
A Numerical Study of Globalizations of Newton-GMRES Methods

by

Joseph P. Simonis

A Thesis

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

in

Applied Mathematics

by

May 2003

APPROVED:

Dr. Homer Walker, Thesis Advisor

Dr. Bogdan Vernescu, Department Head

Abstract

Newton’s method is at the core of many algorithms used for solving nonlinear

equations. A globalized Newton method is an implementation of Newton’s method

augmented with “globalization procedures” intended to enhance the likelihood of con-

vergence to a solution from an arbitrary initial guess. A Newton-GMRES method is

an implementation of Newton’s method in which the iterative linear algebra method

GMRES is used to solve approximately the linear system that characterizes the New-

ton step. A globalized Newton-GMRES method combines both globalization proce-

dures and the GMRES scheme to develop robust and efficient algorithms for solving

nonlinear equations. The aim of this project is to describe the development of some

globalized Newton-GMRES methods and to compare their performances on a few

benchmark fluid flow problems.

i

Acknowledgments

I was first introduced to the topic of Numerical Methods for Nonlinear Equations

by my advisor Prof. Walker during the summer of 2001 when he offered me a summer

research position. I am grateful for his help, he was always there to answer my

questions and to discuss my work. I am also very grateful for the internship he found

for me at Sandia National Laboratories. It presented me with a wonderful topic for

this thesis and a chance to work with wonderful people..

I also wish to thank the researchers at Sandia National Laboratories: John Shadid,

Roger Pawlowski, Tamara Kolda and Paul Lin. Over the past year that I have known

them they have tutored me in the subjects of fluid dynamics, mechanical engineering,

computer science and mathematics. John, Roger, and Tamara all worked very hard to

see that I had working codes that formulated and solved the test problems. Paul Lin

was always there to ensure that I had almost painless methods of running numerous

instances of the codes on the parallel machines.

Finally, I would like to thank Sandia National Laboratories for the funding through-

out the school year to work on this project.

ii

Contents

1 Introduction 2

2 Theoretical Development 4
2.1 Newton’s Method . 5
2.2 Inexact Newton Methods . 7

2.2.1 Forcing Terms . 9
2.3 Global Inexact Newton Methods . 12

2.3.1 Ared/Pred . 13
2.3.2 Goldstein-Armijo . 14

3 Specific Algorithms 16
3.1 GMRES . 16
3.2 Line Search and Trust Region Methods 19

3.2.1 Line Searches . 20
3.2.2 Trust Region . 27

4 Testing Environment 31
4.1 NOX . 31
4.2 MPSALSA . 32
4.3 Parallel Machine[10] . 34

4.3.1 Cluster Hardware . 35
4.3.2 Cluster Software . 35

5 Benchmark Test Problems 36
5.1 Thermal Convection[16] . 36
5.2 Backward Facing Step[16] . 37
5.3 Lid Driven Cavity[16] . 38

6 Results 40
6.1 Success vs. Failure . 40
6.2 Relevant Numbers . 41
6.3 Results and Conclusions . 43

6.3.1 A Robustness Study . 43
6.3.2 An Efficiency Study . 45

1

Chapter 1

Introduction

There is a rapidly growing demand in almost all fields of applied sciences for ways

of accurately and efficiently solving very large nonlinear systems of equations. As

processing speeds and memory capabilities of computers increase, the desire to solve

larger and larger systems arises. It is very important to have solvers which are both

robust and efficient.

The following study looks at a class of solvers known as globalized Newton-

GMRES methods. These are methods stemming from the classical Newton method

and are specifically designed for use on large-scale problems. A globalized Newton

method is an implementation of the Newton method augmented with “globalization

procedures” intended to enhance the likelihood of convergence to a solution from an

arbitrary initial guess. A Newton-GMRES method is an implementation of Newton’s

method in which the iterative linear algebra method GMRES [14] is used to solve ap-

proximately the linear system that characterizes the Newton step. A Newton-GMRES

method is just one of many Newton iterative methods. These are methods that use

an iterative linear solver within the Newton algorithm. Newton iterative methods are

in turn special cases of inexact Newton methods [3], in which an approximation of

2

the Newton step is used at each iteration.

The following chapters are aimed at describing the development of robust and

efficient globalized Newton-GMRES methods. The definitions of inexact Newton

methods, Newton iterative methods, and globalization methods will be given; then a

few feasible globalized algorithms will be developed and compared.

Three challenging fluid dynamics problems were chosen to assess the effectiveness

of the solvers. The first problem is a thermal convection problem consisting of fluid

confined to a differentially heated rectangular domain. The second is a backward-

facing step problem. In this, fluid comes in at one end of a duct and flows rapidly

over a “stair”, causing recirculation in the low pressure area. The final problem is

the lid-driven cavity problem. In this, fluid flows across the top of a cavity filled with

the same fluid. This flow causes a large circulation within the domain, and when

the velocity is high enough, smaller circulations also appear within the corners of the

cavity. In our experiments with these problems, the goal is to determine the relative

robustness and efficiency of the algorithms. We determine robustness by the number

and difficulty of the problems a globalized method successfully solves. Efficiency is

based on mean values of solver expenses, e.g., time or linear solver iterations.

The algorithms and problems were developed by teams of researchers at Sandia

National Laboratories in Albuquerque, New Mexico The principal codes used were

NOX (see [9]) and MPSalsa [15]. NOX is a software package designed to solve large-

scale nonlinear problems. MPSalsa is a finite element computer program for reacting

flow problems. The codes were run on large parallel machines there.

3

Chapter 2

Theoretical Development

This chapter deals with the theoretical development of globalized Newton itera-

tive methods, specifically globalized Newton-GMRES methods. These methods use

the GMRES method to solve the linear subproblem of Newton’s method and use

globalization methods to improve the likelihood of convergence from a poor starting

guess.

The overall goal of a globalized Newton-GMRES method is obtaining a solution

to the following problem:

Given F : Rn → Rn,

find x∗ such that F (x∗) = 0.

The following two assumptions will be used in many of the theorems presented below.

Assumption 2.0.1 F is continuously differentiable.

Assumption 2.0.2 F (x∗) = 0 and F ′(x∗) is nonsingular.

4

It is almost always impossible to solve this problem exactly. Thus iterative methods

must be formulated to find an approximate numerical solution. For the algorithms

presented here, the goal is to find an iterate xk approximating x∗ “well enough”.

2.1 Newton’s Method

The general iterative approach to solving the problem is to begin with a trial value

x0 and then to construct hopefully better and better approximations to the solution.

A classical way of constructing better approximations is via Newton’s method or the

Newton-Raphson Method, which is most easily described in one dimension and then

extended to n-dimensional space.

Assume a function f : R → R and an initial guess x0 are given. Graphically the

problem can be formulated as: Find the intersection of the graph of f and the x-axis.

The basic idea of Newton’s method is to find a better guess by replacing the curve by

a suitable line whose intersection with the x-axis can be easily computed. For classical

Newton’s method, the line is the tangent line at x0. Compute the intersection of the

tangent line and the x-axis, and use this point as the next approximate solution. The

tangent line is given by y = f ′(x0)(x− x0) + f(x0), henceforth called the local linear

model of the function. The point of intersection x1 satisfies 0 = f ′(x0)(x1−x0)+f(x0),

so the next approximate solution is x1 = x0− f(x0)
f ′(x0)

. Now iterate using x1 as the new

initial guess.

In n dimensions, x =

x1
...
xn

, F (x) =

F1(x)

...
Fn(x)

 and F ′(x) = J(x) =

(
∂Fi(x)

∂xj

)
∈

Rn×n. The local linear model of F is F (x) + J(x)s. In this model, s is the unknown

that yields the next step via x1 = x0 + s, with s found by solving F (x) + J(x)s = 0.

A formal algorithm can now be written.

Newton’s Method[6]:

Given an initial x.

5

Iterate:

Decide whether to stop or continue.

Solve J(x)s = −F (x).

Update x← x+ s.

As mentioned before, Newton’s method is an iterative method. It produces a

sequence of approximate solutions x1, x2, . . . from a starting guess x0. Two questions

that can be asked about the sequence produced are: 1) does it converge to a solution

x∗ and if it does 2) how quickly does it converge to that solution? At this point some

definitions are in order. We assume that ‖ · ‖ is a norm of interest on Rn.

Def 2.1.1 ([6]) Let x∗ ∈ Rn, xk ∈ Rn, k = 1, 2, Then the sequence {xk} =

{x1, x2, x3, . . .} is said to converge to x∗ if limk→∞ ‖xk − x∗‖ = 0. If in addition,

there exists a constant c ∈ [0, 1) and an integer k̂ ≥ 0 such that for all k ≥ k̂,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ then {xk} is said to be q-linearly convergent to x∗. If

for some sequence {ck} that converges to 0, ‖xk+1 − x∗‖ ≤ ck‖xk − x∗‖ for each k,

then {xk} is said to converge q-superlinearly to x∗. If {xk} converges to x∗ and

there exist constants p > 1, c ≥ 0, such that {xk} converges to x∗ and for all k ≥ k̂,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖p, then {xk} is said to converge to x∗ with q-order at

least p. If p = 2 or p = 3, the convergence is said to be q-quadratic or q-cubic,

respectively.

In the above definitions the prefix ‘q’ stands for quotient, distinguishing these from

‘r’ (root) order convergence. The quotient orders are the stronger of the two; thus

r-orders will not be discussed. For more information see Ortega and Rheinboldt[12].

The ‘q’ will be dropped from this point onward.

Def 2.1.2 ([6]) A function g is Lipschitz continuous with constant γ in a set

6

X ∈ Rn, written g ∈ Lipγ(X), if for every x, y ∈ X, ‖g(x)− g(y)‖ ≤ γ‖x− y‖.

The following theorem answers the two questions posed of the sequence produced by

Newton’s method:

Theorem 2.1.3 ([17]) Suppose F is Lipschitz continuously differentiable at x∗, and

Assumptions 2.0.1 and 2.0.2 hold. Then for x0 sufficiently near x∗, {xk} produced by

Newton’s method is well-defined and converges to x∗ with

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2

for a constant c independent of k.

Under the assumptions of the theorem, the sequence does converge locally to x∗ and

it ultimately does so quadratically. Unfortunately this convergence only holds for x0

within a neighborhood of the solution. For initial guesses far from the solution, a

new strategy must be devised. Globalizations of Newton’s method are methods in

which some strategy for getting ‘near’ the solution from an arbitrary initial guess

is implemented, and then once ‘close’ enough Newton’s method is used to rapidly

converge to the solution. These methods are discussed in Section 2.3.

2.2 Inexact Newton Methods

In Newton’s method the goal is to update xk to xk+1 by taking the step sk that solves

J(xk)sk = −F (xk). Solving this system may be computationally expensive, on the

order of O(n3) arithmetic operations for direct linear algebra methods. In large-scale

problems, where n is 104, 105 or greater, direct solutions are often infeasible. An

alternative is to use iterative linear algebra methods to form an approximation of the

7

solution. Using an iterative linear solver to obtain approximate Newton steps results

in a Newton iterative method, or a truncated Newton method.

For Newton iterative methods, one of the questions naturally asked is: How accu-

rately must the iterative method solve the linear systems in order that the Newton

iterates converge? The key idea is to get convergence, but also to minimize the

amount of computation necessary to obtain it. It seems desirable that the next ap-

proximate solution xk+1 make ‖F (xk+1)‖ smaller than ‖F (xk)‖. If the local linear

model, F (xk)+J(xk)sk, is accurate, then a decrease in the model norm should corre-

spond to a decrease in the function norm. However, a lot of effort may go into finding

a very good approximation to the Newton step; when a poorer one would give at

least as much reduction in ‖F‖, then much of this effort may have been wasted. (In

such a case, the algorithm is said to be ‘oversolving’ the problem.) Thus the iterative

method should stop when a step which reduces the norm of the local linear model

of F by an appropriate amount is found. This restriction then leads to an inexact

Newton method. An inexact Newton method [3] is any method each step of which

reduces the norm of the local linear model of F .

