A Numerical Study of Globalizations of Newton-GMRES Methods

by
Joseph P. Simonis
A Thesis
Submitted to the Faculty
of
WORCESTER POLYTECHNIC INSTITUTE in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Mathematics by

May 2003

APPROVED:

Dr. Homer Walker, Thesis Advisor

Dr. Bogdan Vernescu, Department Head

Abstract

Newton's method is at the core of many algorithms used for solving nonlinear equations. A globalized Newton method is an implementation of Newton's method augmented with "globalization procedures" intended to enhance the likelihood of convergence to a solution from an arbitrary initial guess. A Newton-GMRES method is an implementation of Newton's method in which the iterative linear algebra method GMRES is used to solve approximately the linear system that characterizes the Newton step. A globalized Newton-GMRES method combines both globalization procedures and the GMRES scheme to develop robust and efficient algorithms for solving nonlinear equations. The aim of this project is to describe the development of some globalized Newton-GMRES methods and to compare their performances on a few benchmark fluid flow problems.

Acknowledgments

I was first introduced to the topic of Numerical Methods for Nonlinear Equations by my advisor Prof. Walker during the summer of 2001 when he offered me a summer research position. I am grateful for his help, he was always there to answer my questions and to discuss my work. I am also very grateful for the internship he found for me at Sandia National Laboratories. It presented me with a wonderful topic for this thesis and a chance to work with wonderful people..

I also wish to thank the researchers at Sandia National Laboratories: John Shadid, Roger Pawlowski, Tamara Kolda and Paul Lin. Over the past year that I have known them they have tutored me in the subjects of fluid dynamics, mechanical engineering, computer science and mathematics. John, Roger, and Tamara all worked very hard to see that I had working codes that formulated and solved the test problems. Paul Lin was always there to ensure that I had almost painless methods of running numerous instances of the codes on the parallel machines.

Finally, I would like to thank Sandia National Laboratories for the funding throughout the school year to work on this project.

Contents

1 Introduction 2
2 Theoretical Development 4
2.1 Newton's Method 5
2.2 Inexact Newton Methods 7
2.2.1 Forcing Terms 9
2.3 Global Inexact Newton Methods 12
2.3.1 Ared/Pred 13
2.3.2 Goldstein-Armijo 14
3 Specific Algorithms 16
3.1 GMRES 16
3.2 Line Search and Trust Region Methods 19
3.2.1 Line Searches 20
3.2.2 Trust Region 27
4 Testing Environment 31
4.1 NOX 31
4.2 MPSALSA 32
4.3 Parallel Machine[10] 34
4.3.1 Cluster Hardware 35
4.3.2 Cluster Software 35
5 Benchmark Test Problems 36
5.1 Thermal Convection[16] 36
5.2 Backward Facing Step[16] 37
5.3 Lid Driven Cavity[16 38
6 Results 40
6.1 Success vs. Failure 40
6.2 Relevant Numbers 41
6.3 Results and Conclusions 43
6.3.1 A Robustness Study 43
6.3.2 An Efficiency Study 45

Chapter 1

Introduction

There is a rapidly growing demand in almost all fields of applied sciences for ways of accurately and efficiently solving very large nonlinear systems of equations. As processing speeds and memory capabilities of computers increase, the desire to solve larger and larger systems arises. It is very important to have solvers which are both robust and efficient.

The following study looks at a class of solvers known as globalized NewtonGMRES methods. These are methods stemming from the classical Newton method and are specifically designed for use on large-scale problems. A globalized Newton method is an implementation of the Newton method augmented with "globalization procedures" intended to enhance the likelihood of convergence to a solution from an arbitrary initial guess. A Newton-GMRES method is an implementation of Newton's method in which the iterative linear algebra method GMRES [14] is used to solve approximately the linear system that characterizes the Newton step. A Newton-GMRES method is just one of many Newton iterative methods. These are methods that use an iterative linear solver within the Newton algorithm. Newton iterative methods are in turn special cases of inexact Newton methods [3], in which an approximation of
the Newton step is used at each iteration.
The following chapters are aimed at describing the development of robust and efficient globalized Newton-GMRES methods. The definitions of inexact Newton methods, Newton iterative methods, and globalization methods will be given; then a few feasible globalized algorithms will be developed and compared.

Three challenging fluid dynamics problems were chosen to assess the effectiveness of the solvers. The first problem is a thermal convection problem consisting of fluid confined to a differentially heated rectangular domain. The second is a backwardfacing step problem. In this, fluid comes in at one end of a duct and flows rapidly over a "stair", causing recirculation in the low pressure area. The final problem is the lid-driven cavity problem. In this, fluid flows across the top of a cavity filled with the same fluid. This flow causes a large circulation within the domain, and when the velocity is high enough, smaller circulations also appear within the corners of the cavity. In our experiments with these problems, the goal is to determine the relative robustness and efficiency of the algorithms. We determine robustness by the number and difficulty of the problems a globalized method successfully solves. Efficiency is based on mean values of solver expenses, e.g., time or linear solver iterations.

The algorithms and problems were developed by teams of researchers at Sandia National Laboratories in Albuquerque, New Mexico The principal codes used were NOX (see [9]) and MPSalsa [15]. NOX is a software package designed to solve largescale nonlinear problems. MPSalsa is a finite element computer program for reacting flow problems. The codes were run on large parallel machines there.

Chapter 2

Theoretical Development

This chapter deals with the theoretical development of globalized Newton iterative methods, specifically globalized Newton-GMRES methods. These methods use the GMRES method to solve the linear subproblem of Newton's method and use globalization methods to improve the likelihood of convergence from a poor starting guess.

The overall goal of a globalized Newton-GMRES method is obtaining a solution to the following problem:

$$
\begin{aligned}
& \text { Given } F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, \\
& \text { find } x_{*} \text { such that } F\left(x_{*}\right)=0 .
\end{aligned}
$$

The following two assumptions will be used in many of the theorems presented below.

Assumption 2.0.1 F is continuously differentiable.

Assumption 2.0.2 $F\left(x_{*}\right)=0$ and $F^{\prime}\left(x_{*}\right)$ is nonsingular.

It is almost always impossible to solve this problem exactly. Thus iterative methods must be formulated to find an approximate numerical solution. For the algorithms presented here, the goal is to find an iterate x_{k} approximating x_{*} "well enough".

2.1 Newton's Method

The general iterative approach to solving the problem is to begin with a trial value x_{0} and then to construct hopefully better and better approximations to the solution. A classical way of constructing better approximations is via Newton's method or the Newton-Raphson Method, which is most easily described in one dimension and then extended to n-dimensional space.

Assume a function $f: \mathbf{R} \rightarrow \mathbf{R}$ and an initial guess x_{0} are given. Graphically the problem can be formulated as: Find the intersection of the graph of f and the x-axis. The basic idea of Newton's method is to find a better guess by replacing the curve by a suitable line whose intersection with the x-axis can be easily computed. For classical Newton's method, the line is the tangent line at x_{0}. Compute the intersection of the tangent line and the x -axis, and use this point as the next approximate solution. The tangent line is given by $y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$, henceforth called the local linear model of the function. The point of intersection x_{1} satisfies $0=f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+f\left(x_{0}\right)$, so the next approximate solution is $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$. Now iterate using x_{1} as the new initial guess.

$$
\text { In } n \text { dimensions, } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), F(x)=\left(\begin{array}{c}
F_{1}(x) \\
\vdots \\
F_{n}(x)
\end{array}\right) \text { and } F^{\prime}(x)=J(x)=\left(\frac{\partial F_{i}(x)}{\partial x_{j}}\right) \in
$$

$\mathbf{R}^{n \times n}$. The local linear model of F is $F(x)+J(x) s$. In this model, s is the unknown that yields the next step via $x_{1}=x_{0}+s$, with s found by solving $F(x)+J(x) s=0$. A formal algorithm can now be written.

Newton's Method[6]:
Given an initial x.

Iterate:
Decide whether to stop or continue.
Solve $J(x) s=-F(x)$.
Update $x \leftarrow x+s$.

As mentioned before, Newton's method is an iterative method. It produces a sequence of approximate solutions x_{1}, x_{2}, \ldots from a starting guess x_{0}. Two questions that can be asked about the sequence produced are: 1) does it converge to a solution x_{*} and if it does 2) how quickly does it converge to that solution? At this point some definitions are in order. We assume that $\|\cdot\|$ is a norm of interest on \mathbf{R}^{n}.

Def 2.1.1 ([6]) Let $x_{*} \in \mathbf{R}^{n}, x_{k} \in \mathbf{R}^{n}, k=1,2, \ldots$. Then the sequence $\left\{x_{k}\right\}=$ $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is said to converge to x_{*} if $\lim _{k \rightarrow \infty}\left\|x_{k}-x_{*}\right\|=0$. If in addition, there exists a constant $c \in[0,1)$ and an integer $\hat{k} \geq 0$ such that for all $k \geq \hat{k}$, $\left\|x_{k+1}-x_{*}\right\| \leq c\left\|x_{k}-x_{*}\right\|$ then $\left\{x_{k}\right\}$ is said to be \boldsymbol{q}-linearly convergent to x_{*}. If for some sequence $\left\{c_{k}\right\}$ that converges to $0,\left\|x_{k+1}-x_{*}\right\| \leq c_{k}\left\|x_{k}-x_{*}\right\|$ for each k, then $\left\{x_{k}\right\}$ is said to converge \boldsymbol{q}-superlinearly to x_{*}. If $\left\{x_{k}\right\}$ converges to x_{*} and there exist constants $p>1, c \geq 0$, such that $\left\{x_{k}\right\}$ converges to x_{*} and for all $k \geq \hat{k}$, $\left\|x_{k+1}-x_{*}\right\| \leq c\left\|x_{k}-x_{*}\right\|^{p}$, then $\left\{x_{k}\right\}$ is said to converge to x_{*} with \boldsymbol{q}-order at least \boldsymbol{p}. If $p=2$ or $p=3$, the convergence is said to be \boldsymbol{q}-quadratic or \boldsymbol{q}-cubic, respectively.

In the above definitions the prefix ' q ' stands for quotient, distinguishing these from 'r' (root) order convergence. The quotient orders are the stronger of the two; thus r-orders will not be discussed. For more information see Ortega and Rheinboldt[12]. The ' q ' will be dropped from this point onward.

Def 2.1.2 ([6]) A function g is Lipschitz continuous with constant γ in a set
$X \in \mathbf{R}^{n}$, written $g \in \operatorname{Lip}_{\gamma}(X)$, if for every $x, y \in X,\|g(x)-g(y)\| \leq \gamma\|x-y\|$.

The following theorem answers the two questions posed of the sequence produced by Newton's method:

Theorem 2.1.3 ([17]) Suppose F is Lipschitz continuously differentiable at x_{*}, and Assumptions 2.0.1 and 2.0.2 hold. Then for x_{0} sufficiently near $x_{*},\left\{x_{k}\right\}$ produced by Newton's method is well-defined and converges to x_{*} with

$$
\left\|x_{k+1}-x_{*}\right\| \leq c\left\|x_{k}-x_{*}\right\|^{2}
$$

for a constant c independent of k.

Under the assumptions of the theorem, the sequence does converge locally to x_{*} and it ultimately does so quadratically. Unfortunately this convergence only holds for x_{0} within a neighborhood of the solution. For initial guesses far from the solution, a new strategy must be devised. Globalizations of Newton's method are methods in which some strategy for getting 'near' the solution from an arbitrary initial guess is implemented, and then once 'close' enough Newton's method is used to rapidly converge to the solution. These methods are discussed in Section 2.3.

2.2 Inexact Newton Methods

In Newton's method the goal is to update x_{k} to x_{k+1} by taking the step s_{k} that solves $J\left(x_{k}\right) s_{k}=-F\left(x_{k}\right)$. Solving this system may be computationally expensive, on the order of $O\left(n^{3}\right)$ arithmetic operations for direct linear algebra methods. In large-scale problems, where n is $10^{4}, 10^{5}$ or greater, direct solutions are often infeasible. An alternative is to use iterative linear algebra methods to form an approximation of the
solution. Using an iterative linear solver to obtain approximate Newton steps results in a Newton iterative method, or a truncated Newton method.

For Newton iterative methods, one of the questions naturally asked is: How accurately must the iterative method solve the linear systems in order that the Newton iterates converge? The key idea is to get convergence, but also to minimize the amount of computation necessary to obtain it. It seems desirable that the next approximate solution x_{k+1} make $\left\|F\left(x_{k+1}\right)\right\|$ smaller than $\left\|F\left(x_{k}\right)\right\|$. If the local linear model, $F\left(x_{k}\right)+J\left(x_{k}\right) s_{k}$, is accurate, then a decrease in the model norm should correspond to a decrease in the function norm. However, a lot of effort may go into finding a very good approximation to the Newton step; when a poorer one would give at least as much reduction in $\|F\|$, then much of this effort may have been wasted. (In such a case, the algorithm is said to be 'oversolving' the problem.) Thus the iterative method should stop when a step which reduces the norm of the local linear model of F by an appropriate amount is found. This restriction then leads to an inexact Newton method. An inexact Newton method [3] is any method each step of which reduces the norm of the local linear model of F.

Inexact Newton Method[3]:

Given an initial x.
Iterate:
Decide whether to stop or continue.
Find some $\eta \in[0,1)$ and s that satisfy

$$
\|F(x)+J(x) s\| \leq \eta\|F(x)\| .
$$

Update $x \leftarrow x+s$.
At each step of a Newton iterative implementation, one chooses $\eta \in[0,1)$ and then calls an iterative linear algebra method to solve for a step meeting the given tolerance. In this context η is called the forcing term because it forces a reduction of the local linear model norm. The following section outlines the details of choosing the η 's in such a way as to maintain the convergence properties of Newton's method.

2.2.1 Forcing Terms

The choice of the forcing terms in an inexact Newton method plays a critical role in the determination of whether or not the iterates converge to a solution and the rate of that convergence. The choice can have a very dramatic effect, demonstrated by the following three theorems found in [3]. Different restrictions on the sequence $\left\{\eta_{k}\right\}$ give great differences in the convergence of the inexact Newton iterates.

Theorem 2.2.1 Suppose Assumptions 2.0.1 and 2.0.2 hold and that $\eta_{k} \leq \eta_{\max }<t<$ 1 for all k. There exists $\epsilon>0$ such that if $\left\|x_{0}-x_{*}\right\| \leq \epsilon$, then the sequence of inexact Newton iterates $\left\{x_{k}\right\}$ converges to x_{*}. Moreover the convergence is linear in the sense that $\left\|x_{k+1}-x_{*}\right\|_{*} \leq t\left\|x_{k}-x_{*}\right\|_{*}$, where $\|y\|_{*}=\left\|F^{\prime}\left(x_{*}\right) y\right\|$ for all $y \in \mathbf{R}^{n}$.

