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Abstract  

Shape Security, a cybersecurity startup, employs a reverse proxy server system 

named Pegasus to protect their customers’ network traffic against attacks. Pegasus is 

configured by software in a feature-oriented paradigm, composing components of 

domain-specific code to tailor security policies for customers. Since Shape’s 

composition system has no developer-written way to enforce constraints between 

components, creating valid compositions is difficult. Our project addresses this issue by 

enabling a means for predicates to be written for components by the developers. This 

allows the use of programmable first order logic to validate that all components in a 

given policy satisfy the features’ predicates. The result is a new language which tests 

facts using logic to validate policies.  
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1. Introduction  

As the number of people using the Internet approaches 4 billion [1], cybersecurity 

is becoming increasingly important to today’s society. More data is being stored online 

than ever before, varying from hotel or airline reservations to healthcare and banking 

information. With personal information being accessed online more frequently, attacks 

with the intention of retrieving this information are increasing in frequency, as well.  

In an effort to prevent these attacks, Shape Security, a cybersecurity startup 

located in Mountain View, California, identifies and blocks malicious behavior from their 

clients’ network traffic without affecting legitimate users from accessing their information 

[2]. To help block attacks Shape Security uses software called Pegasus, a reverse 

proxy server system that consumes and sends out requests.  

The Pegasus system distinguishes malicious traffic from the traffic of legitimate 

users by using policies tailored for each individual customer. Customer policies are 

composed from a collection of individual components and are created by using Shape’s 

Policy Composer tool. Policy Composer composes policies in a feature-oriented 

paradigm by arranging and compiling components written in a domain specific language 

named DEX. When an attack occurs, Pegasus detects the malicious behavior using a 

DEX policy and blocks it, while simultaneously gathering information about the origin of 

the attack. This information allows Shape to improve the policy that blocked the attacker 

and improve their machine learning models, without blocking legitimate users. 



However, the major issue with Policy Composer is when there is the addition of 

new custom constraints, written as annotations in DEX components. This requires 

implementation of additional language support.The user of Policy Composer is currently 

not able to specify any additional constraints that must be met in a policy without adding 

this additional language support. 

The goal of our project is to develop a system that allows the Policy Composer 

users to add additional constraints to the policy. Our system, called Predicate-based 

Composer System (PCS), replaces the existing annotation system. With PCS, the 

component writer adds predicates (facts that are true about the specific component) in 

comments as part of the component. After a policy is composed, PCS allows a user to 

write first order logic statements to determine if the predicates written about each of the 

components in the composition can be made true by checking the satisfiability using 

Microsoft’s solver Z3. The end result is PCS, a new system implementing a language 

which tests predicates using first order logic to validate policies. 

The rest of this report is organized as follows: Chapter 2 discusses the 

background information necessary to understanding our project; Chapter 3 explains the 

choices made in designing PCS, including determining the project requirements; 

Chapter 4 details the process behind implementing PCS and integrating it with Z3; 

Chapter 5 summarizes our conclusions, and Chapter 6 gives recommendations as to 

how our project can be advanced and maintained in the future.  



2. Background  

The sections that follow will describe Shape’s products that influenced our project 

and the technologies that were utilized to complete our project.  

2.1 Shape Security 

This section gives an overview of Shape’s terminology and the internal 

architecture that influenced our project. 

2.1.1 Pegasus and Policy Composer 

Pegasus and Policy Composer follow a feature oriented paradigm. Before going 

into detail about Pegasus and Policy Composer, we will define the concept of feature 

oriented programming.  

2.1.1.1 Feature Oriented Programming 
 

Feature Oriented Programming is a programming paradigm that focuses on 

developing features of a system, one feature at a time, until the desired system has 

been created [3]. A feature is a piece of system functionality that a user can identify. 

Different features require different capabilities, and different tools require different 

capabilities. A key goal is to allow third parties to add new features to existing products 

without modifying existing code. Although having many small components makes it 



possible to assign the least authority to each one, it over-burdens the programmer 

having to link each one. 

 

2.1.1.2 Pegasus 

Pegasus is a scriptable reverse proxy server that is responsible for detecting and 

eliminating bot traffic and malicious behavior between client endpoints and their servers. 

Pegasus processes both the pre and post network traffic to track down information in 

the event that malicious behavior is detected. This data is captured through flags which 

can be used to block new attacks. Pegasus rules are specified through policy 

configurations, which are created using the Policy Composer. 

2.1.1.3 Policy Composer 

Policy Composer is the tool which allows Shape to create policies specific to their 

customer’s needs and requirements. All policies are composed of many different 

components. Each component is a specific group of customizable configurations that 

helps filter network traffic. All of these components are written in an internal 

domain-specific language (DSL) called DEX.  

Policy development consists of organizing a feature into a valid arrangement, 

providing the configuration arguments required by those features, and compiling the 

arrangement into a Pegasus policy. The Policy Composer is designed to achieve the 

following primary goals: 



1. To develop and maintain Pegasus policies as a list of domain-specific features, 

offering an abstract layer in which policies can be composed and maintained by 

domain experts. 

2. To build a library of policy feature components, which may be reused to create 

new policies. Feature components may be developed, tested and altered in 

isolation from other features. 

3. To provide a simplified configuration layer for Pegasus policies through which 

policies may be configured by a domain expert who is not necessarily familiar 

with DEX or the implementation of Pegasus policies in DEX. 

 
Figure 1 below outlines the steps necessary to create a policy with Pegasus. 

First, custom features are combined with standard features, loaded from a standard 

feature library. These are assembled into a policy feature composition. The features are 

arranged in this composition based on configuration parameters. A Pegasus Policy is 

then generated from this resulting composition. Our project will help aid this process by 

allowing more robust configuration parameters to be applied to the compositions. 



 

Figure 1: Pegasus Policy Creation overview 



2.1.2 DEX  

DEX is a DSL used to specify the behavior of the Pegasus reverse proxy server. 

