
TRUE RANDOM NUMBER GENERATIONUSING PHYSICALLY UNCLONABLEFUNCTIONSA Major Qualifying ProjetSubmitted to the Faultyof theWorester Polytehni InstituteIn partial ful�llment of the requirements for theDegree of Bahelor of Siene inEletrial and Computer Engineeringby
Berk BirandDate: April 24, 2008

APPROVED:
Professor Berk Sunar, Projet Advisor

AbstratAs embedded systems are beoming ubiquitous, the need for low-power iruits is inreasing. An approah to reduing the omplexityand power onsumption of hips is to reuse omponents that are al-ready present on the hip in alternative ways. Our design reuses thePhysially Unlonable Funtion, mostly used for authentiation, as aTrue Random Number Generator. With this approah, more seureauthentiation protools that use randomness an be devised withoutadding too muh omplexity to the design.

AknowledgmentsI would like to thank my advisor, Prof Berk Sunar for his onstant supervisionthroughout the projet. He not only has introdued me to formal aademiresearh, but has also paved the way for my Ph.D. I also would like to thankmy lab partners, Ghaith, Erdinç, Kahraman and Deniz for aepting me intheir lose-knit irle, and for always being available to answer my questions.Although I am the author of this report, I annot take full redit for thiswork. I ould not have ahieved anything without the support and trust ofmy parents, Serda and Re�k, and my brother, Burak.

3

CONTENTS CONTENTSContents1 Introdution 61.1 Problem Desription . 61.2 Proposed Solution . 61.3 Projet Goals . 72 Literature Review 82.1 Random Number Generation 82.1.1 Pseudo-Random Number Generators (PRNG) 82.1.2 True Random Number Generators (TRNG) 92.2 Physially Unlonable Funtions 92.3 Statistial Tests . 103 Requirements 114 Design Overview 124.1 Swith Blok Chain . 124.2 Arbiter and Metastability . 134.3 Feedbak Loops . 154.4 State Mahine . 164.5 Serial Port Communiation . 174.6 PC Interfae Perl Sript . 174.7 Plaement and Routing . 184.8 Sensitivity . 184.9 Post-Proessing by XORing 195 Implementation/Results 205.1 RTL Diagrams . 205.2 FPGA Editor Views . 245.3 NIST Test Results . 294

CONTENTS CONTENTS6 Future Work 327 Conlusion 33A State Mahine Transition Diagram 36

5

1 INTRODUCTION1 Introdution1.1 Problem DesriptionWith the new advanes in silion prodution tehniques, omputers are enter-ing every single part of our lives. Embedded systems ontain hips that areso small that they an use the ambient eletromagneti radiation to generatetheir power.Having so many small omputers bring their own problems. They havevery strit requirements, and sine they do not have that many resoures,their use is really hard. The amount of resoures that an be alloated forthem makes them espeially prone to being atively haked. Even on largerhips, spae is always a premium.For instane, hip spae and power onsumption are big limitations onthe modern ultra-low-power devies. Sine ryptographial iruits are om-putationally demanding, these smaller devies annot use the bleeding-edgeprotools.1.2 Proposed SolutionIt is always neessary to minimize the hip area and power onsumption ofembedded systems. One approah to inreasing the e�ieny of the hip isto reuse some omponents for several purposes. We propose the use of thePUF iruits as a random number generator.The PUF iruit uses the hip's physial harateristis to identify thehip. They are frequently used for implementing authentiation protools.By using a feedbak mehanism, our design exploits metastability in theseiruits to build a true hardware random number generator. Sine we areonly adding a small iruit to the main PUF, our solution does not add asigni�ant overhead in terms of power and area onsumption.
6

1.3 Projet Goals 1 INTRODUCTION1.3 Projet GoalsThe goal of this projet is to design, implement and test the use of the PUFas a random number generator. The iruit has �rst been designed aordingto some requirements. The PUF iruit is implemented on a Xilinx XCVP30FPGA prototyping board. One the devie is shown to operate properly,we built a feedbak loop around it to make it funtion as a random numbergenerator. One the implementation was ompleted, the performane of theRNG was evaluated using statistial tests.

