
A Language for Feature-Oriented
Security Policies using SMT

Silicon Valley Project Center
March 1, 2019

Submitted by:

Nathan Drewniak, ndrewniak@wpi.edu

Jeremy Hoffman, jmhoffman@wpi.edu

Paul Shingleton, pcshingleton@wpi.edu

Submitted to:

Project Advisor: Mark Claypool, claypool@cs.wpi.edu

Shape Security Advisor: Michael Ficarra mficarra@shapesecurity.com

Shape Security Co-Advisor: Tim Disney tdisney@shapesecurity.com

Worcester Polytechnic Institute

This MQP report is submitted in partial fulfillment of the degree requirement
of Worcester Polytechnic Institute. The views and opinions expressed herein

are those of the authors and do not necessarily reflect the positions or
opinions of Worcester Polytechnic Institute.

Abstract

Shape Security, a cybersecurity startup, employs a reverse proxy server system

named Pegasus to protect their customers’ network traffic against attacks. Pegasus is

configured by software in a feature-oriented paradigm, composing components of

domain-specific code to tailor security policies for customers. Since Shape’s

composition system has no developer-written way to enforce constraints between

components, creating valid compositions is difficult. Our project addresses this issue by

enabling a means for predicates to be written for components by the developers. This

allows the use of programmable first order logic to validate that all components in a

given policy satisfy the features’ predicates. The result is a new language which tests

facts using logic to validate policies.

Acknowledgements

We would first like to thank our sponsor, Shape Security, for this fantastic

opportunity to contribute to one of their internal technologies. We would like to thank our

entire team at Shape, specifically our mentors, Michael Ficarra and Tim Disney, who

have been incredibly helpful in guiding us throughout our project. Finally, we would like

to thank our MQP advisor, Mark Claypool, for his help and guidance throughout the

entire process and for giving us this amazing opportunity.

Table Of Contents

Abstract 2

Acknowledgements 3

Table Of Contents 4

List of Figures 7

1. Introduction 8

2. Background 10
2.1 Shape Security 10

2.1.1 Pegasus and Policy Composer 11
2.1.1.1 Feature Oriented Programming 11
2.1.1.2 Pegasus 11
2.1.1.3 Policy Composer 12

2.1.2 DEX 15
2.1.3 Athena 16

2.2 External Technology 16
2.2.1 ANTLR 16
2.2.2 Z3 16

3. Methodology 19
3.1 Project Requirements 19
3.2 Design of Language 20
3.3 Creation of Grammar 21
3.4 Creation of Parser 22
3.5 Creation of Z3 Code 22
3.6 Creation of Compiler 23
3.7 Testing 23

4. Implementation 25
4.1 Language design 25
4.2 Parser Design 28

4.2.1 AST Nodes Class Structure and Design 28
4.2.2 Lexer Implementation and Design 30
4.2.3 Parser Implementation and Design 32

4.3 Semantic Analysis Design 35
4.3.1 Predicate checking 35
4.3.2 Formula checking 37

4.3.2.1 Checking Quantifiers 40
4.3.2.2 Checking Predicates 41
4.3.2.3 Checking Comparative Formulas 41

4.3.3 The Need for a Second Traverser 42
4.4 Integration with Z3 42

4.4.1 Translating to Z3 Code 43
4.4.2 Running the Z3 Code 45
4.4.3 Reporting Feedback from Z3 46
4.4.4 Ambiguity with Z3 46

4.5 Compiler Design 47
4.6 Testing 49

4.6.1 Lexer testing 49
4.6.2 Parser testing 50
4.6.3 Compiler Testing 51

5. Conclusion 53

6. Future Work 55
6.1 PCS Performance Optimization 55
6.2 UI Mockups for Integration 55

6.2.1 Mockup For Policy Composer Integration 56
6.2.2 Mockup For Error Reporting 57

7. References 59

Appendix A: UML Diagrams 60

Appendix B: Parsing Test Cases with ANTLR 61

Appendix C: Z3 Proof when Unsatisfiable 68

https://docs.google.com/document/d/1fwOlV42_W4xTQFGCZlNTLcNpSAlvAbn1iA0kUCZtY-E/edit#heading=h.djyv6hgeznw9

List of Figures

Figure 1: Pegasus Policy Creation overview 11

Figure 2: Z3 Unknown Return Example 15

Figure 3: AST Nodes diagram 25

Figure 4: Lexer accessory classes 27

Figure 5: JFlex RegEx mapping 28

Figure 6: Parser UML 29

Figure 7: AST root node, binaryFormula 31

Figure 8: Local fields in PCS Compiler 33

Figure 9: UML for Visitor Pattern with Traverser 35

Figure 10: Z3 Code Generation Process 41

Figure 11: UML for PCSCompiler 44

Figure 12: Lexer Test Cases for Expected Token Types 46

Figure 13: Parsing Test Cases 47

Figure 14: Testing Factual Predicates 49

Figure 15: Testing Formulas 50

1. Introduction

As the number of people using the Internet approaches 4 billion [1], cybersecurity

is becoming increasingly important to today’s society. More data is being stored online

than ever before, varying from hotel or airline reservations to healthcare and banking

information. With personal information being accessed online more frequently, attacks

with the intention of retrieving this information are increasing in frequency, as well.

In an effort to prevent these attacks, Shape Security, a cybersecurity startup

located in Mountain View, California, identifies and blocks malicious behavior from their

clients’ network traffic without affecting legitimate users from accessing their information

[2]. To help block attacks Shape Security uses software called Pegasus, a reverse

proxy server system that consumes and sends out requests.

The Pegasus system distinguishes malicious traffic from the traffic of legitimate

users by using policies tailored for each individual customer. Customer policies are

composed from a collection of individual components and are created by using Shape’s

Policy Composer tool. Policy Composer composes policies in a feature-oriented

paradigm by arranging and compiling components written in a domain specific language

named DEX. When an attack occurs, Pegasus detects the malicious behavior using a

DEX policy and blocks it, while simultaneously gathering information about the origin of

the attack. This information allows Shape to improve the policy that blocked the attacker

and improve their machine learning models, without blocking legitimate users.

However, the major issue with Policy Composer is when there is the addition of

new custom constraints, written as annotations in DEX components. This requires

implementation of additional language support.The user of Policy Composer is currently

not able to specify any additional constraints that must be met in a policy without adding

this additional language support.

