2 + ...)

+ |Sqi| ∗ [
n∏

i=1

PCei ] ∗ [
n∏

i=1

Pei ]

=(
2∑

i=n

|Si−1| ∗ [
n∏

j=i

|Sj| ∗ PtEj ,Ej−1
]) + |Sqi| ∗ [

n∏
i=1

PCei ] ∗ [
n∏

i=1

Pei ]

(5.2)

Iterative Nested Execution. For a nested query qi, qi.root represents the outermost query and

qichildj represents its jth child. Ccomputeqi consists of computation costs for qi’s outermost query

qi.root, computation costs for qichildj j=1...n and costs for joining each child query with its parent

query.
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Cnested
compute(qi)

= Ccompute(qi.root) + |Sqi.root| ∗ (
numberofqi.child∑

j=1

Cnested
compute(qi.childj)

) (5.3)

Basic System with Predicate Push-in Technique. For a flat query qi, Ccomputeqi consists of com-

putation costs for qi with the predicate evaluation pushed into the computation process. The equa-

tion is shown as below:

CPush−in
compute(qi) =|Sn| ∗ PCen ∗ Pen ∗ |Sn−1| ∗ PCen−1 ∗ Pen−1 ∗ PtEn,En−1 + |Sn| ∗ PCen ∗ Pen ∗ |Sn−1|∗

PCen−1 ∗ Pen−1 ∗ PtEn,En−1 ∗ |Sn−2| ∗ PCen−2 ∗ Pen−2 ∗ PtEn−1,En−2 + ...

=(
2∑

i=n

|Si−1| ∗ PCei−1
∗ Pei−1

∗ [
n∏

j=i

|Sj| ∗ PCej ∗ Pej ∗ PtEj ,Ej−1
])

(5.4)

For a nested query qi, the computation costs of qi would be similar to Equation 5.3. The equa-

tion is shown as in Equation 5.5

Cnested
compute(qi)

= CPush−in
compute(qi.root) + |Sqi.root| ∗ (

numberofqi.child∑
j=1

Cnested
compute(qi.childj)

) (5.5)

Basic System with SIP Technique

For flat query qi = SEQ(E1 e1, E2 e2 ,..., Ei ei ,..., En en), using stack-based pattern evaluation,

Ccompute(qi) is formulated in Equation 5.6. The equation is composed of three parts, the first part

is the cost of computing the results of the query, the second part is the cost of evaluating the

predicates attached to each variables and the third part denotes the maintenance of the cache for

31



the equivalence attribute value for the ”shortcut” predicates’.

CSIP
compute(qi) =(|Sn| ∗ SCen ∗ |Sn−1| ∗ SCen−1 ∗ PtEn,En−1 + |Sn| ∗ SCen ∗ |Sn−1| ∗ SCen−1 ∗ PtEn,En−1

∗ |Sn−2| ∗ SCen−2 ∗ PtEn−1,En−2 + ...) + |Sqi| ∗ [
n∏

i=1

PCei ] ∗ [
n∏

i=1

Pei ] + CMaintenance

=(
2∑

i=n

|Si−1| ∗ SCei−1
∗ [

n∏
j=i

|Sj| ∗ PtEj ,Ej−1
]) + |Sqi| ∗ [

n∏
i=1

PCei ] ∗ [
n∏

i=1

Pei ] + CMaintenance

(5.6)

(1) Cost of Maintaining the Equivalence Attribute Value(CMaintenance): is maintained whenever

the event that the inner variable of an inter-query predicate references to arrives. The maintenance

cost of the cache consists of two parts: the cost to insert the equivalence attribute value (Cinsert),

and the cost to purge (Cpurge). The cost of insert Cinsert takes constant time as it only checks the

existence of the attribute value and insert or update the value and timestamp accordingly. The

purge process will purge each attribute value in the cache with an expired timestamp. An iteration

is needed in order to purge all expired timestamps. Therefore, the cost of purge Cpurge is related to

the number of equivalence attribute value in the cache.

For a nested query qi, the computation costs of qi would be similar to Equation 5.3.

Cnested
compute(qi)

= CSIP
compute(qi.root) + |Sqi.root| ∗ (

numberofqi.child∑
j=1

Cnested
compute(qi.childj)

) (5.7)
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Chapter 6

Experimental Evaluation and Analysis

6.1 Experimental Setup

The NEEL+ framework is implemented based on the HP stream management system CHAOS [8]

using Java. We run the experiments on Intel Pentium IV CPU 2.8GHz with 4GB RAM with

Microsoft Windows 7 operating system. We evaluated our techniques using the real stock trades

data from [1]. Comparisons are made between the basic processing technique and the processing

with predicate pushdown and between the basic processing technique and the processing with inter-

query predicate optimization, based on the overall cumulative execution time. That is we will run

the query over the stock data and plot the cumulative execution time against the cumulative number

of results produced. The queries used in the experiments are shown in the following sections. The

window size is specified when the user submits the query. By default it is kept to 100 seconds

unless specified otherwise.