Theorem 2.2.2 Suppose Assumptions 2.0.1 and 2.0.2 hold and that the inexact Newton iterates $\left\{x_{k}\right\}$ converge to x_{*}. Then $x_{k} \rightarrow x_{*}$ superlinearly iff $\left\|F\left(x_{k}\right)+F^{\prime}\left(x_{k}\right) s_{k}\right\|=$ $o\left(\left\|F\left(x_{k}\right)\right\|\right)$ as $k \rightarrow \infty$.

For the final theorem, it is helpful to be reminded of a definition:

Def 2.2.3 A function g is said to be Hölder continuous with exponent $p \in(0,1]$ in a set $X \in \mathbf{R}^{n}$ if for some constant C we have $\|g(x)-g(y)\| \leq C\|x-y\|^{p}$ for every $x, y \in X$.

Theorem 2.2.4 Suppose Assumptions 2.0.1 and 2.0.2 hold and assume that the inexact Newton iterates $\left\{x_{k}\right\}$ converge to x_{*}. Then $x_{k} \rightarrow x_{*}$ with order at least $1+p$ if F^{\prime} is Hölder continuous with exponent p at x_{*} and $\eta_{k}=O\left(\left\|F\left(x_{k}\right)\right\|^{p}\right)$ as $k \rightarrow \infty$.

These three theorems show the importance of the choice of η_{k} in the convergence rates near the solution. If η_{k} is only chosen such that $\eta_{k} \in\left[0, \eta_{\max }\right]$ for some $\eta_{\max }<1$,
then the convergence is linear. Requiring $\lim _{k \rightarrow \infty} \eta_{k}=0$ increases the convergence rate to superlinear, and finally imposing $\eta_{k}=O\left(\left\|F\left(x_{k}\right)\right\|\right)$ gains quadratic convergence (if $\mathrm{p}=1$ in the final theorem).

Many implementations of inexact Newton methods set a constant forcing term, usually something small such as 10^{-2} or 10^{-4}, forcing the linear solver to choose a step very close to the Newton step. Other implementations have used decreasing forcing terms in order to obtain increasingly rapid convergence near the solution. Examples include $\eta_{k}=\frac{1}{2^{k+1}}$ [2], which gives local superlinear convergence, and $\eta_{k}=\min \left\{\left\|F\left(x_{k}\right)\right\|, \frac{1}{k+2}\right\}$ [4], which gives the convergence rate of Newton's method (typically quadratic). Upon first examination it might seem that very small or decreasing η_{k} 's should be employed, but it must be remembered if the current approximation of the solution is not near x_{*}, then 'the local linear model may disagree with F considerably at a step that closely approximates the Newton step.' $[17]$ In this case the linear solver may work very hard to find a step that gives little or no decrease in $\|F\|$. So away from x_{*} a desirable η_{k} will in some way be based on the agreement between F and its local linear model.

Eisenstat and Walker suggest an adaptive forcing term as follows [8]:

$$
\begin{equation*}
\eta_{0} \in[0,1), \eta_{k}=\frac{\left|\left\|F\left(x_{k}\right)\right\|-\left\|F\left(x_{k-1}\right)+F^{\prime}\left(x_{k-1}\right) s_{k-1}\right\|\right|}{\left\|F\left(x_{k-1}\right)\right\|}, k=1,2, \ldots, \tag{2.1}
\end{equation*}
$$

With this choice a large discrepancy between the linear model at the previous step and F at the current point will yield a larger η_{k}. Thus on the next iteration the linear solver will not spend excessive processor time finding a close approximation to the Newton step. Conversely if the previous step's model value and the current function value are in close agreement, η_{k} will be small and the next step will approximate the Newton step very closely. Thus the choice (2.1) seems likely to reduce oversolving and has been shown to do so in experiments in [8] and [16].

Reasonable questions to ask are: With this choice of η_{k} does convergence occur once an x_{k} is in a small neighborhood of x_{*}, and what is the order of the convergence if it occurs?

Theorem 2.2.5 ([8]) Suppose Assumptions 2.0.1 and 2.0.2 hold and the Jacobian is Lipschitz continuous at x_{*}. If x_{0} is sufficiently near x_{*} then $\left\{x_{k}\right\}$ produced by the inexact Newton method with $\left\{\eta_{k}\right\}$ given by (2.1) remains near x_{*} and converges to x_{*} with

$$
\left\|x_{k+1}-x_{*}\right\| \leq \beta\left\|x_{k}-x_{*}\right\|\left\|x_{k-1}-x_{*}\right\|, \quad k=1,2, \ldots,
$$

for a constant β independent of k.

Thus once an x_{k} close to the solution is found, superlinear convergence is expected.
Although the forcing term (2.1) works well for avoiding oversolving it does have its drawbacks. For example, assume that far away from x_{*} there is an x_{k} where $F\left(x_{k}\right)$ and the local linear model just happen to agree really well. Then η_{k} will be very small and the linear solver may oversolve. To help avoid this, safeguards are implemented to ensure that the sequence $\left\{\eta_{k}\right\}$ does not decrease too rapidly. 'The rationale is that if large forcing terms are appropriate at some point, then subsequent forcing terms should not be allowed to become much smaller until this has been justified over several iterations.' $\left.{ }^{\text {' }} 8 \mathrm{~B}\right]$ Also, far away from the solution it is possible for η_{k} to become greater than 1. Thus a safeguard to ensure $\eta_{k} \in[0,1)$ is necessary. A safeguard proposed by Eisenstat and Walker in [8] and implemented in the numerical studies discussed below is to modify $\eta_{k} \leftarrow \max \left\{\eta_{k}, \eta_{k-1}^{(1+\sqrt{5}) / 2}\right\}$ whenever $\eta_{k-1}^{(1+\sqrt{5}) / 2}>.1$. We also require that $\eta_{k} \in[0.0001, .9]$.

2.3 Global Inexact Newton Methods

Previously it was shown that under certain conditions the iterates produced by Newton's method converge quadratically to a solution x_{*}, and that those of the inexact Newton method with η_{k} given by (2.1) can obtain superlinear convergence. Both cases assume an initial guess x_{0} sufficiently close to x_{*}. Nothing has been said about how to get 'close' to the solution when the initial guess is far from the solution. Here the inexact Newton method will be augmented with additional conditions on the choices of iterates $\left\{x_{k}\right\}$ to enhance the likelihood of convergence to x_{*}. The new method is known as a global inexact Newton method. This section presents the general global inexact Newton method along with two specific step acceptance criteria. Section 3.2 outlines several globalization procedures that modify the steps as necessary to meet these criteria. It is important to note that no strategy will determine a sequence that converges to a solution for every problem; rather the globalization techniques are used only to enhance the likelihood of convergence to some solution of the problem.

As before, it seems desirable to find a sequence of iterates such that $\left\|F\left(x_{k+1}\right)\right\|<$ $\left\|F\left(x_{k}\right)\right\|$. However, this condition alone is not sufficient to ensure convergence. Therefore the global inexact Newton method includes a sufficient decrease condition on the iterate norms $\left\|F\left(x_{k}\right)\right\|$.

Global Inexact Newton Method[7]:

Given an initial x and $t \in(0,1)$.
Iterate:
Decide whether to stop or continue.
Find some $\eta \in[0,1)$ and s that satisfy

$$
\|F(x)+J(x) s\| \leq \eta\|F(x)\|
$$

and
$\|F(x+s)\| \leq[1-t(1-\eta)]\|F(x)\|$
Update $x \leftarrow x+s$.

The two theorems below address the existence of steps meeting these criteria and
the convergence of sequences produced by such steps.

Theorem 2.3.1 ([7]) Let x and $t \in(0,1)$ be given and assume that there exists an \bar{s} that satisfies $\|F(x)+J(x) \bar{s}\|<\|F(x)\|$. Then there exists $\eta_{\min } \in[0,1)$ such that, for any $\eta \in\left[\eta_{\text {min }}, 1\right)$, there is an s satisfying $\|F(x)+J(x) s\| \leq \eta\|F(x)\|$ and $\|F(x+s)\| \leq[1-t(1-\eta)]\|F(x)\|$.

Theorem 2.3.2 ([7]) Suppose $\left\{x_{k}\right\}$ is produced by the global inexact Newton method. If $\sum_{k=0}^{\infty}\left(1-\eta_{k}\right)=\infty$, then $F\left(x_{k}\right) \rightarrow 0$. If, in addition, x_{*} is a limit point of $\left\{x_{k}\right\}$ such that $J\left(x_{*}\right)$ is nonsingular, then $F\left(x_{*}\right)=0$ and $x_{k} \rightarrow x_{*}$.

The following sections present two of the most widely used criteria for determining an acceptable step, the Ared/Pred condition and the Goldstein-Armijo conditions. Both are shown to be special cases of the global inexact Newton method acceptability condition. These criteria in no way guarantee that a sequence of iterates converges to x_{*} such that $F\left(x_{*}\right)=0$; rather, it may diverge or converge to a non-zero local minimum of $\|F\|$ instead. In the numerical studies described later, the Ared/Pred choice was almost always used; it will be noted when the Goldstein-Armijo conditions were implemented.

2.3.1 Ared/Pred

This criterion accepts a step based on the ratio of the actual reduction in the function norm to the reduction predicted by the local linear model. If a lot of effort has been put into finding a step in which there is sufficient decrease in the local linear model norm, then it is quite reasonable to require the chosen step to give a sufficient decrease in $\|F\|$ relative to that of the model norm. The following notation is used [7]: Given
$x \in \mathbf{R}^{n}$ and a step $s \in \mathbf{R}^{n}$, define

- ared $\equiv\|F(x)\|-\|F(x+s)\|$, the actual reduction of $\|F\| ;$
- pred $\equiv\|F(x)\|-\|F(x)+J(x) s\|$, the predicted reduction of $\|F\|$.

For exact Newton's method an acceptable decrease at a step k is obtained when ared $\geq t \cdot$ pred for some fixed $t \in(0,1)$. If s and η have been chosen to satisfy $\| F(x)+$ $J(x) s\|\leq \eta\| F(x) \|$ as well as this condition, then they also satisfy the sufficient decrease condition in the global inexact Newton method. Indeed, in this case,

$$
\begin{aligned}
& \begin{aligned}
\text { ared } & \geq t \cdot \text { pred } \\
\Rightarrow \quad\|F(x)\|-\|F(x+s)\| & \geq t(\|F(x)\|-\|F(x)+J(x) s\|) \\
\Rightarrow \quad(1-t)\|F(x)\| & \geq\|F(x+s)\|-t\|F(x)+J(x) s\| \\
& \geq\|F(x+s)\|-t \eta\|F(x)\| \\
\Rightarrow \quad(1-t(1-\eta))\|F(x)\| & \geq\|F(x+s)\|
\end{aligned} .\left\{\begin{aligned}
& \geq \|
\end{aligned}\right)
\end{aligned}
$$

It should also be noted that a step satisfies $\|F(x)+J(x) s\| \leq \eta\|F(x)\|$ and the last inequality if and only if pred $\geq(1-\eta)\left\|F\left(x_{k}\right)\right\|$ and ared $\geq t(1-\eta)\left\|F\left(x_{k}\right)\right\|$. Thus the sufficient decrease condition in the global inexact Newton method can be viewed as an extension of the condition ared $\geq t \cdot$ pred to the inexact Newton context. In the following, it will be referred to as the Ared/Pred condition.

2.3.2 Goldstein-Armijo

The second set of criteria, the Goldstein-Armijo conditions, was developed for optimization problems, where the goal is solving $\min _{x \in \mathbf{R}^{n}} f(x)$ by seeking an x_{*} such that $\nabla f\left(x_{*}\right)=0$. The first of these two conditions is similar to the Ared/Pred condition in that the next iterate should give a sufficient decrease relative to that predicted by the model. The criterion is called the α-condition and with $f(x) \equiv\|F(x)\|_{2}^{2}$ is written as,

$$
\begin{equation*}
\left\|F\left(x_{k}+s\right)\right\|_{2}^{2} \leq\left\|F\left(x_{k}\right)\right\|_{2}^{2}+2 \alpha F\left(x_{k}\right)^{T} J\left(x_{k}\right) s, \quad \alpha \in(0,1) \tag{2.2}
\end{equation*}
$$

The second condition, the β-condition, is also known as the curvature condition. Its purpose is to ensure that the steps are not too short to make adequate progress towards a solution:

$$
\begin{equation*}
F\left(x_{k}+s\right)^{T} J\left(x_{k}+s\right) s \geq \beta F\left(x_{k}\right)^{T} J\left(x_{k}\right) s, \quad \beta \in(\alpha, 1) \tag{2.3}
\end{equation*}
$$

For an inexact Newton step, the Goldstein-Armijo α-condition, like the Ared/Pred condition, implies the sufficient decrease condition of the global inexact Newton method [7]. Indeed, given s and η satisfying $\|F(x)+J(x) s\| \leq \eta\|F(x)\|$, the final term of the α-condition can be rewritten as follows:

$$
\begin{aligned}
2 \alpha F^{T} J s & =2 \alpha F^{T}[-F+F+J s] \\
& =-2 \alpha\|F\|_{2}^{2}+2 \alpha F^{T}(F+J s) \\
& \leq-2 \alpha(1-\eta)\|F\|_{2}^{2}
\end{aligned}
$$

where the last inequality comes from the Cauchy-Schwarz inequality:

$$
\begin{aligned}
\left|F^{T}(F+J s)\right| & \leq\|F\|_{2}\|F+J s\|_{2} \\
& \leq \eta\|F\|_{2}^{2}
\end{aligned}
$$

Hence the α-condition is now

$$
\|F(x+s)\|_{2}^{2} \leq[1-2 \alpha(1-\eta)]\|F(x)\|_{2}^{2}
$$

Since the left-hand side is nonnegative, it must be that $2 \alpha(1-\eta) \leq 1 ;$ since $\sqrt{1-\epsilon} \leq$ $1-\epsilon / 2$ whenever $|\epsilon| \leq 1$, then

$$
\|F(x+s)\|_{2} \leq[1-\alpha(1-\eta)]\|F\|_{2}
$$

which is exactly the sufficient decrease condition in the global inexact Newton method with $\alpha=t$.