Inexact Newton Method[3]:

Given an initial x.

Iterate:

Decide whether to stop or continue.

Find some η ∈ [0, 1) and s that satisfy

‖F (x) + J(x)s‖ ≤ η‖F (x)‖.
Update x← x+ s.

At each step of a Newton iterative implementation, one chooses η ∈ [0, 1) and

then calls an iterative linear algebra method to solve for a step meeting the given

tolerance. In this context η is called the forcing term because it forces a reduction

of the local linear model norm. The following section outlines the details of choosing

the η’s in such a way as to maintain the convergence properties of Newton’s method.

8

2.2.1 Forcing Terms

The choice of the forcing terms in an inexact Newton method plays a critical role in

the determination of whether or not the iterates converge to a solution and the rate

of that convergence. The choice can have a very dramatic effect, demonstrated by

the following three theorems found in [3]. Different restrictions on the sequence {ηk}
give great differences in the convergence of the inexact Newton iterates.

Theorem 2.2.1 Suppose Assumptions 2.0.1 and 2.0.2 hold and that ηk≤ηmax<t<

1 for all k. There exists ε > 0 such that if ‖x0−x∗‖ ≤ ε, then the sequence of inexact

Newton iterates {xk} converges to x∗. Moreover the convergence is linear in the sense

that ‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗, where ‖y‖∗ = ‖F ′(x∗)y‖ for all y ∈ Rn.

Theorem 2.2.2 Suppose Assumptions 2.0.1 and 2.0.2 hold and that the inexact New-

ton iterates {xk} converge to x∗. Then xk → x∗ superlinearly iff ‖F (xk)+F
′(xk)sk‖ =

o(‖F (xk)‖) as k →∞.

For the final theorem, it is helpful to be reminded of a definition:

Def 2.2.3 A function g is said to be Hölder continuous with exponent p ∈ (0, 1] in

a set X ∈ Rn if for some constant C we have ‖g(x)− g(y)‖ ≤ C‖x− y‖p for every

x, y ∈ X.

Theorem 2.2.4 Suppose Assumptions 2.0.1 and 2.0.2 hold and assume that the in-

exact Newton iterates {xk} converge to x∗. Then xk → x∗ with order at least 1 + p if

F ′ is Hölder continuous with exponent p at x∗ and ηk = O(‖F (xk)‖p) as k →∞.

These three theorems show the importance of the choice of ηk in the convergence

rates near the solution. If ηk is only chosen such that ηk ∈ [0, ηmax] for some ηmax < 1,

9

then the convergence is linear. Requiring limk→∞ ηk = 0 increases the convergence

rate to superlinear, and finally imposing ηk = O(‖F (xk)‖) gains quadratic conver-

gence (if p=1 in the final theorem).

Many implementations of inexact Newton methods set a constant forcing term,

usually something small such as 10−2 or 10−4, forcing the linear solver to choose

a step very close to the Newton step. Other implementations have used decreas-

ing forcing terms in order to obtain increasingly rapid convergence near the solu-

tion. Examples include ηk = 1
2k+1 [2], which gives local superlinear convergence, and

ηk = min{‖F (xk)‖, 1
k+2
} [4], which gives the convergence rate of Newton’s method

(typically quadratic). Upon first examination it might seem that very small or de-

creasing ηk’s should be employed, but it must be remembered if the current approxi-

mation of the solution is not near x∗, then ‘the local linear model may disagree with

F considerably at a step that closely approximates the Newton step.’[17] In this case

the linear solver may work very hard to find a step that gives little or no decrease

in ‖F‖. So away from x∗ a desirable ηk will in some way be based on the agreement

between F and its local linear model.

Eisenstat and Walker suggest an adaptive forcing term as follows [8]:

η0 ∈ [0, 1), ηk =

∣∣∣∣‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)sk−1‖
∣∣∣∣

‖F (xk−1)‖ , k = 1, 2, . . . , (2.1)

With this choice a large discrepancy between the linear model at the previous step

and F at the current point will yield a larger ηk. Thus on the next iteration the linear

solver will not spend excessive processor time finding a close approximation to the

Newton step. Conversely if the previous step’s model value and the current function

value are in close agreement, ηk will be small and the next step will approximate the

Newton step very closely. Thus the choice (2.1) seems likely to reduce oversolving

and has been shown to do so in experiments in [8] and [16].

10

Reasonable questions to ask are: With this choice of ηk does convergence occur

once an xk is in a small neighborhood of x∗, and what is the order of the convergence

if it occurs?

Theorem 2.2.5 ([8]) Suppose Assumptions 2.0.1 and 2.0.2 hold and the Jacobian

is Lipschitz continuous at x∗. If x0 is sufficiently near x∗ then {xk} produced by the

inexact Newton method with {ηk} given by (2.1) remains near x∗ and converges to x∗

with

‖xk+1 − x∗‖ ≤ β‖xk − x∗‖‖xk−1 − x∗‖, k = 1, 2, . . . ,

for a constant β independent of k.

Thus once an xk close to the solution is found, superlinear convergence is expected.

Although the forcing term (2.1) works well for avoiding oversolving it does have

its drawbacks. For example, assume that far away from x∗ there is an xk where F (xk)

and the local linear model just happen to agree really well. Then ηk will be very small

and the linear solver may oversolve. To help avoid this, safeguards are implemented

to ensure that the sequence {ηk} does not decrease too rapidly. ‘The rationale is that

if large forcing terms are appropriate at some point, then subsequent forcing terms

should not be allowed to become much smaller until this has been justified over several

iterations.’[8] Also, far away from the solution it is possible for ηk to become greater

than 1. Thus a safeguard to ensure ηk ∈ [0, 1) is necessary. A safeguard proposed

by Eisenstat and Walker in [8] and implemented in the numerical studies discussed

below is to modify ηk ← max{ηk, η
(1+

√
5)/2

k−1 } whenever η
(1+

√
5)/2

k−1 > .1. We also require

that ηk ∈ [0.0001, .9].

11

2.3 Global Inexact Newton Methods

Previously it was shown that under certain conditions the iterates produced by New-

ton’s method converge quadratically to a solution x∗, and that those of the inexact

Newton method with ηk given by (2.1) can obtain superlinear convergence. Both cases

assume an initial guess x0 sufficiently close to x∗. Nothing has been said about how

to get ‘close’ to the solution when the initial guess is far from the solution. Here the

inexact Newton method will be augmented with additional conditions on the choices

of iterates {xk} to enhance the likelihood of convergence to x∗. The new method is

known as a global inexact Newton method. This section presents the general global

inexact Newton method along with two specific step acceptance criteria. Section 3.2

outlines several globalization procedures that modify the steps as necessary to meet

these criteria. It is important to note that no strategy will determine a sequence that

converges to a solution for every problem; rather the globalization techniques are used

only to enhance the likelihood of convergence to some solution of the problem.

As before, it seems desirable to find a sequence of iterates such that ‖F (xk+1)‖ <
‖F (xk)‖. However, this condition alone is not sufficient to ensure convergence. There-

fore the global inexact Newton method includes a sufficient decrease condition on the

iterate norms ‖F (xk)‖.
Global Inexact Newton Method[7]:

Given an initial x and t ∈ (0, 1).

Iterate:

Decide whether to stop or continue.

Find some η ∈ [0, 1) and s that satisfy

‖F (x) + J(x)s‖ ≤ η‖F (x)‖
and

‖F (x+ s)‖ ≤ [1− t(1− η)]‖F (x)‖
Update x← x+ s.

The two theorems below address the existence of steps meeting these criteria and

12

the convergence of sequences produced by such steps.

Theorem 2.3.1 ([7]) Let x and t ∈ (0, 1) be given and assume that there exists

an s̄ that satisfies ‖F (x) + J(x)s̄‖ < ‖F (x)‖. Then there exists ηmin ∈ [0, 1) such

that, for any η ∈ [ηmin, 1), there is an s satisfying ‖F (x) + J(x)s‖ ≤ η‖F (x)‖ and

‖F (x+ s)‖ ≤ [1− t(1− η)]‖F (x)‖.

Theorem 2.3.2 ([7]) Suppose {xk} is produced by the global inexact Newton method.

If
∑∞

k=0(1 − ηk) = ∞, then F (xk) → 0. If, in addition, x∗ is a limit point of {xk}
such that J(x∗) is nonsingular, then F (x∗) = 0 and xk → x∗.

The following sections present two of the most widely used criteria for determining an

acceptable step, the Ared/Pred condition and the Goldstein-Armijo conditions. Both

are shown to be special cases of the global inexact Newton method acceptability

condition. These criteria in no way guarantee that a sequence of iterates converges

to x∗ such that F (x∗) = 0; rather, it may diverge or converge to a non-zero local

minimum of ‖F‖ instead. In the numerical studies described later, the Ared/Pred

choice was almost always used; it will be noted when the Goldstein-Armijo conditions

were implemented.

2.3.1 Ared/Pred

This criterion accepts a step based on the ratio of the actual reduction in the function

norm to the reduction predicted by the local linear model. If a lot of effort has been

put into finding a step in which there is sufficient decrease in the local linear model

norm, then it is quite reasonable to require the chosen step to give a sufficient decrease

in ‖F‖ relative to that of the model norm. The following notation is used [7]: Given

13

x ∈ Rn and a step s ∈ Rn, define

• ared ≡ ‖F (x)‖ − ‖F (x+ s)‖, the actual reduction of ‖F‖;
• pred ≡ ‖F (x)‖ − ‖F (x) + J(x)s‖, the predicted reduction of ‖F‖.
For exact Newton’s method an acceptable decrease at a step k is obtained when

ared ≥ t ·pred for some fixed t ∈ (0, 1). If s and η have been chosen to satisfy ‖F (x)+

J(x)s‖ ≤ η‖F (x)‖ as well as this condition, then they also satisfy the sufficient

decrease condition in the global inexact Newton method. Indeed, in this case,

ared ≥ t · pred
⇒ ‖F (x)‖ − ‖F (x+ s)‖ ≥ t(‖F (x)‖ − ‖F (x) + J(x)s‖)
⇒ (1− t)‖F (x)‖ ≥ ‖F (x+ s)‖ − t‖F (x) + J(x)s‖

≥ ‖F (x+ s)‖ − tη‖F (x)‖
⇒ (1− t(1− η))‖F (x)‖ ≥ ‖F (x+ s)‖

It should also be noted that a step satisfies ‖F (x) + J(x)s‖ ≤ η‖F (x)‖ and the last

inequality if and only if pred ≥ (1 − η)‖F (xk)‖ and ared ≥ t(1 − η)‖F (xk)‖. Thus

the sufficient decrease condition in the global inexact Newton method can be viewed

as an extension of the condition ared ≥ t · pred to the inexact Newton context. In

the following, it will be referred to as the Ared/Pred condition.

2.3.2 Goldstein-Armijo

The second set of criteria, the Goldstein-Armijo conditions, was developed for opti-

mization problems, where the goal is solving minx∈Rnf(x) by seeking an x∗ such that

∇f(x∗) = 0. The first of these two conditions is similar to the Ared/Pred condition

in that the next iterate should give a sufficient decrease relative to that predicted

by the model. The criterion is called the α-condition and with f(x) ≡ ‖F (x)‖22 is

written as,

‖F (xk + s)‖22 ≤ ‖F (xk)‖22 + 2αF (xk)
TJ(xk)s, α ∈ (0, 1) (2.2)

14

The second condition, the β-condition, is also known as the curvature condition.