7

2 LITERATURE REVIEW2 Literature Review2.1 Random Number GenerationRandom number generators (RNGs) are used in �elds as varied as ryptog-raphy to musi. Although the restritions on the randomness of the numbersdepends on the appliation, the RNGs an be lassi�ed into two ategories:Pseudo-Random Number Generators (PRNGs) and True Random NumberGenerators (TRNGs).2.1.1 Pseudo-Random Number Generators (PRNG)PRNGs use a deterministi algorithm to generate a sequene of numbersfrom an initial value, alled the seed. Given the same seed, the PRNG willalways ome up with the same sequene.There are many implementations of PRNG funtions. While most aremore suited for being programmed into a proessor, some others an be easilyimplemented on digital hardware. One ommom digital implementation of aPRNG is the linear feedbak shift register (LFSR) is widely used on hips asa PRNG. It is a shift register, where the bit that is shifted in with eah stateis a linear ombination of the previous value (alulated by XORing severalbits of the value). The register is initialized to a value, and one it is started,it keeps generating new numbers by ontinuously shifting in new bits.The most ritial fator when implementing a PRNG sheme is the soureof the seed. For the system to work seamlessly like a real random numbergenerator, the seed must be really random. On omputer systems, ommonparameters suh as date and time of the day, network ativity or mouse move-ments an be made into a seed. This approah works well for appliationsthat do not require muh seurity (e.g., movement of a harater in a gameor generation of musi).PRNGs an be seeded from true-random number generators on ertainoasions. These devies ar useful on systems where the TRNG works very8

2.2 Physially Unlonable Funtions 2 LITERATURE REVIEWslowly, and annot generate a throughput neessary for the appliation. It isonly used initially to get a small initial value that is inreased in length bythe PRNG.2.1.2 True Random Number Generators (TRNG)True Random Number Generators (TRNGs) rely on a physial soure ofentropy to generate the bitstream. The iruit measures the entropy andonverts it to bits. The means through whih this measurement is madedepends on the soure of the randomness. An analog ampli�er is used whenthermal noise is used as the physial soure. When radiation is used asa soure, a Geiger ounter an be employed. Other examples of entropysoures inlude avalanhe noise of a Zener diode, atmospheri noise, jitter inan osillator ring or traveling photons.2.2 Physially Unlonable FuntionsPhysially Unlonable Funtions (PUFs) use the physial properties of thehip on whih the iruit is built to provide a seret. Using this approah, aseret key does not have to be stored on memory inside the hip [LLG+05℄.The hip virtually annot be dupliated; to do so, one would need to man-ufature a di�erent hip with the exat same harateristis as the originalone.In addition to being unique, PUFs also provide tamper resiliene. Ifan attaker attempts to break the system by hanging or monitoring theenvironmental onditions, the physial parameters will hange, rendering theiruit unusuable.The original PUF funtions used optial patterns to provide the ran-domness [Rav01℄. The version that we are using relies on the variations inpropagation delays in the wires and gates [GCvDD03℄. More information onthis version of the PUF is available in Setion 4.9

2.3 Statistial Tests 2 LITERATURE REVIEWThe most important appliation of PUFs is in authentiation. Before thesystem is deployed, the behavior of the PUF is reorded in a database. Itsoutput when given a set of hallenges is stored for future use. When thehip needs to be authentiated, a reorded hallenge is sent, and the givenresponse is ompared to the one stored in the database. If the two math,the devie is suessfully authentiated.2.3 Statistial TestsBy analyzing a large dataset, it is possible to understand the distribution ofthe numbers, and gauge whether they are suitable for use in real appliations.Two of the most important test suites are Diehard [Die℄ and NIST [NIS℄. Forthe purpose of this projet, we used the NIST suite.NIST runs a series of tests on the given data. It slies the data into anumber of bitstreams, and performs the tests on eah bitstream individually.Two values are given for the results: a p-value and a proportion. The testsuites starts with the hypothesis that the bitstream is random (alled the nullhypothesis). With eah test that it performs, the software tries to prove thatthe null hypothesis is orret. The p-value is the probability that the nullhypothesis is true for the spei� test. The proportion value is the perentageof the bitstreams that passed the tests. When the p-value and proportionvalues are higher than a alulated threshold, the test is labeled as a pass,whih indiates that bitstream is random as far as the test goes.As an example, the frequeny test heks the ourene of 0 and 1 in thestream to see if they behave like a real random number, whih is to say thereshould be the approximately the same number of ones and zeros. The runstest heks if the ontinuous groups of ones and zeros (alled a runs) behavelike the output of an ideal TRNG.
10

