
Copyright © 2018: Worcester Polytechnic Institute, All Rights Reserved.

Multiple-Drug Interaction
Analytics Platform

Developing a Minimum Viable Web Application for

Visualizing Multi-Drug Interactions

Submitted: March 22, 2018

A Major Qualifying Project to be submitted to the faculty of Worcester Polytechnic Institute in

partial fulfillment of the requirements for the Degree of Bachelor of Science

By

Brian McCarthy

Andrew Schade

Huy Tran

Brian Zylich

In Collaboration With

Tabassum Kakar, PhD Student

Xiao Qin, PhD Student

Submitted To:

Prof. Elke A. Rundensteiner

Worcester Polytechnic Institute

Abstract

Hundreds of thousands of patients report unwanted symptoms from using one or more
drugs each year. It is virtually impossible to test every drug combination before a
drug reaches the market. In this project, we reimplement and integrate two previously
proposed tools to mine and visualize interesting pairs of drugs from report data, focusing
on creating a single web application that is functional and maintainable. Furthermore, we
research and implement new features including drug and reaction name standardization.
Upon finishing development, we conduct a user study and technical evaluation to ensure
our system meets the requirements and improves usability. Based on the results of our
studies, we improve the usability and identify areas that require further attention.

Acknowledgements

This project would not have been possible without the help of our faculty advisor,
Prof. Elke Rundensteiner, and our graduate student mentors, Tabassum Kakar and Xiao
Qin. They provided extensive guidance and feedback throughout our development efforts.
Additionally, we would like to thank Prof. Lane Harrison for his guidance, especially with
the data visualization and user evaluation aspects of the project. We are thankful to
Worcester Polytechnic Institute and the Computer Science department for providing us
with the opportunity to work on this project.

We would also like to thank Ermal Toto and the WPI ARC for providing the computational
resources to host our application on the web, facilitating testing and evaluation.

Finally, we would like to thank the FDA for their assistance in establishing requirements
for our project and providing some (redacted) data essential for demonstrating the
capabilities of our project.

Executive Summary

Every year, more than 100,000 deaths and 2 million hospitalizations are caused by the
side effects of prescription drugs or the unintended interactions from taking multiple
drugs simultaneously. These adverse drug reactions (ADRs) are one of the leading
causes of death worldwide. While extensive clinical trials are conducted to identify the
ADRs associated with a single drug before that drug reaches the market, it is virtually
impossible to test how a drug will interact with every other drug or combination of
drugs. Therefore, multi-drug adverse reactions (MDARs) are identified primarily after
the drug reaches the market. Healthcare professionals and consumers are encouraged
to submit reports through the FDA’s Adverse Event Reporting System (FAERS) in
the event that they witness or experience what they believe may be an ADR. Safety
evaluators with the FDA then analyze these reports to identify groups of drugs that cause
an adverse reaction when taken together. To assist FDA safety evaluators with their goal
of identifying MDARs, Xiao Qin and Tabassum Kakar developed the Multi-Drug Adverse
Reaction Analytics Strategy (MARAS) system and also designed a visual paradigm,
which they called Drug-Drug Interactions via Visual Analysis (DIVA). These systems
harness association rule mining to identify potential MDARs from FAERS reports and
provide an interactive visualization of the 2-drug rules mined by MARAS, respectively.

The goal of our project was to develop a minimum viable product to demonstrate how
Kakar and Qin’s work could be used to assist FDA safety evaluators. To do this, we unified
the MARAS and DIVA systems into a single application, the Multi-drug Interaction
Analytics Platform (MIAP). While developing MIAP, we completely reimplemented the
MARAS and DIVA systems to facilitate their unification into one system and their
future maintainability. Throughout the process, we improved the MARAS technology
by adding smarter drug name and adverse reaction processing. We also improved the
DIVA system by increasing visual appeal and overall usability. Finally, we conducted a
usability evaluation to test how MIAP matched up against the requirements specified by
Kakar and Qin’s cooperative research with the FDA and highlight areas that could use
improvement.

Currently, FDA safety analysts are confronted with the challenge of sifting through
millions of new reports each year in search of MDARs. For now, these personnel are
approaching this task without the support of software for mining potential interactions,
visualization of these interactions, or the screening of potential interactions based on
confidence scores or association with severe adverse reactions. This means that safety
analysts have to spend time scanning through reports before prioritizing potential drug
combinations for further investigation. Then, when they have prioritized the drug combi-
nations of interest, they must retrieve all reports related to each drug combination before
applying domain knowledge to determine how to proceed with a clinical investigation or
potential drug regulation.

With the assistance of MIAP, the prioritization of potential MDARs and subsequent
analysis of those MDARs is simplified. Filters can be applied to the visualization to look

5

at the MDARs with the highest confidence scores. These drugs can then be sorted by
the severity of the associated adverse reactions. Then, all of the reports associated with
the drug or hypothesized MDAR can be retrieved with the click of a button.

While much of the functionality of MIAP was previously available in the MARAS and
DIVA systems, there are several notable improvements. The previous MARAS system
was composed of multiple programming languages, lacked documentation, and did not
take full advantage of Object-Oriented programming concepts. Additionally, MARAS
did not perform any cleaning on drug names or adverse reaction names, and did not label
mined rules as known or unknown. Meanwhile, the previous DIVA system also lacked
sufficient documentation and was completely separate from the MARAS system. Thus it
required manual intervention to move files between the two systems.

As a result of this project, the new MARAS system was reimplemented using just one
programming language and taking advantage of encapsulation and object generation.
Additionally, javadoc-style documentation was used to provide internal and external
guidance on the use of the system. MARAS now performs cleaning on drug names and
adverse reactions to assist in the rule mining and known-rule labeling processes. The
DIVA system also underwent a complete reimplementation, separating each feature into
its own component file and adding javadoc-style comments for future developers. Finally,
MIAP unifies MARAS and DIVA, meaning that no manual intervention is required to go
between the user interface for visualization and the rule mining process, and vice versa.

With the addition of these new features, users can now upload FAERS data via the
user interface, automatically starting the MARAS analysis on the new data combined
with all previously uploaded data. Then, when the MARAS analysis finishes, the users’
visualization will be updated automatically. With improved usability aspects, it will
be easier than ever to prioritize and analyze MDARs. Lastly, with refactored code and
extensive documentation, future developers will be able to more easily contribute to this
project. This project will serve as a better model should the FDA choose to adopt a
similar application in support of their drug safety investigation.

Upon completion of this project, we have developed a list of recommendations for
improvements that can be made to MIAP in the future. These recommendations are as
follows:

1. Add a database to store reports and rules in order to decrease the time of retrieving
information about specific reports or drugs.

2. Improve the usability of the Reports View and add annotation functionality to
allow FDA safety analysts the ability to give domain insight directly within our
tool.

3. Allow for the visualization of custom datasets or a subset of the existing dataset,
as we currently have chosen to support only appending new data from FAERS into
our tool.

4. Conduct an evaluation with FDA personnel to ensure MIAP meets their needs,

6

receive additional suggestions, and determine whether they agree with the metaphors
currently employed in MIAP.

