
1

RUN-TIME MIDI TRANSITION ALGORITHM FOR INTERACTIVE MEDIA AND GAMES

An Interactive Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC

INSTITUTE

In partial fulfillment of the requirements for

the Degree of Bachelor of Science

By

Yong Piao

Date: January 2nd, 2014

Approved:

Professor Fredrick W. Bianchi, Major Advisor

2

Table of Contents

Abstract ... 3

Acknowledgements ... 4

List of Figures ... 5

Introduction ... 6

Background ... 10

Methodology ... 14

Results ... 21

Conclusions and Recommendations .. 23

References ... 25

Appendix ... 26

3

Abstract

This project describes the design and development of a MIDI1 file parsing &

playback framework designed for providing users the ability to modify MIDI data in

run-time especially suited for interactive media and games.

1 Acronym for Musical Instrument Digital Interface.

4

Acknowledgements

I would like to thank Professor Frederick W.Bianchi for his advice and support. His

enthusiasm and insight on this subject were crucial to the completion of this work.

5

List of Figures

Figure 1. Byte-swap functions ... 14

Figure 2. MIDI header data structure... 15

Figure 3. MIDI track info data structure .. 15

Figure 4. MIDI event data structure ... 16

Figure 5 MIDI track data structure .. 17

Figure 6. MIDI Playback loop .. 18

Figure 7. Microseconds per quarter note formula .. 19

Figure 8. An example of using microseconds per quarter note formula. 19

Figure 9. Pulses per quarter note formula .. 20

Figure 10. MIDIPlayer console .. 21

Figure 11. Adding a new track in the MIDIPlayer. .. 22

6

Introduction

Video games have been playing an increasingly important role in man’s life. “The

industry is at around $22 billion for 2008 (conservative estimate) in the US2 and $30

to $40 billion globally,” while “The movie industry is at $9.5 billion (US)3 and $27

billion globally4.” Due to the inter-disciplinary nature of video game development,

video games have also brought benefits to the concept art industry, 3d modeling

industry, music industry, and etc.

Video games are meant to be interactive by its definition, and to achieve so, every

component in the video game must also be interactive. Music has always been playing

a big role in conveying emotions to audiences, but it has always lacked the flexibility

that computer graphics researchers have achieved in the past few years. For example,

with the NVidia’s latest voxel global illumination technology, it is now possible to

simulate highly realistic first-bounce reflective light in real-time. (It is one of the

biggest reasons why computer graphics in movies can look more realistic than in video

games)

Music in video games in current music production has severe limitations that in the

field of computer graphics, have already been solved. Real-time computer graphics

2 http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by-2012.html
3 http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006
4 http://www.abc.net.au/news/stories/2008/03/06/2181568.htm

http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by-2012.html
http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006
http://www.abc.net.au/news/stories/2008/03/06/2181568.htm

7

offers the computer the ability to improvise on graphics in real-time. Every moment in

the game is dictated by the player’s actions and never needs to be intentionally

programmed to be displayed at a given time, because every key-frame of the scene is

generated in real-time and calculated through algorithms.

NVidia researchers have been focusing on real-time rendering because offline

rendering has been very mature for the movie industry, and has less room for discovery.

(Due to the architectural design of GPU, real-time GPU rendering can offer as much as

60 times the speed of CPU rendering.5) The increasing artistic freedom in real-time

graphics allows many in-game cut scenes to be rendered in real-time as well, e.g.

Assassin's Creed Unity, Final Fantasy XIII-2, etc.

Music in video games is less interactive than other components of video games,

because modern game music uses streamed audio. Streamed audio must be composed,

arranged, and mixed by musicians into audio files such as .WAV and .MP3 prior to

being played in game. Because the music files are pre-rendered, it is simply impossible

to perform notation-level editing or calculation in real-time, because that information

has been lost in the rendering process. Therefore it has been difficult to generate

sufficient amounts of new materials from the limited track information.