Chapter 3

Specific Algorithms

The previous chapter defined a global inexact Newton method. Globalized NewtonGMRES methods are global inexact Newton methods which use the iterative linear solver GMRES to find an initial inexact Newton step. Section 3.1 is a detailed examination of the GMRES method. Section 3.2 describes four globalization methods, i.e., methods of deriving a satisfactory step when the initial inexact Newton step does not meet the global step acceptance criterion.

3.1 GMRES

At the heart of an inexact Newton method is the linear problem $J(x) s=-F(x)$. Our algorithm will use GMRES to find an approximate solution. The following motivation for and formulation of GMRES is a merging of the descriptions from [5] and [17].

GMRES is a particular Krylov subspace method. These methods constitute a class of algorithms designed to solve the linear problem: Find $x \in \mathbf{R}^{n}$ such that $A x=b$, $A \in \mathbf{R}^{n \times n}, b \in \mathbf{R}^{n}$. A Krylov subspace method begins with an initial x_{0} and at the
$k^{t h}$ step, determines an iterate x_{k} through a correction in the $k^{\text {th }}$ Krylov subspace

$$
\begin{equation*}
\mathcal{K}_{k} \equiv \operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{n-1} r_{0}\right\} \tag{3.1}
\end{equation*}
$$

where $r_{0} \equiv b-A x_{0}$ is the initial residual. A strong attraction of these methods is that implementations only require products $A v$ and sometimes $A^{T} v$. Thus within the methods no direct access or manipulation of the entries of A is required. GMRES uses only $A v$ products.

A key to deriving the GMRES algorithm is the Arnoldi process [1].

Arnoldi Process:

$$
\begin{aligned}
& \text { Given } r_{0} \text {. } \\
& \text { Set } \rho_{0} \equiv\left\|r_{0}\right\|_{2} \text { and } q_{1} \equiv r_{0} / \rho_{0} . \\
& \text { For } k=1,2, \ldots \text { do: } \\
& \text { Initialize } q_{k+1}=A q_{k} . \\
& \text { For } i=1, \ldots, k \text { do: } \\
& \quad \text { Set } h_{i k}=q_{i}^{T} q_{k+1} \text {. } \\
& \text { Update } q_{k+1} \leftarrow q_{k+1}-h_{i k} q_{i} . \\
& \text { Set } h_{k+1, k}=\left\|q_{k+1}\right\|_{2} . \\
& \text { Update } q_{k+1} \leftarrow q_{k+1} / h_{k+1, k} .
\end{aligned}
$$

Two important notes: the vectors q_{1}, \ldots, q_{k} form an orthogonal basis for \mathcal{K}_{k} and $A Q_{k}=Q_{k+1} H_{k}$, where $Q_{k}=\left[q_{1}, \ldots, q_{k}\right]$, and H_{k} is a $(k+1) \times k$ upper Hessenberg matrix.

In GMRES, each iterate x_{k} is chosen to minimize the residual norm over all corrections in \mathcal{K}_{k}. Using the Arnoldi process, the minimization problem can be reformulated into a low-dimensional least squares problem. Note that a correction vector $z_{k} \in \mathcal{K}_{k}$ can be written using the orthogonal basis Q_{k} as $z_{k}=Q_{k} y_{k}$. Then:

$$
\begin{aligned}
\left\|r_{k}\right\|_{2} & =\left\|b-A x_{k}\right\|_{2} \\
& =\left\|b-A\left(x_{0}+z_{k}\right)\right\|_{2} \\
& =\left\|r_{0}-A Q_{k} y_{k}\right\|_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|r_{0}-Q_{k+1} H_{k} y_{k}\right\|_{2} \\
& =\left\|Q_{k+1}\left(\left\|r_{0}\right\|_{2} e_{1}-H_{k} y_{k}\right)\right\|_{2} \\
& =\| \| r_{0}\left\|_{2} e_{1}-H_{k} y_{k}\right\|_{2}
\end{aligned}
$$

where $e_{1}=(1,0, \ldots, 0)^{T} \in \mathbf{R}^{k+1}$.
With the problem of minimizing $\|r\|_{2}$ transformed into a least squares problem for the entries of y_{k}, and the bonus of H_{k} being an upper Hessenberg matrix, the $Q R$ decomposition needed to solve for y_{k} can be accomplished with k Givens rotations. A Givens rotation $R(\theta) \equiv\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ rotates a vector $x \in \mathbf{R}^{2}$ counterclockwise by θ degrees. If θ is chosen such that $\cos (\theta)=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}$ and $\sin (\theta)=\frac{-x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}$ then $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\sqrt{x_{1}^{2}+x_{2}^{2}} \\ 0\end{array}\right]$. In the decomposition of H_{k}, a Givens rotation is used to zero out the $(i+1)^{t h}$ element of each column i by applying it to the $i^{t h}$ and $(i+1)^{\text {th }}$ rows, leaving an upper triangular matrix R.

The decomposition of H_{k} gives $J_{k} \ldots J_{1} H_{k}=\binom{R_{k}}{0}$, where the J_{i} 's are the Givens rotations. Now set $w=J_{k} \ldots J_{1} e_{1}\left\|r_{0}\right\|_{2}$:

$$
\begin{equation*}
\left\|e_{1}\right\| r_{0}\left\|_{2}-H_{k} y_{k}\right\|_{2}=\left\|J_{1}^{T} \ldots J_{k}^{T}\left[w-\binom{R_{k}}{0} y_{k}\right]\right\|_{2}=\left\|w-\binom{R_{k}}{0} y_{k}\right\|_{2} \tag{3.2}
\end{equation*}
$$

where $R_{k} \in \mathbf{R}^{k \times k}$.
It follows that $R_{k} y_{k}=\left(w_{1}, \ldots, w_{k}\right)^{T}$ and the $(k+1)^{t h}$ element of w is the residual at the $k^{\text {th }}$ iteration, i.e., $\left\|r_{k}\right\|_{2}=\left|w_{k+1}\right|$. Thus at each iteration it is a trivial matter to check the norm of the residual vector and subsequently stop the iterations when the residual norm has decreased below a specified tolerance.

As the iterations proceed the amount of storage required increases; it is on the order of $O(k n)$ for k iterations. Also the number of multiplications increases with the introduction of each new vector. To overcome these steadily increasing costs, GMRES is usually restarted in practice. After a fixed number, m, of steps the current solution
x_{m} is chosen to be the new initial vector, and GMRES is begun from scratch. The modified algorithm is $\operatorname{GMRES}(m)$ [14].

GMRES (m) :
Given: A, b, x, tol, itmax.
Initialize: Set $r \equiv b-A x, v_{1} \equiv r /\|r\|_{2}, w \equiv\|r\|_{2} e_{1} \in(R)^{m+1}$.
Iterate: For $k=1, \ldots, m$ do:
Initialize $v_{k+1}=A v_{k}$.
For $i=1, \ldots, k$ do:
Set $h_{i k}=v_{i}^{T} v_{k+1}$.
Update $v_{k+1} \leftarrow v_{k+1}-h_{i k} v_{i}$.
Set $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$.
If $k>1$, apply $J_{k-1} \ldots J_{1}$ to $\left(h_{1, k}, \ldots, h_{k, k}, h_{k+1, k}, 0, \ldots\right)^{T} \in \mathbf{R}^{m+1}$.
Determine J_{k} such that

$$
J_{k} \ldots J_{1}\left(\begin{array}{c}
h_{1, k} \\
\vdots \\
h_{k, k} \\
h_{k+1, k} \\
0 \\
\vdots
\end{array}\right) \equiv\left(\begin{array}{c}
r_{1, k} \\
\vdots \\
r_{k, k} \\
0 \\
0 \\
\vdots
\end{array}\right) .
$$

If $k=1$, form $R_{1} \equiv\left(r_{11}\right)$; else form $R_{k} \equiv\left(\begin{array}{cc}R_{k-1} & r_{1, k} \\ & \vdots \\ 0 \ldots 0 & r_{k, k}\end{array}\right)$.
Update $w \leftarrow J_{k} w$. If $\left|w_{k+1}\right| \leq t o l$ or $k=m$, go to Solve; else update $v_{k+1} \leftarrow v_{k+1} / h_{k+1, k}$.
Solve: Let k be the final iteration number from Iterate.
Solve $R_{k} y=\overline{\mathrm{w}}$ for y, where $\overline{\mathrm{w}} \equiv\left(w_{1}, \ldots, w_{k}\right)^{T}$.
Update $x \leftarrow x+\left(v_{1}, \ldots, v_{k}\right) y$.
If $\left|w_{k+1}\right| \leq t o l$, accept x; otherwise, return to Initialize.

3.2 Line Search and Trust Region Methods

A global inexact Newton method imposes one or more additional criteria on the steps of an inexact Newton method to enhance the likelihood that $x_{k} \rightarrow x_{*}$. Assume the
method has chosen a step approximating the Newton step, and furthermore, that the step does not satisfy the sufficient decrease condition imposed by either the Ared/Pred or Goldstein-Armijo conditions (whichever was chosen to be implemented). A globalization method is then invoked to find a satisfactory step. Two of the most widely used classes of these methods are line search methods and trust region methods. Line search methods use the direction of the inexact Newton step, and an acceptable step is sought by systematically changing the length of the step. A trust region method first chooses a step length within which the local linear model is 'trusted', and then seeks a step which minimizes $\|F(x)+J(x) s\|$ over all steps of length less than or equal to the trusted length.

3.2.1 Line Searches

Line search methods consider the 1-dimensional cross section of $\|F(x)\|$ that intersects the points $\left\|F\left(x_{k}\right)\right\|$ and $\left\|F\left(x_{k}+s_{k}\right)\right\|$. The goal is to then find a $\lambda_{k} \in(0,1]$ such that $x_{k+1}=x_{k}+\lambda_{k} s_{k}$ is an acceptable step.

This approach is a feasible method. If an initial inexact Newton step has been found, then a sufficiently shortened step s_{k} having the same direction will satisfy both an inexact Newton condition $\left\|F\left(x_{k}\right)+J\left(x_{k}\right) s_{k}\right\| \leq \eta_{k}\left\|F\left(x_{k}\right)\right\|$ and the corresponding sufficient decrease condition $\left\|F\left(x_{k}+s_{k}\right)\right\| \leq\left[1-t\left(1-\eta_{k}\right)\right]\left\|F\left(x_{k}\right)\right\|$; see [7, p. 410].

The next three sections present different methods of obtaining a λ that yields a satisfactory next step. In the developments of all three algorithms, it is assumed that the norm is the Euclidean norm, although the developments can be easily adapted to allow any inner-product norm. Also, in implementations, usually some restriction is put on the size of λ, for example $\lambda \in\left(\lambda_{\min }, \lambda_{\max }\right)$ for some $0<\lambda_{\min }<\lambda_{\max }<1$.

Quadratic Interpolation

Take a cross-section of F along the line $x_{k}+\lambda s_{k}, \lambda \in[0,1]$. For ease of notation the index k will be dropped. The problem is to minimize $\|F(x+\lambda s)\|$, or similarly $\|F(x+\lambda s)\|^{2}$, with respect to λ. This 1-dimensional minimization problem can be very expensive to solve exactly, so the idea is to use interpolation to get an easily minimizable approximation to $\|F(x+\lambda s)\|^{2}$.

Finding a quadratic polynomial approximation to the function will require three interpolating values. Define $g(\lambda)=\|F(x+\lambda s)\|^{2}$. Then $g(0)=\|F(x)\|^{2}$ is already known and, since s has been unsuccessfully tested for sufficient reduction, so is $g(1)=$ $\|F(x+s)\|$. The third interpolation value is $g^{\prime}(0)=2 F^{T} J s$. Using the three points $g(0), g(1)$, and $g^{\prime}(0)$ a quadratic model of $\|F(x+\lambda s)\|^{2}$ can be built, a minimizer can be found, and the new trial step can be checked. The quadratic model is

$$
\begin{equation*}
p(\lambda)=\left[g(1)-g(0)-g^{\prime}(0)\right] \lambda^{2}+g^{\prime}(0) \lambda+g(0) . \tag{3.3}
\end{equation*}
$$

Then the derivatives are:

$$
\begin{aligned}
p^{\prime}(\lambda) & =2\left[g(1)-g(0)-g^{\prime}(0)\right] \lambda+g^{\prime}(0) \\
p^{\prime \prime}(\lambda) & =2\left[g(1)-g(0)-g^{\prime}(0)\right]
\end{aligned}
$$

If $p^{\prime \prime}(\lambda) \leq 0$ then the quadratic is concave down, so choose $\lambda=\lambda_{\max }$. If $p^{\prime \prime}(\lambda)>0$ then find the λ such that $p^{\prime}(\lambda)=0$:

$$
\begin{aligned}
0=p^{\prime}(\lambda) & =2\left[g(1)-g(0)-g^{\prime}(0)\right] \lambda+g^{\prime}(0) \\
& \Rightarrow \lambda=\frac{-g^{\prime}(0)}{2\left[g(1)-g(0)-g^{\prime}(0)\right]}
\end{aligned}
$$

Correcting for $\lambda \in\left(\lambda_{\min }, \lambda_{\max }\right)$ if necessary, one obtains λ, the fraction used to reduce the step length. Now updating $x \leftarrow \lambda s$ and $\eta \leftarrow 1-\lambda(1-\eta)$, check to see if the new step s and η satisfy the reduction criterion $\|F(x+s)\| \leq[1-t(1-\eta)]\|F\|$. If this is not satisfied, repeat the process.

Cubic Interpolation

Cubic interpolation is almost like quadratic interpolation: instead of using three interpolation points, four points are used and a cubic polynomial is constructed. On the first step reduction there is no clear way to choose a fourth point, so just three are chosen, and a quadratic polynomial is used. On subsequent reductions, however, four points can be found. The two points $g(0)$ and $g^{\prime}(0)$ are used as well as the values of g at the two previous λ values. For example the second reduction uses $g(0), g^{\prime}(0)$, $g\left(\lambda_{1}\right)$, and $g(1)$, the fourth backtracking step will use $g(0), g^{\prime}(0), g\left(\lambda_{3}\right)$, and $g\left(\lambda_{2}\right)$, etc.