7

Contents

Abstract . 2
Acknowledgements . 3
Executive Summary . 5

1. Introduction 14
1.1. Motivation . 15
1.2. Previous Research . 15
1.3. Contributions . 15

2. Background 17
2.1. MARAS . 18
2.2. DIVA Methodology . 21
2.3. Minimum Viable Product . 24

3. MARAS/DIVA System Review and Creating MIAP 26
3.1. Analysis of Existing MARAS and DIVA Systems 26
3.2. JAVA Refactoring . 30
3.3. Client-Server Setup . 31

4. Improving the MIAP Platform 38
4.1. SQL Refactoring and Collective Data Mining 38
4.2. Adverse Reaction Mapping . 40
4.3. Drug Name Matching . 46
4.4. DIVA Interface Improvements . 51

5. Evaluation and Testing 59
5.1. Technical Testing . 59
5.2. Usability Evaluation . 60

6. Evaluation and Testing Results 65
6.1. Technical Results . 65
6.2. Usability Evaluation Results . 66

7. Conclusions 73
7.1. Summary and Findings . 73
7.2. Future Work . 73

8

8. References 76

A. Usability Evaluation Materials 78
A.1. Evaluation Script for WPI Student Surveys 78
A.2. Evaluation Script for FDA Researchers . 80
A.3. Usability Evaluation Additional Results 81

B. User Interface (React.js) Documentation 83

C. User Interface (JavaScript) Documentation 107
C.1. Constants . 107
C.2. Functions . 109

D. Server (TypeScript) Documentation 110
D.1. Index . 110
D.2. External module: “server/App” . 110
D.3. Class: App . 110
D.4. External module: “server/csv/CSVController” 111
D.5. Class: CSVController . 112
D.6. External module: “server/csv/index” . 115
D.7. External module: “server/csv/routes” . 115
D.8. External module: “server/index” . 116

E. DIVA Web Application Documentation 119
E.1. Install dependencies for client and server application 119
E.2. How to ensure the server keeps running after your session ends 119
E.3. How to build the front-end React app . 119
E.4. How to run the server . 119
E.5. How to generate documentation . 120

F. MARAS Documentation 121
F.1. How to run . 121
F.2. Output . 122
F.3. Data . 122
F.4. public class App . 122
F.5. public class Dataset . 123
F.6. public class Drug extends Item . 124
F.7. public class Group implements Comparable<Group> 125
F.8. public class Groupset extends ArrayList<Group> 127
F.9. public class Interaction extends Itemset 129
F.10.public class InteractionSets extends Itemsets 130
F.11.public class Item implements Comparable<Item> 130
F.12.public class MarasStatus . 134
F.13.public class Report implements Comparable<Report>, Iterable<Item>134
F.14.public class Rule extends AssocRule implements Comparable<Rule>134

9

F.15.public class RuleSets extends AssocRules 138
F.16.public class Agrawal extends AlgoAgrawalFaster94 140

10

List of Tables

4.1. Comparison of effectiveness and speed of ADR mapping methods. 45
4.2. Table demonstrating evaluation sampling for Drug Name Matching . . . 49

B.1. DndTreeContainer . 83
B.2. GlobalFilterNav . 85
B.3. MainView . 87
B.4. D3Tree . 90
B.5. DistributionRangeSlider . 90
B.6. DndGraph . 91
B.7. DndTree . 93
B.8. GalaxyView . 94
B.9. Help . 96
B.10.InteractionProfile . 97
B.11.KnownUnknownDropDown . 98
B.12.Overview . 98
B.13.ProfileView . 101
B.14.Report . 102
B.15.ReportChipContainer . 103
B.16.SearchBarComponent . 104
B.17.StatusInformationButton . 104
B.18.Tour . 105
B.19.TreeViewFilter . 105
B.20.UploadFAERS . 106

11

List of Figures

2.1. CAC associations . 19
2.2. Overview tree . 23
2.3. Galaxy View . 23
2.4. Profile View . 24
2.5. Reports View . 25

3.1. C++ class diagram and object dependencies 28
3.2. Intermediate generated Files . 29
3.3. Results from rule Testing . 31
3.4. Class Diagram for re-engineered JAVA Code 32
3.5. Server Application Architecture . 34
3.6. Overview of React-Redux application architecture 36
3.7. Redux actions logging . 37
3.8. Logging for filtering by scores . 37
3.9. Logging for setting a filter . 37

4.1. SIDER map creation flowchart . 42
4.2. Diagram showing the how standard names, LlTs and PTs are related . . . 42
4.3. Mapping Process flowchart for SIDER mapping 43
4.4. Diagram showing an example where the SIDER mapping fails 43
4.5. Mapping process flowchart showing the MetaMap mapping process 44
4.6. Diagram showing an example mapping for MetaMap 44
4.7. Demonstrating that MetaMap resolves more matches than SIDER 45
4.8. Screenshot of DIVA main view interface 51
4.9. Screenshot from Help Section . 53
4.10. Screenshots of the tour . 54
4.11. Screenshot of Min/Max Score Filter . 54
4.12. Screenshot of Search Bar . 55
4.13. Screenshot of Chip System . 55
4.14. Drug and Interaction Counts . 55
4.15. Upload FAERS Files . 56
4.16. Screenshots showing how the legends can be hidden. 57
4.17. About Us . 58

6.1. Time Analysis Before and After Optimizations 67
6.2. Average Ease of Use for Each Task . 68
6.3. Average Time to Complete Each Task . 68

12

6.4. Changes Made After the Evaluation . 72

A.1. Average Ease of Use for Each General Question 82

13

1. Introduction

More than 100,000 deaths and 2 million hospitalizations, annually, are caused by the
side effects of prescribed drugs or the unintended interactions from taking several drugs
at once (“Preventable Adverse Drug Reactions: A Focus on Drug Interactions” 2016,
placeholder). These side effects, called Adverse Drug Reactions (ADRs), create a public
health problem that makes it one of the leading causes of death worldwide. While the
ADRs directly caused by a single drug are well-researched, often documented well before
drugs reach the public market, there is much less documentation about how drugs will act
in combination with each other. Polypharmacy, or having multiple drugs prescribed at
once, affects more than 40% of elderly people living at home and some of these patients
regularly take up to 18 different drugs. The number of combinations of drugs that are
taken together is far larger than can be researched in depth by medical professionals, so
it is necessary to have tools that can use patient data, collected after the drugs have
gone to market, to assist researchers in identifying probable candidates for multi-drug
interactions.

Originally developed by Xiao Qin and Tabassum Kakar (Kakar 2016, Kakar and Qin
(2017–2018)), the Multi-Drug Adverse Reaction Analytics Strategy (MARAS) and Drug-
Drug Interactions via Visual Analysis (DIVA) systems are designed to aid analysts in
discovering these multi-drug interactions. MARAS focuses on mining FAERS, a dataset
provided by the FDA that contains ADR reports submitted around the globe, to find
groups of drugs likely to be contributing to Multi-drug Adverse Reactions (MDARs),
sorted by a severity score. DIVA, on the other hand, focuses on visualizing the 2-drug
interactions found by MARAS. It allows users to see the network of interactions at a
glance and find the raw FAERs reports contributing to the groupings found by MARAS.

For these tools to be used by professional analysts, they need to be tightly integrated,
efficient, and stable. Our project evaluated the MARAS and DIVA systems as they were
previously, implemented improvements in code quality and performance, and integrated
the systems into a fully-functional web application that can be used by analysts to
discover new MDARs from FAERS data. We focused on the usability and maintainability
of the system, while also developing additional features and designs, to ensure that FDA
employees and other analysts can utilize the application as effectively as possible. The
DIVA software can improve the speed, efficiency, and accuracy of MDAR discovery and
allow the FDA to more efficiently identify and publicize these dangerous interactions.

14

1.1. Motivation

When patients experience unwanted symptoms while taking a drug, they submit reports,
called Adverse Drug Events (ADEs), to an FDA-run database, the “FDA’s Adverse Event
Reporting System” (FAERS) (“Questions and Answers on Fda’s Adverse Event Reporting
System (Faers)” 2017). As more and more people are being prescribed multiple drugs,
the number of ADEs sent to FAERS is increasing rapidly. This database receives millions
of new records every year, which makes it impossible for individual analysts to take full
advantage of the amount of data being collected. There is need for a system that was
able to use the wealth of data in the FAERS database to allow drug evaluators make
informed decisions about where to focus more in-depth investigations.

This niche requires an application that can provide evaluators an at-a-glance overview of
the possible drug interactions indicated by the data, as well as a system for understanding
which associations are the most common or most severe in order to inform investigator
priorities.

