RUN-TIME MIDI TRANSITION ALGORITHM FOR INTERACTIVE MEDIA AND GAMES

An Interactive Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC
INSTITUTE

In partial fulfillment of the requirements for
the Degree of Bachelor of Science
By

Yong Piao

Date: January 2", 2014

Approved:

Professor Fredrick W. Bianchi, Major Advisor

Table of Contents

A 01 1 o) TR SPRRR 3
ACKNOWIBAGEMENTS ...ttt ettt sttt b et s e et seeneenes 4
LSE OF FIGUIES ..ttt sttt b e bt a e eneenes 5
10 (T [T 4] o TSP 6
BACKGIOUN ...ttt bbbttt st e et et 10
IMEENOAOIOQY ...ttt b st b bbb 14
RESUIES ...ttt ettt ettt et e te st e e e st et e st e ese e tesseentesseessenseeseentesseensenteeneentens 21
Conclusions and ReCOMMENUALIONS.........ccveririerierieiere et ee s sre e re s seeneeees 23
RETEIEINCES ... ettt sttt et e e s et e st e ese e tesse e teste e st eseeneenteareensenteeneenteas 25
AAPPEINTIX .ttt sttt h bbbttt a e h e bt bt h e bt et et et eneeneeae s 26

Abstract

This project describes the design and development of a MIDI* file parsing &
playback framework designed for providing users the ability to modify MIDI data in
run-time especially suited for interactive media and games.

L Acronym for Musical Instrument Digital Interface.

Acknowledgements

I would like to thank Professor Frederick W.Bianchi for his advice and support. His
enthusiasm and insight on this subject were crucial to the completion of this work.

List of Figures

Figure 1. Byte-Swap fUNCHIONS........c.oouiiiririeieicieeet et 14
Figure 2. MIDI header data STUCTUIE.cc.ccveiriririerieiereeeeeteeee e 15
Figure 3. MIDI track info data SIrUCTUIEc.coveieiririeieeecceeee e 15
Figure 4. MIDI event data STTUCTUIEc.oouerieieieinieresiesteeeee e 16
Figure 5 MIDI track data StIUCLUIEccvevveiieieieesieeeseeeeee et 17
Figure 6. MIDI Playback 100Dcoeviririenieieieieeseceect e 18
Figure 7. Microseconds per quarter note formula..........c..ooevevveieinininineneneceeeeene 19
Figure 8. An example of using microseconds per quarter note formula.ccccceeveuenee 19
Figure 9. Pulses per quarter note formula...........cccoeveverinienenieieee e 20
Figure 10. MIDIPIAYEr CONSOIEc.ovuiriiieieieieieest et 21
Figure 11. Adding a new track in the MIDIPIAYEr.cccooeveviiieinininineereeeeeeeene 22

Introduction

Video games have been playing an increasingly important role in man’s life. “The
industry is at around $22 billion for 2008 (conservative estimate) in the US? and $30
to $40 billion globally,” while “The movie industry is at $9.5 billion (US)® and $27
billion globally*.” Due to the inter-disciplinary nature of video game development,
video games have also brought benefits to the concept art industry, 3d modeling

industry, music industry, and etc.

Video games are meant to be interactive by its definition, and to achieve so, every
component in the video game must also be interactive. Music has always been playing
a big role in conveying emotions to audiences, but it has always lacked the flexibility
that computer graphics researchers have achieved in the past few years. For example,
with the NVidia’s latest voxel global illumination technology, it is now possible to
simulate highly realistic first-bounce reflective light in real-time. (It is one of the
biggest reasons why computer graphics in movies can look more realistic than in video

games)

Music in video games in current music production has severe limitations that in the

field of computer graphics, have already been solved. Real-time computer graphics

2 http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by-2012.html
3 http://www.slyck.com/story1436_ MPAA Reports Record Movie Sales in 2006
4 http://www.abc.net.au/news/stories/2008/03/06/2181568.htm

http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by-2012.html
http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006
http://www.abc.net.au/news/stories/2008/03/06/2181568.htm

offers the computer the ability to improvise on graphics in real-time. Every moment in
the game is dictated by the player’s actions and never needs to be intentionally
programmed to be displayed at a given time, because every key-frame of the scene is

generated in real-time and calculated through algorithms.

NVidia researchers have been focusing on real-time rendering because offline
rendering has been very mature for the movie industry, and has less room for discovery.
(Due to the architectural design of GPU, real-time GPU rendering can offer as much as
60 times the speed of CPU rendering.®) The increasing artistic freedom in real-time
graphics allows many in-game cut scenes to be rendered in real-time as well, e.g.

Assassin's Creed Unity, Final Fantasy XII1-2, etc.

Music in video games is less interactive than other components of video games,
because modern game music uses streamed audio. Streamed audio must be composed,
arranged, and mixed by musicians into audio files such as .WAV and .MP3 prior to
being played in game. Because the music files are pre-rendered, it is simply impossible
to perform notation-level editing or calculation in real-time, because that information
has been lost in the rendering process. Therefore it has been difficult to generate

sufficient amounts of new materials from the limited track information.

5 http://www.elnexus.com/articles/GPUComputing.aspx

What will benefit the field of interactive music is the development of a music
system with interactive capabilities. It must retain the music notation information and
render the music out in real-time, similar to what real-time computer graphics proposes,
to achieve notation-level data manipulation in real-time. Only after obtaining
algorithmic freedom at this level, will researchers and musicians be able to start

developing algorithms that are aesthetically more appealing.

In this project, a MIDI file parsing and playback framework is designed to provide
sound engineers and musicians with a small and agile low level framework to
dynamically adjust MIDI data during software run-time. It serves as the first necessary

knock on the door of an interactive music system.