As done in [6] denote the two previous λ values as $\lambda_{\text {prev }}$ and $\lambda_{2 \text { prev }}$. The cubic polynomial approximation of the function $\|F(x+\lambda s)\|^{2}$ then becomes

$$
p(\lambda)=a \lambda^{3}+b \lambda^{2}+g^{\prime}(0) \lambda+g(0)
$$

with

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{\lambda_{\text {prev }}-\lambda_{\text {pprev }}}\left[\begin{array}{cc}
\frac{1}{\lambda_{\text {prev }}} & \frac{-1}{\lambda_{2 \text { prev }}^{2}} \\
\frac{-\lambda_{\text {prev }}}{\lambda_{\text {prev }}} & \frac{\lambda_{\text {prev }}^{2}}{\lambda_{2 \text { prev }}}
\end{array}\right]\left[\begin{array}{c}
g\left(\lambda_{\text {prev }}\right)-g(0)-g^{\prime}(0) \lambda_{\text {prev }} \\
g\left(\lambda_{2 \text { prev }}\right)-g(0)-g^{\prime}(0) \lambda_{2 \text { prev }}
\end{array}\right]
$$

The local minimizer of the model is given by $\lambda_{+}=\frac{-b+\sqrt{b^{2}-3 a g^{\prime}(0)}}{3 a}$. As with the quadratic line search, let $s \leftarrow \lambda s$ and $\eta \leftarrow 1-\lambda(1-\eta)$ and check if the new s and η satisfy the reduction criterion. If not, iterate.

Moré-Thuente

The Moré-Thuente algorithm [11] for choosing an acceptable step is a two-step process. First an interval of λ-values is chosen in a way which guarantees that there exists a λ_{*} within the interval such that $\lambda_{*} s$ satisfies the sufficient decrease and curvature
conditions of the algorithm, given in (3.4) and (3.5) below. Second a point is chosen within the interval and tested. If it is not satisfactory, the interval is contracted, yielding a smaller interval still containing a λ_{*}, and the process iterates:

Given $\lambda_{0} \in\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]$.
Set $I_{0}=[0, \infty]$.
For $k=0,1, \ldots$
Choose a safeguarded $\lambda_{k} \in I_{k} \bigcap\left[\lambda_{\min }, \lambda_{\max }\right]$.
Test for convergence.
Update the interval I_{k}.

An important feature of the algorithm is its ability to produce λ values greater than one. The algorithm can produce steps longer than the original step if there is evidence that $\|F\|$ is decreasing sufficiently rapidly at the initial step.

The following paragraphs describe in detail the algorithms used for the interval updates and test point choices.

First, some general notation: let $\phi(\lambda) \equiv \frac{1}{2}\|F(x+\lambda s)\|^{2}$ and $\psi(\lambda) \equiv \phi(\lambda)-\phi(0)-$ $\mu \phi^{\prime}(0) \lambda$. The Moré-Thuente algorithm is designed to find a λ satisfying the following two criteria:

$$
\begin{equation*}
\phi(\lambda) \leq \phi(0)+\mu \phi^{\prime}(0) \lambda \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\phi^{\prime}(\lambda)\right| \leq \zeta\left|\phi^{\prime}(0)\right| \tag{3.5}
\end{equation*}
$$

for μ and ζ in $(0,1)$. The first condition is equivalent to the α-condition, and the second is stronger than the β-condition with $\zeta=\beta$:

$$
\begin{equation*}
\left|\phi^{\prime}(\lambda)\right| \leq \zeta\left|\phi^{\prime}(0)\right| \Rightarrow \phi^{\prime}(\lambda) \geq \zeta \phi^{\prime}(0) \Rightarrow F(x+s)^{T} J(x+s) s \geq \zeta F(x)^{T} J(x) s \tag{3.6}
\end{equation*}
$$

Therefore, if the method succeeds, the step found will satisfy the inexact Newton condition and sufficient decrease condition of the global method, at least if the final λ satisfies $\lambda \leq 1$ and the initial η is updated by $\eta \leftarrow 1-\lambda(1-\eta)$.

Define the set $T(\mu) \equiv\left\{\lambda>0: \phi(\lambda) \leq \phi(0)+\mu \phi^{\prime}(0) \lambda,\left|\phi^{\prime}(\lambda)\right| \leq \mu\left|\phi^{\prime}(0)\right|\right\}$. The design of the algorithm guarantees a λ in $T(\mu)$; but without additional restraints, there is no guarantee that a λ satisfying criteria (3.4) and (3.5) can be found.

The first goal is to find a satisfactory interval that contains a $\lambda_{*} \in T(\mu)$. There exist conditions on the endpoints of an interval I that guarantee it has a nonnempty intersection with $T(\mu)$.

Theorem 3.2.1 ([11]) Let I be a closed interval with endpoints λ_{l} and λ_{u}. If the endpoints satisfy

$$
\psi\left(\lambda_{l}\right) \leq \psi\left(\lambda_{u}\right), \quad \psi\left(\lambda_{l}\right) \leq 0, \quad \psi^{\prime}\left(\lambda_{l}\right)\left(\lambda_{u}-\lambda_{l}\right)<0
$$

then there is a λ_{*} in I with $\psi\left(\lambda_{*}\right) \leq \psi\left(\lambda_{l}\right)$ and $\psi^{\prime}\left(\lambda_{*}\right)=0$. In particular, $\lambda_{*} \in$ $(T(\mu) \cap I)$.

Assuming there is a maximum allowable step length, $\lambda_{\max }>0$, such that $\psi\left(\lambda_{\max }\right)>$ $\psi(0)$, the interval $\left[0, \lambda_{\text {max }}\right]$ satisfies the assumptions of the theorem. Trivially, $\psi(0)=$ 0 , and with the assumption on $\lambda_{\max }$ the first two conditions are satisfied. Also, $\psi^{\prime}(0)=\phi^{\prime}(0)-\mu \phi^{\prime}(0)=(1-\mu) \phi^{\prime}(0)$, but $\phi^{\prime}(0)<0$, so $\psi^{\prime}(0)\left(\lambda_{\max }-0\right)<0$.

For now, assume that at step k of the algorithm, a trial λ_{k} has been found in I_{k} with endpoints λ_{l}^{k} and λ_{u}^{k}, but $\lambda_{k} \notin T(\mu)$, i.e., is unacceptable; then the interval must be updated. The updating algorithm is a conditional update based on three possibilities.

Updating Algorithm[11]:

Given a trial value λ_{k} in I_{k}, the endpoints λ_{l}^{k+1} and λ_{u}^{k+1} of the updated interval I_{k+1} are determined as follows:
Case U1: If $\psi\left(\lambda_{k}\right)>\psi\left(\lambda_{l}^{k}\right)$, then $\lambda_{l}^{k+1}=\lambda_{l}^{k}$ and $\lambda_{u}^{k+1}=\lambda_{k}$.
Case U2: If $\psi\left(\lambda_{k}\right) \leq \psi\left(\lambda_{l}^{k}\right)$ and $\psi^{\prime}\left(\lambda_{k}\right)\left(\lambda_{l}^{k}-\lambda_{k}\right)>0$, then $\lambda_{l}^{k+1}=\lambda_{k}$ and $\lambda_{u}^{k+1}=\lambda_{u}^{k}$. Case U3: If $\psi\left(\lambda_{k}\right) \leq \psi\left(\lambda_{l}^{k}\right)$ and $\psi^{\prime}\left(\lambda_{k}\right)\left(\lambda_{l}^{k}-\lambda_{k}\right)<0$, then $\lambda_{l}^{k+1}=\lambda_{k}$ and $\lambda_{u}^{k+1}=\lambda_{l}^{k}$.

If the endpoints of the original interval I_{k} satisfy the conditions of the previous theorem, then so do the endpoints of the updated interval I_{k+1}. Therefore $\left[I_{k+1} \cap T(\mu)\right]$
remains nonempty. It is possible that case U 2 holds for every k, in which case the algorithm should eventually end with $\lambda_{k}=\lambda_{\max }$ for some k. In an implementation this is accomplished by choosing $\lambda_{k+1} \in\left[\min \left\{\delta_{\max } \lambda_{k}, \lambda_{\max }\right\}, \lambda_{\max }\right]$, with $\delta_{\max }>1$, when case U2 holds for λ_{k}.

Theorem 3.2.2 ([11]) The search algorithm produces a sequence λ_{k} in $\left[\lambda_{\min }, \lambda_{\max }\right]$ such that after a finite number of trial values one of the following conditions holds: The search terminates at $\lambda_{\text {max }}$, the sequence of trial values is increasing, and $\psi\left(\lambda_{k}\right) \leq$ 0 and $\psi^{\prime}\left(\lambda_{k}\right)<0$ for each k.

The search terminates at $\lambda_{\text {min }}$, the sequence of trial values is decreasing, and $\psi\left(\lambda_{k}\right)>$ 0 or $\psi^{\prime}\left(\lambda_{k}\right) \geq 0$ for each k.

An interval $I_{k} \subset\left[\lambda_{\min }, \lambda_{\max }\right]$ is generated.

Termination at either $\lambda_{\min }$ or $\lambda_{\max }$ can be ruled out if they are chosen properly; see ([11, p. 293]). Thus the algorithm can be made to terminate in a finite number of steps with a $\lambda_{k} \in T(\mu)$. But a $\lambda_{k} \in T(\mu)$ only satisfies $\left|\phi^{\prime}\left(\lambda_{k}\right)\right| \leq \mu\left|\phi^{\prime}(0)\right|$, not the desired curvature condition (3.5) unless $\zeta \leq \mu$.

A λ satisfying the curvature condition for a general ζ does not always exist, but it is possible to show that if while searching for a $\lambda_{*} \in T(\mu)$ an iterate λ_{k} satisfying $\psi\left(\lambda_{k}\right) \leq 0$ and $\phi^{\prime}\left(\lambda_{k}\right)>0$ is found, then there exists an interval containing a λ satisfying both (3.4) and (3.5). Further it is possible to modify the search algorithm to find this λ : simply replace the ψ 's with ϕ 's.

Modified Updating Algorithm[11]:
Given a trial value λ_{k} in I_{k}, the endpoints λ_{l}^{k+1} and λ_{u}^{k+1} of the updated interval I_{k+1} are determined as follows:
Case U1: If $\phi\left(\lambda_{k}\right)>\phi\left(\lambda_{l}^{k}\right)$, then $\lambda_{l}^{k+1}=\lambda_{l}^{k}$ and $\lambda_{u}^{k+1}=\lambda_{k}$.
Case U2: If $\phi\left(\lambda_{k}\right) \leq \phi\left(\lambda_{l}^{k}\right)$ and $\phi^{\prime}\left(\lambda_{k}\right)\left(\lambda_{l}^{k}-\lambda_{k}\right)>0$, then $\lambda_{l}^{k+1}=\lambda_{k}$ and $\lambda_{u}^{k+1}=\lambda_{u}^{k}$.
Case U3: If $\phi\left(\lambda_{k}\right) \leq \phi\left(\lambda_{l}^{k}\right)$ and $\phi^{\prime}\left(\lambda_{k}\right)\left(\lambda_{l}^{k}-\lambda_{k}\right)<0$, then $\lambda_{l}^{k+1}=\lambda_{k}$ and $\lambda_{u}^{k+1}=\lambda_{l}^{k}$.

This modified updating algorithm then is used in conjunction with the original updating algorithm. The original algorithm is used until an iterate satisfying $\psi\left(\lambda_{k}\right) \leq$ 0 and $\phi^{\prime}\left(\lambda_{k}\right)>0$ is found and then the modified updating algorithm is used for all subsequent iterations. There is no guarantee that the first will find an iterate satisfying $\psi\left(\lambda_{k}\right) \leq 0$ and $\phi^{\prime}\left(\lambda_{k}\right)>0$. If a λ_{k} satisfying these conditions cannot be found, then the line search fails.

The next detail of the implementation is choosing the λ_{k+1} in the updated interval I_{k+1}. Like the interval updates, the choices made here are based on the function and its derivative values at the endpoints of the interval. There are four different cases that cover all eventualities. At the current iteration, it is assumed that the following are known: the endpoints of the current interval, $\left(\lambda_{l}^{k}, \lambda_{u}^{k}\right)$, the previous trial value λ_{k-1}, and the function values and derivatives at all three of those points. The function and its derivatives are based on either ψ or ϕ depending upon which interval updating function is currently being used. Denote the function values as f_{l}, f_{u}, f_{k-1} and the derivative values as g_{l}, g_{u}, g_{k-1}. Also three more points are needed in the calculations of the new $\lambda_{k}: \lambda_{c}$, the minimizer of the cubic that interpolates $f_{l}, f_{k-1}, g_{l}, g_{k-1} ; \lambda_{q}$, the minimizer of the quadratic that interpolates f_{l}, f_{k-1}, g_{l}; and λ_{s}, the minimizer of the quadratic that interpolates f_{l}, f_{k-1}, g_{k-1}. The four cases are listed here; for details on why they are chosen, see [11].

- Case 1: $f_{k-1}>f_{l}$ then

$$
\lambda_{k}= \begin{cases}\lambda_{c}, & \text { if }\left|\lambda_{c}-\lambda_{l}\right|<\left|\lambda_{q}-\lambda_{l}\right| \\ \frac{1}{2}\left(\lambda_{q}+\lambda_{c}\right), & \text { otherwise. }\end{cases}
$$

- Case 2: $f_{k-1} \leq f_{l}$ and $g_{k-1} g_{l}<0$ then

$$
\lambda_{k}= \begin{cases}\lambda_{c}, & \text { if }\left|\lambda_{c}-\lambda_{l}\right| \geq\left|\lambda_{s}-\lambda_{k-1}\right| \\ \lambda_{s}, & \text { otherwise. }\end{cases}
$$

- Case 3: $f_{k-1} \leq f_{l}, g_{k-1} g_{l} \geq 0$, and $\left|g_{k-1}\right| \leq\left|g_{l}\right|$ then

$$
\lambda_{k}= \begin{cases}\lambda_{c}, & \text { if }\left|\lambda_{c}-\lambda_{k-1}\right|<\left|\lambda_{s}-\lambda_{k-1}\right| \\ \lambda_{s}, & \text { otherwise. }\end{cases}
$$

- Case 4: $f_{k-1} \leq f_{l}, g_{k-1} g_{l} \geq 0$, and $\left|g_{k-1}\right|>\left|g_{l}\right|$ then

$$
\lambda_{k}=\text { the minimizer of the cubic that interpolates } f_{u}, f_{k-1}, g_{u}, \text { and } g_{k-1}
$$

Barring some minor implementational details of bounds and roundoff error checks, this is the algorithm implemented for the numerical studies described later. When successful, the algorithm produces a suitable λ that satisfies (3.4) and (3.5).

