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Abstract  

This project describes the design and development of a MIDI1 file parsing & 

playback framework designed for providing users the ability to modify MIDI data in 

run-time especially suited for interactive media and games. 

  

                                                           
1 Acronym for Musical Instrument Digital Interface. 
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Introduction 

Video games have been playing an increasingly important role in man’s life. “The 

industry is at around $22 billion for 2008 (conservative estimate) in the US2 and $30 

to $40 billion globally,” while “The movie industry is at $9.5 billion (US)3 and $27 

billion globally4.” Due to the inter-disciplinary nature of video game development, 

video games have also brought benefits to the concept art industry, 3d modeling 

industry, music industry, and etc. 

 

Video games are meant to be interactive by its definition, and to achieve so, every 

component in the video game must also be interactive. Music has always been playing 

a big role in conveying emotions to audiences, but it has always lacked the flexibility 

that computer graphics researchers have achieved in the past few years. For example, 

with the NVidia’s latest voxel global illumination technology, it is now possible to 

simulate highly realistic first-bounce reflective light in real-time. (It is one of the 

biggest reasons why computer graphics in movies can look more realistic than in video 

games) 

 

Music in video games in current music production has severe limitations that in the 

field of computer graphics, have already been solved. Real-time computer graphics 

                                                           
2 http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by-2012.html 
3 http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006 
4 http://www.abc.net.au/news/stories/2008/03/06/2181568.htm 

http://arstechnica.com/news.ars/post/20080618-gaming-expected-to-be-a-68-billion-business-by-2012.html
http://www.slyck.com/story1436_MPAA_Reports_Record_Movie_Sales_in_2006
http://www.abc.net.au/news/stories/2008/03/06/2181568.htm
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offers the computer the ability to improvise on graphics in real-time. Every moment in 

the game is dictated by the player’s actions and never needs to be intentionally 

programmed to be displayed at a given time, because every key-frame of the scene is 

generated in real-time and calculated through algorithms. 

 

NVidia researchers have been focusing on real-time rendering because offline 

rendering has been very mature for the movie industry, and has less room for discovery. 

(Due to the architectural design of GPU, real-time GPU rendering can offer as much as 

60 times the speed of CPU rendering.5) The increasing artistic freedom in real-time 

graphics allows many in-game cut scenes to be rendered in real-time as well, e.g. 

Assassin's Creed Unity, Final Fantasy XIII-2, etc. 

 

Music in video games is less interactive than other components of video games, 

because modern game music uses streamed audio. Streamed audio must be composed, 

arranged, and mixed by musicians into audio files such as .WAV and .MP3 prior to 

being played in game. Because the music files are pre-rendered, it is simply impossible 

to perform notation-level editing or calculation in real-time, because that information 

has been lost in the rendering process. Therefore it has been difficult to generate 

sufficient amounts of new materials from the limited track information. 

 

                                                           
5 http://www.elnexus.com/articles/GPUComputing.aspx 
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What will benefit the field of interactive music is the development of a music 

system with interactive capabilities. It must retain the music notation information and 

render the music out in real-time, similar to what real-time computer graphics proposes, 

to achieve notation-level data manipulation in real-time. Only after obtaining 

algorithmic freedom at this level, will researchers and musicians be able to start 

developing algorithms that are aesthetically more appealing. 

 

In this project, a MIDI file parsing and playback framework is designed to provide 

sound engineers and musicians with a small and agile low level framework to 

dynamically adjust MIDI data during software run-time. It serves as the first necessary 

knock on the door of an interactive music system. 

 

This framework uses no 3rd party library and is completely written in C++. It 

differs from most MIDI parsers because instead of using per-stream6 based MIDI 

playback and data processing, it uses a per-command7 based method and thus provides 

more freedom to handle MIDI data in run-time. 

 

Due to the artistic freedom and complexity of arranging and composition, there is 

no adequate platform for sound engineers and musicians to experiment with their 

                                                           
6 Per-stream based MIDI playback refers to sending a large batch of MIDI commands to the MIDI device and have 

the device handle sequencing and playback. 
7 Per-Command based playback refers to performing timing and sequencing through a computer program loop, and 

have the program send MIDI commands when the delta time of any commands match the time of the program loop. 
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music techniques. The preliminary goal of this project is to reduce the low level binary 

processing complexity with the simplest possible code to allow more artistic freedom. 