The goal of our project is to develop a system that allows the Policy Composer

users to add additional constraints to the policy. Our system, called Predicate-based

Composer System (PCS), replaces the existing annotation system. With PCS, the

component writer adds predicates (facts that are true about the specific component) in

comments as part of the component. After a policy is composed, PCS allows a user to

write first order logic statements to determine if the predicates written about each of the

components in the composition can be made true by checking the satisfiability using

Microsoft’s solver Z3. The end result is PCS, a new system implementing a language

which tests predicates using first order logic to validate policies.

The rest of this report is organized as follows: Chapter 2 discusses the

background information necessary to understanding our project; Chapter 3 explains the

choices made in designing PCS, including determining the project requirements;

Chapter 4 details the process behind implementing PCS and integrating it with Z3;

Chapter 5 summarizes our conclusions, and Chapter 6 gives recommendations as to

how our project can be advanced and maintained in the future.

2. Background

The sections that follow will describe Shape’s products that influenced our project

and the technologies that were utilized to complete our project.

2.1 Shape Security

This section gives an overview of Shape’s terminology and the internal

architecture that influenced our project.

2.1.1 Pegasus and Policy Composer

Pegasus and Policy Composer follow a feature oriented paradigm. Before going

into detail about Pegasus and Policy Composer, we will define the concept of feature

oriented programming.

2.1.1.1 Feature Oriented Programming

Feature Oriented Programming is a programming paradigm that focuses on

developing features of a system, one feature at a time, until the desired system has

been created [3]. A feature is a piece of system functionality that a user can identify.

Different features require different capabilities, and different tools require different

capabilities. A key goal is to allow third parties to add new features to existing products

without modifying existing code. Although having many small components makes it

possible to assign the least authority to each one, it over-burdens the programmer

having to link each one.

2.1.1.2 Pegasus

Pegasus is a scriptable reverse proxy server that is responsible for detecting and

eliminating bot traffic and malicious behavior between client endpoints and their servers.

Pegasus processes both the pre and post network traffic to track down information in

the event that malicious behavior is detected. This data is captured through flags which

can be used to block new attacks. Pegasus rules are specified through policy

configurations, which are created using the Policy Composer.

2.1.1.3 Policy Composer

Policy Composer is the tool which allows Shape to create policies specific to their

customer’s needs and requirements. All policies are composed of many different

components. Each component is a specific group of customizable configurations that

helps filter network traffic. All of these components are written in an internal

domain-specific language (DSL) called DEX.

Policy development consists of organizing a feature into a valid arrangement,

providing the configuration arguments required by those features, and compiling the

arrangement into a Pegasus policy. The Policy Composer is designed to achieve the

following primary goals:

1. To develop and maintain Pegasus policies as a list of domain-specific features,

offering an abstract layer in which policies can be composed and maintained by

domain experts.

2. To build a library of policy feature components, which may be reused to create

new policies. Feature components may be developed, tested and altered in

isolation from other features.

3. To provide a simplified configuration layer for Pegasus policies through which

policies may be configured by a domain expert who is not necessarily familiar

with DEX or the implementation of Pegasus policies in DEX.

Figure 1 below outlines the steps necessary to create a policy with Pegasus.

First, custom features are combined with standard features, loaded from a standard

feature library. These are assembled into a policy feature composition. The features are

arranged in this composition based on configuration parameters. A Pegasus Policy is

then generated from this resulting composition. Our project will help aid this process by

allowing more robust configuration parameters to be applied to the compositions.

Figure 1: Pegasus Policy Creation overview

2.1.2 DEX

DEX is a DSL used to specify the behavior of the Pegasus reverse proxy server.

DEX was developed at Shape and is used to create components of a policy for the

composition of policies into features. Since there is currently no support for determining

the interactions, intended or not, between different features, an extension to DEX must

be created in order to pursue the idea of a sound composition algorithm. A problem with

using DEX in its current state is the inability to determine the effects the feature would

incur on top of the existing features. Thus, our project extends DEX to begin to address

this problem.

DEX programs are executed within an input environment that provides input data

and external computation. The result of executing a DEX program in a given

environment is a collection of flags and reported values. Executing the same program in

different environments may produce different results as the input data and external

computation may be different.

There are two features of DEX that make it explicitly feature-oriented. The

keyword ‘super’ provides access to identifiers defined in previous feature components in

an arrangement of features. An arrangement of features is said to be valid if the data

dependencies among the features are satisfied. Secondly, identifier names that start

with underscore (_) are assumed to be local to the features in which they are defined.

2.1.3 Athena

Athena is a suite of tools which include a parser, compiler, and interpreter for

DEX. Composing a valid arrangement of features requires the DEX file to be parsed,

compiled, and executed by Athena. As with most compilers, it has a lexer to scan the

language for tokens, parses it into an AST, then eventually compiles.

2.2 External Technology

In this section, we will discuss external technologies that we used to help in the

design and implementation phases of our language.

2.2.1 ANTLR

ANTLR (Another Tool for Language Recognition), is a tool that can automatically

generate a parser from lexer and parser rules, specified in regular expressions and

context-free grammars. ANTLR is especially useful since it can graphically show the

parse trees from input text, which aids in ensuring the correct structure of a tree from a

given grammar. This allows for the easy modification of the grammar, without having to

refactor the parser by hand. These trees can be viewed in Appendix B. We used

ANTLR to visualize the ASTs when designing our grammar.

2.2.2 Z3

SAT solvers attempt to determine if there exists an interpretation that satisfies a

given boolean formula. They try to find a solution such that a boolean formula can

evaluate to being true. As of 2007, SAT-algorithms have been able to solve problems

consisting of thousands of variables and millions of symbols, though not in polynomial

time due to their NP-Complete status [4].

Modern SAT solvers have similar features, which include watched literals,

learning mechanisms, deterministic and randomized restart strategies, cause deletion

mechanisms, and smart static and dynamic branching heuristics. Since the SAT

problem is NP-Complete, the additions of complexities within the formulae cause the

runtime efficiency to increase non-polynomially.

One popular and efficient solver is Z3, a modern Satisfiability Modulo Theory

(SMT) prover developed by Microsoft Researchers [5,6]. Z3 takes logical formulas and

expressions and assembles them into a single composition. Z3 then determines the

satisfiability of the entire composition.