3.2.2 Trust Region

The overall goal of the trust region method is the same as that of the line search methods: If the chosen inexact Newton step is unacceptable, then a step of new length, which is acceptable, must be chosen. Here, however, instead of just searching for a new step length in the inexact Newton direction, a step length is chosen based on a level of 'trust' in the local linear model, and then the direction of the step is chosen.

The level of 'trust' in the local linear model is based on how well the local linear model has approximated the function in previous iterations. If the model has been an accurate representation of the function than a longer step is justifiable, but if the model and function have had large discrepancies in past iterations then a shorter step is warranted. The length of the steps for which the local model is 'trusted' is denoted by δ and called the trust region radius. If the step at a given radius is inadequate, the radius is adjusted and a new step is computed. Dennis and Schnabel in [6] suggest the following criteria for adjusting the radius based upon the agreement of the local linear model and the function.

- if ared $\geq 0.75 \cdot$ pred then $\delta_{+} \leftarrow 2 \delta$
- if ared $<0.1 \cdot$ pred then $\delta_{+} \leftarrow \frac{1}{2} \delta$
- Otherwise $\delta_{+} \leftarrow \delta$

However in the implementation used for our numerical tests, the defaults used were as follows:

- if ared $\geq 0.75 \cdot$ pred then $\delta_{+} \leftarrow 4 \delta$
- if ared $<0.1 \cdot$ pred then $\delta_{+} \leftarrow \frac{1}{4} \delta$
- Otherwise $\delta_{+} \leftarrow \delta$

With a δ chosen, the length of a step from the current point is given an upper bound. The idealized trust region method will then find a step s of length $\leq \delta$ that minimizes the norm of the local linear model, i.e., $s \in \operatorname{argmin}_{\|w\| \leq \delta}\|F(x)+J(x) w\|$.

Lemma 3.2.3 ([17]) If $J(x)$ is nonsingular, then $s \in \operatorname{argmin}_{\|w\| \leq \delta}\|F(x)+J(x) w\|$ is given by

$$
s=s(\mu) \equiv-\left[J(x)^{T} J(x)+\mu I\right]^{-1} J(x)^{T} F(x)
$$

for a unique $\mu \geq 0$, as follows:

$$
\left\{\begin{array}{l}
\left\|s^{N}\right\|_{2} \leq \delta \Rightarrow \mu=0 \\
\left\|s^{N}\right\|_{2}>\delta \Rightarrow \mu>0, \text { uniquely determined by }\|s(\mu)\|_{2}=\delta
\end{array}\right.
$$

where s^{N} is the Newton step.
One trust region method is the dogleg method [13]. The idea of the dogleg method is to find an approximation to the curve $s(\mu)$ and find a step s such that $\|s\|_{2}=\delta$. The approximation of the curve is given by a polygonal arc connecting three points: the current point, the Newton point s^{N}, and finally the steepest descent direction point, defined as follows:

Def 3.2.4 ([17]) The steepest descent point $s^{S D}$ is the minimizer of $l(s) \equiv \frac{1}{2} \| F(x)+$ $J(x) s \|_{2}^{2}$ in the steepest descent direction $-\nabla l(0)=-J(x)^{T} F(x)$. It is easy to verify that

$$
s^{S D}=\frac{\left\|-J(x)^{T} F(x)\right\|_{2}^{2}}{\left\|J(x) J(x)^{T} F(x)\right\|_{2}^{2}} J(x)^{T} F(x) .
$$

The dogleg curve (denoted $\Gamma_{D L}$ in [17]) is the piecewise linear curve from x_{c} to $s^{S D}$ to s^{N}. In the line-search methods defined above, the curve on which a step is sought has the important property that $\|F(x)+J(x) \lambda s\|$ is a strictly decreasing function in the size of λ. Dennis and Schnabel point out in [6] that the dogleg curve similarly has this property. In addition $\|s\|$ is monotone strictly increasing along the curve. So there exists a unique $s \in \Gamma_{D L}$ such that $\|s\|=\delta$ and $s \in \operatorname{argmin}_{w \in \Gamma_{D L},\|w\| \leq \delta}\|F(x)+J(x) w\|$ [6]. The complete algorithm for choosing the dogleg step is:

Computing the Dogleg Step[17]:
Assume $s^{N}=-J(x)^{-1} F(x)$ has already been computed.

1. If $\left\|s^{N}\right\|_{2} \leq \delta$, then $s=s^{N}$.
2. If $\left\|s^{N}\right\|_{2}<\delta$, then do:
(a) Compute $s^{S D}$.
(b) If $\left\|s^{S D}\right\|_{2} \geq \delta$, then $s=\frac{\delta}{\left\|s s^{S D}\right\|_{2}} s^{S D}$.
(c) If $\left\|s^{S D}\right\|_{2}<\delta$ then $s=s^{S D}+\tau\left(s^{N}-s^{S D}\right)$, where τ is uniquely determined by $\left\|s^{S D}+\tau\left(s^{N}-s^{S D}\right)\right\|_{2}=\delta$.

The entire algorithm is:
Given the Newton step s^{N} and initial trust region radius δ.
Calculate the dogleg step s along $\Gamma_{D L}$.
Check to see if the new step s is satisfactory.
If not, update δ and repeat. Otherwise accept s.
For the inexact Newton case the Newton step is replaced with the inexact Newton step: $s^{I N} \approx-J(x)^{-1} F(x)$. In this case, the previously given properties of the dogleg
curve do not necessarily hold. In our numerical tests, the inexact Newton step is chosen to approximate the Newton step 'well enough' that the properties of the dogleg curve are likely to hold. This is accomplished by using a very small constant forcing term.

Chapter 4

Testing Environment

The coding of all of the above algorithms and the associated numerical test problems into a parallel computing environment would be a very large undertaking, well beyond the scope of this thesis. Therefore, previously written codes that implement the numerical algorithms and formulate the flow problems were combined to produce the results of the numerical study. All codes were developed at Sandia National Laboratories in Albuquerque New Mexico. The testing environment was a multi-processor machine housed at Sandia National Labs.

4.1 NOX

NOX is short for 'Nonlinear Object-Oriented Solutions' and is one of the software packages written for the Trilinos project. From [9]:

The Trilinos Project is an effort to develop and implement robust parallel algorithms using modern object-oriented software design, while still leveraging the value of established numerical libraries such as PETSc, Aztec,
the BLAS and LAPACK. It emphasizes abstract interfaces for maximum flexibility of component interchanging, and provides a full-featured set of concrete classes that implement all abstract interfaces... . An over-riding emphasis of the Trilinos Project is to develop robust solution algorithms for scientific and engineering applications on parallel computers, and make these algorithms accessible to application developers in the most effective way.

The NOX package has been developed to bring nonlinear solution methods into the Trilinos framework. It includes implementations of the line search and trust region methods discussed previously as well as other methods such as tensor methods. Within each method exist numerous parameters that can be modified for particular problems. For example, the trust region method has options for setting the expansion and contraction ratios of the trust region radius. The flexibility of the code and algorithm adjustments allow the solvers to efficiently solve a large spectrum of difficult nonlinear problems.

The two leading developers of the code are Tamara G. Kolda and Roger P. Pawlowski at Sandia National Laboratories, though many others have contributed. A short list of other developers includes Russell Hooper, Eric T. Phipps, Andrew G. Salinger and Brett W. Bader. All are employees of Sandia National Labs except Brett Bader, who was a SNL summer researcher in 2002.

4.2 MPSALSA

MPSalsa is a finite element computer program for reacting flow problems. Like NOX, it was developed at Sandia National Laboratories in Albuquerque, New Mexico. The
principal developers were John N. Shadid, Harry K. Moffat, Scott A. Hutchinson, Gary L. Hennigan, Karen D. Devine, and Andrew G. Salinger. Many more people also contributed to the code and development of the program. The theoretical conception and development of the code are not central to this work; therefore, only the description of the code from the abstract of the Sandia report [15] will be given:

MPSalsa is designed to solve laminar, low Mach number, two- or threedimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusionreaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suit of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.

The importance of the MPSalsa code, in relation to this work, is the large number of difficult problems it makes available to the nonlinear solver NOX. Using problems formulated and implemented in the MPSalsa software, it is possible to thoroughly test the NOX algorithms, and ultimately compare the performance of numerous globalized inexact Newton methods on some of the more computationally challenging large-scale
problems. In the following paragraphs some of the equations used in MPSalsa are given. All of these are used in the later test problems.

Momentum Transport Equation: The following two equations express the conservation of momentum laws.

$$
\begin{array}{r}
\rho \mathbf{u} \cdot \nabla \mathbf{u}-\nabla \cdot \mathbf{T}-\rho \mathbf{g}=0 \\
\mathbf{T}=-P \mathbf{I}+\mu\left\{\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right\} \tag{4.2}
\end{array}
$$

Here, μ is the velocity vector, ρ is the mass density of the mixture, \mathbf{T} is the stress tensor for a Newtonian fluid, \mathbf{I} is the unity tensor, g is the gravity vector, μ is the dynamic viscosity and P is the isotropic hydrodynamic pressure.

Total Mass Conservation Equation: Conservation of total mass within MPSalsa is expressed by

$$
\begin{equation*}
\nabla \cdot(\rho \mathbf{u})=0 \tag{4.3}
\end{equation*}
$$

Here, ρ is either considered to be a constant or is calculated from the ideal gas mixture equation of state. Thus, for an ideal gas, ρ is a function of the constant thermodynamic pressure only.

Energy Transport Equation(Temperature Formulation Simplified):

$$
\begin{align*}
\rho C_{p} \mathbf{u} \cdot \nabla T+\nabla \cdot \mathbf{q} & =0 \tag{4.4}\\
\mathbf{q} & =-\kappa \nabla T \tag{4.5}
\end{align*}
$$

Here, T is the temperature, C_{p} is the specific heat at constant pressure, and κ is the thermal conductivity.

4.3 Parallel Machine[10]

The machine on which all numerical tests were performed is an IBM cluster located at Sandia National Laboratories in Albuquerque New Mexico. Details of the hardware
and software are given in the two subsections below.

4.3.1 Cluster Hardware

- One head node. Dual-processor 1 GHz Pentium III; 1 GB RAM; single 70 GB hard drive (66 GB after partitioning).
- Sixteen compute nodes: Each with a dual-processor 1 GHz Pentium III; 1 GB RAM; single 18 GB hard drive (16 GB after partitioning).
- Myrinet network between the 16 compute nodes for message passing.
- The cluster internal network consists of the head node being connected to a switch by 1GB Ethernet, with each compute node connected to that switch with 100 MB Ethernet.

4.3.2 Cluster Software

- Operating system: all nodes run Red Hat Linux 7.2.
- Standard GNU compilers: $\mathrm{gcc} / \mathrm{g}++$ (version 2.96) and g 77 .
- MPI message passing by MPICH 1.2.1 or LAM 6.5.6.
- mpicc/mpiCC and mpif77/mpif90 for MPICH-GM.
- mpicc/mpiCC and mpif77 for LAM-IP.
- Resource manager: Portable Batch System (PBS) (http://www.openpbs.org).
- Job scheduling for compute nodes is performed by the Maui scheduler (http://supercluster.org) rather than using PBS's own scheduler.
- The cluster software toolkit is xcat (http://x-cat.org).

Chapter 5

Benchmark Test Problems

The three test problems described below are standard benchmark problems used for verification of fluid flow codes and solution algorithms[16]. The initial guess for all runs of these problems is the all-zeroes vector.

5.1 Thermal Convection[16]

This problem is to determine the thermally-driven convection flow of a fluid in a differentially heated square box in the presence of gravity. It requires the solution of the momentum transport, energy transport, and total mass conservation equations defined above on the unit square in \mathbf{R}^{2} or unit cube in \mathbf{R}^{3}. In 2 D the following Dirichlet and Neumann boundary conditions are imposed:

$$
\begin{array}{cc}
T=T_{\text {cold }}, & u=v=0 \quad \text { at } x=0 \\
T=T_{h o t}, & u=v=0 \quad \text { at } x=1, \\
\frac{\partial T}{\partial y}=0, & u=v=0 \quad \text { at } y=0 \\
\frac{\partial T}{\partial y}=0, & u=v=0 \quad \text { at } y=1
\end{array}
$$

When the equations and boundary conditions are suitably nondimensionalized one of the parameters to appear is the Rayleigh number, Ra. For this study the values of Ra used were $10^{3}, 10^{4}, 10^{5}, 10^{6}$. As the number increases the nonlinear effects of the convection terms increase and the solution becomes increasingly difficult to obtain. All solutions in 2D were computed on a 100×100 equally spaced mesh, which resulted in 40,804 unknowns for the discretized problem.

In 3D the boundary conditions are very similar:

$$
\begin{array}{cll}
T=T_{\text {cold }}, & u=v=w=0 & \text { at } x=0 \text { plane }, \\
T=T_{\text {hot }}, & u=v=w=0 & \text { at } x=1 \text { plane }, \\
\frac{\partial T}{\partial y}=0, & u=v=w=0 & \text { at } y=0 \text { plane }, \\
\frac{\partial T}{\partial y}=0, & u=v=w=0 & \text { at } y=1 \text { plane }, \\
\frac{\partial T}{\partial z}=0, & u=v=w=0 & \text { at } z=0 \text { plane }, \\
\frac{\partial T}{\partial z}=0, & u=v=w=0 & \text { at } z=1 \text { plane }
\end{array}
$$

Here the same Ra numbers are used, the mesh is a $32 \times 32 \times 32$ equally spaced grid which resulted in 179,685 unknowns for the discretized problem.

5.2 Backward Facing Step[16]

The second problem simulates a reentrant backward-facing step by introducing a fully developed parabolic velocity profile in the upper half of the inlet boundary and imposing zero velocity on the lower half. The problem requires the solution of the momentum transport equation and the total mass conservation equation with $\rho=1$, or $\nabla \cdot \mathbf{u}=0$. The nondimensionalized formulation contains the Reynolds number. As this parameter is increased the nonlinear components of the equation become more dominant and the problem becomes more difficult. As the fluid flows downstream it produces a recirculation zone on the lower channel wall, and for sufficiently high

Reynolds numbers it also produces a recirculation zone farther downstream on the upper wall. The discretization is a $20 x 400$ unequally spaced mesh which resulted in 25,263 unknowns. The boundary conditions are given by

$$
\begin{aligned}
u(y)=24 y(0.5-y), v=0 & \text { at } x=0,0 \leq y \leq 0.5, \\
u=v=0 & \text { at } x=0,-0.5 \leq y \leq 0, \\
\mathbf{T}_{\mathbf{x x}}=0, \mathbf{T}_{\mathbf{x y}}=0 & \text { at } x=30 \\
u=v=0 & \text { at } y=-0.5 \\
u=v=0 & \text { at } y=0.5
\end{aligned}
$$

For the studies performed here, the Reynolds number was given values of 100, $200, \ldots, 700,750$ and 800.