1.2. Previous Research

Analyzing the multitude of drug interactions requires both a back-end mining algorithm
that can report on the most common or likely combinations of drugs and an interface
that can allow evaluators to quickly understand those interactions and then dive deeper
into individual reports to study further. Our graduate student partners (Kakar 2016,
Kakar and Qin (2017–2018)), researched two techniques that address the back-end space
and interface respectively. Kakar and Qin created the Multi-drug Adverse Reactions
Analytic System (MARAS), which ranks mined associations by their ‘contrast score’ a
metric that quantifies how closely an ADR is associated with a pair of drugs rather than
each drug individually.

They also developed the Drug-Drug Interactions via Visual Analytics (DIVA) paradigm,
which is a visualization, with several different views to allow the interactions—found and
ranked in MARAS—to be analyzed in different contexts within the same application.
Unfortunately, these two projects were conducted largely independently. Thus, it was a
labor-intensive, manual process to take the associations ranked in MARAS and integrate
them into the DIVA visualization.

1.3. Contributions

Our project focused on developing a minimum viable product to demonstrate how
Kakar and Qin’s work could be used to assist evaluators discovering and testing multiple-
drug adverse reactions. We unified MARAS and DIVA into a single application, the
Multiple-drug Interaction Analytics Platform (MIAP), which focused on creating a

15

smoothly interactive user experience. Our results, supported by an evaluation, demon-
strate the utility of the technology for supporting the drug evaluation workflow.

As a minimum viable product, our project demonstrated the capability to:

• Correctly intake, mine, and rank new FAERS data provided by a user with no
further human intervention,

• View all ranked hypothetical drug-drug interactions at-a-glance,
• Differentiate between unknown hypothetical drug-drug interactions and known

interactions that have already been researched,
• Focus on and select hypothetical drug-drug interactions for further study,
• Prioritize focused hypothetical drug-drug interactions by various criteria,
• Facilitate detection of severe Adverse Drug Reactions, and
• Link to the underlying FAERS reports.

Future work can conduct experiments on the customer value of MIAP, determining
how valuable a tool like it would be to evaluators. If the system is found to be worth
developing further, additional improvements should me made to expand MIAP into an
application that fulfills all features required of a software suite that can facilitate the
complete evaluation process. This requires research in determining exactly what other
workflows in the MDAR evaluation process should be integrated into a single application.

16

2. Background

The Food and Drug Administration (FDA) is responsible for approving drugs for medical
use and for keeping up-to-date on the risks associated with taking those drugs. The
Center for Drug Evaluation and Research (CDER) is the specific department at the FDA
that is responsible for ensuring that “safe and effective drugs are available to ensure
the health of people in the United States” (“About the Center for Drug Evaluation and
Research” 2018). This department regulates both over the counter and prescription drugs,
from fluoride toothpaste and sunscreen to narcotic painkillers and cancer medications.

One part of this is ensuring that drugs continue to stand up to safety measures after
they’ve gone to market. Clinical trials cannot explore all the ways that using a drug
might be harmful, so the FDA must rely on data collected from patients and hospitals
during the course of their usage. One tool that the FDA uses is by collecting reports on
Adverse Drug Reactions.

An Adverse Drug Reaction (ADR), or adverse event, is defined by the Food and Drug
Administration (FDA) as an “untoward medical occurrence associated with the use of
a drug”. Every year, there are over 2 Million serious ADRs, resulting in over 100,000
deaths(“Preventable Adverse Drug Reactions: A Focus on Drug Interactions” 2016).
ADRs are the fourth leading cause of death, surpassing automobile deaths, diabetes, and
pulmonary disease. In addition, over 350,000 ADRs occur in nursing homes annually.
To gather information on ADRs, the FDA uses FDA’s Adverse Event Reporting System
(FAERS)(“Questions and Answers on Fda’s Adverse Event Reporting System (Faers)”
2017). The FAERS database contains information on ADR reports submitted to the FDA
by healthcare professionals and consumers. With the mass of ADRs reported through
FAERS the lack of automated tools to perform preliminary analyses limits the usefulness
of the data collected.

An interaction between multiple drugs causing one or more ADR(s) (such as taking
Aspiring and Warfarin together causing bleeding) is known as a Multi-Drug Adverse
Reaction, or MDAR. One of the more difficult analyses to extract from these data is
multiple-drug interactions. Up to 40% of elderly people are prescribed more than six
medications simultaneously, in so many different combinations that testing them all,
individually, for side effects that are derived from the interaction between two or more of
those drugs impossible.

In order to create an automated screening process for which sets of drugs are candidates
for causing MDARs, Kakar (2016) developed the Multi-drug Adverse Reactions Analytic
System (MARAS).

17

2.1. MARAS

MARAS utilizes Association Rule Learning to identify ADRs which are most significant.
There are several challenges associated with using Association Rule Learning with ADRs.
Applying Association Rule Learning to a large set of drugs and ADRs, such as the
set generated by FAERS, results in an excessively large number of associations. It is
difficult to reduce the number of rules to a manageable scale while still guaranteeing
that potentially important rules are not missed. In addition, the basic association
measures used with Association Rule Learning, such as support and confidence, do
not appropriately rank drug-ADR associations, because they only consider individual
association rules, while MARAS has to consider the correlation among different rules.
The MARAS methodology attempts to address these concerns to sufficiently filter and
rank drug-ADR associations in a meaningful way.

2.1.1. Association Rule Learning

Association Rule Learning refers to the process of creating Association Rules from a set
of transactions, where an Association Rule is defined as a description of the probability
that, given the occurrence of one event, another event will occur. In other words, “it
helps find the relationship between objects that are frequently used together” (Gollapudi
2016). One common example of an association rule would be that if a customer purchases
an iPad, they are likely to also purchase an iPad case.

The support of an association rule is the frequency with which the items appear together
compared to the total number of transactions. More formally, the support of a rule
X → Y is defined as: Support = frq(X, Y)/N where N is the number of transactions.

The confidence of an association rule X → Y is the frequency with which the items
appear together compared to the frequency that X appears by itself; in other words:

Confidence =
frq(X, Y)

frq(X)

The lift of an association rule X → Y is the support of the rule compared to the product
of the supports of X and Y individually.

Lift =
support(X, Y)

support(X) × support(Y)

2.1.2. Important Concepts for MARAS

A Drug-ADR association R is a pairing of a set of Drugs D and a set of ADRs A. The
association is considered explicitly supported if at least one report exists that refers

18

exactly to the Drugs and ADRs in the association, with no others. Meanwhile, the
association is considered implicitly supported if it exists as partial interpretations
of two or more reports. For example, consider a report R1 with a set of drugs D1 =
{d1, d2, d3} and a set of ADRs A1 = {a1, a2}, and a report R2 with a set of Drugs
D2 = {d1, d2, d4} and a set of ADRs A2 = {a1, a2, a3}. In this case, the association
d1, d2, d3 → a1, a2 is explicitly supported, since R1 refers exactly to this association. The
association d1, d2 → a1, a2 is implicitly supported, because it is a partial interpretation
of both R1 and R2. An association is a spurious association if it is neither explicitly
nor implicitly supported.

An association is considered closed if it does not contain partial information of another
association. Consider R1 = d1, d2, d3 → a1, a2 and R2 = d1, d2 → a1, a2. In this case, R2

is not closed, because it presents partial information of R1. In other words, R1 provides
richer information than R2.

Consider a report R1, an association of a set of drugs D1 and adverse reactions A1;
similarly, R2 is an association of a set of drugs D2 and adverse reactions A2. R1 is a
contextual association of R2 if D1 is a subset of D2 and A1 is a subset of A2. For
example, let R1 = d1, d2, d3, d4 → a1, a2, a3, a4; let R2 = d1, d2 → a1, a3. In this case, R1

is a contextual association of R2. A contextual association cluster (CAC) contains
an explicitly or implicitly supported association, and its contextual associations.