There are three possible returns from checking the satisfiability of a Z3

composition. The first return option is “sat.” Sat is returned if there exists a model that is

satisfied for every defined formula in the composition, thus satisfiable. Next, “unsat” is

returned if there is no possible model that can satisfy every formula, thus unsatisfiable.

The final possible return is “unknown.” While rare to get unknown as a return, it occurs if

Z3 cannot determine the behavior of a formula present in the composition. This is found

when Z3 cannot determine the satisfiability of a formula.

Figure 2: Z3 Unknown Return Example

Figure 2 shows an example when Z3 returns unknown. The first “(check-sat)”

returns sat since Z3 can determine a valid solution. However, the second “(check-sat)”

results in unknown. Z3 cannot determine if there is a solution for both of the assertions.

The satisfiability can be checked at any portion of the composition, which is useful for

determining which formula caused an undesirable return. We use Z3 for determining if a

solution is available to satisfy facts and first order logic statements made about a

composition.

3. Methodology

In the sections that follow, we outline the planning process we took in completing

our project and creating Predicate-based Composer System (PCS). This includes our

project requirements, the design of our new language, the grammar associated with that

new language, the creation of our parser, creation of Z3 code, the creation of our

compiler and testing.

3.1 Project Requirements

In order to discover the most important and useful features to add to DEX, we

consulted with many different teams to understand their perspectives and determine

what would be the most beneficial. Currently, there are annotated metadata before

modules, components, or bindings in a DEX file. These metadata store specific

information about their respective part of the DEX file.

 One of the major issues with the current system is that all the annotated

metadata is hard coded, meaning personalized or custom annotations cannot be added.

If there were a way that custom annotations could be allowed, this would make it easier

for both the writers of DEX policy components and the Policy Composer team.

The writers of the components would benefit from custom annotations since they

would be able to add certain annotations to components that would have an internal

meaning to their team. For example, if they wanted a few specific components to all be

part of one group, they would be able to by labeling them and specifying how

components with that label may interact.

Once these components are written with the custom annotations, they would

then be used by the Policy Composer team. The policy composers would benefit from

these custom comments since there would be newer, more specific rules in place about

which composition of components can make a valid policy. If there were a group of

components where only one from the group could be chosen, it would be much easier

for the Policy Composer team to identify that requirement and be able the pick the

component from that group that best suits their needs for that specific policy, making the

entire policy composing process easier.

3.2 Design of Language

Once we determined the specific requirements needed, we were able to design a

solution. Since the current system used an annotation system and all the annotations

were hard coded, using a predicate system of logical facts would be a better approach.

Our language, composed of these predicates, would be parsed into a series of First

Order Logic statements. We visualized many examples of predicate statements and

what their corresponding logical statements would be.

As an example, one component may have the annotation “@Requires

[anotherComponent],” which states that anotherComponent needs to be included in the

composition of a policy if the annotated component is also part of the policy. The first

order logic statement for this would translate to ∀x,y. Component (x) ⋀ Requires(y) →

Component(y). In this case, Component(x) evaluates whether x is a component in the

current policy, and similarly, Requires(y) evaluates whether a component y is required.

This statement would be evaluated, and if it evaluates to false, then that specific policy

composition would fail, since it requires the second component to also be present in the

composition.

After testing of our language, we were able to discover some unnecessary

requirements that were present originally. PCS initially required a component x to also

have a corresponding Component(x) for defining it as a component and usage in first

order logic statements. Through type checking, we were able to remove the need to

this. Instead of having to say explicitly in Z3 that x was a component as before, PCS

was able to determine that it was a component based on its type.

3.3 Creation of Grammar

After gathering requirements for our language, we created a grammar to define it.

In order to test our grammar, we needed to be able to parse it and see the AST that it

produces. To make this easier for us, we used ANTLR, an automatic top-down parser

generator. In these planning stages, we were able to rapidly prototype a grammar and

test the generated parser for correctness. To ensure the quality of our grammar, we

wrote many tests using valid first order logic statements, which can be viewed in

Appendix B.

3.4 Creation of Parser

Once we determined the requirements for our grammar, we created a parser for

PCS. The parser needs to identify the required tokens from the DEX comments to

correctly parse out the desired information. All the AST Nodes evaluate to a Formula or

a Term. Formulas are the predicates that are written directly in the DEX comments.

Terms are the parts of the predicates that would eventually evaluate to a data type. The

parser for PCS was written in Java.

3.5 Creation of Z3 Code

PCS uses Z3 as the tool to evaluate first order logic. Z3 has a Java API available

for use, but there is not much documentation for using this API. Through manual

experimentation, we found that the user can create Z3 code by calling the various

functions for creating sorts, constants, and functions as needed for the composition.

The downside for this API is that it is difficult to create formulas with quantifications, and

all the first order logic we use contains at least one, and often multiple, quantifications.

For our use, we would need to create the inner formula that was being quantified over

first, then quantify over it. This proved to be difficult when introducing multiple and

nested quantifications.

The other option we pursued was to manually generate Z3 code through code

generation. Using the style that was available on Rise4Fun, Microsoft’s website for

learning Z3, PCS could generate sample logic examples and test them. Using the Z3

Java API, PCS could pass this code as a string to create a solver based on the code.

Then, PCS could evaluate the satisfiability of the solver. We used this method when

integrating Z3 into PCS.

3.6 Creation of Compiler

Once we designed the parser and determined how we would integrate Z3, we

developed a compiler for PCS. This compiler contained a list of the predicates being

parsed from the DEX comments and compiled them to Z3 code. The compiler also

needed to account for the various differences that Z3 code provided, such as defining

sorts, as well as to accommodate to the way Z3 code is structured. This accomodation

required declaration of predicate signatures as Z3 functions along with adding in the

usages of the predicates as assertions. After generating the Z3 code, the PCS compiler

attempts compilation using the Z3 Java API and returns the satisfiability to the user, as

a boolean value, for the specific first order logic statement being tested.

3.7 Testing

Due to the unique nature of Z3 and its interaction with the parser and compiler,

testing needed to be robust. We tested the parser and the compiler for PCS as its

development progressed, verifying outcomes or modifying the code based on the

results.