This framework uses no 3" party library and is completely written in C++. It
differs from most MIDI parsers because instead of using per-stream® based MIDI
playback and data processing, it uses a per-command’ based method and thus provides

more freedom to handle MIDI data in run-time.

Due to the artistic freedom and complexity of arranging and composition, there is

no adequate platform for sound engineers and musicians to experiment with their

6 Per-stream based MIDI playback refers to sending a large batch of MIDI commands to the MIDI device and have
the device handle sequencing and playback.

7 Per-Command based playback refers to performing timing and sequencing through a computer program loop, and
have the program send MIDI commands when the delta time of any commands match the time of the program loop.

music techniques. The preliminary goal of this project is to reduce the low level binary

processing complexity with the simplest possible code to allow more artistic freedom.

Currently, music production software such as Logic, Cubase, and Ableton all
provide visual editors to access the underlying MIDI data, but the sound libraries
required to render the final product requires purchase, and is often very costly. To
achieve high quality real-time rendered audio, every client computer must come with a
set of sound libraries required by the files. This problem perhaps could be addressed by
starting an open source sound library project to provide competitive sound libraires
with little to no cost. When such an open source library becomes available to
consumers, interactive music will become more approachable to software developers

and musicians.

Background

In 1957, the MUSIC-N program allowed an IBM 704 mainframe computer to play
a 17-second composition by Max Mathews. Back then computers were ponderous, so
synthesis would could take hours.® Also, music programs rarely did run in real time,
and it was extremely time consuming and expensive for computers to generate just a

few minutes of digital audio.

In 1983, MIDI technology was standardized by the MIDI Manufacturers
Association (MMA). Because MIDI is sequenced, it can be manipulated on
notation-level during software run-time. Since MIDI is designed to store music events
instead of the sound waves, it has become the foundation of digital music software

products.®

For the purpose of this project, sequenced audio is referred to as audio data that are
stored in MIDI or a similar format that can be manipulated on notation-level during
software run-time. Streamed audio is referred to as pre-rendered audio data such

as .WAYV, .MP3 that cannot be manipulated on notation-level in software run-time.

8 Cattermole, Tannith (May 9, 2011). "Farseeing inventor pioneered computer music”. Gizmag. Retrieved 28
October 2011 http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/

9 Swift, Andrew. (May-Jun 1997.), "A brief Introduction to MIDI", SURPRISE (Imperial College of Science
Technology and Medicine), retrieved 22 August 2012

10

http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/

MIDI is lightweight, portable, and fast to process. Since the late 1980s, MIDI has
played a big role in fitting enough data into memory to provide meaningful musical
experiences to the players, because MIDI files use much less data than rendered audio

files of the same length.°

MIDI files are much smaller than streamed audio files, because MIDI files don’t
contain sound information. It is up to the hardware to decide how to handle the MIDI
information. This often caused inconsistency in sound between different MIDI systems.

Because of this, the industry began to look at streamed audio as a solution.

Creative Labs's Sound Blaster series were first introduced in 1989, then three years
later Creative Labs released the Sound Blaster 16. They made PCs capable of playing
back streamed audio, and thus MIDI was replaced for both hardware inconsistencies
and limitations on recording and mixing that made high quality audio difficult to
produce. While most game developers adopted these 16-bit playback wavetable-based
soundcards in the mid-1990s, disk space was a difficult issue to solve. So the choices

had always been either to sacrifice data fidelity, or sacrifice memory.

As an example, a lossless stereo PCM File at 16-bit, 44.1KHz takes up about

10.584MB per minute. With the limited space of a standard CD-ROM (around

10 http://www.midi.org/aboutmidi/tut_midifiles.php

11

650-703MB for data, 846MB for pure audio), it can only store computer readable data
of the size equivalent to about 66 minutes of lossless stereo PCM. Considering various
art assets and application data, it was simply not possible for game developers to deploy

both high quality game audio and a satisfying game experience at the same time.

Since 2006, the advent of Blu-ray discs brought many new possibilities in game
content creation with a stunning 25GB of data capacity per layer. In 2013, PlayStation 4
has standardized the use of dual-layer Blu-ray discs, meaning each game disc can store

up to 50GB of data.

However, in the exponential growth of data storage capabilities of home
entertainment systems, one thing has hardly changed: game audio has always been

statically pre-rendered and is looped again and again throughout the gameplay.

In fields of digital audio other than video games, there were some attempts that
looked to increase the artistic freedom in streamed audio. There had been an attempt
that looked to automatically generate music videos based on the change in image
signal,** but this approach is still based on streamed audio and does not have the

benefits of sequenced audio.

Uhttp://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2& Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearc
h-bool.html&r=14&f=G&I=50&c01=AND&dJ=PTXT&s1=music. ABTX.&s2=transition. ABTX.&0OS=ABST/music+
AND+ABST/transition&RS=ABST/music+AND+ABST/transition

12

“Some games, such as Super Mario Galaxy (2007), had synchronizing sequenced
and streaming audio so that additional effects can be added to the streamed music.”'? In
the specific case of Super Mario Galaxy, it was possible to mix sequenced and
streaming audio because of the specific style of music that had been used in the game.
Sequenced audio in Super Mario Galaxy gave satisfactory result because it was
specifically designed to convey a MIDI-like style to accompany the orchestral music.
There have been other attempts like Super Mario Galaxy, but they were very genre
limited and content limited. Many times the sequenced approach is only suitable for
classic and cartoon-like games. Overall, there has not been enough attention on further

discovering the potential of dynamically generated game audio without such limitations.