 

Currently, music production software such as Logic, Cubase, and Ableton all 

provide visual editors to access the underlying MIDI data, but the sound libraries 

required to render the final product requires purchase, and is often very costly. To 

achieve high quality real-time rendered audio, every client computer must come with a 

set of sound libraries required by the files. This problem perhaps could be addressed by 

starting an open source sound library project to provide competitive sound libraires 

with little to no cost. When such an open source library becomes available to 

consumers, interactive music will become more approachable to software developers 

and musicians. 
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Background 

In 1957, the MUSIC-N program allowed an IBM 704 mainframe computer to play 

a 17-second composition by Max Mathews. Back then computers were ponderous, so 

synthesis would could take hours.8 Also, music programs rarely did run in real time, 

and it was extremely time consuming and expensive for computers to generate just a 

few minutes of digital audio. 

 

In 1983, MIDI technology was standardized by the MIDI Manufacturers 

Association (MMA). Because MIDI is sequenced, it can be manipulated on 

notation-level during software run-time. Since MIDI is designed to store music events 

instead of the sound waves, it has become the foundation of digital music software 

products.9 

 

For the purpose of this project, sequenced audio is referred to as audio data that are 

stored in MIDI or a similar format that can be manipulated on notation-level during 

software run-time. Streamed audio is referred to as pre-rendered audio data such 

as .WAV, .MP3 that cannot be manipulated on notation-level in software run-time. 

 

                                                           
8 Cattermole, Tannith (May 9, 2011). "Farseeing inventor pioneered computer music". Gizmag. Retrieved 28 

October 2011 http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/ 
9 Swift, Andrew. (May-Jun 1997.), "A brief Introduction to MIDI", SURPRISE (Imperial College of Science 

Technology and Medicine), retrieved 22 August 2012 

http://www.gizmag.com/computer-music-pioneer-max-mathews/18530/
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/
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MIDI is lightweight, portable, and fast to process. Since the late 1980s, MIDI has 

played a big role in fitting enough data into memory to provide meaningful musical 

experiences to the players, because MIDI files use much less data than rendered audio 

files of the same length.10 

 

MIDI files are much smaller than streamed audio files, because MIDI files don’t 

contain sound information. It is up to the hardware to decide how to handle the MIDI 

information. This often caused inconsistency in sound between different MIDI systems.  

Because of this, the industry began to look at streamed audio as a solution. 

 

Creative Labs's Sound Blaster series were first introduced in 1989, then three years 

later Creative Labs released the Sound Blaster 16. They made PCs capable of playing 

back streamed audio, and thus MIDI was replaced for both hardware inconsistencies 

and limitations on recording and mixing that made high quality audio difficult to 

produce. While most game developers adopted these 16-bit playback wavetable-based 

soundcards in the mid-1990s, disk space was a difficult issue to solve. So the choices 

had always been either to sacrifice data fidelity, or sacrifice memory. 

 

As an example, a lossless stereo PCM File at 16-bit, 44.1KHz takes up about 

10.584MB per minute. With the limited space of a standard CD-ROM (around 

                                                           
10 http://www.midi.org/aboutmidi/tut_midifiles.php 
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650-703MB for data, 846MB for pure audio), it can only store computer readable data 

of the size equivalent to about 66 minutes of lossless stereo PCM. Considering various 

art assets and application data, it was simply not possible for game developers to deploy 

both high quality game audio and a satisfying game experience at the same time. 

 

Since 2006, the advent of Blu-ray discs brought many new possibilities in game 

content creation with a stunning 25GB of data capacity per layer. In 2013, PlayStation 4 

has standardized the use of dual-layer Blu-ray discs, meaning each game disc can store 

up to 50GB of data. 

 

However, in the exponential growth of data storage capabilities of home 

entertainment systems, one thing has hardly changed: game audio has always been 

statically pre-rendered and is looped again and again throughout the gameplay. 

 

 In fields of digital audio other than video games, there were some attempts that 

looked to increase the artistic freedom in streamed audio. There had been an attempt 

that looked to automatically generate music videos based on the change in image 

signal,11 but this approach is still based on streamed audio and does not have the 

benefits of sequenced audio. 

                                                           
11http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearc

h-bool.html&r=14&f=G&l=50&co1=AND&d=PTXT&s1=music.ABTX.&s2=transition.ABTX.&OS=ABST/music+

AND+ABST/transition&RS=ABST/music+AND+ABST/transition 
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“Some games, such as Super Mario Galaxy (2007), had synchronizing sequenced 

and streaming audio so that additional effects can be added to the streamed music.”12 In 

the specific case of Super Mario Galaxy, it was possible to mix sequenced and 

streaming audio because of the specific style of music that had been used in the game. 

Sequenced audio in Super Mario Galaxy gave satisfactory result because it was 

specifically designed to convey a MIDI-like style to accompany the orchestral music. 