The parser was tested to verify the ASTs were structured properly and only

parsed valid tokens. We ensured these ASTs worked according to the precedence and

associativity for all the operators included in our language.

 Next, the compiler was tested extensively to ensure that errors were thrown

when expected to correctly validate predicates, and translate to Z3 code. The compiler

was also tested to cover all the errors that Z3 could provide, so that any Z3 error would

be due to an unknown return. All testing was done through a combination of JUnit tests

and visual tests to confirm the structure of the parser trees.

4. Implementation

The following sections detail the implementation of our API for compiling our

language, Predicate-based Composer System (PCS), which also alludes to Policy

Composer with the first two letters.

4.1 Language design
This section describes the language we designed, as well as the design

decisions behind it.

4.1.1 Syntax

The syntax for our language (which can be seen in detail below) was designed to

make writing first order logic simple. The syntax also is designed such that anything that

is written must be a formula, or something that results to an assertion of a boolean

formula or predicate, so that semantic analysis does not have to check for errors

caused by inputs that are not directly translatable to Z3. The syntax also implies that the

language is restricting input to only binary expressions; everything formula-wise is

connected to another formula by connective operators (implication, biconditional,

conjunction, disjunction).

ormula → [{FORALL | EXISTS} V .] formula [connective formula]f + *

 | formula ˜

 | (formula) ′ ′ ′ ′

 | predicate

 | comparative

→ (a)(a A 0 _)V − z − z − Z − 9 *

onnective → [=> => AND OR]c <

redicate → pid tuplep

 | bindingLevel #id :

indingLevel → {thisComponent | thisModule | thisBinding}b

d → Vi

id → p A)(a A 0 _)(− Z − z − Z − 9 *

uple → (term [, term])t ′ ′ * ′ ′

erm → stringt

 | num

 | thisComponent

 | thisModule

 | thisBinding

 | true

 | false

 | #identif ier

 | tuple

dentif ier → Vi

omparative → term op termc

p → (< = = !)o > < > = =
Notes: parenthesis represent sets, whereas curly brackets represent grouping. Brackets represent optionality. ‘AND’ and ‘OR’

are left-associative and have lower precedence than ‘=>’ and ‘<=>’ which are right-associative.

4.1.2 Predicates

Predicates, written in the comments of DEX files, can be used to assert facts

about the AST Node they are attached to. The three levels of interest by which

expressing facts about and between them would be useful are the following:

Components in Policy Composer; Modules (analogous to a Class in Java); and

(variable) Bindings in DEX. These varying levels of interaction have been implemented

into PCS as a necessary means to record facts about them. The keywords

“thisComponent”, “thisModule”, and “thisBinding” represent those levels, henceforth

referred to as Binding Levels. A predicate parsed from DEX AST Nodes must use one

of the binding level keywords in order for logical quantification to be able to distinguish

between the three domains of discourse.

Predicates are also implemented to record facts about the specific level instance

(a specific component, module, or binding) they are attached to. Our language offers

terms: integers, strings, booleans, and specific references to other level instances,

called identifiers (prepended with a ‘#’). Using these primitive data types as well as

references to level instances allow a basis for allowing the statement of facts about level

instances.

4.1.3 First Order Logic Formulas

With the ability to state facts about level instances, being able to reason about

them is required to be able to redefine validity in compositions. Quantification, via

universal and existential operators (FORALL, EXISTS), as well as the variable used to

quantify over, in addition to the connective operators, and comparative operations, allow

a robust way to reason about the predicates in the features. By having test cases

written in first order logic and translating them to our language, we were able to create

this simplified language that could encapsulate the functionality required. Below is an

example of a formula and its respective PCS equivalent.

y. ∀x. Name(x,) ∧ ∀z. ∀a. Name(z,) ⇒ a y ∧ y “f indsHackers”∃ y a = =

EXISTS y. FORALL x. Name(x,y) AND FORALL z. FORALL a.

Name(z,a) => a == y AND y = “findsHackers”

4.2 Parser Design

The following sections detail the design of the parser that was implemented.

4.2.1 AST Nodes Class Structure and Design

Figure 3: AST Nodes diagram (see Appendix A for UML)

The AST Node classes were designed around Formula and Term due to the

effect that each has; a formula can be asserted as being true, whereas terms resolve to

a data type. The AST Nodes diagram can be seen in Figure 3 above, where Appendix A

shows the complete UML diagram that includes the method descriptors for each

member. In designing the parser, a functional approach was used considering the

nature of programming languages being deterministic; note the deterministic typing of

children for each node - a BinaryFormula has exactly two Formula as children, with one

BinaryOperator enum. Also noteworthy is the usage of a Type enum - for terms with

known types, the types are set in the constructor to their respective values, whereas

terms like Identifiers are typed in the later stages of the compiler. Finally, PCS uses

Shape Security’s own Functional Java library [7] to further implement in a functional

paradigm, using the types ImmutableList<T> to ensure immutability.

4.2.2 Lexer Implementation and Design

Figure 4: Lexer accessory classes

The lexer for the language was generated using JFlex, a library that allows the

automatic generation of a lexer java class based on regular expressions and helper

class definitions [8]. It first converts the regular expressions into a non-deterministic

finite automata, then converts it to a deterministic finite automata which is then used to

capture input text and map those captured expressions to tokens. JFlex was used to

map (Figure 5) the TokenType Enums from Figure 4 to their respective regular

expressions. JFlex also records the location, in an x and y coordinate system, allowing

the tracking of location to be translated in our own Location file, used later in error

reporting. The lexer has a simple API which generates a list of tokens from an input

string, used in the parser.

Figure 5: JFlex RegEx mapping

4.2.3 Parser Implementation and Design

Figure 6: Parser UML

As shown in Figure 6, the parser, designed alongside the AST Nodes, also

operates in a functional way; every outcome is deterministic and the resulting AST is

immutable, with direct typed mapping for children. The API, being parse and parsePred,

are designed to parse our language’s formulas and predicates, respectively, given a file

and a string.

The inner class Context is responsible for the methods involved in implementing

the productions of the grammar, using a functional interface Parser which every

production rule method implements. The interface is implemented in these methods by

calling the functions loc, locSymbol, and withSymbol to wrap the insides of the functions

with a call to loc etc., so that they may repeat the task of recording production rules

and/or locations in a stack data structure system. Figure 7 below illustrates an example

use case.

