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Abstract

Simultaneous localization and mapping (SLAM) is a challenging and vital problem
in robotics. It is important in tasks such as disaster response, deep-sea and cave
exploration, in which robots must construct a map of an unknown terrain, and at the
same time localize themselves within the map. The issue with single-robot SLAM
is the relatively high rate of failure in a realistic application, as well as the time and
energy cost. In this work, we propose a new approach to decentralized multi-robot
SLAM which uses a robot swarm to map the environment. This system is capable
of mapping an environment without human assistance and without the need for any
additional infrastructure. We assume that 1) no robot possesses sufficient memory
to store the entire map of the environment, 2) the communication range of the robots
is limited, and 3)there is no infrastructure present in the environment to assist the
robot in communicating with others. To cope with these limitations, the swarm
system is designed to work as an independent entity. The swarm can deploy new
robots towards the region that is yet to be explored, coordinate the communication
between the robots by using itself as the communication network and replace any
malfunctioning robots. The proposed method proves to be a reliable and robust
exploration algorithm. It is shown to be a self-growing mapping network that is
able to coordinate among numerous robots and replace any broken robots hence
reducing the chance of system failure.
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Chapter 1

Introduction

Robots have come a long way from being fictional entities in films to being sent for

planetary exploration. These robots are given tasks of great difficulty which would

be near-impossible for humans to perform. A good example of this is the use of

robots to assess radiation levels within the broken reactors of the Fukushima Daiichi

nuclear power plant. The radiation levels are too high for humans to withstand, but

by using robots, such difficulties are overcome.

Advancement in robotics have led to the development of Multi-Robot Systems

(MRS). These systems involve multiple robots performing either a single task or

multiple tasks as specified by the user. The advantages that such a system can

bring about is evident as the risk of the system failing is reduced and the time for

task execution is also reduced resulting in a significant improvement of performance.

MRS are classified into centralized and decentralized systems. A centralized

system consists of multiple robots coordinated by a central controller. The central

hub controls communication and is the decision making power of the system. On the

other hand, a decentralized system gives this decision making power to individual

robots. Every robot is tasked with a local goal and involved in local interactions

with the environment resulting in a desired emergent behavior of the robotic swarm.

Advantages of robotic swarms are well researched and documented. Brambilla

et al. (2013) describes a robotic swarm to be autonomous, able to modify the

environment, capable of local sensing and communication, and with no access to

global knowledge. According to Şahin (2004), the lack of a centralized coordination

system in social insects inspired the development of robotic swarms. He claims that

a robotic swarm should be robust, flexible and scalable. The robustness of a swarm
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arises from the fact that every robot is simple and dispensable. This is comparable

to how a colony of ants does not depend upon the survival of a single ant. The

flexibility of the swarm is the ability of an individual robot to switch its behavior

depending upon the task it is executing and to efficiently perform tasks even under

changing swarm sizes.

Such advantages make the robotic swarm a reliable and efficient solution for

numerous problems, such as large-scale coverage and exploration (Sharma and

Tiwari, 2016), search and rescue (Tair et al., 2015), agriculture and mapping

(Dirafzoon and Lobaton, 2013).

Simultaneous Localization and Mapping (SLAM) is the problem of a mobile

robot moving through an area without map information a priori while simultane-

ously keeping track its location within it. The robot acquires observations of the

environment using limited range-finder sensors and estimates its pose according to

odometry measurements. The presence of noise in the sensors affects measurements

and causes the map to be inaccurate. Hence, the aim of a robot performing SLAM

is to create an accurate map given noisy sensor inputs (Fox et al., 1999).

Multi Robot Simultaneous Localization and Mapping (MR-SLAM) expands the

application of SLAM to multiple robots. Using multiple robots means that the

mapping task can be completed much faster due to parallel coverage at any instant

of time. The failure of a single robot will not hamper the completion of the task,

hence the system is more robust (Birk and Carpin, 2006).

Using robots to perform exploratory mapping in unknown and risky terrain is a

safer alternative to having humans perform the same task. For example, exploration

of unmapped mines is a dangerous yet important task Thrun et al. (2004b). Such

conditions also pose a risk of damaging the robot, hence using a single robot to map

these terrains is inefficient and prone to failure. In such conditions, MRS would

prove to be an feasible solution because the risk factor to humans is non-existent

and the risk of the system failure is reduced.

In this work, we study a decentralized solution to the problem of mapping large

areas with robots that could not individually complete the task, due to memory

limitations and high risk of failure.
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1.1 Problem Statement

The goal of this work is to map an unknown region using a swarm of robots. We

assume that the region to map has numerous obstacles distributed in a uniform

manner and that the region is inaccessible to external localization or communication

networks. This is to simulate a location that is inaccessible to humans or would be

dangerous for human exploration. The region is also free of any infrastructure that

assists in map building. Figure 1.1 gives a pictorial representation of the swarm

system. The system uses the robots as a transmission network and grows towards

the region that has not been explored.

The swarm system used in this work uses a decentralized strategy for communi-

cation and deployment. Every robot in the swarm has memory and communica-

tion range limitations. These constraints mean that a single robot is incapable of

developing the complete map.

Each robot is equipped with a LIDAR for developing grid maps and a communi-

cation sensor for interacting with the swarm. Each robot maps the environment

until its memory gets completely consumed and then transfers it to the user. On

completion of the mapping task, the robot becomes a communication link between

the user and new robot that has been assigned to continue the map task.

