

Project Number: KAC-0701

Multi-Client Embedded Telemetry System1

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

1 This work was sponsored by the Air Force Contract ESC/XPK. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Matthew A. Babina

Ryan T. Moniz

Michel A. Sangillo Jr.

Date: October 11, 2007

Professor Kevin A. Clements Ph.D., Major Advisor

ii

Abstract

The Multi-Client Embedded Telemetry System (MCETS) is an ultra-low-power prototype

data acquisition system developed in collaboration with MIT Lincoln Laboratory for use across a

wide range of telemetry applications. Capable of collecting both atmospheric and kinematic data,

the MCETS incorporates a network of small modular clients that stream data to a server in real-time.

This project is concerned with all aspects of the system, including defining the system’s

functionality, designing the client hardware, developing firmware, and writing server-control

software.

iii

Executive Summary

The Multi-Client Embedded Telemetry System (MCETS) is a newly designed prototype data

acquisition system developed for MIT Lincoln Laboratory to aid in rapid prototyping of telemetry

modules used for varying mission areas. In order to increase their data acquisition capability, The

Laboratory desires a more flexible system that can acquire telemetry data – position, velocity, and

acceleration – from several modular clients at a raw data rate of ten Hertz, and for this data to be

accumulated by a data analysis server. Among other specifications, The Laboratory requires each

client in the system to operate on batteries for at least ten minutes, consume less than five watts of

power, and weight less than one kilogram. Accordingly, the MCETS is a custom-designed system

that exceeds virtually all of these requirements, providing a telemetry system capable of acquiring

Cartesian and Geodetic position, Cartesian and Geodetic velocity, acceleration, temperature,

pressure, angular rate, and magnetic field strength.

 The basic concept of the MCETS is for numerous modular clients to remain in a low-power

standby mode until they are individually queried for data acquisition by the MCETS server. Once

needed, the server initiates communications with selected clients using unique electronic

identification numbers. After the communication link is opened, the server requests data at a

specified data acquisition rate between one and one-hundred Hertz. The server also indicates the

length of data acquisition ranging from one to 65,535 seconds (eighteen hours, twelve minutes, and

fifteen seconds), and the particular telemetry data to acquire (e.g., one or more of temperature,

pressure, acceleration, angular rate, magnetic field strength, Cartesian position, Geodetic position,

Cartesian velocity, Geodetic velocity, and/or GPS receiver time). Ultimately, this flexibility and

functionality is accomplished from three major subsystems: the MCETS hardware, firmware, and

software.

iv

Each MCETS client incorporates a four-layer stack of printed circuit boards, including a

sensor, microcontroller development, GPS OEM receiver, and power supply board. The sensor

board (top layer) is a custom-designed board that houses the analog sensors (temperature, pressure,

acceleration, angular rate, and magnetic field strength), their associated electrical components, an

802.11b embedded wireless module for Internet Protocol-based communications, and the necessary

connections to interface with the other three layers. The second and third layer – the

microcontroller development and GPS OEM receiver board – are commercially available boards

that incorporate a Texas Instruments© MSP430 microcontroller and a GPS processor, respectively.

Lastly, the fourth layer (bottom layer) is a custom-designed power supply that provides 3.3-volt, 5.0-

volt, and 11.1-volt sources for the three other boards, which employs high efficiency switching

voltage regulators and an 11.1-volt lithium ion battery.

The hardware for the MCETS clients is controlled via firmware written in the assembly

programming language for the Texas Instruments© MSP430 microcontroller. The firmware executes

three main procedures, a client initialization, data acquisition, and data transmission procedure. The

client initialization procedure configures the client for proper operation; the data acquisition

procedure determines what data the server requested and then collects this data; and the data

transmission procedure formats this acquired data and transmits it to the embedded wireless module

for wireless communications with the MCETS server. Once the MCETS server receives this

streaming data, a MATLAB-based graphical user interface parses, converts, and stores the acquired

telemetry data for future in-depth data analysis.

The final MCETS products is a functional prototype data acquisition system that exceeds

virtually all of MIT Lincoln Laboratory’s system requirements. Specifically, the system has a variable

data rate between one and one-hundred Hertz, improving upon the required minimum rate of ten

Hertz. Furthermore, the MCETS consumes a maximum of 2.70 watts, allowing it to run on a 4.40

v

ampere-hour battery for seven to eight hours, weighs approximately one kilogram, and measures

2.25 x 3.45 x 4.00 inches. Overall, the most important result stemming from the MCETS is that it

proves the concept of a low power and cost effective data acquisition system that employs multiple

modules is both feasible and practical for the data analysis requirements of MIT Lincoln Laboratory.

vi

Table of Contents

Abstract ...ii

Executive Summary ..iii

Table of Contents ...vi

List of Figures...x

List of Tables ...xiii

1. Introduction...1

2. System Requirements ...3

3. The Wireless Instrumentation and Telemetry System...5

4. The Multi-Client Embedded Telemetry System...8

5. Technical Background..13

5.1. The Global Positioning System ..13

5.2. Parallel and Serial Communication Methods..17

5.3. Universal Asynchronous Receivers-Transmitters ..20

5.4. The RS-232 Standard ...22

5.5. The Serial Peripheral Interface Bus..25

5.6. The Internet Protocol Suite ..30

6. MCETS Client Hardware Design ...39

6.1. Olimex© MSP430-P1611 Development Board ..39

6.2. Maxim© DS600U Analog-Output Temperature Sensor ...43

6.3. Motorola© MPXA4250A6U Pressure Sensor...45

6.4. MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor49

6.5. Javad© JNS100 GPS OEM Receiver..54

vii

6.6. Quatech© WLNB-AN-DP102 Embedded Wireless Module...55

6.7. Power Supply Board...58

6.8. Sensor Printed Circuit Board Layout...61

6.9. Power Supply Printed Circuit Board Layout ..63

7. Cost Analysis..65

8. MCETS Client Firmware Development..70

8.1. Client Initialization Procedure ..71

8.2. Data Acquisition Procedure..76

8.3. Data Transmission Procedure ..82

9. MCETS Server Software Development...85

9.1. Server-to-Client and Client-to-Server Communications...85

9.2. Data Parsing and Processing...88

9.3. MATLAB Graphical User Interface ..92

10. Conclusion ...97

References ...99

Appendix A: MCETS Component Datasheets .. 102

A.1. Olimex© MSP430-P1611 Development Board Datasheet .. 102

A.2. Maxim© DS600U Analog-Output Temperature Sensor Datasheet 104

A.3. Motorola© MPXA4250A6U Pressure Sensor Datasheet ... 109

A.4. MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor Datasheet 117

A.5. Javad© JNS100 GPS OEM Receiver Datasheet.. 123

A.6. Quatech© WLNB-AN-DP102 Embedded Wireless Module Datasheet 125

A.7. Bel© x7AH-03H Series DC/DC Converters ... 127

Appendix B: MCETS Sensor Board Pin Connections.. 133

viii

B.1. Miscellaneous Header and Connector Pin Connections ... 133

B.2. Temperature Sensor Pin Connections.. 135

B.3. Pressure Sensor Pin Connections.. 136

B.4. Tri-Axial Analog Inertial Sensor Pin Connections ... 136

B.5. Analog Multiplexer Pin Connections.. 137

B.6. Operational Amplifier/Voltage Attenuator Pin Connections 138

B.7. Embedded Wireless Module Pin Connections.. 139

B.8. Bus Switch Pin Connections.. 140

Appendix C: Circuit Schematics ... 141

C.1. Miscellaneous Header and Connector Circuit Schematics .. 141

C.2. Temperature Sensor Circuit Schematic .. 142

C.3. Pressure Sensor Circuit Schematic .. 143

C.4. Tri-Axial Analog Inertial Sensor Circuit Schematic ... 144

C.5. Embedded Wireless Module Circuit Schematic .. 145

C.6. Power Supply Board Circuit Schematic.. 146

Appendix D: Printed Circuit Board Layouts .. 147

D.1. Sensor Board Printed Circuit Board Layout.. 147

D.2. Power Supply Printed Circuit Board Layout ... 154

D.3. Bill of Materials .. 158

Appendix E: MCETS Client Firmware ... 159

E.1. Texas Instruments© MSP430 Assembly Instruction Set.. 159

E.2. Packet Format for Data Transmitted from the Server to the Clients........................ 160

E.3. Packet Format for Data Transmitted from the Clients to the Server........................ 162

E.4. Data Format for Standard GRIL Output Messages... 168

ix

E.5. MCETS Client Firmware (Assembly Language)... 171

Appendix F: MCETS Server Software .. 183

F.1. MCETS Main Figure Functions (MATLAB Language) .. 183

F.2. MCETS Server-to-Client Packet Generator (MATLAB Language) 215

F.3. MCETS Data Packet Parsing Functions (MATLAB Language) 217

F.4. Miscellaneous MCETS Server Functions (MATLAB Language)............................... 228

Acronym Glossary .. 249

x

List of Figures

Figure 3.1: WITS Tri-Axial Analog Accelerometer ..5

Figure 3.2: WITS GPS OEM Receiver...6

Figure 4.1: Proposed MCETS Client Architecture ...10

Figure 4.2: Proposed MCETS System Board Layout ...11

Figure 5.1: GPS Satellite Orbits ...14

Figure 5.2: Typical PRNS Sequence Transmitted by a GPS Satellite..15

Figure 5.3: Single-Satellite Line of Position ...16

Figure 5.4: Double-Satellite Line of Position...16

Figure 5.5: Parallel Communication Systems...18

Figure 5.6: Serial Communication Systems ..19

Figure 5.7: Standard RS-232 DB-9 Connector ..25

Figure 5.8: Single-Master, Single-Slave SPI Implementation ..26

Figure 5.9: Single-Master, Multiple-Slave SPI Implementation ..28

Figure 5.10: SPI Timing Diagram..28

Figure 5.11: Five-Layer Internet Protocol Model ...30

Figure 5.12: Layer-to-Layer Communications in the Internet Protocol Suite ..31

Figure 6.1: Temperature versus Output Voltage...45

Figure 6.2: Pressure Sensor Accuracy versus Temperature ...46

Figure 6.3: Pressure versus Output Voltage...48

Figure 6.4: Single-Supply Op-Amp Attenuator Circuit..49

Figure 6.5: Acceleration versus Output Voltage ...51

xi

Figure 6.6: Angular Rate versus Output Voltage ..52

Figure 6.7: Magnetic Field Strength versus Output Voltage ...53

Figure 6.8: Internal Temperature versus Output Voltage..53

Figure 6.9: Quatech© WLNB-AN-DP102 Embedded Wireless Module Block Diagram.....................57

Figure 8.1: Main Procedures of the MCETS Client Firmware..71

Figure 8.2: Expanded MCETS Client Initialization Procedure...73

Figure 8.3: Expanded MCETS Client Data Acquisition Procedure...77

Figure 8.4: MCETS Client GPS Data Acquisition Process ...81

Figure 8.5: Expanded MCETS Client Data Transmission Procedure ...83

Figure 9.1: Main MCETS Graphical User Interface Window...94

Figure 9.2: MCETS “Edit Modules” Graphical User Interface Window..94

Figure D.1: Top Sensor Board Silk Screen ... 147

Figure D.2: Bottom Sensor Board Silk Screen ... 147

Figure D.3: Sensor Board Drill Holes.. 148

Figure D.4: First Sensor PCB Layer... 149

Figure D.5: Second Sensor PCB Layer (Analog Ground Plane) ... 149

Figure D.6: Third Sensor PCB Layer... 150

Figure D.7: Fourth Sensor PCB Layer (Digital Ground Plane)... 150

Figure D.8: Fifth Sensor PCB Layer .. 151

Figure D.9: Sixth Sensor PCB Layer (Power Supply Plane)... 151

Figure D.10: Seventh Sensor PCB Layer (Power Ground Plane) ... 152

Figure D.11: Eighth Sensor PCB Layer... 152

Figure D.12: All Sensor PCB Layers.. 153

Figure D.13: All Sensor PCB Layers (Actual Size) .. 153

xii

Figure D.14: Top Power Supply Board Silk Screen... 154

Figure D.15: Bottom Power Supply Board Silk Screen... 154

Figure D.16: Power Supply Board Drill Holes... 155

Figure D.17: First Power Supply PCB Layer .. 156

Figure D.18: Second Power Supply PCB Layer ... 156

Figure D.19: All Power Supply PCB Layers ... 157

Figure D.20: All Power Supply PCB Layers (Actual Size) .. 157

xiii

List of Tables

Table 5.1: GPS Dilution of Precision Values ..17

Table 5.2: Standard UART Baud Rates ..22

Table 5.3: RS-232 Electrical Specifications ...24

Table 5.4: RS-232 DB-9 Signal and Pin Assignments (DTE Viewpoint) ..25

Table 5.5: SPI Configuration Modes...29

Table 5.6: Internet Protocol (IPv4) Header ...33

Table 5.7: Transmission Control Protocol (TCP) Header...34

Table 5.8: IEEE 802.11 Data Link Layer Specifications ...35

Table 6.1: The Texas Instruments© MSP430 Microcontroller Series...41

Table 6.2: 4:1 Analog Multiplexer Truth Table ...54

Table 6.3: Estimated Maximum MCETS Client Power Requirements ...59

Table 6.4: Sensor Board PCB Layers ..63

Table 7.1: Sensor Board Cost Analysis ...66

Table 7.2: Microcontroller Development Board Cost Analysis ..67

Table 7.3: GPS OEM Receiver Cost Analysis ...67

Table 7.4: Power Supply Board Cost Analysis...68

Table 7.5: System Assembly Cost Analysis ..68

Table 7.6: Nonrecurring MCETS Expenditures ...69

Table 8.1: Applicable GRIL Commands for the MCETS...79

Table 9.1: MATLAB TCP/IP Object Properties..87

Table 9.2: MATLAB-Parsed MCETS Data Structure..91

Table B.1: 60-Pin Microcontroller Header Pin Connections ... 134

Table B.2: 10-Pin Power and Ground Header Pin Connections... 134

xiv

Table B.3: 2-Pin RS-232 Header Pin Connections .. 134

Table B.4: 30-Pin GPS Header Pin Connections... 135

Table B.5: Temperature Sensor Pin Connections .. 135

Table B.6: Pressure Sensor Pin Connections.. 136

Table B.7: Tri-Axial Analog Inertial Sensor Pin Connections ... 136

Table B.8: MOSFET Reset Circuit Pin Connections .. 137

Table B.9: Analog Multiplexer 1 Pin Connections .. 137

Table B.10: Analog Multiplexer 2 Pin Connections .. 137

Table B.11: Analog Multiplexer 3 Pin Connections .. 138

Table B.12: Op-Amp Attenuator Pin Connections ... 138

Table B.13: Embedded Wireless Module Pin Connections.. 139

Table B.14: Bus Switch 1 Pin Connections... 140

Table B.15: Bus Switch 2 Pin Connections... 140

Table D.1: Sensor Board Bill of Materials... 158

Table D.2: Power Supply Board Bill of Materials .. 158

Table E.1: GRIL Cartesian Position Output Message .. 168

Table E.2: GRIL Geodetic Position Output Message .. 168

Table E.3: GRIL Cartesian Velocity Output Message .. 169

Table E.4: GRIL Geodetic Velocity Output Message .. 169

Table E.5: GRIL Dilution of Precision Output Message ... 169

Table E.6: GRIL Satellite Statistics Output Message .. 170

Table E.7: GRIL Receiver Date Output Message ... 170

Table E.8: GRIL Receiver Time Output Message... 170

xv

1

1. Introduction

MIT Lincoln Laboratory, a Federally Funded Research and Development Center managed

by the Massachusetts Institute of Technology, is interested in developing and advancing a Multi-

Client Embedded Telemetry System (MCETS) to assist in the rapid acquisition and transmission of

atmospheric and kinematic data. Inherently, these systems are in distant and inaccessible

environments that are too difficult, dangerous, and otherwise expensive to analyze.1 Being entirely

self-sufficient from all systems and environments it observes, a MCETS provides the real-time data

link between objects in motion and a relatively central, stationary command center where measured

and collected data can be processed, instantaneously viewed, and stored for future mission analysis.

The MCETS project was inspired by the growth of the United States’ Ballistic Missile

Defense System (BMDS), which is “one of the most complex and challenging missions of the

United States’ Department of Defense (DoD)”.2 Ultimately, the BMDS, a “collection of Elements

and components that are integrated to achieve the best possible performance against a full range of

potential [ballistic missile] threats”,3 desires a reliable, low-cost, and disposable test asset – such as

the MCETS – that can support both current and future missile-defense missions. In providing this

support, the MCETS could assist the DoD in accomplishing two of its seven strategic BMDS goals,

including the completion of “fielding, verification, and transition of the initial BMDS capability”,4 as

well as executing an “increasingly integrated and complex test program to build confidence in system

support”.5

As a result, by providing remote data acquisition capability independent of Elements and

components integrated in the BMDS, the MCETS could bridge the gap between physical missions

and ground-based researchers and mission analysts. Such a system of multiple wireless data

acquisition modules, who seamlessly communicate with a single base station, could provide a cost-

effective solution necessary for obtaining the versatile atmospheric and kinematic data needed

2

during various flight tests. By doing so, another layer of test assets can be integrated with current

methodologies to build a better, more flexible and adaptable BMDS test program.

Notes

1. “Glossary of Telemetry, Technology & Technical Terms”, Texas A&M University, June 2003, <http://

www.tamug.edu/labb/Technology/Glossary.htm> (26 August 2007).

2. “Global Ballistic Missile Defense”, The United States Missile Defense Agency, n.d., <http://www.mda.mil/

mdalink/pdf/bmdsbook.pdf> (15 September 2007).

3. Ibid.

4. Ibid.

5. Ibid.

3

2. System Requirements

Although the full potential and benefits of a multi-client telemetry system are not fully

known, the MCETS sponsor exhibits interest in specific electrical, physical, and economical system-

characteristics that are unique compared to those of similar, though more expensive, commercial

off-the-shelf (COTS) telemetry units. Foremost, The Laboratory requires the MCETS to be

comprised of multiple relatively low-cost modules that wirelessly communicate with a central base

station. In this type of setup, several MCETS sensor modules (i.e., clients) stream live data back to a

base station (i.e., server) for processing and analysis.

As well as the single-server/multiple-client setup, the sponsor also requires that the

prototype system have a minimum data rate of ten Hertz. Throughout this 0.10-second

reacquisition rate, The Laboratory deems it necessary to have an extremely precise position accuracy

of at least one-meter using the United States’ Global Positioning System (GPS). In addition, the

MCETS must have a ten-minute operation time, during which the total power consumption is less

than five watts. Finally, each client module in the system should have a mass of around one

kilogram and a total volume of approximately one-eighth of a cubic meter (19.5 x 19.5 x 19.5

inches).

While sensors beyond a GPS receiver are not listed as requirements, it is understood that the

system should provide basic atmospheric and kinematic data acquisition. With that being said, the

higher the number of onboard sensors present on each MCETS module, the more flexible and

expandable the system will be for applications beyond those specific to ballistic missile defense

systems. Moreover, it should also be noted that specific environmental conditions including, but

not limited to, extreme operating temperature, high relative humidity, and immense system vibration

and shock, are not given, nor will be fully taken into account in the design and prototype of the

MCETS. However, the transition from this proof-of-concept system to an actual standalone system

4

should be nearly seamless. In fact, it is expected that most care will have to be taken in sensor

output compensation, filtering, and recalibration, not in actual sensor replacement and system

redesign.

Given these system requirements, the ultimate goal of this electrical and computer

engineering design project is to propose, prototype, and begin testing a telemetry system with

multiple wireless sensor modules that communicate with a single graphical user interface-based

(GUI-based) server for MIT Lincoln Laboratory. Following the completion of this Major

Qualifying Project (MQP), a successful proof-of-concept system that meets and/or exceeds the

specifications given by The Laboratory will ultimately demonstrate the feasibility of a MCETS and

its significant importance to the testing and analysis objectives of future flight-test campaigns.

5

3. The Wireless Instrumentation and Telemetry System

The current concept of a multi-client telemetry system stems from a previously designed

proof-of-concept system, formerly under the name Wireless Instrumentation and Telemetry System

(WITS), designed by MIT Lincoln Laboratory engineer Omar Moussa. The main concept in the

WITS is to have multiple data acquisition modules (i.e., clients) with the ability to both locally store

and wirelessly transmit information to a designated server. This server, a laptop for prototyping and

proof-of-concept purposes, is capable of processing and storing multiple data streams, though does

not have any GUI for viewing this acquired data live.

In terms of data acquisition capability, the WITS only includes two sensors – a tri-axial

analog accelerometer and a GPS original equipment manufacturer (OEM) receiver. The

accelerometer chosen for the design is the Colibrys© Si-Flex SF3000L (Figure 3.1: WITS Tri-Axial

Analog Accelerometer), which is capable of measuring up to three times the acceleration of gravity

on Earth (i.e., ±3.0 g) along the x-, y-, and z-axis Cartesian coordinate directions. Additionally, this

sensor has at least forty-six decibels (dB) of cross-axis rejection from orthogonal axes, a sensitivity

of 1.2 volts per g, and a maximum quiescent supply current of 30.0 milliamperes (mA). However,

since its input voltage is between 6.0 and 15.0 volts, the accelerometer consumes a maximum of

180.0 to 450.0 milliwatts (mW) of power, a relatively high amount for a portable telemetry system.

Figure 3.1: WITS Tri-Axial Analog Accelerometer

(Source: Si-Flex SF3000L Low-Noise Analog 3g Accelerometer)1

6

The GPS receiver selected for the WITS is the Javad© JNS100 (Figure 3.2: WITS GPS OEM

Receiver), a sophisticated unit capable of tracking up to fifty different satellites and producing a raw

data output rate up to one-hundred Hertz. Additionally, the receiver can accurately generate

kinematic data at almost unlimited altitudes and velocities with 10.0-centimeter (cm) code phase and

0.1-millimeter (mm) carrier phase position accuracy. With its onboard voltage regulator, the GPS

receiver accepts an unregulated voltage between 6.5 and 40.0 volts, and returns data streams on four

high-speed RS-232 serial ports. Thus, with all these features available to the WITS, the system is

able to incorporate and utilize a highly accurate and fast raw data GPS solution.

Figure 3.2: WITS GPS OEM Receiver

(Source: Javad Navigation Systems JNS100)2

In order to process the acquired data from the tri-axial accelerometer and the GPS receiver,

the WITS uses a stack of PC-104 compliant boards (a size standard for computer boards) that

consists of a motherboard, an input/output (I/O) peripheral board, and a PCMCIA interface socket

for a wireless internet card. The motherboard incorporates an onboard Intel© 300 Megahertz (MHz)

microprocessor and 512 megabytes (MB) of random access memory (RAM). Since the board is

virtually a personal computer using an x86 microprocessor, the system requires both an operating

system and hard drive to operate. As a result, each WITS client utilizes a four-gigabyte (GB) solid-

state Flash drive and runs the Microsoft© Windows 2000 operating system. (Microsoft© Windows

7

was chosen over tighter operating systems like Linux because, at the time of development, the

drivers for the WITS’s encrypted wireless network card only support Windows 2000.)

The I/O peripheral board in the three-layer PC-104 stack consists of two twelve-bit analog-

to-digital converters (ADC) and a twelve-bit digital-to-analog converter (DAC). The tri-axial analog

accelerometer is fed directly into one of the ADCs on the I/O board, which is programmed and

controlled in the Windows operating system environment. The GPS receiver, however, utilizes an

RS-232 port directly on the motherboard, and does not interface with the PC-104 I/O board.

Finally, the PCMCIA socket allows for the attachment of a wireless internet card to transmit the

GPS and accelerometer data to a networked server.

Notes

1. “Si-Flex SF3000l Low-Noise Analog 3g Accelerometer”, Colibrys, n.d., <http://www.colibrys.com/files/e/

pdf/inertial/data_sheet_siflex3000L.pdf> (6 October 2007).

2. “Javad Navigation Systems JNS100”, Javad, n.d., <http://javad.com/jns/index.html?/jns/support/

manuals.html> (6 October 2007).

8

4. The Multi-Client Embedded Telemetry System

In terms of functionality, the WITS adequately accomplishes its objectives, permitting

multiple-module data acquisition and remote collection by a single server. Unfortunately, there is a

significant gap between the WITS and a standalone system practical for in-flight data acquisition and

analysis. The foremost problem with the system is its impractical and unacceptable power

requirements. Unfortunately, in order to operate and meet the required specifications, the WITS

consumes upwards of twenty watts of power, with the PC-104 motherboard and 300 MHz Intel©

Celeron processor alone consuming nine to ten watts. As a result, individual system modules are

virtually unsuitable to run on batteries for any significant operating time, while maintaining a small

enough package (in terms of physical size and weight) necessary for onboard ballistic missile

applications. Unfortunately, these pitfalls – power consumption, size, and weight – all stem from

the issue that the WITS has a lot of unnecessary hardware-based overhead.