6.2 Data Description of Experiment Data Set

The data contains stock ticker, timestamp and trade amount information [1]. The data contained

stock ticker, timestamp and trade amount information. The portion of the trace we used contained

10,000 event instances. It is in the form of a text file which is read by a separate thread to simulate
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the incoming data stream. A snapshot of a portion of the data is shown in Figure 6.1, where the

first column stands for the stock ticker, the second column stands for the timestamp measured in

millisecond and the last column stands for the trade amount.

Figure 6.1: Sample of the Stock Trading Data

6.3 Experiments

6.3.1 Comparison of NEEL+ System with and without Predicate Pushdown

Operation

Effect of Different Predicate Positions

Figure 6.2: Varying Positions Predicates

Figure 6.2 shows three query plans with the same flat query but the predicates are associated

with different variables. As the computation starts from the rightmost variable of a query, we
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expect that the closer the predicate is attached to the rightmost event, the more execution time

our technique will save compared to the basic system. The Window size is kept constant at 100

seconds. We compare the predicate pushdown technique against the basic iterative processing

technique. As complex event patterns are detected over the event stream, results are outputted for

every triggering event which in this case are all “INTC” events. The cumulative execution time at

that instant is recorded on the Y-axis against the cumulative number of results on the X-axis.

(a) Predicate Attached to Variable i (b) Predicate Attached to Variable p

(c) Predicate Attached to Variable d

Figure 6.3: Comparing Execution Times of Queries with Different Predicate Positions between the
Basic System and the Basic System with Predicate Push-in

Figures 6.3 a, b and c demonstrate our predicate pushdown technique reduces the execution

time in all three cases. As expected, our technique reduces the execution time most efficiently for

Query 6.2 a. It outperforms the basic system by 700%. The execution time on Query 6.2 b is

300% less compared to the basic system, while on Query 6.2 c, our technique saves the least,

which is 80% more efficient than the basic system. As stated in the beginning of Chapter 4, many

results will be generated in a sliding window. The main factor that affects the throughput of the

CEP queries fall on the predicate selectivity. Therefore, we can conclude that no matter where the

35



predicate is located, as long as it is selective, the pushdown technique will always help improve

the performance due to the early termination it brings to the query process.

Effect of Different Window Sizes

Figure 6.4: Varying Window Sizes

The flat query in Figure 6.4 is configured by substituting three different Window sizes of 50,

100 and 500 seconds. We compare the execution time of the basic system with predicate push-in

technique and basic system itself. As the window sizes increase, the matching candidates generated

in each window will increase. Thus more candidates will be filtered by the predicates, which means

termination will happen more often for more tuples. Therefore, we expect the execution time

savings ratio will also increase as the window sizes increase. In each experiment, we compute and

output the result patterns for every triggering event INTC. The cumulative execution time at that

instant is recorded on the Y-axis against the cumulative number of results on the X-axis.

Figures 6.5 a, b and c demonstrate the improvement of our predicate push-in techniques on the

basic system. With the window sizes increasing, the basic system with predicate push-in outper-

forms the basic system by 4 folds, 21 folds and 60 folds on average respectively. As expected, the

larger the window size is, the more the predicate push-in technique wins. As a larger window will

potentially contain more matching candidates, this leads to the predicate push-in technique having

more often chances to succeed in the early termination of the computation process.

Effect of Different Query Types

Figure 6.6 shows three nested query plans, where Figure 6.6 a is a query with a positive nested

query, Figure 6.6 b is the same outer query with a negative nested query and Figure 6.6 c cor-
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(a) Window Size = 50 Seconds (b) Window Size = 100 Seconds

(c) Window Size = 500 Seconds

Figure 6.5: Comparing Execution Times of Queries Using Different Window Sizes between the
Basic System and the Basic System with Predicate Push-in

Figure 6.6: Varying Query Types

responds to a three layer query with a negative query as the first sub-query and a positive query

as the second sub-query. As the push-in technique optimizes each individual query component in

a nested query, we expect that it would reduce the execution time for different query component
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combinations compared to the basic system. The window size is kept at 100 seconds in all cases.

We compute and record the cumulative execution time on the Y-axis against the cumulative number

of results on the X-axis.