1.2 Outline

In Chapter 2, we introduce the formulation of the SLAM problem, describe the differ-

ent types of single robot SLAM algorithms, and explain the need for Multi-Robot

SLAM. In Chapter 3, we introduce the approach used in this work for performing

Multi-Robot SLAM. It explains the different behaviors a robot can display depend-

ing on external factors and the numerous algorithms that are present in the system.

The focus of this work is to develop a robust swarm system for mapping unknown

regions, and an algorithm responsible for progressively deploying robots to different

parts of the environment to map and maintain connectivity with them. In Chapter

4, we discuss the metrics and the results in various experiments and the analysis

obtained. In Chapter 5, we discusses the practical use and advantages of this system

and also future improvements that can be made.
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Chapter 2

Background

In Chapter 1, we discussed the need for using MRS for solving the SLAM problem.

In this chapter, we give a background study about the concepts related to this work.

In Section 2.1, we explore the SLAM problem and in section 2.2, we introduce the

different types of algorithms in single robot SLAM. In Section 2.3, we compare the

state of the art centralized and decentralized strategies in Multi Robot SLAM.

2.1 Introduction to SLAM

SLAM is the ability of a robot to develop an accurate map of the environment and

localize itself within that explored map(Thrun et al., 2002). Both the environment

and the vehicle position in the map is unknown. Odometers or control inputs are

used for estimating motion and landmarks will be sensed and mapped by the robot.

This section introduces the SLAM problem along with important concepts necessary

to develop an understanding of SLAM problem.

The pose of the robot in a two dimensional map is expressed by its position in

x and y coordinate axis and its orientation with respect to an axis.

x = (xi, yi, θi) (2.1)

The following definition expresses the pose of the robot over multiple time steps.

x1:t = {x1, x2, ..., xt} (2.2)

Here x1 corresponds to the pose of the robot at time t = 1. A probabilistic
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formulation expresses the probability of the transition of the robot from one pose

to another through the application of a control action.

p(xt|ut, xt−1) (2.3)

The expression 2.3 accounts for the uncertainties such as drift in motion and

noise in sensor reading.This probabilistic kinematic model acts as the state transition

model for the robot. In equation 2.3, the terms xt and xt−1 represent the robot pose.

The term ut corresponds to the robot motion command asserted from time period

(t− 1, t].

The observations made by robot are expressed as:

z1:t = {z1, z2, ..., zt} (2.4)

The term zt corresponds to the observations made by the robot using its on

board sensors such as camera or LIDAR which are used for developing the map m.

The sensors have a certain amount of noise in their measurements. The Probabilistic

formulation showed in expression 2.5 is used for modeling this noise.

p(zt|m,xt) (2.5)

Given the trajectory and a set of observations (Dissanayake et al., 2001), the

SLAM problem for a single robot is to find the posterior over the newly developed

map. The probabilistic expression of this statement is given as

p(m,x1:t|z1:t, u1:t, x0) (2.6)

The expression 2.6 shows that the task of estimating the map is coupled with

the task of estimating the trajectory. The SLAM problem can be considered to be

of 2 types, full SLAM (Grisetti et al., 2010) and online SLAM (Grisetti et al., 2007).

The full SLAM problem requires complete estimation of the robot’s trajectory while

the online SLAM problem requires estimation of only the posterior pose.

When a complete accurate trajectory is known, the SLAM problem is reduced

to a mapping problem. The mapping problem is defined as estimating the map of
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the region given the trajectory and observations.

p(m|x1:t, z1:t) (2.7)

If an accurate map of the region is given, the SLAM problem becomes a localiza-

tion problem. The localization problem is defined as estimating the posterior over

the trajectory of the robot given the map, control inputs and observation.

p(x1:t|m, z1:t, u1:t, x0) (2.8)

2.2 Single Robot SLAM

Through the use of a probabilistic framework for motion and perception, a single

robot can map an unknown terrain. This section will give a deeper understanding

about different maps that can be developed using SLAM and the different types of

algorithms in SLAM (Saeedi et al., 2016).

2.2.1 Grid Maps

A matrix of cells which represent the environment is the easiest solution for two

dimensional mapping. The resolution of mapping decides the amount of environment

detail that can be captured in each cell. Each cell holds a value which represents

the probability of that cell being occupied (Elfes, 1990). Three dimensional data

can also be represented in grids, as shown by Hornung et al. (2013), the data is

represented as point clouds or voxel grids.

2.2.2 Feature maps

Feature maps utilize distinctive landmarks to represent the map of a region. Each

landmark is accompanied by a descriptor which is used for recognizing the landmark

after a period of time (Walter et al., 2007). The advantage of using feature map is

shown by Williams et al. (2009), through the application of loop closure, which is a

method to reduce the cumulative error of the posterior by re-observing a previously

observed landmark.
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2.2.3 Variants of Single robot SLAM

Algorithms in SLAM can be categorized based on the differences in map represen-

tation and data processing techniques.

Feature based SLAM

The algorithms under this category extract features from the environment and

maintain the list of features as a map. Feature based SLAM is limited to environ-

ments with distinctive features. Features are objects in the environment that are

distinguishable and identifiable from different point of views. For example, Smith

et al. (2006) used straight lines as features for an Extended Kalman Filter(EKF)

and Nieto et al. (2003) used steel poles and trees as features in two separate

experiments. Relative motion is acquired by comparing features in subsequent

frames. The relative motion of the features is used for estimating the motion of

the robot(Mouragnon et al., 2006).

View based SLAM

View based SLAM methods employ a range and bearing sensor that returns the

position of the obstacles within a given range. The map is populated with probability

values that correspond to the certainty of detecting an obstacle. View based SLAM

can be used in places which are void of any features such as mines Baker et al.