This project is dedicated to game audio vanguards who seek to improve game audio
from a whole new perspective. It is meant to provide the most basic resource for game
developers to get started on revisiting some of the assumptions musicians frequently
make about the most common MIDI-based game audio creation pipeline, and thus open
up the possibility of using real-time computer generated, aesthetically appealing music

in interactive media and games.

12 http://www.lauraintravia.com/blog/super-mario-galaxy-interview-with-the-sound-team-iwata-asks

13

Methodology

In order to replicate the inner workings of this MIDI framework, one must first
understand the inner workings of Standard MIDI Format?3, and the best way to learn it
is to go through the process of reading a MIDI file. The following example assumes the

reader is using a little-endian machine with an appropriate C++ compiler installed.

MIDI files are made up of big-endian binary data. It is necessary to be able to

translate big-endian data into little-endian for x86 machines, therefore we define:

byteSwapShort(

S - T
o))y

byteSwapInt|

Figure 1. Byte-swap functions

Figure 1 converts short and integer into little-endian, because this operation is used

frequently, it is important to make sure it is written with performance in mind.

13 More resources on the Standard MIDI Format:
http://wiki.fourthwoods.com/standard_midi_file format
http://wiki.fourthwoods.com/midi_file format

14

http://wiki.fourthwoods.com/standard_midi_file_format
http://wiki.fourthwoods.com/midi_file_format

With the big-endian converter code, it is possible to start reading the MIDI file.

Every MIDI file starts with a header that describes the information about the MIDI file:

MIDIHeaderInto

id;

size;

format;
tracks;
ticks;

Figure 2. MIDI header data structure
It is necessary to check the identifier in the MIDI header to make sure the file content is
indeed a MIDI file.

1. Size defines the binary file size in bytes, in big endian format.

2. Format defines the track format:
a) 0 -single-track
b) 1 - multiple tracks, synchronous
c) 2 - multiple tracks, asynchronous

3. Tracks defines the number of tracks in the MIDI file.
4. Ticks defines the number of ticks per quarter note, more on this later.

The header chunk is immediately followed by one or more track chunks:

MIDITrackInfo

id »

length;

Figure 3. MIDI track info data structure

15

1. Again, the identifier is important to make sure data is correctly read.

2. Length defines the size of the track in bytes, in big-endian format.

Immediately followed by the track info chunk is a sequence of MIDI events for the
track. Each MIDI event consists of a command or status byte with associated data, and a
time-stamp indicating the number of ticks to wait before sending the event.

Because we plan to perform note manipulation with the MIDI stream, we create a

MIDIEvent struct to ensure every event is packed cleanly:

ned int m_absTime;

* m_pData;
~ m_event;

Figure 4. MIDI event data structure

MIDIEvent comes in large quantities and is frequently accessed, so it is important to

store a pointer to the data, instead of storing data of the entire event.

1. absTime indicates the absolute time of the occurrence of the event. We need to
calculate the absolute time through incrementally adding the previously
processed MIDI events.

2. pData is a pointer that points to the buffer of the supplemental data of the MIDI
event. We can use this pointer to feed information to the MIDI device at the time

given by absTime.

16

3. The event attribute is the actual MIDI event. We parse the event from the data
buffer according to the MIDI standard table.
Once we have a list of MIDI events for one track, we can pack them into a MIDITrack

class for object-oriented design and flexibility later in development:

Fo* m_pTrackInfo;
" m_pBuffer;

~ m_lastEvent;

Figure 5 MIDI track data structure

MIDITrack serves as a state machine that stores the playback state of MIDI buffers.
These MIDI buffers are represented as pointers in MIDITracks, and these pointers
record the memory location of the last played MIDIEvents.

1. pTrackinfo contains the information about the MIDI track, as described in figure
3. It is necessary for us to know the length of the track and also double check the
data buffer before reading to prevent playing with erroneous data.

2. pBuffer points at the beginning of the track buffer. We use this to locate all
MIDI events in the track and convert them into our custom MIDIEvents.

3. The lastEvent attribute is used for the MIDI device to play the same event in
running mode. Running mode is used to conserve command data when the same

commands are played in sequence. Instead of pairing all data bytes with a status

17

byte, running mode allows removing the redundant status bytes after the first

one, so that it keeps using the “lastEvent” but with different data.

Now the basic parts of parsing a MIDI file are complete. The four major parts are
MIDI header info, MIDI track info, MIDI Event, and MIDI Track. Lastly, in order to
process the entire file, we shall use a ‘while’ loop to parse small chunks of MIDI data,
pack them into MIDI events, and eventually break out of the loop when there are no

more events to process:

[d one ']

Figure 6. MIDI Playback loop

In more detail, the execution flow of the playback ‘while’ loop is:
1. For each track:

a) If the track is at the end-of-track marker, do nothing.

18

b) If all tracks are at the end-of-track marker, end playback.
2. Extract the next event closest to the absolute time of the current track:
a) Advance the track pointer to the next event in the track.
b) Advance the absolute time for the track by the extracted event’s delta-time.
3. The difference between the new absolute time for the track and the absolute time
for the score is used as the new delta-time for the event.

4. Continue from step 1.

Every execution of the MIDI playback loop, or tick, is precisely timed by the
number of microseconds per tick. In order to calculate this value, we must first obtain
the tempo value. In MIDI files, tempo is expressed in microseconds per quarter note.
Beats per minute is calculated through use of this value. The default BPM of MIDI files
is specified as 120. The equation for calculating microseconds per quarter note is given

below:

T microseconds per minute microseconds

y beats per minute gquarternote

Figure 7. Microseconds per quarter note formula

In the case of 120 BPM, the result would be:

i SEC] LT OSEC [—_— - S .
60> - 1,000, 000 HHE=EEEones _ 500, U[][J}}Mf'} oseconds

19nheats At .
120=--= quarternote

Figure 8. An example of using microseconds per quarter note formula.