5 http://www.elnexus.com/articles/GPUComputing.aspx

8

What will benefit the field of interactive music is the development of a music

system with interactive capabilities. It must retain the music notation information and

render the music out in real-time, similar to what real-time computer graphics proposes,

to achieve notation-level data manipulation in real-time. Only after obtaining

algorithmic freedom at this level, will researchers and musicians be able to start

developing algorithms that are aesthetically more appealing.

In this project, a MIDI file parsing and playback framework is designed to provide

sound engineers and musicians with a small and agile low level framework to

dynamically adjust MIDI data during software run-time. It serves as the first necessary

knock on the door of an interactive music system.

This framework uses no 3rd party library and is completely written in C++. It

differs from most MIDI parsers because instead of using per-stream6 based MIDI

playback and data processing, it uses a per-command7 based method and thus provides

more freedom to handle MIDI data in run-time.

Due to the artistic freedom and complexity of arranging and composition, there is

no adequate platform for sound engineers and musicians to experiment with their

6 Per-stream based MIDI playback refers to sending a large batch of MIDI commands to the MIDI device and have

the device handle sequencing and playback.
7 Per-Command based playback refers to performing timing and sequencing through a computer program loop, and

have the program send MIDI commands when the delta time of any commands match the time of the program loop.

9

music techniques. The preliminary goal of this project is to reduce the low level binary

processing complexity with the simplest possible code to allow more artistic freedom.

Currently, music production software such as Logic, Cubase, and Ableton all

provide visual editors to access the underlying MIDI data, but the sound libraries

required to render the final product requires purchase, and is often very costly. To

achieve high quality real-time rendered audio, every client computer must come with a

set of sound libraries required by the files. This problem perhaps could be addressed by

starting an open source sound library project to provide competitive sound libraires

with little to no cost. When such an open source library becomes available to

consumers, interactive music will become more approachable to software developers

and musicians.

10

Background

In 1957, the MUSIC-N program allowed an IBM 704 mainframe computer to play

a 17-second composition by Max Mathews. Back then computers were ponderous, so

synthesis would could take hours.8 Also, music programs rarely did run in real time,

and it was extremely time consuming and expensive for computers to generate just a

few minutes of digital audio.

In 1983, MIDI technology was standardized by the MIDI Manufacturers

Association (MMA). Because MIDI is sequenced, it can be manipulated on

notation-level during software run-time. Since MIDI is designed to store music events

instead of the sound waves, it has become the foundation of digital music software

products.9

For the purpose of this project, sequenced audio is referred to as audio data that are

stored in MIDI or a similar format that can be manipulated on notation-level during

software run-time. Streamed audio is referred to as pre-rendered audio data such

as .WAV, .MP3 that cannot be manipulated on notation-level in software run-time.

8 Cattermole, Tannith (May 9, 2011). "Farseeing inventor pioneered computer music". Gizmag. Retrieved 28

October 2011 http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/
9 Swift, Andrew. (May-Jun 1997.), "A brief Introduction to MIDI", SURPRISE (Imperial College of Science

Technology and Medicine), retrieved 22 August 2012

http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/

11

MIDI is lightweight, portable, and fast to process. Since the late 1980s, MIDI has

played a big role in fitting enough data into memory to provide meaningful musical

experiences to the players, because MIDI files use much less data than rendered audio

files of the same length.10

MIDI files are much smaller than streamed audio files, because MIDI files don’t

contain sound information. It is up to the hardware to decide how to handle the MIDI

information. This often caused inconsistency in sound between different MIDI systems.

Because of this, the industry began to look at streamed audio as a solution.

Creative Labs's Sound Blaster series were first introduced in 1989, then three years

later Creative Labs released the Sound Blaster 16. They made PCs capable of playing

back streamed audio, and thus MIDI was replaced for both hardware inconsistencies

and limitations on recording and mixing that made high quality audio difficult to

produce. While most game developers adopted these 16-bit playback wavetable-based

soundcards in the mid-1990s, disk space was a difficult issue to solve. So the choices

had always been either to sacrifice data fidelity, or sacrifice memory.