Consequently, the next-generation Wireless Instrumentation and Telemetry System

contracted by MIT Lincoln Laboratory, hereby known as the Multi-Client Embedded Telemetry

System, must be a complete overhaul of the current system. The most significant change that needs

to be made is to use a microcontroller instead of the currently implemented Intel© Celeron

microprocessor and PC-104 motherboard. By transforming from power-hungry microprocessors

that (for this application) unnecessarily run at 300 MHz to ultra-low-power microcontrollers (sub-

milliwatt) that can run at clock speeds in the low MHz to low kilohertz (kHz) range, the power

consumption per module can be lowered by approximately nine or ten watts (virtually the entire

power consumption of the currently-implemented microprocessor).

Moreover, by replacing the microprocessor with a microcontroller, the superfluous

Microsoft© Windows 2000 operating system and four GB external solid-state Flash drive can be

replaced with tighter application-specific embedded software and onboard microcontroller Flash

9

memory. Additionally, the other unnecessary hardware components, including the PC-104 twelve-

bit ADC and DAC board, as well as the parallel and serial communication ports on the PC-104

motherboard, can be substituted with peripherals directly on the microcontroller. And, with all of

this overhead removed, ample space – in terms of power, size, and weight – remains for additional

sensors not incorporated in the original WITS, including environmental analysis sensors (e.g.,

temperature and pressure sensors) and even a tri-axial analog gyroscope capable of measuring

angular rate.

In addition to this hardware overhaul, the newly proposed MCETS builds upon the

multiple-client/single-server concept, as well as the server software first developed in the WITS.

Although the WITS only had one-way communications from each client module to the server, the

MCETS will incorporate two-way communications via an embedded wireless module. With the

ability of two-way communications, a redesigned MATLAB-based server can query particular clients

already in flight based upon unique module identification numbers. This feature allows the server to

ask individual clients for particular telemetry data (e.g., position, acceleration, temperature, pressure,

etc.), at a requested variable data rate and length of time. Ultimately, the capability of

communicating from the server to selectable clients, and back from the clients to the server, gives

ground-based researchers and analysts much more flexibility and control than with the current

WITS.

To summarize the proposed MCETS and to illustrate the drastic changes made from the

first-generation WITS, Figure 4.1: Proposed MCETS Client Architecture depicts the overall system-

level architecture for each data acquisition module in the system. The analog temperature, pressure,

and tri-axial accelerometer and gyroscope sensors provide the detailed atmospheric and inertial

measurements that unfortunately cannot be provided by the more accurate, RS-232-based GPS

receiver. In contrast to the one inertial sensor on the WITS, these four analog sensors are tied

10

directly into the microcontroller via a multi-channel onboard ADC. Additionally, the redesigned

MCETS uses a wireless module that interfaces directly with the microcontroller via serial

communications, and is capable of generating the necessary signals to communicate back and forth

over an Internet Protocol-based wireless network.

MUX
(Z Axis)

MUX
(Y Axis)

Microcontroller

Embedded
Wireless Module
(Serial to TCP/IP)

Master RX / Slave TX

Slave Select (SS)

Serial Clock

Master TX / Slave RX

Analog
Temperature

Sensor Analog
Pressure
Sensor

Tri-Axial
Inertial Sensors

(Accelerometer)

(Gyroscope)

GPS
Receiver

RS-232 (UART TX)

RS-232 (UART RX)

ADC

ADC
ADC ADC ADC

MUX
(X Axis)

Figure 4.1: Proposed MCETS Client Architecture

11

On a higher system level, Figure 4.2: Proposed MCETS System Board Layout illustrates the

MCETS client architecture, layer for layer. The top layer – the sensor board – is a custom-designed

printed circuit board (PCB) that holds the analog sensors and the wireless module. This board has

parallel communications with both the OEM GPS receiver (layer three) and the microcontroller

development board (layer two), and thus acts as a gateway between the microcontroller, the GPS

receiver, the analog sensors, and the wireless module. The sensor board also provides the necessary

voltage lines emanating from the custom-designed power supply board (layer four) for the GPS

receiver, microcontroller, and other onboard components. As a result, the sensor board is the most

complex and critical aspect in the MCETS, in which the entire design relies on its full functionality.

Figure 4.2: Proposed MCETS System Board Layout

With this next-generation telemetry system (Figure 4.1 and Figure 4.2), the MCETS is

projected to surpass all requirements provided by The Laboratory. With respect to power

requirements, it is predicted the system will consume between 2.0 and 3.0 watts of power, meeting

the design requirement of at most 5.0 watts of power consumption. In comparison, the proposed

MCETS consumes 12.5 of the energy of the WITS (2.5 watts compared to 20.0 watts), making

battery operation more than feasible. With such a low power demand, the MCETS is more than

12

capable of running for ten minutes, and, depending on the particular battery employed, an operating

time of five or six hours is more than possible.

Furthermore, based on the anticipated size of components, the total volume of each

MCETS module is projected to be around 0.00051 cubic meters (2.25 x 3.45 x 4.00 inches), far less

than the 0.125 cubic meters stated in the design requirements. With respect to mass, it is hard to

make an accurate estimation, however even with a battery each module should weigh around one

kilogram as specified by MIT Lincoln Laboratory. Finally, regardless of the transformation from a

microprocessor to a microcontroller, the new design allows for a variable data rate of one to one-

hundred Hertz, which can be dynamically controlled by the MATLAB-based server, providing more

control than the required minimum rate of ten Hertz. As a result, the proposed MCETS is a

significant improvement over the first-generation telemetry system, WITS, and the design will help

propel a relatively low-cost telemetry system from the proof-of-concept stage closer to a standalone

system practical for in-flight ballistic missile data acquisition and analysis.

13

5. Technical Background

As illustrated in Figure 4.1, the proposed telemetry system needed to move the first-

generation WITS closer to a more-practical standalone system draws upon various Electrical

Engineering interfaces, protocols, and standards. One of the foremost and most accurate onboard

kinematic sensors, the GPS receiver, employs the United States’ Global Navigation Satellite System

(GNSS), and is connected to each client microcontroller using a RS-232 cable and a Universal

Asynchronous Receiver-Transmitter (UART). Similarly, the physical wireless communication link

between client microcontrollers and the central MATLAB server utilizes the Serial Peripheral

Interface (SPI) bus and an 802.11 wireless module. Onboard this wireless module, the use of the

Transmission Control Protocol (TCP) and the Internet Protocol (IP), layers within the Internet

Protocol Suite, provide the transport and network links between the client microcontrollers and the

MCETS MATLAB server. Accordingly, each of these interfaces, protocols, and standards are

investigated in-depth in the following subsections.

5.1. The Global Positioning System

The United States’ GNSS, the Global Positioning System, is an infrastructure of

twenty-four satellites set into medium-Earth orbit1 (Figure 5.1: GPS Satellite Orbits) that

permit extremely accurate object tracking and timing, including x, y, and z-axis position,

latitude and longitude coordinates, altitude, velocity, and Coordinated Universal Time (UTC

time). Originally developed by the DoD in the early 1970s and now free for both civilian

and government use, the system utilizes exceptionally accurate atomic clocks that are

onboard each of the twenty-four satellites.2 With these highly accurate clocks implemented

in the space segment of the GPS, the user segment of the system can advantageously use

low-cost handheld receivers with far less accurate clocks that are continuously compensated

14

for by satellite signals. For this reason, the GPS has become one of the most important

systems in the world for both the United States’ military and civilians across the world.

Today, GPS is found in navigation systems used to coordinate military troop movement and

supply shipment, civilian surveying and navigation, cellular phone networks, and even

earthquake and tectonic plate measuring systems.

Figure 5.1: GPS Satellite Orbits

(Source: The Navy & Satellites: Global Positioning System (GPS))3

The currently implemented GPS algorithm used in civilian GPS receivers to produce

accurate timing and kinematic measurements takes advantage of the signal propagation delay

from orbiting satellites. By measuring the delay from when a satellite’s signal is transmitted

to when it is received, the speed of light c can be used to calculate the distance between the

GPS receiver and the satellite (i.e.,). In order to measure this delay, a satellite

creates a unique Pseudo Random Noise sequence PRNS (Figure 5.2: Typical PRNS Sequence

Transmitted by a GPS Satellite), which is modulated by a high-frequency carrier wave and

15

transmitted by the satellite to the GPS receiver. Once the GPS receiver receives the

modulated PRNS signal, it creates its own Pseudo Random Noise sequence PRNR based on a

predefined seed number unique to the transmitting satellite’s atomic clock. This PRNR

sequence is then shifted in time to match the incoming PRNS, and the propagation delay

(i.e., time shift) is measured and used to calculate the relative distance between the satellite

and the receiver.

Figure 5.2: Typical PRNS Sequence Transmitted by a GPS Satellite

(Source: Global Positioning Systems)4

As illustrated in Figure 5.3: Single-Satellite Line of Position, once a receiver knows its

relative distance from one of the orbiting GPS satellites, it can infer that it is anywhere

equidistant from the satellite on a line of position around the Earth (and into space).

Following the connection to another satellite (Figure 5.4: Double-Satellite Line of Position),

it can reduce the infinite number of possible locations calculated from the one satellite down

to only two possibilities on the Earth. Similarly, a connection to a third satellite reduces the

two possible receiver locations to one possible location in a two-dimensional space (i.e.,

latitude and longitude), and a fourth satellite to one possible location in a three-dimensional

space (i.e., latitude, longitude, and altitude). By connecting to more than four satellites, a

GPS receiver can calculate its three-dimensional location with a much higher degree of

accuracy, a calculated value described by Geometric Dilution of Precision (GDOP).

16

Figure 5.3: Single-Satellite Line of Position

(Source: Navigation for Weapons)5

Figure 5.4: Double-Satellite Line of Position

(Source: Navigation for Weapons)6

17

The ideal scenario for any GPS receiver is to be connected to GPS satellites that are

fully geometrically spread out in three-space, which in terms of three satellite connections is

a 120-degree spread. Consequently, as illustrated in Table 5.1: GPS Dilution of Precision

Values13F, when satellites are close together in space, their geometry is unfavorably weak

and the GDOP value is high. On the other hand, when satellites are farther apart, their

geometry is more favorable for accurate kinematic calculations and the GDOP value is low.

Additionally, other accuracy parameters such as Horizontal Dilution of Precision (HDOP)

for latitude and longitude accuracy, Vertical Dilution of Precision (VDOP) for altitude

accuracy, Position Dilution of Precision (PDOP) for three-dimensional position accuracy,

and Time Dilution of Precision (TDOP) for time accuracy, provide an insight into how

reliable a GPS receiver’s measurements really are.

DOP Value Rating Description

1 Ideal
This is the highest possible confidence level to be used for applications demanding the

highest possible precision at all times.

2 – 3 Excellent
At this confidence level, positional measurements are considered accurate enough to meet

all but the most sensitive applications.

4 – 6 Good
Represents a level that marks the minimum appropriate for making business decisions.

Positional measurements could be used to make reliable in-route navigation suggestions.

7 – 8 Moderate
Positional measurements could be used for calculations, but the fix quality could still be

improved. A more open view of the sky is recommended

9 – 20 Fair
Represents a low confidence level. Positional measurements should be discarded or used

only to indicate a very rough estimate of the current location

21 – 50 Poor Measurements are inaccurate by as much as fifty yards and should be discarded.

Table 5.1: GPS Dilution of Precision Values7

5.2. Parallel and Serial Communication Methods

The two most standard methods for transmitting digital information between one

electrical component (e.g., a GPS receiver) and another (e.g., a microcontroller) are parallel

18

and serial communication systems. In a parallel communication system (Figure 5.5: Parallel

Communication Systems), a driver places n bits of data onto n different communication

channels (e.g., wires), in which all n bits of information are transmitted at the same time.8

Following the delays in the channels, all n bits are ideally received at exactly the same time,

rendering the information ready for processing. Conversely, in a serial communication

system (Figure 5.6: Serial Communication Systems), data is first converted into a serial

stream of n bits in a process known as serialization.9 Thereafter, a driver places the n-bit

stream onto a single communication channel, in which each bit is sequentially transmitted.

Then, following the single delay in the channel, a receiver reads the serial data and de-

serializes it back into parallel form for processing.

Figure 5.5: Parallel Communication Systems

 (Source: Comparing Bus Solutions)10

As one can imagine, the de-serialization process in a serial communication system

results in a lot of overhead compared to a similar parallel system. This overhead translates

into larger time delays that accumulate due to individual encoding delays (time from when

data is ready for transmission to it is actually transmitted) and decoding delays (time from

when data is received to when it can actually be processed).11 Furthermore, in order to

achieve the same throughput, data must be transmitted n times faster in a serial system than

19

in an equivalent parallel system. Consequently, this higher data rate causes larger signal

bandwidths, ultimately increasing the cost and complexity of the channel and hindering the

maximum distance between communicating devices.

Figure 5.6: Serial Communication Systems

(Source: Comparing Bus Solutions)12

However, due to the nature of the system, serial buses require far fewer conductors

than equivalent parallel buses, resulting in much smaller and less expensive systems.

Moreover, since only one communication channel is needed to transmit data, serial

communication systems do not have any line-to-line time skewing that can become an issue

in parallel data transmission.13 This also forces the power loss per bit of information down,

as the more rapid serial signal is transmitted over less paths of resistance (only one channel

compared to n channels) for a shorter duration of time. In other words, the higher data rate

of serial communication systems result in shorter bit durations compared to parallel

communications systems, ultimately resulting in less power consumption. Therefore, for

embedded systems that require small packages and consume minimal power, the choice

method of communications is via serial bus systems that uses only one channel per direction

of information flow.

20

5.3. Universal Asynchronous Receivers-Transmitters

In order to interface a serial communication system with a component (e.g., a

microcontroller) that naturally processes data in its parallel form, a Universal Asynchronous

Receiver-Transmitter (UART) is needed to convert any parallel data to be transmitted into a

serial bit stream, as well as any received serial data back into parallel form.14 The basic

functionality of these integrated circuits (ICs) is to convert back and forth between the two

interfaces using digital logic. In a full-duplex system (i.e., a system that has the ability to

simultaneously transmit and receive data), UARTs typically consist of a clock generator,

input and output shift registers that actually perform the serial-to-parallel and parallel-to-

serial conversion, read/write and transmit/receive control logic, and transmitter and receiver

buffers that are used to temporarily store data before it is converted into serial and parallel

forms, respectively.

UART devices, in contrast to more versatile Universal Synchronous/Asynchronous

Receiver-Transmitter (USART) devices, exclusively communicate asynchronously, in which

timing parameters are recovered from designated start and stop bits that are automatically

embedded in the data stream. Since these characters provide framing for transmitted

messages, UARTs are self-synchronizing, thus allowing data to be transferred at any given

time (opposed to synchronous devices, which must constantly transmit data to maintain

synchronization). When a string of binary data is written to its transmit buffer, a UART

automatically appends a start bit to the beginning of the message. This bit is of the opposite

polarity to the data-lines idle state (i.e., a logical ‘0’ bit), which alerts a connected UART that

data transmission has begun.

 After the transmission of a start bit, five to eight bits of data are serially sent across

the communication channel, least-significant bit (LSB) first, followed by an optional parity

21

bit automatically generated by the UART.15 Following these six to ten bits used for

synchronization, data, and error checking, a stop bit, which is either one, one and a half, or

two bits long, indicates the completion of a message. In actuality, the stop bit is really a

minimum amount of time the signal line must be held high in the data-lines idle state before

another start bit pulls the line low to initiate a new frame of data.

The optional parity bit, which follows the five to eight data bits, is as an error-

checking bit used to determine error in binary data transmission. When even parity is

selected, the transmitter automatically adds an extra bit (either a logical ‘0’ or ‘1’) to make the

transmitted data packet have an even number of logical ‘1’s. On the contrary, odd parity

adds an extra bit to make the transmitted data packet have an odd number of logical ‘1’s.

Often, odd parity is more reliable than even parity because it assures that there is always at

least one logical transition in the frame, allowing the UART to resynchronize itself.

Unfortunately, a parity bit can only detect one bit of error and does not permit error

correction like other more-sophisticated channel codes (e.g., the Hamming Code).

Before two communicating UART devices will work, they must agree on the number

of data bits per frame, whether or not to add an error-checking odd or even parity bit, the

number of stop bits, and most importantly, the Baud (i.e., symbol) rate. Since there is data

overhead in asynchronous communications, this Baud rate does not equal the actual

information throughput of the UART, which is instead between fifty-five and eighty percent

of the actual Baud rate. This predefined rate, whose conventional values are listed in bits per

second (bps) in Table 5.2: Standard UART Baud Rates, along with the number of data and

parity bits, determines the period of a frame. Since the UART uses this information as a way

to determine when certain bits should be received, the local clock must have a frequency

22

drift of less than ten percent to assure correct bit sampling (ideally in the center of each

received bit).16

Range Baud Rate (bps) Range Baud Rate (bps) Range Baud Rate (bps)

1,200

2,400

4,800

14,400

1,382,400

19,200

100

28,800

 38,400

57,600

1,843,200

76,800

115,200

230,400

460,800

Hecto-

300

Kilo-

921,600

Mega-

2,764,800

Table 5.2: Standard UART Baud Rates

5.4. The RS-232 Standard

In nearly all cases, UART devices are connected to drivers and other logic circuitry

that are able to generate RS-232 compliant signals from lower-voltage, ground-based

Complementary Metal–Oxide–Semiconductor (CMOS) and Transistor-Transistor Logic

(TTL) signals. In 1962, the Electronic Industries Alliance (EIA) defined a standard for serial

binary data signals connecting a host system (Data Terminal Equipment (DTE), such as a

microcontroller) and a peripheral system (Data Circuit-Terminating Equipment (DCE), such

as a GPS receiver).17 With the purpose of ensuring complete compatibility between DTEs

and DCEs, the RS-232 standard defines electrical signal characteristics (e.g., voltage levels,

signaling rate, timing and slew-rates, maximum stray capacitance, line impedance, and cable

23

length), mechanical interface characteristics, and functions for each circuit in the interface

connector.

Though RS-232 is defined for both asynchronous and synchronous communication

systems, the standard is almost exclusively used for asynchronous systems employing UART

devices. It is here, at the UART transmitter and receiver hardware level, where the actual

framing of characters (i.e., the number of start, data, parity, and stop bits used, as well as

their logic values) is agreed upon. Furthermore, the standard does not define any methods

of error detection or means of data compression.18 Thus, the RS-232 standard is used solely

as a way to ensure compatibility when transmitting data over a communication channel, not

as a communication protocol that defines how data is formatted and interpreted.

Since RS-232 was defined prior to TTL, the standard defines valid voltage signals as

±5 volts to ±15 volts, instead of the easier to implement TTL voltage levels at +5 volts and

ground. For a logical ‘1’, historically referred to as a mark,19 the voltage signal level is

negative, and for a logical ‘0’, often referred to as a space,20 the voltage is positive. Typically,

signal voltage levels of ±5, ±10, ±12, and ±15 volts are used depending on the power

supplies available to the transmitter drivers. Moreover, RS-232 receiver drivers are sensitive

to as low as ±3 volts, providing a minimum two-volt noise margin between communicating

transmitters and receivers.

In order to reduce the chance of crosstalk between adjacent parallel channels, the

RS-232 specification limits the maximum slew rate at the driver output to thirty volts per

microsecond, and the maximum data rate to 19.2 kilobits per second (kbps).21 Regardless of

this specification, many “RS-232 compliant” devices operate at data rates in excess of 115.2

kbps and as high as 1.5 megabits per second (Mbps),22 however they are in violation of the

24

RS-232 standard. A summary of these electrical specifications and others are listed in Table

5.3: RS-232 Electrical Specifications.

Electrical Parameter Specification

Number of Devices per Line 1 Driver and 1 Receiver

Communication Mode Full-Duplex

Maximum Cable Length 50 feet at 19.2 kbps

Maximum Data Rate 19.2 kbps

Maximum Driver Output Voltage ± 25 V

Loaded Driver Output Signal Level ±5 to ±15 V

Driver Load Impedance 3 kΩ to 7 kΩ

Maximum Slew Rate 30 V per μs

Output Current 500 mA

Receiver Input Voltage Range ±15 V

Receiver Input Sensitivity ±3 V

Receiver Input Resistance 3 kΩ to 7 kΩ

Table 5.3: RS-232 Electrical Specifications23 24

In terms of mechanical interface characteristics, the standard recommends, but does

not make mandatory, a D-subminiature twenty-five pin connector.25 However, a vast

majority of RS-232 compliant drivers use a smaller, D-subminiature nine pin connector, as

illustrated in Figure 5.7: Standard RS-232 DB-9 Connector. As summarized in Table 5.4:

RS-232 DB-9 Signal and Pin Assignments (DTE Viewpoint), for a nine-pin RS-232 cable,

there are two circuits (pins two and three) for simultaneously transmitting and receiving data

(permits full duplex communications), a common signal ground (pin five), two handshaking

circuits (pins seven and eight), and three miscellaneous circuits (pins one, four, and nine)

historically used with modem devices. For this reason, users today can asynchronously

communicate with a minimal three-wire RS-232 connection, using only the ground, transmit,

and receive circuits (pins five, two, and three, respectively), or if needed, with the

25

handshaking circuits request-to-send and clear-to-send (pins seven and eight, respectively),

for a five-wire connection.26

Figure 5.7: Standard RS-232 DB-9 Connector

(Source: RS232 Tutorial on Data Interface and Cables)27

Pin Signal Type Direction Signal Function

1 Data Carrier Detect (DCD) Input Cleared by DCE when a remote connection is established

2 Received Data (RxD) Output Data transmitted from DCE to DTE

3 Transmitted Data (TxD) Input Data transmitted from DTE to DCE.

4 Data Terminal Ready (DTR) Output Cleared by DTE to indicate that it is ready to be connected

5 Signal Ground (G) – Common ground signal for the DTE and DCE

6 Data Set Ready (DSR) Input Cleared by DCE to indicate an active modem connection

7 Request-to-Send (RTS) Output Cleared by DTE to prepare DCE to receive data

8 Clear-to-Send (CTS) Input Cleared by DCE to accept RTS signal

9 Ring Indicator (RI) Input Cleared by DCE when a telephone ring is detected

Table 5.4: RS-232 DB-9 Signal and Pin Assignments (DTE Viewpoint)28 29

5.5. The Serial Peripheral Interface Bus

The Serial Peripheral Interface (SPI) bus is a four-wire master/slave synchronized

communications interface, originally defined by the Motorola Corporation©, which transmits

binary data streams between microcontrollers or microprocessors and peripheral devices.30

Although the interface is not an internationally- or industry-defined standard like RS-232, the

SPI has become a premier method for serially communicating with multiple devices that do

26

not need confirmation of data reception.31 Today, the interface has become standard in

devices such as ADCs, DACs, temperature and pressure sensors, LCD and USB controllers,

and even EEPROM and Flash memories.32 As a result, due to the SPI’s support for full

duplex communications, as well as its requirement of only four electrical traces, it has been

chosen for the communication link between the microcontroller and the embedded wireless

module on each of the MCETS clients.

As illustrated in Figure 5.8: Single-Master, Single-Slave SPI Implementation, the SPI

only requires four traces between a master (e.g., a microcontroller) and a single slave (e.g., a

peripheral device). The trace that provides the synchronization between the master and the

slave is the serial clock signal SCLK. Typically ranging in frequencies from one to seventy

MHz,33 the SCLK is always driven by (i.e., the output of) the master device. As a result, the

communication link is independent of any discrepancies in crystal aging and tolerance

imperfections between communicating devices, a problem inherent to asynchronous

interfaces such as UART. Furthermore, with only one clock source present in the system,

the data rate can easily be changed by the master without any reprogramming of the slave, as

is necessary in UART devices.

Figure 5.8: Single-Master, Single-Slave SPI Implementation

(Source: Introduction to Serial Peripheral Interface)34

The two data lines used in the SPI – MOSI and MISO – permit the exchange of

binary data to and from the master device. The MOSI (master output, slave input) signal,

also referred to as SIMO (slave input, master output) and SDI (serial data in) for slave

27

devices, allows the transmission of data from the master to the slave. Similarly, the MISO

(master input, slave output) signal, also referred to as SOMI (slave output, master input) and

SDO (serial data out) for slave devices, allows the transmission of data from the slave to the

master. Additionally, an active-low slave-select (SS) or chip-select (CS) pin activates the

slave for communications, similar to start and stop bits and data framing in UART devices.