Its purpose is to ensure that the steps are not too short to make adequate progress

towards a solution:

F (xk + s)TJ(xk + s)s ≥ βF (xk)
TJ(xk)s, β ∈ (α, 1) (2.3)

For an inexact Newton step, the Goldstein-Armijo α-condition, like the Ared/Pred

condition, implies the sufficient decrease condition of the global inexact Newton

method [7]. Indeed, given s and η satisfying ‖F (x) + J(x)s‖ ≤ η‖F (x)‖, the fi-

nal term of the α-condition can be rewritten as follows:

2αF TJs = 2αF T [−F + F + Js]
= −2α‖F‖22 + 2αF T (F + Js)
≤ −2α(1− η)‖F‖22

where the last inequality comes from the Cauchy-Schwarz inequality:

|F T (F + Js)| ≤ ‖F‖2‖F + Js‖2
≤ η‖F‖22

Hence the α-condition is now

‖F (x+ s)‖22 ≤ [1− 2α(1− η)]‖F (x)‖22

Since the left-hand side is nonnegative, it must be that 2α(1−η) ≤ 1; since
√

1− ε ≤
1− ε/2 whenever |ε| ≤ 1, then

‖F (x+ s)‖2 ≤ [1− α(1− η)]‖F‖2

which is exactly the sufficient decrease condition in the global inexact Newton method

with α = t.

15

Chapter 3

Specific Algorithms

The previous chapter defined a global inexact Newton method. Globalized Newton-

GMRES methods are global inexact Newton methods which use the iterative linear

solver GMRES to find an initial inexact Newton step. Section 3.1 is a detailed exam-

ination of the GMRES method. Section 3.2 describes four globalization methods, i.e.,

methods of deriving a satisfactory step when the initial inexact Newton step does not

meet the global step acceptance criterion.

3.1 GMRES

At the heart of an inexact Newton method is the linear problem J(x)s = −F (x). Our

algorithm will use GMRES to find an approximate solution. The following motivation

for and formulation of GMRES is a merging of the descriptions from [5] and [17].

GMRES is a particular Krylov subspace method. These methods constitute a class

of algorithms designed to solve the linear problem: Find x ∈ Rn such that Ax = b,

A ∈ Rn×n, b ∈ Rn. A Krylov subspace method begins with an initial x0 and at the

16

kth step, determines an iterate xk through a correction in the kth Krylov subspace

Kk ≡ span{r0, Ar0, . . . , An−1r0} (3.1)

where r0 ≡ b − Ax0 is the initial residual. A strong attraction of these methods is

that implementations only require products Av and sometimes ATv. Thus within the

methods no direct access or manipulation of the entries of A is required. GMRES

uses only Av products.

A key to deriving the GMRES algorithm is the Arnoldi process [1].

Arnoldi Process:

Given r0.

Set ρ0 ≡ ‖r0‖2 and q1 ≡ r0/ρ0.

For k = 1, 2, . . . do:

Initialize qk+1 = Aqk.

For i = 1, . . . , k do:

Set hik = qT
i qk+1.

Update qk+1 ← qk+1 − hikqi.

Set hk+1,k = ‖qk+1‖2.
Update qk+1 ← qk+1/hk+1,k.

Two important notes: the vectors q1, . . . , qk form an orthogonal basis for Kk and

AQk = Qk+1Hk, where Qk = [q1, . . . , qk], and Hk is a (k + 1) × k upper Hessenberg

matrix.

In GMRES, each iterate xk is chosen to minimize the residual norm over all correc-

tions in Kk. Using the Arnoldi process, the minimization problem can be reformulated

into a low-dimensional least squares problem. Note that a correction vector zk ∈ Kk

can be written using the orthogonal basis Qk as zk = Qkyk. Then:

‖rk‖2 = ‖b− Axk‖2
= ‖b− A(x0 + zk)‖2
= ‖r0 − AQkyk‖2

17

= ‖r0 −Qk+1Hkyk‖2
= ‖Qk+1(‖r0‖2e1 −Hkyk)‖2
=

∥∥∥∥‖r0‖2e1 −Hkyk

∥∥∥∥
2

where e1 = (1, 0, . . . , 0)T ∈ Rk+1.

With the problem of minimizing ‖r‖2 transformed into a least squares problem

for the entries of yk, and the bonus of Hk being an upper Hessenberg matrix, the QR

decomposition needed to solve for yk can be accomplished with k Givens rotations. A

Givens rotation R(θ) ≡
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
rotates a vector x ∈ R2 counterclockwise

by θ degrees. If θ is chosen such that cos(θ) = x1√
x2
1+x2

2

and sin(θ) = −x2√
x2
1+x2

2

then[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x1

x2

]
=

[√
x2

1 + x2
2

0

]
. In the decomposition of Hk, a Givens

rotation is used to zero out the (i + 1)th element of each column i by applying it to

the ith and (i+ 1)th rows, leaving an upper triangular matrix R.

The decomposition of Hk gives Jk . . . J1Hk =

(
Rk

0

)
, where the Ji’s are the

Givens rotations. Now set w = Jk . . . J1e1‖r0‖2:
∥∥∥∥e1‖r0‖2 −Hkyk

∥∥∥∥
2

=

∥∥∥∥∥JT
1 . . . J

T
k

[
w −

(
Rk

0

)
yk

]∥∥∥∥∥
2

=

∥∥∥∥∥w −
(
Rk

0

)
yk

∥∥∥∥∥
2

(3.2)

where Rk ∈ Rk×k.

It follows that Rkyk = (w1, . . . , wk)
T and the (k+1)th element of w is the residual

at the kth iteration, i.e., ‖rk‖2 = |wk+1|. Thus at each iteration it is a trivial matter

to check the norm of the residual vector and subsequently stop the iterations when

the residual norm has decreased below a specified tolerance.

As the iterations proceed the amount of storage required increases; it is on the

order of O(kn) for k iterations. Also the number of multiplications increases with the

introduction of each new vector. To overcome these steadily increasing costs, GMRES

is usually restarted in practice. After a fixed number, m, of steps the current solution

18

xm is chosen to be the new initial vector, and GMRES is begun from scratch. The

modified algorithm is GMRES(m) [14].

GMRES(m):

Given: A, b, x, tol, itmax.

Initialize: Set r ≡ b− Ax, v1 ≡ r/‖r‖2, w ≡ ‖r‖2e1 ∈ (R)m+1.

Iterate: For k = 1, . . . , m do:

Initialize vk+1 = Avk.

For i = 1, . . . , k do:

Set hik = vT
i vk+1.

Update vk+1 ← vk+1 − hikvi.

Set hk+1,k = ‖vk+1‖2.
If k > 1, apply Jk−1 . . . J1 to (h1,k, . . . , hk,k, hk+1,k, 0, . . .)

T ∈ Rm+1.

Determine Jk such that

Jk . . . J1

h1,k
...

hk,k

hk+1,k

0
...

≡

r1,k
...
rk,k

0
0
...

.

If k = 1, form R1 ≡ (r11); else form Rk ≡

Rk−1

0 . . . 0

r1,k
...
rk,k

.

Update w ← Jkw. If |wk+1| ≤ tol or k = m, go to Solve; else

update vk+1 ← vk+1/hk+1,k.

Solve: Let k be the final iteration number from Iterate.

Solve Rky = w̄ for y, where w̄≡ (w1, . . . , wk)
T .

Update x← x+ (v1, . . . , vk)y.

If |wk+1| ≤ tol, accept x; otherwise, return to Initialize.

3.2 Line Search and Trust Region Methods

A global inexact Newton method imposes one or more additional criteria on the steps

of an inexact Newton method to enhance the likelihood that xk → x∗. Assume the

19

method has chosen a step approximating the Newton step, and furthermore, that the

step does not satisfy the sufficient decrease condition imposed by either the Ared/Pred

or Goldstein-Armijo conditions (whichever was chosen to be implemented). A glob-

alization method is then invoked to find a satisfactory step. Two of the most widely

used classes of these methods are line search methods and trust region methods. Line

search methods use the direction of the inexact Newton step, and an acceptable step

is sought by systematically changing the length of the step. A trust region method

first chooses a step length within which the local linear model is ‘trusted’, and then

seeks a step which minimizes ‖F (x) + J(x)s‖ over all steps of length less than or

equal to the trusted length.

3.2.1 Line Searches

Line search methods consider the 1-dimensional cross section of ‖F (x)‖ that intersects

the points ‖F (xk)‖ and ‖F (xk + sk)‖. The goal is to then find a λk ∈ (0, 1] such that

xk+1 = xk + λksk is an acceptable step.

This approach is a feasible method. If an initial inexact Newton step has been

found, then a sufficiently shortened step sk having the same direction will satisfy both

an inexact Newton condition ‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖ and the corresponding

sufficient decrease condition ‖F (xk + sk)‖ ≤ [1− t(1− ηk)]‖F (xk)‖; see [7, p. 410].

The next three sections present different methods of obtaining a λ that yields a

satisfactory next step. In the developments of all three algorithms, it is assumed that

the norm is the Euclidean norm, although the developments can be easily adapted to

allow any inner-product norm. Also, in implementations, usually some restriction is

put on the size of λ, for example λ ∈ (λmin, λmax) for some 0 < λmin < λmax < 1.

20

Quadratic Interpolation

Take a cross-section of F along the line xk + λsk, λ ∈ [0, 1]. For ease of notation

the index k will be dropped. The problem is to minimize ‖F (x + λs)‖, or similarly

‖F (x + λs)‖2, with respect to λ. This 1-dimensional minimization problem can be

very expensive to solve exactly, so the idea is to use interpolation to get an easily

minimizable approximation to ‖F (x+ λs)‖2.
Finding a quadratic polynomial approximation to the function will require three

interpolating values. Define g(λ) = ‖F (x + λs)‖2. Then g(0) = ‖F (x)‖2 is already

known and, since s has been unsuccessfully tested for sufficient reduction, so is g(1) =

‖F (x+ s)‖. The third interpolation value is g′(0) = 2F TJs. Using the three points

g(0), g(1), and g′(0) a quadratic model of ‖F (x+λs)‖2 can be built, a minimizer can

be found, and the new trial step can be checked. The quadratic model is

p(λ) = [g(1)− g(0)− g′(0)]λ2 + g′(0)λ+ g(0). (3.3)

Then the derivatives are:

p′(λ) = 2[g(1)− g(0)− g′(0)]λ+ g′(0)

p′′(λ) = 2[g(1)− g(0)− g′(0)]

If p′′(λ) ≤ 0 then the quadratic is concave down, so choose λ = λmax. If p′′(λ) > 0

then find the λ such that p′(λ) = 0:

0 = p′(λ) = 2[g(1)− g(0)− g′(0)]λ+ g′(0)

⇒ λ = −g′(0)
2[g(1)−g(0)−g′(0)]

Correcting for λ ∈ (λmin, λmax) if necessary, one obtains λ, the fraction used to reduce

the step length. Now updating x← λs and η ← 1− λ(1− η), check to see if the new

step s and η satisfy the reduction criterion ‖F (x+ s)‖ ≤ [1− t(1− η)]‖F‖. If this is

not satisfied, repeat the process.

21

Cubic Interpolation

Cubic interpolation is almost like quadratic interpolation: instead of using three

interpolation points, four points are used and a cubic polynomial is constructed. On

the first step reduction there is no clear way to choose a fourth point, so just three

are chosen, and a quadratic polynomial is used. On subsequent reductions, however,

four points can be found. The two points g(0) and g′(0) are used as well as the values

of g at the two previous λ values. For example the second reduction uses g(0), g′(0),

g(λ1), and g(1), the fourth backtracking step will use g(0), g′(0), g(λ3), and g(λ2),

etc.

As done in [6] denote the two previous λ values as λprev and λ2prev. The cubic

polynomial approximation of the function ‖F (x+ λs)‖2 then becomes

p(λ) = aλ3 + bλ2 + g′(0)λ+ g(0)

with

[
a
b

]
= 1

λprev−λ2prev

 1

λ2
prev

−1
λ2
2prev−λ2prev

λ2
prev

λprev

λ2
2prev

[
g(λprev)− g(0)− g′(0)λprev

g(λ2prev)− g(0)− g′(0)λ2prev

]

The local minimizer of the model is given by λ+ =
−b+
√

b2−3ag′(0)
3a

. As with the

quadratic line search, let s← λs and η ← 1− λ(1− η) and check if the new s and η

satisfy the reduction criterion. If not, iterate.