(2004) and underwater locations Fairfield et al. (2007). View based SLAM differs

from feature based SLAM as the former does not extract any feature from the

environments. Grisettiyz et al. (2005) performed View based SLAM to develop two

dimensional grid maps using Sick PLS range finder and estimated relative motion

by comparing whole scans between each time step.

Appearance based SLAM

Appearance based SLAM is used to solve the loop-closure problem. It is used in

conjunction with either Feature based SLAM or View based SLAM. Hess et al.

(2016) employed loop closure in View based SLAM system by identifying similar

scans while revisiting places. In Feature based SLAM systems like Mur-Artal et al.

(2015), features were extracted using a camera and then compared with each other

for finding loop closing locations.
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Filtering based SLAM

Filtering based SLAM techniques include variants of Kalman filter, Information

filter and Particle filter based algorithms. These algorithms are derived from Bayes

Filter with the goal of estimating the pose of the robot given sensor information.

Kalman Filter based systems assume that the state transitions and the measure-

ment models are linear with added Gaussian noise. A variant of Kalman Filter for

non-linear systems is the Extended Kalman Filter(EKF). EKF is a prediction filter

that linearizes the non linear systems and estimates the posterior given the observa-

tion and control inputs. EKF is a popular filter in SLAM and has been researched

and implemented in variety of scenarios. Ahn et al. (2008) used EKF SLAM in an

indoor environment, Salvi et al. (2008) performed it for mapping underwater terrain

and it also been used in conjunction with other SLAM methods like in (Montemerlo

et al., 2002).

Information Filters (IF) are used to overcome disadvantages of EKF in high

dimensional maps, where the EKF SLAM tends to become slow and require higher

computational power (Aulinas et al., 2008). The IF is implemented by propagating

the inverse of the state error covariance matrix which is known as the information

matrix. So if the system has high errors then IF will have very sparse information

matrix. The landmarks with high confidence will only populate the information

matrix. Thrun et al. (2004a) have further reduced the density of the information

matrix by performing sparsification on the information matrix.

Particle Filters(PF) are used for localization in SLAM. They represent any given

distribution by samples drawn from that distribution. Montemerlo et al. (2002) used

Particle filters with EKF in a an algorithm called FastSLAM. This method proves

to be more scalable than a lone EKF SLAM because it considers each landmark

to be independent of another. Hence, each landmark is modeled using a single 2x2

Gaussian and thus reducing the complexity of manipulating a high dimensional

covariance matrix. These particles represent the pose of the robot in its own

map.Each particle has a weight attached to it, that represents the belief of that

particle about its pose and its map. To reduce the space complexity of FastSLAM,

Eliazar and Parr (2003) introduced a method to have only a single map for all the

particles.
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Smoothing based SLAM

Smoothing based SLAM is a full SLAM problem where the entire trajectory is

estimated using the observation and motion constraints. The SLAM problem is

converted to a least squares optimization problem where the maximum a posteriori

(MAP) over the trajectory is estimated (Grisetti et al., 2010). This algorithm is

divided into two parts, the front-end and back-end. The front-end of the algorithm

acquires the sensor information and converts it into observation and motion

constraints. The front-end is also responsible for identifying observed landmarks

and identifying loop closure locations. The back-end of the algorithm performs

optimization on the observation and motion constraints. It is done using methods

such as QR factorization(Kim et al., 2010), Cholskey factorization(Dellaert and

Kaess, 2006), or Gauss-Newton factorization(Grisetti et al., 2010). Multiple

iterations of the optimization process is performed until the error converges to a

minimal value.

2.3 Multi-Robot SLAM

The previous sections explained the various types of algorithms in SLAM. These

same algorithms along with a coordination strategy is used for performing Multi-

Robot SLAM. The coordination strategy is the approach used by systems to coordi-

nate the task of map building through multiple robots. A single server can be

used for collecting and merging the map of multiple robots or the robots can

share their map between themselves. These strategies are categorized as central-

ized and decentralized approaches respectively. A detail study of these approaches

is presented in the sections 2.3.1 and 2.3.2.

2.3.1 Centralized Coordination Strategy

A Centralized Coordination Strategy involves the robots sending all their informa-

tion to a central entity. This central entity fuses all the map information being sent

and coordinates the robots in their exploration. Morrison et al. (2016) developed

a centralized multi-robot SLAM system called MOARSLAM which uses a central

server for storing the maps developed using autonomous robots. Each robot is

connected to the server to receive updates regarding locations it should explore and
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if the connection fails the robot will continue to map and wait until the connection is

available. In Simmons et al. (2000), robots perform maximum likelihood estimation

to develop maps using odometry and sensor information. These maps are transmit-

ted to a central server to develop a global map. A similar strategy is followed in (Gil

et al., 2010) where visual descriptors of landmarks along with odometry information

are transmitted by the robots to a central server for developing the map.

The drawback of a Central Coordination Strategy is that the system is dependent

on the central unit. The central unit is expected to communicate and coordinate

with all the robots in the system and this leads to scalability issues. Moreover,

failure of the central unit can cripple the entire system.

2.3.2 Decentralized Coordination Strategy

Decentralized Coordination Strategies enable the use of large number of robots to

solve the given problem. However, coordination of these robots without a global

entity can prove to be difficult. In this section, we discuss the methods used in

Multi robot SLAM systems for sharing data among robots and division of mapping

task among the robots.