Figure 7: AST root node, binaryFormula

Notice the return on line 95 being a call to locSymbol, which manipulates the

stack by adding the symbol “Binary Formula”, representing the production rule, to it.

The root of every Formula AST is created by the binaryFormula method. This

method implements the Shunting Yard algorithm to parse a formula as a binary

expression [9]; with the connective operators, a formula is just a binary expression

where AND and OR being lower precedence with left-associativity and IFF and IMP

being higher precedence with right-associativity. The call to unaryFormula attempts

parsing individual formulas separated by these operators, being Predicates and

comparative ones along with a logical Not and grouped formulas within parenthesis.

4.3 Semantic Analysis Design

The following sections detail the design of the multiple steps involved in semantic

analysis, including usage safety, type checking, type inferencing, and variable binding

management. All such functionalities are included in the same class for code

generation, PCSCompiler.

4.3.1 Predicate checking

The set of all PCS predicates parsed from the DEX ASTs are analyzed first. The

compiler is initialized with parsed predicates, in a

Map<T, ImmutableList<Predicate>>. This format allows a fundamental separation of

each level instance’s PCS predicates, agnostic of the AST node mapped to it.

There are many different data structures used to store information about the

ASTs given, shown in Figure 8. They store data that is discovered through multiple AST

visits, and since the ASTs are immutable, they are never modified, and all knowledge

discovered must be recorded.

Figure 8: Local fields in PCS Compiler, referenced in the following sections.

There are multiple steps that the predicates must go through to be passable for

code generation. The format of each predicate must be consistent:

1. The first argument of each predicate must be a BindingLevel; arity must be > 0

2. The BindingLevel keyword may be used once and only once.

3. Each level instance must have its respective predicates use the same type of

BindingLevel.

4. Variables are not allowed in the predicates parsed from the DEX ASTs.

5. Each AST in the map as generic T must have at least one Predicate as its value.

6. Using the ID mapping syntax can only be used once per level instance.

After this light checking is complete, PCS then must iterate through each level instance

and determine if there was an explicit identifier mapping created for that level. If there is

not, PCS generates a symbol to represent it, as Z3 will require it explicitly as a constant.

PCS checks that each ID is unique between all level instances, and then place them

into our identifiers map and symbolsByNode map.

Next, PCS must record the so-called method-descriptors of each predicate being

used, as only their usage implies their existence. PCS populates our

predicateSignatures, ensuring there are no other predicates with the same name that

are not congruent to the existing ones.

Upon completion, PCS is able to say that the predicates are valid. Otherwise, an

informative error, or series of them, are thrown for each violation, mentioning the

specificity of the error and the name of the offending predicate(s).

4.3.2 Formula checking

In order for a formula to be checked, there must be an instance of PCSCompiler,

for there can only be an instance for a successful check of given predicates (henceforth,

factual predicates) by design (see Section 4.4 for the compiler design). This means that

there are now data structures for recording the factual predicate signatures, the variable

type mappings, and the level instances mapped to an identifier or generated symbol. In

addition to these structures, the two visitors pre and post are created to traverse formula

ASTs, shown in Figure 9 below.

Figure 9: UML for Visitor Pattern with Traverser

The visitor pattern used to traverse the formulas is a variant on the standard

visitor pattern - a Traverser class is used instead of having to implement every method

in the interface. The Traverser takes in two visitors, pre and post, and visits a node by

letting pre visit first, then the children would be visited by the traverser, finally post

would visit. The Traverser is used in the checking of formulas by visiting given formula

ASTs after predicate checking, with the visitors being initialized as anonymous

inner-classes of the NopVisitor type. NopVisitor implements the Visitor interface but has

entirely empty implementations. The implications of this pattern is that PCS can specify

how to visit a particular node before and after visiting children, without having to

implement any other of the visitor methods.

The checking of formulas has multiple stages and requires robust techniques to

deal with quantification. There are many complications that arise with expressing

quantification, especially in the context of translating to code. The first complication that

arises is chained quantification; the expression of multiple domains.

Take, for example, the following formula:

ORALL x. P (x) > (FORALL y. Q(y))F =

This formula’s outer domain is whereas there is an inner domain ⊆ Xx ⊆ X ∪ y ⊆ Yx

, where X and Y represent the set of all variables with types x and y, respectively. This

statement can be generalized inductively: In this formula, if we introduced a third

quantifier within the inner domain, its domain would expand to include all the parent

domains; for any given formula F, if F has a quantifier, there must exist a domain D in F

for which all formulas in F are in scope, and similarly for every sub-formula. A variable

referenced outside a scope where it was defined is free; a variable referenced within a

scope where it was defined is bound. This problem introduces the need for a scope

capturing system.

The next problem with quantification is typing. Examine the following FO formula:

x y. P (x) > ∃ z a. Q(x,) > a ∧ z∃ = y = = y = x

The problem with translating this formula into a computerized system is that a type is

required for each variable quantified over, so that such a system can discover the

respective domains with inferring type itself, as is the case with Z3. This formula has

variables x and y which never even get used until the next quantified formula, until PCS

enters a new scope, and the type can only be inferred from the way the factual

predicates have defined Q(x,y).

To address these problems we introduce the Symbol Table as a means to

ensure proper scoping techniques are used, as well as two Traversers to handle type

inferencing. Together, they check the validity of formulas, the scoping, and typing to

ensure proper code generation.

The following subsections describe what each visitor does for checking formulas.

In all cases, PCS throws an error if a BindingLevel is used within a formula.

4.3.2.1 Checking Quantifiers

The first step in visiting quantifiers is entering each variable into the symbol table,

mapping their name to their type. As the rest of the AST is visited, the type will resolve

in the table if the formulas are proper. PCS “enters scope” in the table, which

increments the index of position in the table. Upon completion, the second

NopTraverser exits scope, decreasing.

4.3.2.2 Checking Predicates

There are myriad checks to be done for the predicates in a formula to assure

they are well-formed. For each formula, PCS ensures the usage of every predicate,

argument-type and arity-wise, is congruent to the factual predicates. PCS also ensures

that every predicate referenced within a formula has a usage from the factual

predicates. Finally, PCS also infers the types of variables having unknown types based

on the way that they are being used in the factual predicates.