19

Going back to the MIDIHeader struct displayed by Figure 1, the ticks attribute
specifies the ticks per quarter note used during playback. Tick per quarter note is also
called pulses per quarter note. This is the number of CPU clock ticks per quarter note.
The PPQN number will affect the precision of playback, and it usually set to 96. Below
is an example of 96 pulses at 120BPM:

a U(:I (][](] mcTosecomnd s

guarter note

96pulses [quarter note

5208microseconds [tick.

Figure 9. Pulses per quarter note formula

20

Results

The sample program is able to play MIDI files independent from existing MIDI
libraries. It packs MIDI information into C++ objects and STL containers to make
MIDI data much more accessible when it comes to analyzing those data
algorithmically.

Sample program instructions:

1. Compile the program with Microsoft Visual Studio, or other IDEs supported

by CMake.

2. Run the program, it should then display a window as such:

C DAGIthub\MIDMBinaries\MIDIPlayer.exe

uccessfully opened defanlt MIDI stream

Figure 10. MIDIPIlayer console

21

3. To add a track to the MIDI player, press the “a@” key, it should then prompt for

the MIDI filename:

C DAGithub\MIDN\Binaries\MIDIPlayer.exe °

uccessfully opened default MIDI stream
Adding new track...
File name:

Figure 11. Adding a new track in the MIDIPlayer.

4. After typing the filename, press the enter key to submit input. If you would
like to play multiple files, repeat step 3 and 4.
5. Press the space key to play the MIDI file list. It will the loop through all MIDI

files stored in the MIDI player.

To make the music interactive, users shall implement their algorithms, retrieve
the MIDI data from the MIDI player, and either change the MIDI data being played,

or insert a new MIDI track generated from the algorithms to the playlist.

22

Conclusions and Recommendations

The original goal of this project was to develop a run-time MIDI transition
algorithm. However, existing MIDI libraries were either written in C, or did not
provide enough freedom to access the MIDI data. Due to the lack of appropriate MIDI
libraries, the decision was made to develop a MIDI playback framework especially
designed with run-time MIDI manipulation in mind. We have successfully developed a
fully functional MIDI playback framework that meets the requirements of run-time

MIDI manipulation.

With this MIDI playback framework, users can look into incorporating their own
algorithms without worrying about hexadecimal data in the underlying MIDI files. The
industry can also look into adding run-time MIDI manipulation support to existing
music production software products. Perhaps a new editor can be developed to define
transition behaviors such as, for example, transitioning to a minor version of the track

if the camera transitions from a peaceful forest to a fearful dark cave.

Currently, music production software such as Logic, Cubase, and Ableton all
provide a visual editor to access the underlying MIDI data, but the sound library
required to render the final product requires purchase, and is often very expensive. To

achieve high quality, real-time rendered audio, every client computer must come with a

23

set of sound libraries required by the files. This problem can be addressed by starting
an open source sound library project to provide competitive sound libraries with little

to no cost.

24

References

CaldwellDustin.
http://wiki.fourthwoods.com/standard_midi_file_format. 2011 November 02 .

CaronFrank.
http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by
-2012.html. 2008 June 18 . arstechnica.

CattermoleTannith. http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/.
2011 May 9 . gizmag.

IntraviaLaura.
http://www.lauraintravia.com/blog/super-mario-galaxy-interview-with-the-sound-team-iwata-as
ks. 2011 February 5.

MenneckeThomas.
http://www.slyck.com/story1436_ MPAA_Reports_Record_Movie_Sales_in_2006. 2007 March
6 . Slyck.com.

midi.org.
http://www.midi.org/aboutmidi/tut_midifiles.php. MIDI Manufacturers Association.

United States Patent and Trademark Office
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml
%2FPTO%2Fsearch-bool.html&r=14&f=G&I=50&c01=AND&d=PTXT&s1=music. ABTX.&s
2=transition.ABTX.&0S=ABST/music+tAND+ABST/transition&RS=ABST/music+tAND+AB
SThransition. 2003 August 3 .

RansonBen. http://www.elnexus.com/articles/GPUComputing.aspx. 2009 02 17 .
ElectronicsNexus.

Reuters.
http://www.abc.net.au/news/stories/2008/03/06/2181568.htm. 2008 March 6 .

SwiftAndrew.
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/voll/aps2/.

25

Appendix

MIDIPlayer.h

#pragma once

#include <vector>»
#include <windows.h>
#$include "MIDIFile.h"™

#define MAX STREAM BUFFER SIZE
claszs MIDIFlayer
=k
public:
MIDIFlayer():
~MIDIPlaver():;

vold ProcessInput():

vold AddIrack()

vold AllocZ3lots {unsigned
vold DecodeCurrenth() !
vold DecodeCurrentBE(} ;

vold USleep{int waitTime) ;
UINT m=g, DWORD dwlinstance,

void Imitc() s
vold Bund) ;
vold Halt ()

rivate:
HHMIDICUT m HOutDevice;
unsigned int m DevicelID:
HMIDISTRM m HMIDIOutStream;

int m currFilelndex;
MIDIEVENT* m pStreambBuf:
int m streambBufSize;

bool m isRequestingExit:
ool m isPlaying;

inté currStreamBufleny)

static wvolid CALLBACEK MIDICallbhack (HHMIDICUT out,

DWORD dwParaml, DWORD

unsigned int m PulsesPer{uarterNote;

std: ivector<MIDIFile#*> m filelist;

dwParam?z)