Communication

In Decentralized SLAM systems, robots develop the global map by sharing the

map information with other robots. Howard (2006) introduces a method to have

individual robots meet each other and share their sensor data. This data is then

integrated with the robots’ own information and its map is updated. Fox et al.

(2006) implements a variant of this approach by using clusters of robots to map and

these robots split into smaller groups in the presence of divergent paths. Carlone

et al. (2010) introduces uncertainties in transmission and transmits a preprocessed

data of smaller size. Using this strategy, Arturo et al. (2011) developed a variant

of FastSLAM for multi robot system called Independent FastSLAM and (Bresson

et al., 2015) developed a system that considers noisy transmission and also modeled

a Kalman filter to reduce drift.

The drawback of having robots only share information when they meet is that the

global map is only created when multiple robots meet and share their sensor informa-

tion. This assumption makes the map building ability of the system dependent on
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the random meeting of the robots and the chance of robots meeting each other

becomes less if the environment is long with numerous tunnels.

Task Division

Task division in decentralized SLAM system is needed to allot new regions for

robots to explore and map. In single robot systems, Yamauchi (1997) introduces

an autonomous exploration algorithm which moves the robot towards the closest

frontier for exploration. Frontiers are portions in a robots map that lies between

explored and unexplored areas. To coordinate exploration and mapping in multi-

robot systems, Fox et al. (2006) extended Yamauchi (1997)’s work by allotting the

closest frontiers to each robot. Colares and Chaimowicz (2016) made the robots

select a frontier region to explore based on an information factor that depends on

the distance the frontier is from the robot, the information that frontier region holds

and distance it is from the other robots.

Decentralized robot swarms consists of large number of robots working with

little or no knowledge about the work being done by others. Robots might repeat

the work done by other robots and this reduces the efficiency of the system. In

SLAM systems, if robots do not meet and inform each other of the locations they

have mapped, then those locations will get remapped by other robots or clusters of

robots. The robot does not have the information regarding the region explored by

the part of the swarm that has not been in contact with it. Hence, it might start to

map and already explored region.
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Chapter 3

Approach

In chapter 2, the challenges in centralized and decentralized Multi-Robot SLAM

were introduced and the limitations of the existing systems were discussed. In this

chapter, we present our approach to decentralized deployment and mapping. Section

3.1 gives a high level understanding of the working of the swarm system. Section 3.2

describes the robot state machine and details behavior of the robot in each state.

The design of the algorithms are explained in section 3.3.

3.1 Overview

The robot with ID 1 is deployed as a Root robot and is placed in front of the location

that is to be mapped. Only one Root robot exists at any given time (see Section 3.2.1)

and the remaining robots are deployed as a Reserve robots (see Section 3.2.2). The

Root robot manages the initial deployment of robots and stores the map developed

by the robots. The Reserve robots wait in the vicinity of the Root robot. They move

along the swarm network to switch behaviors of either a Mapper robot or Transmitter

robot. Mapper robots map the frontiers as defined in Section 3.2.3. The Mapper robot

switches to the role of ?? when reaching a terminating criteria (see Section 3.2.4).

Master robot requests for new robots to further map the environment. Master robots

are responsible for coordinating the Mapper robots by allotting them locations to

map . The Master robot switches to Transmitter robot (see Section 3.2.5) when the

requested Mapper robots complete mapping.
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3.2 State Machine Design for Robots

In this section, we introduce the state machines used for modeling the robots’

behavior. The state machine consists of 5 robot behaviors, Root, Reserve, Master,

Mapper and Transmitter. As shown in figure 3.1, each robot undertakes a task that

is either requested or alloted to it. The robot then switches to the required behavior

to execute the task. A more detailed explanation of each behavior is provided later.

Server Robot Reserve Robot

Spawn Robot

 Robot ID == 1 All other Robot ID

Accept request for

Mapping Robot

Mapping

Completed

Children 

Completed 

Mapping

Broken Robot

Figure 3.1: Finite State Machine that represents the robot behaviors.

3.2.1 Root Robot Behavior

Robot of ID one is declared as Root robot. The responsibility of this behavior is to

communicate all the requests regarding additional robots to the Reserve Robots and

develop the global map of the environment by merging the maps developed by the

Mapper robots.

3.2.2 Reserve Robot Behavior

Reserve robot behavior are displayed by robots who are not alloted a region to map

or requested to become a node in the communication network. textitReserve robot
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behavior is the initial behavior exhibited by all robots other the robot assigned to

become the textitRoot robot.

Reserve robots can readily switch their behavior depending upon the external

request. Reserve Robots are used for transforming into either a Mapper Robot or a

Transmitter Robot. The switch into Mapper Robot behavior is done on reception of

a request for expanding the mapped region and the switch into Transmitter Robot

is performed to replace a broken robot in the communication network.

3.2.3 Mapper Robot Behavior

Mapper robots are responsible for developing the map of the region alloted to them

by the Master robot. They perform SLAM using LIDAR to observe the environment

and use Odometry Motion Model to estimate their motion. To explore unknown

regions, Reserve robots switch to Mapper robots and start the mapping process.

Memory, and communication constraints on the robot limit size of the map it can

develop. Memory and communication constraints are modeled by number of grid

cells a robot’s memory can store and the communication signal strength between

Root and Mapper robots respectively. If the constraints are reached, the Mapper

robots will identify frontier cells of mapped region and select exploration initializa-

tion points for launching new Mapper robots robots.

3.2.4 Master Robot Behavior

Master robots are responsible for generating and transmitting a request for new

Mapper robots in order to increase the mapped area. Master robots coordinate with

the Mapper robots by allotting them regions to map.