DEX was developed at Shape and is used to create components of a policy for the 

composition of policies into features. Since there is currently no support for determining 

the interactions, intended or not, between different features, an extension to DEX must 

be created in order to pursue the idea of a sound composition algorithm. A problem with 

using DEX in its current state is the inability to determine the effects the feature would 

incur on top of the existing features. Thus, our project extends DEX to begin to address 

this problem. 

DEX programs are executed within an input environment that provides input data 

and external computation. The result of executing a DEX program in a given 

environment is a collection of flags and reported values. Executing the same program in 

different environments may produce different results as the input data and external 

computation may be different. 

There are two features of DEX that make it explicitly feature-oriented. The 

keyword ‘super’ provides access to identifiers defined in previous feature components in 

an arrangement of features. An arrangement of features is said to be valid if the data 

dependencies among the features are satisfied. Secondly, identifier names that start 

with underscore ( _ ) are assumed to be local to the features in which they are defined. 



2.1.3 Athena 

Athena is a suite of tools which include a parser, compiler, and interpreter for 

DEX. Composing a valid arrangement of features requires the DEX file to be parsed, 

compiled, and executed by Athena. As with most compilers, it has a lexer to scan the 

language for tokens, parses it into an AST, then eventually compiles.  

2.2 External Technology 

In this section, we will discuss external technologies that we used to help in the 

design and implementation phases of our language. 

2.2.1 ANTLR 
 

ANTLR (Another Tool for Language Recognition), is a tool that can automatically 

generate a parser from lexer and parser rules, specified in regular expressions and 

context-free grammars. ANTLR is especially useful since it can graphically show the 

parse trees from input text, which aids in ensuring the correct structure of a tree from a 

given grammar. This allows for the easy modification of the grammar, without having to 

refactor the parser by hand. These trees can be viewed in Appendix B. We used 

ANTLR to visualize the ASTs when designing our grammar. 

2.2.2 Z3 
 

SAT solvers attempt to determine if there exists an interpretation that satisfies a 

given boolean formula. They try to find a solution such that a boolean formula can 



evaluate to being true. As of 2007, SAT-algorithms have been able to solve problems 

consisting of thousands of variables and millions of symbols, though not in polynomial 

time due to their NP-Complete status [4].  

Modern SAT solvers have similar features, which include watched literals, 

learning mechanisms, deterministic and randomized restart strategies, cause deletion 

mechanisms, and smart static and dynamic branching heuristics. Since the SAT 

problem is NP-Complete, the additions of complexities within the formulae cause the 

runtime efficiency to increase non-polynomially.  

One popular and efficient solver is Z3, a modern Satisfiability Modulo Theory 

(SMT) prover developed by Microsoft Researchers [5,6]. Z3 takes logical formulas and 

expressions and assembles them into a single composition. Z3 then determines the 

satisfiability of the entire composition. 

There are three possible returns from checking the satisfiability of a Z3 

composition. The first return option is “sat.” Sat is returned if there exists a model that is 

satisfied for every defined formula in the composition, thus satisfiable. Next, “unsat” is 

returned if there is no possible model that can satisfy every formula, thus unsatisfiable. 

The final possible return is “unknown.” While rare to get unknown as a return, it occurs if 

Z3 cannot determine the behavior of a formula present in the composition. This is found 

when Z3 cannot determine the satisfiability of a formula.  



 

Figure 2: Z3 Unknown Return Example 

 

Figure 2 shows an example when Z3 returns unknown. The first “(check-sat)” 

returns sat since Z3 can determine a valid solution. However, the second “(check-sat)” 

results in unknown. Z3 cannot determine if there is a solution for both of the assertions. 

The satisfiability can be checked at any portion of the composition, which is useful for 

determining which formula caused an undesirable return. We use Z3 for determining if a 

solution is available to satisfy facts and first order logic statements made about a 

composition. 

 

  



3. Methodology  

In the sections that follow, we outline the planning process we took in completing 

our project and creating Predicate-based Composer System (PCS). This includes our 

project requirements, the design of our new language, the grammar associated with that 

new language, the creation of our parser, creation of Z3 code, the creation of our 

compiler and testing. 

3.1 Project Requirements 
  

In order to discover the most important and useful features to add to DEX, we 

consulted with many different teams to understand their perspectives and determine 

what would be the most beneficial. Currently, there are annotated metadata before 

modules, components, or bindings in a DEX file. These metadata store specific 

information about their respective part of the DEX file. 

 One of the major issues with the current system is that all the annotated 

metadata is hard coded, meaning personalized or custom annotations cannot be added. 

If there were a way that custom annotations could be allowed, this would make it easier 

for both the writers of DEX policy components and the Policy Composer team.  

The writers of the components would benefit from custom annotations since they 

would be able to add certain annotations to components that would have an internal 

meaning to their team. For example, if they wanted a few specific components to all be 



part of one group, they would be able to by labeling them and specifying how 

components with that label may interact.  

Once these components are written with the custom annotations, they would 

then be used by the Policy Composer team. The policy composers would benefit from 

these custom comments since there would be newer, more specific rules in place about 

which composition of components can make a valid policy. If there were a group of 

components where only one from the group could be chosen, it would be much easier 

for the Policy Composer team to identify that requirement and be able the pick the 

component from that group that best suits their needs for that specific policy, making the 

entire policy composing process easier.  

3.2 Design of Language 
 

Once we determined the specific requirements needed, we were able to design a 

solution. Since the current system used an annotation system and all the annotations 

were hard coded, using a predicate system of logical facts would be a better approach. 

Our language, composed of these predicates, would be parsed into a series of First 

Order Logic statements. We visualized many examples of predicate statements and 

what their corresponding logical statements would be.  