5.3 Lid Driven Cavity[16]

The third problem studied is that of a confined fluid flow in a square box. The discretized equations for this problem are the same two used in the Backward Facing Step problem. In 2D the two sides and bottom are held fixed while the top is moving from left to right. The discretization of the domain is a 100 x 100 equally spaced grid. The following Dirichlet boundary conditions are applied:

$$
\begin{aligned}
u=v=0 & \text { at } x=0, \\
u=v=0 & \text { at } x=1, \\
u=v=0 & \text { at } y=0, \\
u=U_{0}, v=0 & \text { at } y=1 .
\end{aligned}
$$

Again a suitable nondimensionalized formulation leads to the appearance of the Reynolds number. As this parameter is increased the nonlinear inertial terms in the momentum equation become more dominant and the solution becomes more difficult to obtain. For the tests performed in 2D the Reynolds number ranged from

1,000 to 10,000 in increments of 1,000 . The discretization of the problem led to 30,603 unknowns.

In 3 D , the problem is formulated on a 1 x 1 x 1 cube with a moving lid. The discretization is a $32 \times 32 \times 32$ equally spaced grid. Again Dirichlet boundary conditions are applied:

$$
\begin{aligned}
u=v=w=0 & \text { at } x=0 \text { plane }, \\
u=v=w=0 & \text { at } x=1 \text { plane }, \\
u=v=w=0 & \text { at } z=0 \text { plane }, \\
u=v=w=0 & \text { at } z=1 \text { plane }, \\
u=v=w=0 & \text { at } y=0 \text { plane }, \\
u=U_{0}, v=w=0 & \text { at } y=1 \text { plane } .
\end{aligned}
$$

The Reynolds number ranged from 100 to 1,000 in increments of 100 and the discretization of the problem led to 143,748 unknowns.

Chapter 6

Results

6.1 Success vs. Failure

In numerical methods it is almost always impossible to find an x such that $F(x)=0$. The best a numerical solver can do is find an x such that $\|F(x)\| \leq t o l$. The tol is set by the user and determines how 'close' a computed x must be to the real solution to declare a successful termination.

In our numerical studies a 'success' was declared if an x_{k} was found satisfying $\left\|F\left(x_{k}\right)\right\|_{2} \leq 10^{-2}\left\|F\left(x_{0}\right)\right\|_{2}$ and $W R M S \leq 1$. The $W R M S$ is defined as the weighted root mean square norm, $W R M S=\left\|x_{k}-x_{k-1}\right\|_{\text {wrms }}$. "The wrms norm is defined by: $\left\|\delta x^{k}\right\|_{w r m s}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\frac{C \cdot\left(x_{i}^{k}-x_{i}^{k-1}\right)}{R T O L\left|x_{i}^{k-1}\right|+A T O L_{i}}\right)^{2}}$, where N is the total number of unknowns in the problem, x_{i}^{k} denotes the i-th component of the solution vector x at nonlinear iteration $k, R T O L$ is the relative error tolerance (a scalar value), $A T O L_{i}$ is the absolute error tolerance and can be a scalar or a vector of the same size as the solution vector, and C is a scalar value that is typically set to $1.0 . "[9]$ This second test checks to see that the change in the solution from one step to the next has not been too large. Failures occur when both of the above two criteria are not met
within a specified number of inexact Newton steps. The number of steps specified for individual problems is thought to be reasonable based on the number of solutions that were obtained within that limit.

The reasons for failure vary from one problem to the next. Some recurring reasons were: a singular Jacobian, convergence to local norm minima, and progress that was simply too slow. This is by no means an exhaustive list of reasons for failure, but it does account for the majority of failures encountered in this study.

6.2 Relevant Numbers

Each problem was run using nine different algorithms: quadratic interpolation, cubic interpolation, and Moré-Thuente backtracking, each with a constant forcing term and an adaptive forcing term; the trust-region dogleg method with a constant forcing term; and finally inexact Newton methods using the two choices of forcing term, but without globalization, i.e., taking the full inexact Newton step.

Each problem had the following information collected and summarized in the tables found in the data section.

S/F: $\quad \mathrm{S}$ indicates a solution was successfully found; F indicates a failure to find a solution.

INS: The total number of inexact Newton steps carried out. This can be important if each inexact Newton step has a high computation cost associated with it, for example a preconditioner that must be computed.

F-Evals: The number of function evaluations performed. If the cost of computing F-values is very high for a specified problem, then an algorithm which requires many function evaluations should probably not be chosen.

LS: The number of inexact Newton steps for which the algorithm needed to call a line search method.
f-LS: The number of line searches which failed to find a suitable step. In these cases the original inexact Newton step was used. The rational is that it is possible the algorithm is at a 'bad' x_{k}, such as one near a local minimum, and hopefully taking a large step in a not-so-great direction will get the algorithm to a better spot to advance from.

BckTcks: The total number of step reductions used by the line search methods.

GMRES: The total number of linear solver iterations. In the experiments here, the linear solve is the most expensive part of the algorithm; therefore reducing the number of GMRES iterations may improve efficiency, even if it increases the nnumber of inexact Newton steps.
$\|F(x)\|$: The final 2-norm of the residual vector. A goal is to find an x_{k} such that $\left\|F\left(x_{k}\right)\right\| \leq 10^{-2}\left\|F\left(x_{0}\right)\right\|_{2}$. Our algorithm also imposed a constraint of the form $W R M S \leq 1$.

Time: The total number of seconds elapsed in reaching a solution.

An 'NA' in any column of data indicates the specified value is not computed. For example, the dogleg method will never indicate the number of line searches performed.

6.3 Results and Conclusions

6.3.1 A Robustness Study

We conducted a study involving the benchmark problems with the goal of assessing the general robustness of the seven different global inexact Newton methods: cubic interpolation with adaptive forcing terms, cubic interpolation with constant forcing terms, quadratic interpolation with adaptive forcing terms, quadratic interpolation with constant forcing terms, Moré-Thuente with adaptive forcing terms, Moré-Thuente with constant forcing terms, and the dogleg method with constant forcing terms. All of the problems were also run without a globalization method, i.e., taking the full inexact Newton step. The full-step method was used with both adaptive and constant forcing terms.

The study compared the number of failures of each method on problems of varying degrees of difficulty. We wanted to determine whether any one method is consistently better at solving these problems than other methods. The difficulty of the problems were determined by the Reynolds and Rayleigh numbers (as appropriate) as follows:

$$
\begin{array}{lcc}
& \text { Easy } & \text { Hard } \\
2 D-\text { Thermal Convection } & 10^{3}, 10^{4}, 10^{5} & 10^{6} \\
2 D-\text { Backward Facing Step } & 100-500 & 600,700,750,800 \\
2 D-\text { Lid Driven Cavity } & 1000-5000 & 6000-10,000 \\
3 D-\text { Thermal Convection } & 10^{3}, 10^{4}, 10^{5} & 10^{6} \\
3 D-\text { Lid Driven Cavity } & 100-500 & 600-1,000
\end{array}
$$

The results of the study are shown in Tables 6.1 and 6.2. We found that the globalized methods are more robust than the non-globalized methods. The use of the adaptive forcing terms greatly increases the number of successful solves on some problems, and overall is not worse than the constant forcing term methods. Limiting our comparisons to adaptive forcing terms (or constant forcing terms) shows no significant differences
among the globalized methods; cubic interpolation, quadratic interpolation, MoréThuente, and the dogleg all perform about the same. A final note, no single method works on all of the problems all of the time. The complete results from all of the runs are listed in the appendix.

Method	2D Thermal Convection		2D Lid Driven Cavity		2D Backward Facing Step	
	Easier	Harder	Easier	Harder	Easier	Harder
Cubic	0	0	0	0	0	1
	0	0	4	5	0	0
Quadratic	0	0	0	0	0	0
	0	0	4	5	0	1
Moré-Thuente	0	1	0	0	0	1
	0	1	4	5	0	0
Trust Region	0	0	2	5	1	0
	0	0	4	5	1	4
	0	1	5	5	3	4

Table 6.1: Distribution of failures: For each method, the upper and lower lines are the number of failures with the adaptive forcing term and the constant forcing term, respectively.

Method	3D Thermal Convection		3D Lid Driven Cavity	
	Easier	Harder	Easier	Harder
Cubic	0	0	0	0
	0	0	0	0
Quadratic	0	0	0	0
	0	0	0	0
Moré-Thuente	0	1	0	0
	1	1	0	0
Trust Region	0	0	0	0
Full Step	0	1	0	0
	0	1	0	4

Table 6.2: Distribution of failures: For each method, the upper and lower lines are the number of failures with the adaptive forcing term and the constant forcing term, respectively.

6.3.2 An Efficiency Study

We follow the robustness study above with a study aimed at assessing the relative efficiency of the global methods. Because of numerous failures throughout the benchmark problems, a subset of the problems for which all globalized methods succeeded was chosen. This set includes Reynolds and Rayleigh numbers as follows:

$$
\begin{array}{lc}
2 D-\text { Thermal Convection: } & 10^{3}, 10^{4}, 10^{5} \\
2 D-\text { Backward Facing Step } & 100-300,500,600 \\
3 D-\text { Lid Driven Cavity } & 100-1,000
\end{array}
$$

From each run, the study looked at the mean numbers of inexact Newton steps, backtracks taken by the line searches, GMRES iterations, and run times (in seconds). All are geometric means except in the case of backtracks, in which they are arithmetic
means.
From Table 6.3 we see a clear tradeoff between the number of inexact Newton iterations and the linear solver iterations. The methods using an adaptive forcing term require many fewer GMRES iterations than do the methods using a small constant forcing term. Conversely, the constant forcing term methods require many fewer inexact Newton steps. Overall, the adaptive forcing term methods use less time and more backtracking iterations than do the constant forcing term methods. As in the robustness study, the differences between the methods within the subsets of adaptive or constant forcing term methods is almost negligible.

	Inexact Newton Steps	Backtracks	GMRES	Time
Cubic	15	.9188	704	112
	7	.1627	1072	137
Quadratic	15	1.1183	714	113
	7	.1627	1072	136
Moré-Thuente	14	1.2166	768	122
	8	1.7333	1123	145
Trust Region	9	NA	1264	161

Table 6.3: Efficiency Study: For each method, the upper and lower lines represent the adaptive forcing term and the constant forcing term methods, respectively.

Appendix

Backward Facing Step 2D

Cubic Choice1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
100	S	10	11	0	0	0	459	$4.44 e-14$	18.730446		
200	S	12	14	1	0	1	535	$1.59 e-13$	22.386361		
300	S	14	17	2	0	2	650	$1.62 e-17$	28.494028		
400	S	51	77	25	0	25	1348	$2.17 e-15$	58.985995		
500	S	60	90	29	0	29	1573	$1.93 e-12$	71.104727		
600	S	81	126	43	0	44	2459	$9.91 e-14$	102.899106		
700	S	124	207	82	0	82	4635	$8.00 e-16$	193.631929		
750	F	200	660	199	0	459	2379	0.000244	160.015110		
800	S	162	294	130	0	131	5905	$1.33 e-13$	238.542687		
Cubic	Constant										
	S / F	$I N S$	$F-E v a l s$	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
100	S	6	7	0	0	0	595	$1.09 e-14$	24.677943		
200	S	9	10	0	0	0	1047	$1.25 e-15$	49.499055		
300	S	9	11	1	0	1	1095	$5.05 e-16$	53.260950		
400	S	11	16	4	0	4	1441	$1.08 e-13$	67.335533		
500	S	9	12	2	0	2	1145	$2.73 e-15$	53.705681		
600	S	11	16	4	0	4	1506	$7.14 e-15$	78.006895		
700	S	12	18	5	0	5	1745	$1.67 e-13$	88.272582		
750	S	29	61	22	0	31	4729	$1.40 e-15$	263.265165		
800	S	31	66	25	0	34	5227	$3.74 e-13$	285.394827		

Quadratic Choice1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	10	11	0	0	0	459	$4.44 e-14$	18.675301
200	S	12	14	1	0	1	535	$1.59 e-13$	22.254953
300	S	14	17	2	0	2	650	$1.62 e-17$	30.670698
400	S	51	77	25	0	25	1348	$2.17 e-15$	59.451767
500	S	60	90	29	0	29	1573	$1.93 e-12$	68.978642
600	S	98	161	61	0	62	3193	$1.39 e-15$	131.410889
700	S	124	207	82	0	82	4635	$8.00 e-16$	184.417626
750	S	142	240	93	0	97	5116	$4.76 e-15$	204.551093
800	S	130	218	85	0	87	4837	$4.04 e-11$	193.543793

Quadratic Constant

	S / F	INS	F-Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	6	7	0	0	0	595	$1.09 e-14$	24.503630
200	S	9	10	0	0	0	1047	$1.25 e-15$	46.338407
300	S	9	11	1	0	1	1095	$5.05 e-16$	49.873409
400	S	11	16	4	0	4	1441	$1.08 e-13$	68.497390
500	S	9	12	2	0	2	1145	$2.73 e-15$	54.265813
600	S	11	16	4	0	4	1506	$7.14 e-15$	72.175325
700	S	12	18	5	0	5	1745	$1.67 e-13$	87.335903
750	F	200	936	198	0	735	38510	$5.51 e-05$	2283.374432
800	S	44	104	37	0	59	7634	$1.17 e-16$	421.327834

More Thuente Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	10	31	0	0	0	459	$4.44 e-14$	21.500709
200	S	11	36	1	0	1	581	$2.96 e-17$	27.400564
300	S	18	67	6	0	6	721	$3.82 e-14$	32.270921
400	S	38	151	18	0	18	1067	$1.58 e-13$	54.444312
500	S	65	270	35	0	37	1526	$1.07 e-11$	77.272371
600	S	73	328	44	0	54	2010	$8.41 e-11$	96.881934
700	F	200	1449	186	152	348	7662	$7.03 e-06$	348.985394
750	S	108	468	69	1	71	4182	$1.44 e-13$	186.352307
800	S	105	449	64	1	66	4100	$1.08 e-15$	180.836193