26

Utility.h
$pragma once
$include "MIDIFile.h"™

unsigned char* loadFile (const char* fileName, intk fileSize);

static unsigned int read wvar int(unsigned char¥ buf,
unsigned int* bytesread)

=4
un=signed int var = 0;
unsigned char o
*bytesread = 07
do
= {
c = buf[(*bytesread)++];
wvar = (var << 7) + (c & CxTI);
- } while (c & OxE0)r /71000 0000
return wvar;
-1

static unsigned short byteSwapShort (unsigned short in)

i
return ({(in << Z) | (inm == Z)) !

static unsigned int byteSwaplInt{unsigned int in)
=
unsigned short ¥p;
p = (unsigned short¥)∈

return ((((unsigned int)bytedSwapShort(p[C])) << L

[}
—
-—

(unzigned int)byteSwapShortc(p[l1]1)) !

27

Utility.h (Continuted)

ztatic struct MIDIEvent getMHextEvent (const struct MIDITrack* track)
=
unsigned char¥ buaf;
struct MIDIEwvent e;
unsigned int bytesread;
unsigned int dt;

buf = track-=m pBuffer;

dt = read war_int(buf, &bytesread):
buf 4= bytesread:

e.m _absTime = track->m absTime + dt:
e.m phata = buf;
e.m event = *e.m phata:;
return e;
-1
static int isTrackEnd(const struct MIDIEvent® g)
=
if (e->m event = Oxff) // meta-event?
if (*({e->m phata + 1) = C=2f} // track end?
retuorn 1;
retuorn O
=1

28

MIDIFile.h

$pragma once

$include <vector>

#pragma pack(push, 1)

atruct MIDIHeaderInfo

=R

~}:

unsigned int id;
un=igned int 3ize;
unzigned short format:
unsigned short tracks;
unsigned short ticks;

struct MIDITrackInfo

i

b

unsigned int id;
unsigned int length;

$pragma pack (pop)

struct MIDITrack

i

}:

I
'
'
'
I
i

'
'

identifier "MThd"
always & in big-gndian format

big-gndian format
number of tracks, big-gndian

number of ticks per guarter note

» blg-gndian

identifier "MIrk"
track length, big-gndian

HIDITrackInfo* m pTrackInfo;
unsigned char* m pBuffer:;

unsigned char m lastEvent;

unsigned int m absTime;

struct MIDIEwvent

i

}:

unsigned int m_absTime;
unzigned charv m pData:
unsigned char m event;

29

MIDIFile.h (Continued)
cla=ss MIDIFile
o
public:
MIDIFile() :

~MIDIFile () :

int initMIDIFile (const char¥
public:

int m fileSize:

unsigned char* m pFileBuf;

int m PulsesPer{uarterNote;

MIDIHeaderInfo* m pHeader:
MIDITrackInfo* m pBody:

-}:

_TileName) ;

std: ivector<MIDITrack> m tracks;

30

MIDIFile.cpp

#include <=tdio.h>
#include <stdlib.h>
#include "MIDIFile.h"
#include "Util h"

MIDIFile::MIDIFile ()
{}

MIDIFile: :~MIDIFile()

{

free(m pFileBuf):

int MIDIFile::initMIDIFile(const char* _fileName)

=1
m pFileBuf = loadFile(_ fileWName, m fileSize):
if (!m pFileBuf)
= {
printf("someth ent wrong during file load.\n"):
retorn
B }
J/1: process header
m pHeader = (MIDIHeaderInfo*)m pFileBuf:
int numTracks = byteSwapShort(m pHeader->tracks);
m_PulsesPer{QuarterNote = byteSwapShort(m pHeader->ticks):
//2: process body
unsigned char* pBody = m pFileBuf += sizeof (MIDIHeaderInfo):
auto pCurrentTrack = (char*) pBody:
auto pCurrentTrackInfo = (MIDITrackInfo*)pCurrentTrack;
for (int i = 0; i < numTracks: i++)
— {
if (pCurrentTrackInfo-»>id !'= 0xeb72544d)//magic number: O0xkrTM -> big gndian MTrk
— {
printf{"Fatal Error: MIrk identifier not found wt _fileName) ;
retorn 1;
B }
MIDITrack currentTrack:
currentTrack.m pTrackInfo = pCurrentTrackInfo;
currentIrack.m pBuffer = (unsigned char¥)pCurrentIrack + silzeof (MIDITrackInfo):
currentTrack.m absTime = 0;
currentTrack.m lastEvent = O;
m_tracks.push back(currentTrack):
S fincrement pCurrentTrack to point to the next track
pCurrentTrack += sizeof (MIDITrackInfo) + byteSwapInt(m tracks[i].m pTrackInfo->length):;
B }
retorn O
=1

31

MIDIPlayer.cpp
#include <stdio.h>
#include <conio.hX

#include <iostreams>
finclude <string>»
finclude <windows.h>
finclude "MIDIFlayer.h"

$include "MIDIFile.h

$include "Utility.h"

HANDLE g _ewent;

MIDIFPlayer: :MIDIPlayer()

=R

=1

m_isReguestingExit = false:
m_isPlaying = false:
m_PulsesPer(marterlote = O
m_streamBufSize = O;
m_currFileIndex = O;

m HMIDICutStream = O

m DevicelD = O;

MIDIFlayer: :~MIDIPlaver()

{

wold MIDIFlayer::Init ()