There have been other attempts like Super Mario Galaxy, but they were very genre 

limited and content limited. Many times the sequenced approach is only suitable for 

classic and cartoon-like games. Overall, there has not been enough attention on further 

discovering the potential of dynamically generated game audio without such limitations. 

 

This project is dedicated to game audio vanguards who seek to improve game audio 

from a whole new perspective. It is meant to provide the most basic resource for game 

developers to get started on revisiting some of the assumptions musicians frequently 

make about the most common MIDI-based game audio creation pipeline, and thus open 

up the possibility of using real-time computer generated, aesthetically appealing music 

in interactive media and games. 

  

                                                           
12 http://www.lauraintravia.com/blog/super-mario-galaxy-interview-with-the-sound-team-iwata-asks 
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Methodology 

 In order to replicate the inner workings of this MIDI framework, one must first 

understand the inner workings of Standard MIDI Format13, and the best way to learn it 

is to go through the process of reading a MIDI file. The following example assumes the 

reader is using a little-endian machine with an appropriate C++ compiler installed. 

 

MIDI files are made up of big-endian binary data. It is necessary to be able to 

translate big-endian data into little-endian for x86 machines, therefore we define: 

 

 

Figure 1. Byte-swap functions 

 

Figure 1 converts short and integer into little-endian, because this operation is used 

frequently, it is important to make sure it is written with performance in mind. 

                                                           
13 More resources on the Standard MIDI Format: 

http://wiki.fourthwoods.com/standard_midi_file_format 

http://wiki.fourthwoods.com/midi_file_format 

 

http://wiki.fourthwoods.com/standard_midi_file_format
http://wiki.fourthwoods.com/midi_file_format
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With the big-endian converter code, it is possible to start reading the MIDI file. 

Every MIDI file starts with a header that describes the information about the MIDI file: 

 

 

Figure 2. MIDI header data structure 

It is necessary to check the identifier in the MIDI header to make sure the file content is 

indeed a MIDI file.  

1. Size defines the binary file size in bytes, in big endian format. 

2. Format defines the track format: 

a) 0 - single-track 

b) 1 - multiple tracks, synchronous 

c) 2 - multiple tracks, asynchronous 

3. Tracks defines the number of tracks in the MIDI file. 

4. Ticks defines the number of ticks per quarter note, more on this later. 

The header chunk is immediately followed by one or more track chunks: 

 

 

Figure 3. MIDI track info data structure 
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1. Again, the identifier is important to make sure data is correctly read. 

2. Length defines the size of the track in bytes, in big-endian format. 

 

Immediately followed by the track info chunk is a sequence of MIDI events for the 

track. Each MIDI event consists of a command or status byte with associated data, and a 

time-stamp indicating the number of ticks to wait before sending the event.  

Because we plan to perform note manipulation with the MIDI stream, we create a 

MIDIEvent struct to ensure every event is packed cleanly: 

 

 

Figure 4. MIDI event data structure 

 

MIDIEvent comes in large quantities and is frequently accessed, so it is important to 

store a pointer to the data, instead of storing data of the entire event. 

1. absTime indicates the absolute time of the occurrence of the event. We need to 

calculate the absolute time through incrementally adding the previously 

processed MIDI events. 

2. pData is a pointer that points to the buffer of the supplemental data of the MIDI 

event. We can use this pointer to feed information to the MIDI device at the time 

given by absTime. 
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3. The event attribute is the actual MIDI event. We parse the event from the data 

buffer according to the MIDI standard table. 

Once we have a list of MIDI events for one track, we can pack them into a MIDITrack 

class for object-oriented design and flexibility later in development: 

 

 

Figure 5 MIDI track data structure 

 

 MIDITrack serves as a state machine that stores the playback state of MIDI buffers. 

These MIDI buffers are represented as pointers in MIDITracks, and these pointers 

record the memory location of the last played MIDIEvents. 

1. pTrackInfo contains the information about the MIDI track, as described in figure 

3. It is necessary for us to know the length of the track and also double check the 

data buffer before reading to prevent playing with erroneous data. 

2. pBuffer points at the beginning of the track buffer. We use this to locate all 

MIDI events in the track and convert them into our custom MIDIEvents. 

3. The lastEvent attribute is used for the MIDI device to play the same event in 

running mode. Running mode is used to conserve command data when the same 

commands are played in sequence. Instead of pairing all data bytes with a status 
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byte, running mode allows removing the redundant status bytes after the first 

one, so that it keeps using the “lastEvent” but with different data. 