3 REQUIREMENTS3 RequirementsBefore beginning the design of this projet, we need to establish the require-ments for our design.
• PUF ReusabilityThe RNG design should use the PUF that is already present in thehip. The PUF will be used for some other job, suh as authentiation.
• Area E�ienyThe implementation is geared towards low-power devies. It thereforeneeds to oupy only a limited amount of area on the hip. A typialguideline is to limit the use of the the ryptographi iruitry to lessthan 1000 gates.
• Tamper ResilieneThe system needs to be tamper resilient, and should therefore invalidateits output when its used. Using the PUF iruit as the soure of therandomization makes sure that the iruit will indeed be tamper-proof.As explained in setion above, performing an attak on the iruitmodi�es the iruit parameters..
• Low-powerKeeping the power onsumption at a minimum goes hand in hand withthe low area e�ieny. Smaller devies suh as Wireless RFID devies,or wireless sensor networks do not have muh available power. Theiruit should work with minimal e�ort.

11

4 DESIGN OVERVIEW4 Design OverviewThis setion will summarize the design phase of the projet by visiting eahstep of the proess, starting from the PUF design.4.1 Swith Blok ChainThe swith-based PUF iruit relies on swithing bloks to forward the pulseto the next step [GCvDD03℄. The interfae to these bloks have three inputsand two outputs. The �rst two inputs aept the pulses oming from theprevious blok. The third input takes in a one bit hallenge. If the hallengebit is a zero, then the pulses are sent diretly to the two outputs pins. Ifthe hallenge bit is a one, then the inputs are alternated and relayed to theoutputs (input A goes to output B and vie versa). The hallenge bit anthus ontrol the shape of the path the two pulses take.The swithing bloks are implemented using multiplexers. Two 2-to-1multiplexers are plaed in eah blok, and are both onneted to the sameSELECT signal (see Figure 2).We need to aount for the internal optimizations in order to respet thehain-like struture of the design. Before plaing the VHDL ode on theFPGA, the Xilinx environment attempts to optimize the struture. It tendsto fuse the many bloks into an equivalent struture that does not havea hain struture. Suh optimizations must be disabled. We used VHDLonstraints to tell the optimizer to plae eah of these odes into exatly oneCLB, and not to plae anything else in there. Although this approah does
Figure 1: Swith hain12

4.2 Arbiter and Metastability 4 DESIGN OVERVIEW

Figure 2: Inside of a swith bloknot make the best use of the hip spae on the FPGA, it is neessary tomaintain the harateristis of the PUF iruit.The PUFSwith_Down and PUFSwith_Up omponents are two 2-to-1multiplexers. They are kept in their own entity �les in order to make surethey are plaed in slies of their own.The ontent of the CLB bloks are shown in the Figures below. Theontent of the Look-Up Table (LUT) is also shown, as aptured from theXilinx FPGA Editor.4.2 Arbiter and MetastabilityIn order to measure whih of the pulses arrived at the destination, we will usea �ip-lop as an arbiter. A �ip-�op ontained in the CLB blok is onnetedto the last swith blok as shown on Figure 3. One of the outputs of theswith blok is onneted to the Clok (CLK) pin, and the other output to13

4.2 Arbiter and Metastability 4 DESIGN OVERVIEW
Figure 3: Last swith blok and arbiter

Figure 4: Timing of D and CLK signalsthe Data (D) pin.This setup of the �ip-�op allows us to measure whih of the two pulsesarrived at the end of the hain �rst. If the lok signal reahes the FF �rstthen a zero will be sampled (beause the D signal is still zero), whih willmake the output to be a zero. On the other hand, if the D signal arrives �rst,then D will be equal to one when the lok pulse arrives, and the output willbe one. As it an be seen from this disussion, the output is expeted tobe one if pulse A arrives there and zero if pulse B arrives there. A timingdiagram of the arbiter is shown on Figure 4.There is however a third ase that may a�et of the iruit works. If thetwo signals arrive there almost at the same time, then the output will beunpreditable. The data input to a �ip-�op should be held onstant for aertain time alled 'setup delay' before the lok pulse ours.When the input does hange within the setup window, the �ip-�op enters14