When a Mapper robot completes its mapping task, it switches to a Master robots

and launches new Mapper robots to map from its frontier regions. Once all the

Mapper robot completes mapping, the Master robot switches to a Transmitter Robot

in that position.

3.2.5 Transmitter Robot Behavior

The Transmitter Robot forms the communication network that transmits informa-

tion from the frontier regions to the Root robot. A Master robot becomes a Transmit-

ter robot when all Mapper robot that it is coordinating complete their mapping tasks.
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Transmitter robot are responsible for acting as the communication link between

the Root Robot and the Mapper Robots. They transmit information such map data,

requests for additional robots, and information regarding broken robots. Transmis-

sion of information occurs in a chain like fashion, each Transmitter Robot broadcasts

the message to the robot that was coordinating with it while it was a Mapper Robot.

This is done to ensure that there won’t be a cycle of broadcast data generated

between multiple Transmitter Robot.

3.3 Algorithms

This section introduces the algorithms that that compose the behaviors presented in

section 3.2. Section 3.3.1 explains the algorithm used for receiving and merging maps

from different robots. Section 3.3.2 discusses the working of the communication

network of the swarm system. Section 3.3.3 discuses the method used by the Reserve

robots to traverse through the swarm. Section 3.3.4 introduces the method used by

the Master robots to corrdinate the the Mapper robots. Section 3.3.5 discusses the

method of identifying and replacing a broken Transmitter robot.

3.3.1 Map Development

The Map Development algorithm develops the global map by merging the map

developed by the Mapper robots. The Mapper robots develop maps in their local

frame, so it needs to be transformed into the global frame before being merged with

the global map. Transmitter robots are used for sending the maps to the Root robot.

FastSLAM

Mapper robots use FastSLAM algorithm developed by Grisetti et al. (2007) to

develop grid maps. An Odometey Motion model is used to estimate the motion

of the robot and a LIDAR is used to acquire observational reading. The LIDAR

gives the robot a two dimensional view of its surroundings up to a range of 150 cms.

FastSLAM is the application of Rao-Blackwellized Particle Filter to the SLAM

problem. Particle filter is used to estimate the pose of the robot(xk) and also

map(mk). This estimation is based on the current control input(uk) and the
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measurements(zk) acquired through LIDAR. The combined posterior is given by:

P (mk, xk|uk, zk) (3.1)

The principle behind the working of FastSLAM is to use Bayes rule to split the joint

posterior into two separate probability distributions. This causes the observations

to be independent of trajectory of the robot.The application of Bayes rules simplifies

the problem into:

P (mk, x0:k|u0:k, z0:k) = P (mk|x0:k, z0:k)P (x0:k|z0:k, u0:k) (3.2)

The posterior of the trajectory is estimated recursively by a particle filter. Each

particle represents a pose of the robot in the world and is equipped with its own

map. The particles populates its map using the LIDAR reading. Each particle is

weighted based on how accurate it is on estimating the robots pose. Based on the

weight factor, particles are resampled and the map of the particle with the highest

weight is considered to be the robots map.

Transmission of Map Data

The robot transmits the developed map when it switches to the Transmitter robot

behavior.The map is transmitted to the Root robot in two parts; the first part

contains the relative location of the Mapper robots in the global frame and the

second part contains the raw map data in the Mapper robot’s local frame.

Transformation of Map Data

As explained in Section 3.3.1, the Root robot receives the map data in 2 parts. The

first part of the map data forms the transformation equation shown in equation 3.3. xglobal

yglobal

1

 =

cos(θ) −sin(θ) xrelative

sin(θ) cos(θ) yrelative

0 0 1

×
 xlocal

ylocal

1

 (3.3)

The second part of the map data consists of the grid map developed in the

Mapper robot’s local frame. The Root robot uses equation 3.3 to transform the

received map data into the global frame and adds it to the global map.
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Frontier Selection for Deploying Mapping Robots

Once mapping completed, every Mapper robot is responsible for identifying points to

launch new robots. Initially, each robot identifies the frontier region of its developed

map. The frontier region is the border between the mapped and the unknown part

of the map.

Figure 3.2 shows the Master robot(M) coordinating the Mapper robots(Ma).

Master robot allots each Mapper robots a region to map. When they have completed

their mapping tasks, the Master robot informs them about the locations of the other

Mapper robots. The Mapper robots use this information to select the to select the

portion of its frontier that is away from the other robots. As shown in figure 3.2,

the Selected Frontier Region is the part of the frontier from which new robots

will be launched. This region above the line connecting the each Mapper robots is

selected for launching new robots.

Figure 3.2: Identification of frontiers to launch new robots.

Before the allotment of a frontier region to a Mapper robot, the Master robot

checks whether any other robots are present in that frontier region. The presence

of a robot indicates that the frontier region has already been mapped. This check

is performed by listening for broadcast noise from that particular frontier region.

If the frontier region has a robot mapping it or a group or robots forming the

communication network, the broadcast noise will be evident and the Master robot

will restrain from launching robots to map that frontier region.
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3.3.2 Communication Network

The Communication Network is used for the transmission of data through the

swarm. An array of Transmitter robot forms the communication network.

Range and Bearing Sensor

The Range and Bearing Sensor are used for communication by the robots. It is a

line of sight based sensor and robots communicate if they are within each others

communication range. Through this mechanism the robots share information related

to its position or request for additional robots.

Figure 3.3: Data transmission between the robots using Range and Bearing sensor .