Figure 2.1.: CAC associations

There are two factors to consider when measuring if a Drug-ADR association indicates
a severe Multi-Drug Association Rule (MDAR): How strong the association is between
the ADRs and drugs, and how strong the association is between the ADRs and each
individual drug, or a subset of the drugs. For the former, we can use the traditional
confidence measure, referenced above. For the latter, we can use the contrast measure.
A high contrast indicates that the target association has a high confidence, and all of the
contextual associations within its CAC have low confidence.

2.1.3. MARAS System

The MARAS System methodology describes how the Association Rule Learning methods
detailed above can be used to present Adverse Drug Reaction information in a descriptive

19

and informative manner. The first step in this process is the Data Processor, which
extracts and cleans drug and ADR data from an ADR report (such as a FAERS report)
so it is in the appropriate format to be used by the MDAR signaler; The Data Processor
also removes any duplicate reports. Next, the MDAR Signaler analyzes the output of
the Data Processor to identify the non-spurious Drug-ADR associations along with their
Contextual Associations, then computes the contrast score of each CAC to identify the
strength of the signal.

The MARAS code received at the beginning of this project consisted of two main parts.
The first part of the system focused on using association learning to mine hypothetical
drug-drug interactions from the FAERS data and the other part was responsible for
processing and filtering the data for the data mining part and for having usable output.
The processing part was further divided into three sections: preprocessing, closure
generation, and result output.

The Preprocessor builds a copy of the initial data-tables pulled from the FAERS database
by generating unique IDs for each drug and adverse reaction. This allows the data mining
step to be run efficiently. This step outputs three files: a mapping between drug names
and unique IDs, a mapping between adverse reaction names and unique IDs, and the copy
of the table of adverse reaction reports using unique IDs instead of drug and reaction
names.

The data mining element, implemented in C++, takes the preprocessed FAERS data
and finds patterns in the data that may be associated with MDARs. To accomplish
this task, the FP-growth algorithm is implemented to find the complete set of frequent
patterns in the preprocessed data. After the frequent patterns have been generated, the
program outputs two files to be used as input to the next element in the backend. The
first file contains the frequent itemsets of drugs and their support values. Meanwhile,
the second file contains rules indicating a potential causal relationship between a drug
combination and an adverse drug reaction.

After all the rules are generated, they can be ranked using the Contrast Score. However,
due to size of the dataset, it would be inefficient to calculate the score for every single
rule reported in the last step. Therefore there is a filtering step that ignores every rule
that is entirely contained by another rule.

For example, this filtering step would ignore a rule that suggests Aspirin and Excedrin
lead to nausea if there is also a rule that suggests Aspirin and Excedrin lead to nausea
and headaches. This prevents needless computation.

The final step in the MARAS program is generating results for use in DIVA. The final
program, Explorer, sorts the list of rules by their contrast score, returning only the highest
scoring. It creates three reports, one which contains the MDARs and all associated
information in a human-readable format, one which has the support, confidence, and
score in three comma-delimited columns, and a third which contains the same information
as the fist file in a comma-delimited format.

20

2.2. DIVA Methodology

DIVA (Kakar and Qin 2017–2018) was developed in consultation with evaluators from
the FDA to ensure a complete understanding of the current drug safety review process
and the challenges associated with analyzing Drug-Drug Interactions. These evaluators
are domain experts in the field of drug-safety research with focuses on multi-drug
interactions. The consultations with these evaluators helped Kakar and Qin develop a
list of requirements for an application that could successfully assist in safety research in
multi-drug interactions. The requirements from Kakar (2016) are discussed below.

Listing 2.1 DIVA Requirement 1

Provide an overview of all Hypothetical Drug-Drug Interactions (HDDIs)

The simplest requirement is that evaluators need to have a method for easily scanning
for interesting HDDIs. They need to be able to identify those interactions that are
heavily supported by the data, so that they can focus on those. That led to the second
requirement:

Listing 2.2 DIVA Requirement 2
Facilitate the detection of interesting HDDIs

This means that, in the visualization, hypothetical interactions that are well-supported in
the data must be visually distinct from those that are not well-supported. This distinction
must be clear enough that the most interesting HDDIs are easy to separate from the
least interesting ones. This requirement also seems to encourage the ability to filter away
the least interesting HDDIs.

Listing 2.3 DIVA Requirement 3
Enable analysts to change importance criteria for HDDIs interactively

Continuing the idea of filtering, this requirement shows that the different ways that evalu-
ators could prioritize the hypothetical interactions must all be a part of the visualization,
and switching focus between them must be easy.

Listing 2.4 DIVA Requirement 4
Facilitate detection of severe ADRs

Those reactions that are immediately life-threatening are more urgent than those that
only cause mild discomfort, so it is important to find the most dangerous ADRs, so that
they can be prioritized.

Listing 2.5 DIVA Requirement 5
Facilitate prioritization of drugs

21

The previous requirements also centered around the concept of prioritization, where
evaluators wanted to not only filter away uninteresting hypothetical interactions, but
also to have a way to choose an order for evaluators to examine interactions. This would
allow for a project manager to choose an order of prioritization for a team of evaluators
to work on.

Listing 2.6 DIVA Requirement 6
Link to underlying reports

Without access to the underlying report data, the visualization is hard to draw any
conclusions from. There is significant information useful to evaluators in the reports sent
to FAERs, and that needs to be accessible from the visualization.

Listing 2.7 DIVA Requirement 7
Support custom annotations on MDARs

If the evaluators want a single application to provide the entire toolchain for MDAR
analysis, notetaking is indispensible. Requirement 7 allows for evaluation periods to take
longer than one sitting, and evaluators could save their notes between sessions.

Listing 2.8 DIVA Requirement 8
Support smooth and interactive exploration of FAERs data

Usability is important for any new application that gets introduced to a work environment.
Requirement 8 reinforces that priority.

Listing 2.9 DIVA Requirement 9
Use familiar visual metaphors and respect the user's mental model about

drugs and ADRs

A significant part of usability is concerned with the learning curve for new users. Part of
minimizing the difficulty of learning a new system is relying on metaphors that the users
would already be familiar with, either from applications they use in other areas of their
work, or in daily computer use. That is the purpose of Requirement 9.

In order to fulfill these requirements, DIVA uses four main interactive views: Overview,
Galaxy View, Profile View, and Reports view. As discussed in Sec. 4.4, we renamed each
of these views to more closely reflect the user interactions associated with them.

2.2.1. Overview View

The Overview allows users to analyze MDARs at a macroscopic level; this view shows
the entire space of Hypothetical Drug-Drug Interactions (HDDIs).

22

Figure 2.2.: Overview tree

This view utilizes a node-link diagram to visually display relationships between drugs and
ADRs. In this view, nodes represent drugs, and edges represent an interaction between
two drugs. If the edge is a dashed line, the interaction is known; if the edge is a solid
line the interaction is unknown. The color of each edge represents the contrast score of
the interaction.

2.2.2. Galaxy View

The Galaxy View allows analysts to quickly get an overview of MDARs associated with
a specific drug.

Figure 2.3.: Galaxy View

The center node of the Galaxy View represents the drug of interest, while the nodes
surrounding it represent the drugs that interact with that drug of interest. The color
of the box surrounding this view indicates the count of severe ADRs associated with

23

this drug. Users can view multiple different drugs at a time, sorted by name, interaction
count, or severity as necessary. The size of each individual node indicates whether any of
the MDARs between the two drugs are unknown; if there exists at least one unknown
MDAR, the node will have a larger size than those with no unknown MDARs. Users can
find additional information about each interaction by hovering over them.