Moré-Thuente

The Moré-Thuente algorithm [11] for choosing an acceptable step is a two-step pro-

cess. First an interval of λ-values is chosen in a way which guarantees that there exists

a λ∗ within the interval such that λ∗s satisfies the sufficient decrease and curvature

22

conditions of the algorithm, given in (3.4) and (3.5) below. Second a point is chosen

within the interval and tested. If it is not satisfactory, the interval is contracted,

yielding a smaller interval still containing a λ∗, and the process iterates:

Given λ0 ∈ [λmin, λmax].

Set I0 = [0,∞].

For k = 0, 1, . . .

Choose a safeguarded λk ∈ Ik ⋂[λmin, λmax].

Test for convergence.

Update the interval Ik.

An important feature of the algorithm is its ability to produce λ values greater

than one. The algorithm can produce steps longer than the original step if there is

evidence that ‖F‖ is decreasing sufficiently rapidly at the initial step.

The following paragraphs describe in detail the algorithms used for the interval up-

dates and test point choices.

First, some general notation: let φ(λ) ≡ 1
2
‖F (x+λs)‖2 and ψ(λ) ≡ φ(λ)−φ(0)−

µφ′(0)λ. The Moré-Thuente algorithm is designed to find a λ satisfying the following

two criteria:

φ(λ) ≤ φ(0) + µφ′(0)λ (3.4)

and

|φ′(λ)| ≤ ζ |φ′(0)| (3.5)

for µ and ζ in (0, 1). The first condition is equivalent to the α-condition, and the

second is stronger than the β-condition with ζ = β:

|φ′(λ)| ≤ ζ |φ′(0)| ⇒ φ′(λ) ≥ ζφ′(0)⇒ F (x+ s)TJ(x+ s)s ≥ ζF (x)TJ(x)s (3.6)

Therefore, if the method succeeds, the step found will satisfy the inexact Newton

condition and sufficient decrease condition of the global method, at least if the final

λ satisfies λ ≤ 1 and the initial η is updated by η ← 1− λ(1− η).

23

Define the set T (µ) ≡ {λ > 0 : φ(λ) ≤ φ(0) + µφ′(0)λ, |φ′(λ)| ≤ µ|φ′(0)|}. The

design of the algorithm guarantees a λ in T (µ); but without additional restraints,

there is no guarantee that a λ satisfying criteria (3.4) and (3.5) can be found.

The first goal is to find a satisfactory interval that contains a λ∗ ∈ T (µ). There

exist conditions on the endpoints of an interval I that guarantee it has a nonnempty

intersection with T (µ).

Theorem 3.2.1 ([11]) Let I be a closed interval with endpoints λl and λu. If the

endpoints satisfy

ψ(λl) ≤ ψ(λu), ψ(λl) ≤ 0, ψ′(λl)(λu − λl) < 0,

then there is a λ∗ in I with ψ(λ∗) ≤ ψ(λl) and ψ′(λ∗) = 0. In particular, λ∗ ∈
(T (µ)

⋂
I).

Assuming there is a maximum allowable step length, λmax > 0, such that ψ(λmax) >

ψ(0), the interval [0, λmax] satisfies the assumptions of the theorem. Trivially, ψ(0) =

0, and with the assumption on λmax the first two conditions are satisfied. Also,

ψ′(0) = φ′(0)− µφ′(0) = (1− µ)φ′(0), but φ′(0) < 0, so ψ′(0)(λmax − 0) < 0.

For now, assume that at step k of the algorithm, a trial λk has been found in Ik with

endpoints λk
l and λk

u, but λk /∈ T (µ), i.e., is unacceptable; then the interval must be

updated. The updating algorithm is a conditional update based on three possibilities.

Updating Algorithm[11]:

Given a trial value λk in Ik, the endpoints λk+1
l and λk+1

u of the updated interval Ik+1

are determined as follows:

Case U1: If ψ(λk) > ψ(λk
l), then λk+1

l = λk
l and λk+1

u = λk.

Case U2: If ψ(λk) ≤ ψ(λk
l) and ψ′(λk)(λ

k
l − λk) > 0, then λk+1

l = λk and λk+1
u = λk

u.

Case U3: If ψ(λk) ≤ ψ(λk
l) and ψ′(λk)(λ

k
l − λk) < 0, then λk+1

l = λk and λk+1
u = λk

l .

If the endpoints of the original interval Ik satisfy the conditions of the previous the-

orem, then so do the endpoints of the updated interval Ik+1. Therefore [Ik+1
⋂
T (µ)]

24

remains nonempty. It is possible that case U2 holds for every k, in which case the

algorithm should eventually end with λk = λmax for some k. In an implementation

this is accomplished by choosing λk+1 ∈ [min{δmaxλk, λmax}, λmax], with δmax > 1,

when case U2 holds for λk.

Theorem 3.2.2 ([11]) The search algorithm produces a sequence λk in [λmin, λmax]

such that after a finite number of trial values one of the following conditions holds:

The search terminates at λmax, the sequence of trial values is increasing, and ψ(λk) ≤
0 and ψ′(λk) < 0 for each k.

The search terminates at λmin, the sequence of trial values is decreasing, and ψ(λk) >

0 or ψ′(λk) ≥ 0 for each k.

An interval Ik ⊂ [λmin, λmax] is generated.

Termination at either λmin or λmax can be ruled out if they are chosen properly; see

([11, p. 293]). Thus the algorithm can be made to terminate in a finite number of

steps with a λk ∈ T (µ). But a λk ∈ T (µ) only satisfies |φ′(λk)| ≤ µ|φ′(0)|, not the

desired curvature condition (3.5) unless ζ ≤ µ.

A λ satisfying the curvature condition for a general ζ does not always exist, but

it is possible to show that if while searching for a λ∗ ∈ T (µ) an iterate λk satisfying

ψ(λk) ≤ 0 and φ′(λk) > 0 is found, then there exists an interval containing a λ

satisfying both (3.4) and (3.5). Further it is possible to modify the search algorithm

to find this λ: simply replace the ψ’s with φ’s.

Modified Updating Algorithm[11]:

Given a trial value λk in Ik, the endpoints λk+1
l and λk+1

u of the updated interval Ik+1

are determined as follows:

Case U1: If φ(λk) > φ(λk
l), then λk+1

l = λk
l and λk+1

u = λk.

Case U2: If φ(λk) ≤ φ(λk
l) and φ′(λk)(λ

k
l − λk) > 0, then λk+1

l = λk and λk+1
u = λk

u.

Case U3: If φ(λk) ≤ φ(λk
l) and φ′(λk)(λ

k
l − λk) < 0, then λk+1

l = λk and λk+1
u = λk

l .

25

This modified updating algorithm then is used in conjunction with the original

updating algorithm. The original algorithm is used until an iterate satisfying ψ(λk) ≤
0 and φ′(λk) > 0 is found and then the modified updating algorithm is used for

all subsequent iterations. There is no guarantee that the first will find an iterate

satisfying ψ(λk) ≤ 0 and φ′(λk) > 0. If a λk satisfying these conditions cannot be

found, then the line search fails.

The next detail of the implementation is choosing the λk+1 in the updated interval

Ik+1. Like the interval updates, the choices made here are based on the function and

its derivative values at the endpoints of the interval. There are four different cases that

cover all eventualities. At the current iteration, it is assumed that the following are

known: the endpoints of the current interval, (λk
l , λ

k
u), the previous trial value λk−1,

and the function values and derivatives at all three of those points. The function and

its derivatives are based on either ψ or φ depending upon which interval updating

function is currently being used. Denote the function values as fl, fu, fk−1 and the

derivative values as gl, gu, gk−1. Also three more points are needed in the calculations

of the new λk: λc, the minimizer of the cubic that interpolates fl, fk−1, gl, gk−1; λq,

the minimizer of the quadratic that interpolates fl, fk−1, gl; and λs, the minimizer

of the quadratic that interpolates fl, fk−1, gk−1. The four cases are listed here; for

details on why they are chosen, see [11].

• Case 1: fk−1 > fl then

λk =

{
λc, if |λc − λl| < |λq − λl|
1
2
(λq + λc), otherwise.

• Case 2: fk−1 ≤ fl and gk−1gl < 0 then

λk =

{
λc, if |λc − λl| ≥ |λs − λk−1|
λs, otherwise.

26

• Case 3: fk−1 ≤ fl, gk−1gl ≥ 0, and |gk−1| ≤ |gl| then

λk =

{
λc, if |λc − λk−1| < |λs − λk−1|
λs, otherwise.

• Case 4: fk−1 ≤ fl, gk−1gl ≥ 0, and |gk−1| > |gl| then

λk = the minimizer of the cubic that interpolates fu, fk−1, gu, and gk−1.

Barring some minor implementational details of bounds and roundoff error checks,

this is the algorithm implemented for the numerical studies described later. When

successful, the algorithm produces a suitable λ that satisfies (3.4) and (3.5).

3.2.2 Trust Region

The overall goal of the trust region method is the same as that of the line search

methods: If the chosen inexact Newton step is unacceptable, then a step of new

length, which is acceptable, must be chosen. Here, however, instead of just searching

for a new step length in the inexact Newton direction, a step length is chosen based

on a level of ‘trust’ in the local linear model, and then the direction of the step is

chosen.

The level of ‘trust’ in the local linear model is based on how well the local linear

model has approximated the function in previous iterations. If the model has been

an accurate representation of the function than a longer step is justifiable, but if the

model and function have had large discrepancies in past iterations then a shorter step

is warranted. The length of the steps for which the local model is ‘trusted’ is denoted

by δ and called the trust region radius. If the step at a given radius is inadequate, the

radius is adjusted and a new step is computed. Dennis and Schnabel in [6] suggest

the following criteria for adjusting the radius based upon the agreement of the local

linear model and the function.

27

• if ared ≥ 0.75 · pred then δ+ ← 2δ

• if ared < 0.1 · pred then δ+ ← 1
2
δ

• Otherwise δ+ ← δ

However in the implementation used for our numerical tests, the defaults used were

as follows:

• if ared ≥ 0.75 · pred then δ+ ← 4δ

• if ared < 0.1 · pred then δ+ ← 1
4
δ

• Otherwise δ+ ← δ

With a δ chosen, the length of a step from the current point is given an upper

bound. The idealized trust region method will then find a step s of length ≤ δ that

minimizes the norm of the local linear model, i.e., s ∈ argmin‖w‖≤δ‖F (x) + J(x)w‖.

Lemma 3.2.3 ([17]) If J(x) is nonsingular, then s ∈ argmin‖w‖≤δ‖F (x) + J(x)w‖
is given by

s = s(µ) ≡ −[J(x)TJ(x) + µI]−1J(x)TF (x)

for a unique µ ≥ 0, as follows:

{ ‖sN‖2 ≤ δ ⇒ µ = 0,
‖sN‖2 > δ ⇒ µ > 0, uniquely determined by‖s(µ)‖2 = δ.

where sN is the Newton step.

One trust region method is the dogleg method [13]. The idea of the dogleg method is

to find an approximation to the curve s(µ) and find a step s such that ‖s‖2 = δ. The

approximation of the curve is given by a polygonal arc connecting three points: the

current point, the Newton point sN , and finally the steepest descent direction point,

defined as follows:

28

Def 3.2.4 ([17]) The steepest descent point sSD is the minimizer of l(s) ≡ 1
2
‖F (x)+

J(x)s‖22 in the steepest descent direction −∇l(0) = −J(x)TF (x). It is easy to verify

that

sSD =
‖−J(x)T F (x)‖2

2

‖J(x)J(x)T F (x)‖2
2
J(x)TF (x).