Figure 3.3 shows the working of the Range and Bearing sensor. The robot pairs

{A,B} and {C,B} have an overlapping communication range and will be able to

exchange data. The robot pair {A,C} wont be able to communicate with each other.

Instead they form a communication network with B for exchanging information with

each other.

Transmitter Robot Chain

Transmitter robots form the communication network and are responsible for the

passage of information along the swarm. Communication is performed in a chain

like manner, each Transmitter robot communicates with the robot that coordinated

it as Master robot. Each Transmitter robot have limited memory and it informs
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the amount of memory available to the robots that want to transmit to it. If a

robot wants to transmit more information, it will wait until more memory in the

Transmitter robot becomes available.

Hierarchy of Task Data

Due to the large amount of information flow in the communication network, each

request is tagged by a unique ID. This ID ensures that robots in different behaviors

understand each other. Table 3.1 displays the different Transmission Request ID’s

used for labeling the data transmitted between robots.

Request ID Transmission between

Robots

Content of the

message

1 Master

robot/Transmitter robot

and Reserve robot

Request for additional

robots

2 Root robot/Transmitter

robot and Reserve robot

Rejecting the Reserve

robot as either a Mapper

robot or new Transmitter

robot
3 Master

robot/Transmitter robot

and Reserve robot

Accepting the Reserve

robot as either a Mapper

robot or new Transmitter

robot
5 Mapper robot and

Transmitter robot/Root

robot

Map data containing the

position of the Mapper

robot in global frame.

6 Mapper robot and

Transmitter robot/Root

robot

Map data containing grid

cell values in the Mapper

robot local frame.
7 Transmitter robot / Root

robot and Reserve robot

Reserve robot request to

initalize its position in

the global frame.

11 Root robot and Reserve

robot

Request for additional

robots
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12 Root robot and Reserve

robot

Root robot accepts

Reserve robot as a

Mapper robot.

13 Root robot/Master

robot/Transmitter robot

and Reserve robot

Reserve robot alerting of

its arrival.

14 Root robot/Master robot

and Mapper robot

Coordinating the

movement of the Mapper

robot.
15 Root robot/Master robot

and Mapper robot

Mapper robot informs

it has completed the

mapping task .

16 Root robot/Master robot

and Mapper robot

Information regarding

Frontier allocation .

17 Root robot/Master robot

and Mapper robot

Information regarding

Frontier allocation.

18 Mapper robot to other

Mapper robots

Informing other Mapper

robots that it is mapping

in that region .

20 Transmitter robot to

other Transmitter robots

Informing its children

how much memory it has

remaining .

21 Transmitter robot to

other Transmitter robots

Checking if its Children

are alive.
22 Transmitter robot and

Reserve robot

Accepting the reserve

robot as a replacement

Transmitter robot .

Table 3.1: Unique Transmission Request ID

Transmission Container

Robots use the Range and bearing sensor to listen and reply to numerous other

robots. The Robots are restricted to transmit only limited information in each

instance. Hence, it uses the transmission container to store the data it needs to
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transmit and the data is transmitted based its importance level calculated using

equation 3.4.

ImportanceFactor = w1 ∗ L+ w2 ∗ ID + w3 ∗ T (3.4)

Equation 3.4 is used to prioritize the yet to be transmitted messages. Higher the

Importance Factor for a message, the sooner it gets transmitted. The terms w1 w2,

and w3 are weighting factors which can be varied appropriately. L is the length of

the queue stores the message, ID is the Message ID given to that particular request

and T is the time it have been waiting in the queue.

3.3.3 Robot Deployment Algorithm

Robot Deployment Algorithm is used by Reserve robots to traverse the swarm.

Reserve robots answers the request for additional robots and uses this algorithm to

navigate to the robot that is generating the request.

Reserve Robot Deployment

Reserve robots are required to answer the requests for additional Mapper robots

or a robot to replace a broken Transmitter robot . As the swarm grows, Reserve

robots needs to travel longer distance to answer the requests. The Reserve Robot

Deployment algorithm will guide the Reserve robots towards their destination.

Section 3.3.2 explained the method of transmission of information using

Transmitter robots. The Reserve robots use the same transmission chain for

traveling to the robot generating the request.

Figure 3.4 shows the Transmitter robots informing the Reserve robot about a

request. Reserve robot can either be located next to the Root robot or anywhere

else along the swarm. On hearing a request being broadcasted by Transmitter

robots, the Reserve robot will traverse along the chain of Transmitter robots that are

repeating the request until it reaches the source of the request.

Figure 3.5 shows the Reserve robot reaching the Master robot after following the

Transmitter robot chain. The Master robot is alerted by the Reserve robot of its

arrival and it decides whether the Reserve robot can be given a mapping task. If a

mapping task is still available, as shown in figure 3.6 the Reserve robot switches to

a Mapper robot and performs the task. If it is not available, the Reserve robot will
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Figure 3.4: Master robot request for additional robots .

wait for a new request.

Figure 3.5: Master robot accepts the Reserve Robot.

3.3.4 Autonomous Robot Movement Algorithm

Master robots use the Autonomous Robot Movement Algorithm to coordinate the

movement of the Mapper robots. The Master robots allocates a region for the Mapper

robots to map. This region can either be completely free or filled with obstacles.
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Figure 3.6: Reserve robot converted to a Mapper Robot.

Section 3.3.4 explains the working of the algorithm in presence of free space. Section

3.3.4 explains the working of the algorithm when the robot detects an obstacle.

Mapping in Free Space

There is a high probability of regions without obstacles when mapping a large area.