2.2.3. Profile View

The Drug Profile View provides a more detailed look at an individual drug in the form of
a modified tree layout, consisting of three levels. The root node represents the selected
drug, the second level displays all of the drugs that interact with the selected drug, and
finally, the third level represents the ADRs that exist between the drugs. Normal ADRs
are represented with a tan color, while severe reactions are labelled purple.

Figure 2.4.: Profile View

2.2.4. Reports View

The Reports View allows analysts to view the raw data directly. This view shows a list
of all reports related to a chosen drug or drug interaction, enabling the user to see the
underlying information related to a drug or ADR.

2.3. Minimum Viable Product

In Lean Startups, a minimum viable product (MVP) is “an experimental object that
allows for empirical testing of value hypotheses” that has been “built with a minimum
amount of effort and development time” (Münch et al. 2013, 138). A value hypothesis
tests if a product is capable of being valuable to its customers once they are using it. Used

24

Figure 2.5.: Reports View

in conjunction, they create an experimentation tool that allows developers to determine
if it is worth developing further.

Minimum viable products take many forms, depending on the type of project being tested.
Some projects can test if they would get customer engagement with merely a landing
page listing the planned features. In more established industries, it is often necessary to
evaluate the value of a particular style of a feature and therefore a more developed MVP
is required.

This project is focused on preparing the research conducted by Kakar and Qin for
experimentation that can determine the value of their work to the FDA. We are creating
a minimum viable product from the two research projects detailed above, to test the value
hypothesis that an application that mines and ranks hypothetical drug-drug interactions
from FAERS data and then serves a visualization fulfilling the requirements above
provides valuable assistance in detecting and evaluating MDARs.

25

3. MARAS/DIVA System Review and
Creating MIAP

The individual MARAS and DIVA tools relied on each other to be useful for analysis
by FDA evaluators, our target use case for this project. DIVA requires data showing
the drug interactions in order to create meaningful visualizations and MARAS, despite
filtering and ranking the initial FAERS reports to focus on the interactions, creates far
too much data to be able to effectively analyze without support from a visual interface.
Thus it was vital that they be unified into a single system, which we called MIAP, the
Multiple-drug Interaction Analytics Platform. The first phase of our project was to unify
the tools, as they currently existed, into a single toolchain.

In order to accomplish this, we divided that task into two parts. Firstly, we reviewed the
current codebase of both projects in order to decide on the cleanest way to integrate them.
This involved a line-by-line reading of both systems. Then we refactored each project to
be more maintainable, using published libraries, reducing the number of programming
languages required, and focusing on applying standard software engineering practices
to the development of each program. In essence, we rewrote each tool from scratch to
ensure that they would work in concert without human intervention.

3.1. Analysis of Existing MARAS and DIVA Systems

In order to learn how the preexisting DIVA and MARAS systems functioned, the team
decided to split the code up and perform in-depth analysis of the code and its functions.
This decision was made because the preexisting code had little documentation and was
difficult to understand without tracing the actions of the code line-by-line. Therefore, as
part of the Deep Dive process, the team generated documentation to improve the code’s
readability and facilitate future efforts to refactor the code.

As the MARAS codebase was written in two languages (JAVA and C++), we divided
the code review into two subtasks—one for analyzing the JAVA codebase, focusing on
data transformation and score calculation, and the other concentrating on the C++ code
for mining frequent itemsets and association rules. The two code-bases only interacted
by reading the files created by the other applications and this lack of logical interactions
between the two sections of the existing code made this division of labor sensible.

The codebase was further divided into 4 separately executed steps: Preprocessing, Rule

26

Mining, Closure Generation, and Score calculation. These correspond to the four steps
specified in Sec. 2.1. The rule mining step was performed in C++, while the other three
steps used JAVA code only.

The JAVA code was built around three main objects: Itemset, Rule, and Group. It also
includes three executable classes: Preprocess, ProcessFI, and Explorer. As a whole,
while there was no documentation, either inline, or at a JAVAdoc level, this module was
fairly straightforward to analyze.

Of the three executable classes, Preprocess was the only one which did not interface
with the data objects. After reading in the database of Adverse Drug Reactions, it
created three files. The first two files were a unique mapping of the drugs and reactions
referenced in the database. The third file applied that mapping to the database to create
a list of reports where each report was made of the unique identifiers for each drug and
reaction.

These unique identifiers are shared between drugs and reactions. For example,
Preprocessor might map the drugs “Aspirin” to a unique ID of 1521 and “Excedrin” to
a unique ID of 141, while mapping the reactions “Headache” and “Nausea” to 35413 and
33899, respectively. This would take a report line from the following format:

"Aspirin","Excedrin" "Headache","Nausea"

The line would be output in the following format for consumption by the C++ data
mining codebase, which operates using numerical itemsets.

1521 141 35413 33899

As shown above, this removes the indication that the drugs and reactions are different
objects in the data. This was a particularly poorly documented detail of the process.

The C++ code in the existing MARAS system was used to generate frequent itemsets
from the FAERS reports and output association rules that might indicate a causal
relationship linking a set of drugs to one or more adverse reactions. The code uses the
FP-Growth algorithm for frequent itemset generation.

Through completion of the C++ Deep Dive, many issues were discovered with the existing
code. To begin with, there was barely any in-code documentation. This problem was
fixed by adding Doxygen-style comments to describe each function and each class. There
were also a number of redundant data structures defined in the C++ code that were
also defined in the Java code. This problem raised the question of the feasibility of
modifying the sections of code written in C++ or Java so that they are both in the same
programming language and redundant data structures can be eliminated. Additionally,
parameters such as the minimum support and the minimum confidence were both hard-
coded constants. While this may work for testing or experimentation purposes, in reality
users may want to specify these parameters to customize their results.

This figure shows the class diagram for the existing C++ code. Upon examination, it is
evident that many of the classes represented in C++ are also represented in Java, leading

27

Figure 3.1.: C++ class diagram and object dependencies

to inevitable redundancies.

The results from the C++ code were used by the ProcessFI section of the JAVA code
to populate a list of Itemset objects, where each different itemset length is organized
together. It also populated a collection of Rule objects with the rules mine in the C++
code. These Itemsets were then filtered to create closures, using a method defined in
ProcessFI and rules were further filtered to only be associated with Closed Itemsets.
Additional filtering ensured that no rules originate with reactions.

The ProcessFI executable would output files containing each filtered rule, as well as
all the closed itemsets. These files are then read in by the Explorer executable, which
creates a Group objects. Each group object associates a closed rule with its component
subrules (found from the unfiltered rule-sets). These are used to calculate the score by
the process outlined in Sec. 2.1.

The D3 Visualization code produces the DIVA views described in Sec. 2.2. This code
takes data produced by the Java rule-mining application and creates the resulting
Overview, Galaxy View, Profile View, and Reports View. The Deep-Dive process for this
code included the creation of comprehensive documentation using JSDoc, a Doxygen-
style documentation system for Javascript code. By using JSDoc-style comments, each
function could be annotated to describe its functionality and parameter values. This
documentation can output HTML web pages that provide a quick overview of the
organizational structure of the software, along with easy access to details on each
function. In addition to documentation, the D3 Deep Dive involved changes to the coding
style for consistency, including fixes to indentation, spacing and comments.

The SQL code in the MARAS system performs a variety of data manipulation and
parsing functions which enable the MARAS system to utilize FAERS report data. First,

28

the SQL code contains functionality to parse FAERS report data from a .txt file format
and construct corresponding SQL databases populated from that data. This code collects
data on both drugs and reactions and combines them into a single table that contains
only the information required by the MARAS system. There are separate functions to
handle FAERS data from before 2015 and to handle the data from 2015 and beyond,
because the format of the FAERS data changed slightly in 2015.