(a) A Query with a Positive Nested Sub-query (b) A Query with a Negative Nested Sub-query

(c) A Query with a Positive Nested Sub-query
and a Negative Sub-query

Figure 6.7: Effect on Execution Times of the Basic System and the Basic System with Predicate
Push-in Using Different Query Types

Figure 6.7 shows the cumulative execution time versus the cumulative number of results of

different types of queries. As expected, the predicate push-in technique reduces the execution time

in all three cases. The reduction ratios are 5 fold, 7 fold and 7 fold on average respectively. The

experiment demonstrates that the predicate push-in reduces the execution time for a rich variety of

types of queries, varying from different types of nested sub-queries to different number of nested

levels.
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6.3.2 Comparison of NEEL+ System with and without Shortcutting Inter-

query Predicate Operation

Effect of Different Attribute Domain Sizes

Figure 6.8: Varying the Attribute Domain Size of the RIMM Event

Figure 6.8 shows a flat query which is run by varying the attribute domain size of the event

RIMM from the inner query. The attribute domain size of RIMM in each case is 10%, 50% and

80% of the attribute domain size of INTC respectively. As stated in Chapter 4, the smaller the

inner variable domain size is, the more often the system would have an opportunity to shortcut

the predicates to early terminate the computation. Therefore, we expect to see that by using SIP

technique in the basic system, the execution time will reduce when the attribute domain size of the

inner variable is small compared to that of the outer variable. We also expect the SIP technique

reduces most execution time for the 10% domain size query compared to the basic system, followed

by the 50% domain size query, then the 80% domain size query. The cumulative execution time is

recorded and plotted on Y-axis while the cumulative number of results is recorded and plotted on

X-axis. The window size is kept 100 seconds in each query.

Figures 6.9 a, b and c show that our SIP technique reduces the execution time compared to

execution time obtained from the basic system in all three cases. As expected, in Figure 6.9

the system with SIP wins the basic system on execution time by 400%, while in Figure 6.9 it

outperforms the basic system on execution time by 100% and in Figure 6.9 c it wins by 25%. As

stated above, the smaller the inner variable domain size is, the more often the system would have

an opportunity to shortcut the predicates to early terminate the computation. Therefore, when the
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(a) Inner Variable Attribute Domain Size/Outer
Variable Attribute Domain Size: 10% (b) Inner Variable Attribute Domain Size/Outer

Variable Attribute Domain Size: 50%

(c) Inner Variable Attribute Domain Size/Outer
Variable Attribute Domain Size: 80%

Figure 6.9: Comparing Execution Times of the Basic System and the System with SIP Technique
by Varying the Attribute Domain Size

inner variable’s domain size is only 10% of the outer variable’s domain size, our technique saves

most while in the 80% case, our technique saves the least compared to the 10% and 50% cases.

Varying the ”Shortcut” Predicate Position

Figure 6.10 shows three queries with the same nested sub-queries but the ”shortcut” predicate is

located in different places. The ”shortcut” predicates in Figure 6.10 a, b and c all have the outer

variable referencing to the same variable in the root query, while the inner variable references to

the variable of the RIMM event in a different query level. As the predicate’s position gets deeper,

the basic system would have to compute more till it meets the predicate, so that it can filter out

unsatisfied results. Therefore, we expect that the deeper the ”shortcut” predicate it is, the more the

optimization technique will outperform the basic system in terms of execution time saving ratio.

The domain size of the RIMM’s attribute is kept at 30% of the domain size of the INTC’s attribute.
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Figure 6.10: Varying the Inter-query Correlated Predicate Position

The window size is kept constant at 100 seconds. We compare the execution time of our technique

against the basic system. The cumulative execution times are recorded on the Y-axis against the

cumulative number of results on the X-axis.

The Figures 6.11 a, b and c show the comparison between the SIP technique and the basic

system by varying the ”shortcut”” predicate position. We observe that the system with SIP wins

over the basic system on execution time by 8%, 130% and 340% on average respectively. As

expected, the winning ratio of the SIP technique over the basic system on execution time shows

a rising trend when the inner variable references to the variable in deeper sub-query. As stated

above, when the predicate’s position gets deeper, the basic system would have to compute more till

it meets the predicate in order to filter out unsatisfied results. Therefore, we expect that the deeper

the ”shortcut” predicate it is, the more computation cost would be saved as we skip more query

components. As a result, the optimization technique will save more when the ”shortcut” predicate

is located in deeper query components compared to shallower query components.
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(a) Sub Query Length = 2 (b) Sub Query Length = 3

(c) Sub Query Length = 4

Figure 6.11: Comparing Execution Times of the Basic System and the System with SIP Technique
by Varying Positions of ”shortcut” predicates
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Chapter 7

Related Work

The existing CEP systems [20, 3, 12] support the execution of only flat sequence queries.

SASE [20] and Cayuga [2] proposed an important processing model for CEP which is based

on the nondeterministic finite state automata. SASE supports novel language features such as

negation, and demonstrates performance gain in processing complex event queries compared to

traditional data stream processing system TelegraphCQ. [2] proposed an SQL like language called

the Cayuga Event Language which comprised of traditional select, project and join over multiple

streams and also temporal joins of sequences. However, SASE only supports negation over prim-

itive event types. Cayuga [2] does allow sub-queries in the FROM clause, but it does not discuss

applying negation over composite event types.