As an example, one component may have the annotation “@Requires 

[anotherComponent],” which states that anotherComponent needs to be included in the 

composition of a policy if the annotated component is also part of the policy. The first 

order logic statement for this would translate to ∀x,y. Component (x) ⋀ Requires(y) → 



Component(y). In this case, Component(x) evaluates whether x is a component in the 

current policy, and similarly, Requires(y) evaluates whether a component y is required. 

This statement would be evaluated, and if it evaluates to false, then that specific policy 

composition would fail, since it requires the second component to also be present in the 

composition.  

After testing of our language, we were able to discover some unnecessary 

requirements that were present originally. PCS initially required a component x to also 

have a corresponding Component(x) for defining it as a component and usage in first 

order logic statements. Through type checking, we were able to remove the need to 

this. Instead of having to say explicitly in Z3 that x was a component as before, PCS 

was able to determine that it was a component based on its type. 

3.3 Creation of Grammar  
 

After gathering requirements for our language, we created a grammar to define it. 

In order to test our grammar, we needed to be able to parse it and see the AST that it 

produces. To make this easier for us, we used ANTLR, an automatic top-down parser 

generator. In these planning stages, we were able to rapidly prototype a grammar and 

test the generated parser for correctness. To ensure the quality of our grammar, we 

wrote many tests using valid first order logic statements, which can be viewed in 

Appendix B. 

 



3.4 Creation of Parser 

Once we determined the requirements for our grammar, we created a parser for 

PCS. The parser needs to identify the required tokens from the DEX comments to 

correctly parse out the desired information. All the AST Nodes evaluate to a Formula or 

a Term. Formulas are the predicates that are written directly in the DEX comments. 

Terms are the parts of the predicates that would eventually evaluate to a data type. The 

parser for PCS was written in Java. 

 

3.5 Creation of Z3 Code 

PCS uses Z3 as the tool to evaluate first order logic. Z3 has a Java API available 

for use, but there is not much documentation for using this API. Through manual 

experimentation, we found that the user can create Z3 code by calling the various 

functions for creating sorts, constants, and functions as needed for the composition. 

The downside for this API is that it is difficult to create formulas with quantifications, and 

all the first order logic we use contains at least one, and often multiple, quantifications. 

For our use, we would need to create the inner formula that was being quantified over 

first, then quantify over it. This proved to be difficult when introducing multiple and 

nested quantifications. 

The other option we pursued was to manually generate Z3 code through code 

generation. Using the style that was available on Rise4Fun, Microsoft’s website for 



learning Z3, PCS could generate sample logic examples and test them. Using the Z3 

Java API, PCS could pass this code as a string to create a solver based on the code. 

Then, PCS could evaluate the satisfiability of the solver. We used this method when 

integrating Z3 into PCS. 

3.6 Creation of Compiler 

Once we designed the parser and determined how we would integrate Z3, we 

developed a compiler for PCS. This compiler contained a list of the predicates being 

parsed from the DEX comments and compiled them to Z3 code. The compiler also 

needed to account for the various differences that Z3 code provided, such as defining 

sorts, as well as to accommodate to the way Z3 code is structured. This accomodation 

required declaration of predicate signatures as Z3 functions along with adding in the 

usages of the predicates as assertions. After generating the Z3 code, the PCS compiler 

attempts compilation using the Z3 Java API and returns the satisfiability to the user, as 

a boolean value, for the specific first order logic statement being tested. 

3.7 Testing 

Due to the unique nature of Z3 and its interaction with the parser and compiler, 

testing needed to be robust. We tested the parser and the compiler for PCS as its 

development progressed, verifying outcomes or modifying the code based on the 

results.  



The parser was tested to verify the ASTs were structured properly and only 

parsed valid tokens. We ensured these ASTs worked according to the precedence and 

associativity for all the operators included in our language. 

 Next, the compiler was tested extensively to ensure that errors were thrown 

when expected to correctly validate predicates, and translate to Z3 code. The compiler 

was also tested to cover all the errors that Z3 could provide, so that any Z3 error would 

be due to an unknown return.  All testing was done through a combination of JUnit tests 

and visual tests to confirm the structure of the parser trees.  



4. Implementation  

The following sections detail the implementation of our API for compiling our 

language, Predicate-based Composer System (PCS), which also alludes to Policy 

Composer with the first two letters.  

4.1 Language design 
This section describes the language we designed, as well as the design 

decisions behind it. 

 
4.1.1 Syntax 

The syntax for our language (which can be seen in detail below) was designed to 

make writing first order logic simple. The syntax also is designed such that anything that 

is written must be a formula, or something that results to an assertion of a boolean 

formula or predicate, so that semantic analysis does not have to check for errors 

caused by inputs that are not directly translatable to Z3. The syntax also implies that the 

language is restricting input to only binary expressions; everything formula-wise is 

connected to another formula by connective operators (implication, biconditional, 

conjunction, disjunction). 

 

  



ormula → [ {FORALL | EXISTS} V . ] formula [ connective formula ]f + *  

                |   formula ˜  

                |  (  formula ) ′ ′ ′ ′  

                |  predicate  

                |  comparative  

→ (a )(a A 0 _)V − z − z − Z − 9 *  

onnective → [=> => AND OR]c  <   

redicate → pid tuplep  

                | bindingLevel #id :   

indingLevel → {thisComponent | thisModule | thisBinding}b  

d → Vi   

id → p A )(a A 0 _)( − Z − z − Z − 9 *  

uple → (  term [, term]  )t ′ ′  * ′ ′  

erm → stringt  

          | num  

          | thisComponent  

          | thisModule  

          | thisBinding  

          | true  

          | false  

          | #identif ier  

          | tuple  

dentif ier → Vi  

omparative → term op termc  

p → (< = = ! )o  >  <  >  =  =  
Notes: parenthesis represent sets, whereas curly brackets represent grouping. Brackets represent optionality. ‘AND’ and ‘OR’ 

are left-associative and have lower precedence than ‘=>’ and ‘<=>’ which are right-associative.   