Second, the code includes functionality to connect rules mined by the MARAS system to
the FAERS reports that the rules are generated from; for example, if MARAS discovered
a rule stating that taking Advil and Warfarin together caused bleeding, this function
would create a list of all of the reports that contained Advil and Warfarin in the drugs
and bleeding in the reactions. This behavior is necessary to create the Reports View of
the DIVA application.

When examining the SQL code, we considered several refactoring changes that could
improve the usability and maintainability of the system as a whole. The codebase
contains some functionality that could be accomplished equally effectively in Java, using
APIs like JDBC. This would allow us to further centralize our code by keeping as much
functionality in one language, and in one system, as possible.

To run the original MARAS system from start to finish, the user had to manually execute
each step of the program. These steps included: pre-processing (Java), data mining
(C++), finding closures (Java), and generating results (Java). At the beginning and end
of each of these steps, the program would read from or write to disk in order to allow
the program to pick up from where it left off in the previous step. This combination of
excessive file I/O and an unnecessary reliance on user intervention made running the
system unnecessarily complicated.

Figure 3.2.: Intermediate generated Files

This figure shows all of the files that are created to use during intermediate steps between
the initial input and result generation. Following the program execution, these files are
largely of no use to the user, other than possibly for debugging purposes.

29

3.2. JAVA Refactoring

Following the Java and C++ Deep Dives, the team discussed options for going forward.
It was clear from the Deep Dives that the MARAS program should be modified to operate
entirely in memory as a one-step process. This would make running the MARAS much
simpler and make the process of integrating the MARAS system into the client-server
architecture easier in the future.

Another major decision was whether or not to translate the C++ code into Java. In the
end, the benefits of having all the code in one language outweighed the costs of rewriting
that section of the MARAS system. This decision would make future maintenance of
the system a much easier task, allow for the elimination of redundant data structures,
and allow for a more natural one-step program flow that did not rely on file I/O to go
between intermediate steps.

For the first iteration of refactoring the Java code, we decided to keep the underlying
structure of the code as consistent as possible with the previous version while making
modifications so that it ran entirely in memory. By minimizing the scale of the changes
being made, we hoped to quickly produce a functioning prototype of the MARAS system
that could be run on the server. Also in this revision of the code, we found and integrated
Java implementations of the FP-Growth algorithm for frequent itemset generation and
an association rule mining algorithm. The Java implementations of these algorithms
were part of the SPMF Library put together by Philippe Fournier-Viger (Fournier-Viger
et al. 2014).

After successfully refactoring three of the original four parts of the MARAS system to
execute only in memory, it became apparent that the current program structure was
insufficient. For one thing, the program did not take advantage of Java’s object-oriented
design principles, lacking much encapsulation. Instead, the existing code relied on frequent
parsing of input files into objects, with most of the code operating on that object living
outside of the object’s class. Therefore, to improve the program’s logical flow and make
it more maintainable in the future, the team decided to refactor the MARAS system
from the ground up, embracing the object-oriented design style to make the program
flow more meaningful and readable.

Since we used new implementations of the algorithms for frequent itemset generation
and association rule mining, we tested to ensure that both frequent itemset generation
algorithms produced the same results given the same input and parameters and likewise
for the association rule mining algorithms. To perform the test, both frequent itemset
generation implementations were given the same transaction database as input and
their minimum supports were both set to 10. Then, an output file was generated
by both algorithms. These files were compared to test that they contained the same
itemsets, regardless of itemset order or the order of items within the itemset. Similarly,
the association rule mining implementations were both given the same set of frequent
itemsets, a minimum support of 10, and a minimum confidence of 0. After receiving

30

output files from both algorithms, they were compared to ensure that each algorithm
produced the same rules with the same supports and confidence levels, disregarding the
location of rules within the file or items within the antecedent or consequent of a rule.
As a result of this testing, the team confirmed that both algorithms produced equivalent
results, indicating that the Java implementations had been successfully integrated into
the program.

Figure 3.3.: Results from rule Testing

For the second Java refactor, the team split the work into four distinct sections to reduce
the time taken to perform the refactoring. The main idea of this refactor was to preserve
encapsulation wherever possible, meaning that much of the existing code could be reused,
but was moved within the class that it manipulated. Therefore, a set of rules could find
its closure or filter out invalid rules, rather than performing these functions externally.
The result of this refactor was a much simpler, more readable program flow. It was
obvious which objects were involved in each step and what actions were being performed
because the objects involved in the program’s execution are well labelled and methods
with descriptive names are called on the objects to perform any action.

3.3. Client-Server Setup

Our team’s overall goal of the Client-Server setup process was to:

• Build a full-stack web application mainly for visualizing the data, providing a native-
application-like user experience and supporting rich interactions with multiple
components on the page.

31

Figure 3.4.: Class Diagram for re-engineered JAVA Code

32

• Easy to setup with minimal configuration for local development and remote deploy-
ment.

• Modular so that different members in the team were able to work on different parts.
• Maintainable in order to continue to work productively as the application grew in

functionality and complexity.
• Reliable in order to work correctly and avoid unpredictable behaviors.

3.3.1. Server-side Stack

We chose NodeJS (2018) as the runtime environment and ExpressJS (“Express -
Node.js Web Application Framework” 2017) as our main back-end framework. There
were two main reasons we used NodeJS. First, NodeJS uses Javascript as its main
programming language. Therefore, by using NodeJS, we only had to program in one
language across the front-end and back-end. Second, NodeJS is supported and backed by
very active open-source community. Hundreds of thousands of packages and modules
developed by the community are being hosted on NPM (“Npm,” n.d.), the main package
and dependency manager for NodeJS. ExpressJS is the most popular web micro-framework
in the NodeJS community. It is fast, small and does not do much by itself. However,
we could pull a lot of open-source modules in an Express application to make it useful
and functional. Using NodeJS and ExpressJS as the foundation of the server fulfills
the system’s second goal. It is easy to build and start NodeJS server by running a few
commands and setting environment variables.

We used TypeScript (“Get Typescript” 2017), an extension of Javascript as our main
programming language of the server. It is completely backward compatible with JavaScript
but provides nice object-oriented features such as classes and interfaces, and optional
static type. The main benefit of using TypeScript is that it enables different Integrated
Development Environments (IDEs) to provide extra features such as autocompletion,
errors checking, refactoring. Using TypeScript allowed us to divide parts of the project
into reusable and maintainable modules, which achieved the third and fourth goals as
the project grew.

We used Mocha (“The Fun, Simple, Flexible Javascript Test Framework” 2018) and
Chai (“Chai Assertion Library,” n.d.) as the main testing framework and assertion
library. They are the most popular testing stack in NodeJS community and proved to
work well together. By writing tests and doing Test Driven Development (TDD), we
were confident that every feature worked as we expected and not worried that refactoring
or adding new features would break the code somewhere else. This fulfills the reliability
goal of the system.

The server for this project served as a resource server for the client application. It provided
different endpoints that allowed the client application to do basic REST operations such
as reading, creating, updating and deleting on different resources. In order to do this,
the ExpressJS server routing and middleware systems provided a set of API to handle

33

the client’s HTTP requests. In this project, requests to read or retrieve the data were
important because this allowed the client to get the data, analyze and visualize the
information to the end users. For example, the client application could send a GET request
to /drugs/ to retrieve all records or /drugs/{drugname} to get all the records related
to that specific drug.

Figure 3.5.: Server Application Architecture

The Java data mining program was a submodule and ran in the NodeJS web server.
Whenever the authorized user posts a new data file to the server, the server will process
the input file with Java program and generate new output files for data visualization.
The server also had a command-line interface to import the data files and run the Java
program manually.

3.3.2. Client-side Stack

3.3.2.1. React

The Client-side stack fulfills the first and the most important goal of this project. We used
ReactJS as the main front-end framework for building the interface of the application. It
allowed us to build different components that we can reuse, which have their own HTML
templates, behaviors and states. The components can be put together and interact with
other components by sharing the state to make an interactive and native-app-like website.