As an extension to the work in SASE [20], SASE+ [9] was proposed which supported Kleene

star over event streams. However this too did not tackle nesting of composite event types and they

considered only flat queries with predicates.

Zstream [14] also had a similar language which expressed sequences and negation over prim-

itive events. They consider the ordering of CEP queries using a tree-based query plan – similar to

join ordering in traditional relational databases. ZStream doesn’t consider optimization for queries

with predicates.

CEDR [3] which is Microsoft’s CEP language which allows the specification of negation of
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composite patterns. However, it is not completely flexible nesting and also the execution strategy

for such nested queries is not discussed. In [13] Liu et al describes an iterative strategy to process

Nested CEP queries, but it does not consider much on queries with predicates.

SQL is the standard language for data retrieval and manipulation in relational database systems.

One of the most powerful features of SQL is nested queries. Theoretically, a query can have an

arbitrary number of subqueries nested within it. Since it is usually inefficient to directly execute

nested queries in their original form, optimization of nested queries has received considerable

attention. One approach concentrates on unnesting nested queries [10], rewriting a nested query

into a flat form.

[5] proposes an approach to unnest nested SQL queries using hash join each sub-query in a

uniform manner, regardless of predicate or level. They process nested queries independently and

then joining the results from different levels by the correlated predicates. Consequently, algorithms

such as complex query decorrelation [17] have been proposed to decorrelate the query. However,

existing decorrelation algorithms deal with only a limited class of queries.

In [11] Liu et al developed a set of equivalence rules for rewriting nested NEEL expressions.

They then proposed a step-wise procedure that apply these rewriting rules to transform a nested

CEP query into an equivalent nonnested query thus opening the opportunity for query optimiza-

tion. However they are not able to rewrite all nested queries into unnested normal forms and their

rewriting rules are often limited by the presence of predicate correlations.
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Chapter 8

Conclusions

8.1 Summary And Contribution

This thesis focuses on designing, implementing and optimizing the processing of NEEL+ queries.

In particular, we designed and implemented a processing paradigm that correctly processes sim-

ple queries, nested queries and queries with predicates. The iterative processing integrated with

predicate evaluation can handle queries with unary predicates, binary predicates within the same

query and binary predicates correlating different query components in a nested query. We also

design and implement certain optimization techniques for handling queries with predicates. We

then experimentally compare the optimized methodologies against standard iterative processing

technique for CPU processing time. Our optimized strategy wins by a large margin over the basic

processing. The performance of the optimization techniques varies under different conditions. We

discussed the performance of each method under varying conditions.

8.2 Future Work

For future work, we plan to extend our study in the following directions.
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8.2.1 Improve the Current System

Currently, the system doesn’t handle the situation that negative expressions appear at the beginning

or the end. We will add support to this special case in the future. Also, we have the syntax and

semantics for AND and OR expression, but we don’t have the implementation for that kind of

queries. We will also address that in the future to support various types of queries.

8.2.2 Join Ordering

In our work, we do not focus on the problem of optimizing via join ordering [14] and use the a

fixed order processing from the rightmost event to the leftmost event of a query. Therefore we

mainly focus on predicate optimization. In the future, we will look into the combination of both

optimization to obtain more optimal execution plans for NEEL+ queries.

8.2.3 Rewriting

We had implemented the rewriting rules in NEEL [11] before building up our NEEL+ sysetm.

However, [11] is not able to rewrite all nested queries into unnested normal forms and their rewrit-

ing rules are often limited by the presence of negations and predicate correlations. We will develop

new rewrite rules that can correctly handle negations and correlated predicates. Then we will adapt

the current rewriter to our NEEL+ system to help improve the processing performance.

8.2.4 Query Decorrelation

Complex SQL queries used in decision support applications often include correlated subqueries.

Significant research efforts [17, 10, 5] have been devoted to the optimization of nested queries by

decorrelating them. In principle, such problem could also be applied to advanced CEP queries.

We will consider views/caches and joins between separate views and a query, in order to avoid

repeatedly computing sub-queries.
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8.2.5 Memory Awareness Processing

In our work, we assume here that memory is an unlimited resource. However that is not practical

and in that case we would have to look into the issue of selectively caching some results based on

statistics.

8.2.6 Sharing Common Expression

Complex pattern queries often contain common or similar sub-expressions within a single query or

also among multiple distinct queries. Multiple-query optimization in databases typically focuses

on static relational databases and identifies common subexpressions among queries such as com-

mon joins or filters. In principle, such problem could also be applied to advanced CEP queries. We

will study the sharing of common CEP expressions and will also take into account the predicates

in such common expressions, in order to reduce re-computation.
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