This pin however, can be permanently fixed to ground in a single-slave system as long as the

slave permits this type of operation. Some slaves require the falling edge (i.e., the high-to-

low transition) of the SS signal to initiate an action, in which the SS grounding method does

not work.35

From Figure 5.9: Single-Master, Multiple-Slave SPI Implementation, the extension to

a multiple-slave system is made possible by using different SS signals driven by general-

purpose output pins provided by the master. In this setup, the clock and data lines are

shared between slaves; accordingly, every peripheral connected to the serial bus in a multi-

slave system needs its own SS trace.36 When not selected (i.e., when the SS pin is held high),

the corresponding slave becomes unselected, in which its MISO trace switches to a high

impedance output, thus appearing disconnected from the bus.37 Though it is possible to use

only one SS trace through the implementation of slave daisy chaining, in general, the number

of slaves in a SPI setup is only limited by the number of general-purpose output pins

available from the master, opposed to only one in a UART setup.

In order to setup a single-master, single-slave SPI system like the one needed on each

of the MCETS clients, two different parameters – clock polarity (CPOL) and clock phase

(CPHA) – need to be configured and matched between the master and the slave. The

purpose of these parameters is to define the edges of the SCLK on which data bits are

latched (i.e., read) and changed. As illustrated in Figure 5.10: SPI Timing Diagram, the base

28

value for SCLK is low when the clock polarity CPOL = 0 and high when CPOL = 1. Then,

if the clock phase CPHA = 0, data is latched on the first clock edge and changed on the

second. Similarly, if the clock phase CPHA = 1, data is latched on the second clock edge

and changed on the first.

Figure 5.9: Single-Master, Multiple-Slave SPI Implementation

(Source: Introduction to Serial Peripheral Interface)38

Figure 5.10: SPI Timing Diagram
(Source: Serial Peripheral Interface Bus)39

Thus, with both CPOL and CPHA having two possible states (low and high), there

are four unique SPI configurations, all of which are incompatible with the other three

29

operation modes. By convention, CPOL is considered the most significant bit (MSB) and

CPHA the least significant bit (LSB). Therefore, from Figure 5.10 and Table 5.5: SPI

Configuration Modes, in mode zero, data first latches on the rising clock edge (low-to-high

clock transition) and then changes on the falling clock edge, and in mode one, data first

changes on the rising clock edge and then latches on the falling clock edge. Similarly, in

mode two, data first latches on the falling clock edge and changes on the rising clock edge,

and in SPI configuration mode three, data first changes on the falling clock edge and then

latches on the rising clock edge.

Mode CPOL CPHA Event 1 Event 2

0 0 0 Data Latches on Rising Edge Data Changes on Falling Edge

1 0 1 Data Changes on Rising Edge Data Latches on Falling Edge

2 1 0 Data Latches on Falling Edge Data Changes on Rising Edge

3 1 1 Data Changes on Falling Edge Data Latches on Rising Edge

Table 5.5: SPI Configuration Modes

Following the CPOL and CPHA setup, once the SS pin is pulled low, data

transmission between the master and the selected slave begins. During each synchronized

clock cycle, a full-duplex data transmission occurs regardless of if two-way communications

is desired. During this clock cycle, the master device transmits one bit of data on the MOSI

trace and the slave receives it, and simultaneously, the slave transmits one bit of data on the

MISO trace and the master receives it.40 After data is serially transferred between the

devices, the bits are shifted and stored into register buffers by a USART, making the data

internally available for parallel processing.41 Thus, since data is both transmitted, received,

and ready for processing in one clock cycle, the data throughput of a single-master, single-

30

slave SPI system is equal to (and therefore limited by) the SCLK provided by the master

device, where a clock frequency in Hertz results an equal data rate in bits per second.

5.6. The Internet Protocol Suite

The Internet Protocol Suite, also known as TCP/IP after two of the most important

protocols in the suite, TCP and IP, is a set of dozens of protocols that fully define a flexible

method for communicating information over a network between a source host and a

destination host. Since the suite has so many protocols, it is often separated by functionality

into four-, five-, or seven-layer models. As illustrated in Figure 5.11: Five-Layer Internet

Protocol Model, the most common model for the suite is a five layer stack consisting of a

Physical, Data Link, Network, Transport, and Application layer. Communications is then

supported between these layers (Figure 5.12: Layer-to-Layer Communications in the Internet

Protocol Suite) by moving data up or down one layer, depending on whether information is

being received or transmitted, respectively.

 Layer Function

5 Application Encapsulates data for all high-level purposes

4 Transport Error and flow control

3 Network Moves packets from source to destination

2 Data Link Moves packets from host to host

1 Physical Encodes and transmits data over a medium

Figure 5.11: Five-Layer Internet Protocol Model

The bottom layer of the Internet Protocol stack is the lowest level of the suite,

responsible for the modulation and transmission of raw binary data. In this layer, data is

encoded bit for bit into an electrical signal suitable for transmission through a

communication channel. For this reason, the physical layer, which includes common

31

protocols such as V.92 telephone modems, Bluetooth, 100BASE-TX, 1000BASE-T, Wi-Fi,

the Institute of Electrical and Electronics Engineers (IEEE) 1294 Firewire, and DSL,42 is the

backbone of network communications, providing the physical communication link between

hosts. For this unique reason, the physical layer is the only shared layer between a source

and destination host, and the only layer that directly communicates with itself.

Figure 5.12: Layer-to-Layer Communications in the Internet Protocol Suite

(Source: Novell Open Enterprise Server)43

The data link layer, which includes the Point-to-Point Protocol (PPP), Ethernet, and

IEEE 802.11 protocols,44 is somewhat related and dependent upon the physical layer, and

performs final data packaging before passing it to the physical layer for transmission. As a

whole, the data link layer provides the final encapsulation of data to ensure that information

arrives to intended devices properly. This functionality, however, can be visualized as

32

consisting of two sub-layers, the Media Access Control (MAC) layer and the Logical Link

Control (LLC) layer.

The MAC sub-layer of the data link layer defines procedures for multiple network

devices to share a single communication channel. Often, several network devices physically

transmit data through a single medium, an Ethernet cable for instance, in which the MAC

sub-layer guarantees that there are no conflicts in data transfer. Accordingly, each device on

a network has a specific hardware or MAC address that the data link layer uses to package

and send data through the physical layer.45 In order to effectively communicate with the

network layer (the third layer in the five-layer model), the LLC sub-layer multiplexes and de-

multiplexes information from the MAC sub-layer. This interfacing scheme ultimately allows

more network layer technologies to work smoothly with the MAC sub-layer.

The third layer in the five-layer Internet Protocol Suite model is the first truly

abstract layer, which defines how different interconnected networks operate. In comparison

to the data link layer, the network layer governs the connection of devices regardless of the

network in which they reside; the data link layer, however, governs the physical connection

of devices on particular networks. Common examples of network layer protocols include

the Internet protocols IPv4 and IPv6, Internetwork Packet Exchange (IPX), and the

Datagram Delivery Protocol (DDP).

Specifically, the network layer performs a few important functions in the transfer of

data across a network, including addressing and switching. In terms of addressing, network

layer protocols define addressing standards completely independent of hardware for every

machine on every network, compared to data link protocols that limitedly define addressing

standards on a single network. Additionally, the network layer is responsible for moving

data across internetworks by receiving data from numerous sources and sending that data to

33

its proper final destination. As illustrated in Table 5.6: Internet Protocol (IPv4) Header, all

of this is accomplished by encapsulating data received from the transport layer (the second

layer in the five-layer model) into a packet with a standardized (typically 192-bit) header.46

Furthermore, in order to facilitate the needs of data link protocols that have limits on the

size of a packet, the network layer governs the division and reassembly of data packets.

Bits

0 – 31 Version
Internet Header

Length
Type of Service Total Length

32 – 63 Identification Flags Fragment Offset

64 – 97 Time to Live Protocol Header Checksum

96 – 127 Source IP Address

128 –

159
Destination IP Address

160 –

192
Options and Padding

Table 5.6: Internet Protocol (IPv4) Header47

Like the network layer, the transport layer is an abstract, conceptual layer having no

direct relationship with hardware devices. It separates itself from the network layer and the

layers below it in the sense that it is not concerned with getting data from one physical

location to another. Rather, the transport layer protocols govern the transmission of data

from one application process to another. Accordingly, the transport layer protocols perform

much of the same functions for application-to-application transmission of data, as the

network layer protocols perform for device-to-device communications. Common examples

of transport layer protocols include the User Datagram Protocol (UDP), Transmission

Control Protocol (TCP), Datagram Congestion Control Protocol (DCCP), and the Stream

Control Transmission Protocol (SCTP).48

34

Similar to how the network and data link layers address data for network and

internetwork communications, the transport layer addresses data to specific software

applications. Additionally, the layer also multiplexes and de-multiplexes data streams from

many different software applications, therefore guaranteeing that layers below the transport

layer only see one stream of data, regardless of the number of communicating applications

on a device. Finally and most importantly, the transport layer is responsible for establishing,

maintaining, managing, and terminating the connection between two devices, as well as

controlling the data rate and providing procedures to ensure reliable transmission of data.

All of this is accomplished with a standardized (typically 192-bit) header (Table 5.7:

Transmission Control Protocol (TCP) Header55F), similar to the IPv4 header in the

network layer.

Bits

0 – 31 Source Port Destination Port

32 – 63 Sequence Number

64 – 97 Acknowledgement Number

96 – 127 Offset Reserved ECN Control Bits Window

128 – 159 Checksum Urgent Pointer

160 – 192 Options and Padding

Table 5.7: Transmission Control Protocol (TCP) Header49

The top of the Internet Protocol stack is the application layer, which is responsible

for translating data in an application-specific format to one that is compatible with the

transport layer. The most well known application-layer protocols include Secure Shell

(SSH), File Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP), Simple Mail

Transfer Protocol (SMTP), Post Office Protocol (POP), Internet Message Access Protocol

(IMAP), and Simple Object Access Protocol (SOAP).50 Most commonly, these application

35

protocols compress and decompress data, as well as provide an encryption and decryption

method to improve the security of information as it propagates through the other four

Internet Protocol layers. The application layer also handles the translation of information

from different operating systems and software applications, so that programs can seamlessly

communicate data regardless of their particular formats.

Overall, the five-layer Internet Protocol Suite is the accumulation of a complex

interconnected system used to provide reliable communications between source and

destination hosts. Fortunately, there are commercially available embedded modules that

permit communications between microcontrollers and an internet-like network using the

five-layer stack illustrated in Figure 5.11. These modules are capable of taking serial data

from a SPI bus (e.g., an application layer) and interfacing it with a TCP transport layer

(which adds the header in Table 5.7), an internet-employed IPv4 network layer (which adds

the header in Table 5.6), an IEEE 802.11 data link layer (Table 5.8: IEEE 802.11 Data Link

Layer Specifications57F), and finally an over-the-air Wi-Fi physical layer. Ultimately, this

layered system allows data to be streamed from the MCETS client microcontrollers and over

a local area network to a MATLAB-based server.

Data Rate
Protocol Release Date Frequency Band

Typical Maximum
Maximum Outdoor Range

Legacy 1997 2.4 – 2.5 GHz 0.9 Mps 2 Mbps ~100 Meters

802.11b 1999 2.4 – 2.5 GHz 4.3 Mbps 11 Mbps ~140 Meters

802.11g 2003 2.4 – 2.5 GHz 19 Mbps 54 Mbps ~140 Meters

802.11a 1999

5.15 – 5.25 GHz

5.25 – 5.35 GHz

5.49 – 5.725 GHz

5.725 – 5.85 GHz

23 Mbps 54 Mbps ~120 Meters

802.11n ~ 2008 (Draft 2.0) 2.4 GHz and/or 5 GHz 74 Mbps 248 Mbps ~ 250 Meters

802.11y ~ 2008 (Draft 4.0) 3.65 – 3.7 GHz 23 Mbps 54 Mbps ~ 5000 Meters

Table 5.8: IEEE 802.11 Data Link Layer Specifications51

36

Notes

1. Casey L. Larijani, GPS For Everyone, (New York: American Interface Corporation, 1998), 3-5.

2. Casey L. Larijani, GPS For Everyone, 274.

3. “The Navy & Satellites: Global Positioning System (GPS)”, The United States Navy, n.d., <http://

www.onr.navy.mil/Focus/spacesciences/satellites/gps.htm> (9 September 2007).

4. D.J. (Dave) Sauchyn, “Global Positioning Systems” The University of Regina, n.d., <http://uregina.ca/

~sauchyn/geog411/global_positioning_systems.html> (9 September 2007).

5. “Navigation for Weapons”, Federation of American Scientists, n.d., <http://www.fas.org/man/dod-101/

navy/docs/es310/GPS/GPS.htm> (9 September 2007).

6. Ibid.

7. Jon Person, “Mastering GPS Programming: Part Two”, GeoFrameworks, n.d., <http://

www.geoframeworks.com/Articles/WritingApps2_3.aspx> (6 October 2007).

8. Georg Becke, “Comparing Bus Solutions”, Texas Instrument, February 2004, <http://focus.ti.com/lit/

an/slla067a/slla067a.pdf> (5 September 2007).

9. Ibid.

10. Ibid.

11. Ibid.

12. Ibid.

13. Ibid.

14. Frank Durda, “The UART: What it is and how it works”, 13 January 1996, <http://www.freebsd.org/

doc/en_US.ISO8859-1/articles/serial-uart/index.html#UART> (5 September 2007).

15. Frank Durda, “The UART: What it is and how it works”.

16. Frank Durda, “The UART: What it is and how it works”.

17. “Fundamentals of RS-232 Serial Communications”, Maxim IC, 29 March 2001, <http://pdfserv.maxim-

ic.com/en/an/AN83.pdf> (6 September 2007).

18. Ibid.

19. Ibid.

20. Ibid.

21. Ibid.

22. Ibid.

23. Ibid.

24. “RS232 Tutorial on Data Interface and Cables”, ARC Electronics, n.d., <http://www.arcelect.com/

rs232.htm> (7 September 2007).

25. “RS-232 Serial Interface Pinout”, 25 June 2006, <http://pinouts.ru/SerialPorts/RS232_pinout.shtml> (5

September 2007).

26. Wikipedia Contributors, “RS-232”, Wikipedia, The Free Encyclopedia, 4 September 2006 <http://

en.wikipedia.org/w/index.php?title=RS-232&oldid=155696305> (7 September 2007).

37

27. “RS232 Tutorial on Data Interface and Cables”, ARC Electronics.

28. Ibid.

29. Wikipedia Contributors, “RS-232”, Wikipedia, The Free Encyclopedia.

30. “Serial Buses Information Page: SPI”, n.d., <http://www.epanorama.net/links/ serialbus.html#spi> (3

September 2007).

31. Kalinsky, David, and Roee Kalinsky, “Introduction to Serial Peripheral Interface”, Embedded Systems

Design, 1 February 2002, <http://embedded.com/columns/beginerscorner/9900483?printable=true> (2 September

2007).

32. Martin Schwerdtfeger, “SPI – Serial Peripheral Interface”, June 2000, <http://www.mct.net/faq/

spi.html> (2 September 2007).

33. Wikipedia Contributors, “Serial Peripheral Interface”, Wikipedia, The Free Encyclopedia, 6 September

2007, <http://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface_Bus&oldid=156061198> (3 September

2007).

34. Kalinsky, David, and Roee Kalinsky, “Introduction to Serial Peripheral Interface”, Embedded Systems

Design.

35. Wikipedia Contributors, “Serial Peripheral Interface”, Wikipedia, The Free Encyclopedia.

36. “Serial Buses Information Page: SPI”.

37. Martin Schwerdtfeger, “SPI – Serial Peripheral Interface”.

38. Kalinsky, David, and Roee Kalinsky, “Introduction to Serial Peripheral Interface”, Embedded Systems

Design.

39. Ibid.

40. Ibid.

41. Martin Schwerdtfeger, “SPI – Serial Peripheral Interface”.

42. Wikipedia Contributors, “Physical Layer”, Wikipedia, The Free Encyclopedia, 6 September 2007,

<http://en.wikipedia.org/w/index.php?title=Physical_layer&oldid=156014135> (8 September 2007).

43. “Novell Open Enterprise Server”, Novell, 1 June 2005, <http://www.novell.com/documentation/oes/

pdfdoc/tcpipenu/tcpipenu.pdf> (9 September 2007).

44. Wikipedia Contributors, “Data Link Layer”, Wikipedia, The Free Encyclopedia, 16 August 2007,

<http://en.wikipedia.org/w/index.php?title=Data_link_layer&oldid=151664494> (8 September 2007).

45. Charles M. Kozierok, “Data Link Layer (Layer 2)”, The TCP/IP Guide, 20 September 2005, <http://

www.tcpipguide.com/free/t_DataLinkLayerLayer2.htm> 11 September 2007.

46. “IP, Internet Protocol”, Network Sorcery, n.d., <http://www.networksorcery.com/enp/protocol/

ip.htm> (10 September 2007).

47. Ibid.

48. Wikipedia Contributors, “Transport Layer”, Wikipedia, The Free Encyclopedia, 7 September 2007,

<http://en.wikipedia.org/w/index.php?title=Transport_layer&oldid=156366144> (8 September 2007).

38

49. “TCP, Transmission Control Protocol”, Network Sorcery, n.d., <http://www.networksorcery.com/enp/

protocol/tcp.htm> (10 September 2007).

50. Wikipedia Contributors, “Application Layer”, Wikipedia, The Free Encyclopedia, 3 September 2007,

<http://en.wikipedia.org/w/index.php?title=Application_layer&oldid=155347969> (9 September 2007).

51. Wikipedia Contributors, “IEEE 802.11”, Wikipedia, The Free Encyclopedia, 8 September 2007,

<http://en.wikipedia.org/w/index.php?title=IEEE_802.11&oldid=156466248> (9 September 2007).

39

6. MCETS Client Hardware Design

Having a proposed system that is capable of meeting the contract design requirements, as

well as the technical background knowledge needed to execute the design successfully, the next step

in the advancement of the MCETS is to design and physically prototype the four-layer client

modules. Overall, the hardware design consists of five major phases, which together will progress

the proposed design to a tangible system ready for testing and implementation. In order, the five

phases of the hardware design, which are discussed in the following subsections, are

1. Selecting an appropriate microcontroller development board;

2. Selecting an analog temperature, pressure, and tri-axial inertial sensor, as well as an RS-

232 compliant GPS receiver, and interfacing them with one another and the

microcontroller development board;

3. Selecting and interfacing an 802.11 embedded wireless module that uses the SPI bus;

4. Designing a power supply board that can provide adequate power to the sensor,

microcontroller development, and GPS receiver boards; and

5. Designing and assembling a custom PCB for the sensor and power supply boards.

6.1. Olimex© MSP430-P1611 Development Board

Due to the rapid advancement of digital- and computer-based products, there are

literally thousands of different low-cost microcontrollers capable of providing the sensor

data processing needed in the MCETS. However, none stands out in terms of flexibility,

ultra-low-power consumption, and the number of peripheral devices as the Texas

Instruments© MSP430 Series. This series of microcontrollers is capable of executing as

many as eight million instructions per second (MIPS) using a master clock frequency of eight

MHz and a supply voltage between 1.8 and 3.6 volts. Additionally, these controllers can

40

operate in any of five different software selectable power-saving modes that manipulate the

status of the central processing unit (CPU) and three internal clock signals. And, with the

ability to wake up from any one of these standby modes in less than six microseconds,

MCETS clients can maximize their time in low power modes while only using the high-

frequency active mode for the data acquisition and transmission processes.

The MSP430 series of microcontrollers uses a von-Neumann style architecture, in

which there is a common sixteen-bit memory address and data bus. In this type of setup, all

program memory, interrupt vectors, data memory, and peripheral devices share a common

bus structure into the CPU. Being a sixteen-bit reduced instruction set computer (RISC),

the CPU contains sixteen fully addressable, single-cycle registers able to store sixteen bits of

data. Combining these ultra-fast memories with twenty-seven basic instructions and seven

different addressing modes, the MSP430 facilitates maximizing both processing and code

efficiency. Ultimately, these features permit tight code capable of acquiring, packaging, and

transmitting data from the MCETS sensors at a relatively high throughput.

Within the MSP430 series there are around 130 different microcontrollers, each

featuring a different arrangement of memory types, memory sizes, and communication and

peripheral devices. As illustrated in Table 6.1: The Texas Instruments© MSP430

Microcontroller Series, there are a number of devices suitable for the MCETS; however, the

microcontroller that stands out the most for this application is the MSP430-F1611

microcontroller. This Flash-memory based controller encompasses 48 kilobytes (KB) of

Flash memory and 10 KB of RAM, primarily used for code and program data, respectively.

Since the purpose of the MCETS it acquire a fairly large amount of binary data, the

MSP430-F1611 with its significant 10 KB of RAM is appropriate for the data acquisition and

temporary data storage needs of each client module.

41

Part Number Flash ROM RAM ADC I/O Integrated Peripherals Interface

MSP430-FG4619 120 KB - 4 KB 12-bit SAR 80

12-bit DAC (2)
Operational Amplifier (3)
Analog Comparator (1)

DMA Controller (1)
Hardware Multiplier (1)

Watchdog Timer (1)
16-bit Timer (2)
8-bit Timer (2)

LCD Segments (160)

USART (1)

MSP430-F447 32 KB - 1 KB 12-bit SAR 48

Analog Comparator (1)
Hardware Multiplier (1)

Watchdog Timer (1)
16-bit Timer (2)
8-bit Timer (2)

LCD Segments (160)

USART (2)

MSP430-F1611 48 KB - 10 KB 12-bit SAR 48

12-bit DAC (2)
Analog Comparator (1)

DMA Controller (1)
Hardware Multiplier (1)

Watchdog Timer (1)
16-bit Timer (2)

USART (2)

MSP430-CG4618 - 116 KB 8 KB 12-bit SAR 80

Analog Comparator (1)
12-bit DAC (2)

DMA Controller (1)
Operational Amplifier (3)

Watchdog Timer (1)
16-bit Timer (2)

LCD Segments (160)

USART (1)

MSP430-F1612 55 KB - 5 KB 12-bit SAR 48

12-bit DAC (2)
Analog Comparator (1)

DMA Controller (1)
Hardware Multiplier (1)

Watchdog Timer (1)
16-bit Timer (2)

USART (2)

MSP430-F133 8 KB - 256 B 12-bit SAR 48
Analog Comparator (1)

Watchdog Timer (1)
16-bit Timer (2)

USART (1)

Table 6.1: The Texas Instruments© MSP430 Microcontroller Series1

Additionally, the MSP430-F1611 has an eight-channel, twelve-bit successive-

approximation-register (SAR) ADC, capable of sampling input voltages up to the supply

voltage (1.8 to 3.6 volts) at a rate of 200 kilosamples per second (ksps). A three-channel

42

direct memory accesses (DMA) controller also allows data to be transferred from one

address to another, without CPU intervention. This helps increase the throughput of other

peripheral modules (including the UART, SPI bus, and ADC), while reducing the number of

executed CPU instructions and the overall system power consumption. Furthermore, the

microcontroller incorporates two USART peripheral devices with independent receive and

transmit interrupts vectors. The two devices support serial communications, both

asynchronously in UART mode and synchronously in SPI mode. Finally, the MSP430-

F1611 has two sixteen-bit timers (Timer A and Timer B) with extensive interrupt capability,

as well as forty-eight general-purpose I/O pins that can individually be read or written to.

Having selected a microcontroller appropriate for each of the MCETS client

modules, the next step is to choose a development board that includes both the Texas

Instruments© MSP430-F1611 microcontroller and an RS-232 driver capable of interfacing

with the UART peripheral on the microcontroller and the GPS receiver. The leading

developer of MSP430 development boards is Olimex©, which conveniently sells an MSP430-

P1611 development board that has both a MSP430-F1611 microcontroller and a DB-9

female RS-232 port and driver. This driver, which interfaces the RS-232 signal from the

GPS receiver with the UART peripheral on the microcontroller, is guaranteed to transmit

and receive at data rates up to 350 kbps while maintaining the RS-232 output voltage levels

defined in the standard. Running on 3.3 volts, the driver draws a maximum current of 1.0

mA, for a total power consumption of 3.3 mW.