3.3.2.2. Material UI

As mentioned above, one main advantage of using a modern Front-end framework
like React is the ability to use third-party components and reuse components that we
create. For the layouts and styling of the website, we exclusively used React components
implementing Google’s Material Design. By using these components, we can easily create
a basic layout containing the navigation bar, sidebar, different panes, text fields, buttons
and so on. These components have default style rules, but we are free to override them.

34

We can also attach event listeners to the components to make them interactive. Utilizing
third-party components helps us focus more on the logic and behavior than on the styling
and animation of the website while still keeping the application aesthetic.

3.3.2.3. Redux

Redux is a small state-management library that works well with React applications. It
has a single store that stores all the current states of the applications. The idea behind
Redux is simple: a React component (or any other kinds of component) emits a Redux
action, which is a Javascript object that describes what happened. When receiving the
action, the store singleton will decide how to change the state tree based on the reducers
that you implement. Then, any components in the application that subscribe to the state
change in the store will re-render themselves to reflect the change to the user. Fig. 3.6
briefly shows how React and Redux work together. Redux helps the application behave
consistently and avoid bugs. It also makes the application scalable because when the
application grows bigger and more states need to be controlled and shared among many
components, Redux can manage all those states perfectly by creating more actions and
reducers.

In the new DIVA application, Redux state management connects different components
and their states. In Fig. 3.7, the Redux logging system shows different actions emitted
by React components when the user clicks on a node in the Overview view. The store
updates its state’s property “selectDrug” to the selected node’s drug name. It also
requests the rules related to that drug from the server by the REQUEST_DRUGS action.
When the RECEIVE_DRUGS action is emitted with the payload fetched from the server, the
store updates its state’s property currentDrugs by adding new drug rules related to that
drug. The Galaxy View and Profile View, both of which subscribe to the state changes,
will re-render themselves. The Galaxy View listens to the changes in the currentDrugs

property in the state tree and renders a new graph corresponding to the recently added
drug rules. When the Profile View sees changes to the selectDrug property, it will
re-render and show the profile for the new drug. Redux also makes it easy to implement
global filters and searching, simply by adding the filter states to the store. Those filters
can be applied to all components that subscribe to the Redux store. Figs. 3.8, 3.9 shows
actions related to updating the filter state.

35

Figure 3.6.: Overview of React-Redux application architecture

36

Figure 3.7.: Redux actions logging

Figure 3.8.: Logging for filtering by scores

Figure 3.9.: Logging for setting a filter

37

4. Improving the MIAP Platform

After refactoring the existing MARAS code and DIVA visualization and creating our
initial version of MIAP, it was time to begin adding in new features to meet the needs of
a more complete integration of the two sides of the application.

We focused on four areas:

• Collective Data Mining for processing new input files when they arrive, in concert
with the data already available for MARAS to analyze. This also includes integrating
some of the preprocessing we did on the FAERS data to be able to read it into the
MARAS program with less user intervention.

• Adverse Reaction Mapping to ensure that standard names and descriptors are used
in reporting of the adverse reactions tied to FAERS reports, which ensures that
known adverse reactions are matched whenever they occur.

• Drug Name Mapping to ensure that there is a standard vocabulary of drug names
that prevents trivially different reports from being parsed as different drugs.

• Further improvements—refactoring and restyling—to the web interface to bring it
up to a professional standard of usability and appearance.

4.1. SQL Refactoring and Collective Data Mining

Once the Java and C++ code of MARAS was successfully combined, we next worked on
refactoring the SQL code that organizes and filters the raw FAERS data to get specifically
the data that the MARAS system will use. Just as with the C++ code, we determined
that it would be most effective to replicate the SQL code’s functionality in Java; this
would allow us to keep all of the MARAS code in one language, and all of the functionality
would be contained in a single executable.

The process of parsing FAERS data evolved through multiple phases. First, the Java
program was modified to take 3 file paths as input, corresponding to the three FAERS files
MARAS uses: the drugs file (e.g. DRUG17Q2.txt), the reactions file (e.g. REAC17Q2.txt),
and the demographics file (e.g. DEMO17Q2.txt). The program parses these three files to
compile the data into Report objects, consisting of a list of drugs and a list of reactions;
these reports are used by the Association Rule Mining algorithm to calculate the resulting
rules.

The FAERS files are structured such that each line refers to a data point for a given

38

FAERS report. For the drugs file, each line contains the ID of the report, the name of the
drug, and additional information not used by the MARAS system, such as the dosage. If
a given FAERS report contained 5 drugs, the resulting drug file would contain 5 lines,
each representing one of those drugs and referring to the same report ID. Similarly, each
line of the reactions file contains the ID of the report and the reaction experienced, and
each line of the demographics file contains the ID of the report and a set of demographic
information about that report. The MARAS system specifically examines expedited
reports, which are distinguished in the demographic file as “EXP”.

To handle this data, the MARAS system must search through each of these files and
match the lines according to their Report IDs. The result is a list of drugs, reactions,
and demographic information that make up a complete report. From there, the system
can filter out reports that are not expedited, and create Report objects from the drugs
and reactions that can be used by the Association Rule Mining code.

After this change was implemented, we determined that it would be easier if the program
directly uses the FAERS data as it is downloaded from the FDA’s website: a .zip file
containing a number of different files and folders, beyond just the three that the MARAS
system uses. We refactored the input to now take in a single .zip file; it then extracts
the files from this zipped folder and searches for the three relevant files, then runs the
analysis on those files as before. This makes the command-line arguments for the file
simpler, and reduces the amount of work that must be completed before running the
MARAS code.

While this functionality was effective for mining rules from a single set of FAERS data
files, which are organized by year and quarter (such as 2017 Q2), it did not allow us to
find rules from the combination of multiple sets of FAERS data. Therefore, the next
step in refactoring would be to support cumulatively analyzing sets of FAERS data
in conjunction with the data already used. In order to accomplish this, the MARAS
program saves the three FAERS files extracted from the zipped folder in a data directory,
then parses all of the files in that directory into the Report objects. Therefore, when
the user passes a zipped FAERS folder to the MARAS system, the data is added from
that folder to the collection of data it has already been given, and then generates the
ruleset with this new data included. This allows the system to generate rules based on
any number of FAERS datasets collectively, as opposed to a single FAERS dataset at a
time.

This setup successfully meets the goal of allowing the MARAS system to utilize multiple
sets of data from FAERS, but it had a significant problem: repeatedly parsing the files is
inefficient, and as more and more datasets are added the system took exponentially long
to run. Indeed, even running the system on just two datasets, the 2013 Q1 and the 2017
Q2 data, took well over an hour to complete. Therefore it was important to find any way
we could speed up this process; namely, by reducing the repeated work done each time
the system ran.

The clearest candidate of repeated work that could be eliminated is the process of parsing

39

the raw FAERS text files. Each raw file contains a significant amount of data, much of
which is ignored by the MARAS system. This resulted in a significant time cost that
could be avoided by cutting out as much unnecessary data as possible. We determined
the most effective method for this would be to store the parsed data in a new format
after organizing the information into a set of Reports; when the system runs, rather
than parsing the raw data over again, it will parse the new format that contains just the
information it needs. The format we used is a text file where each line represents a report;
each line contains a list of drug names and reaction names, with an arrow symbol “->”
in between to distinguish them. Additionally, each drug or reaction name is separated
by a comma. This results in concise data that only stores the information needed by
the system. This dramatically reduced the size of the data being parsed; while the raw
FAERS files for 2017 Q2 combined were almost 200 MB of data, the simplified file for
that same data was just 16.5 MB. The results were also clear in terms of the time the
system took; whereas running the system on the 2013 Q1 and 2017 Q2 data took over an
hour before the change, after the change it took around 12 minutes from start to finish.