4.3.2.3 Checking Comparative Formulas

Checking a comparison between two terms is a dynamic task. Depending on

which operator is being used, the types of both sides must either conform to a set of

types, or be inferenced. If the operator is one of (<,>,<=,>=), then both sides must be

numbers, or if they are of unknown type, are inferred to be a number. Next, if the

operator is (==, !=), then PCS cannot directly infer type; in both cases, if one side of the

operator is of a known and valid type while the other side is unknown, PCS can infer

that type to be that of the known type. PCS must throw an error if the types cannot be

inferred, or if they do not match.

At this stage, since all comparative operators with variables inside them are

visited after a quantifier, the updating of a variable inside the symbol table must be done

carefully. The table tries to resolve variables starting in the innermost scope first,

working its way through parent scopes searching for a match. Ambiguities between

variables of the same name and different scopes have no solution, as a uniquely

identifiable system for variables, as they are known to the compiler, has not been

implemented.

4.3.3 The Need for a Second Traverser

Although the design allows two visits per node, a second Traverser is still

needed. By allowing code generation to have the knowledge of the discovered types,

we must either build another anonymous inner class within the compiler so that it has

access to the knowledge from the local fields (the variable-type mappings), or we put

that knowledge inside the AST nodes themselves and add a method for code

generation in each node class. We decided on the latter since the nodes should have

knowledge of their discovered type.

The second traverser sets the type of each variable, whose type was initially

unknown, to the types discovered and recorded in the symbol table, additionally

ensuring no free variables are allowed.

4.4 Integration with Z3

When introducing first order logic to PCS, we needed to figure out how PCS

would evaluate and enforce the logic statements that users would make. Being an SMT

solver, Z3 allows assertions made through predicates and the first order logic

statements in one composition. PCS could then evaluate the satisfiability of this

composition and return it as a boolean value; true for sat, false for unsat, and throw an

error in the rare instance that Z3 returns “unknown.”

4.4.1 Translating to Z3 Code

Due to the unique nature of the Z3 language, PCS translates the content stripped

from the DEX comments to Z3 code directly through code generation. Z3 requires

knowledge of each variable’s type using it in certain cases, such as declaring a function

or asserting a quantified expression. This is not something PCS requires when the user

is writing their first order logic statements or predicates. Instead, our design allows us to

look ahead at how the variable will be used to determine the type it must be. This

allowed us to generate the correct Z3 code needed for each code generation portion,

while maintaining simplicity from the user perspective.

Figure 10: Z3 Code Generation Process

The code generation process can be seen in Figure 10 above. It begins by

creating the custom variable types (called “sorts” in Z3) for the three binding levels.

Next, PCS creates all the constants that are used in the composition. These can include

components, modules, bindings, integers, or strings. After this, the predicates are

declared as functions using their signatures.

Following this, all the predicates themselves are added as assertions. This is

where the constants and functions are used. For a predicate such as

@Firmware(thisComponent, 4, 5) where thisComponent has been named #c1, c1 would

be defined as a Component in the constants declaration section the assertion. The

predicate Firmware is defined as a function that takes in a component and two integers

while returning a boolean value, and the result would be (assert (Firmware c1 4 5)).

With this assertion, PCS is telling Z3 that this specific instance of Firmware is true. This

continues for all predicates in the composition. Finally, PCS asserts the first order logic

statements one by one, checking satisfiability each time for error reporting, using Z3.

4.4.2 Running the Z3 Code

After generating the Z3 code, the next step is to run it to see if it was satisfiable.

At this point, a function takes in the translated Z3 code with the assertion. Using the Z3

Java API, a new context is created, from which the solver is created. Using a method

provided by the API, the string containing the Z3 code is passed to this solver.

Satisfiability is then checked using this solver, returning true for sat, false for unsat, and

throwing an exception for unknown or, in the case where the compiler failed to catch

errors, a Z3 Exception.

4.4.3 Reporting Feedback from Z3

A limitation of Z3 is being able to understand exactly what went wrong. A proof

can be generated when a composition is unsat, but it does not contain any immediately

useful information, as seen in Appendix C. Since PCS asserts the first order logic

statements one by one, it can report back to the user which specific statement was not

satisfied by the factual predicates, which at least provides some level of granularity.

Feedback for the user is very important for fixing errors and unintended behaviors.

4.4.4 Ambiguity with Z3

Using Z3 extensively throughout our project, the ambiguity present in it became

more apparent. The main case where it is especially prevalent is when trying to check if

items exist in the composition. Z3 will try to make satisfiable solutions every time. This

can be detrimental because it will make assumptions about the existence of facts.

For example, suppose we have a composition and one component requires

another one to be present. The logic for this would be EXISTS b. FORALL a.

Requires(a, b). From this logic we are stating that component a requires component b to

be present in the composition. However, Z3 will not check this. Instead, Z3 will assume

that b does exist in the composition somewhere. Due to this assumption, it is very

difficult to check that the desired component is present.

More challenges arise from this assumption and logic as well. This assertion will

not be checked unless an (assert (Requires a b)) is present in the composition. In order

for this assertion not to cause an error previously in Z3, a and b must both be defined.

From here, it will check the assertion and be able to satisfy it, since both exist.

Essentially, the logic will not be reporting back that the component is not present.

Instead, Z3 will be checking it by producing an error when the component has not been

defined and not by the logic, which is undesirable.

4.5 Compiler Design

The following section outlines the high-level design of the compiler for PCS: the

internal workings of what happens when it is used to compile Z3 code, and how.

Figure 11: UML for PCSCompiler

Figure 11 shows the simple API for using PCS Compiler: the constructor, where

one provides a mapping between each instance level and an ImmutableList<Predicate>

representing all the predicates attached to their respective instance level’s AST Node,

parsed from the comments of that node; the addFormula method that takes in a parsed

Formula, and the checkThat method that interfaces with the Z3 API to check

satisfiability or errors.

The use case for the API is as follows: a user must create an instance of the

compiler with parsed predicates and their map keys, representing level instances, and

check for compilation errors. If there are no errors, the compiler has produced Z3 code

for the factual predicates, and the user may then proceed to add formulas. To check if

these factual predicates compile to Z3 and to check satisfiability, the user must call

checkThat.