The dogleg curve (denoted ΓDL in [17]) is the piecewise linear curve from xc to sSD to

sN . In the line-search methods defined above, the curve on which a step is sought has

the important property that ‖F (x) + J(x)λs‖ is a strictly decreasing function in the

size of λ. Dennis and Schnabel point out in [6] that the dogleg curve similarly has this

property. In addition ‖s‖ is monotone strictly increasing along the curve. So there

exists a unique s ∈ ΓDL such that ‖s‖ = δ and s ∈ argminw∈ΓDL,‖w‖≤δ‖F (x)+J(x)w‖
[6]. The complete algorithm for choosing the dogleg step is:

Computing the Dogleg Step[17]:

Assume sN = −J(x)−1F (x) has already been computed.

1. If ‖sN‖2 ≤ δ, then s = sN .

2. If ‖sN‖2 < δ, then do:

(a) Compute sSD.

(b) If ‖sSD‖2 ≥ δ, then s = δ
‖sSD‖2

sSD.

(c) If ‖sSD‖2 < δ then s = sSD + τ(sN − sSD), where τ is uniquely determined

by ‖sSD + τ(sN − sSD)‖2 = δ.

The entire algorithm is:

Given the Newton step sN and initial trust region radius δ.

Calculate the dogleg step s along ΓDL.

Check to see if the new step s is satisfactory.

If not, update δ and repeat. Otherwise accept s.

For the inexact Newton case the Newton step is replaced with the inexact Newton

step: sIN ≈ −J(x)−1F (x). In this case, the previously given properties of the dogleg

29

curve do not necessarily hold. In our numerical tests, the inexact Newton step is

chosen to approximate the Newton step ‘well enough’ that the properties of the dogleg

curve are likely to hold. This is accomplished by using a very small constant forcing

term.

30

Chapter 4

Testing Environment

The coding of all of the above algorithms and the associated numerical test prob-

lems into a parallel computing environment would be a very large undertaking, well

beyond the scope of this thesis. Therefore, previously written codes that implement

the numerical algorithms and formulate the flow problems were combined to produce

the results of the numerical study. All codes were developed at Sandia National Labo-

ratories in Albuquerque New Mexico. The testing environment was a multi-processor

machine housed at Sandia National Labs.

4.1 NOX

NOX is short for ‘Nonlinear Object-Oriented Solutions’ and is one of the software

packages written for the Trilinos project. From [9]:

The Trilinos Project is an effort to develop and implement robust parallel

algorithms using modern object-oriented software design, while still lever-

aging the value of established numerical libraries such as PETSc, Aztec,

31

the BLAS and LAPACK. It emphasizes abstract interfaces for maximum

flexibility of component interchanging, and provides a full-featured set of

concrete classes that implement all abstract interfaces.. . . An over-riding

emphasis of the Trilinos Project is to develop robust solution algorithms

for scientific and engineering applications on parallel computers, and make

these algorithms accessible to application developers in the most effective

way.

The NOX package has been developed to bring nonlinear solution methods into the

Trilinos framework. It includes implementations of the line search and trust re-

gion methods discussed previously as well as other methods such as tensor methods.

Within each method exist numerous parameters that can be modified for particular

problems. For example, the trust region method has options for setting the expansion

and contraction ratios of the trust region radius. The flexibility of the code and al-

gorithm adjustments allow the solvers to efficiently solve a large spectrum of difficult

nonlinear problems.

The two leading developers of the code are Tamara G. Kolda and Roger P.

Pawlowski at Sandia National Laboratories, though many others have contributed.

A short list of other developers includes Russell Hooper, Eric T. Phipps, Andrew G.

Salinger and Brett W. Bader. All are employees of Sandia National Labs except Brett

Bader, who was a SNL summer researcher in 2002.

4.2 MPSALSA

MPSalsa is a finite element computer program for reacting flow problems. Like NOX,

it was developed at Sandia National Laboratories in Albuquerque, New Mexico. The

32

principal developers were John N. Shadid, Harry K. Moffat, Scott A. Hutchinson,

Gary L. Hennigan, Karen D. Devine, and Andrew G. Salinger. Many more people

also contributed to the code and development of the program. The theoretical con-

ception and development of the code are not central to this work; therefore, only the

description of the code from the abstract of the Sandia report [15] will be given:

MPSalsa is designed to solve laminar, low Mach number, two- or three-

dimensional incompressible and variable density reacting fluid flows on

massively parallel computers, using a Petrov-Galerkin finite element for-

mulation. The code has the capability to solve coupled fluid flow, heat

transport, multicomponent species transport, and finite-rate chemical re-

actions, and to solve coupled multiple Poisson or advection-diffusion-

reaction equations. The program employs the CHEMKIN library to pro-

vide a rigorous treatment of multicomponent ideal gas kinetics and trans-

port. Chemical reactions occurring in the gas phase and on surfaces are

treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively.

The code employs unstructured meshes, using the EXODUS II finite el-

ement database suit of programs for its input and output files. MPSalsa

solves both transient and steady flows by using fully implicit time inte-

gration, an inexact Newton method and iterative solvers based on precon-

ditioned Krylov methods as implemented in the Aztec solver library.

The importance of the MPSalsa code, in relation to this work, is the large number

of difficult problems it makes available to the nonlinear solver NOX. Using problems

formulated and implemented in the MPSalsa software, it is possible to thoroughly test

the NOX algorithms, and ultimately compare the performance of numerous globalized

inexact Newton methods on some of the more computationally challenging large-scale

33

problems. In the following paragraphs some of the equations used in MPSalsa are

given. All of these are used in the later test problems.

Momentum Transport Equation: The following two equations express the

conservation of momentum laws.

ρu · ∇u−∇ ·T− ρg = 0 (4.1)

T = −PI + µ{∇u +∇uT} (4.2)

Here, µ is the velocity vector, ρ is the mass density of the mixture, T is the stress

tensor for a Newtonian fluid, I is the unity tensor, g is the gravity vector, µ is the

dynamic viscosity and P is the isotropic hydrodynamic pressure.

Total Mass Conservation Equation: Conservation of total mass within MP-

Salsa is expressed by

∇ · (ρu) = 0 (4.3)

Here, ρ is either considered to be a constant or is calculated from the ideal gas

mixture equation of state. Thus, for an ideal gas, ρ is a function of the constant

thermodynamic pressure only.

Energy Transport Equation(Temperature Formulation Simplified):

ρCpu · ∇T +∇ · q = 0 (4.4)

q = −κ∇T (4.5)

Here, T is the temperature, Cp is the specific heat at constant pressure, and κ is the

thermal conductivity.

4.3 Parallel Machine[10]

The machine on which all numerical tests were performed is an IBM cluster located at

Sandia National Laboratories in Albuquerque New Mexico. Details of the hardware

34

and software are given in the two subsections below.

4.3.1 Cluster Hardware

• One head node. Dual-processor 1 GHz Pentium III; 1 GB RAM; single 70 GB

hard drive (66 GB after partitioning).

• Sixteen compute nodes: Each with a dual-processor 1 GHz Pentium III; 1 GB

RAM; single 18 GB hard drive (16 GB after partitioning).

• Myrinet network between the 16 compute nodes for message passing.

• The cluster internal network consists of the head node being connected to a

switch by 1GB Ethernet, with each compute node connected to that switch

with 100 MB Ethernet.

4.3.2 Cluster Software

• Operating system: all nodes run Red Hat Linux 7.2.

• Standard GNU compilers: gcc/g++ (version 2.96) and g77.

• MPI message passing by MPICH 1.2.1 or LAM 6.5.6.

• mpicc/mpiCC and mpif77/mpif90 for MPICH-GM.

• mpicc/mpiCC and mpif77 for LAM-IP.

• Resource manager: Portable Batch System (PBS) (http://www.openpbs.org).

• Job scheduling for compute nodes is performed by the Maui scheduler

(http://supercluster.org) rather than using PBS’s own scheduler.

• The cluster software toolkit is xcat (http://x-cat.org).

35

Chapter 5

Benchmark Test Problems

The three test problems described below are standard benchmark problems used

for verification of fluid flow codes and solution algorithms[16]. The initial guess for

all runs of these problems is the all-zeroes vector.

5.1 Thermal Convection[16]

This problem is to determine the thermally-driven convection flow of a fluid in a

differentially heated square box in the presence of gravity. It requires the solution of

the momentum transport, energy transport, and total mass conservation equations

defined above on the unit square in R2 or unit cube in R3. In 2D the following

Dirichlet and Neumann boundary conditions are imposed:

T = Tcold, u = v = 0 at x = 0,

T = Thot, u = v = 0 at x = 1,

∂T
∂y

= 0, u = v = 0 at y = 0,

∂T
∂y

= 0, u = v = 0 at y = 1.

36

When the equations and boundary conditions are suitably nondimensionalized one of

the parameters to appear is the Rayleigh number, Ra. For this study the values of

Ra used were 103, 104, 105, 106. As the number increases the nonlinear effects of the

convection terms increase and the solution becomes increasingly difficult to obtain.

All solutions in 2D were computed on a 100x100 equally spaced mesh, which resulted

in 40,804 unknowns for the discretized problem.

In 3D the boundary conditions are very similar:

T = Tcold, u = v = w = 0 at x = 0 plane,

T = Thot, u = v = w = 0 at x = 1 plane,

∂T
∂y

= 0, u = v = w = 0 at y = 0 plane,

∂T
∂y

= 0, u = v = w = 0 at y = 1 plane,

∂T
∂z

= 0, u = v = w = 0 at z = 0 plane,

∂T
∂z

= 0, u = v = w = 0 at z = 1 plane.

Here the same Ra numbers are used, the mesh is a 32x32x32 equally spaced grid

which resulted in 179,685 unknowns for the discretized problem.

5.2 Backward Facing Step[16]

The second problem simulates a reentrant backward-facing step by introducing a

fully developed parabolic velocity profile in the upper half of the inlet boundary and

imposing zero velocity on the lower half. The problem requires the solution of the

momentum transport equation and the total mass conservation equation with ρ = 1,

or ∇·u = 0. The nondimensionalized formulation contains the Reynolds number. As

this parameter is increased the nonlinear components of the equation become more

dominant and the problem becomes more difficult. As the fluid flows downstream

it produces a recirculation zone on the lower channel wall, and for sufficiently high

37

Reynolds numbers it also produces a recirculation zone farther downstream on the

upper wall. The discretization is a 20x400 unequally spaced mesh which resulted in

25,263 unknowns. The boundary conditions are given by

u(y) = 24y(0.5− y), v = 0 at x = 0, 0 ≤ y ≤ 0.5,

u = v = 0 at x = 0, −0.5 ≤ y ≤ 0,

Txx = 0, Txy = 0 at x = 30,

u = v = 0 at y = −0.5,

u = v = 0 at y = 0.5.

For the studies performed here, the Reynolds number was given values of 100,

200,. . ., 700, 750 and 800.

5.3 Lid Driven Cavity[16]

The third problem studied is that of a confined fluid flow in a square box. The

discretized equations for this problem are the same two used in the Backward Facing

Step problem. In 2D the two sides and bottom are held fixed while the top is moving

from left to right. The discretization of the domain is a 100x100 equally spaced grid.

The following Dirichlet boundary conditions are applied:

u = v = 0 at x = 0,

u = v = 0 at x = 1,

u = v = 0 at y = 0,

u = U0, v = 0 at y = 1.

Again a suitable nondimensionalized formulation leads to the appearance of the

Reynolds number. As this parameter is increased the nonlinear inertial terms in

the momentum equation become more dominant and the solution becomes more dif-

ficult to obtain. For the tests performed in 2D the Reynolds number ranged from

38

1,000 to 10,000 in increments of 1,000. The discretization of the problem led to 30,603

unknowns.

In 3D, the problem is formulated on a 1x1x1 cube with a moving lid. The dis-

cretization is a 32x32x32 equally spaced grid. Again Dirichlet boundary conditions

are applied:

u = v = w = 0 at x = 0 plane,

u = v = w = 0 at x = 1 plane,

u = v = w = 0 at z = 0 plane,

u = v = w = 0 at z = 1 plane,

u = v = w = 0 at y = 0 plane,

u = U0, v = w = 0 at y = 1 plane.