The development board also has an onboard power supply jack for alternating

current (AC) and direct current (DC) voltage sources between 4.5 and 6.0 volts. As

illustrated in the datasheet in Appendix A.1: Olimex© MSP430-P1611 Development Board

Datasheet, following a bridge rectifier, the incoming supply voltage is filtered and stepped-

43

down using a linear voltage regulator. Nevertheless, due to the unreasonable efficiency of

linear voltage regulators for power sensitive systems like the MCETS, the development

board will be externally powered at 3.3 volts from the power supply board through the

development board’s sixty-pin extension header. (For the full details of how the board is

powered, as well as how it is interfaced with the sensor board, see Appendix B.1:

Miscellaneous Header and Connector Pin Connections, and Appendix C.1: Miscellaneous

Header and Connector Circuit Schematic.)

Additional features that make the MSP430-P1611 development board perfect for

each MCETS client are its small 100-by-80 millimeter (mm) board size and JTAG male

connector for Flash programming and system debugging. The board also incorporates a

light emitting diode (LED) to illustrate that the microcontroller has a sufficient supply

voltage, a reset button to restart the microcontroller, and a programmable button and LED

for miscellaneous use. Finally, the development board has a standard 32.768 kHz low-

frequency crystal oscillator, as well as a crystal socket and capacitor solder pads for an

additional high-frequency oscillator. As a result, each MCETS microcontroller board

incorporates an added 6.0 MHz high-frequency crystal oscillator, used to clock the

processing-intensive data acquisition and transmission instructions.

6.2. Maxim© DS600U Analog-Output Temperature Sensor

The temperature sensor selected for each MCETS client, the Maxim© DS600U, is

truly a unique sensor with numerous appealing features for a low power, embedded system.

Foremost, this analog-output temperature sensor provides an extremely accurate factory-

calibrated temperature measurement through an exposed thermal conducting pad, all within

a three-by-five millimeter (mm) surface mount package. Specifically, the accuracy is ±0.5°C

44

over the temperature range -20°C to 100°C (±0.9°F over the range -4°F to 212°F), and

±0.75°C over the extended ranges -20°C to -40°C and 100°C to 125°C (±1.35°F over the

ranges -4°F to -40°F and 212°F to 257°F). This accuracy is valid over the device’s entire

operating voltage range of 2.7 to 5.5 volts, making it very appealing for microcontroller

based systems that run on low voltages around 3.3 volts.

As illustrated in Figure 6.1: Temperature versus Output Voltage, the DS600U eight-

pin temperature sensor outputs a voltage proportional to the temperature on the thermal

conducting pad, where

(6.1)

Since the output voltage range is between 251 and 1,315 millivolts (mV), corresponding to

the two extreme temperatures -40°C and 125°C (125°F and 257°F), respectively, the output

of the temperature sensor (pin four) is directly tied into the high-impedance ADC input of

the microcontroller (pin fifty-eight (P6.7/A7) on the sixty pin microcontroller header). (For

the full details of how this sensor interfaces with the MCETS PCB boards, see Appendix

B.2: Temperature Sensor Pin Connections and Appendix C.2: Temperature Sensor Circuit

Schematic.)

The final two features that make the DS600U a perfect analog sensor for the

MCETS are its very low power requirements and its thermometer shutdown feature. In

terms of maximum supply current, the device draws a maximum of 140 μA, which in terms

of power when using a 3.3 volt supply, is a mere 462 microwatts (μW). Additionally, the

temperature sensor incorporates an active-high shutdown feature that turns the thermal

sensor off when the shutdown pin (pin six) is pulled high by the microcontroller. In this

mode of operation, the supply current drops from 140 μA to 2.5 μA, resulting in a

45

maximum power dissipation of 8.25 μW. As a result, when the temperature sensor is not in

use, the microcontroller can put it into low power mode, saving more than 450 μW of

power. (For additional electrical and mechanical specifications, as well as absolute maximum

ratings, see Appendix A.2: Maxim© DS600U Analog-Output Temperature Sensor

Datasheet.)

Figure 6.1: Temperature versus Output Voltage

6.3. Motorola© MPXA4250A6U Pressure Sensor

Unlike temperature sensors, it is very difficult to find a relatively small, accurate

analog pressure sensor that is factory-calibrated, temperature compensated, and able to

measure absolute pressure (i.e., pressure with respect to a sealed vacuum). However,

Motorola© manufactures a ten-by-eighteen mm surface mount pressure sensor that is

calibrated and temperature compensated from -40°C to 125°C (-40°F to 257°F), adhering to

the exact temperature range of the Maxim© DS600U temperature sensor. With an accuracy

46

of approximately ±0.5 pounds per square inch (psi) in the temperature range 0°C to 85°C

(32°F to 185°F), the Motorola© MPXA4250A6U is capable of measuring absolute pressure

from 2.9 to 36.3 psi. Outside of this range, between 0°C and -40°C (32°F to -40°F) and

85°C and 125°C (185°F to 257°F), the accuracy decreases linearly from ±0.5 psi to

approximately ±1.5 psi as illustrated in Figure 6.2: Pressure Sensor Accuracy versus

Temperature.

Figure 6.2: Pressure Sensor Accuracy versus Temperature

The supply voltage and current requirements of the MPXA4250A6U, however,

greatly exceed those of the DS600U temperature sensor, requiring a steady voltage of around

5.0 volts and a maximum supply current of 10.0 milliamperes (mA). Thus, this particular

pressure sensor can consume as much as 50.0 mW of power, all while using a non-

microcontroller compatible voltage of 5.0 volts. As a result, each MCETS client now

requires two separate voltage lines – 3.3 volts and 5.0 volts – capable of efficiently delivering

47

450 μW and 50.0 mW of power, respectively. Nonetheless, due to the pressure sensors

relatively good accuracy and small size, these electrical shortcomings are considered more

than adequate tradeoffs for the corresponding pressure-sensing performance gain. (For

supplementary specifications, as well as how the pressure sensor is interfaced with the rest of

the MCETS, see Appendix A.3: Motorola© MPXA4250A6U Pressure Sensor Datasheet,

and Appendix B.3: Pressure Sensor Pin Connections, respectively.)

Since the MPXA4250A6U pressure sensor produces a ratiometric output voltage

that is dependent upon the 5.0 volt input voltage, the sensor can produce an output voltage

between 0.2 and 4.8 volts. From Figure 6.3: Pressure versus Output Voltage, this output

voltage relates to an applied absolute environmental pressure, where with a sensitivity of 138

mV per psi,

(6.2)

Therefore, unlike the temperature sensor, the pressure sensor cannot directly interface with

the ADC on the microcontroller, which can only accept voltages up to the 3.3-volt supply.

As illustrated in Figure 6.4: Single-Supply Op-Amp Attenuator Circuit, in order to

overcome this incompatibility a voltage divider is needed to reduce the pressure sensor

output voltage from 4.8 volts to at most 3.3 volts. Unfortunately, the traditional and more

efficient method of reducing a voltage using an inverting operational amplifier (op-amp)

attenuator circuit is impractical because of the need for a negative supply voltage. As a

result, 0.1-percent tolerance 30 kiloohm (kΩ) and 20 kΩ resistors are used to reduce the

pressure sensor output voltage to an acceptable ADC input voltage, where

48

(6.3)

Figure 6.3: Pressure versus Output Voltage

To ensure minimal distortion and that enough current can be supplied by the

pressure sensor to the resistors (the MPX4250A6U can only source around 100 µA), an op-

amp buffer circuit is used to isolate the sensor from the voltage divider network. With this

circuit configuration, a maximum of 100 µA is drawn from the 5.0-volt supply rail, not the

pressure sensor, when the output voltage of the sensor is 5.0 volts. Therefore at maximum

pressure and a supply voltage of 5.0 volts, the op-amp attenuator circuit will dissipate 1150

µW from the actual op-amp IC and 500 µW from the two series resistors. Combining this

with the power dissipation of the actual pressure senor (50 mW), the entire pressure sensor

configuration (Appendix C.3: Pressure Sensor Circuit Schematic) consumes a maximum of

51.65 mW.

49

Figure 6.4: Single-Supply Op-Amp Attenuator Circuit

6.4. MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor

The most distinctive and frankly astonishing sensor on the MCETS sensor board is

the MemSense© MAG10-1200S050 tri-axial analog inertial sensor. Claimed by MemSense©

to be the world’s smallest analog inertial measurement unit, the MAG10 incorporates a tri-

axial accelerometer, gyroscope, magnetometer, and internal temperature sensor in a 0.70 x

0.70 x 0.40-inch surface mount forty-four pin package that weighs a mere five grams. In

such a small package, the sensor can measure acceleration, angular rate (rotation), magnetic

field strength, and temperature (for compensation techniques) about three orthogonal axes.

Furthermore, the device only draws a maximum of 35 mA at a supply voltage of 5.0 volts,

for a total power consumption of only 175 mW. In comparison to the tri-axial analog

accelerometer on the WITS, the MAG10 consumes slightly less power (175 mW compared

50

to 180 mW (at the lowest supply voltage of 6.0 volts)), however the MAG10 incorporates

tri-axial gyroscopes, magnetometers, and internal temperature sensors.

Because of the 5.0-volt supply, all four inertial sensors – the accelerometer,

gyroscope, magnetometer, and internal temperature sensor – have output voltages centered

at 2.50 volts. This output voltage corresponds to an acceleration of 0.00 g, an angular rate of

0.00°/s, a magnetic field strength of 0.00 gauss, and an internal temperature of 25°C,

respectively. Stemming off of this center output voltage, the accelerometer has a sensitivity

of 200 mV/g, the gyroscope 1.25 mV/(°/s), the magnetometer 1.00 V/gauss, and the

internal temperature sensor 8.4 mV/°C. Accordingly, the relationship of each output

voltage to acceleration, angular rate, magnetic field strength, and internal temperature is

(6.4)

(6.5)

 (6.6)

 and

(6.7)

respectively.

Due to the wide range of the inertial sensors on the MAG10 – ±10 g for

acceleration, ±1200°/s for angular rate, and ±1.90 gauss for magnetic field strength – the

output voltage swing of each sensor exceeds the maximum microcontroller ADC input

voltage of 3.3 volts. As illustrated in Figure 6.5: Acceleration versus Output Voltage, each

51

axis on the accelerometer can produce an output voltage between 0.5 and 4.5 volts.

Similarly, the gyroscope can produce an output between 1.0 and 4.0 volts (Figure 6.6:

Angular Rate versus Output Voltage), the magnetometer between 0.6 and 4.4 volts (Figure

6.7: Magnetic Field Strength versus Output Voltage), and the internal temperature sensor

between 1.9 and 3.1 volts (Figure 6.8: Internal Temperature versus Output Voltage).

Therefore, an op-amp buffer and a voltage divider identical to the one depicted in Figure 6.4

is needed to interface each axis output with the ADC on the MSP430 microcontroller.

(Though the tri-axial internal temperature sensor is within the voltage requirements of the

ADC (0.0 to 3.3 volts), in order to isolate the potential 5.0-volt source and prevent any

possible damage to the microcontroller, an op-amp buffer and voltage divider are also used

to step down its voltage.) (For additional specifications on the MemSense© tri-axial analog

inertial sensor, see Appendix A.4: MemSense© MAG10-1200S050 Tri-Axial Analog Inertial

Sensor Datasheet).

Figure 6.5: Acceleration versus Output Voltage

52

Figure 6.6: Angular Rate versus Output Voltage

53

Figure 6.7: Magnetic Field Strength versus Output Voltage

Figure 6.8: Internal Temperature versus Output Voltage

Since the MAG10 incorporates four tri-axial analog sensors, there are a total of

twelve signal outputs from the inertial sensor that need to be interfaced with the ADC on

the MSP430-F1611 microcontroller. However, the microcontroller only has one eight-

channel ADC, in which two channels are already being used for the temperature and

pressure sensors. As a result, each MCETS client sensor board incorporates three four-to-

one low power (5.0 μW) and ultra-fast switching (less than 20.0 nanoseconds (ns))

multiplexers. By utilizing one multiplexer per axis (the Analog Devices© ADG704

Multiplexer), connecting the three control lines A1, A0, and EN together, and controlling

each device with the general purpose I/O pins on the microcontroller, via simply applying

the control signals in Table 6.2: 4:1 Analog Multiplexer Truth Table, the x-, y-, and z-axis of

54

each sensor can be selected and passed on to the ADC. Furthermore, this multiplexer setup

reduces the number of single-supply op-amp attenuators from twelve down to only three.

(For the full details of how the MAG10 is connected and interfaced with the microcontroller

development board, see Appendix B.4: Tri-Axial Analog Inertial Sensor Pin Connections,

Appendix B.5: Analog Multiplexer Pin Connections, Appendix B.6: Operational

Amplifier/Voltage Attenuator Pin Connections, and Appendix C.4: Tri-Axial Analog Inertial

Sensor Circuit Schematic.)

A1 A0 EN Selected Inertial Sensor

– – 0 None

0 0 1
Tri-Axial Accelerometer

(MUX 1: x-Axis Acceleration; MUX 2: y-Axis Acceleration; MUX 3: z-Axis Acceleration)

0 1 1
Tri-Axial Gyroscope

(MUX 1: x-Axis Angular Rate; MUX 2: y-Axis Angular Rate; MUX 3: z-Axis Angular Rate)

1 0 1
Tri-Axial Magnetometer

(MUX 1: x-Axis Magnetic Field; MUX 2: y-Axis Magnetic Field; MUX 3: z-Axis Magnetic Field)

1 1 1
Tri-Axial Internal Temperature Sensor

(MUX 1: x-Axis Temperature; MUX 2: y-Axis Temperature; MUX 3: z-Axis Temperature)

Table 6.2: 4:1 Analog Multiplexer Truth Table

6.5. Javad© JNS100 GPS OEM Receiver

The GPS OEM receiver selected for the MCETS is the same receiver used in the

WITS – the Javad© JNS100 GPS OEM Receiver – mainly because of its significantly higher

accuracy performance over most commercial GPS units, as well as the fact that The

Laboratory has both access to and familiarity with the receiver. As previously stated, the

JNS100 is capable of tracking up to fifty different GPS and GLONASS (the Global

Navigation Satellite System (the Russian Federation’s counterpart GPS system)) satellites

while producing a raw data output rate up to one-hundred Hertz. Additionally, the receiver

55

has an onboard voltage regulator that can accept and measure unregulated voltages between

6.5 and 40.0 volts. The receiver also consumes a maximum of 2.3 watts of power when

using a 40.0-volt source and a powered antenna. However, the manufacturer lists the typical

power consumption around 1.1 watts when using a lower supply voltage and an unpowered

antenna. In fact, initial testing of the GPS receiver reveals a measured power consumption

averaging between 0.9 and 1.0 watts when using an 11.1-volt voltage source (the typical

battery voltage of a lithium ion battery).

In terms of interfacing with the sensor board and the MSP43-P1611 microcontroller

development board, the GPS receiver has a thirty-pin header that is matched to an identical

thirty-pin header on the sensor board (Appendix B.1: Miscellaneous Header and Connector

Pin Connections, and Appendix C.1: Miscellaneous Header and Connector Circuit

Schematics). The sensor board supplies the receiver with an unregulated voltage directly

from the battery on the power supply board, as well as provides the power and digital

grounds necessary for proper operation. The sensor board header also acts as an

interconnection between the female RS-232 port on the microcontroller and the RS-232

serial port on the receiver. As a result, the microcontroller is able to communicate with the

GPS OEM receiver via RS-232, providing position, velocity, and timing data to each

MCETS client.

6.6. Quatech© WLNB-AN-DP102 Embedded Wireless Module

The embedded wireless module selected for the communication link between the

MCETS clients and the server is the Quatech© WLNB-AN-DP102 Embedded Wireless

Module. This 1.60 x 1.17 x 0.46-inch module incorporates all five layers of the Internet

Protocol Suite, including an application processor, the TCP transport layer, the IPv4

56

network layer, the IEEE 802.11b data link layer, and an over-the-air physical Wi-Fi layer.

Most significantly, the application processor handles the transfer of data between the

microcontroller (the master device) and the embedded wireless module (a slave device) using

a high-speed four-wire SPI bus. As a result, the WLNB-AN-DP102 embedded wireless

module provides all of the necessities for wireless TCP/IP communications, allowing the

microcontroller to focus on efficient data acquisition, not the specific details of the Internet

Protocol Suite.

Running on a supply voltage of 3.3 volts, the electrical characteristics of the WLNB-

AN-DP102 wireless module are very favorable for microcontroller-based systems like the

MCETS. Typically, the module draws around 420 and 350 mA of current while transmitting

and receiving data, respectively, resulting in a typical power dissipation of 1.386 and 1.155

W. However, a major concern with the module is that it has an initial inrush current in

excess of 1900 mA when the device first turns on, a potential problem for current-limited

voltage supplies. Consequently, since the microcontroller and temperature sensor also

operate on 3.3-volt sources, each MCETS employs two isolated 3.3-volt supply rails, one for

the high-current (HC) embedded wireless module and another for the low-current (LC)

microcontroller and temperature sensor devices.

As illustrated in Figure 6.9: Quatech© WLNB-AN-DP102 Embedded Wireless

Module Block Diagram, the module has four status indicator signals for external use,

including power on self test (POST), connection status (CONN), radio-frequency link

(LINK), and radio frequency activity (RF Status). Specifically, the POST indicator denotes

whether the module successfully loaded, the CONN indicator whether the module obtained

a network-registered IP address, and the LINK indicator whether the module is connected

to an access point or Ad hoc peer. Furthermore, the RF Status indicator blinks when the

57

module is on and scanning for an access point, and is solid when the module is on and

associated to an access point. Since all these indicators provide critical information about

the embedded wireless module and its network connection status, the MCETS utilizes all of

these indicator signals, where the CONN, LINK, and RF Status signals drive external LEDs

on the sensor board, and POST, CONN, and LINK are connected to the microcontroller’s

general-purpose I/O pins.

Figure 6.9: Quatech© WLNB-AN-DP102 Embedded Wireless Module Block Diagram

(Source: Airborne Embedded Wireless Device Server)2

Finally, the Quatech© WLNB-AN-DP102 Embedded Wireless Module incorporates

a built-in web server for easy monitoring and controlling of the module. Within this web

server, project-specific variables, including a primary and secondary static IP address, the

service set identifier (SSID), and whether to operate in infrastructure or Ad hoc mode, are

configured and stored in Flash memory. Properly setting these variables permits full-duplex

communications between the MCETS clients and the MATLAB-based server over the

configured wireless network. Additionally, with the attachment of two Omni-directional

58

U.FL antennas, each with a gain of five isotropic decibels (dBi), multi-path diverse signals

facilitate an extended range of up to a absolute maximum line-of-sight distance of 590

meters (approximately 1,935 feet).

6.7. Power Supply Board

Having all of the components selected for the sensor board and the system

completely designed, the next step is designing a power supply board that can provide

adequate power to the sensor, microcontroller development, and GPS receiver boards. Each

MCETS client requires four separate voltages lines, including a 3.3-volt low-current (LC)

supply, a 3.3-volt high-current (HC) supply, a 5.0-volt supply, and an unregulated supply

around 11.1 volts for the GPS OEM receiver. The 3.3-volt LC supply is used to power the

microcontroller development board and the temperature sensor. The 3.3-volt HC supply on

the other hand is used exclusively for the embedded wireless module, which has a peak

inrush current in excess of 1.9 amperes when the device initially turns on. Furthermore, the

5.0-volt supply is used to power the pressure sensor, the tri-axial inertial sensor, the three

analog multiplexers, the two four-bit bus switches, and the four single-supply op-amp

attenuator circuits.

As illustrated in Table 6.3: Estimated Maximum MCETS Client Power

Requirements, the estimated current needed to supply the system is approximately 593.069

mA, or in terms of power, 2.7036 watts. This calculated current requirement is the aggregate

of the maximum supply current for each component on the sensor board (as listed on each

device’s datasheet) and the measured current needed to supply the GPS OEM receiver and

the microcontroller development board. Specifically, the 3.3-volt LC source must supply

11.14 mA (36.762 mW), the 3.3-volt HC supply 450 mA (1.485 watts), the 5.0-volt supply

59

46.329 mA (152.9 mW), and the 11.1-volt source 85.6 mA (950 mW). Recall from Section

6.6: Quatech© WLNB-AN-DP102 Embedded Wireless Module, the wireless unit has a peak

inrush current of approximately 1.9 amperes, and thus the low-current and high-current 3.3-

volt sources are isolated from one another on the sensor board. As a result, each MCETS

client requires three regulated voltage supplies (3.3 volts LC, 3.3 volts HC, and 5.0 volts) and

a raw battery voltage around 11.1 volts.

Component Supply Voltage Current Draw Power Consumption

MSP430-P1611 (1) 3.3 V (LC) 11 mA† 36.3 mW†

Temperature Sensor (1) 3.3 V (LC) 140 μA 462 μW

Pressure Sensor (1) 5.0 V 10 mA 50 mW

Pressure Sensor Op-Amp (1) 5.0 V 230 μA 1.150 mW

Pressure Sensor Attenuator (1) 5.0 V 100 μA 500 μW

Tri-Axial Inertial Sensor (1) 5.0 V 35 mA 175 mW

Tri-Axial Inertial Sensor Multiplexers (3) 5.0 V 3.0 μA 15.0 μW

Tri-Axial Inertial Sensor Op-Amps (3) 5.0 V 690 μA 3.450 mW

Tri-Axial Inertial Sensor Attenuator (3) 5.0 V 300 μA 1.5 mW

GPS OEM Receiver (1) 11.1 V 85.6 mA† 950 mW†

802.11 Embedded Wireless Module (1) 3.3 V (HC) 450 mA 1.485 W

Bus Switches (2) 5.0 V (HC) 6.0 μA 30 μW

† Average measured value

Total 3.3 V (LC) Current Draw 11.14 mA

Total 3.3 V (HC) Current Draw 450 mA

Total 5.0 V Current Draw 46.329 mA

Total 11.1 V Current Draw 85.6 mA

Total Power Consumption 2.7036 W

Table 6.3: Estimated Maximum MCETS Client Power Requirements

The battery selected for each MCETS client, the direct supply for the GPS OEM

receiver, is a standard 11.1-volt lithium ion battery. This rechargeable battery has a peak

voltage of 12.6 volts, though its average output voltage is approximately 11.1 volts.

60

Additionally, the battery has a capacity of 4.4 ampere-hours (meaning it can supply an

ampere of current for approximately 4.4 hours), and has a maximum discharge current of 5.0

amperes. Since the estimated current draw is 593.069 mA, each MCETS client can run on

battery for a maximum of 7.4 hours, although the actual operating time should be less with

the addition of filter capacitors and as the battery ages. Finally, the battery physically

measures 69 mm long by 54 mm wide by 36 mm thick (2.72 x 2.13 x 1.417 inches), and

weighs about 340 grams. As a result, the 11.1-volt lithium ion battery conforms to the small

form factor of the MCETS, abiding by the system’s size and weight requirements.

Since linear voltage regulators are extremely inefficient, downwards of fifty to sixty

percent, the choice method for stepping the 11.1-volt battery source down is through a

switching voltage regulator. The switching regulators selected for the power supply board

are the Bel© V7AH-03H series DC/DC Converters (Appendix A.7: Bel© x7AH-03H Series

DC/DC Converters). The series consists of 1.2-, 1.5-, 1.8-, 2.5-, 3.3-, and-5.0 volt switching

regulators that are capable of supplying 3.0 amperes of current. Consequently, the need for

a separate 3.3-volt HC and LC supply is no longer necessary since the regulators can supply

enough current to all 3.3-volt devices during the embedded wireless modules 1.9-ampere

peak inrush current startup. (Due to project time constraints and the way the MCETS

design unfolded, the sensor board utilizes both a 3.3-volt LC and a 3.3-volt HC supply.

However, as illustrated in Appendix C.6: Power Supply Board Circuit Schematic, the two

supply rails are shorted together on the power supply board).

In terms of power efficiency, for an 11.1-volt input source the 5.0-volt switching

regulator (Bel© V7AH-03H500) is approximately eighty-three to ninety-two percent efficient,

depending on the output current of the device. From Table 6.3, the estimated maximum

current drawn from the 5.0-volt supply is 46.329 mA, which from the manufacturer’s

61

efficiency data in Appendix C.6 corresponds to an efficiency of approximately eighty-three

percent (the switching regulator becomes more efficient at higher output currents).

Similarly, the efficiency of the 3.3-volt switching regulator (Bel© V7AH-03H330) for an 11.1-

volt input source ranges from about eighty to ninety percent, though at the 3.3-volt

estimated supply current of 461.14 mA, it is only eighty-two or eighty-three percent efficient.

Nevertheless, regardless of output currents, the Bel© V7AH-03H Series Non-Isolated

DC/DC Converters yield significantly higher power conversion efficiencies over traditional

linear voltage regulators.