=R

=

m pStreamBuf = (MIDIEVENI*)malloc(sizeof (MIDIEVENT)* MAX STREAM BUFFER 5IZE) :
if ('m_pStreamBuf)
{
printf("Fatal Error: Unable to initialize buffer for MIDIFlayer.\n"}:
¥
memset (m_pStreamBuf, NULL, sizeof (MIDIEVENT)* MAX STREAM BUFFER SIZE):;

int hr = 0;
fiRr |1= midiGucOpen (&m HOutDevice, 0, 0, 0, CALLBACKE NULL):
if (hr != MMSYSERR NOERROR)
{
printf("error opening defauwlt MIDI stream: %d\n", hr):
}
el=se
{
printf {("successfully opened default MIDI stream\n™}):;
}

32

MIDIPlayer.cpp (Continued)

void MIDTPlayer::Run()

i
while (!m isRequestingExic)
= {
ProcessInput ()
if (m isPlaying)
= {
DecodeCurrentB();
int i = 0;
int err;
HMTIDICUT out;
unsigned int msg;
err = midiCutOpen(&out, O, O, O, CALLBACE NULL):
if (err != MMSYSERR NOERROR)
printf{"error opening default MIDI device: %d\mn", err);
else
printf("successfully opened default MIDI device'\n™);
i=20;r
while (1 < m streamBufSize)
=] {
unsigned int time = m pStreamBuf[i].dwDeltaTime;
USleep(time * m PulsesPer{uarterNote);
J/get midi command
MIDIEVENT event = * (MIDIEVENT*)&m pStreamBuf[i];
m=sg = event.dwEvent;
if (m=g & Ox£f000C00Y J/ tempo change
= {
m=sg = msg & OxO00f£ff£f5fE;
m PulsesPer{QuarcerNote = m=sg J byteSwapShort (
(m filelist[m currFileIndex])->m pHeader->ticks) ;
B 1
else
= {
err = midiCutShortMsg(out, msg) .,
if (err != MMSYSERR NOERROR)
printf{"error sending command: %08x error: %d\n", m=sg, err):
B 1
// Onto next message
i+
B }

33

MIDIPlayer.cpp (Continued)

/

i

while (i1 <« m streamBufSize)

S /ProcessInput():
Jf get delta time from message
unsigned int dt = m pStreamBuf[i] .dwDeltaTime;

S iwait before submitting the message
USleep(dt * m PulsesPer{uarterlote);

Sifget midi command
MIDIEVENT event = % (MIDIEVENT*)&m pStreamBuf[i]:
unsigned int msg = event.dwEvent;
if (msg & COxffOOOOO0Y S/ tempo change
{
msg = msg & Ox00ffffff: // microseconds/quarter note
m PulszesPerfuarterNote = msg S byteSwapShort/(

(m_filelList[m currFileIndex])->m pHeader->ticks):

}
else
{
int hr = midiCutShortMsg(m HOutDevice, mag):;
if (hr !'= MM3YSERR NOERROR)
i
printf("error sending command: %d4\n", hr);
}
¥

S/ Onto next message
id+:

S/ finished plaving

m isPlaving = false;

34

MIDIPlayer.cpp (Continued)

void MIDIPlayer::Halc()

{

midiGucClose (m_HOutDevice) !
free(m pStreamsuf) ;

wold MIDIPlayer: :(RddTrack()

A

=1

int hr;

ztd: istring trackName;

figerline (ghd: :gin, trackName);

trackName = "examplef.mid";

auto newFile = new MIDIFile();

hr = newFile->initMIDIFile (trackName.c str()):

if (hr)

{
f/error checking
printf("File not found.'.n"):
return;

}
m filelList.push back(newFile) ;
printf("Track added: %s'n", trackWame.c_str()):

wvold MIDIFPlayer: :DecodeCurrenth()

=k

ffreset stream phuf size

m_streamBufSize = O

m_PulsesPer(uarterNote = m filelist[m currFileIndex]->m PulsesPer{uarterNote:
unsigned char¥ pFileBuf = m filelist[m currFileIndex]->m pFileBuf:

pFileBuf 4= =izeof (MIDITrackInfo) !

while (pFileBuf < m filelist[m currFilelndex]->m pFileBuf +
m filelist[m currFilelndex]->m fileSize)

f/4 | Varisble Sized |

/f BRead the delta time variakle first

unsigned int bytesread:

unsigned int dt = read var int(pFileBuf, &bytesread):
pFileBuf += bytesread:

Sl 31 - 24 | 23 - 16 | 15 - 8 | 7T -0 |
—_———
f/f | Unused | Data 2 | Data 1 | 5tatus byte |

// Read midi command into the message
unsigned char cmd = *pFileBuf:
msgy |= cmd; // OxOD000OFF

35

MIDIPlayer.cpp (Continued)

// Onto Dat
pFileBuf++;

ff if norma

al byte

unsigned char datal = #*pFileBuf:

1 command

//0nto the next message

pFileBuf++;
- }
//m pStreamBuf[m streamBufSize++] = dg:
!im:pStreaHEJf[H:strean3af5123++] = msg:
- }
// else if meta-event
else if (cmd == O=If
H {

if ((cmd & C=xfO) 1= O=xfl)
H {
ff all normal commands have datal
msg |= ((unsigned int) (datal << 2)); J/ 0=x0000FFOO0
//0Onto Datal byte
pFileBuf++;
unsigned char data2 = #pFileBuf:
S/ 0xecO (Patch change) and Oxdd (Channel pressure) only take a single byte
if ('({cmd & Oxf0) == OxcO || (cmd & OxIfC) == Oxdl}))
H {
J{ Does have datal
msg |= ((unsigned int) (data? << 16)): S/ Ox0O0OFF0000

cmd = *pFileBuf++; // gmgd should be meta-event (0x2f for end of track)
cmd = *pFileBuf++; // gmgd should be meta-event length
pFileBuf 4= cmd:

36

MIDIPlayer.cpp (Continued)

vold MIDIPlayer::AllocZ5lots(unsigned int& _currSctreamBuflen)

{

while (m streamBufSize + 1 > currStreamBuflen)
1
unsigned int* tmp = NULL;
_currStreamBuflen *= 2;

tmp = (unsigned int¥)realloc(m pStreamBuf, sizeof (MIDIEVENT) * currStreamBuflen);
if (tmp !'= NWOLL)
{
//m_pStreamBuf = gmp:
}
el=e
1
if (m pStreamBuf)
{
free(m_pStreamBuf) ;
}
retarn;
}

wold MIDIPlayer: :DecodeCurrentE ()

=H

int hr = 07

/{52t up midi stream property based on new file
MIDIPRCPTIMEDTIV MIDIStreamProperty:
MIDIStreamProperty.cbhStruct = sizeof (MIDIPROPTIMEDIV)
MIDIStreamProperty.dwlimeDiv = byteSwapShort (

m filelist[m currFilelndex]->m pHeader->ticks):

if (hr != MMSYSERR NOERROR)
{
printf("error on setting MIDIStreamProperty: %d\n",
}
else
{
printf {"=u

/fallocate stream buffer
MIDIHDR MIDIHeader;
MIDIHeader.lpData = (char*)m pStreamBuf;

MIDIHeader.dwBufferLength = MIDIHeader.dwBytesRecorded = MAX STREAM BUFFER SIZE;

MIDIHeader.dwFlags = 0;

hr) ;

IIQ; = midiCutPrepareHeader ((HMIDICUT)m HMIDICutStream, &MIDIHeader, zizeqf (MIDIHDR)):

if (hr != MMSYSERR NCERROR)

{
printf ("error on setting MIDIHeader: %d4d\n", hr):
}
else
{
printf {("=uc v set
}

Jf Initialize default wvalues for streaming

m_PulsesPer{uarterNote = 50000C J m fileList[m currFileIndex]->m PulsesPerQuarterNote;

unsigned int currTime = 0O;
unsigned int currStreamS3ize = MAX STREARM BUFFER SIZE;

37

MIDIPlayer.cpp (Continued)

= {

{1}
il

// windows format midi ewvent
MIDIEVENT newEwvent:

static int wivi = 07

#define TEMPC EVT 1
while (TRUE)

unszigned int dt = (unsigned intc)-1;

unsigned int nearestIndex = -1;

MIDIEvent MIDIEwvent:

std: :vector<MIDITrack>& tracks = m filelist[m currFileIndex]->m tracks;

/f get the nearest next event from all tracks
for (int 1 = 0; 1 < tracks.size(); it++)
i

auto tmpEvent = getNextEvent (&tracks[i]):

if (!'(isTrackEnd(&tmpEvent)) && (tmpEvent.m absTime < dt))
{

HMIDIEvent = tmpEvent;

dt = tmpEvent.m absTime;

nearestIndex = i;

}
}
S if nearescIndex == -1 then 211 the tracks have been read up to the end of
if (nearestIndex =— -1}
i
break;
}
vivitts

printf ("ifr:sd\n", wvivi):
if (tracks.size() > 1}

{
printf{"yLL\n"}
}
newEvent.dwStreamID = 0; // always O

newEvent.dwParms[0] = O

S/ Update track abs time to match the latest processed event
tracks [nearestIndex] .m absTime = MIDIEvent.m absTime;

/f update global delta time and current time

newEvent .dwDeltaTime = tracks|[nearestIndex].m absTime - currTime;
currTime = tracks[nearestIndex].m absTime;

// running mode
if (!(MIDIEvent.m event & 0Ox20)) // not above 1000 0000, so not OxB0 or Ox90
{
//get last command
unsigned char lastEvent = tracks[nearestIndex].m lastEvent:
newEvent.dwEvent = ((unsigned long)lastEvent) ;

// get Datal byte
unsigned char datal = *(MIDIEvent.m pData);

S/ all normal commands have datal
newEvent .dwEvent |= (({unsigned int) (datal << 2)}); S/ O0xO0000FFQO0

track mark

38

MIDIPlayer.cpp (Continued)

J/Onto DataZ byte
(MIDIEvent.m pData)++;
unsigned char data? = % (MIDIEvent.m pData);

{1}
LT

}

// Oxe0 (Patch change) and Oxd0 (Channel pressure) only take a single byte
if (!{(({lastEvent & Oxfl) == CO=cl || (lastEvent & O0xfl) == Cmdl}))
{

// Does have dataZz
newEvent.dwEvent |= ({unsigned int) (data2 << 1€)):; ./ Ox00FFC00Q

J/0nto the next message
(MIDTIEvent.m pData)++;

/f cast stream buffer pointer to windows MIDIEVENT pointer

BllocZ2S5lots (currStreamSize) ;
* (MIDIEVENT*) (&m pStreamBuf[m streamBufSize]) = newEvent;
m_streamBufSize++;

else if (MIDIEvent.m event = Oxff) // meta-event

i

MIDIEvent.m pData++; // skip the event byte
unsigned char meta = *MIDIEvent.m pData++; // read the meta-svent byte

un=ign

switch
{
case

{

Case
Case
Case
case
case
casze

ed int len;
(meta)
oxEl: S/ set tempo

un=igned char a, b, c;
len = *MIDIEvent.m pDatat++; // get the length byte, should be

a = *MIDIEvent.m pDatat+;
= *MIDIEvent.m pDatat+:
c = *MIDIEvent.m pDatat+:
newEvent.dwEvent = ((unsigned long)TEMPO EVI << 2<) |