The Reynolds number ranged from 100 to 1,000 in increments of 100 and the dis-

cretization of the problem led to 143,748 unknowns.

39

Chapter 6

Results

6.1 Success vs. Failure

In numerical methods it is almost always impossible to find an x such that F (x) = 0.

The best a numerical solver can do is find an x such that ‖F (x)‖ ≤ tol. The tol is

set by the user and determines how ‘close’ a computed x must be to the real solution

to declare a successful termination.

In our numerical studies a ‘success’ was declared if an xk was found satisfying

‖F (xk)‖2 ≤ 10−2‖F (x0)‖2 and WRMS ≤ 1. The WRMS is defined as the weighted

root mean square norm, WRMS = ‖xk − xk−1‖wrms. “The wrms norm is defined

by: ‖δxk‖wrms =

√
1
N

∑N
i=1

(
C·(xk

i −xk−1
i)

RTOL|xk−1
i |+ATOLi

)2

, where N is the total number of

unknowns in the problem, xk
i denotes the i -th component of the solution vector x at

nonlinear iteration k, RTOL is the relative error tolerance (a scalar value), ATOLi

is the absolute error tolerance and can be a scalar or a vector of the same size as the

solution vector, and C is a scalar value that is typically set to 1.0.”[9] This second

test checks to see that the change in the solution from one step to the next has

not been too large. Failures occur when both of the above two criteria are not met

40

within a specified number of inexact Newton steps. The number of steps specified

for individual problems is thought to be reasonable based on the number of solutions

that were obtained within that limit.

The reasons for failure vary from one problem to the next. Some recurring reasons

were: a singular Jacobian, convergence to local norm minima, and progress that was

simply too slow. This is by no means an exhaustive list of reasons for failure, but it

does account for the majority of failures encountered in this study.

6.2 Relevant Numbers

Each problem was run using nine different algorithms: quadratic interpolation, cubic

interpolation, and Moré-Thuente backtracking, each with a constant forcing term

and an adaptive forcing term; the trust-region dogleg method with a constant forcing

term; and finally inexact Newton methods using the two choices of forcing term, but

without globalization, i.e., taking the full inexact Newton step.

Each problem had the following information collected and summarized in the

tables found in the data section.

S/F: S indicates a solution was successfully found; F indicates a failure to find a

solution.

INS: The total number of inexact Newton steps carried out. This can be important

if each inexact Newton step has a high computation cost associated with it, for

example a preconditioner that must be computed.

F-Evals: The number of function evaluations performed. If the cost of computing

F -values is very high for a specified problem, then an algorithm which requires

many function evaluations should probably not be chosen.

41

LS: The number of inexact Newton steps for which the algorithm needed to call a

line search method.

f-LS: The number of line searches which failed to find a suitable step. In these

cases the original inexact Newton step was used. The rational is that it is

possible the algorithm is at a ‘bad’ xk, such as one near a local minimum, and

hopefully taking a large step in a not-so-great direction will get the algorithm

to a better spot to advance from.

BckTcks: The total number of step reductions used by the line search methods.

GMRES: The total number of linear solver iterations. In the experiments here,

the linear solve is the most expensive part of the algorithm; therefore reducing

the number of GMRES iterations may improve efficiency, even if it increases

the nnumber of inexact Newton steps.

‖F (x)‖: The final 2-norm of the residual vector. A goal is to find an xk such that

‖F (xk)‖ ≤ 10−2‖F (x0)‖2. Our algorithm also imposed a constraint of the form

WRMS≤ 1.

Time: The total number of seconds elapsed in reaching a solution.

An ‘NA’ in any column of data indicates the specified value is not computed. For

example, the dogleg method will never indicate the number of line searches performed.

42

6.3 Results and Conclusions

6.3.1 A Robustness Study

We conducted a study involving the benchmark problems with the goal of assessing the

general robustness of the seven different global inexact Newton methods: cubic inter-

polation with adaptive forcing terms, cubic interpolation with constant forcing terms,

quadratic interpolation with adaptive forcing terms, quadratic interpolation with con-

stant forcing terms, Moré-Thuente with adaptive forcing terms, Moré-Thuente with

constant forcing terms, and the dogleg method with constant forcing terms. All of the

problems were also run without a globalization method, i.e., taking the full inexact

Newton step. The full-step method was used with both adaptive and constant forcing

terms.

The study compared the number of failures of each method on problems of varying

degrees of difficulty. We wanted to determine whether any one method is consistently

better at solving these problems than other methods. The difficulty of the problems

were determined by the Reynolds and Rayleigh numbers (as appropriate) as follows:

Easy Hard
2D − Thermal Convection 103, 104, 105 106

2D − Backward Facing Step 100− 500 600, 700, 750, 800

2D − Lid Driven Cavity 1000− 5000 6000− 10, 000

3D − Thermal Convection 103, 104, 105 106

3D − Lid Driven Cavity 100− 500 600− 1, 000

The results of the study are shown in Tables 6.1 and 6.2. We found that the globalized

methods are more robust than the non-globalized methods. The use of the adaptive

forcing terms greatly increases the number of successful solves on some problems, and

overall is not worse than the constant forcing term methods. Limiting our comparisons

to adaptive forcing terms (or constant forcing terms) shows no significant differences

43

among the globalized methods; cubic interpolation, quadratic interpolation, Moré-

Thuente, and the dogleg all perform about the same. A final note, no single method

works on all of the problems all of the time. The complete results from all of the runs

are listed in the appendix.

Method 2D Thermal 2D Lid Driven 2D Backward
Convection Cavity Facing Step

Easier Harder Easier Harder Easier Harder

Cubic
0 0 0 0 0 1

0 0 4 5 0 0

Quadratic
0 0 0 0 0 0

0 0 4 5 0 1

Moré-Thuente
0 1 0 0 0 1

0 1 4 5 0 0

Trust Region 0 0 2 5 1 0

Full Step
0 0 4 5 1 4

0 1 5 5 3 4

Table 6.1: Distribution of failures: For each method, the upper and lower lines are
the number of failures with the adaptive forcing term and the constant forcing term,
respectively.

44

Method 3D Thermal 3D Lid Driven
Convection Cavity

Easier Harder Easier Harder

Cubic
0 0 0 0

0 0 0 0

Quadratic
0 0 0 0

0 0 0 0

Moré-Thuente
0 1 0 0

1 1 0 0

Trust Region 0 0 0 0

Full Step
0 1 0 0

0 1 0 4

Table 6.2: Distribution of failures: For each method, the upper and lower lines are
the number of failures with the adaptive forcing term and the constant forcing term,
respectively.

6.3.2 An Efficiency Study

We follow the robustness study above with a study aimed at assessing the relative

efficiency of the global methods. Because of numerous failures throughout the bench-

mark problems, a subset of the problems for which all globalized methods succeeded

was chosen. This set includes Reynolds and Rayleigh numbers as follows:

2D − Thermal Convection : 103, 104, 105

2D − Backward Facing Step 100− 300, 500, 600

3D − Lid Driven Cavity 100− 1, 000

From each run, the study looked at the mean numbers of inexact Newton steps,

backtracks taken by the line searches, GMRES iterations, and run times (in seconds).

All are geometric means except in the case of backtracks, in which they are arithmetic

45

means.

From Table 6.3 we see a clear tradeoff between the number of inexact Newton

iterations and the linear solver iterations. The methods using an adaptive forcing term

require many fewer GMRES iterations than do the methods using a small constant

forcing term. Conversely, the constant forcing term methods require many fewer

inexact Newton steps. Overall, the adaptive forcing term methods use less time and

more backtracking iterations than do the constant forcing term methods. As in the

robustness study, the differences between the methods within the subsets of adaptive

or constant forcing term methods is almost negligible.

Inexact Newton Steps Backtracks GMRES Time

Cubic
15 .9188 704 112

7 .1627 1072 137

Quadratic
15 1.1183 714 113

7 .1627 1072 136

Moré-Thuente
14 1.2166 768 122

8 1.7333 1123 145

Trust Region 9 NA 1264 161

Table 6.3: Efficiency Study: For each method, the upper and lower lines represent
the adaptive forcing term and the constant forcing term methods, respectively.

46

Appendix

Backward Facing Step 2D
Cubic Choice1

S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime
100 S 10 11 0 0 0 459 4.44e − 14 18.730446
200 S 12 14 1 0 1 535 1.59e − 13 22.386361
300 S 14 17 2 0 2 650 1.62e − 17 28.494028
400 S 51 77 25 0 25 1348 2.17e − 15 58.985995
500 S 60 90 29 0 29 1573 1.93e − 12 71.104727
600 S 81 126 43 0 44 2459 9.91e − 14 102.899106
700 S 124 207 82 0 82 4635 8.00e − 16 193.631929
750 F 200 660 199 0 459 2379 0.000244 160.015110
800 S 162 294 130 0 131 5905 1.33e − 13 238.542687

Cubic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 0 0 0 595 1.09e − 14 24.677943
200 S 9 10 0 0 0 1047 1.25e − 15 49.499055
300 S 9 11 1 0 1 1095 5.05e − 16 53.260950
400 S 11 16 4 0 4 1441 1.08e − 13 67.335533
500 S 9 12 2 0 2 1145 2.73e − 15 53.705681
600 S 11 16 4 0 4 1506 7.14e − 15 78.006895
700 S 12 18 5 0 5 1745 1.67e − 13 88.272582
750 S 29 61 22 0 31 4729 1.40e − 15 263.265165
800 S 31 66 25 0 34 5227 3.74e − 13 285.394827

Quadratic Choice1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 10 11 0 0 0 459 4.44e − 14 18.675301
200 S 12 14 1 0 1 535 1.59e − 13 22.254953
300 S 14 17 2 0 2 650 1.62e − 17 30.670698
400 S 51 77 25 0 25 1348 2.17e − 15 59.451767
500 S 60 90 29 0 29 1573 1.93e − 12 68.978642
600 S 98 161 61 0 62 3193 1.39e − 15 131.410889
700 S 124 207 82 0 82 4635 8.00e − 16 184.417626
750 S 142 240 93 0 97 5116 4.76e − 15 204.551093
800 S 130 218 85 0 87 4837 4.04e − 11 193.543793

47

Quadratic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 0 0 0 595 1.09e − 14 24.503630
200 S 9 10 0 0 0 1047 1.25e − 15 46.338407
300 S 9 11 1 0 1 1095 5.05e − 16 49.873409
400 S 11 16 4 0 4 1441 1.08e − 13 68.497390
500 S 9 12 2 0 2 1145 2.73e − 15 54.265813
600 S 11 16 4 0 4 1506 7.14e − 15 72.175325
700 S 12 18 5 0 5 1745 1.67e − 13 87.335903
750 F 200 936 198 0 735 38510 5.51e − 05 2283.374432
800 S 44 104 37 0 59 7634 1.17e − 16 421.327834

More Thuente Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 10 31 0 0 0 459 4.44e − 14 21.500709
200 S 11 36 1 0 1 581 2.96e − 17 27.400564
300 S 18 67 6 0 6 721 3.82e − 14 32.270921
400 S 38 151 18 0 18 1067 1.58e − 13 54.444312
500 S 65 270 35 0 37 1526 1.07e − 11 77.272371
600 S 73 328 44 0 54 2010 8.41e − 11 96.881934
700 F 200 1449 186 152 348 7662 7.03e − 06 348.985394
750 S 108 468 69 1 71 4182 1.44e − 13 186.352307
800 S 105 449 64 1 66 4100 1.08e − 15 180.836193