4.3 Feedbak Loops 4 DESIGN OVERVIEWa metastable state. The output osillates between 0 and 1, and keeps osil-lating until it settles to one of them after an unde�ned amount of time. Thelikelihood for this state to persist dereases exponentially with time. Thelonger the �ip-�op is in the metastable state the more likely it is to get outof it.This behavior is usually avoided, as it may render a state mahine tobehave unexpetedly. For the purpose of our random number generator, weare intentionally looking for the set of hallenges that will generate unpre-ditable output bits. These hallenges reate two paths in the swith hainthat are so lose to eah other that the two pulses end up reahing the arbitervery lose to eah other, thus violating the setup time. Sine the arbiter goesinto the metastable state, the output starts osillating and �nally settles toa random value. The value that we obtaini thus is random, and is used toput the devie in a feedbak loop.4.3 Feedbak LoopsOur most important ontribution to the PUF design is to add a feedbakmehanism around the swith hain. We are feeding the sampled outputbak into a left-shift register whose parallel outputs are mapped to the hal-lenge pins of the swith bloks (see Figure 5). As a result, every time a bit issampled with the arbiter, a new hallenge is obtained through the shift reg-ister. If the new bit is not random, the next state an be predited from theprevious one and the iruit behaves expetedly. When the new bit omesfrom the metastability of the �ip-�op, the next state annot be preditedfrom the previous one.This setup allows the system to keep looping while generating new bits.With eah random number generated, the system will deviate from the typ-ial output of a pseudo-random number generator. After a few loops, thesystem enters a state that is ompletely unrelated to the initial state. Af-ter that point, the iruit behaves like a random number generator, and the15

4.4 State Mahine 4 DESIGN OVERVIEW
Figure 5: Feedbak loopsubsequent bits generated an be used as part of a protool.4.4 State MahineThe PUF swith hain and arbiter are entirely asynhronous and do notrequire a state mahine or a lok signal to operate. To use the shift registerand to handle the serial ommuniation with the omputer, the iruit needssome sequential logi. This state mahine sends the pulses to initiate thePUF's funtion, and ollets the output of the �ip-�op. It shifts the bit intothe register, and sends the result to the omputer through serial port. Thissequene is repeated ad in�nitum to keep generating bits.State mahine's are written in VHDL, but they an be more easily visu-alized through diagrams. One of the most popular ways of showing a statediagram is through an �Algorithmi State Mahine� (ASM) diagram. On thegraph, eah state is desribed by a retangular blok, and eah deision by anoval blok. The arrows indiate the hange in states, and the bloks ontainthe signals that are modi�ed in that state. Although ASM diagrams makethe design easier to implement, they are not too useful for ommuniatingthe overall piture of the state mahine. For this purpose, we have reated astate transition diagram, shown on appendix A.

16

4.5 Serial Port Communiation 4 DESIGN OVERVIEW4.5 Serial Port CommuniationOur proposed design is geared for use in embedded systems. The generatedbitstream an diretly be interfaed through an on-hip bus, and an be madeavailable to the miroontroller. During the development, we need to ontrolit from a omputer in order to initiate eah yle of the number generation,but also to ollet the output for later analysis.We have deided to use the serial port for this ommuniation. This hoiewas mostly ditated by our development board, sine serial ommuniation isthe only one natively supported (a parallel port extension was also available).The other advantage of this seletion is the ease of use. We managed to �ndVHDL modules that we ould integrate into our ode.We built the serial port onnetion using an UART module found on [Ope℄. The module hides all the internal omplexities of RS-232 ommuniation,and makes it available through a simpler interfae. The lok runs at halfthe speed of the built-in lok, 50 MHz. There are two registers for thereeive and the transmit bu�ers, and two ontrol signals (transmit-readyand reeived) for heking whether the bu�ers are ready for the next yle.4.6 PC Interfae Perl SriptOn the PC side, we wrote a Perl sript for ommuniating with the board.The job of this sript is to send a signal to the board to let it generate eahrandom number, and return it to the omputer. The development environ-ment was a Windows XP mahine, and we therefore had to get Cygwin [Cyg℄to run Perl properly.The Win32::SerialPort module was used for ommuniating with theboard. It supports a very intuitive interfae. We �rst on�gured the serialport onnetion parameters suh as onnetion speed and parity bits. Thetwo funtions read and write are used to reeive and transmit Perl haratersstrings over the onnetion. 17