As an example, a lossless stereo PCM File at 16-bit, 44.1KHz takes up about

10.584MB per minute. With the limited space of a standard CD-ROM (around

10 http://www.midi.org/aboutmidi/tut_midifiles.php

12

650-703MB for data, 846MB for pure audio), it can only store computer readable data

of the size equivalent to about 66 minutes of lossless stereo PCM. Considering various

art assets and application data, it was simply not possible for game developers to deploy

both high quality game audio and a satisfying game experience at the same time.

Since 2006, the advent of Blu-ray discs brought many new possibilities in game

content creation with a stunning 25GB of data capacity per layer. In 2013, PlayStation 4

has standardized the use of dual-layer Blu-ray discs, meaning each game disc can store

up to 50GB of data.

However, in the exponential growth of data storage capabilities of home

entertainment systems, one thing has hardly changed: game audio has always been

statically pre-rendered and is looped again and again throughout the gameplay.

 In fields of digital audio other than video games, there were some attempts that

looked to increase the artistic freedom in streamed audio. There had been an attempt

that looked to automatically generate music videos based on the change in image

signal,11 but this approach is still based on streamed audio and does not have the

benefits of sequenced audio.

11http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearc

h-bool.html&r=14&f=G&l=50&co1=AND&d=PTXT&s1=music.ABTX.&s2=transition.ABTX.&OS=ABST/music+

AND+ABST/transition&RS=ABST/music+AND+ABST/transition

13

“Some games, such as Super Mario Galaxy (2007), had synchronizing sequenced

and streaming audio so that additional effects can be added to the streamed music.”12 In

the specific case of Super Mario Galaxy, it was possible to mix sequenced and

streaming audio because of the specific style of music that had been used in the game.

Sequenced audio in Super Mario Galaxy gave satisfactory result because it was

specifically designed to convey a MIDI-like style to accompany the orchestral music.

There have been other attempts like Super Mario Galaxy, but they were very genre

limited and content limited. Many times the sequenced approach is only suitable for

classic and cartoon-like games. Overall, there has not been enough attention on further

discovering the potential of dynamically generated game audio without such limitations.

This project is dedicated to game audio vanguards who seek to improve game audio

from a whole new perspective. It is meant to provide the most basic resource for game

developers to get started on revisiting some of the assumptions musicians frequently

make about the most common MIDI-based game audio creation pipeline, and thus open

up the possibility of using real-time computer generated, aesthetically appealing music

in interactive media and games.

12 http://www.lauraintravia.com/blog/super-mario-galaxy-interview-with-the-sound-team-iwata-asks

14

Methodology

 In order to replicate the inner workings of this MIDI framework, one must first

understand the inner workings of Standard MIDI Format13, and the best way to learn it

is to go through the process of reading a MIDI file. The following example assumes the

reader is using a little-endian machine with an appropriate C++ compiler installed.

MIDI files are made up of big-endian binary data. It is necessary to be able to

translate big-endian data into little-endian for x86 machines, therefore we define:

Figure 1. Byte-swap functions

Figure 1 converts short and integer into little-endian, because this operation is used

frequently, it is important to make sure it is written with performance in mind.

13 More resources on the Standard MIDI Format:

http://wiki.fourthwoods.com/standard_midi_file_format

http://wiki.fourthwoods.com/midi_file_format

http://wiki.fourthwoods.com/standard_midi_file_format
http://wiki.fourthwoods.com/midi_file_format

15

With the big-endian converter code, it is possible to start reading the MIDI file.

Every MIDI file starts with a header that describes the information about the MIDI file:

Figure 2. MIDI header data structure

It is necessary to check the identifier in the MIDI header to make sure the file content is

indeed a MIDI file.