More Thuente Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 19 0 0 0 595 1.09e − 14 24.483775
200 S 7 24 1 0 1 754 1.16e − 13 31.984996
300 S 9 30 1 0 1 1090 1.08e − 13 48.452983
400 S 8 29 2 0 2 981 8.02e − 14 44.111969
500 S 9 32 2 0 2 1158 4.49e − 16 53.506665
600 S 10 37 3 0 3 1362 1.72e − 15 64.784416
700 S 11 42 4 0 4 1593 4.13e − 15 78.274686
750 S 11 42 4 0 4 1584 7.85e − 15 77.421196
800 S 12 51 6 0 7 1796 5.58e − 14 89.863523

48

Trust Region
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 NA NA NA 595 1.09e − 14 26.582939
200 S 9 10 NA NA NA 1047 1.25e − 15 46.818451
300 S 17 25 NA NA NA 2154 2.91e − 14 101.102956
400 F 200 248 NA NA NA 30478 8.80e − 05 1559.254081
500 S 11 13 NA NA NA 1447 1.36e − 15 69.123568
600 S 11 13 NA NA NA 1552 5.89e − 15 76.694969
700 S 17 24 NA NA NA 2564 1.15e − 16 131.410720
750 S 17 23 NA NA NA 2634 2.29e − 13 138.535062
800 S 18 28 NA NA NA 2734 2.33e − 13 141.542069

Full Step Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 10 11 NA NA NA 459 4.44e − 14 20.083346
200 S 14 15 NA NA NA 561 8.12e − 17 24.361944
300 S 19 20 NA NA NA 616 6.46e − 16 29.328713
400 S 38 39 NA NA NA 822 1.16e − 13 40.786583
500 F 200 201 NA NA NA 17158 0.658 856.973023
600 F 200 201 NA NA NA 12391 86.1 610.909392
700 F 200 201 NA NA NA 21379 2.08 1096.242105
750 F 200 201 NA NA NA 13867 5.39 653.159951
800 F 200 201 NA NA NA 14333 1.17 705.480811

Full Step Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 NA NA NA 595 1.09e − 14 26.587996
200 S 9 10 NA NA NA 1047 1.25e − 15 45.992849
300 F 200 201 NA NA NA 33846 9.27 1840.297428
400 F 200 201 NA NA NA 25806 84.5 1344.981927
500 F 200 201 NA NA NA 36936 0.533 2031.390187
600 F 200 201 NA NA NA 28595 1.95 1527.294388
700 F 200 201 NA NA NA 34524 5.88 1844.124334
750 F 200 201 NA NA NA 57827 0.221 3303.303649
800 F 200 201 NA NA NA 2583 0.126 166.383267

49

Thermal Convection 2D
Cubic Choice 1

S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime
103 S 6 7 0 0 0 1106 2.83e − 15 85.620622
104 S 9 10 0 0 0 1209 1.57e − 14 87.355162
105 S 14 16 1 0 1 801 2.42e − 09 57.508363
106 S 41 65 19 0 23 2259 3.21e − 10 160.858089

Cubic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 4 5 0 0 0 870 3.28e − 12 64.423048
104 S 6 7 0 0 0 1349 6.80e − 11 97.672187
105 S 8 10 1 0 1 2106 6.21e − 14 154.707285
106 S 11 24 6 0 12 3353 7.44e − 12 247.764391

Quadratic Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 6 7 0 0 0 1106 2.83e − 15 80.400617
104 S 9 10 0 0 0 1209 1.57e − 14 87.218471
105 S 14 16 1 0 1 801 2.42e − 09 57.538396
106 S 44 68 20 0 23 2595 1.55e − 10 183.936025

Quadratic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 4 5 0 0 0 870 3.28e − 12 65.005171
104 S 6 7 0 0 0 1349 6.8e − 11 98.042959
105 S 8 10 1 0 1 2106 6.21e − 14 152.987253
106 S 14 30 9 0 15 4228 4.15e − 13 306.222720

More Thuente Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 6 19 0 0 0 1106 2.83e − 15 83.486171
104 S 9 28 0 0 0 1209 1.57e − 14 90.595408
105 S 14 50 2 1 3 1154 1.6e − 09 89.942351
106 F 50 401 50 50 100 2878 0.0498 218.216901

50

More Thuente Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 4 13 0 0 0 870 3.28e − 12 65.620265
104 S 6 19 0 0 0 1349 6.8e − 11 101.083927
105 S 50 367 44 42 87 12976 1.41e − 13 994.836491
106 F 50 401 50 50 100 18194 0.0495 1360.247254

Trust Region
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 4 5 NA NA NA 870 3.28e − 12 64.922235
104 S 7 9 NA NA NA 1944 3.89e − 15 146.254160
105 S 11 15 NA NA NA 3413 4.41e − 12 250.861188
106 S 36 57 NA NA NA 12756 5.33e − 13 935.867827

Full Step Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 6 7 0 0 0 1106 2.83e − 15 82.157177
104 S 9 10 0 0 0 1209 1.57e − 14 88.578725
105 S 14 16 1 0 1 801 2.42e − 09 59.041938
106 S 41 65 19 0 23 2259 3.21e − 10 159.174970

Full Step Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 4 5 NA NA NA 870 3.28e − 12 67.205929
104 S 6 7 NA NA NA 1349 6.80e − 11 99.858243
105 S 11 12 NA NA NA 2665 9.98e − 11 198.862105
106 F 50 51 NA Na NA 8506 9.71e + 04 624.502921

51

Lid Driven Cavity 2D
Cubic Choice1

S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime
1000 S 24 27 2 0 2 799 6.77e − 11 45.544701
2000 S 33 42 8 0 8 1632 4.61e − 13 84.856306
3000 S 52 66 13 0 13 2138 8.31e − 13 111.914418
4000 S 57 73 14 0 15 2230 1.74e − 07 112.602015
5000 S 58 79 18 0 20 2808 6.23e − 10 152.400856
6000 S 75 106 28 0 30 3471 3.45e − 10 176.270308
7000 S 94 148 50 0 53 4984 6.47e − 12 249.669885
8000 S 106 165 55 0 58 5535 6.47e − 11 299.044550
9000 S 150 260 106 0 109 7695 5.73e − 12 394.156317
10000 S 160 279 115 0 118 8581 6.89e − 06 450.478600

Cubic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 12 18 5 0 5 1621 1.79e − 13 91.037015
2000 F 300 1861 246 22 1559 77599 5.51e + 14 5405.766932
3000 F 300 1851 287 15 1550 127980 3.77e + 13 8845.640383
4000 F 300 3521 293 65 3220 77090 2.02e + 14 5693.023875
5000 F 300 4900 298 0 4599 170847 88 12536.333741
6000 F 300 2624 299 0 2323 175767 294 12176.149498
7000 F 300 2676 298 0 2375 172883 146 11955.534328
8000 F 300 4273 299 0 3972 172634 196 12082.865161
9000 F 300 2129 299 0 1828 177490 480 12324.763266
10000 F 300 2158 299 0 1857 174191 499 12652.027231

Quadratic Choice1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 24 27 2 0 2 799 6.77e − 11 42.405545
2000 S 33 42 8 0 8 1632 4.61e − 13 84.774296
3000 S 52 66 13 0 13 2138 8.31e − 13 120.885515
4000 S 52 66 12 0 13 2611 3.44e − 12 139.664326
5000 S 60 78 16 0 17 2722 4.55e − 06 140.442642
6000 S 76 110 32 0 33 3303 1.62e − 09 180.238783
7000 S 101 164 61 0 62 5119 2.73e − 09 262.796143
8000 S 140 248 106 0 107 6881 4.98e − 09 346.188046
9000 S 143 242 97 0 98 7833 4.54e − 10 394.727409
10000 S 163 284 119 0 120 8950 2.34e − 08 467.777669

52

Quadratic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 12 18 5 0 5 1621 1.79e − 13 95.523814
2000 F 300 1738 298 0 1437 53931 15.6 3627.953197
3000 F 300 1746 298 0 1445 110022 63.3 7389.694315
4000 F 300 1712 298 0 1411 85748 42.8 5504.815610
5000 F 300 1693 298 0 1392 170958 147 11732.354169
6000 F 300 1979 299 0 1678 174141 520 11999.624440
7000 F 300 1579 299 0 1278 174954 284 12649.365681
8000 F 300 1605 299 0 1304 119613 244 8437.113389
9000 F 300 1732 299 0 1431 176946 997 12875.594389
10000 F 300 1878 299 0 1577 169707 2.39e + 03 11721.137505

More Thuente Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 18 63 4 0 4 923 1.72e − 10 55.868397
2000 S 31 112 9 0 9 1341 8.87e − 07 76.574034
3000 S 42 156 13 1 14 1863 4.96e − 09 107.952866
4000 S 51 195 19 1 20 2377 2.27e − 06 135.197965
5000 S 59 221 20 1 21 2939 2.01e − 12 169.963651
6000 S 66 252 25 1 26 3374 1.47e − 09 194.691589
7000 S 79 327 42 1 44 3609 2.04e − 06 205.061383
8000 S 92 391 53 2 56 4717 1.08e − 11 271.396304
9000 S 110 477 69 2 72 6149 5.96e − 12 359.284430
10000 S 124 543 81 2 84 6550 2.99e − 07 371.076367

More Thuente Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 11 40 3 0 3 1475 1.13e − 13 87.467960
2000 F 300 2376 298 293 591 50430 13 3447.789024
3000 F 300 2368 298 289 589 76340 86.5 5374.839047
4000 F 300 2384 299 295 594 61886 152 4527.014148
5000 F 300 2379 299 292 593 77752 340 5479.676001
6000 F 300 2375 299 290 592 110848 176 7764.665417
7000 F 300 2390 299 297 596 110599 981 7655.571218
8000 F 300 2392 299 297 597 110839 1.38e + 03 7665.834013
9000 F 300 2392 299 297 597 124646 1.75e + 03 8820.438071
10000 F 300 2373 300 286 593 178988 1.23e + 03 12835.061594

53

Trust Region
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 19 27 NA NA NA 2671 1.73e − 12 155.229284
2000 S 29 42 NA NA NA 4325 5.24e − 12 257.387507
3000 S 30 42 NA NA NA 4552 8.33e − 13 280.585165
4000 F 300 371 NA NA NA 51585 37.4 3451.221284
5000 F 300 448 NA NA NA 60715 49.3 4100.548967
6000 F 300 408 NA NA NA 59459 60.8 4207.405368
7000 F 300 346 NA NA NA 85863 59.1 5844.815039
8000 F 300 331 NA NA NA 56610 70.2 5137.866875
9000 F 300 372 NA NA NA 57720 73.2 3866.840246
10000 F 300 467 NA NA NA 162693 71.6 11615.001159

Full Step Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 S 20 21 NA NA NA 787 2.02e − 13 45.827322
2000 F 300 301 NA NA NA 9454 1.01e + 05 649.749201
3000 F 300 301 NA NA NA 30362 5.62e + 04 1933.428328
4000 F 300 301 NA NA NA 11713 2.03e + 05 762.675952
5000 F 300 301 NA NA NA 13937 4.18e + 05 869.490376
6000 F 300 301 NA NA NA 11285 2.60e + 05 735.437533
7000 F 300 301 NA NA NA 17791 3.31e + 05 1089.994508
8000 F 300 301 NA NA NA 12830 3.15e + 05 787.788003
9000 F 300 301 NA NA NA 12399 4.16e + 05 751.368204
10000 F 300 301 NA NA NA 32499 1.76e + 05 2070.265778

Full Step Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

1000 F 300 301 NA NA NA 23416 3.83e + 05 1499.734888
2000 F 300 301 NA NA NA 10919 2.86e + 05 717.580405
3000 F 300 301 NA NA NA 14610 2.48e + 05 937.857191
4000 F 300 301 NA NA NA 12255 1.12e + 05 817.903355
5000 F 300 301 NA NA NA 16246 8.40e + 04 1085.189837
6000 F 300 301 NA NA NA 25644 8.88e + 04 1666.684245
7000 F 300 301 NA NA NA 29688 2.30e + 05 1936.334228
8000 F 300 301 NA NA NA 14166 4.88e + 06 958.168039
9000 F 300 301 NA NA NA 13504 1.06e + 06 855.090293
10000 F 300 301 NA NA NA 18901 1.64e + 05 1217.999328