In such regions the Master robot transmits a list of target positions for the Mapper

robot to explore. These positions ensure that the Mapper robot move in a curved

fashion and then sweeps the free space completely.

Communication Range 
of the Master Robot

Robot deployment 

point

Common origin point

Figure 3.7: Autonomous Robot Movement algorithm.

The Master robot controls the movement of multiple Mapper robots as shown in

figure 3.7. The Master robot allots each Mapper robot a particular region to map.

The region is the space between two unit vectors that passes through a common

origin point and the robot’s initial launch points. The Mapper robot follows a curved

trajectory, shown in fig 3.7 as dashed lines, to map the alloted region.This method
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ensures that no part of the region remains unmapped. The method ensures that the

Mapper robots map new regions and also maintain minimal overlap needed for map

merging. The Mapper robots will map until it reaches its memory or communication

limit.

Mapping in presence of Obstacles

On detection of an obstacle by the Mapper robots, it scans the surface of the obstacle

using LIDAR to search for a corner. If a corner is detected, the Mapper robot moves

towards the corner and switches to Master robot behavior. If a corner is not detected,

the Mapper robot moves along the side of the obstacle and continue the mapping

process.

3.3.5 Robot Replacement Algorithm

The Robot Replacement Algorithm ensures that the communication system is robust

and resilient to any damages. If a broken Transmitter robot is identified in the

communication network, this algorithm ensures that they are quickly replaced.

Section 3.3.5 explains the method used for identifying the broken Transmitter robot.

Section 3.3.5 explains the method used for replacing the broken Transmitter robot.

Identification of broken robots

Each Transmitter robot in the communication network is linked with its parent and

multiple children Transmitter robots. The responsibility of the parent Transmitter

robots is to listen to the information being broadcasted by its children and also to

check if they are working.

Figure 3.8 shows a functioning communication network composed of working

Transmitter robots. The communication network starts from the Root robot and

grows with each Transmitter robot being linked to one or more children Transmitter

robots.

Figure 3.9 shows a broken communication network due the absence of a Transmit-

ter robot. The Transmitter robot labeled as T1 is responsible for identifying the

problem and requesting additional robots to repair it. The parent Transmitter

robots will ping the child if it remains unresponsive for fixed period of time. If the
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child robot fails to respond, then the parent robot considers it broken and requests

a new robot as its replacement.

Figure 3.8: Transmission Chain without a broken robot.

Figure 3.9: Transmission Chain identifies a broken robot.

Replacement by a Reserve Robot

Reserve robots are summoned for replacing the broken Transmitter robot. Once a

parent Transmitter robot request for a replacement, the request will be carried along
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the transmission network until a Reserve robot answers it. The Reserve robot will

employ the Robot Deployment algorithm explained in Section 3.3.3 to reach the

parent Transmitter robot.

Figure 3.10: Reserve robot moving to replace the broken robot.

Figure 3.11: Fixed communication network.
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Chapter 4

Experimental Validation

Chapter 3 discussed the working of the swarm and the different algorithms that are

used in the swarm network. Chapter 4 validates this work by testing it in different

sized environments. Section 4.1 discusses the different parameters that are used for

evaluating this work. Section 4.3 shows the compiled results from the experiments.

4.1 Parameters Analyzed

4.1.1 Size of the map developed

The total size of the map developed by the robots in terms of number of grid

cells mapped is a parameter that is used for evaluating this work. This parameter

validates the ability of the Mapper robots to map regions filled with obstacles and

also the ability of the communication network to transmit information from multiple

Mapper robots to the Root robot where it is merged with the global map.

4.1.2 Number of robots used for map development

The robots are used for mapping and also for constructing the communication

network. This parameter represents the number of robots that are deployed for

developing the map.
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4.1.3 Time taken for map development

This parameter represents the time taken by the swarm system to explore the entire

environment, map the region and transmit the map back to the Root robot using

the constructed communication network.

4.2 Experiment Setup

4.2.1 Foot-bot

The foot-bot was built in the Swarmanoid Project (Dorigo et al., 2013). It is a

differential drive robot of diameter 13 cm and height 28 cm. The foot-bot is used in

this experiment for implementing this work. The velocity commands given to the

robot are used for estimating its motion. A distance scanner which can measure

up to a distance of 300mm is used for observing the environment. 24 IR sensors

mounted around the robot is used avoiding obstacles in its path. Communication

between robot is achieved using a range and bearing sensor.

Figure 4.1: Foot-bot (Source: IRIDIA)
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4.2.2 Memory limitations of the robot

The memory capacity of the robot is a parameter that is varied in the experiments.

The memory capacity is the number of grid cells each robot can map. This factor

limits the area each robot can map. 100, 200 and 300 are the three different values

of memory capacity chosen for the experiments.

4.2.3 Separation angle between frontier regions

The Master robot allots frontier regions to the Mapper robots to map as explained

in Section 3.3.1. The angle of separation between the frontiers determines the size

of each frontier alloted to the Mapper robot. 0.4, 0.9 and 1.2 are the three different

values of the separation angle chosen for the experiments.

4.2.4 Test Environment

The robots map 3 different environments of varying size. Each environment is

cluttered with obstacles. The description of each environment is given below:

Environment One

Figure 4.2: Environment One.

Figure 4.2 is the first environment which is of size 20m × 6.5m. The complete

map of this environment consists of 1500 grid cells with a resolution of 30 cm.

Environment Two
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Figure 4.3: Environment Two.