4.1.2 Predicates 

Predicates, written in the comments of DEX files, can be used to assert facts 

about the AST Node they are attached to. The three levels of interest by which 

expressing facts about and between them would be useful are the following: 

Components in Policy Composer; Modules (analogous to a Class in Java); and 

(variable) Bindings in DEX. These varying levels of interaction have been implemented 

into PCS as a necessary means to record facts about them. The keywords 

“thisComponent”, “thisModule”, and “thisBinding” represent those levels, henceforth 

referred to as Binding Levels. A predicate parsed from DEX AST Nodes must use one 

of the binding level keywords in order for logical quantification to be able to distinguish 

between the three domains of discourse. 

Predicates are also implemented to record facts about the specific level instance 

(a specific component, module, or binding) they are attached to. Our language offers 

terms: integers, strings, booleans, and specific references to other level instances, 

called identifiers (prepended with a ‘#’). Using these primitive data types as well as 

references to level instances allow a basis for allowing the statement of facts about level 

instances. 

 

4.1.3 First Order Logic Formulas 

With the ability to state facts about level instances, being able to reason about 

them is required to be able to redefine validity in compositions. Quantification, via 

universal and existential operators (FORALL, EXISTS), as well as the variable used to 



quantify over, in addition to the connective operators, and comparative operations, allow 

a robust way to reason about the predicates in the features. By having test cases 

written in first order logic and translating them to our language, we were able to create 

this simplified language that could encapsulate the functionality required. Below is an 

example of a formula and its respective PCS equivalent. 

 

y. ∀x. Name(x, ) ∧ ∀z. ∀a. Name(z, ) ⇒ a y ∧ y “f indsHackers”∃ y a =  =   

EXISTS y. FORALL x. Name(x,y) AND FORALL z. FORALL a.  

Name(z,a) => a == y AND y = “findsHackers” 

 

4.2 Parser Design 

The following sections detail the design of the parser that was implemented. 

4.2.1 AST Nodes Class Structure and Design 

 
Figure 3: AST Nodes diagram (see Appendix A for UML) 

 



The AST Node classes were designed around Formula and Term due to the 

effect that each has; a formula can be asserted as being true, whereas terms resolve to 

a data type. The AST Nodes diagram can be seen in Figure 3 above, where Appendix A 

shows the complete UML diagram that includes the method descriptors for each 

member. In designing the parser, a functional approach was used considering the 

nature of programming languages being deterministic; note the deterministic typing of 

children for each node - a BinaryFormula has exactly two Formula as children, with one 

BinaryOperator enum. Also noteworthy is the usage of a Type enum - for terms with 

known types, the types are set in the constructor to their respective values, whereas 

terms like Identifiers are typed in the later stages of the compiler. Finally, PCS uses 

Shape Security’s own Functional Java library [7]  to further implement in a functional 

paradigm, using the types ImmutableList<T> to ensure immutability. 



4.2.2 Lexer Implementation and Design 

 

Figure 4: Lexer accessory classes 

The lexer for the language was generated using JFlex, a library that allows the 

automatic generation of a lexer java class based on regular expressions and helper 



class definitions [8]. It first converts the regular expressions into a non-deterministic 

finite automata, then converts it to a deterministic finite automata which is then used to 

capture input text and map those captured expressions to tokens. JFlex was used to 

map (Figure 5) the TokenType Enums from Figure 4 to their respective regular 

expressions. JFlex also records the location, in an x and y coordinate system, allowing 

the tracking of location to be translated in our own Location file, used later in error 

reporting. The lexer has a simple API which generates a list of tokens from an input 

string, used in the parser. 

 

Figure 5: JFlex RegEx mapping 



4.2.3 Parser Implementation and Design 

 

Figure 6: Parser UML 



As shown in Figure 6, the parser, designed alongside the AST Nodes, also 

operates in a functional way; every outcome is deterministic and the resulting AST is 

immutable, with direct typed mapping for children. The API, being parse and parsePred, 

are designed to parse our language’s formulas and predicates, respectively, given a file 

and a string.  

The inner class Context is responsible for the methods involved in implementing 

the productions of the grammar, using a functional interface Parser which every 

production rule method implements. The interface is implemented in these methods by 

calling the functions loc, locSymbol, and withSymbol to wrap the insides of the functions 

with a call to loc etc., so that they may repeat the task of recording production rules 

and/or locations in a stack data structure system. Figure 7 below illustrates an example 

use case.  



Figure 7: AST root node, binaryFormula 

Notice the return on line 95 being a call to locSymbol, which manipulates the 

stack by adding the symbol “Binary Formula”, representing the production rule, to it.  

The root of every Formula AST is created by the binaryFormula method. This 

method implements the Shunting Yard algorithm to parse a formula as a binary 

expression [9]; with the connective operators, a formula is just a binary expression 

where AND and OR being lower precedence with left-associativity and IFF and IMP 

being higher precedence with right-associativity. The call to unaryFormula attempts 

parsing individual formulas separated by these operators, being Predicates and 

comparative ones along with a logical Not and grouped formulas within parenthesis. 



4.3 Semantic Analysis Design 

The following sections detail the design of the multiple steps involved in semantic 

analysis, including usage safety, type checking, type inferencing, and variable binding 

management. All such functionalities are included in the same class for code 

generation, PCSCompiler. 

4.3.1 Predicate checking 

The set of all PCS predicates parsed from the DEX ASTs are analyzed first. The 

compiler is initialized with parsed predicates, in a  

Map<T, ImmutableList<Predicate>>. This format allows a fundamental separation of 

each level instance’s PCS predicates, agnostic of the AST node mapped to it.  

There are many different data structures used to store information about the 

ASTs given, shown in Figure 8. They store data that is discovered through multiple AST 

visits, and since the ASTs are immutable, they are never modified, and all knowledge 

discovered must be recorded.  



Figure 8: Local fields in PCS Compiler, referenced in the following sections. 