54

Thermal Convection 3D
Cubic Choice 1

S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime
103 S 5 6 0 0 0 298 2.22e − 12 161.661027
104 S 8 10 1 0 1 469 1.92e − 15 257.054125
105 S 19 25 3 0 5 584 5.1e − 15 478.700628
106 S 58 97 27 0 38 3291 6.32e − 14 1818.225104

Cubic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 6 0 0 0 504 1.23e − 16 214.912963
104 S 6 8 1 0 1 697 1.09e − 15 274.601650
105 S 10 17 4 0 6 1120 5.66e − 15 453.091963
106 S 20 57 14 0 36 2377 4.43e − 14 955.422234

Quadratic Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 6 0 0 0 298 2.22e − 12 161.779187
104 S 8 10 1 0 1 469 1.92e − 15 252.332040
105 S 18 24 4 0 5 640 6.66e − 15 478.259933
106 S 58 93 28 0 34 3153 5.57e − 14 1779.562241

Quadratic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 6 0 0 0 504 1.23e − 16 212.000412
104 S 6 8 1 0 1 697 1.09e − 15 278.757287
105 S 11 19 5 0 7 1248 7.57e − 15 499.187919
106 S 26 64 20 0 37 3156 4.32e − 14 1259.053510

More Thuente Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 16 0 0 0 298 2.22e − 12 167.026084
104 S 9 30 1 0 1 636 6.61e − 16 317.815613
105 S 21 79 6 1 7 939 8.18e − 15 620.417555
106 F 200 1601 200 200 400 6074 0.0775 5430.274450

55

More Thuente Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 16 0 0 0 504 1.23e − 16 212.738866
104 S 7 24 1 0 1 813 7.33e − 16 325.670966
105 F 200 1601 200 200 400 24243 0.0763 10001.531665
106 F 200 1601 200 200 400 26563 0.0763 10679.498846

Trust Region
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 6 NA NA NA 504 1.23e − 16 214.790449
104 S 8 9 NA NA NA 871 6.8e− 16 353.840988
105 S 11 14 NA NA NA 1334 8.19e − 15 528.589408
106 S 15 22 NA NA NA 1832 5.89e − 14 718.635854

Full Step Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 6 NA NA NA 298 2.22e − 12 157.906350
104 S 12 13 NA NA NA 446 1.13e − 15 319.371344
105 S 20 21 NA NA NA 585 7.82e − 15 501.202213
106 F 200 201 NA NA NA 1842 1.31e + 104 4086.060439

Full Step Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

103 S 5 6 NA NA NA 504 1.23e − 16 208.590341
104 S 8 9 NA NA NA 871 6.8e− 16 350.150091
105 S 12 13 NA NA NA 1236 8.1e− 15 515.169594
106 F 200 201 NA NA NA 4561 1.37e + 65 4792.743731

56

Lid Driven Cavity 3D
Cubic Choice1

S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime
100 S 7 8 0 0 0 266 2.63e − 14 104.692000
200 S 12 13 0 0 0 393 7.27e − 15 169.832319
300 S 10 11 0 0 0 455 1.23e − 14 160.762959
400 S 13 14 0 0 0 495 1.23e − 14 195.418103
500 S 13 14 0 0 0 515 1.53e − 14 206.223205
600 S 16 17 0 0 0 413 1.33e − 11 206.086810
700 S 17 20 2 0 2 819 8.14e − 13 283.679220
800 S 17 19 1 0 1 720 3.97e − 14 272.367693
900 S 22 27 4 0 4 1253 3.68e − 14 401.430639
1000 S 24 28 3 0 3 756 5.06e − 14 340.594764

Cubic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 0 0 0 495 2.59e − 15 131.654441
200 S 7 8 0 0 0 625 7.12e − 15 164.200106
300 S 8 9 0 0 0 751 1.10e − 14 194.042359
400 S 9 10 0 0 0 864 1.17e − 14 224.545563
500 S 9 10 0 0 0 927 2.87e − 14 235.666279
600 S 11 12 0 0 0 1151 3.36e − 14 290.587334
700 S 10 12 1 0 1 1176 4.03e − 14 292.697456
800 S 11 13 1 0 1 1365 5.53e − 14 340.679790
900 S 13 16 2 0 2 1648 5.67e − 14 404.259180
1000 S 17 26 8 0 8 2160 5.07e − 14 529.605405

Quadratic Choice1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 7 8 0 0 0 266 2.63e − 14 105.548778
200 S 12 13 0 0 0 393 7.27e − 15 168.653800
300 S 10 11 0 0 0 455 1.23e − 14 162.668037
400 S 13 14 0 0 0 495 1.23e − 14 196.143194
500 S 13 14 0 0 0 515 1.53e − 14 203.371747
600 S 16 17 0 0 0 413 1.33e − 11 207.986475
700 S 17 20 2 0 2 819 8.14e − 13 280.494864
800 S 17 19 1 0 1 720 3.97e − 14 274.225519
900 S 22 27 4 0 4 1253 3.68e − 14 401.193352
1000 S 24 28 3 0 3 756 5.06e − 14 354.664516

57

Quadratic Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 0 0 0 495 2.59e − 15 132.703209
200 S 7 8 0 0 0 625 7.12e − 15 168.146856
300 S 8 9 0 0 0 751 1.10e − 14 196.932237
400 S 9 10 0 0 0 864 1.17e − 14 224.682512
500 S 9 10 0 0 0 927 2.87e − 14 235.633007
600 S 11 12 0 0 0 1151 3.36e − 14 290.200892
700 S 10 12 1 0 1 1176 4.03e − 14 288.763588
800 S 11 13 1 0 1 1365 5.53e − 14 338.343319
900 S 13 16 2 0 2 1648 5.67e − 14 409.653673
1000 S 17 26 8 0 8 2160 5.07e − 14 528.286561

More Thuente Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 7 22 0 0 0 266 2.63e − 14 106.383072
200 S 12 37 0 0 0 393 7.27e − 15 178.085724
300 S 10 31 0 0 0 455 1.23e − 14 165.572808
400 S 13 40 0 0 0 495 1.23e − 14 203.166992
500 S 13 40 0 0 0 515 1.53e − 14 206.944519
600 S 18 59 2 0 2 850 1.84e − 14 307.803561
700 S 18 61 3 0 3 946 5.17e − 13 315.963266
800 S 19 64 3 0 3 1176 4.80e − 14 374.291635
900 S 19 64 3 0 3 1046 6.42e − 14 351.060000
1000 S 16 53 2 0 2 813 6.42e − 14 291.630151

More Thuente Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 19 0 0 0 495 2.59e − 15 141.351836
200 S 7 22 0 0 0 625 7.12e − 15 166.785230
300 S 8 25 0 0 0 751 1.10e − 14 201.169303
400 S 9 28 0 0 0 864 1.17e − 14 227.805476
500 S 9 28 0 0 0 927 2.87e − 14 238.384421
600 S 11 36 1 0 1 1211 2.40e − 14 314.293763
700 S 10 33 1 0 1 1170 4.55e − 14 292.697230
800 S 11 36 1 0 1 1320 4.37e − 14 332.888019
800 S 12 41 2 0 2 1484 3.66e − 14 370.552730
1000 S 13 46 3 0 3 1814 4.81e − 14 450.592816

58

Trust Region
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 7 8 NA NA NA 586 2.47e − 15 156.567477
200 S 8 9 NA NA NA 721 6.15e − 15 188.789107
300 S 9 10 NA NA NA 849 8.50e − 15 218.150629
400 S 9 10 NA NA NA 879 1.67e − 14 223.849692
500 S 11 12 NA NA NA 1072 1.54e − 14 275.023223
600 S 10 11 NA NA NA 1082 3.07e − 14 271.410170
700 S 11 12 NA NA NA 1254 3.09e − 14 312.430216
800 S 12 13 NA NA NA 1512 4.12e − 14 367.438938
900 S 18 22 NA NA NA 2777 3.71e − 14 658.829983
1000 S 14 16 NA NA NA 2049 4.61e − 14 498.664243

Full Step Choice 1
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 7 8 NA NA NA 266 2.63e − 14 103.176433
200 S 12 13 NA NA NA 393 7.27e − 15 173.186368
300 S 10 11 NA NA NA 455 1.23e − 14 162.967126
400 S 13 14 NA NA NA 495 1.23e − 14 196.046878
500 S 13 14 NA NA NA 515 1.53e − 14 204.283561
600 S 16 17 NA NA NA 413 1.33e − 11 206.968673
700 S 18 19 NA NA NA 736 3.92e − 14 278.062298
800 S 27 28 NA NA NA 629 3.52e − 14 339.087976
900 S 32 33 NA NA NA 775 3.66e − 14 410.559843
1000 S 35 36 NA NA NA 819 5.69e − 14 446.344469

Full Step Constant
S/F INS F − Evals LS f − LS BckTcks GMRES ‖F (x)‖ T ime

100 S 6 7 NA NA NA 495 2.59e − 15 131.730091
200 S 7 8 NA NA NA 625 7.12e − 15 162.208564
300 S 8 9 NA NA NA 751 1.10e − 14 192.167292
400 S 9 10 NA NA NA 864 1.17e − 14 227.151910
500 S 9 10 NA NA NA 927 2.87e − 14 236.867409
600 S 11 12 NA NA NA 1151 3.36e − 14 297.637799
700 F 200 201 NA NA NA 924 116 1908.105526
800 F 200 201 NA NA NA 1048 154 1924.440846
900 F 200 201 NA NA NA 792 3.48e + 09 1884.846037
1000 F 200 201 NA NA NA 1021 771 1934.055469

59

Bibliography

[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix
eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951.

[2] P. N. Brown and Y. Saad. Hybrid krylov methods for nonlinear systems of equations.
SIAM J. Sci. Stat. Comput., 11:450–481, 1990.

[3] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J.
Numer. Anal., 19:400–408, 1982.

[4] R. S. Dembo and T. Steihaug. Truncated newton algorithms for large-scale optimiza-
tion. Math. Prog., 26:190–212, 1983.

[5] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[6] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Series in Automatic Computation. Prentice-Hall,
Englewood Cliffs, NJ, 1983.

[7] S. C. Eisenstat and H. F. Walker. Globally convergent inexact Newton methods. SIAM
J. Optimization, 4:393–422, 1994.

[8] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton
method. SIAM J. Sci. Comput., 17:16–32, 1996.

[9] M. Heroux. Trilinos project home page. http://software.sandia.gov/trilinos, Retrieved
April 2003.

[10] P. Lin. Using the 806 IBM cluster. 2002.

[11] J. J. Moré and D. J. Thuente. Line search algorithms with guaranteed sufficient de-
crease. ACM Transactions on Mathematical Software, 20:286–307, Sept. 1984.

[12] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, New York, 1970.

[13] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, edi-
tor, Numerical Methods for Nonlinear Algebraic Equations, pages 87–114. Gordon and
Breach, London, 1970.

60

[14] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual method for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[15] J. N. Shadid, H. K. Moffat, S. A. Hutchinson, G. L. Hennigan, K. D. Devine, and A. G.
Salinger. MPSalsa: A finite element computer program for reacting flow problems
part 1 - theoretical development. Technical Report Sand95-2752, Sandia National
Laboratories, Albuquerque NM, 87185, May. 1996.

[16] J. N. Shadid, R. S. Tuminaro, and H. F. Walker. An inexact Newton method for
fully-coupled solution of the Navier–Stokes equations with heat and mass transport.
J. Comput. Phys., 137:155–185, 1997.

[17] H. F. Walker. Numerical methods for nonlinear equations. Technical Report MS-03-
02-18, Worcester Polytechnical Institute, Worcester MA, 01609, May 2002.

61