6.8. Sensor Printed Circuit Board Layout

As illustrated in Appendix A.5: Javad© JNS100 GPS OEM Receiver Datasheet, the

GPS OEM receiver PCB board measures 87.63 mm (3.45 inches) long by 57.13 mm (2.25

inches) wide. Being such a standard size (and slightly larger than the microcontroller

development board), this form factor is used for the custom-made sensor and power supply

boards as to maintain a common size for all four layers of the client board layout. The

sensor board is designed to be the backbone of each MCETS client, providing the data and

power connections between the microcontroller development board, GPS OEM receiver,

and power supply board. Additionally, the sensor board contains the temperature, pressure,

and tri-axial analog inertial sensors, all miscellaneous electrical components, and the

embedded wireless module.

The software used to design the sensor board, as well as the power supply board, is

the Mentor Graphics© suite. Within the suite, circuit schematics generated in Mentor

Graphics© DxDesigner – Appendix C: Circuit Schematics – are transferred over to Mentor

Graphics© Expedition, where the components can be properly placed and connected with

62

electrical traces (Appendix D: Printed Circuit Board Layouts). Some of the prominent

features of the Expedition software include auto-routing, a crosstalk simulator, and a

propagation delay simulator. The auto-routing feature, which automatically routes the

connections between components, proves to be useful in most cases, though care must

taken to ensure proper trace routing. Additionally, the crosstalk simulator produces an

estimated maximum crosstalk potential based on adjacent parallel traces and trace widths,

and the propagation delay simulator produces an estimate on critical data lines that are time

sensitive (e.g., the tri-axial inertial analog sensor traces).

Initially, the sensor board consisted of four individual layers, including a power layer

for the 3.3-volt LC, 3.3-volt HC, 5.0-volt, and 11.1-volt supply rails, a ground layer for the

analog, digital, and power grounds, and two trace layers for the actual interconnections

between components. However, due the sheer size and number of connections on the

sensor board, four individual layers are insufficient for the MCETS sensor board in terms of

physically being able to route each of the traces. Consequently, as illustrated in Table 6.4:

Sensor Board PCB Layers, the final sensor board design consists of eight individual layers,

including a power layer, three ground layers, and four trace layers. This ultimately alleviates

the “real-estate problem” of not having enough physical board space to route each of the

traces; it even permits biasing signal traces in certain direction, where the first signal layer is

biased to have its traces placed vertically, the second signal layer biased horizontally, and so

on, helping to reduce the amount of potential crosstalk between signals.

Layer Type Description Appendix Figure

1 Trace Sensor Pads and Signal Layer Figure D.4: First Sensor PCB Layer

2 Ground Analog Grounding Plane Figure D.5: Second Sensor PCB Layer (Analog Ground Plane)

3 Trace Signal Layer Figure D.6: Third Sensor PCB Layer

4 Ground Digital Grounding Plane Figure D.7: Fourth Sensor PCB Layer (Digital Ground Plane)

5 Trace Signal Layer Figure D.8: Fifth Sensor PCB Layer

63

6 Power Power Supply Plane Figure D.9: Sixth Sensor PCB Layer (Power Supply Plane)

Layer Type Description Appendix Figure

7 Ground Power Grounding Plane Figure D.10: Seventh Sensor PCB Layer (Power Ground Plane)

8 Trace Discrete Pads and Signal Layer Figure D.11: Eighth Sensor PCB Layer

Table 6.4: Sensor Board PCB Layers

6.9. Power Supply Printed Circuit Board Layout

The power supply PCB is designed to provide all the necessary voltage sources for

the MCETS client, specifically the 3.3-volt, 5.0-volt, and 11.1-volt supplies, as well as

provide the sole connection of the three grounding planes (analog, digital, and power).

Additionally, the board includes jumper configurations that allow for extended system

control of the switching voltage regulators and the way the grounding planes are connected.

Since the power supply PCB is far less complex than the sensor PCB (sixteen components

compared to sixty-nine), only two individual signal trace layers are needed. As illustrated in

Appendix D.2: Power Supply Printed Circuit Board Layout, these traces are isolated on the

left-hand side of the board, allowing space for a lithium ion battery on the right-hand side.

Given that the power supply board uses a male DC barrel jack, the MCETS clients are

capable of utilizing any 8.0-volt to 32.0-volt battery with a female DC plug, though an 11.1-

volt lithium ion battery is recommended.

With the Bel© V7AH-03H series DC/DC Converters having active-low control pins,

the power supply board has two control lines that facilitate turning the 3.3-volt and 5.0-volt

supplies off using the microcontroller’s general-purpose I/O pins. To enable or disable the

MCETS switching regulators, the “3.3V CTRL” and “5.0V CTRL” (Figure D.14: Top Power

Supply Board Silk Screen) pins should be shorted with separate two-pin jumpers.

Otherwise, to leave the switching regulators permanently on, the “NO CTRL” pins must be

64

shorted with separate two-pin jumpers. Even though the two switching regulates are

independently configurable, caution must be used when controlling the 3.3-volt switching

regulator via the microcontroller since it traditionally uses this switching regulator for power.

Furthermore, the control and no control pins should not both be shorted at the same time,

which electrically results in shorting the microcontroller’s output control pins to ground

Notes

1. “MSP430 Ultra-Low-Power Microcontrollers”, Texas Instruments, n.d., <http://focus.ti.com/

paramsearch/docs/parametricsearch.tsp?sectionId=95&tabId=1200&familyId=342&family=mcu> (12 September

2007).

2. “Airborne Embedded Wireless Device Server”, Quatech, August 2006, <http://www.dpactech.com/docs/

wireless_products/AB%20wireless%20device%20server%20module.pdf> (6 October 2007).

65

7. Cost Analysis

With the overall cost of the MCETS being one of The Laboratory’s top concerns (COTS

telemetry systems can cost tens of thousands of dollar per module), it is now appropriate to analyze

both the one-time and reoccurring expenditures required to develop, fabricate, and assemble a single

MCETS client. As illustrated in the following tables, the most efficient method of analyzing the

overall cost is to divide the total cost into six different categories and perform an individual cost

analysis on each. By breaking it down by the sensor board, microcontroller development board,

GPS OEM receiver, power supply board, system assembly, and miscellaneous nonrecurring costs, a

more in-depth cost breakdown is obtained, providing insight into how individual subsystems and

sensors affect the total price of the system.

Besides from the Javad© JNS100 GPS OEM receiver, the cost of the MCETS sensor board

– Table 7.1: Sensor Board Cost Analysis – is the largest expenditure in the MCETS system.

Although most of the components on the sensor board cost less than twenty dollars, the

MemSense© MAG10 Tri-Axial Analog Inertial Sensor costs more than one-thousand dollars per

unit, accounting for more than seventy-eight percent of the total sensor board price. With respect

to almost all of the other components, this expense significantly raises the total price of an MCETS

client. However, in comparison to other commercial tri-axial inertial sensors, the MAG10 costs

about one-tenth of what similar units cost. Furthermore, the fabrication of the MCETS sensor

board by Network Circuits© adds eighty-four dollars to the total sensor board cost; however, due to

the nature of circuit boards, the entire lot of twenty-five boards must be purchased for

approximately $2,100.00. Nonetheless, based on current electronic supplier prices as of October

2007, the total cost of all the sensor board components for a single MCETS client is $1,282.73.

66

QTY Description Manufacturer Part Number Price Total Price

1 Sensor Printed Circuit Board Network Circuits© – $84.00 $84.00

1 Analog-Output Temperature Sensor Maxim© DS600U $2.57 $2.57

1 Analog-Output Pressure Sensor Freescale Semiconductor© MPXA4250A6U-ND $14.36 $14.36

1 470 pF SMT Capacitor AVX Corporation© 08053D105KAT2A $0.01 $0.01

1 Tri-Axial Analog Inertial Sensor MemSense© MAG10-1200S050 $1,004.40 $1,004.40

1 N-Channel MOSFET Transistor ON Semiconductor© MMBF0201NLT1 $0.35 $0.35

3 4:1 CMOS Analog Multiplexer Analog Devices© ADG704BRMZ-ND $2.33 $6.99

1 4-Channel Operational Amplifier National Semiconductor© LMV934MA-ND $1.49 $1.49

4 0.1% Tolerant 20 kΩ SMT Resistor Panasonic© ERA6YEB203V $0.56 $2.24

6 0.1% Tolerant 30 kΩ SMT Resistor Panasonic© ERA6YEB303V $0.56 $3.36

3 2.2 μF SMT Capacitor Panasonic© ECJ-2FB1E225K $0.15 $0.45

1 Airborne Embedded Wireless Module Quatech© 600-WLNG-AN-DP102 $100.62 $100.62

2 5 dBi Rubber Duck U.FL Antenna Quatech© ACH2-AT-DP004-G $9.10 $18.20

2 4-Bit Tri-State Bus Switch Fairchild© FST3126QSC $0.52 $1.04

1 36-Pin Female Connector Hirose Electronics© DF12(4.0)-36DP-0.5V(86) $1.58 $1.58

3 SMT Clear Red LED CML Technologies© CMD28-21SRC/TR8/T1 $0.32 $0.96

3 680 Ω SMT Resistor Panasonic© ERJ6GEYJ681V $0.07 $0.21

4 1 MΩ SMT Resistor Panasonic© ERJ-8ENF1004V $0.12 $0.48

11 1 MΩ SMT Resistor Susumu© RR1220P-105-D $0.08 $0.88

3 10 μF SMT Capacitor Panasonic© ECJ-3YB1E106M $0.54 $1.62

14 1.0 μF SMT Capacitor Panasonic© 08053D105KAT2A $1.09 $15.26

2 Push Button DPST NO Switch Alps© SKHMPSE010 $0.650 $1.30

1 2-Pin Male Header Tyco Electronics© 87220-2 $1.17 $1.17

1 10-Pin Right-Angle Male Header Molex© 87833-1020 $1.38 $1.38

1 30-Pin Male Header Molex© 90131-0135 $3.09 $3.09

1 60-Pin Male Header Tyco Electronics© 3-87227-0 $15.96 $15.96

1 2-Pin Female Connector FCI© 65039-035LF $0.94 $0.94

2 Mini PV Contacts FCI© 47750-000LF $0.37 $0.37

1 10-Pin Female Connector Molex© 87568-1073 $2.61 $2.61

1 30-Pin Female Connector Assmann Electronics© AWP30-8240-T-R $1.49 $1.49

1 60-Pin Female Connector Assmann Electronics© AWP60-8240-T-R $2.98 $2.98

 $1,282.73

Table 7.1: Sensor Board Cost Analysis

Unlike the sensor board, the microcontroller development board and GPS OEM receiver

are prebuilt devices for retail sale and require few additional components. Contrasting that of the

67

sensor board, the total cost of the MCETS microcontroller development board (Table 7.2:

Microcontroller Development Board Cost Analysis) is only $49.05. On the other hand, the total

cost of the GPS OEM receiver is significantly higher than both the sensor and microcontroller

development boards, costing $9,902.98. As listed in Table 7.3: GPS OEM Receiver Cost Analysis,

the Javad© JNS100 GPS OEM Receiver costs $9,900.00, an aggregate of costs for individual features

of the receiver. The base cost of the unit is $4,500.00, however features such as a raw data rate of

100 Hz and differential GPS increase the base cost by an additional $5,300.00. Accordingly, the

total expenditure of the GPS OEM receiver could be reduced to as little as $4,502.98, though the

actual implementation of the MCETS utilizes the $9,900.00 GPS OEM receiver.

QTY Description Manufacturer Part Number Price Total Price

1 MSP430 Development Board Olimex© MSP430-P1611 $44.95 $44.95

2 36 pF SMT Capacitor AVX© 06035A360JAT2A $0.39 $0.78

1 6.00 MHz Crystal Oscillator ABRASION© ABL-6.000MHZ-B2 $0.34 $0.34

1 60-Pin Female Connector Assmann Electronics© AWP60-8240-T-R $2.98 $2.98

 $49.05

Table 7.2: Microcontroller Development Board Cost Analysis

QTY Description Manufacturer Part Number Price Total Price

1 GPS OEM Receiver Javad© JNS100 $9,900.00 $9,900.00

1 30 Pin Female Connector Assmann Electronics© AWP30-8240-T-R $1.49 $1.49

1 Female DB9 Connector Black Box© FA110 $1.49 $1.49

 $9,902.98

Table 7.3: GPS OEM Receiver Cost Analysis

Since the MCETS sensor board is custom designed specifically for the MCETS, it also

consists of a multitude of components, most of which cost less than fifteen dollars (Table 7.4:

Power Supply Board Cost Analysis). The only significant expenditures include the lithium ion

battery ($45.55) and the printed circuit board ($30.00). As with the sensor board fabrication, the

68

entire lot of twenty-five power supply boards must be purchased, but because it is a two-layer board,

the cost for the entire lot is only $750.00. Furthermore, as listed in Table 7.5: System Assembly Cost

Analysis, there is an additional expenditure of assembling the sensor and power supply boards.

Specifically, it takes approximately five hours at a rate of eighty dollars per hour to solder and

assemble each MCETS client, resulting in a total price of $415.08 per module

QTY Description Manufacturer Part Number Price Total Price

1 Power Supply Printed Circuit Board Network Circuits© – $30.00 $30.00

1 2.5x5.5 mm Right-Angle DC Barrel Jack Switchcraft© RAPC712BK $1.23 $1.23

1 2.5x5.5 mm DC Plug Switchcraft© 760 $3.28 $3.28

1 4400 mAh 11.1V Lithium Battery Tenergy© LI18650-111V4400 $45.55 $45.55

1 Two Position Slide Switch NKK© MS13ANW03 $3.58 $3.58

6 2 Pin Male Header Tyco Electronics© 87220-2 $1.17 $7.02

4 2 Pin Female Jumper Sullins Electronics© SPC02SYAN $0.12 $0.48

1 5.0V, 3.0A Switching Regulator Bel Fuse© Inc. V7AH-03H500 $13.90 $13.90

1 3.3V, 3.0A Switching Regulator Bel Fuse© Inc. V7AH-03H330 $13.90 $13.90

1 10 Pin Male Header Molex© 87833-1020 $1.38 $1.38

1 10 Pin Female Connector Molex© 87568-1073 $2.61 $2.61

4 10 μF SMT Capacitor Panasonic© ECJ-3YB1E106M $0.54 $2.16

2 1.0 μF SMT Capacitor Panasonic© 08053D105KAT2A $1.09 $2.18

 $127.27

Table 7.4: Power Supply Board Cost Analysis

QTY Description Manufacturer Part Number Price Total Price

8 5 mm Male to Female Standoff Fascomp© 728-FM2100-2545-A $0.43 $3.44

8 20 mm Male to Female Standoff Fascomp© 728-FM2115-2545-A $0.54 $4.32

8 15 mm Male to Female Standoff Fascomp© 728-FM2110-2545-A $0.62 $4.96

4 15 mm Female to Female Standoff Fascomp© 728-FM1262-2545-A $0.59 $2.36

5 hr Assembly and Testing MIT Lincoln Laboratory – $80.00 $400.00

' $415.08

Table 7.5: System Assembly Cost Analysis

69

As listed in Table 7.6: Nonrecurring MCETS Expenditures, there are some nonrecurring

one-time expenditures not included in the total cost of an MCETS client. Specifically, these

components allow for programming the MSP430 microcontroller, recharging the lithium ion battery,

and connecting the four boards with ribbon cables. Ultimately, these costs add an additional

$114.72 to the MCETS, though they are only startup costs and do not increase with additional

clients. As a result, by combing the cost of the sensor, microcontroller development, GPS OEM

receiver, and power supply boards, as well as the cost to assemble each MCETS client, the total cost

of an MCETS client is $11,777.11 ($9,902.98 for the GPS OEM receiver board and $1,874.13 for

the remainder of the system). Therefore, a MCETS client is significantly less expensive than other

retail COTS telemetry systems, even though most are physically larger, consume a lot more power,

and do not provide a noteworthy increase in accuracy.

QTY Description Manufacturer Part Number Price Total Price

1 MSP430 JTAG Programmer MicroController Corporation© MSP-JTAG $19.00 $19.00

1 Universal Lithium Battery Charger Tenergy© TLP-2000 $45.90 $45.90

1 Battery Charger Power Cable Tenergy© WETM-02 $2.95 $2.95

1 Male DC Barrel Jack Switchcraft© RAPC712BK $1.23 $1.23

1 10-Pin Flat Ribbon Cable (5’) Digikey© WM11-5-ND $3.96 $3.96

1 30-Pin Flat Shielded Ribbon Cable (5’) 3M© MB30H-5-ND $31.92 $31.92

1 60-Pin Flat Ribbon Cable (5’) Digikey© MC60G-5-ND $9.76 $9.76

 $114.72

Table 7.6: Nonrecurring MCETS Expenditures

70

8. MCETS Client Firmware Development

Having the MCETS client hardware fully designed, the next step in the prototype of the

MCETS is the development of firmware to facilitate control of the various onboard sensors, the

acquisition of data, and the transmission of that data to the MCETS server. The firmware for the

MSP430-F1611 microcontroller is written entirely in the assembly programming language using the

Texas Instruments©-recommended IAR Embedded Workbench. By writing the MCETS client

firmware in a low-level programming language like assembly, every aspect of the system can be

meticulously controlled to maximize code efficiency, optimize interrupt service routines, and fully

exploit the five different MSP430 low-power modes. Furthermore, the IAR Embedded Workbench

permits linking and compiling these assembly instructions into their corresponding operation codes,

Flashing the code onto the microcontroller, as well as debugging this firmware in real time.

Overall, the firmware for the MCETS clients – Appendix E.5: MCETS Client Firmware

(Assembly Language) – can be visualized as three main procedures, including client initialization,

data acquisition, and data transmission. As illustrated in the flowchart in Figure 8.1: Main

Procedures of the MCETS Client Firmware, client initialization (as indicated by the dotted red box)

is the very first procedure that immediately follows when the MSP430-P1611 microcontroller

development board is supplied power. This process is responsible for setting the microcontroller up

for proper operation, initializing the various I/O ports that control the sensors, and putting the

system into a low-power standby mode until a message is received from the MCETS server.

Furthermore, as indicated by the dotted purple box, the data acquisition procedure is responsible for

obtaining the server-requested data from the various onboard sensors. Finally, the third procedure

of the MCETS client firmware is to format the acquired data into a single packet of data, transmit

this packet to the embedded wireless module for streaming data back to the MCETS server, as well

as determining whether more data needs to be acquired from the sensors.

71

System Power Turned On

Initialize Client

Acquire Data

Format Data

Transmit Data

Acquire
More Data?

No

Low Power
Mode

Initialize Sensors and Peripherals

Yes

Figure 8.1: Main Procedures of the MCETS Client Firmware

8.1. Client Initialization Procedure

Once a sufficient voltage is supplied to the microcontroller, the firmware begins

executing an initialization procedure to configure the client for both proper operation and

communications with the MCETS server. This procedure (Figure 8.2: Expanded MCETS

Client Initialization Procedure) is separated into two subroutines, including a routine that

sets up communications with the embedded wireless module, and another that specifically

turns each MCETS sensor on and prepares the system for data acquisition. These two

subroutines, however, are physically separated in the fact that the microcontroller enters a

low-power mode following the completion of the first routine, in which the microcontroller

CPU, main clock (MCLK), submain clock (SMCLK), and digitally controlled oscillator

(DCO) are turned off. These subroutines are then linked together (e.g., the CPU, MCLK,

72

SMCLK, and DCO are turned back on to resume program execution) via an interrupt

service routine that is issued by the MSP430 SPI bus peripheral (USART1).

The first subroutine of the client initialization procedure is mainly responsible for

setting up communications with the embedded wireless module. However, it also stores

default server settings, disables the 5.0-volt voltage supply, and turns all of the sensors off to

conserve power while the client is in a low-power mode waiting for a message from the

server. The main concept of the MCETS is for the server to query particular clients already

in flight based upon unique module identification numbers. Ultimately, as illustrated in

Appendix E.2: Packet Format for Data Transmitted from the Server to the Clients, the query

consists of three sixteen-bit subpackets: a “wake-up” subpacket, a “length of data

acquisition” subpacket, and a “what data” subpacket.

The first subpacket a client receives from the server – the “wake-up” subpacket –

literally wakes the client microcontroller out of the low-power mode, enabling the CPU,

MCLK, SMCLK, and DCO onboard the MSP430-F1611 microcontroller. This sixteen-bit

message consists of the module’s identification number, which is defined as the last eight

bits of the client’s IP address, and the server-requested data rate in Hertz. Pending that the

received module identification number matches the actual identification number of the

client, the microcontroller stores the received data rate as an eight-bit unsigned integer.

Although the predefined maximum data rate of the MCETS is one-hundred Hertz (the

maximum data rate of the Javad© JNS100 GPS OEM receiver), any received eight-bit data

rate is stored in the corresponding CPU register, though it is limited to one-hundred Hertz

during the data acquisition procedure.

73

D
at

a
T

ra
n

sm
is

si
on

P

ro
ce

d
u

re
D

at
a

A
cq

u
is

it
io

n

P
ro

ce
d

u
re

C
lie

n
t

In
it

ia
liz

at
io

n
 P

ro
ce

d
u

re

T
im

er
 A

 I
n

te
rr

u
p

t
Se

rv
ic

e
R

ou
ti

n
e

SP
I

In
te

rr
u

p
t

Se
rv

ic
e

R
ou

ti
n

e

Figure 8.2: Expanded MCETS Client Initialization Procedure

The second subpacket a client receives – the “length of data acquisition” subpacket –

sets how long the MCETS client acquires data. Since the length of data acquisition is

allocated sixteen bits, the client is capable of acquiring data at one-second intervals between

one second and 65,535 seconds, for a maximum data acquisition period of eighteen hours,

74

twelve minutes, and fifteen seconds. Furthermore, by setting the length of data acquisition

to zero, the server can tell a client to acquire data indefinitely until a stop message is received

from the server. This stop message is the same as the previously transmitted message,

except for the “length of data acquisition” subpacket, which is set to the minimum data

acquisition length of one second. Consequently, there is a one-second lag between when a

client receives a stop message and when it actually stops acquiring data.

The third subpacket a client receives from the MCETS sever – the “what data”

subpacket – allows the server to ask individual clients for particular telemetry data. Each bit

in the sixteen-bit subpacket denotes whether the server wants that particular data, where a

logical ‘1’ informs the client to acquire the data and a logical ‘0’ not to acquire the data. As

illustrated in Appendix E.2, bits eleven through thirteen denote magnetic field strength,

angular rate, acceleration, pressure, and temperature, and bits three through seven denote

GPS receiver time, geodetic velocity, Cartesian velocity, geodetic position, and Cartesian

position, respectively. Accordingly, there are six unused bits in the “what data” subpacket

(bits zero, one, two, eight, nine, and ten) that are reserved for future development.

Upon receiving the six-byte packet of data from the server and the matching of

identification numbers, the client is immediately taken out of the low-power mode, which is

used to conserve power while the client is waiting to be queried. The received information is

then moved into three sixteen-bit CPU registers for fast and easy firmware access during the

data acquisition and data transmission procedures. Furthermore, since these instructions are

all executed within the interrupt service routine of the SPI receiver (USART1 receiver), all

values can instantly be updated while a client is acquiring and transmitting data from a

previous server request.

75

Following the first subroutine of the client initialization procedure, as well as the

reception of a valid message from the MCETS server, the second subroutine configures the

system for data acquisition and transmission, as well as initializes the required sensors. Once

exiting low-power mode, the three microcontroller clocks (MCLK, SMCLK, and auxiliary

clock (ACLK)) are configured for high-speed operation. The MCLK, which is the clock

signal used by the microcontroller CPU, is driven by the external high-frequency 6.00 MHz

crystal oscillator, and the SMCLK, which is the clock signal used by most microcontroller

peripheral devices, is driven by the MCLK, though it is buffered and divided by two to

provide a 3.00 MHz clock signal. Since the external high-frequency clock signal is so

important to proper client operation, an LED onboard the microcontroller development

board is illuminated in the event of a crystal oscillator failure. Additionally, ACLK is driven

by a low frequency crystal oscillator onboard the development board.

After the three clock signals are configured, a microcontroller timer peripheral

(Timer A) is configured using ACLK, and initialized to provide an adequate length of time

for the sensors to load properly. As defined in their respective datasheets (Appendix A:

MCETS Component Data Sheets), it takes ten milliseconds for the temperature sensor to

load, thirty-five milliseconds for the tri-axial analog inertial sensor, and approximately ten

seconds for the GPS receiver to load (from a cold start it can take up to sixty seconds for the

receiver to load, however it is assumed that at least fifty seconds elapses between when the

client is supplied power and when the server queries it). As illustrated in Figure 8.2, during

this ten-second startup time the required sensors are initialized, the twelve-bit ADC

(ADC12), UART0, and SPI (USART1) peripherals are configured, and the microcontroller is

put back into a low-power mode, where the CPU, MCLK, SMCLK, and DCO are again

turned off. Once the timer finally expires and the queried MCETS client is fully initialized

76

and configured, the microcontroller is taken back out of low-power mode to execute the

data acquisition and data transmission procedures.