4.7 Plaement and Routing 4 DESIGN OVERVIEW4.7 Plaement and RoutingFor the PUF iruit to work e�etively, the paths formed by the swith hainmust have even delays. The rae ondition would otherwise not be possible;one of the paths would always be slower, introduing a bias to the output. OnFPGAs, the design tool is responsible for the plaement, that is, for deidingwhere to put the logi. Suh deisions are usually made for e�etively usingthe hip area. One the bloks have been plaed, the internal onnetionsare onneted during the synthesis step known as routing.We needed to manually �ne-tune the plaement and routing phases inorder to maintain even paths. The VHDL language has several onstrainingommands for seleting the preise loation where eah blok will be plaed.The bloks �rst need to be grouped together using relative oordinates suhas �blok A will be loated above blok B.� The big group ontaining themultiplexer swithes an then be plaed using absolute positioning. We linedup the bloks vertially starting from the bottom-left orner of the FPGA.When the bloks were plaed with even distanes between them, therouting done by the synthesis tool was adequate and did not need any tweaks.To make sure that the two paths were of equal length, we ran a simplebias test whih ounts the number of zeros and ones in a random bitstream.If the paths are indeed equal, the number of ones and zeros in a large setof output data should be equal. In the tests we have performed, we haveobtained very good bias results (49.82% and 50.18%), indiating that thepaths are not biased.4.8 SensitivityThe design is very sensitive to the plaement of the state mahine iruitry.When side iruit was lose, the outputs we got were not as preditable.However, when we isolated the PUF from the rest of the iruit, we gotbetter results when trying to model the behavior. We an explain this by the18

4.9 Post-Proessing by XORing 4 DESIGN OVERVIEWfat that the pulses are easily in�uened with surrounding iruitry. If thereare surrounding CLBs that are swithing while the pulses are raing, theross talk an a�et the paths. Making sure that there are no other usableslies in the region redues the error rate when the PUF is run by itself. Forthe purpose of the random number generator, we did not isolate the iruitso that we would get less preditable results.4.9 Post-Proessing by XORingIn order to further inrease the result of the statistial tests that we ran, weperformed some post-proessing on the data. We managed to improve theresults of the NIST tests dramatially by using an XORing iruit.In the urrent sheme, a stream of bits is generated by the arbiter �ip-�op. As explained in setion 4.3, some of these bits an be random whileothers not. Ideally, we would have wanted to somehow guess whih ones arerandom, and only send those to the output. Realistially, making suh adeision is impratial, but we an ahieve the same e�et by using a digitaltrik.XOR is a binary operation that evaluates to a '1' when the two inputbits are di�erent, and '0' when they are the same. Our post-proessingsheme is built on XORing bits this way by groups of 8 bits. Out of thisgroup, it su�es to have one random bit to give a result that is also random.Although this proess inreases the randomness results, it also dereases thethroughput of the generator. It e�etively slows it down eightfold, sine ittakes eight times the time to generate one bit.We applied this method using a Perl sript on the output �les. Imple-menting it on the iruit would not add too muh overhead either. By havingone XOR gate and one �ip-�op, the operation an be implemented serially.Eah time a new bit is generated, it is XORed with the previous value of the�ip-�op, and simultaneously saved for the next yle.19