More Thuente Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$
100	S	6	19	0	0
200	S	7	24	1	0
300	S	9	30	1	0
400	S	8	29	2	0
500	S	9	32	2	0
600	S	10	37	3	0
700	S	11	42	4	0
750	S	11	42	4	0
800	S	12	51	6	0

BckTcks

GMRES	$\\|F(x)\\|$	Time
595	$1.09 e-14$	24.483775
754	$1.16 e-13$	31.984996
1090	$1.08 e-13$	48.452983
981	$8.02 e-14$	44.111969
1158	$4.49 e-16$	53.506665
1362	$1.72 e-15$	64.784416
1593	$4.13 e-15$	78.274686
1584	$7.85 e-15$	77.421196
1796	$5.58 e-14$	89.863523

Trust Region

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	6	7	$N A$	$N A$	$N A$	595	$1.09 e-14$	26.582939
200	S	9	10	$N A$	$N A$	$N A$	1047	$1.25 e-15$	46.818451
300	S	17	25	$N A$	$N A$	$N A$	2154	$2.91 e-14$	101.102956
400	F	200	248	$N A$	$N A$	$N A$	30478	$8.80 e-05$	1559.254081
500	S	11	13	$N A$	$N A$	$N A$	1447	$1.36 e-15$	69.123568
600	S	11	13	$N A$	$N A$	$N A$	1552	$5.89 e-15$	76.694969
700	S	17	24	$N A$	$N A$	$N A$	2564	$1.15 e-16$	131.410720
750	S	17	23	$N A$	$N A$	$N A$	2634	$2.29 e-13$	138.535062
800	S	18	28	$N A$	$N A$	$N A$	2734	$2.33 e-13$	141.542069

Full Step Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	10	11	$N A$	$N A$	$N A$	459	$4.44 e-14$	20.083346
200	S	14	15	$N A$	$N A$	$N A$	561	$8.12 e-17$	24.361944
300	S	19	20	$N A$	$N A$	$N A$	616	$6.46 e-16$	29.328713
400	S	38	39	$N A$	$N A$	$N A$	822	$1.16 e-13$	40.786583
500	F	200	201	$N A$	$N A$	$N A$	17158	0.658	856.973023
600	F	200	201	$N A$	$N A$	$N A$	12391	86.1	610.909392
700	F	200	201	$N A$	$N A$	$N A$	21379	2.08	1096.242105
750	F	200	201	$N A$	$N A$	$N A$	13867	5.39	653.159951
800	F	200	201	$N A$	$N A$	$N A$	14333	1.17	705.480811

Full Step Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	6	7	$N A$	$N A$	$N A$	595	$1.09 e-14$	26.587996
200	S	9	10	$N A$	$N A$	$N A$	1047	$1.25 e-15$	45.992849
300	F	200	201	$N A$	$N A$	$N A$	33846	9.27	1840.297428
400	F	200	201	$N A$	$N A$	$N A$	25806	84.5	1344.981927
500	F	200	201	$N A$	$N A$	$N A$	36936	0.533	2031.390187
600	F	200	201	$N A$	$N A$	$N A$	28595	1.95	1527.294388
700	F	200	201	$N A$	$N A$	$N A$	34524	5.88	1844.124334
750	F	200	201	$N A$	$N A$	$N A$	57827	0.221	3303.303649
800	F	200	201	$N A$	$N A$	$N A$	2583	0.126	166.383267

Thermal Convection 2D

Cubic Choice 1											
	S / F	INS	$F-$ Evals	LS	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
10^{3}	S	6	7	0	0	0	1106	$2.83 e-15$	85.620622		
10^{4}	S	9	10	0	0	0	1209	$1.57 e-14$	87.355162		
10^{5}	S	14	16	1	0	1	801	$2.42 e-09$	57.508363		
10^{6}	S	41	65	19	0	23	2259	$3.21 e-10$	160.858089		

Cubic Constant

	S / F	INS	F-Evals	LS	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	4	5	0	0	0	870	$3.28 e-12$	64.423048
10^{4}	S	6	7	0	0	0	1349	$6.80 e-11$	97.672187
10^{5}	S	8	10	1	0	1	2106	$6.21 e-14$	154.707285
10^{6}	S	11	24	6	0	12	3353	$7.44 e-12$	247.764391

Quadratic Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	6	7	0	0	0	1106	$2.83 e-15$	80.400617
10^{4}	S	9	10	0	0	0	1209	$1.57 e-14$	87.218471
10^{5}	S	14	16	1	0	1	801	$2.42 e-09$	57.538396
10^{6}	S	44	68	20	0	23	2595	$1.55 e-10$	183.936025

Quadratic Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	4	5	0	0	0	870	$3.28 e-12$	65.005171
10^{4}	S	6	7	0	0	0	1349	$6.8 e-11$	98.042959
10^{5}	S	8	10	1	0	1	2106	$6.21 e-14$	152.987253
10^{6}	S	14	30	9	0	15	4228	$4.15 e-13$	306.222720

More Thuente Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	6	19	0	0	0	1106	$2.83 e-15$	83.486171
10^{4}	S	9	28	0	0	0	1209	$1.57 e-14$	90.595408
10^{5}	S	14	50	2	1	3	1154	$1.6 e-09$	89.942351
10^{6}	F	50	401	50	50	100	2878	0.0498	218.216901

More Thuente Constant

	S / F	$I N S$	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	4	13	0	0	0	870	$3.28 e-12$	65.620265
10^{4}	S	6	19	0	0	0	1349	$6.8 e-11$	101.083927
10^{5}	S	50	367	44	42	87	12976	$1.41 e-13$	994.836491
10^{6}	F	50	401	50	50	100	18194	0.0495	1360.247254

Trust Region

	S / F	$I N S$	$F-E v a l s$	$L S$	$f-L S$	BckTcks	$G M R E S$	$\\|F(x)\\|$	Time
10^{3}	S	4	5	$N A$	$N A$	$N A$	870	$3.28 e-12$	64.922235
10^{4}	S	7	9	$N A$	$N A$	$N A$	1944	$3.89 e-15$	146.254160
10^{5}	S	11	15	$N A$	$N A$	$N A$	3413	$4.41 e-12$	250.861188
10^{6}	S	36	57	$N A$	$N A$	$N A$	12756	$5.33 e-13$	935.867827

Full Step Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	6	7	0	0	0	1106	$2.83 e-15$	82.157177
10^{4}	S	9	10	0	0	0	1209	$1.57 e-14$	88.578725
10^{5}	S	14	16	1	0	1	801	$2.42 e-09$	59.041938
10^{6}	S	41	65	19	0	23	2259	$3.21 e-10$	159.174970

Full Step Constant

	S / F	$I N S$	$F-E v a l s$	$L S$	$f-L S$	BckTcks	$G M R E S$	$\\|F(x)\\|$	Time
10^{3}	S	4	5	$N A$	$N A$	$N A$	870	$3.28 e-12$	67.205929
10^{4}	S	6	7	$N A$	$N A$	$N A$	1349	$6.80 e-11$	99.858243
10^{5}	S	11	12	$N A$	$N A$	$N A$	2665	$9.98 e-11$	198.862105
10^{6}	F	50	51	$N A$	$N a$	$N A$	8506	$9.71 e+04$	624.502921

Lid Driven Cavity 2D

Cubic Choice1											
	S / F	$I N S$	$F-E v a l s$	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
1000	S	24	27	2	0	2	799	$6.77 e-11$	45.544701		
2000	S	33	42	8	0	8	1632	$4.61 e-13$	84.856306		
3000	S	52	66	13	0	13	2138	$8.31 e-13$	111.914418		
4000	S	57	73	14	0	15	2230	$1.74 e-07$	112.602015		
5000	S	58	79	18	0	20	2808	$6.23 e-10$	152.400856		
6000	S	75	106	28	0	30	3471	$3.45 e-10$	176.270308		
7000	S	94	148	50	0	53	4984	$6.47 e-12$	249.669885		
8000	S	106	165	55	0	58	5535	$6.47 e-11$	299.044550		
9000	S	150	260	106	0	109	7695	$5.73 e-12$	394.156317		
10000	S	160	279	115	0	118	8581	$6.89 e-06$	450.478600		

Cubic Constant											
	S / F	INS	F-Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
1000	S	12	18	5	0	5	1621	$1.79 e-13$	91.037015		
2000	F	300	1861	246	22	1559	77599	$5.51 e+14$	5405.766932		
3000	F	300	1851	287	15	1550	127980	$3.77 e+13$	8845.640383		
4000	F	300	3521	293	65	3220	77090	$2.02 e+14$	5693.023875		
5000	F	300	4900	298	0	4599	170847	88	12536.333741		
6000	F	300	2624	299	0	2323	175767	294	12176.149498		
7000	F	300	2676	298	0	2375	172883	146	11955.534328		
8000	F	300	4273	299	0	3972	172634	196	12082.865161		
9000	F	300	2129	299	0	1828	177490	480	12324.763266		
10000	F	300	2158	299	0	1857	174191	499	12652.027231		

Quadratic Choice1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
1000	S	24	27	2	0	2	799	$6.77 e-11$	42.405545
2000	S	33	42	8	0	8	1632	$4.61 e-13$	84.774296
3000	S	52	66	13	0	13	2138	$8.31 e-13$	120.885515
4000	S	52	66	12	0	13	2611	$3.44 e-12$	139.664326
5000	S	60	78	16	0	17	2722	$4.55 e-06$	140.442642
6000	S	76	110	32	0	33	3303	$1.62 e-09$	180.238783
7000	S	101	164	61	0	62	5119	$2.73 e-09$	262.796143
8000	S	140	248	106	0	107	6881	$4.98 e-09$	346.188046
9000	S	143	242	97	0	98	7833	$4.54 e-10$	394.727409
10000	S	163	284	119	0	120	8950	$2.34 e-08$	467.777669

Quadratic Constant											
	S / F	$I N S$	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
1000	S	12	18	5	0	5	1621	$1.79 e-13$	95.523814		
2000	F	300	1738	298	0	1437	53931	15.6	3627.953197		
3000	F	300	1746	298	0	1445	110022	63.3	7389.694315		
4000	F	300	1712	298	0	1411	85748	42.8	5504.815610		
5000	F	300	1693	298	0	1392	170958	147	11732.354169		
6000	F	300	1979	299	0	1678	174141	520	11999.624440		
7000	F	300	1579	299	0	1278	174954	284	12649.365681		
8000	F	300	1605	299	0	1304	119613	244	8437.113389		
9000	F	300	1732	299	0	1431	176946	997	12875.594389		
10000	F	300	1878	299	0	1577	169707	$2.39 e+03$	11721.137505		

More Thuente Choice								1			
	S / F	$I N S$	$F-E v a l s$	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
1000	S	18	63	4	0	4	923	$1.72 e-10$	55.868397		
2000	S	31	112	9	0	9	1341	$8.87 e-07$	76.574034		
3000	S	42	156	13	1	14	1863	$4.96 e-09$	107.952866		
4000	S	51	195	19	1	20	2377	$2.27 e-06$	135.197965		
5000	S	59	221	20	1	21	2939	$2.01 e-12$	169.963651		
6000	S	66	252	25	1	26	3374	$1.47 e-09$	194.691589		
7000	S	79	327	42	1	44	3609	$2.04 e-06$	205.061383		
8000	S	92	391	53	2	56	4717	$1.08 e-11$	271.396304		
9000	S	110	477	69	2	72	6149	$5.96 e-12$	359.284430		
10000	S	124	543	81	2	84	6550	$2.99 e-07$	371.076367		

More Thuente Constant										
	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GM RES	\|	F(x) \|	Time
1000	S	11	40	3	0	3	1475	$1.13 e-13$	87.467960	
2000	F	300	2376	298	293	591	50430	13	3447.789024	
3000	F	300	2368	298	289	589	76340	86.5	5374.839047	
4000	F	300	2384	299	295	594	61886	152	4527.014148	
5000	F	300	2379	299	292	593	77752	340	5479.676001	
6000	F	300	2375	299	290	592	110848	176	7764.665417	
7000	F	300	2390	299	297	596	110599	981	7655.571218	
8000	F	300	2392	299	297	597	110839	$1.38 e+03$	7665.834013	
9000	F	300	2392	299	297	597	124646	$1.75 e+03$	8820.438071	
10000	F	300	2373	300	286	593	178988	$1.23 e+03$	12835.061594	

Trust Region											
	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
1000	S	19	27	$N A$	$N A$	$N A$	2671	$1.73 e-12$	155.229284		
2000	S	29	42	$N A$	$N A$	$N A$	4325	$5.24 e-12$	257.387507		
3000	S	30	42	$N A$	$N A$	$N A$	4552	$8.33 e-13$	280.585165		
4000	F	300	371	$N A$	$N A$	$N A$	51585	37.4	3451.221284		
5000	F	300	448	$N A$	$N A$	$N A$	60715	49.3	4100.548967		
6000	F	300	408	$N A$	$N A$	$N A$	59459	60.8	4207.405368		
7000	F	300	346	$N A$	$N A$	$N A$	85863	59.1	5844.815039		
8000	F	300	331	$N A$	$N A$	$N A$	56610	70.2	5137.866875		
9000	F	300	372	$N A$	$N A$	$N A$	57720	73.2	3866.840246		
10000	F	300	467	$N A$	$N A$	$N A$	162693	71.6	11615.001159		

Full Step Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
1000	S	20	21	$N A$	$N A$	$N A$	787	$2.02 e-13$	45.827322
2000	F	300	301	$N A$	$N A$	$N A$	9454	$1.01 e+05$	649.749201
3000	F	300	301	$N A$	$N A$	$N A$	30362	$5.62 e+04$	1933.428328
4000	F	300	301	$N A$	$N A$	$N A$	11713	$2.03 e+05$	762.675952
5000	F	300	301	$N A$	$N A$	$N A$	13937	$4.18 e+05$	869.490376
6000	F	300	301	$N A$	$N A$	$N A$	11285	$2.60 e+05$	735.437533
7000	F	300	301	$N A$	$N A$	$N A$	17791	$3.31 e+05$	1089.994508
8000	F	300	301	$N A$	$N A$	$N A$	12830	$3.15 e+05$	787.788003
9000	F	300	301	$N A$	$N A$	$N A$	12399	$4.16 e+05$	751.368204
10000	F	300	301	$N A$	$N A$	$N A$	32499	$1.76 e+05$	2070.265778