To check formulas, a user calls addFormula with a parsed formula and if it

returns true, then the formula has passed both compilation and Z3 satisfiability and has

its respectful Z3 code added to code. False indicates an unsat status, and compiler

errors are thrown otherwise.

The design of this API was intended to allow the finest grain of error reporting -

all the predicates must be compiled at once to check if they are valid together in the

domain of facts that have been asserted. Errors will surface for each compilation error

found for the predicates. Additionally, the user has the power to tell which formulas, if

any, have failed compilation or satisfiability. Since a program is unsat if one assertion is

unsat, the best error reporting will indicate so at the individual formula granularity.

4.6 Testing

The following sections outline how the parts of the compiler were tested.

4.6.1 Lexer testing

To thoroughly test a lexer, we tested that a valid, respectful token was created for

each token possible. We also tested that white-space did not get parsed. Figure 12

below shows a sample of the test cases we ran.

Figure 12: Lexer test cases for expected token types and whitespace ignorance

The lexer tests tokenize given input texts and assert that the type of the parsed

token is the intended type. The whitespace tests on line 86 do the same operation,

asserting that the whitespace does not interfere with tokenization.

4.6.2 Parser testing

Test cases for parsing is difficult, because it is not easy to automatically confirm

that the structure of the ASTs are as expected. We visually confirmed the structure of

the trees to be valid via a visiting printer, and also tested whether input should parse.

Example test cases are shown in Figure 13 below.

Figure 13: Parsing test cases

4.6.3 Compiler Testing

The compiler was tested through factual predicates, formula, and satisfiability

assertions. We tested whether the compiler threw errors when expected, or whether the

Z3 compilation result was expected. We tested every type of error accounted for in the

compiler. The goal for the compiler is to never allow a Z3 exception unless for the

semantic failures caused by an Unknown return status. We are unaware of any possible

exceptions not caught by PCS Compiler, however there may still be unresolved matters.

Sample test cases are shown in Figures 14 and 15 below.

Figure 14: Testing factual predicates

Figure 15: Testing Formulas

Level instance predicates are simulated via adding predicate PCS code text and

registering them by calling parseNode. Formulas are tested by creating only one,

similarly by calling checkCompile to run all the PCS code for compilation, where

parseFormula then checks for Z3 compilation. The tests check every possible error we

have formulated in the previous sections, as well as testing arbitrary valid formulas.

5. Conclusion

Shape Security protects its customers by employing Pegasus, a reverse proxy

system that is located between the end user and the origin server. Pegasus

distinguishes between malicious traffic and legitimate users through the use of policies,

which are composed of many different components, and created through Policy

Composer. Since the current system is not robust for policy customization, there is a

need for a better way to specify how policy components interact with each other to

create a valid policy composition. Currently, there are a handful of built-in annotations

that component writers could include in the component being written, but no easy way

to specify custom annotations.

We designed and developed Predicate-based Composer System (PCS) to

address this issue by making a more flexible and customizable system for components

of a policy. With PCS, predicates can be defined for components, where predicates are

like facts that are true for a specific component. Using these predicates, PCS uses first

order logic formulas to determine whether the logic is valid for all the predicates

asserted by the components present in the policy, by assessing the composition’s

satisfiability using Z3.

Certain first order logic statements are applied to every component in every

policy, as logic is the basis for a valid policy. Other first order logic statements can be

created or customized based on the requirements from the customer for that specific

policy, without needing to ask the component writers to implement the functionality to

the specific component. If the first order logic statements cannot be satisfied using Z3,

PCS produces an error to inform the user which statement was unable to be satisfied. In

general, PCS is a more extensive way to compose new policies through its use of first

order logic and Z3 to determine if a policy composition is valid.

6. Future Work

In order for Predicate-based Policy System (PCS) to be used, it will need to be

integrated with Policy Composer. The sections below details how PCS can be improved

and integrated in the future.

6.1 PCS Performance Optimization

While PCS works based upon the tests that we have written, more testing to

further understand the semantic translations to Z3 needs to be done; it is often difficult

to translate a requirement into the logic needed to express the composer constrictions

required.

Additionally, the compiler need optimizations - there are multiple iterations over

ASTs that could be reduced to lower the runtime efficiency. The symbol table system

needs to also be able to include separate scopes per level in an AST, instead of

assuming every quantifier is either the root scope or contained in.

6.2 UI Mockups for Integration

Once our language was fully implemented, we began creating UI Mockups to

visualize how PCS would interact with Policy Composer when integrated. Future work

would be to use these mockups to commence integration.

The information needed in the mockup was the required predicates for every

component no matter which policy they belong to, the optional predicates for when the

Policy Composer users want to create additional predicates for a specific policy, and

error reporting for when a predicate was violated. We created mockups for how we

envision integration with Policy Composer would work, along with how errors would be

reported to these mockups.

6.2.1 Mockup For Policy Composer Integration

First, the UIs would be stored in a new “Predicate Logic” tab in the top bar of the

Policy Composer front end UI, as seen in Figure 9.

Figure 16: Predicate Logic Tab Mockup

Figure 10 below shows a Policy Composer UI to ensure required predicates are

satisfied while being able to add or create optional ones if desired. In this UI, we present

the user with all the “default predicate logic statements” that are always applied to every

composition. They contain the logic and a description to go along with the logic. Directly

below this is the pre-defined “optional predicate logic statements.” These are predicate

logic statements that are commonly used in compositions, but do not apply to every

composition. Again, the logic and description for the logic is present. These statements

can be toggled “on” and “off” based on whether or not the Policy Composer user wants

to apply it to their composition.

The final box (“optional predicate logic template”) is a template available for the

user to write in their own statements that must be true for the composition. Similar to the

optional predicate logic statements, this template contains a description, the logic, and a

checkbox on whether it is applied to the composition. Clicking the “+” icon below this

allows for the user to produce another template for adding more custom statements.

Figure 17: Predicate Logic UI Mockup

6.2.2 Mockup For Error Reporting

Reporting errors to the user is very important when introducing a new system.

Due to the issues with Z3 feedback discussed in Section 4.4.3, error reporting should be

as informative as possible.