1. Size defines the binary file size in bytes, in big endian format.

2. Format defines the track format:

a) 0 - single-track

b) 1 - multiple tracks, synchronous

c) 2 - multiple tracks, asynchronous

3. Tracks defines the number of tracks in the MIDI file.

4. Ticks defines the number of ticks per quarter note, more on this later.

The header chunk is immediately followed by one or more track chunks:

Figure 3. MIDI track info data structure

16

1. Again, the identifier is important to make sure data is correctly read.

2. Length defines the size of the track in bytes, in big-endian format.

Immediately followed by the track info chunk is a sequence of MIDI events for the

track. Each MIDI event consists of a command or status byte with associated data, and a

time-stamp indicating the number of ticks to wait before sending the event.

Because we plan to perform note manipulation with the MIDI stream, we create a

MIDIEvent struct to ensure every event is packed cleanly:

Figure 4. MIDI event data structure

MIDIEvent comes in large quantities and is frequently accessed, so it is important to

store a pointer to the data, instead of storing data of the entire event.

1. absTime indicates the absolute time of the occurrence of the event. We need to

calculate the absolute time through incrementally adding the previously

processed MIDI events.

2. pData is a pointer that points to the buffer of the supplemental data of the MIDI

event. We can use this pointer to feed information to the MIDI device at the time

given by absTime.

17

3. The event attribute is the actual MIDI event. We parse the event from the data

buffer according to the MIDI standard table.

Once we have a list of MIDI events for one track, we can pack them into a MIDITrack

class for object-oriented design and flexibility later in development:

Figure 5 MIDI track data structure

 MIDITrack serves as a state machine that stores the playback state of MIDI buffers.

These MIDI buffers are represented as pointers in MIDITracks, and these pointers

record the memory location of the last played MIDIEvents.

1. pTrackInfo contains the information about the MIDI track, as described in figure

3. It is necessary for us to know the length of the track and also double check the

data buffer before reading to prevent playing with erroneous data.

2. pBuffer points at the beginning of the track buffer. We use this to locate all

MIDI events in the track and convert them into our custom MIDIEvents.

3. The lastEvent attribute is used for the MIDI device to play the same event in

running mode. Running mode is used to conserve command data when the same

commands are played in sequence. Instead of pairing all data bytes with a status

18

byte, running mode allows removing the redundant status bytes after the first

one, so that it keeps using the “lastEvent” but with different data.

Now the basic parts of parsing a MIDI file are complete. The four major parts are

MIDI header info, MIDI track info, MIDI Event, and MIDI Track. Lastly, in order to

process the entire file, we shall use a ‘while’ loop to parse small chunks of MIDI data,

pack them into MIDI events, and eventually break out of the loop when there are no

more events to process:

Figure 6. MIDI Playback loop

In more detail, the execution flow of the playback ‘while’ loop is:

1. For each track:

a) If the track is at the end-of-track marker, do nothing.

19

b) If all tracks are at the end-of-track marker, end playback.

2. Extract the next event closest to the absolute time of the current track:

a) Advance the track pointer to the next event in the track.

b) Advance the absolute time for the track by the extracted event’s delta-time.

3. The difference between the new absolute time for the track and the absolute time

for the score is used as the new delta-time for the event.

4. Continue from step 1.

Every execution of the MIDI playback loop, or tick, is precisely timed by the

number of microseconds per tick. In order to calculate this value, we must first obtain

the tempo value. In MIDI files, tempo is expressed in microseconds per quarter note.

Beats per minute is calculated through use of this value. The default BPM of MIDI files

is specified as 120. The equation for calculating microseconds per quarter note is given

below:

Figure 7. Microseconds per quarter note formula

In the case of 120 BPM, the result would be:

Figure 8. An example of using microseconds per quarter note formula.

20

Going back to the MIDIHeader struct displayed by Figure 1, the ticks attribute

specifies the ticks per quarter note used during playback. Tick per quarter note is also

called pulses per quarter note. This is the number of CPU clock ticks per quarter note.

The PPQN number will affect the precision of playback, and it usually set to 96. Below

is an example of 96 pulses at 120BPM:

Figure 9. Pulses per quarter note formula

21

Results

The sample program is able to play MIDI files independent from existing MIDI

libraries. It packs MIDI information into C++ objects and STL containers to make

MIDI data much more accessible when it comes to analyzing those data

algorithmically.