8.2. Data Acquisition Procedure

The data acquisition procedure of the MCETS client firmware is the portion of the

assembly code that actually acquires data from the various sensors and stores it consecutively

in RAM. The procedure begins by configuring and initializing a microcontroller timer

peripheral (Timer B) to delineate a precise period of time in which data needs to be acquired,

formatted, and transmitted. This period is equal to the inverse of the data rate, physically

corresponding to how many microseconds are in one sample of telemetry data. This

ultimately ensures that data is periodically transmitted to the server at the requested data rate,

and that this rate is asynchronous to the actual amount of time it takes the microcontroller

to acquire, format, and transmit the data.

As illustrated in Figure 8.3: Expanded MCETS Client Data Acquisition Procedure,

following the initialization of the data rate timer, the procedure moves sequentially from

sensor to sensor, checking with the “what data” subpacket whether the particular data has

been requested by the server. Beginning with the temperature sensor, if temperature data

was requested, DMA channel zero is configured to transfer a single word of data (sixteen

bits) from the ADC12 channel zero register to the start address of allocated data acquisition

RAM (0x1106). ADC12 channel zero is then configured to issue an interrupt request when

the conversion is completed, and finally the sampling and conversion process is enabled.

77

D
at

a
A

cq
u

is
it

io
n

 P
ro

ce
d

u
re

C
lie

n
t

In
it

ia
liz

at
io

n
 P

ro
ce

d
u

re

A
D

C
12

In

te
rr

u
p

t
Se

rv
ic

e
R

ou
ti

n
e

D
at

a
T

ra
n

sm
is

si
on

P

ro
ce

d
u

re

Figure 8.3: Expanded MCETS Client Data Acquisition Procedure

78

As the analog temperature data is converted into a binary number, the entire process

is simultaneously repeated for the pressure sensor, though using DMA and ADC12 channel

one. By the time the microcontroller’s program counter reaches the instruction to configure

ADC12 channel one (or another instruction if pressure data was not requested), ADC12

channel zero issues an interrupt request to the CPU. Within the interrupt service routine,

the ADC12 is turned off to conserve power and DMA channel zero is triggered to transfer

the temperature data out of the ADC12 channel zero register to RAM. Then, as DMA

channel zero is moving this data, ADC12 channel one is enabled and the pressure data is

sampled and converted in the exact same manner as the temperate sensor.

This parallel sequence of events is then continued for the four tri-axial analog

sensors, where ADC12 channels two, three, and four are concurrently used for the x-, y-,

and z-axes, respectively. The accelerometer then uses DMA channel two to move the forty-

eight bit block of data out of the ADC12 registers to the next available location in RAM, the

gyroscope DMA channel zero, the magnetometer DMA channel one, and the internal

temperature sensor DMA channel two. Ultimately, by performing these three analog sensor

data acquisition processes in parallel – configuring the microcontroller peripherals, sampling

and converting the data, and transferring that data from the ADC12 registers to RAM – the

client can utilize the CPU clock cycles wasted while the ADC12 samples and converts the

data and as the data is transferred to RAM.

Once the server-requested analog sensor data is obtained and stored sequentially in

RAM, GPS data is acquired from the Javad© JNS100 GPS OEM receiver using the GPS

Receiver Interface Language (GRIL). GRIL is a generic receiver-independent language that

allows a user (e.g., a microcontroller) to control a GPS receiver “using an appropriate set of

named objects”.1 This effectively allows for manual control of GPS receivers, where ASCII-

79

character (American Standard Code for Information Exchange) and line-feed terminated

GRIL commands are transmitted to and executed by the receiver. The receiver then

performs the desired operation, and if needed, returns the requested data to the user. In the

case of the MCETS client firmware, the MSP430-F1611 microcontroller transmits GRILL

commands, as listed in Table 8.1: Applicable GRIL Commands for the MCETS, using the

onboard UART microcontroller peripheral and an RS-232 driver.

ASCII GRIL Command Description

set,dev/ser/a/rate,230400<LF> Configure serial port A’s baud rate to 460800 bps

set,dev/ser/a/stops,2<LF> Configure serial port A for 2 stop bits

set,dev/ser/a/parity,odd<LF> Configure serial port A for odd parity

init,/dev/nvm/a<LF> Reset and reboot the receiver

set,lpm,on<LF> Enables the GPS processor to enter low power mode

set,sleep,on<LF> Put the receiver into sleep mode

out,,jps/PO<LF> Fetch Cartesian position

out,,jps/VE<LF> Fetch Geodetic position

out,,jps/PG<LF> Fetch Cartesian velocity

out,,jps/VG<LF> Fetch Geodetic velocity

out,,jps/DP<LF> Fetch dilution of precision

out,,jps/PS<LF> Fetch position statistics

out,,jps/RD<LF> Fetch receiver date

out,,jps/RT<LF> Fetch receiver time

print,pwr/board<LF> Fetch the raw battery voltage

Table 8.1: Applicable GRIL Commands for the MCETS

The first six GRILL commands listed in Table 8.1 apply to configuring the GPS

receiver for communications with the microcontroller, as well as resetting and initializing it

to conserve power while the client waits to be queried. By default, the serial ports on the

JNS100 GPS OEM receiver use a baud rate of 115200 bps, eight data bits, no parity bit, and

one stop bit. Nonetheless, in order to increase the information throughput and the reliability

80

of communications between the microcontroller and the GPS receiver, the MCETS clients

utilize a baud rate of 230400 bps, an odd parity bit, and two stop bits, parameters that are

configured in the client initialization procedure. After the serial ports are configured, the

microcontroller reboots the GPS receiver, configures it to enter low-power mode when its

processor is not in use, and finally puts it into sleep mode until another message is

transmitted from the microcontroller.

The later nine GPS GRIL commands listed in Table 8.1 apply to actually fetching

GPS data from the receiver. The specific GPS data the MCETS server can request includes

Cartesian (x-, y-, and z-axis) position, Geodetic (latitude, longitude, and altitude) position,

Cartesian (x-, y-, and z-axis) velocity, Geodetic (northing, easting, and height) velocity, and

receiver time and date. Additionally, if any position or velocity data is requested by the

server, dilution of precision and satellite statistics are automatically transmitted to the server

as to provide measurements of accuracy. Finally, the raw battery voltage applied to the GPS

receiver is also measured by the MCETS client, providing a way to monitor a client’s battery

voltage during operation (if no GPS receiver is detected by the microcontroller, the clients

returns a raw battery voltage of zero volts).

As illustrated in Figure 8.4: MCETS Client GPS Data Acquisition Process, GPS data

is acquired in a similar manner to the analog sensor data, however the GPS process uses all

three DMA channels and the microcontroller UART peripheral (USART0). The first DMA

channel (DMA-0) is configured to transfer a block of data – ASCII GRIL commands stored

in Flash memory (0xA000) – to the UART0 transmit register. Conversely, the second DMA

channel (DMA-1) is configured to transfer a block of received data from the UART0 receive

register to a GPS dump address in RAM (0x2000) for temporary storage. This temporary

storage allows the microcontroller to extract the MCETS-desired data from the GPS receiver

81

standard data stream, which from Appendix E.4: Data Format for Standard GRIL Output

Messages, includes miscellaneous information including message identification numbers,

data lengths, and error-checking checksums.

D
M

A
 I

n
te

rr
u

p
t

Se
rv

ic
e

R
ou

ti
n

e

T
im

er
 A

In
te

rr
u

p
t

Se
rv

ic
e

R
ou

ti
n

e

Figure 8.4: MCETS Client GPS Data Acquisition Process

82

Furthermore, the third DMA channel (DMA-2) is configured in the GPS data

acquisition process to transfer and append the extracted GPS data from the GPS dump

RAM to the data acquisition RAM that is used for storing the acquired analog sensor data.

Pending that the message identification number, data length, and checksum are correct,

DMA channel one triggers DMA channel two for block transfer; however, if an error or the

wrong message is detected, DMA channel two is triggered to transfer a block of zeros to the

data acquisition RAM. Lastly, to ensure that all three of these DMA transfers are executed

successfully, the GPS data acquisition process employs a microcontroller timer peripheral

(Timer A), which is configured to timeout in the event of a communication failure between

the microcontroller and the GPS OEM receiver.

8.3. Data Transmission Procedure

The final procedure in the MCETS client firmware is data transmission, which is

responsible for formatting the data acquired in the data acquisition procedure, transmitting it

to the embedded wireless module (and therefore the MCETS server), and determining

whether further data acquisition is needed. As illustrated in Appendix E.3: Packet Format

for Data Transmitted from the Clients to the Server, the format for data is almost exactly as

it is formatted and stored in the data acquisition RAM (0x1106). As a result, the only real

formatting needed in the data transmission procedure is the appending of a sixteen-bit “data

status” subpacket to the beginning of the data, and another sixteen-bit “module status”

subpacket to the end of the data. Specifically, the “data status” subpacket informs the server

of the transmitting client’s module identification number and the number of bytes it will

transmit, and the “module status” subpacket of the data acquisition rate, whether data

83

acquisition and transmission was successful, and finally if the high-frequency 6.00 MHz

crystal oscillator inadvertently failed.

D
at

a
T

ra
n

sm
is

si
on

P

ro
ce

d
u

re
C

lie
n

t
In

it
ia

li
za

ti
on

 P
ro

ce
d

u
re

D
at

a
A

cq
u

is
it

io
n

P

ro
ce

d
u

re

System Power Turned On

Initialize Client

Acquire Data

Format Data

Configure DMA-0 Acquire
More Data?

No

Low Power
Mode

Initialize Sensors and Peripherals

Yes

End Data FrameTrigger DMA-0

Start Data Frame

Figure 8.5: Expanded MCETS Client Data Transmission Procedure

As illustrated in Figure 8.5: Expanded MCETS Client Data Transmission Procedure,

once the acquired data is properly formatted, DMA channel zero is configured to transfer

the block of data stored in the data acquisition RAM to the SPI transmit buffer. Before

triggering the DMA transfer, the data is framed via a microcontroller active-low signal that

enables the embedded wireless module (a SPI slave device) for communications. Following

this data transmission, the data transmission procedure determines whether more data needs

to be acquired as specified by the server. In the event that further data acquisition is

84

required, the firmware continues acquiring data beginning at the top of the data acquisition

procedure. However if data acquisition is complete, the firmware proceeds back to the client

initialization procedure to turn the sensors off and enter a low-power mode until the client is

again queried by the server.

Notes

1. “GPS Receiver Interface Language (GRIL) Reference Guide”, JAVAD Navigation Systems, April 2007,

<http://stroage.javad.com/downloads/manuals/GRIL_Reference_Guide.pdf> (22 September 2007).

85

9. MCETS Server Software Development

The final step in the prototype of the MCETS is the development of software to initialize

communications with the clients, collect and organize all of the transmitted client-acquired data, and

to present and store this data in the best possible manner. Though other programming languages

prove to be faster in terms of viewing data live, the software and graphical user interfaces for the

MCETS server are written entirely in the MATLAB programming language. Since The Laboratory

uses this language for virtually all of their data analysis requirements, a MATLAB-based MCETS

server provides the greatest flexibility and ease of use for mission analysts. As a result, the MCETS

is bundled with MATLAB software capable of configuring the communication links with clients, as

well as reading, storing, and interpreting the telemetry data acquired from multiple clients.

9.1. Server-to-Client and Client-to-Server Communications

The server-to-client and client-to-server communications in the MCETS are handled

by the server using MATLAB’s Instrument Control Toolbox, which provides the ability to

communicate with the MCETS clients (specifically the embedded wireless modules) using

the TCP and IP protocols in the Internet Protocol suite. In particular, the Instrument

Control Toolbox includes a built-in function that creates a TCP/IP object (i.e., a

socket) between each individual client and the server. This object can then be opened for

full-duplex communications using the built-in MATLAB function . Furthermore, an

open MATLAB TCP/IP object permits data to be transmitted to each client using the

 function, and received from each client using the function.

86

Once a TCP/IP object is opened using the built-in and functions,

several properties are made available that control the functionality of the connection, as well

as how MATLAB handles data transmission over the communication channel. As illustrated

in Table 9.1: MATLAB TCP/IP Object Properties, the property is used

by MATLAB to trigger a function call to the MCETS program . In this

MATLAB function (Appendix F.1: MCETS Main Figure Functions (MATLAB Language)),

the property is tested to ensure that information is available in the

MATLAB TCP/IP object buffer, and then the function is called to read the data and

cast it into an array of unsigned eight-bit integers. It is actually very important to read data

as unsigned eight-bit integers because, as illustrated in Appendix E.3, the data format of

client-transmitted subpackets varies from byte to byte. Finally, after the

function reads the received data off of the TCP/IP buffer, it saves it directly to a binary file

with file identification number .

Property Name Description MCETS Setting

Number of bytes available in the input buffer. †

The callback function executed when a specified amount of

data is available in the input buffer, or when a terminator

character is received.

The number bytes that must be available in the input buffer to

generate a B callback. 10

Specifies whether the B is generated after a “byte”

87

number of bytes are available in the input buffer, or after a

terminator character is received.

Size of the input buffer in bytes. 65,536

Specifies the remote host. ‡

Specifies the remote port. 80

Specifies the terminator character. ‘’

Specifies the time to complete a read or write operation. 0.01

Specifies the data associated with the instrument object

† Automatically set by MATLAB

‡ Varies for every MCETS client; set to the module’s identification number

Table 9.1: MATLAB TCP/IP Object Properties

To specify exactly when the callback function is executed, the TCP/IP

object property indicates whether a callback event is

triggered after a specified number of bytes are received or after an ASCII terminator

character is received. By setting the and

properties to the strings ‘’ and ‘byte’, respectively, the MCETS callback function is

configured to execute when the buffer reaches the size of , not

when a terminator is received. Since the clients transmit raw binary data, the server cannot

use ASCII terminator characters like the carriage return and line-feed because there is a

relatively good chance – one in two-hundred fifty-six – that they have the same binary value.

Therefore, the best solution is to trigger the callback whenever a set number

of bytes are available in the buffer. Moreover, since the received data is constantly appended

88

to a binary file within the function, the particular number of bytes in

B is in the end irrelevant.

Finally, for transmitting data from the MCETS server to each of the clients, the

required subpackets – “wake up”, “length of data acquisition”, and “what data” – are

generated using the MCETS program (Appendix F.2: MCETS

Server-to-Client Packet Generator (MATLAB Language)). Using information obtained from

one of the MCETS’s graphical user interfaces, this function returns a six-element ASCII-

character string for each byte in the transmitted packet. The generated string is then written

to the associated client’s TCP/IP object using MATLAB’s function. As soon as the

clients receive their corresponding data packets, they independently begin acquiring and

transmitting data back to the server, therefore triggering callbacks to the MCETS

function.

9.2. Data Parsing and Processing

After the raw binary data from the MCETS clients is saved to a file using the

 function, a process that occurs periodically during flight when the value in the

 property is exceeded, the individual data packets are parsed using

the MCETS program . The input arguments of this function are a single

client data packet (i.e., one complete sample of telemetry data), read as a string of eight-bit

ASCII characters, and a ten-element Boolean array that represents the particular data

89

requested by the server (i.e., the “what data” subpacket). As listed in Table 9.2: MATLAB-

Parsed MCETS Data Structure, the program returns the packet of data parsed completely

into a MATLAB structure with a field for each type of requested data. Consequently, the

 function produces a structure with a variable number of fields, depending on

the particular data requested by the server via the function, that

differ in both size and data format.

Structure Field Name Data Type Size of Data Associated GUI Checkbox

Unsigned 16-bit Integer 2 Bytes Temperature

Unsigned 16-bit Integer 2 Bytes Pressure

Unsigned 16-bit Integer 2 Bytes Acceleration

Unsigned 16-bit Integer 2 Bytes Acceleration

Unsigned 16-bit Integer 2 Bytes Acceleration

Unsigned 16-bit Integer 2 Bytes Angular Rate

Unsigned 16-bit Integer 2 Bytes Angular Rate

Unsigned 16-bit Integer 2 Bytes Angular Rate

Unsigned 16-bit Integer 2 Bytes Magnetic Field

Unsigned 16-bit Integer 2 Bytes Magnetic Field

Unsigned 16-bit Integer 2 Bytes Magnetic Field

Unsigned 16-bit Integer 2 Bytes †

Unsigned 16-bit Integer 2 Bytes †

Unsigned 16-bit Integer 2 Bytes †

Structure Field Name Data Type Size of Data Associated GUI Checkbox

90

Double* 8 Bytes Cartesian Position

Double* 8 Bytes Cartesian Position

Double* 8 Bytes Cartesian Position

Double* 8 Bytes Geodetic Position

Double* 8 Bytes Cartesian Position

Double* 8 Bytes Geodetic Position

Single** 4 Bytes Cartesian Velocity

Single** 4 Bytes Cartesian Velocity

Single** 4 Bytes Cartesian Velocity

Single** 4 Bytes Geodetic Velocity

Single** 4 Bytes Geodetic Velocity

Single** 4 Bytes Geodetic Velocity

Single** 4 Bytes ‡

Single** 4 Bytes ‡

Single** 4 Bytes ‡

Single** 4 Bytes§ ‡

Single** 4 Bytes§ ‡

Unsigned 8-Bit Integer 1 Byte ‡

Unsigned 8-Bit Integer 1 Byte ‡

Unsigned 8-Bit Integer 1 Byte ‡

Unsigned 16-Bit Integer 2 Bytes Receiver Time

91

Unsigned 8-Bit Integer 1 Byte Receiver Time

Unsigned 8-Bit Integer 1 Byte Receiver Time

Unsigned 8-Bit Integer 1 Byte Receiver Time

Unsigned 32-Bit Integer 4 Bytes Receiver Time

ASCII Character String 8 Bytes Any Checkbox

ASCII Character String Variable Any Checkbox

† Any Tri-Axial Analog Inertial Sensor Data (Acceleration, Angular Rate, and Magnetic Field)

‡ Any GPS Data (Cartesian/Geodetic Position and Velocity)
§ Calculated Value not encoded in MCETS Client Data Packet
* Double-Precision Floating Point Number
** Single-Precision Floating Point Number

Table 9.2: MATLAB-Parsed MCETS Data Structure

Since the function only parses a single packet of data from one client,

the routine is called by the MCETS program , which reads a file (the

binary file created from the callback function) and converts it into a human-

readable text file with the extension . The most important feature of this function

(Appendix F.3: MCETS Data Packet Parsing Functions (MATLAB Language)) is that it

converts the binary data stored in MATLAB structures via the function into

a meaningful text file that is organized with column headings for all of the variables and

recorded data. Inside the function, is repeatedly called until it reaches an

92

empty data packet, consisting of a client’s eight-bit module identification number and eight

zero bits that indicate data transmission has completed.

In addition to properly formatting acquired data in a human-readable file, the

 function also converts the binary data from the analog sensors and the GPS

OEM receiver to numbers in base-ten. The primary reason these calculations are not

executed in the function but in the function is simply to save

processing time while the MCETS server receives live data through open TCP/IP

connections. Since the GPS data is mainly formatted as floating-point numbers, unsigned

integers, and ASCII characters, only basic conversions are needed to produce human-

readable values. The analog sensor data, however, must first be converted from binary

ADC12 counts to voltages, where because of the microcontrollers twelve-bit ADC with 3.3-

volt and 0.0-volt references,

(9.1)

These voltages are then up-scaled from microcontroller voltages to sensor voltages via a

factor of one for the temperature sensor, and five-thirds for the pressure and tri-axial inertial

sensors. Finally, the up-scaled analog sensor voltages are converted from sensor output

voltages to physical measurements using the transfer equations in Section 6.

9.3. MATLAB Graphical User Interface

In order to incorporate all of the MCETS MATLAB functions in a user-friendly

manner, the MCETS server employs a MATLAB-based graphical user interface that permits

communicating with clients, and reading, storing, and interpreting the telemetry data that is

93

acquired from multiple clients. When the graphical user interface is first opened via the

MATLAB function call , a default file directory is prompted for saving

 and other miscellaneous files. After this location is specified, the main graphical

user interface window in Figure 9.1: Main MCETS Graphical User Interface Window opens,

containing five different panes, including a module configuration pane, sensor select pane,

data acquisition settings pane, visualization launcher pane, and a system status pane.

The module configuration pane in the upper left-hand corner of the main MCETS

graphical user interface window allows an analyst to load a MCETS client (e.g., module) list,

remove clients from the list, and edit client settings through an “Edit Module” window.

Selecting the “Edit Module” button opens another graphical user interface (Figure 9.2:

MCETS “Edit Modules” Graphical User Interface Window) that facilitates adding and

removing individual clients via their name and IP address. In order to prevent conflicts and

errors, if clients are entered under the same name in the form but have different IP

addresses, the server automatically increments the number and adds the client to the module

list. Additionally, the “Clear” button removes all clients from the module list, the “Cancel”

button returns to the main MCETS window without saving any changes made, and the

“OK” button saves all changes to the clients and also returns to the main window.

94

Figure 9.1: Main MCETS Graphical User Interface Window

Figure 9.2: MCETS “Edit Modules” Graphical User Interface Window

The pane directly under the module configuration pane is the sensor select pane,

which via checkboxes allows for the individual selection of telemetry data acquirable by the

95

MCETS clients. Below this pane, the data acquisition settings pane employs sliders and text

fields for setting the desired data rate and length of data acquisition. The data rate, measured

in Hertz, is adjustable from one to one-hundred Hertz in data-rate increments of one. The

length of data acquisition, measured in seconds, is adjustable from one to 65,535 seconds;

through by simply entering zero (‘0’) into the duration text field, the clients can be

configured to acquire data indefinitely. What’s more, the changes made in the sensor select

and data-acquisition setting panes apply to all of the clients entered in the module

configuration pane.

The visualization launcher pane, the largest pane of the server’s graphical user

interface, is where mathematical plots are selected for viewing data live. These plots are

separated into whole-network and client-specific visualizations, where whole-network plots

incorporate data streams from multiple MCETS clients (e.g., the relative position of all of

the clients to the server) and client-specific plots utilize data from only one selected client

(e.g., temperature and pressure data). Essentially, each of these plots is selected via a drop-

down menu and is launched in separate windows via the “Launch” button.

The final pane in the MCETS graphical user interface is the system status pane,

which allows users to actually connect to the MCETS clients using the “Acquire” button,

record data using the “Record” checkbox, view previously acquired data using the

“Playback” button, and stop acquiring data using the “Stop” button. Selecting the data

acquisition button opens TCP/IP objects for each of the selected MCETS clients, and sends

the data request packet to each of the corresponding clients to initialize data acquisition. By

selecting the record data checkbox, the incoming data is also accumulated and saved into a

 file for each of the different modules, where the name of the client is used as the

96

name of the file. Furthermore, by selecting the playback button, data can be loaded from a

 file and viewed for analysis.

In the end, the graphical user interfaces employed by the MCETS server attempts to

make the implementation of a multi-client telemetry system as straightforward and user-

friendly as possible. Most of the features in the five different pains may also be performed

in the window’s toolbar, in which some even have a keyboard shortcut key. This toolbar

also permits loading and saving client lists, starting new sessions (where all user settings are

cleared), and exiting the MCETS server program. The graphical user interface also takes

preventative measures to ensure as few errors as possible are generated during normal

operation, particularly where user-defined values can be entered. Furthermore, another

method of error prevention is through automatically enabling and disabling control objects

based on predefined conditions. Ultimately, this prevents changing graphical user interface

options while other options are currently being processed.

97

10. Conclusion

The integration of the three major components of the Multi-Client Embedded Telemetry

System – the hardware, firmware, and software – proves that the concept of a low power and cost

effective data acquisition system that employs multiple modules is both feasible and practical.

Currently, the MCETS is a fully functional system capable of acquiring atmospheric and kinematic

data at a variable data rate between one and one-hundred Hertz. Specifically, the four-layer client

hardware design, including the custom-designed sensor and power supply printed circuit boards,

operate flawlessly and exactly to specification. In fact, each client only draws around 2.22 watts (200

mA at 11.1 volts), which is approximately one half-watt less than the projected absolute maximum

power consumption of 2.70 watts. Furthermore, the client firmware efficiently acquires server-

requested data while exploiting the five low-power modes of the MSP430 microcontroller, and the

MCETS server properly receives, formats, and logs telemetry data from multiple MCETS clients.