5 IMPLEMENTATION/RESULTS

Figure 6: Beginning of swith hain as a Tehnology Shemati5 Implementation/ResultsWe have implemented our design on a Xilinx University Program (XUP)Virtex-II Pro development system that has a XC2VP30 FPGA. This setionwill present the implementation of the system, and provide statistial testsfor showing that the results are random.5.1 RTL DiagramsThis setion ontains sreenshots from the Xilinx ISE tool desribing thevarious parts of the design. The on�guration of the swith hain is shownon Figure 6. The two initial �ip-�ops are used for sending the pulses, andeah Look-Up Table (LUT) implements half of the swith blok. The outputsof eah blok is sent to the next level.The arbiter an be observed on Figure 7. The entire swith hain ismodeled using a single blok on the left of the piture, and its two outputs,
Qa and Qb are onneted to the �ip-�op.

20

5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 7: End of swith hain and arbiter

Figure 8: Shemati of the LUT multiplexer funtion21

5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 9: Truth Table for LUT swith funtion
22

5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 10: Karnaugh Map for the LUT swith funtion
23

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS5.2 FPGA Editor ViewsThe sreenshots in this setion help to explain the struture of the iruit asplaed by the Xilinx tool. They have been obtained from the FPGA editorappliation that is a standard omponent of the toolkit.Figure 11 shows the plaement of the swith bloks in the FPGA CLBs.The CLBs ontaining the bloks are highlighted in red. It an be seen thatthey are plaed vertially. An overall view of the zoomed out FPGA is shownon Figure 12. The hain oupies the enter of the hip, and almost overs itsentire length. Other iruitry, suh as that of the state mahine is interspreadbetween the bloks.The FPGA editor also allows us to zoom into the slie to show the routingof the signals inside the hip. Figure 13 shows how this routing is performedfor a swithing blok ontaining two multiplexers. It an be seen that bothof the Look-Up Tables (LUTs) are used for the swithing funtion, but the�ip-�ops are bypassed. The output signals are then routed to the next blok.The same lose-up piture is shown for the arbiter on Figure 14. The twoinputs are diretly onneted to one of the �ip-�ops found in the slie, sothey an be sampled at their output.Figures 8 to 10 show the ontent of the LUTs using various methods.

24

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 11: View of the swith hain (blok in red)
25

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 12: Overall FPGA hip
26

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 13: Content of slie ontaining swithing blok
27

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 14: Content of slie ontaining arbiter
28

5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS5.3 NIST Test ResultsThe output of the NIST test suite for our �nal design is shown on �gure 15.The output shows that the random number generator passed almost all thetests. The failed tests are marked with an asterix. On this test run, onlyfour of the tests failed to prove the null hypothesis.Another output �le of the test is shown on �gure 16. This �le shows thefrequeny of ones and zeros in the output, for eah of the bitstreams. Itan be seen that there almost as many ones as zeros, whih is an additionalsanity hek to show that the system behaves as expeted.

29

5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS
---------------------------------------P-VALUE PROPORTION STATISTICAL TEST---------------------------------------0.637119 1.0000 frequeny0.213309 1.0000 blok-frequeny0.964295 1.0000 umulative-sums0.834308 1.0000 umulative-sums0.090936 1.0000 runs0.000000 * 1.0000 longest-run0.162606 1.0000 rank0.162606 1.0000 fft0.035174 0.9750 nonperiodi-templates0.213309 0.9750 overlapping-templates0.000000 * 1.0000 universal0.122325 0.9750 apen0.585209 0.9750 serial0.788728 0.9750 serial0.000000 * 1.0000 lempel-ziv0.739918 0.9250 * linear-omplexity- - - - - - - - - - - - - - -- - - - - - - - - - - - -The minimum pass rate for eah statistial test withthe exeption of the random exursion (variant) testis approximately = 0.942804 for a sample size = 40binary sequenes.Figure 15: Output of the NIST test suite