There are multiple steps that the predicates must go through to be passable for 

code generation. The format of each predicate must be consistent: 

1. The first argument of each predicate must be a BindingLevel; arity must be > 0 

2. The BindingLevel keyword may be used once and only once. 



3. Each level instance must have its respective predicates use the same type of 

BindingLevel. 

4. Variables are not allowed in the predicates parsed from the DEX ASTs. 

5. Each AST in the map as generic T must have at least one Predicate as its value. 

6. Using the ID mapping syntax can only be used once per level instance. 

After this light checking is complete, PCS then must iterate through each level instance 

and determine if there was an explicit identifier mapping created for that level. If there is 

not, PCS generates a symbol to represent it, as Z3 will require it explicitly as a constant. 

PCS checks that each ID is unique between all level instances, and then place them 

into our identifiers map and symbolsByNode map. 

Next, PCS must record the so-called method-descriptors of each predicate being 

used, as only their usage implies their existence. PCS populates our 

predicateSignatures, ensuring there are no other predicates with the same name that 

are not congruent to the existing ones.  

Upon completion, PCS is able to say that the predicates are valid. Otherwise, an 

informative error, or series of them, are thrown for each violation, mentioning the 

specificity of the error and the name of the offending predicate(s). 

4.3.2 Formula checking 

In order for a formula to be checked, there must be an instance of PCSCompiler, 

for there can only be an instance for a successful check of given predicates (henceforth, 

factual predicates) by design (see Section 4.4 for the compiler design). This means that 



there are now data structures for recording the factual predicate signatures, the variable 

type mappings, and the level instances mapped to an identifier or generated symbol. In 

addition to these structures, the two visitors pre and post are created to traverse formula 

ASTs, shown in Figure 9 below. 

 

Figure 9: UML for Visitor Pattern with Traverser 

 
The visitor pattern used to traverse the formulas is a variant on the standard 

visitor pattern - a Traverser class is used instead of having to implement every method 

in the interface. The Traverser takes in two visitors, pre and post, and visits a node by 

letting pre visit first, then the children would be visited by the traverser, finally post 



would visit. The Traverser is used in the checking of formulas by visiting given formula 

ASTs after predicate checking, with the visitors being initialized as anonymous 

inner-classes of the NopVisitor type. NopVisitor implements the Visitor interface but has 

entirely empty implementations. The implications of this pattern is that PCS can specify 

how to visit a particular node before and after visiting children, without having to 

implement any other of the visitor methods. 

The checking of formulas has multiple stages and requires robust techniques to 

deal with quantification. There are many complications that arise with expressing 

quantification, especially in the context of translating to code. The first complication that 

arises is chained quantification; the expression of multiple domains.  

Take, for example, the following formula: 

ORALL x. P (x) > (FORALL y. Q(y))F =   

This formula’s outer domain is whereas there is an inner domain  ⊆ Xx  ⊆ X  ∪ y ⊆ Yx

, where X and Y represent the set of all variables with types x and y, respectively. This 

statement can be generalized inductively: In this formula, if we introduced a third 

quantifier within the inner domain, its domain would expand to include all the parent 

domains; for any given formula F, if F has a quantifier, there must exist a domain D in F 

for which all formulas in F are in scope, and similarly for every sub-formula. A variable 

referenced outside a scope where it was defined is free; a variable referenced within a 

scope where it was defined is bound. This problem introduces the need for a scope 

capturing system. 

The next problem with quantification is typing. Examine the following FO formula: 



x y. P (x) > ∃ z a. Q(x, ) > a  ∧ z∃ =  y =  = y = x  

The problem with translating this formula into a computerized system is that a type is 

required for each variable quantified over, so that such a system can discover the 

respective domains with inferring type itself, as is the case with Z3. This formula has 

variables x and y which never even get used until the next quantified formula, until PCS 

enters a new scope, and the type can only be inferred from the way the factual 

predicates have defined Q(x,y).  

To address these problems we introduce the Symbol Table as a means to 

ensure proper scoping techniques are used, as well as two Traversers to handle type 

inferencing. Together, they check the validity of formulas, the scoping, and typing to 

ensure proper code generation. 

The following subsections describe what each visitor does for checking formulas. 

In all cases, PCS throws an error if a BindingLevel is used within a formula. 

4.3.2.1 Checking Quantifiers 

The first step in visiting quantifiers is entering each variable into the symbol table, 

mapping their name to their type. As the rest of the AST is visited, the type will resolve 

in the table if the formulas are proper. PCS “enters scope” in the table, which 

increments the index of position in the table. Upon completion, the second 

NopTraverser exits scope, decreasing.  



4.3.2.2 Checking Predicates 

There are myriad checks to be done for the predicates in a formula to assure 

they are well-formed. For each formula, PCS ensures the usage of every predicate, 

argument-type and arity-wise, is congruent to the factual predicates. PCS also ensures 

that every predicate referenced within a formula has a usage from the factual 

predicates. Finally, PCS also infers the types of variables having unknown types based 

on the way that they are being used in the factual predicates. 

 

4.3.2.3 Checking Comparative Formulas 

Checking a comparison between two terms is a dynamic task. Depending on 

which operator is being used, the types of both sides must either conform to a set of 

types, or be inferenced. If the operator is one of (<,>,<=,>=), then both sides must be 

numbers, or if they are of unknown type, are inferred to be a number. Next, if the 

operator is (==, !=), then PCS cannot directly infer type; in both cases, if one side of the 

operator is of a known and valid type while the other side is unknown, PCS can infer 

that type to be that of the known type. PCS must throw an error if the types cannot be 

inferred, or if they do not match.  

At this stage, since all comparative operators with variables inside them are 

visited after a quantifier, the updating of a variable inside the symbol table must be done 

carefully. The table tries to resolve variables starting in the innermost scope first, 

working its way through parent scopes searching for a match. Ambiguities between 



variables of the same name and different scopes have no solution, as a uniquely 

identifiable system for variables, as they are known to the compiler, has not been 

implemented. 