Figure 4.3 is the second environment which is of size 20m×13.5m. The complete

map of this environment consists of 3000 grid cells with a resolution of 30 cm.

Environment Three
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Figure 4.4: Environment Three.

Figure 4.4 is the third environment which is of size 20m× 22.5m. The complete

map of this environment consists of 5000 grid cells with a resolution of 30 cm.

4.2.5 ARGoS - Autonomous Robots Go Swarming

ARGoS (Pinciroli et al., 2012) is a multi-robot simulator developed in the

Swarmanoid Project (Dorigo et al., 2013). ARGoS has a modular and parallel

design that enables accurate and efficient simulations of large-scale robot swarms.
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4.3 Results

This section shows results for the various set of experiments described in Section 4.2.

Each experiment is represented through four graphs. The first graph displays the

map developed by the swarm network. The second, the third and the fourth are box

plots with data from 50 experiments by varying the memory capacity of the robot

and the angle of frontier region. The second graph compares the map developed by

the swarm. The third graph compares the number of number of robots that were

deployed to map the environment. The fourth graph shows the time taken by the

swarm system to map the environment.

4.3.1 Environment One

Figure 4.5: Map of Environment One developed by the Swarm Network.
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Figure 4.6: Number of Grids Mapped in Environment One by the Swarm Network.

Figure 4.7: Robots Deployed in the Swarm Network to map Environment One.
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Figure 4.8: Time taken by the Swarm Network to map Environment One.

4.3.2 Medium Sized Environment

Figure 4.9: Map of Environment Two developed by the Swarm Network.
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Figure 4.10: Number of Grids Mapped in Environment Two by the Swarm Network.

Figure 4.11: Robots Deployed in the Swarm Network to map Environment Two.
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Figure 4.12: Time taken by the Swarm Network to map Environment Two.

4.3.3 Large Sized Environment

Figure 4.13: Map of Environment Three developed by the Swarm Network.
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Figure 4.14: Number of Grids Mapped in Environment Three by the Swarm
Network.

Figure 4.15: Robots Deployed in the Swarm Network to map Environment Three.
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Figure 4.16: Time taken by the Swarm Network to map Environment Three.

4.4 Analysis of results

This section gives a summary of the results that were shown in Section 4.3.

4.4.1 Quality of the map developed by the swarm

Figures 4.5, 4.9, and 4.13 are the maps developed by the swarm. The white cells

represent free space, the grey cells represent unknown regions and the black cells

represent obstacles.

The presence of grey regions within the map and inaccurate position of

obstacles in the map are due to the high uncertainty present in the developed

map. Uncertainty in the developed map can occur due to several factors such as

inaccurate motion and observation model, accumulation of error due to progressive

deployment of robots and inaccurate map merging due to wrong initial pose

information.
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4.4.2 Size of the map developed by the swarm.

Figures 4.6, 4.10, and 4.14 are the box plots of the size of the map developed by the

swarm. The figures show that swarms with robots having high memory capacity

develops a larger map. With each robot having a high memory capacity, less robots

are required to make the map of the environment and so less robots are deployed.

4.4.3 Number of robots in the swarm

Figures 4.7, 4.11, and 4.15 are the box plots of the total number of robots deployed

in the swarm. With larger memory capacity and larger angle of separation between

frontiers, the number of robots deployed decreases significantly. With larger memory

capacity, each robot maps a larger region and by increasing the angle of separation

between frontiers, lesser robots are requested for expanding the swarm network.

4.4.4 Time taken to develop the map by the swarm

Figures 4.8, 4.12, and 4.16 are the box plots of the time taken to develop the map

by the swarm. The time taken for constructing the map reduces with an increase in

memory capacity of the robots and this occurs because less robots are required to

reach the extreme ends of the swarm. Time waste due to the robots getting stuck

between obstacles or other robots within the swarm is reduced.
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Chapter 5

Discussion and Future Works

5.1 Conclusions

An approach to decentralized SLAM using a robot swarm is proposed in this work.

The swarm network is created using robots with limited memory and communication

capabilities. In this work, a robot swarm constructs a global map of the environment

starting from individual maps of the robots that are significantly smaller than the

global map. We presented the various algorithms and robot behaviors used for

developing the algorithm.

Results showed the maps developed by the swarm in three different experi-

ments. A different sized environment with different number of obstacles were used

in each experiment. With an increase in size of the region to explore and map, the

uncertainty present in the swarm gradually increases and it affects the quality of

the developed maps. The results also explained the properties of our approach in

differently sized environments.

5.2 Future Works

This thesis tackles a decentralized strategy to perform SLAM using robot swarms.

Some of the future research areas to be explored which follow the work done in this

thesis are discussed below.

• Map Merging: This work merges individual robot maps using relative

transformation between the robots. This method of map merging does

not consider the uncertainties in the robot’s initial pose and this increases
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the error in the developed maps. An image processing algorithm can be

used to match the features in the environment and produce a new relative

transformation between the maps and it can be used for merging the maps.

• Quicker Reserve Robot Deployment: Another possible improvement of

this work is to deploy robots only on receiving requests from other robots.

A new method can be explored where the robots are automatically deployed

to the part of the swarm that is growing. This will reduce the time wasted

waiting for robots to travel to growing regions.

• Trim the Swarm Network: Another possible improvement tackles how to

distribute robots that map unknown areas. Once the robots have completed

the mapping task, they assist in deploying new robots to grow the swarm

network. If no new regions can be found for deploying robots, that particular

part of the swarm can be disbanded and each of those robots can move towards

the growing part of the swarm system.
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