Figure 18: Predicate Logic UI Errors Mockup

Figure 11 above is a mockup of an invalid policy composition being reported to

the policy composer user. The text of the predicate logic statement that was not

satisfied turns red and informs the user that it was not satisfied, with some additional

information based on if it is a default, optional, or created statement. The default

statement error informs the user to review the composition. Building off this, the optional

logic statement error asks the user to review that it is valid for the composition, since it

can be toggled off. The error for the created logic statements asks the user to review

the composition, the logic, and verify it applies. The varying messages are intended to

remind the user what to check specifically, since there are more areas to check when

adding customizability.

7. References

[1] Number of Internet Users Worldwide 2005-2017. Statista. Date Accessed: February 14,
2019, www.statista.com/statistics/273018/number-of-internet-users-worldwide/

[2] Shape Security, “Protection Against Cyberattacks and Automated Fraud”, Date Accessed:

February 21, 2019, https://shapesecurity.com/

[3] Salman Saghafi, Kathi Fisler, Shriram Krishnamurthi. Features and Object Capabilities:

Reconciling Two Visions of Modularity. ACM, 25-34, Potsdam, Germany, March 25, 2012

[4] Yakir Vizel, Georg Weissenbacher, Sharad Malik (2015). Boolean Satisfiability Solvers and

Their Applications in Model Checking. Proceedings of the IEEE Vol. 103 Iss. 11, IEEE,

2021-2035 November 2015

[5] Nikolaj Bjorner, “Programming Z3”, Date Accessed: February 21, 2019,

http://theory.stanford.edu/~nikolaj/programmingz3.html

[6] Nikolaj Bjorner, “Getting Started with Z3: A Guide”, Date Accessed: February 26, 2019,

https://rise4fun.com/Z3/tutorial/guide

[7] Shape Security, “Functional Library for Java”, Date Accessed: February 21, 2019,

https://github.com/shapesecurity/shape-functional-java

[8] Gerwin Klein, “JFlex User's Manual”, September 21, 2018, Date Accessed: February 21,

2019, http://jflex.de/manual.html

[9] Carol Wolf, “The Shunting Yard Algorithm”, Date Accessed: February 26, 2019

http://www.oxfordmathcenter.com/drupal7/node/628

Appendix A: UML Diagrams

AST Node Classes

Parser Classes

Appendix B: Parsing Test Cases with ANTLR

Description Test Screen Cap

Valid
Firmware

FORALL a b c.
Component(a) &
Firmware (a,b,c)
=> b <= c

Firmware
condition is
satisfied in
each
component

FORALL a.
EXISTS b c.
Component(a)
=>
Firmware(a,b,c)

There is a
version
between b
and c

EXISTS d.
FORALL a b c.
Firmware(a,b,c)
=> (b <= d) & (d
<= c)

Unique
component
only shows
up once

FORALL x y.
Component(x) &
Component(y)
=> (EXISTS a b.
Id(x,a) & Id(y,b)
& ~(a==b))|
x==y

Displaying a
date from a
binding in
the UI
cannot
appear as a
different
type

FORALL a t p.
Binding(a) &
DisplayAs(a,t) &
DisplayAs(a,p)
=> t==p

Component
cannot be
present if
any of the
components
in the list
are also
present

FORALL x y.
Component(x) &
Conflict(y) =>
~Component(y)

Requires
another
component
to be
present

FORALL x y.
Component(x) &
Requires(y) =>
Component(y)

Appendix B - Table 1: Test Cases with Screen Captures

Test Extensive Tests (Bold fails)

FORALL a b c. Component(a) &
Firmware (a,b,c) => b <= c

FORALL a b c. (Component(a)) & Firmware
(a,b,c) => b <= c ;

FORALL a b c. (Component(a) &
Firmware(a,b,c)) => b <= c ;

FORALL a b c. (Component(a) &
Firmware(a,b,c) => b <= c);

FORALL a b c. Component(a) &
Firmware(a,b,c) => (b <= c);

FORALL a b c. ((Component(a) &
Firmware(a,b,c)) => (b <= c));

(FORALL a b c. ((Component(a) &
(Firmware(a,b,c)))) => ((b) <= c));

((FORALL a b c. ((Component(a) &
(Firmware(a,b,c))))) => ((b) <= c));

FORALL a. EXISTS b c.
Component(a) =>
Firmware(a,b,c)

(FORALL a. ((EXISTS b c. ((Component(a)))
=> (Firmware(a,b,c)))));

(FORALL a. ((EXISTS b c. ((Component(a))))
=> (Firmware(a,b,c))));

EXISTS d. FORALL a b c.
Firmware(a,b,c) => (b <= d) & (d
<= c)

(EXISTS d. FORALL a b c. (Firmware(a,b,c)) =>
((((b)) <= d) & (d <= (c))));

((EXISTS d. FORALL a b c. (Firmware(a,b,c)))
=> ((((b)) <= d) & (d <= (c))));

FORALL x y. Component(x) &
Component(y) => (EXISTS a b.
Id(x,a) & Id(y,b) & ~(a==b))| x==y

(FORALL x y. ((Component(x) & Component(y))
=> (((EXISTS a b. ((Id(x,a)) & Id(y,b)) &
(~(a==b))))| x==y)));

(FORALL x y. ((Component(x) &
Component(y))) => (((EXISTS a b. ((Id(x,a)) &
Id(y,b)) & (~(a==b))))| x==y));

(FORALL x y. ((Component(x) &
Component(y)))) => (((EXISTS a b. ((Id(x,a)) &
Id(y,b)) & (~(a==b))))| x==y);

FORALL a t p. Binding(a) &
DisplayAs(a,t) & DisplayAs(a,p)
=> t==p

FORALL a t p. Binding(a) & (DisplayAs(a,t) &
DisplayAs(a,p)) => t==p;

FORALL a t p. Binding(a) & DisplayAs(a,t) &
DisplayAs(a,p) => (t)==p;

FORALL x y. Component(x) &
Conflict(y) => ~Component(y)

(FORALL x y. (Component(x) & Conflict(y)) =>
(~(Component(y))));

(FORALL x y. (Component(x) & Conflict(y)))
=> (~(Component(y)));

FORALL x y. Component(x) &
Requires(y) => Component(y)

(((FORALL x y. (Component(x) &
(Requires(y))) => Component((y)))));

(FORALL x y. (Component(x) &
(Requires(y)))) => Component((y));

Appendix B - Table 2: List of Extensive Tests

Appendix C: Z3 Proof when Unsatisfiable