4.3.3 The Need for a Second Traverser 

Although the design allows two visits per node, a second Traverser is still 

needed. By allowing code generation to have the knowledge of the discovered types, 

we must either build another anonymous inner class within the compiler so that it has 

access to the knowledge from the local fields (the variable-type mappings), or we put 

that knowledge inside the AST nodes themselves and add a method for code 

generation in each node class. We decided on the latter since the nodes should have 

knowledge of their discovered type. 

The second traverser sets the type of each variable, whose type was initially 

unknown, to the types discovered and recorded in the symbol table, additionally 

ensuring no free variables are allowed. 

4.4 Integration with Z3 

When introducing first order logic to PCS, we needed to figure out how PCS 

would evaluate and enforce the logic statements that users would make. Being an SMT 

solver, Z3 allows assertions made through predicates and the first order logic 

statements in one composition. PCS could then evaluate the satisfiability of this 



composition and return it as a boolean value; true for sat, false for unsat, and throw an 

error in the rare instance that Z3 returns “unknown.” 

4.4.1 Translating to Z3 Code 

Due to the unique nature of the Z3 language, PCS translates the content stripped 

from the DEX comments to Z3 code directly through code generation. Z3 requires 

knowledge of each variable’s type using it in certain cases, such as declaring a function 

or asserting a quantified expression. This is not something PCS requires when the user 

is writing their first order logic statements or predicates. Instead, our design allows us to 

look ahead at how the variable will be used to determine the type it must be. This 

allowed us to generate the correct Z3 code needed for each code generation portion, 

while maintaining simplicity from the user perspective.  



 
 

Figure 10: Z3 Code Generation Process 
 

The code generation process can be seen in Figure 10 above. It begins by 

creating the custom variable types (called “sorts” in Z3) for the three binding levels. 

Next, PCS creates all the constants that are used in the composition. These can include 



components, modules, bindings, integers, or strings. After this, the predicates are 

declared as functions using their signatures.  

Following this, all the predicates themselves are added as assertions. This is 

where the constants and functions are used. For a predicate such as 

@Firmware(thisComponent, 4, 5) where thisComponent has been named #c1, c1 would 

be defined as a Component in the constants declaration section the assertion. The 

predicate Firmware is defined as a function that takes in a component and two integers 

while returning a boolean value, and the result would be (assert (Firmware c1 4 5)). 

With this assertion, PCS is telling Z3 that this specific instance of Firmware is true. This 

continues for all predicates in the composition. Finally, PCS asserts the first order logic 

statements one by one, checking satisfiability each time for error reporting, using Z3. 

4.4.2 Running the Z3 Code 

After generating the Z3 code, the next step is to run it to see if it was satisfiable. 

At this point, a function takes in the translated Z3 code with the assertion. Using the Z3 

Java API, a new context is created, from which the solver is created. Using a method 

provided by the API, the string containing the Z3 code is passed to this solver. 

Satisfiability is then checked using this solver, returning true for sat, false for unsat, and 

throwing an exception for unknown or, in the case where the compiler failed to catch 

errors, a Z3 Exception. 



4.4.3 Reporting Feedback from Z3 

A limitation of Z3 is being able to understand exactly what went wrong. A proof 

can be generated when a composition is unsat, but it does not contain any immediately 

useful information, as seen in Appendix C. Since PCS asserts the first order logic 

statements one by one, it can report back to the user which specific statement was not 

satisfied by the factual predicates, which at least provides some level of granularity. 

Feedback for the user is very important for fixing errors and unintended behaviors. 

4.4.4 Ambiguity with Z3 

Using Z3 extensively throughout our project, the ambiguity present in it became 

more apparent. The main case where it is especially prevalent is when trying to check if 

items exist in the composition. Z3 will try to make satisfiable solutions every time. This 

can be detrimental because it will make assumptions about the existence of facts.  

For example, suppose we have a composition and one component requires 

another one to be present. The logic for this would be EXISTS b. FORALL a. 

Requires(a, b). From this logic we are stating that component a requires component b to 

be present in the composition. However, Z3 will not check this. Instead, Z3 will assume 

that b does exist in the composition somewhere. Due to this assumption, it is very 

difficult to check that the desired component is present.  

More challenges arise from this assumption and logic as well. This assertion will 

not be checked unless an (assert (Requires a b)) is present in the composition. In order 

for this assertion not to cause an error previously in Z3, a and b must both be defined. 



From here, it will check the assertion and be able to satisfy it, since both exist. 

Essentially, the logic will not be reporting back that the component is not present. 

Instead, Z3 will be checking it by producing an error when the component has not been 

defined and not by the logic, which is undesirable.  

 

4.5 Compiler Design 

The following section outlines the high-level design of the compiler for PCS: the 

internal workings of what happens when it is used to compile Z3 code, and how. 

Figure 11: UML for PCSCompiler 

Figure 11 shows the simple API for using PCS Compiler: the constructor, where 

one provides a mapping between each instance level and an ImmutableList<Predicate> 



representing all the predicates attached to their respective instance level’s AST Node, 

parsed from the comments of that node; the addFormula method that takes in a parsed 

Formula, and the checkThat method that interfaces with the Z3 API to check 

satisfiability or errors. 

The use case for the API is as follows: a user must create an instance of the 

compiler with parsed predicates and their map keys, representing level instances, and 

check for compilation errors. If there are no errors, the compiler has produced Z3 code 

for the factual predicates, and the user may then proceed to add formulas. To check if 

these factual predicates compile to Z3 and to check satisfiability, the user must call 

checkThat. 

To check formulas, a user calls addFormula with a parsed formula and if it 

returns true, then the formula has passed both compilation and Z3 satisfiability and has 

its respectful Z3 code added to code. False indicates an unsat status, and compiler 

errors are thrown otherwise. 