({unsigned long)a << 1& |
long)b << 2) |
longlec << 0O)

// cast stream buffer pointer to windows MIDIEVENT pointer
Blloc25lot= (currStreamSize) ;

* (MIDIEVENT®*) (&m pStreamBuf[m streamBufSize]) = newEvent;
m streamBufSize++;

S/ end of track

3

39

MIDIPlayer.cpp (Continued)

{11
LLr

case 2f: /S end of track

case

case S/ time signature

case // key signature

case 0x7f: // seguencer specific information
defanlt:

len = *MIDIEvent.m pData++; /4 ignore ewvent,
MIDIEvent.m pData 4= len;

break;

}

}

J{ if normal command

else if ((MIDIEvent.m event & I= 0O=f0)

{
tracks|[nearestIndex] .m lastEvent = MIDIEvent.m e
Sl 31 - 24 | 23 - 16 | 15 - 8 | 7 -0 |
sH—_—
S/ | Unused | Data 2 | Data 1 | Status byvte |
// Bead midi command into the message
unsigned char cmd = % (MIDIEvent.m pData) :
newEvent .dwEvent = cmd;
// Onto Datal byte
(MIDIEvent.m pData)++;
unsigned char datal = * (MIDIEvent.m pData);
// all normal commands have datal
neWwEvent .dwEvent |= ({(unsigned intc) (datal << 2))

//onto Data2 byte
(MIDTEvent.m pData)++:
unsigned char data2 = * (MIDIEvent.m pData);

S/ 0xcO (Patch change) and 0xd0 (Channel pressur
if (V' ({(cmd & Oxf0) = OxcO || (cmd & Oxf0) = Ox
{

/{ Does have dataZz

newEvent ..dwEwvent |= ({(unsigned int) (data2 =<

//Onto the next message
(MIDIEvent.m pData)++;

// cast stream buffer pointer to windows MIDIEVE
Llloc25lots (currStreamSize) ;

* (MIDIEVENT*) (&m pStreamBuf[m streamBufSize]) =
m_streamBufSize ++;

}

else

{
// mot handling gysex events vet
printf ("unkn event %2x", MIDIEvent.m event);
exit(l)

}

/{increment pointer
tracks[nearestIndex] .m pBuffer = MIDIEvent.m pData;

skip all data

wvent ;

// 0x000000FF

H f/ 0O=0O00OFFOO

e) only take a single byte
A0y)

16)): // Ox00FF0000

NT pointer

newEvent ;

40

MIDIPlayer.cpp (Continued)

=

=

wvold MIDIPlayer: :ProcessInput ()

{
int kewy:
if (kkhitc())
{ S/ If a key on the computer kevboard has been pressed
key = _getch()};
if (m_isPFlaying)
{
switch (kev)
{
case "a':
S fblocking
printf({"Lidding new track...\n"):
printf{("File name: "}
LddTrack() ;
break;
case " ":
m_isPlaying = true;
break:
case "g":
S /mon-blocking
printf{"yalawala\n™)
m_isRequestingExit = false;
break;
defanlt:
break:
i
1
else
{
switeh (key)
i
case "a':
S /blocking
printf{"Ldding new track...\n"}:
printf{("File name: "} ;
2ddTrack() !
break:
case " "1
m _isPlaying = true;
break:;
case "oq":
S imon-blocking
printf{"yalawala‘\n™);
m_isReguestingExic = false;
break;
defanlt:
break;
¥
1
i
1

41

MIDIPlayer.cpp (Continued)
vold MIDIPlayer: :USleep({int
=

if (waitTime = 0O}
return;

waltTime)

LARGE _INTEGER timel, timeZ, freg:

QueryPerformanceCounter (&timel) »
GueryPerformanceFrequency (&freq) ;

wvoid CALLBACE MIDIPlayer: :MIDICallback (HMIDICUT out,

UINT m=g, DWCRD dwInstance,
{
switch (m=g)
= {
case MOM DONE:
SetEvent (g_event) ;
break:
case MOM POSITICHCE:
case MCM CPEN:
case MOM CLOSE:
break:

DWCRD dwParaml,

DWCORD dwParam2)

do
= {
QueryPerformanceCounter (&timel2) ;
- } while ((time2.QuadPart - timel.QuadPart) & 00000011 f freq.QuadPart < waitTime)

42

Utility.cpp

#include "Utility.h"
$include <iocstream>

unsigned char* loadFile (const char* fileName, int& fileSize)
=1
unsigned int hr;
unsigned char¥ fileBuf;
int fileSize:
FILE* fd = fopen((char+*) fileName, "zh"):
if (fd == HULL)

return mmllptr;

fseek(fd, 0, SEEK END);
fileS5ize = ftell (fd):
fzeek(fd, 0, SEEE S5ET):

fileBuf = (unsigned char*)malloc(fileSize) ;
if (fileBuf ==)

= {

felose (£d) ;

return mmllptr;

hr = fread(fileBuf, 1, fileSize, f£d):
fclose (£4) ;

if (hr !'= fileSize)

= {
free(fileBuf) ;

return mmllptr:;

_FfileS5ize = fileSize:
return fileBuf:

43

Main.cpp
#include "MIDIFlayer.h"

F

int main()

i
MIDIPlayer gMIDIPlavyer;
gMIDIFlavyer.Init ()
gHMIDIPlayer.Run{) ;
gMIDIPlaver.Halt():

44