Sample program instructions:

1. Compile the program with Microsoft Visual Studio, or other IDEs supported

by CMake.

2. Run the program, it should then display a window as such:

Figure 10. MIDIPlayer console

22

3. To add a track to the MIDI player, press the “a” key, it should then prompt for

the MIDI filename:

Figure 11. Adding a new track in the MIDIPlayer.

4. After typing the filename, press the enter key to submit input. If you would

like to play multiple files, repeat step 3 and 4.

5. Press the space key to play the MIDI file list. It will the loop through all MIDI

files stored in the MIDI player.

To make the music interactive, users shall implement their algorithms, retrieve

the MIDI data from the MIDI player, and either change the MIDI data being played,

or insert a new MIDI track generated from the algorithms to the playlist.

23

Conclusions and Recommendations

The original goal of this project was to develop a run-time MIDI transition

algorithm. However, existing MIDI libraries were either written in C, or did not

provide enough freedom to access the MIDI data. Due to the lack of appropriate MIDI

libraries, the decision was made to develop a MIDI playback framework especially

designed with run-time MIDI manipulation in mind. We have successfully developed a

fully functional MIDI playback framework that meets the requirements of run-time

MIDI manipulation.

With this MIDI playback framework, users can look into incorporating their own

algorithms without worrying about hexadecimal data in the underlying MIDI files. The

industry can also look into adding run-time MIDI manipulation support to existing

music production software products. Perhaps a new editor can be developed to define

transition behaviors such as, for example, transitioning to a minor version of the track

if the camera transitions from a peaceful forest to a fearful dark cave.

Currently, music production software such as Logic, Cubase, and Ableton all

provide a visual editor to access the underlying MIDI data, but the sound library

required to render the final product requires purchase, and is often very expensive. To

achieve high quality, real-time rendered audio, every client computer must come with a

24

set of sound libraries required by the files. This problem can be addressed by starting

an open source sound library project to provide competitive sound libraries with little

to no cost.

25

References

CaldwellDustin.

http://wiki.fourthwoods.com/standard_midi_file_format. 2011 November 02 .

CaronFrank.

http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by

-2012.html. 2008 June 18 . arstechnica.

CattermoleTannith. http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/.

2011 May 9 . gizmag.

IntraviaLaura.

http://www.lauraintravia.com/blog/super-mario-galaxy-interview-with-the-sound-team-iwata-as

ks. 2011 February 5 .

MenneckeThomas.

http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006. 2007 March

6 . Slyck.com.

midi.org.

http://www.midi.org/aboutmidi/tut_midifiles.php. MIDI Manufacturers Association.

United States Patent and Trademark Office

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml

%2FPTO%2Fsearch-bool.html&r=14&f=G&l=50&co1=AND&d=PTXT&s1=music.ABTX.&s

2=transition.ABTX.&OS=ABST/music+AND+ABST/transition&RS=ABST/music+AND+AB

ST/transition. 2003 August 3 .

RansonBen. http://www.elnexus.com/articles/GPUComputing.aspx. 2009 02 17 .

ElectronicsNexus.

Reuters.

http://www.abc.net.au/news/stories/2008/03/06/2181568.htm. 2008 March 6 .

SwiftAndrew.

http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/.

26

Appendix

MIDIPlayer.h

27

Utility.h

28

Utility.h (Continuted)

29

MIDIFile.h

30

MIDIFile.h (Continued)

31

MIDIFile.cpp

32

MIDIPlayer.cpp

33

 MIDIPlayer.cpp (Continued)

34

MIDIPlayer.cpp (Continued)

35

MIDIPlayer.cpp (Continued)

36

MIDIPlayer.cpp (Continued)

37

MIDIPlayer.cpp (Continued)

38

MIDIPlayer.cpp (Continued)

39

MIDIPlayer.cpp (Continued)

40

MIDIPlayer.cpp (Continued)

41

MIDIPlayer.cpp (Continued)

42

MIDIPlayer.cpp (Continued)

43

Utility.cpp

44

Main.cpp