However, as with all prototype systems, there are improvements that can be made in future

revisions of the MCETS to enhance the functionality and flexibility of the system. Most notably, the

MATLAB server software should be rewritten in a more efficient programming language such as C

or using National Instruments LabView©. Unfortunately, the current MCETS server does not

facilitate live viewing of data, mainly because MATLAB cannot handle both parsing incoming data

streams and processing this data in real-time. Additionally, greater care should be taken with

communicating between the Javad© JNS100 GPS OEM Receiver and the MSP430-F1611

microcontroller. Currently, the GPS receiver stops responding after receiving several GRIL

messages from the microcontroller, an issue believed to be associated with outdated GPS receiver

firmware.

After realizing these recommended system improvements, the only phase left before the

MCETS is ready for full-scale implementation is the compensation and recalibration of the sensors

98

on the receiver. Though neglected because of a strict project deadline, the analog sensors embedded

on the client sensor boards need to be tested in a controlled environment, where temperature,

pressure, shock, angular rate, and magnetic field strength can be precisely monitored. By comparing

the output of the MCETS sensors with known conditions in a test chamber, the MCETS clients can

be compensated for temperature and pressure changes, and calibrated to output the exact

atmospheric and kinematic conditions to which they are subjected. Ultimately, following strict and

detailed testing and sensor calibration, the MCETS could be a complete and accurate standalone-

system that could assist MIT Lincoln Laboratory accomplish their testing and analysis objectives for

the Ballistic Missile Defense System.

99

References

“Airborne Embedded Wireless Device Server”. Quatech. August 2006. <http://

www.dpactech.com/docs/wireless_products/AB%20wireless%20device%20server%20

module.pdf> (6 October 2007).

Becke, Georg. “Comparing Bus Solutions”. Texas Instruments. February 2004. <http://

focus.ti.com/lit/an/slla067a/slla067a.pdf> (5 September 2007).

Durda, Frank. “The UART: What it is and how it works”. 13 January 1996. <http://

www.freebsd.org/doc/en_US.ISO8859-1/articles/serial-uart/index.html#UART> (5

September 2007).

“Fundamentals of RS-232 Serial Communications”. Maxim IC. 29 March 2001. <http://

pdfserv.maxim-ic.com/en/an/AN83.pdf> (6 September 2007).

 “Global Ballistic Missile Defense”. The United States Missile Defense Agency. n.d.. <http://

www.mda.mil/mdalink/pdf/bmdsbook.pdf> (15 September 2007).

 “Glossary of Telemetry, Technology & Technical Terms”. Texas A&M University. June 2003.

<http://www.tamug.edu/labb/Technology/Glossary.htm> (26 August 2007).

“GPS Receiver Interface Language (GRIL) Reference Guide”. JAVAD Navigation Systems. April

2007. <http://stroage.javad.com/downloads/manuals/GRIL_Reference_Guide.pdf> (22

September 2007).

“IP, Internet Protocol”. Network Sorcery. n.d.. <http://www.networksorcery.com/enp/

protocol/ip.htm> (10 September 2007).

“Javad Navigation Systems JNS100”. Javad. n.d.. <http://javad.com/jns/index.html?/jns/

support/manuals.html> (6 October 2007).

Kalinsky, David and Roee Kalinsky. “Introduction to Serial Peripheral Interface”. Embedded

Systems Design. 1 February 2002. <http://embedded.com/columns/beginerscorner/

9900483?printable=true> (2 September 2007).

Kozierok, Charles M.. “Data Link Layer (Layer 2)”. The TCP/IP Guide. 20 September 2005.

<http:// www.tcpipguide.com/free/t_DataLinkLayerLayer2.htm> 11 September 2007.

Larijani, Casey L. GPS For Everyone. New York: American Interface Corporation, 1998.

“MSP430 Ultra-Low-Power Microcontrollers”. Texas Instruments. n.d.. <http://focus.ti.com/

paramsearch/docs/parametricsearch.tsp?sectionId=95&tabId=1200&familyId=342&family

=mcu> (12 September 2007).

100

“Navigation for Weapons”. Federation of American Scientists. n.d.. <http://www.fas.org/man/

dod-101/navy/docs/es310/GPS/GPS.htm> (9 September 2007).

“The Navy & Satellites: Global Positioning System (GPS)”. The United States Navy. n.d..

<http://www.onr.navy.mil/Focus/spacesciences/satellites/gps.htm> (9 September 2007).

“Novell Open Enterprise Server”. Novell. 1 June 2005. <http://www.novell.com/

documentation/oes/pdfdoc/tcpipenu/tcpipenu.pdf> (9 September 2007).

Jon Person. “Mastering GPS Programming: Part Two”. GeoFrameworks. n.d.. <http://

www.geoframeworks.com/Articles/WritingApps2_3.aspx> (6 October 2007).

“RS-232 Serial Interface Pinout”. 25 June 2006. <http://pinouts.ru/SerialPorts/

RS232_pinout.shtml> (5 September 2007).

“RS232 Tutorial on Data Interface and Cables”. ARC Electronics. n.d.. <http://

www.arcelect.com/rs232.htm> (7 September 2007).

Sauchyn, D.J. (Dave). “Global Positioning Systems”. The University of Regina. n.d..

<http://uregina.ca/~sauchyn/geog411/global_positioning_systems.html> (9 September

2007).

Schwerdtfeger, Martin. “SPI – Serial Peripheral Interface”. June 2000. <http://www.mct.net/faq/

spi.html> (2 September 2007).

“Serial Buses Information Page: SPI”. n.d.. <http://www.epanorama.net/links/

serialbus.html#spi> (3 September 2007).

“Si-Flex SF3000l Low-Noise Analog 3g Accelerometer”. Colibrys. n.d.. <http://

www.colibrys.com/files/e/pdf/inertial/data_sheet_siflex3000L.pdf> (6 October 2007).

“TCP, Transmission Control Protocol”. Network Sorcery. n.d.. <http://

www.networksorcery.com/enp protocol/tcp.htm> (10 September 2007).

Wikipedia Contributors. “Application Layer”. Wikipedia, The Free Encyclopedia. 3 September

2007. <http://en.wikipedia.org/w/index.php?title=Application_layer&oldid=155347969>

(9 September 2007).

Wikipedia Contributors. “Data Link Layer”. Wikipedia, The Free Encyclopedia. 16 August 2007.

<http://en.wikipedia.org/w/index.php?title=Data_link_layer&oldid=151664494> (8

September 2007).

Wikipedia Contributors. “IEEE 802.11”. Wikipedia, The Free Encyclopedia. 8 September 2007.

<http://en.wikipedia.org/w/index.php?title=IEEE_802.11&oldid=156466248> (9

September 2007).

101

Wikipedia Contributors. “Physical Layer”. Wikipedia, The Free Encyclopedia. 6 September 2007.

<http://en.wikipedia.org/w/index.php?title=Physical_layer&oldid=156014135> (8

September 2007).

Wikipedia Contributors. “RS-232”. Wikipedia, The Free Encyclopedia. 4 September 2006.

<http://en.wikipedia.org/w/index.php?title=RS-232&oldid=155696305> (7 September

2007).

Wikipedia Contributors. “Serial Peripheral Interface”. Wikipedia, The Free Encyclopedia. 6

September 2007. <http://en.wikipedia.org/w/index.php?title=Serial_Peripheral_Interface_

Bus&oldid=156061198> (3 September 2007).

Wikipedia Contributors. “Transport Layer”. Wikipedia, The Free Encyclopedia. 7 September 2007.

<http://en.wikipedia.org/w/index.php?title=Transport_layer&oldid=156366144> (8

September 2007).

102

Appendix A: MCETS Component Datasheets

A.1. Olimex© MSP430-P1611 Development Board Datasheet

103

104

A.2. Maxim© DS600U Analog-Output Temperature Sensor Datasheet

105

106

107

108

109

A.3. Motorola© MPXA4250A6U Pressure Sensor Datasheet

110

111

112

113

114

115

116

117

A.4. MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor Datasheet

118

119

120

121

122

123

A.5. Javad© JNS100 GPS OEM Receiver Datasheet

124

125

A.6. Quatech© WLNB-AN-DP102 Embedded Wireless Module Datasheet

126

127

A.7. Bel© x7AH-03H Series DC/DC Converters

128

129

130

131

132

133

Appendix B: MCETS Sensor Board Pin Connections

B.1. Miscellaneous Header and Connector Pin Connections

Pin Name Connected To Pin Name
1 P1.0/TACLK CON10 9 3.3V_CTL
2 P1.1/TA0 CON10 10 5.0V_CTL
3 P1.2/TA1 Reserved for Battery Supply Control - -
4 P1.3/TA2 Temperature Sensor 6 SD
5 P1.4/SMCLK Reserved for Pressure Sensor Control - -
6 P1.5/TAO MUX 1, 2 & 3 5 EN
7 P1.6/TA1 MUX 1, 2 & 3 1 A0
8 P1.7/TA2 MUX 1, 2 & 3 10 A1

9 3.3V_1 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

10 GND DGND - -
11 P2.0/ACLK MOSFET 1 GATE
12 P2.1/TACLK Bus Switch 2 6 2A

13 P2.2/CAOUT Bus Switch 2
Red LED to 680 Ω Resistor to DGND

11 3A

14 P2.3/CA0 Bus Switch 2
Red LED to 680 Ω Resistor to DGND

14 4A

15 P2.4/CA1 Bus Switch 1 14 4A
16 P2.5/ROSC Bus Switch 2 3 1A

17 P2.6/ADCLK Bus Switch 1
Bus Switch 2

2
2

OE1
OE1

18 P2.7/TA0 NC - -

19 3.3v_2 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

20 GND DGND - -
21 P3.0/STE0 NC - -
22 P3.1/SIMO0 NC - -
23 P3.2/SOMI0 NC - -
24 P3.3/ULCK0 NC - -
25 P3.4/UTXD0 NC - -
26 P3.5/URXT0 NC - -
27 P3.6/UTXD1 NC - -
28 P3.7/URXD1 NC - -

29 3.3v_3 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

30 GND DGND - -
31 P4.0/TB0 NC - -
32 P4.1/TB1 NC - -
33 P4.2/TB2 NC - -
34 P4.3/TB3 NC - -
35 P4.4/TB4 NC - -
36 P4.5/TB5 NC - -
37 P4.6/TB6 NC - -

134

Pin Name Connected To Pin Name
38 P4.7/TBCLK NC - -

39 3.3v_4 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

40 GND DGND - -
41 P5.0/STE1 NC - -
42 P5.1/SIMO1 Bus Switch 1 6 2A
43 P5.2/SOMI1 Bus Switch 1 11 3A
44 P5.3/UCLK1 Bus Switch 1 3 1A
45 P5.4/MCLK NC - -
46 P5.5/SMCLK NC - -
47 P5.6/ACLK NC - -
48 P5.7/TH NC - -

49 3.3v_5 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

50 GND DGND - -
51 P6.0/A0 NC - -
52 P6.1/A1 NC - -
53 P6.2/A2 NC - -
54 P6.3/A3 Op-Amp 8 3OUT
55 P6.4/A4 Op-Amp 7 2OUT
56 P6.5/A5 Op-Amp 1 1OUT
57 P6.6/A6 Op-Amp 14 4OUT
58 P6.7/A7 Temperature Sensor 4 VOUT

59 v3.3_6 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

60 GND DGND - -
Table B.1: 60-Pin Microcontroller Header Pin Connections

Pin Name Connected To Pin Name
1 VBATT Battery Voltage - -
2 PGND Battery Ground - -
3 5.0V 5.0 V Supply Rail - -
4 DGND Digital Ground - -
5 3.3V_HC 3.3 V HC Supply Rail - -
6 AGND Analog Ground - -
7 3.3V_LC 3.3 V LC Supply Rail - -
8 PGND Battery Ground - -
9 3.3V_CTL Microcontroller Header 1 P1.0/TACLK
10 5.0V_CTL Microcontroller Header 2 P1.1/TA0

Table B.2: 10-Pin Power and Ground Header Pin Connections

Pin Name Connected To Pin Name
1 RS232_RX_2 GPS Receiver 3 TXDA
2 RS232_TX_3 GPS Receiver 5 RXDA

Table B.3: 2-Pin RS-232 Header Pin Connections

135

Pin Name Connected To Pin Name
1 GND DGND - -
2 CTSA DGND - -
3 TXDA CON2 1 RS232_TX_3
4 RTSA DGND - -
5 RXDA CON2 2 RS232_RX_5
6 NC NC - -
7 GND DGND - -
8 CTSB NC - -
9 TXDB NC - -
10 RTSB NC - -
11 RXDB NC - -
12 BOOT DGND - -
13 PWR_IN VBATT - -
14 PWR_IN VBATT - -
15 NC NC - -
16 NC NC - -
17 EXT_RESET Push Button to DGND - -
18 1PPS 1 MΩ Resistor to DGND - -
19 PWR_GND PGND - -
20 PWR_GND PGND - -
21 LED_RED NC - -
22 LED_GRN NC - -
23 TXDC NC - -
24 GND DGND - -
25 RXDC NC - -
26 GND DGND - -
27 EVENT NC - -
28 TXDD NC - -
29 NC NC -
30 RXDD NC -

Table B.4: 30-Pin GPS Header Pin Connections

B.2. Temperature Sensor Pin Connections

Pin Name Connected To Pin Name

1 VDD 3.3 V LC Supply Rail
1.0 μF Capacitor to PGND

- -

2 TO NC - -
3 TO' NC - -
4 VOUT Microcontroller Header 58 P6.7/A7
5 VTH AGND - -
6 SD Microcontroller Header 4 P1.3/TA2
7 CTG AGND - -
8 GND AGND - -
Table B.5: Temperature Sensor Pin Connections

136

B.3. Pressure Sensor Pin Connections
Pin Name Connected To Pin Name

1 - NC - -

2 VS 5.0 V Supply Rail
1.0 μF Capacitor to PGND

- -

3 AGND AGND - -

4 VOUT Op-Amp Attenuator
470 pF Capacitor to AGND

12 4IN+

5 - NC - -
6 - NC - -
7 - NC - -
8 - NC - -

Table B.6: Pressure Sensor Pin Connections

B.4. Tri-Axial Analog Inertial Sensor Pin Connections
Pin Name Connected To Pin Name

1 XREF 1 MΩ Resistor to AGND - -
2 XRATE MUX 1 9 S2
3 ZREF 1 MΩ Resistor to AGND - -
4 ZRATE MUX 3 9 S2
5 TEMPZ MUX 3 7 S4
6 AGND AGND - -
7 TEMPX MUX 1 7 S4
8 TEMPY MUX 2 7 S4

9 XMAG MUX 1
2.2 μF Capacitor to AGND

4 S3

10 YMAG MUX 2
2.2 μF Capacitor to AGND

4 S3

11 ZMAG MUX 3
2.2 μF Capacitor to AGND

4 S3

12 to 22 - NC - -
23 MGND PGND - -
24 MAG_RESET MOSFET 3 DRAIN
25 MGND PGND - -

26 VDDM 5.0 V Supply Rail
1.0 μF Capacitor to PGND

- -

27 to 35 - NC - -
36 AGND AGND - -

37 VDDA 5.0V Supply Rail
1.0 μF Capacitor to PGND

- -

38 TESTN AGND - -
39 TESTP AGND - -
40 YACCEL MUX 2 2 S1
41 ZACCEL MUX 3 2 S1
42 XACCEL MUX 1 2 S1
43 YREF 1 MΩ Resistor to AGND - -
44 YRATE MUX 2 9 S2

Table B.7: Tri-Axial Analog Inertial Sensor Pin Connections

137

Pin Name Connected To Pin Name
1 GATE Microcontroller Header 11 P2.0/ACLK
2 SOURCE DGND - -

3 DRAIN MAG10
30 kΩ Resistor to 5.0 V Supply Rail

24
-

MAG_RESET
-

Table B.8: MOSFET Reset Circuit Pin Connections

B.5. Analog Multiplexer Pin Connections

Pin Name Connected To Pin Name
1 A0 Microcontroller Header 7 P1.6/TA1
2 S1 MAG10 42 XACCEL
3 GND DGND - -
4 S3 MAG10 9 XMAG
5 EN Microcontroller Header 6 P1.5/TA0

6 VDD 5.0 V Supply Rail
1.0 μF Capacitor to PGND

- -

7 S4 MAG10 7 TEMPX
8 D Op-Amp Attenuator 3 1IN+
9 S2 MAG10 2 XRATE
10 A1 Microcontroller Header 8 P1.7/TA2
Table B.9: Analog Multiplexer 1 Pin Connections

Pin Name Connected To Pin Name
1 A0 Microcontroller Header 7 P1.6/TA1
2 S1 MAG10 40 YACCEL
3 GND DGND - -
4 S3 MAG10 10 YMAG
5 EN Microcontroller Header 6 P1.5/TA0

6 VDD 5.0 V Supply Rail
1.0 μF Capacitor to PGND

- -

7 S4 MAG10 8 TEMPY
8 D Op-Amp Attenuator 5 2IN+
9 S2 MAG10 44 YRATE
10 A1 Microcontroller Header 8 P1.7/TA2
Table B.10: Analog Multiplexer 2 Pin Connections

138

Pin Name Connected To Pin Name
1 A0 Microcontroller Header 7 P1.6/TA1
2 S1 MAG10 41 ZACCEL
3 GND DGND - -
4 S3 MAG10 11 ZMAG
5 EN Microcontroller Header 6 P1.5/TA0

6 VDD 5.0 V Supply Rail
1.0 μF Capacitor to PGND

- -

7 S4 MAG10 5 TEMPZ
8 D Op-Amp 10 3IN+
9 S2 MAG10 4 ZRATE
10 A1 Microcontroller Header 8 P1.7/TA2
Table B.11: Analog Multiplexer 3 Pin Connections

B.6. Operational Amplifier/Voltage Attenuator Pin Connections

Pin Name Connected To Pin Name
1 1OUT Voltage Divider to Microcontroller Header 56 P6.5/A5 (56)
2 1IN- Op-Amp 1 1OUT (1)
3 1IN+ MUX1 8 D (8)

4 VCC+ 5.0 V Supply Rail
1.0 μF Capacitor to PGND

- -

5 2IN+ MUX2 8 D (8)
6 2IN- Op-Amp 7 2OUT (7)
7 2OUT Voltage Divider to Microcontroller Header 55 P6.4/A4 (55)
8 3OUT Voltage Divider to Microcontroller Header 54 P6.3/A3 (54)
9 3IN- Op-Amp 8 3OUT (8)
10 3IN+ MUX3 8 D (8)
11 VCC- AGND - -
12 4IN+ Pressure Sensor 4 VOUT (4)
13 4IN- Op-Amp 14 4OUT (14)
14 4OUT Voltage Divider to Microcontroller Header 57 P6.6/A6 (57)

Table B.12: Op-Amp Attenuator Pin Connections

139

B.7. Embedded Wireless Module Pin Connections

Pin Name Connected To Pin Name
1 GND DGND - -
2 TSI NC - -

3 DVDD 3.3 V HC Supply Rail
1.0 μF Capacitor to PGND

- -

4 DVDD 3.3 V HC Supply Rail
1.0μF Capacitor to PGND

- -

5 V2.5 30 kΩ Resistor to Wireless Module 11 G3/FACRES
6 RFU NC - -
7 /RESET 3.3V HC Supply Rail - -
8 /TSS NC - -
9 G6 1 MΩ Resistor to DGND - -
10 TSO NC - -

11 G3/FACRES 30 kΩ Resistor to Wireless Module
Button to DGND

5 V2.5

12 F5/SS Bus Switch 1 11 4B
13 G5 1 MΩ Resistor to DGND - -
14 G4 1 MΩ Resistor to DGND - -
15 VSS DGND - -
16 VSS DGND - -
17 G2 1 MΩ Resistor to DGND - -
18 F4/SCLK Bus Switch 1 4 1B
19 G1 1 MΩ Resistor to DGND - -
20 TSCK NC - -
21 G7 1 MΩ Resistor to DGND - -
22 G0/INT Bus Switch 2 4 1B
23 F6/CONNECT Bus Switch 2 13 4B
24 F7/SDI Bus Switch 1 7 2B
25 F0/POST Bus Switch 2 7 2B
26 F3/WLAN_STAT 1 MΩ Resistor to DGND - -
27 F2/LINK Bus Switch 2 10 3B
28 F1/SDO Bus Switch 1 10 3B
29 E6 1 MΩ Resistor to DGND - -
30 E5 1 MΩ Resistor to DGND - -
31 E7 1 MΩ Resistor to DGND - -
32 E4 1 MΩ Resistor to DGND - -

33 DVDD 3.3 V HC Supply Rail
1.0μF Capacitor to PGND

- -

34 DVDD 3.3 V HC Supply Rail
1.0μF Capacitor to PGND

- -

35 /RF_LED 680Ω Resistor to Red LED
to 3.3 V LC Supply Rail

- -

36 VSS DGND - -
Table B.13: Embedded Wireless Module Pin Connections

140

B.8. Bus Switch Pin Connections

Pin Name Connected To Pin Name
1 NC NC - -
2 OE1 Microcontroller Header 17 P2.6/ADCLK
3 1A Microcontroller Header 44 P5.3/UCLK1
4 1B Wireless Module 18 F4/SCLK
5 OE2 Microcontroller Header 17 P2.6/ADCLK
6 2A Microcontroller Header 42 P5.1/SIMO
7 2B Wireless Module 24 F7/SDI
8 GND DGND - -
9 NC NC - -
10 3B Wireless Module 28 F1/SDO
11 3A Microcontroller Header 43 P5.2/SOMI
12 OE3 Microcontroller Header 17 P2.6/ADCLK
13 4B Wireless Module 12 F5/SS
14 4A Microcontroller Header 15 P2.4/CA1
15 OE4 Microcontroller Header 17 P2.6/ADCLK

16 VCC 5.0 V Supply Rail
1.0 μF CAP to PGND

- -

Table B.14: Bus Switch 1 Pin Connections

Pin Name Connected To Pin Name
1 NC NC - -
2 OE1 Microcontroller Header 17 P2.6/ADCLK
3 1A Microcontroller Header 16 P2.5/ROSC
4 1B Wireless Module 22 G0/INT
5 OE2 Microcontroller Header 17 P2.6/ADCLK
6 2A Microcontroller Header 12 P2.1/TACLK
7 2B Wireless Module 25 F0/POST
8 GND DGND - -
9 NC NC - -
10 3B Wireless Module 27 F2/RF_LINK
11 3A Microcontroller Header 13 P2.2/CAOUT
12 OE3 Microcontroller Header 17 P2.6/ADCLK
13 4B Wireless Module 23 F6/CONNECT
14 4A Microcontroller Header 14 P2.3/CA0
15 OE4 Microcontroller Header 17 P2.6/ADCLK

16 VCC 5.0 V Supply Rail
1.0 μF CAP to PGND

- -

Table B.15: Bus Switch 2 Pin Connections

141

Appendix C: Circuit Schematics

C.1. Miscellaneous Header and Connector Circuit Schematics

142

C.2. Temperature Sensor Circuit Schematic

143

C.3. Pressure Sensor Circuit Schematic

144

C.4. Tri-Axial Analog Inertial Sensor Circuit Schematic

145

C.5. Embedded Wireless Module Circuit Schematic

146

C.6. Power Supply Board Circuit Schematic

147

Appendix D: Printed Circuit Board Layouts

D.1. Sensor Board Printed Circuit Board Layout

Figure D.1: Top Sensor Board Silk Screen

Figure D.2: Bottom Sensor Board Silk Screen

148

Figure D.3: Sensor Board Drill Holes

149

Figure D.4: First Sensor PCB Layer

Figure D.5: Second Sensor PCB Layer (Analog Ground Plane)

150

Figure D.6: Third Sensor PCB Layer

Figure D.7: Fourth Sensor PCB Layer (Digital Ground Plane)

151

Figure D.8: Fifth Sensor PCB Layer

Figure D.9: Sixth Sensor PCB Layer (Power Supply Plane)

152

Figure D.10: Seventh Sensor PCB Layer (Power Ground Plane)

Figure D.11: Eighth Sensor PCB Layer

153

Figure D.12: All Sensor PCB Layers

Figure D.13: All Sensor PCB Layers (Actual Size)

154

D.2. Power Supply Printed Circuit Board Layout

Figure D.14: Top Power Supply Board Silk Screen

Figure D.15: Bottom Power Supply Board Silk Screen

155

Figure D.16: Power Supply Board Drill Holes

156

Figure D.17: First Power Supply PCB Layer

Figure D.18: Second Power Supply PCB Layer

157

Figure D.19: All Power Supply PCB Layers

Figure D.20: All Power Supply PCB Layers (Actual Size)