 

Now the basic parts of parsing a MIDI file are complete. The four major parts are 

MIDI header info, MIDI track info, MIDI Event, and MIDI Track. Lastly, in order to 

process the entire file, we shall use a ‘while’ loop to parse small chunks of MIDI data, 

pack them into MIDI events, and eventually break out of the loop when there are no 

more events to process: 

 

 

Figure 6. MIDI Playback loop 

 

In more detail, the execution flow of the playback ‘while’ loop is: 

1. For each track: 

a) If the track is at the end-of-track marker, do nothing. 
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b) If all tracks are at the end-of-track marker, end playback. 

2. Extract the next event closest to the absolute time of the current track: 

a) Advance the track pointer to the next event in the track. 

b) Advance the absolute time for the track by the extracted event’s delta-time. 

3. The difference between the new absolute time for the track and the absolute time 

for the score is used as the new delta-time for the event. 

4. Continue from step 1. 

 

Every execution of the MIDI playback loop, or tick, is precisely timed by the 

number of microseconds per tick. In order to calculate this value, we must first obtain 

the tempo value. In MIDI files, tempo is expressed in microseconds per quarter note. 

Beats per minute is calculated through use of this value. The default BPM of MIDI files 

is specified as 120. The equation for calculating microseconds per quarter note is given 

below: 

 

Figure 7. Microseconds per quarter note formula 

  

In the case of 120 BPM, the result would be: 

 

 

Figure 8. An example of using microseconds per quarter note formula. 
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Going back to the MIDIHeader struct displayed by Figure 1, the ticks attribute 

specifies the ticks per quarter note used during playback. Tick per quarter note is also 

called pulses per quarter note. This is the number of CPU clock ticks per quarter note. 

The PPQN number will affect the precision of playback, and it usually set to 96. Below 

is an example of 96 pulses at 120BPM: 

 

 

Figure 9. Pulses per quarter note formula 
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Results 

The sample program is able to play MIDI files independent from existing MIDI 

libraries. It packs MIDI information into C++ objects and STL containers to make 

MIDI data much more accessible when it comes to analyzing those data 

algorithmically. 

Sample program instructions: 

1. Compile the program with Microsoft Visual Studio, or other IDEs supported 

by CMake. 

2. Run the program, it should then display a window as such: 

 

 

Figure 10. MIDIPlayer console 
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3. To add a track to the MIDI player, press the “a” key, it should then prompt for 

the MIDI filename: 

 

 
Figure 11. Adding a new track in the MIDIPlayer. 

 

4. After typing the filename, press the enter key to submit input. If you would 

like to play multiple files, repeat step 3 and 4. 

5. Press the space key to play the MIDI file list. It will the loop through all MIDI 

files stored in the MIDI player. 

 

To make the music interactive, users shall implement their algorithms, retrieve 

the MIDI data from the MIDI player, and either change the MIDI data being played, 

or insert a new MIDI track generated from the algorithms to the playlist. 
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Conclusions and Recommendations 

The original goal of this project was to develop a run-time MIDI transition 

algorithm. However, existing MIDI libraries were either written in C, or did not 

provide enough freedom to access the MIDI data. Due to the lack of appropriate MIDI 

libraries, the decision was made to develop a MIDI playback framework especially 

designed with run-time MIDI manipulation in mind. We have successfully developed a 

fully functional MIDI playback framework that meets the requirements of run-time 

MIDI manipulation. 

 

With this MIDI playback framework, users can look into incorporating their own 

algorithms without worrying about hexadecimal data in the underlying MIDI files. The 

industry can also look into adding run-time MIDI manipulation support to existing 

music production software products. Perhaps a new editor can be developed to define 

transition behaviors such as, for example, transitioning to a minor version of the track 

if the camera transitions from a peaceful forest to a fearful dark cave. 

 

Currently, music production software such as Logic, Cubase, and Ableton all 

provide a visual editor to access the underlying MIDI data, but the sound library 

required to render the final product requires purchase, and is often very expensive. To 

achieve high quality, real-time rendered audio, every client computer must come with a 
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set of sound libraries required by the files. This problem can be addressed by starting 

an open source sound library project to provide competitive sound libraries with little 

to no cost. 
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Utility.h 
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Utility.h (Continuted) 
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MIDIFile.h 
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MIDIFile.h (Continued) 
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MIDIFile.cpp 
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MIDIPlayer.cpp 
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 MIDIPlayer.cpp (Continued) 

 

 

 

 

 

 

 

 



34 
 

MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued)  
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MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued) 
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MIDIPlayer.cpp (Continued) 
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Utility.cpp 
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Main.cpp 

 