30

5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS

__FILE = run1_80_xor_by_8_40bs.dat ALPHA = 0.0100__BITSREAD = 20000 0s = 10073 1s = 9927BITSREAD = 20000 0s = 9852 1s = 10148BITSREAD = 20000 0s = 10001 1s = 9999BITSREAD = 20000 0s = 10013 1s = 9987BITSREAD = 20000 0s = 10132 1s = 9868BITSREAD = 20000 0s = 10032 1s = 9968BITSREAD = 20000 0s = 10064 1s = 9936BITSREAD = 20000 0s = 9968 1s = 10032BITSREAD = 20000 0s = 9889 1s = 10111BITSREAD = 20000 0s = 9968 1s = 10032BITSREAD = 20000 0s = 9878 1s = 10122BITSREAD = 20000 0s = 10092 1s = 9908BITSREAD = 20000 0s = 9875 1s = 10125Figure 16: Bias output of the NIST test suite

31

6 FUTURE WORK6 Future WorkA suggested future work would be to test the design at di�erent temperaturelevels to see how the iruit is a�eted. Normally variations in temperatureshould not a�et the behavior of the iruit, sine both paths are hangingat the same time. However the randomness of the system may depend onthe ambeint temperature.The usefulness of the system an also be tested by using the iruit aspart of a larger sheme, suh as a ryptographi protool. The bitstream anbe interfaed by a larger state mahine that an use the bits as part of aprotool.

32

7 CONCLUSION7 ConlusionWe have shown that the Physially Unlonable Funtion made from swith-hains an alternatively be used as a hardware random number generator.Using the metastability in the arbiter, we built a prototype that is suitable formany appliations, espeially that of ryptographi authentiation protools.We have tested the output of the randomness, and have onluded that formost pratial appliations the system behaves unpreditably.

33

REFERENCES REFERENCESReferenes[Cyg℄ Cygwin Information and Installation. www.ygwin.om/. A-essed April 24, 2008.[Die℄ Diehard Battery of Tests of Randomness. http://www.stat.fsu.edu/pub/diehard/. Aessed April 24, 2008.[GCvDD02℄ Blaise Gassend, Dwaine Clarke, Marten van Dijk, and SrinivasDevadas. Silion physial random funtions. In CCS '02: Pro-eedings of the 9th ACM onferene on Computer and ommu-niations seurity, pages 148�160, New York, NY, USA, 2002.ACM.[GCvDD03℄ B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Delay-based Ciruit Authentiation and Appliations. In Proeedingsof the 2003 ACM Symposium on Applied Computing, pages 294�301, 2003.[LDG+04℄ J. W. Lee, L. Daihyun, B. Gassend, G. E. Suh amd M. van Dijk,and S. Devadas. A tehnique to build a seret key in integratediruits for identi�ation and authentiation appliations. InSymposium of VLSI Ciruits, pages 176�179, 2004.[LLG+05℄ Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh,Marten van Dijk, and Srinivas Devadas. Extrating seret keysfrom integrated iruits. IEEE Trans. VLSI Syst., 13(10):1200�1205, 2005.[NIS℄ Nist Random Number Generation and Testing. http://sr.nist.gov/groups/ST/toolkit/rng/index.html. A-essed April 24, 2008.[Ope℄ OpenCores.org. http://openores.org/. Aessed April 24,2008. 34

REFERENCES REFERENCES[OSD04℄ Charles W. O'Donnell, G. Edward Suh, and Srinivas Devadas.Puf-based random number generation. Number 481, November2004.[Pos98℄ R. Posh. Proteting Devies by Ative Coating. Journal ofUniversal Computer Siene, 4(7):652�668, 1998.[Rav01℄ Pappu Srinivasa Ravikanth. Physial one-way funtions. PhDthesis, 2001. Chair-Stephen A. Benton.[SMKT06℄ B. Skori, S. Maubah, T. Kevenaar, and P. Tuyls. Information-theoreti Analysis of Coating PUFs. Cryptology ePrint Arhive,Report 2006/101, 2006.[TS06℄ P. Tuyls and B. Skori. Seret Key Generation from Classi-al Physis: Physial Unloneable Funtions. In S. Mukherjee,E. Aarts, R. Roovers, F. Widdershoven, and M. Ouwerkerk, ed-itors, AmIware: Hardware Tehnology Drivers of Ambient In-telligene, volume 5 of Philips Researh Book Series. Springer-Verlag, Sep 2006.

35

A STATE MACHINE TRANSITION DIAGRAMA State Mahine Transition Diagram

36

A STATE MACHINE TRANSITION DIAGRAM

37