158

D.3. Bill of Materials

Reference Quantity Manufacturer Part Number Description
C1-3 3 Panasonic© ECJ3YB1E106M 10 μF SMT Capacitor
C4-6 3 Panasonic© ECJ2FB1E225K 2.2 μF SMT Capacitor

C7-8; C10-21 14 AVX Corp© 08053D105KAT2A 1.0 μF SMT Capacitor
C9 1 AVX Corp© 06035A471JAT2A 470 pF SMT Capacitor

D1-3 3 CML Technologies© CMD28-21SRC SMT Clear Red LED
P1 1 Tyco International© 3-87215-0 60-Pin Male Header
P2 1 Molex© 90131-0135 30-Pin Male Header
P3 1 Molex© 87833-1021 10-Pin Right-Angle Male Header
P4 1 Tyco International© 87220-2 2-Pin Male Header
Q1 1 ON Semiconductor © MMBF0201NLT1 N-Channel MOSFET Transistor

R1-4 4 Panasonic© ERA6YEB203V 0.1% Tolerant 20 kΩ SMT Resistor
R5-7; R28 4 Panasonic© ERJ8ENF1004V 1.0 MΩ Resistor

R8-18 11 Susumu© RR1220P-105-D 1.0 MΩ Resistor
R19-23; R27 6 Panasonic© ERA6AEB303V 0.1% Tolerant 30 kΩ SMT Resistor

R24-26 3 Panasonic© ERJ6GEYJ681V 680 Ω SMT Resistor
SW1-2 2 Alps© SKHMQKE010 Push Button DPST NO Switch

U1 1 MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor
U2-4 3 Analog Devices© ADG704BRMZ 4:1 CMOS Analog Multiplexer
U5 1 Maxim© DS600U Analog-Output Temperature Sensor
U6 1 Motorola© MPXA4350A6U Analog-Output Pressure Sensor
U7 1 National© LMV934MA 4-Channel Operational Amplifier

U8-9 2 Fairchild© FST3126QSC 4-Bit Tri-State Bus Switch
U10 1 Quatech© Inc. WLNB-AN-DP100 Airborne Embedded Wireless Module

 69
Table D.1: Sensor Board Bill of Materials

Reference Quantity Manufacturer Part Number Description
C1-4 4 Panasonic© ECJ3YB1E106M 10 μF Ceramic Capacitor
C5-6 2 AVX Corporation© 08053D105KAT2A 1.0 μF Ceramic Capacitor

J1 1 Switchcraft© Inc. RAPC712BK 2.5x5.5 mm Right-Angle DC Barrel Jack
P1-6 6 Tyco International© 87220-2 2-Pin Male Header
P7 1 Molex© 87833-1021 10-Pin Right-Angle Male Header
U1 1 Bel Fuse© Inc. V7AH-03H500 5.0V, 3.0A DC/DC Switching Regulator
U2 1 Bel Fuse© Inc. V7AH-03H330 3.3V, 3.0A DC/DC Switching Regulator

 16
Table D.2: Power Supply Board Bill of Materials

159

Appendix E: MCETS Client Firmware

E.1. Texas Instruments© MSP430 Assembly Instruction Set

Mnemonic Description V N Z C

ADC(.B)† dst Add C to destination

* * * *

ADD(.B) src, dst Add source to destination

* * * *

ADDC(.B) src, dst Add source and C to destination

* * * *

AND(.B) src, dst AND source and destination

0 * * *

BIC(.B) src, dst Clear bits in destination

– – – –

BIS(.B) src, dst Set bits in destination

– – – –

BIT(.B) src, dst Test bits in destination

0 * * *

BR† dst Branch to destination

– – – –

CALL dst Call destination

– – – –

CLR(.B)† dst Clear destination

– – – –

CLRC† Clear C

– – – 0

CLRN† Clear N

– 0 – –

CLRZ† Clear Z

– – 0 –

CMP(.B) src, dst Compare source and destination

* * * *

DADC(.B)† dst Add C decimally to destination

* * * *

DADD(.B) src, dst Add source and C decimally to destination

* * * *

DEC(.B)† dst Decrement destination

* * * *

DECD(.B)† dst Double-decrement destination

* * * *

DINT† Disable interrupts

– – – –

EINT† Enable interrupts

– – – –

INC(.B)† dst Increment destination

* * * *

INCD(.B)† dst Double increment destination

* * * *

INV(.B)† dst Invert destination

* * * *

JC/JHS label Jump if C set / Jump if higher or same – – – –
JEQ/JZ label Jump if equal / Jump if Z set – – – –
JGE label Jump if greater or equal – – – –
JL label Jump if less – – – –
JMP label Jump

– – – –

JN label Jump if N set – – – –
JNC/JLO label Jump if C not set / Jump if lower – – – –
JNE/JNZ label Jump if not equal / Jump if Z not set – – – –

160

MOV(.B) src, dst Move source to destination

– – – –

NOP† No operation – – – –
POP(.B)† dst Pop item from stack to destination

– – – –

PUSH(.B) src Push source onto stack

– – – –

RET† Return from subroutine

– – – –

RETI Return from interrupt * * * *
RLA(.B)† dst Rotate left arithmetically * * * *
RLC(.B)† dst Rotate left through C * * * *
RRA(.B) dst Rotate right arithmetically 0 * * *
RRC(.B) dst Rotate right through C * * * *
SBC(.B)† dst Subtract not(C) from destination

* * * *

SETC† Set C

– – – 1

SETN† Set N

– 1 – –

SETZ† Set Z

– – 1 –

SUB(.B) src, dst Subtract source from destination

* * * *

SUBC(.B) src, dst Subtract source and not(C) from destination

* * * *

SWPB dst Swap bytes – – – –
SXT dst Extend sign 0 * * *
TST(.B)† dst Test destination

0 * * 1

XOR(.B) src, dst Exclusive OR source and destination

* * * *

† Emulated Instruction

E.2. Packet Format for Data Transmitted from the Server to the Clients

16-bit “Wake-Up” Subpacket

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Module ID Number
(Last 8 bits of IP Address)

Data Acquisition Rate (Hertz)

16-bit “Length of Data Acquisition” Subpacket

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Length of Data Acquisition (seconds)

(Minimum Length of Time: 1 second)
(Maximum Length of Time: 65,535 seconds (18 hours, 12 minutes, and 15 seconds)

(Acquire Data Indefinitely: 0 seconds)

16-bit “What Data” Subpacket

15 14 13 12 11 10 9 8
Temperature Pressure Acceleration Angular Rate Magnetic Field Strength Reserved Reserved Reserved

7 6 5 4 3 2 1 0
Cartesian Position Geodetic Position Cartesian Velocity Geodetic Velocity Receiver Time Reserved Reserved Reserved

161

162

E.3. Packet Format for Data Transmitted from the Clients to the Server

16-bit “Data Status” Subpacket

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Module ID Number
(Last 8 bits of IP Address)

Number of Bytes to Transmit
(Integer Ranging from 6 to 130)

16-bit Temperature Data Subpacket
(If Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 Temperature Data

16-bit Pressure Data Subpacket
(If Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 Pressure Data

16-bit x-Axis Acceleration Data Subpacket
(If Acceleration is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x-Axis Acceleration Data

16-bit y-Axis Acceleration Data Subpacket
(If Acceleration is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 y-Axis Acceleration Data

16-bit z-Axis Acceleration Data Subpacket
(If Acceleration is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 z-Axis Acceleration Data

16-bit x-Axis Angular Rate Data Sub-Packet
(If Angular Rate is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x-Axis Angular Rate Data

16-bit y-Axis Angular Rate Data Subpacket
(If Angular Rate is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

163

0 0 0 0 y-Axis Angular Rate Data

16-bit z-Axis Angular Rate Data Subpacket
(If Angular Rate is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 z-Axis Angular Rate Data

16-bit x-Axis Magnetic Field Data Subpacket
(If Magnetic Field Data is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x-Axis Magnetic Field Data

16-bit y-Axis Magnetic Field Data Subpacket
(If Magnetic Field Data is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 y-Axis Magnetic Field Data

16-bit z-Axis Magnetic Field Data Subpacket
(If Magnetic Field Data is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 z-Axis Magnetic Field Data

16-bit x-Axis Internal Temperature Data Subpacket
(If Acceleration, Angular Rate, or Magnetic Field Data is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 x-Axis Internal Temperature Data

16-bit y-Axis Internal Temperature Data Subpacket
(If Acceleration, Angular Rate, or Magnetic Field Data is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 y-Axis Internal Temperature Data

16-bit z-Axis Internal Temperature Data Subpacket
(If Acceleration, Angular Rate, or Magnetic Field Data is Requested)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 z-Axis Internal Temperature Data

64-bit x-Axis Cartesian Position Data Subpacket
(If Cartesian Position is Requested)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
Sign Exponent Mantissa
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

164

Mantissa (continued)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Mantissa (continued)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

64-bit y-Axis Cartesian Position Data Subpacket
(If Cartesian Position is Requested)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
Sign Exponent Mantissa
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Mantissa (continued)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Mantissa (continued)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

64-bit z-Axis Cartesian Position Data Subpacket
 (If Cartesian Position is Requested)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
Sign Exponent Mantissa
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Mantissa (continued)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Mantissa (continued)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

64-bit Latitude Data Subpacket
 (If Geodetic Position is Requested)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
Sign Exponent Mantissa
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Mantissa (continued)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Mantissa (continued)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

64-bit Longitude Data Subpacket
 (If Geodetic Position is Requested)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
Sign Exponent Mantissa
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

165

Mantissa (continued)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Mantissa (continued)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

64-bit Altitude Data Subpacket
(If Geodetic Position is Requested)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
Sign Exponent Mantissa
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Mantissa (continued)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Mantissa (continued)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit x-Axis Cartesian Velocity Data Subpacket
(If Cartesian Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit y-Axis Cartesian Velocity Data Subpacket
(If Cartesian Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit z-Axis Cartesian Velocity Data Subpacket
(If Cartesian Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit Northing Velocity Data Subpacket
(If Geodetic Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

166

32-bit Easting Velocity Data Subpacket
(If Geodetic Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit Altitude Velocity Data Subpacket
(If Geodetic Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit HDOP Data Subpacket
(If Position or Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit VDOP Data Subpacket
(If Position or Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

32-bit TDOP Data Subpacket
(If Position or Velocity is Requested)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Sign Exponent Mantissa
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mantissa (continued)

24-bit Satellite Statistics Data Sub-Packet
(If Position or Velocity is Requested)

23 22 21 20 19 18 17 16
Number of GPS Satellites Locked

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Number of GPS Satellites Available Number of GPS Satellites Used in Positioning

167

72-bit Receiver Time Data Subpacket
(If Receiver Time is Requested)

71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Year

(1 – 65,534)
55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40

Month
(1 – 12)

Day
(1 – 31)

38 38 37 36 35 34 33 32
Receiver Reference Time

(0 = GPS; 1 = UTC USNO; 2 = GLONASS; 3 = UTC SU)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Receiver Time (milliseconds)
(0 – 86,400,000)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Receiver Time (continued)

32-bit Battery Voltage Data Subpacket

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Battery Voltage Character 4 Battery Voltage Character 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Battery Voltage Character 2 Battery Voltage Character 1

16-bit “Module Status” Subpacket

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Acquisition Rate (Hertz) 0
Acquisition
Complete

0
Transmission

Complete
0

Oscillator Fault
Flag

0 1

168

E.4. Data Format for Standard GRIL Output Messages

Field Value Bytes Format

Message ID PO (0x504F) 2 ASCII Character

Length of Message Body 30 (0x01E) 3 ASCII Character

x-Axis Cartesian Position (m) – 8 Double-Precision Floating Point

y-Axis Cartesian Position (m) – 8 Double-Precision Floating Point

z-Axis Cartesian Position (m) – 8 Double-Precision Floating Point

Position Spherical Error Probable – 4 Single-Precision Floating Point

Solution Type – 1 Unsigned Integer

Checksum 0x51 1 Unsigned Integer

Table E.1: GRIL Cartesian Position Output Message

Field Value Bytes Format

Message ID PG (0x5047) 2 ASCII Character

Length of Message Body 0x01E (30) 3 ASCII Character

Latitude (rad) ? 8 Double-Precision Floating Point

Longitude (rad) ? 8 Double -Precision Floating Point

Altitude (m) ? 8 Double -Precision Floating Point

Position Spherical Error Probable ? 4 Single-Precision Floating Point

Solution Type ? 1 Unsigned Integer

Checksum 0x51 1 Unsigned Integer

Table E.2: GRIL Geodetic Position Output Message

Field Value Bytes Format

Message ID VE (0x5645) 2 ASCII Character

Length of Message Body 18 (0x012) 3 ASCII Character

x-Axis Cartesian Velocity (m/s) – 4 Single-Precision Floating Point

y-Axis Cartesian Velocity (m/s) – 4 Single-Precision Floating Point

z-Axis Cartesian Velocity (m/s) – 4 Single-Precision Floating Point

Velocity Spherical Error Probable – 4 Single-Precision Floating Point

Solution Type – 1 Unsigned Integer

Checksum 0x51 1 Unsigned Integer

169

Table E.3: GRIL Cartesian Velocity Output Message

Field Value Bytes Format

Message ID VG (0x5647) 2 ASCII Character

Length of Message Body 18 (0x012) 3 ASCII Character

Northing Velocity (m/s) – 4 Single-Precision Floating Point

Easting Velocity (m/s) – 4 Single-Precision Floating Point

Height Velocity (m/s) – 4 Single-Precision Floating Point

Velocity Spherical Error Probable – 4 Single-Precision Floating Point

Solution Type – 1 Unsigned Integer

Checksum 0x51 1 Unsigned Integer

Table E.4: GRIL Geodetic Velocity Output Message

Field Value Bytes Format

Message ID DP (0x4450) 2 ASCII Character

Length of Message Body 14 (0x0E) 3 ASCII Character

HDOP – 4 Single-Precision Floating Point

VDOP – 4 Single-Precision Floating Point

TDOP – 4 Single-Precision Floating Point

Solution Type – 1 Unsigned Integer

Checksum 0x92 1 Unsigned Integer

Note:

Table E.5: GRIL Dilution of Precision Output Message

Field Value Bytes Format

Message ID PS (0x5053) 2 ASCII Character

Length of Message Body 9 (0x09) 3 ASCII Character

Solution Type – 1 Unsigned Integer

Number of GPS Satellites Locked – 1 Unsigned Integer

Number of GPS Satellites Available – 1 Unsigned Integer

Number of GLONASS Satellites Locked – 1 Unsigned Integer

Number of GLONASS Satellites Available – 1 Unsigned Integer

170

Number of GPS Satellites Used in Positioning – 1 Unsigned Integer

Number of GLONASS Satellites Used in Positioning – 1 Unsigned Integer

Field Value Bytes Format

Ambiguity Fixing Progress Indicator – 1 Unsigned Integer

Checksum 0x49 1 Unsigned Integer

Table E.6: GRIL Satellite Statistics Output Message

Field Value Bytes Format

Message ID RD (0x5244) 2 ASCII Character

Length of Message Body 6 (0x06) 3 ASCII Character

Year 1 – 65,534 2 Unsigned Integer

Month 1 – 12 1 Unsigned Integer

Day 1 – 31 1 Unsigned Integer

Receiver Reference Time

0 – GPS

1 – UTC USNO

2 – GLONASS

3 – UTC SU

1 Unsigned Integer

Checksum 0x26 1 Unsigned Integer

Table E.7: GRIL Receiver Date Output Message

Field Value Bytes Format

Message ID ~~ (0x7E7E) 2 ASCII Character

Length of Message Body 5 (0x05) 3 ASCII Character

Receiver Time (ms) 0 – 86400000 4 Unsigned Integer

Checksum 0x90 1 Unsigned Integer

Table E.8: GRIL Receiver Time Output Message

171

E.5. MCETS Client Firmware (Assembly Language)

172

173

174

175

176

177

178

179

180

181

182

183

Appendix F: MCETS Server Software

F.1. MCETS Main Figure Functions (MATLAB Language)

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

F.2. MCETS Server-to-Client Packet Generator (MATLAB Language)

216

217

F.3. MCETS Data Packet Parsing Functions (MATLAB Language)

218

219

220

221

222

223

224

225

226

227

228

F.4. Miscellaneous MCETS Server Functions (MATLAB Language)

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

Acronym Glossary

‐ µA: Microamperes

‐ µW: Microwatts

‐ AC: Alternating Current

‐ ACLK: Auxiliary Clock

‐ ADC: Analog-to-Digital Converter

‐ ADC12: 12-Bit Analog-to-Digital Converter

‐ AGND: Analog Ground

‐ ASCII: American Standard Code for Information Exchange

‐ BMDS: Ballistic Missile Defense System

‐ cm: Centimeter

‐ CMOS: Complimentary Metal-Oxide Semiconductor

‐ CONN: Connection Status

‐ CPHA: Clock Phase

‐ CPOL: Clock Polarity

‐ CPU: Central Processing Unit

‐ CTS: Clear-to-Send

‐ DAC: Digital-to-Analog Converter

‐ dB: Decibels

‐ dBi: Isotropic Decibels

‐ DC: Direct Current

‐ DCO: Digitally-Controlled Oscillator

‐ DCE: Data Circuit-Terminating Equipment

‐ DCCP: Datagram Congestion Control Protocol

250

‐ DCD: Data Carrier Detect

‐ DDP: Datagram Delivery Protocol

‐ DGND: Digital Ground

‐ DoD: The United States’ Department of Defense

‐ DOP: Dilution of Precision

‐ DSR: Data Set Ready

‐ DTE: Data Terminal Equipment

‐ DTR: Data Terminal Ready

‐ EEPROM: Electrically Erasable Programmable Read-Only Memory

‐ EIA: Electronic Industries Alliance

‐ FFRD: Federally Funded Research and Development Center

‐ FTP: File Transfer Protocol

‐ G: Signal Ground

‐ GB: Gigabyte

‐ GDOP: Geometric Dilution of Precision

‐ GLONASS: Global Navigation Satellite System

‐ GNSS: Global Navigation Satellite System

‐ GPS: Global Positioning System

‐ GRIL: GPS Receiver Interface Language

‐ GUI: Graphical User Interface

‐ HC: High-Current

‐ HTTP: HyperText Transfer Protocol

‐ I/O: Input/Output

‐ IEEE: Institute of Electrical and Electronics Engineers

‐ IC: Integrated Circuit

251

‐ IMAP: Internet Message Access Protocol

‐ IP: Internet Protocol

‐ IPX: Internetwork Packet Exchange

‐ kΩ: Kiloohm

‐ KB: Kilobytes

‐ kbps: Kilobits per Second

‐ HDOP: Horizontal Dilution of Precision

‐ KHz: Kilohertz

‐ ksps: Kilosamples per Second

‐ LSB: Least Significant Bit

‐ LC: Low Current

‐ LCD: Liquid Crystal Display

‐ LLC: Logical Link Control

‐ MAC: Media Access Control

‐ MATLAB: Matrix Laboratory

‐ MB: Megabytes

‐ Mbps: Megabits per Second

‐ MCETS: Multi-Client Embedded Telemetry System

‐ MCLK: Main Clock

‐ MHz: Megahertz

‐ MIPS: Million Instructions per Second

‐ MISO: Master Input, Slave Output

‐ MIT: Massachusetts Institute of Technology

‐ mm: Millimeters

‐ MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor

‐ MOSI: Master Output, Slave Input

‐ MQP: Major Qualifying Project

252

‐ MSB: Most Significant Bit

‐ MUX: Analog Multiplexer

‐ mV: Millivolts

‐ mW: Milliwatts

‐ ns: Nanoseconds

‐ OEM: Original Equipment Manufacture

‐ Op-Amp: Operational Amplifier

‐ PCB: Printed Circuit Board

‐ PDOP: Position Dilution of Precision

‐ PGND: Power Ground

‐ POP: Post Office Protocol

‐ POST: Power On Self Test

‐ PPP: Point-to-Point Protocol

‐ PR: Pseudo Range

‐ PSI: Pounds per Square Inch

‐ RAM: Random Access Memory

‐ RF: Radio Frequency

‐ RI: Ring Indicator

‐ RS-232: Recommend Standard 232

‐ RTS: Request-to-Send

‐ RxD: Received Data

‐ SAR: Successive-Approximation-Register

‐ SCLK: Serial Clock

‐ SCTP: Stream Control Transmission Protocol

‐ SDI: Serial Data In

253

‐ SDO: Serial Data Out

‐ SIMO: Slave Input, Master Output

‐ SMCLK: Submain Clock

‐ SMTP: Simple Mail Transfer Protocol

‐ SOAP: Simple Object Access Protocol

‐ SOMI: Slave Output, Master Input

‐ SPI: Serial Peripheral Interface

‐ SSID: Service Select Identifier

‐ SSH: Secure Shell

‐ TCP: Transmission Control Protocol

‐ TCP/IP: Transmission Control Protocol/Internet Protocol

‐ TDOP: Time Dilution of Precision

‐ TTL: Transistor-Transistor Logic

‐ TxD: Transmitted Data

‐ UART: Universal Asynchronous Receiver-Transmitter

‐ UDP: User Datagram Protocol

‐ USART: Universal Synchronous/Asynchronous Receiver-Transmitter

‐ USB: Universal Serial Bus

‐ UTC: Coordinated Time Universal

‐ VDOP: Vertical Dilution of Precision

‐ WITS: Wireless Instrumentation and Telemetry System

‐ WPI: Worcester Polytechnic Institute

	Abstract
	Executive Summary
	Table of Contents
	5.1. The Global Positioning System
	5.2. Parallel and Serial Communication Methods
	5.3. Universal Asynchronous Receivers-Transmitters
	5.4. The RS-232 Standard
	5.5. The Serial Peripheral Interface Bus
	5.6. The Internet Protocol Suite
	6.1. Olimex© MSP430-P1611 Development Board
	6.2. Maxim© DS600U Analog-Output Temperature Sensor
	6.3. Motorola© MPXA4250A6U Pressure Sensor
	6.4. MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor
	6.5. Javad© JNS100 GPS OEM Receiver
	6.6. Quatech© WLNB-AN-DP102 Embedded Wireless Module
	6.7. Power Supply Board
	6.8. Sensor Printed Circuit Board Layout
	6.9. Power Supply Printed Circuit Board Layout
	8.1. Client Initialization Procedure
	8.2. Data Acquisition Procedure
	8.3. Data Transmission Procedure
	9.1. Server-to-Client and Client-to-Server Communications
	9.2. Data Parsing and Processing
	9.3. MATLAB Graphical User Interface
	A.1. Olimex© MSP430-P1611 Development Board Datasheet
	A.2. Maxim© DS600U Analog-Output Temperature Sensor Datasheet
	Motorola© MPXA4250A6U Pressure Sensor Datasheet
	MemSense© MAG10-1200S050 Tri-Axial Analog Inertial Sensor Datasheet
	Javad© JNS100 GPS OEM Receiver Datasheet
	Quatech© WLNB-AN-DP102 Embedded Wireless Module Datasheet
	A.7. Bel© x7AH-03H Series DC/DC Converters
	B.1. Miscellaneous Header and Connector Pin Connections
	B.2. Temperature Sensor Pin Connections
	B.3. Pressure Sensor Pin Connections
	B.4. Tri-Axial Analog Inertial Sensor Pin Connections
	B.5. Analog Multiplexer Pin Connections
	B.6. Operational Amplifier/Voltage Attenuator Pin Connections
	B.7. Embedded Wireless Module Pin Connections
	B.8. Bus Switch Pin Connections
	C.1. Miscellaneous Header and Connector Circuit Schematics
	C.2. Temperature Sensor Circuit Schematic
	C.3. Pressure Sensor Circuit Schematic
	C.4. Tri-Axial Analog Inertial Sensor Circuit Schematic
	C.5. Embedded Wireless Module Circuit Schematic
	C.6. Power Supply Board Circuit Schematic
	D.1. Sensor Board Printed Circuit Board Layout
	D.2. Power Supply Printed Circuit Board Layout
	D.3. Bill of Materials
	E.1. Texas Instruments© MSP430 Assembly Instruction Set
	E.2. Packet Format for Data Transmitted from the Server to the Clients
	E.3. Packet Format for Data Transmitted from the Clients to the Server
	E.4. Data Format for Standard GRIL Output Messages
	E.5. MCETS Client Firmware (Assembly Language)
	F.1. MCETS Main Figure Functions (MATLAB Language)
	MCETS Server-to-Client Packet Generator (MATLAB Language)
	F.3. MCETS Data Packet Parsing Functions (MATLAB Language)
	Miscellaneous MCETS Server Functions (MATLAB Language)