The design of this API was intended to allow the finest grain of error reporting - 

all the predicates must be compiled at once to check if they are valid together in the 

domain of facts that have been asserted. Errors will surface for each compilation error 

found for the predicates. Additionally, the user has the power to tell which formulas, if 

any, have failed compilation or satisfiability. Since a program is unsat if one assertion is 

unsat, the best error reporting will indicate so at the individual formula granularity. 



4.6 Testing 

The following sections outline how the parts of the compiler were tested. 

4.6.1 Lexer testing 

To thoroughly test a lexer, we tested that a valid, respectful token was created for 

each token possible. We also tested that white-space did not get parsed. Figure 12 

below shows a sample of the test cases we ran.  

Figure 12: Lexer test cases for expected token types and whitespace ignorance 



The lexer tests tokenize given input texts and assert that the type of the parsed 

token is the intended type. The whitespace tests on line 86 do the same operation, 

asserting that the whitespace does not interfere with tokenization.  

4.6.2 Parser testing 

Test cases for parsing is difficult, because it is not easy to automatically confirm 

that the structure of the ASTs are as expected. We visually confirmed the structure of 

the trees to be valid via a visiting printer, and also tested whether input should parse. 

Example test cases are shown in Figure 13 below. 

Figure 13: Parsing test cases  



4.6.3 Compiler Testing 

The compiler was tested through factual predicates, formula, and satisfiability 

assertions. We tested whether the compiler threw errors when expected, or whether the 

Z3 compilation result was expected. We tested every type of error accounted for in the 

compiler. The goal for the compiler is to never allow a Z3 exception unless for the 

semantic failures caused by an Unknown return status. We are unaware of any possible 

exceptions not caught by PCS Compiler, however there may still be unresolved matters. 

Sample test cases are shown in Figures 14 and 15 below. 

Figure 14: Testing factual predicates 



Figure 15: Testing Formulas 

Level instance predicates are simulated via adding predicate PCS code text and 

registering them by calling parseNode. Formulas are tested by creating only one, 

similarly by calling checkCompile to run all the PCS code for compilation, where 

parseFormula then checks for Z3 compilation. The tests check every possible error we 

have formulated in the previous sections, as well as testing arbitrary valid formulas. 

  



5. Conclusion 

Shape Security protects its customers by employing Pegasus, a reverse proxy 

system that is located between the end user and the origin server. Pegasus 

distinguishes between malicious traffic and legitimate users through the use of policies, 

which are composed of many different components, and created through Policy 

Composer. Since the current system is not robust for policy customization, there is a 

need for a better way to specify how policy components interact with each other to 

create a valid policy composition. Currently, there are a handful of built-in annotations 

that component writers could include in the component being written, but no easy way 

to specify custom annotations.  

We designed and developed Predicate-based Composer System (PCS) to 

address this issue by making a more flexible and customizable system for components 

of a policy. With PCS, predicates can be defined for components, where predicates are 

like facts that are true for a specific component. Using these predicates, PCS uses first 

order logic formulas to determine whether the logic is valid for all the predicates 

asserted by the components present in the policy, by assessing the composition’s 

satisfiability using Z3.  

Certain first order logic statements are applied to every component in every 

policy, as logic is the basis for a valid policy. Other first order logic statements can be 

created or customized based on the requirements from the customer for that specific 

policy, without needing to ask the component writers to implement the functionality to 



the specific component. If the first order logic statements cannot be satisfied using Z3, 

PCS produces an error to inform the user which statement was unable to be satisfied. In 

general, PCS is a more extensive way to compose new policies through its use of first 

order logic and Z3 to determine if a policy composition is valid. 

  



6. Future Work 

In order for Predicate-based Policy System (PCS) to be used, it will need to be 

integrated with Policy Composer. The sections below details how PCS can be improved 

and integrated in the future. 

6.1 PCS Performance Optimization 

While PCS works based upon the tests that we have written, more testing to 

further understand the semantic translations to Z3 needs to be done; it is often difficult 

to translate a requirement into the logic needed to express the composer constrictions 

required. 

Additionally, the compiler need optimizations - there are multiple iterations over 

ASTs that could be reduced to lower the runtime efficiency. The symbol table system 

needs to also be able to include separate scopes per level in an AST, instead of 

assuming every quantifier is either the root scope or contained in. 

6.2 UI Mockups for Integration 
 

Once our language was fully implemented, we began creating UI Mockups to 

visualize how PCS would interact with Policy Composer when integrated. Future work 

would be to use these mockups to commence integration. 



The information needed in the mockup was the required predicates for every 

component no matter which policy they belong to, the optional predicates for when the 

Policy Composer users want to create additional predicates for a specific policy, and 

error reporting for when a predicate was violated. We created mockups for how we 

envision integration with Policy Composer would work, along with how errors would be 

reported to these mockups.  

6.2.1 Mockup For Policy Composer Integration 

First, the UIs would be stored in a new “Predicate Logic” tab in the top bar of the 

Policy Composer front end UI, as seen in Figure 9. 

 

Figure 16: Predicate Logic Tab Mockup 
 

Figure 10 below shows a Policy Composer UI to ensure required predicates are 

satisfied while being able to add or create optional ones if desired. In this UI, we present 

the user with all the “default predicate logic statements” that are always applied to every 

composition. They contain the logic and a description to go along with the logic. Directly 

below this is the pre-defined “optional predicate logic statements.” These are predicate 

logic statements that are commonly used in compositions, but do not apply to every 

composition. Again, the logic and description for the logic is present. These statements 

can be toggled “on” and “off” based on whether or not the Policy Composer user wants 

to apply it to their composition.  



The final box (“optional predicate logic template”) is a template available for the 

user to write in their own statements that must be true for the composition. Similar to the 

optional predicate logic statements, this template contains a description, the logic, and a 

checkbox on whether it is applied to the composition. Clicking the “+” icon below this 

allows for the user to produce another template for adding more custom statements. 