Full Step Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
1000	F	300	301	$N A$	$N A$	$N A$	23416	$3.83 e+05$	1499.734888
2000	F	300	301	$N A$	$N A$	$N A$	10919	$2.86 e+05$	717.580405
3000	F	300	301	$N A$	$N A$	$N A$	14610	$2.48 e+05$	937.857191
4000	F	300	301	$N A$	$N A$	$N A$	12255	$1.12 e+05$	817.903355
5000	F	300	301	$N A$	$N A$	$N A$	16246	$8.40 e+04$	1085.189837
6000	F	300	301	$N A$	$N A$	$N A$	25644	$8.88 e+04$	1666.684245
7000	F	300	301	$N A$	$N A$	$N A$	29688	$2.30 e+05$	1936.334228
8000	F	300	301	$N A$	$N A$	$N A$	14166	$4.88 e+06$	958.168039
9000	F	300	301	$N A$	$N A$	$N A$	13504	$1.06 e+06$	855.090293
10000	F	300	301	$N A$	$N A$	$N A$	18901	$1.64 e+05$	1217.999328

Thermal Convection 3D

Cubic Choice 1											
	S / F	INS	$F-$ Evals	LS	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
10^{3}	S	5	6	0	0	0	298	$2.22 e-12$	161.661027		
10^{4}	S	8	10	1	0	1	469	$1.92 e-15$	257.054125		
10^{5}	S	19	25	3	0	5	584	$5.1 e-15$	478.700628		
10^{6}	S	58	97	27	0	38	3291	$6.32 e-14$	1818.225104		

Cubic Constant

						S / F	INS	$F-$ Evals	$L S$		
$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time							
10^{3}	S	5	6	0	0	0	504	$1.23 e-16$	214.912963		
10^{4}	S	6	8	1	0	1	697	$1.09 e-15$	274.601650		
10^{5}	S	10	17	4	0	6	1120	$5.66 e-15$	453.091963		
10^{6}	S	20	57	14	0	36	2377	$4.43 e-14$	955.422234		

Quadratic Choice 1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	6	0	0	0	298	$2.22 e-12$	161.779187
10^{4}	S	8	10	1	0	1	469	$1.92 e-15$	252.332040
10^{5}	S	18	24	4	0	5	640	$6.66 e-15$	478.259933
10^{6}	S	58	93	28	0	34	3153	$5.57 e-14$	1779.562241

Quadratic Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	6	0	0	0	504	$1.23 e-16$	212.000412
10^{4}	S	6	8	1	0	1	697	$1.09 e-15$	278.757287
10^{5}	S	11	19	5	0	7	1248	$7.57 e-15$	499.187919
10^{6}	S	26	64	20	0	37	3156	$4.32 e-14$	1259.053510

More Thuente Choice 1

	S / F	$I N S$	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	16	0	0	0	298	$2.22 e-12$	167.026084
10^{4}	S	9	30	1	0	1	636	$6.61 e-16$	317.815613
10^{5}	S	21	79	6	1	7	939	$8.18 e-15$	620.417555
10^{6}	F	200	1601	200	200	400	6074	0.0775	5430.274450

More Thuente Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	16	0	0	0	504	$1.23 e-16$	212.738866
10^{4}	S	7	24	1	0	1	813	$7.33 e-16$	325.670966
10^{5}	F	200	1601	200	200	400	24243	0.0763	10001.531665
10^{6}	F	200	1601	200	200	400	26563	0.0763	10679.498846

Trust Region

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	6	$N A$	$N A$	$N A$	504	$1.23 e-16$	214.790449
10^{4}	S	8	9	$N A$	$N A$	$N A$	871	$6.8 e-16$	353.840988
10^{5}	S	11	14	$N A$	$N A$	$N A$	1334	$8.19 e-15$	528.589408
10^{6}	S	15	22	$N A$	$N A$	$N A$	1832	$5.89 e-14$	718.635854

Full Step Choice 1

	S / F	$I N S$	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	6	$N A$	$N A$	$N A$	298	$2.22 e-12$	157.906350
10^{4}	S	12	13	$N A$	$N A$	$N A$	446	$1.13 e-15$	319.371344
10^{5}	S	20	21	$N A$	$N A$	$N A$	585	$7.82 e-15$	501.202213
10^{6}	F	200	201	$N A$	$N A$	$N A$	1842	$1.31 e+104$	4086.060439

Full Step Constant

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
10^{3}	S	5	6	$N A$	$N A$	$N A$	504	$1.23 e-16$	208.590341
10^{4}	S	8	9	$N A$	$N A$	$N A$	871	$6.8 e-16$	350.150091
10^{5}	S	12	13	$N A$	$N A$	$N A$	1236	$8.1 e-15$	515.169594
10^{6}	F	200	201	$N A$	$N A$	$N A$	4561	$1.37 e+65$	4792.743731

Lid Driven Cavity 3D
Cubic Choice1

	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	7	8	0	0	0	266	$2.63 e-14$	104.692000
200	S	12	13	0	0	0	393	$7.27 e-15$	169.832319
300	S	10	11	0	0	0	455	$1.23 e-14$	160.762959
400	S	13	14	0	0	0	495	$1.23 e-14$	195.418103
500	S	13	14	0	0	0	515	$1.53 e-14$	206.223205
600	S	16	17	0	0	0	413	$1.33 e-11$	206.086810
700	S	17	20	2	0	2	819	$8.14 e-13$	283.679220
800	S	17	19	1	0	1	720	$3.97 e-14$	272.367693
900	S	22	27	4	0	4	1253	$3.68 e-14$	401.430639
1000	S	24	28	3	0	3	756	$5.06 e-14$	340.594764

Cubic Constant

	S / F	$I N S$	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	6	7	0	0	0	495	$2.59 e-15$	131.654441
200	S	7	8	0	0	0	625	$7.12 e-15$	164.200106
300	S	8	9	0	0	0	751	$1.10 e-14$	194.042359
400	S	9	10	0	0	0	864	$1.17 e-14$	224.545563
500	S	9	10	0	0	0	927	$2.87 e-14$	235.666279
600	S	11	12	0	0	0	1151	$3.36 e-14$	290.587334
700	S	10	12	1	0	1	1176	$4.03 e-14$	292.697456
800	S	11	13	1	0	1	1365	$5.53 e-14$	340.679790
900	S	13	16	2	0	2	1648	$5.67 e-14$	404.259180
1000	S	17	26	8	0	8	2160	$5.07 e-14$	529.605405

Quadratic Choice1

	S / F	INS	F-Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	7	8	0	0	0	266	$2.63 e-14$	105.548778
200	S	12	13	0	0	0	393	$7.27 e-15$	168.653800
300	S	10	11	0	0	0	455	$1.23 e-14$	162.668037
400	S	13	14	0	0	0	495	$1.23 e-14$	196.143194
500	S	13	14	0	0	0	515	$1.53 e-14$	203.371747
600	S	16	17	0	0	0	413	$1.33 e-11$	207.986475
700	S	17	20	2	0	2	819	$8.14 e-13$	280.494864
800	S	17	19	1	0	1	720	$3.97 e-14$	274.225519
900	S	22	27	4	0	4	1253	$3.68 e-14$	401.193352
1000	S	24	28	3	0	3	756	$5.06 e-14$	354.664516

Quadratic Constant

	S / F	INS	$F-$ Evals	LS	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	6	7	0	0	0	495	$2.59 e-15$	132.703209
200	S	7	8	0	0	0	625	$7.12 e-15$	168.146856
300	S	8	9	0	0	0	751	$1.10 e-14$	196.932237
400	S	9	10	0	0	0	864	$1.17 e-14$	224.682512
500	S	9	10	0	0	0	927	$2.87 e-14$	235.633007
600	S	11	12	0	0	0	1151	$3.36 e-14$	290.200892
700	S	10	12	1	0	1	1176	$4.03 e-14$	288.763588
800	S	11	13	1	0	1	1365	$5.53 e-14$	338.343319
900	S	13	16	2	0	2	1648	$5.67 e-14$	409.653673
1000	S	17	26	8	0	8	2160	$5.07 e-14$	528.286561

More Thuente Choice 1

100	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
200	S	7	22	0	0	0	266	$2.63 e-14$	106.383072		
300	S	12	37	0	0	0	393	$7.27 e-15$	178.085724		
400	S	13	31	0	0	0	455	$1.23 e-14$	165.572808		
500	S	13	40	0	0	0	495	$1.23 e-14$	203.166992		
600	S	18	59	0	0	0	515	$1.53 e-14$	206.944519		
700	S	18	61	3	0	2	850	$1.84 e-14$	307.803561		
800	S	19	64	3	0	3	946	$5.17 e-13$	315.963266		
900	S	19	64	3	0	3	1176	$4.80 e-14$	374.291635		
1000	S	16	53	2	0	2	1046	$6.42 e-14$	351.060000		
						813	$6.42 e-14$	291.630151			

More Thuente Constant

	S / F	INS	F-Evals	LS	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	6	19	0	0	0	495	$2.59 e-15$	141.351836
200	S	7	22	0	0	0	625	$7.12 e-15$	166.785230
300	S	8	25	0	0	0	751	$1.10 e-14$	201.169303
400	S	9	28	0	0	0	864	$1.17 e-14$	227.805476
500	S	9	28	0	0	0	927	$2.87 e-14$	238.384421
600	S	11	36	1	0	1	1211	$2.40 e-14$	314.293763
700	S	10	33	1	0	1	1170	$4.55 e-14$	292.697230
800	S	11	36	1	0	1	1320	$4.37 e-14$	332.888019
800	S	12	41	2	0	2	1484	$3.66 e-14$	370.552730
1000	S	13	46	3	0	3	1814	$4.81 e-14$	450.592816

Trust Region											
	S / F	INS	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time		
100	S	7	8	$N A$	$N A$	$N A$	586	$2.47 e-15$	156.567477		
200	S	8	9	$N A$	$N A$	$N A$	721	$6.15 e-15$	188.789107		
300	S	9	10	$N A$	$N A$	$N A$	849	$8.50 e-15$	218.150629		
400	S	9	10	$N A$	$N A$	$N A$	879	$1.67 e-14$	223.849692		
500	S	11	12	$N A$	$N A$	$N A$	1072	$1.54 e-14$	275.023223		
600	S	10	11	$N A$	$N A$	$N A$	1082	$3.07 e-14$	271.410170		
700	S	11	12	$N A$	$N A$	$N A$	1254	$3.09 e-14$	312.430216		
800	S	12	13	$N A$	$N A$	$N A$	1512	$4.12 e-14$	367.438938		
900	S	18	22	$N A$	$N A$	$N A$	2777	$3.71 e-14$	658.829983		
1000	S	14	16	$N A$	$N A$	$N A$	2049	$4.61 e-14$	498.664243		

Full Step Choice 1

	S / F	$I N S$	$F-$ Evals	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$	Time
100	S	7	8	$N A$	$N A$	$N A$	266	$2.63 e-14$	103.176433
200	S	12	13	$N A$	$N A$	$N A$	393	$7.27 e-15$	173.186368
300	S	10	11	$N A$	$N A$	$N A$	455	$1.23 e-14$	162.967126
400	S	13	14	$N A$	$N A$	$N A$	495	$1.23 e-14$	196.046878
500	S	13	14	$N A$	$N A$	$N A$	515	$1.53 e-14$	204.283561
600	S	16	17	$N A$	$N A$	$N A$	413	$1.33 e-11$	206.968673
700	S	18	19	$N A$	$N A$	$N A$	736	$3.92 e-14$	278.062298
800	S	27	28	$N A$	$N A$	$N A$	629	$3.52 e-14$	339.087976
900	S	32	33	$N A$	$N A$	$N A$	775	$3.66 e-14$	410.559843
1000	S	35	36	$N A$	$N A$	$N A$	819	$5.69 e-14$	446.344469

Full Step Constant											
		S / F	$I N S$	$F-E v a l s$	$L S$	$f-L S$	BckTcks	GMRES	$\\|F(x)\\|$		
100	S	6	7	$N A$	$N A$	$N A$	495	$2.59 e-15$	131.730091		
200	S	7	8	$N A$	$N A$	$N A$	625	$7.12 e-15$	162.208564		
300	S	8	9	$N A$	$N A$	$N A$	751	$1.10 e-14$	192.167292		
400	S	9	10	$N A$	$N A$	$N A$	864	$1.17 e-14$	227.151910		
500	S	9	10	$N A$	$N A$	$N A$	927	$2.87 e-14$	236.867409		
600	S	11	12	$N A$	$N A$	$N A$	1151	$3.36 e-14$	297.637799		
700	F	200	201	$N A$	$N A$	$N A$	924	116	1908.105526		
800	F	200	201	$N A$	$N A$	$N A$	1048	154	1924.440846		
900	F	200	201	$N A$	$N A$	$N A$	792	$3.48 e+09$	1884.846037		
1000	F	200	201	$N A$	$N A$	$N A$	1021	771	1934.055469		

Bibliography

[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.
[2] P. N. Brown and Y. Saad. Hybrid krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput., 11:450-481, 1990.
[3] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal., 19:400-408, 1982.
[4] R. S. Dembo and T. Steihaug. Truncated newton algorithms for large-scale optimization. Math. Prog., 26:190-212, 1983.
[5] James W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.
[6] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, NJ, 1983.
[7] S. C. Eisenstat and H. F. Walker. Globally convergent inexact Newton methods. SIAM J. Optimization, 4:393-422, 1994.
[8] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput., 17:16-32, 1996.
[9] M. Heroux. Trilinos project home page. http://software.sandia.gov/trilinos, Retrieved April 2003.
[10] P. Lin. Using the 806 IBM cluster. 2002.
[11] J. J. Moré and D. J. Thuente. Line search algorithms with guaranteed sufficient decrease. ACM Transactions on Mathematical Software, 20:286-307, Sept. 1984.
[12] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.
[13] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor, Numerical Methods for Nonlinear Algebraic Equations, pages 87-114. Gordon and Breach, London, 1970.
[14] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual method for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.
[15] J. N. Shadid, H. K. Moffat, S. A. Hutchinson, G. L. Hennigan, K. D. Devine, and A. G. Salinger. MPSalsa: A finite element computer program for reacting flow problems part 1 - theoretical development. Technical Report Sand95-2752, Sandia National Laboratories, Albuquerque NM, 87185, May. 1996.
[16] J. N. Shadid, R. S. Tuminaro, and H. F. Walker. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport. J. Comput. Phys., 137:155-185, 1997.
[17] H. F. Walker. Numerical methods for nonlinear equations. Technical Report MS-03-02-18, Worcester Polytechnical Institute, Worcester MA, 01609, May 2002.