 
 

 

Figure 17: Predicate Logic UI Mockup 

6.2.2 Mockup For Error Reporting 

Reporting errors to the user is very important when introducing a new system. 

Due to the issues with Z3 feedback discussed in Section 4.4.3, error reporting should be 

as informative as possible. 



 

 

Figure 18: Predicate Logic UI Errors Mockup 

Figure 11 above is a mockup of an invalid policy composition being reported to 

the policy composer user. The text of the predicate logic statement that was not 

satisfied turns red and informs the user that it was not satisfied, with some additional 

information based on if it is a default, optional, or created statement. The default 

statement error informs the user to review the composition. Building off this, the optional 

logic statement error asks the user to review that it is valid for the composition, since it 

can be toggled off. The error for the created logic statements asks the user to review 

the composition, the logic, and verify it applies. The varying messages are intended to 

remind the user what to check specifically, since there are more areas to check when 

adding customizability.   
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Appendix A: UML Diagrams 

AST Node Classes 

 
Parser Classes 

 
 



Appendix B: Parsing Test Cases with ANTLR 

 

Description Test Screen Cap 

Valid 
Firmware 

FORALL a b c. 
Component(a) & 
Firmware (a,b,c) 
=> b <= c 



Firmware 
condition is 
satisfied in 
each 
component 

FORALL a. 
EXISTS b c. 
Component(a) 
=> 
Firmware(a,b,c)  

 

There is a 
version 
between b 
and c 

EXISTS d. 
FORALL a b c. 
Firmware(a,b,c) 
=> (b <= d) & (d 
<= c) 

 



Unique 
component 
only shows 
up once 

FORALL x y. 
Component(x) & 
Component(y) 
=> (EXISTS a b. 
Id(x,a) & Id(y,b) 
& ~(a==b))| 
x==y 

 

Displaying a 
date from a 
binding in 
the UI 
cannot 
appear as a 
different 
type 

FORALL a t p. 
Binding(a) & 
DisplayAs(a,t) & 
DisplayAs(a,p) 
=> t==p 



Component 
cannot be 
present if 
any of the 
components 
in the list 
are also 
present 

FORALL x y. 
Component(x) & 
Conflict(y) => 
~Component(y) 

 



Requires 
another 
component 
to be 
present 

FORALL x  y. 
Component(x) & 
Requires(y) => 
Component(y) 

 

Appendix B - Table 1: Test Cases with Screen Captures 
 

 

 

 

 

 

 

 

 



Test Extensive Tests (Bold fails) 

FORALL a b c. Component(a) & 
Firmware (a,b,c) => b <= c 

FORALL a b c. (Component(a)) & Firmware 
(a,b,c) => b <= c ; 
 
FORALL a b c. (Component(a) & 
Firmware(a,b,c)) => b <= c ; 
 
FORALL a b c. (Component(a) & 
Firmware(a,b,c) => b <= c ); 
 
FORALL a b c. Component(a) & 
Firmware(a,b,c) => (b <= c ); 
 
FORALL a b c. ((Component(a) & 
Firmware(a,b,c)) => (b <= c )); 
 
(FORALL a b c. ((Component(a) & 
(Firmware(a,b,c)))) => ((b) <= c )); 
 
((FORALL a b c. ((Component(a) & 
(Firmware(a,b,c))))) => ((b) <= c )); 

FORALL a. EXISTS b c. 
Component(a)  => 
Firmware(a,b,c)  

(FORALL a. ((EXISTS b c. ((Component(a))) 
=> (Firmware(a,b,c))))); 
 
(FORALL a. ((EXISTS b c. ((Component(a)))) 
=> (Firmware(a,b,c)))); 

EXISTS d. FORALL a b c. 
Firmware(a,b,c) => (b <= d) & (d 
<= c) 

(EXISTS d. FORALL a b c. (Firmware(a,b,c)) => 
((((b)) <= d) & (d <= (c)))); 
 
((EXISTS d. FORALL a b c. (Firmware(a,b,c))) 
=> ((((b)) <= d) & (d <= (c)))); 
 
 



FORALL x y. Component(x) & 
Component(y) => (EXISTS a b. 
Id(x,a) & Id(y,b)  & ~(a==b))| x==y 

(FORALL x y. ((Component(x) & Component(y)) 
=> (((EXISTS a b. ((Id(x,a)) & Id(y,b))  & 
(~(a==b))))| x==y))); 
 
(FORALL x y. ((Component(x) & 
Component(y))) => (((EXISTS a b. ((Id(x,a)) & 
Id(y,b))  & (~(a==b))))| x==y)); 
 
(FORALL x y. ((Component(x) & 
Component(y)))) => (((EXISTS a b. ((Id(x,a)) & 
Id(y,b))  & (~(a==b))))| x==y); 
 
 
 
 

FORALL a t p. Binding(a) & 
DisplayAs(a,t) & DisplayAs(a,p) 
=> t==p 

FORALL a t p. Binding(a) & (DisplayAs(a,t) & 
DisplayAs(a,p)) => t==p; 
 
FORALL a t p. Binding(a) & DisplayAs(a,t) & 
DisplayAs(a,p) => (t)==p;  
 
 

FORALL x y. Component(x) & 
Conflict(y) => ~Component(y) 

 
(FORALL x y. (Component(x) & Conflict(y)) => 
(~(Component(y)))); 
 
(FORALL x y. (Component(x) & Conflict(y))) 
=> (~(Component(y))); 

FORALL x  y. Component(x) & 
Requires(y) => Component(y) 

(((FORALL x  y. (Component(x) & 
(Requires(y))) => Component((y))))); 
 
(FORALL x  y. (Component(x) & 
(Requires(y)))) => Component((y)); 

Appendix B - Table 2: List of Extensive Tests 
 

 

 

 



Appendix C: Z3 Proof when Unsatisfiable 

 

 
 
 