Next, there were several steps that made the MARAS system more efficient and simpler
to use. First, the command line argument format was refactored to emphasize simplicity
and flexibility. While the first version of the MARAS system simply defined command
line arguments based on the order of the arguments (the first argument was the FAERS
file, the second argument was the output path, etc.), the new version used specific flags to
indicate which argument was which, such as “-f” to indicate the FAERS file(s) used and
“-o” to indicate the output path. This meant the user would not have to memorize the
order of the arguments, and also allowed for more flexibility for certain parameters. For
example, under this format the MARAS system supports the input of multiple FAERS
files at a time, which provides greater flexibility.

4.2. Adverse Reaction Mapping

One important component of the DIVA/MARAS system is the ability to label potential
drug-drug interactions that are mined from FAERS data as known or unknown. A drug-
drug interaction is labeled as known if the interaction has been previously documented.
Otherwise the rule is labeled as unknown. This labeling process is important because it
allows FDA analysts to filter out interactions in the DIVA visualization that correspond
to known drug-drug interactions so that they can instead focus on discovering novel
ADRs.

After researching sources of known drug-drug interactions, the team considered two
potential sources: Twosides and a RESTful API that draws information from the
ONCHigh and Drugbank databases (Tatonetti et al. (2012), (“Drug Interactions API”
2017)). Twosides is a database available as a file download that contains simple known
drug-drug interaction rules, each rule consisting of two drugs and one adverse reaction.
Meanwhile, the RESTful API takes as input the name of a drug and provides information

40

about any known interactions with other drugs. However, the problem with the reaction
information obtained via the RESTful API is that it provides a general description of the
ADR, rather than a descriptive term such as those found in the FAERS reports and the
MARAS rules. For example, for the reaction between Vincristine and Cyclophosphamide
the RESTful API describes the ADR as “The serum concentration of Vincristine can be
increased when it is combined with Cyclophosphamide”, whereas corresponding Twosides
and MARAS rules label the ADR as Anemia. Therefore, the RESTful API could not
easily be used to decide whether a given MARAS rule is known or unknown due to this
difference in the method of describing ADRs. For this reason, the team chose to use the
Twosides database for the purpose of identifying known drug- drug interactions.

After finding this source for known drug-drug interactions, there were still problems with
matching the drug-drug interaction rules found in the MARAS system with the known
rules from the Twosides database. The main issue was that the names of ADRs in the
Twosides database did not always match up with the names of ADRs used by the FDA
in the FAERS data. This meant that there were rules mined by the MARAS system that
were equivalent to rules found in the Twosides database of known drug-drug interactions
but were not matched because the term used to describe the MARAS rule’s ADR was a
synonym for the term used to describe the Twosides rule’s ADR. Consider the following
example. The MARAS system mines the rule that states that Aspirin, when used in
conjunction with Metoprolol, causes Myocardial Infarction. Meanwhile, a similar rule in
the Twosides database states that Aspirin, when used in conjunction with Metoprolol,
causes Heart Attack. While these two rules are equivalent in meaning, the MARAS
system failed to label the MARAS rule as known since the ADR names were different.
This problem supported the need for ADR name standardization between the known
rules in the Twosides database and the rules mined from the FDA’s FAERS data.

The MedDRA hierarchy is a commonly used form of classifying and grouping related
terms for ADRs ((“MedDRA Hierarchy - How to Use” 2017)). The hierarchy is organized
from most general to most specific. The levels of the hierarchy are System Organ Class
(SOC), High Level Group Term (HLGT), High Level Term (HLT), Preferred Term (PT),
and Lowest Level Term (LLT). LLTs are the most specific terms and describe how an
observation is usually reported. Each LLT corresponds to only one PT, and each PT
corresponds to at least one LLT. In addition, PTs can have synonyms. The next level of
abstraction groups similar PTs under a single HLT, which are further abstracted into
HLGTs. Lastly, HLGTs are grouped into SOCs by the cause of disease, area affected by
the disease, or purpose.

The ADRs given in the FAERS reports are in MedDRA PTs (“Questions and Answers
on FDA’s Adverse Event Reporting System (FAERS)” 2017). However, the ADRs in the
Twosides database are either in LLT or PT form. Therefore, there is a need to convert all
ADRs to PTs and recognize when two or more PTs are synonyms. These are the principal
goals of ADR name standardization in this context. However, it should also be noted
that the proposed method of ADR standardization will also help to reduce the number of
MARAS ADRs that are synonyms for one another, resulting in rules with higher support

41

values that more accurately reflect the importance of the drug-drug interaction.

When researching methods of ADR name standardization, the team first discovered
the SIDER database, which contains mappings from Lowest Level Terms to Preferred
Terms that are extracted from drug labels Kuhn et al. (2016). To leverage this database
for name standardization, each mapping was read in, using the process seen in fig. 4.1,
to attempt to create ADR schemas corresponding to each distinct ADR. Each ADR
schema has at least one LLT, at least one PT, and a standardized name (made up of the
concatenation of all PTs in alphabetical order). An example of such an ADR schema can
be seen in fig. 4.2; the Lowest Level Term arthritis has two Preferred Terms, arthritis and
rheumatoid arthritis, and the standardized name “arthritisrehumatoidarthritis”. Then,
when an ADR term was read in, either from the FAERS data or the known rules, the
term was checked against each ADR schema to see if it matched any of the LLTs or PTs
of that ADR. If a match was found, then, as in fig. 4.3, the ADR term was changed to
the standardized name from that ADR schema to be used in the subsequent steps of the
MARAS system.

Figure 4.1.: SIDER map creation flowchart

Figure 4.2.: Diagram showing the how standard names, LlTs and PTs are related

While the number of rules labeled as known by the MARAS system increased, the system
still failed to recognize that Heart Attack is the same ADR as Myocardial Infarction

42

Figure 4.3.: Mapping Process flowchart for SIDER mapping

(Fig. 4.4), signifying that the SIDER database was incomplete in its mapping database
from LLTs to PTs. Therefore, an alternative source of ADR name standardization,
MetaMap, was explored.

Figure 4.4.: Diagram showing an example where the SIDER mapping fails

MetaMap is a tool provided by the National Library of Medicine that parses natural
language and identifies Unified Medical Language System concepts from the text (Aronson
and Lang (2010), (“Unified Medical Language System (UMLS)” 2017)). To implement
MetaMap into the MARAS system, every time an ADR term was read in from the
FAERS data or the known rules, the term was checked against a “cached” map of all
ADR name conversions that were previously made by MetaMap. This process can be
seen in Fig. 4.5. In the event that the ADR term had not previously been converted with
MetaMap, the term was submitted to MetaMap and the resulting PTs were concatenated
to form a single standardized term for the ADR. This standardized term was then added
to the map of “cached” terms to reduce future look-up times. An example of a mapping
using MetaMap can be seen in Fig. 4.6.

43

Figure 4.5.: Mapping process flowchart showing the MetaMap mapping process

Figure 4.6.: Diagram showing an example mapping for MetaMap

After implementing both methods of ADR name standardization, a comparison, seen in
Fig. 4.7, was done on the effect of each method on the MARAS process. Using the SIDER
ADR hierarchy, the MARAS system detected 7657 distinct ADRs, whereas 7724 distinct
ADRs were detected when using MetaMap. This may mean that the MetaMap system
does not generalize as well as the SIDER ADR hierarchy. Despite appearing to exhibit
less generalization, MetaMap outperformed SIDER at matching MARAS rules with
equivalent known rules, finding 56 known rules out of 1542 while the SIDER-based system
found only 13. In addition, the set of 13 rules labeled known by the SIDER-based system
was a subset of the 56 rules found by the MetaMap-based system. It is also worth noting
that the MetaMap-based system succeeded in recognizing that Heart Attack is a synonym
for Myocardial Infarction, resulting in more rules being labeled as known, such as the
rule in Fig. 4.7. As another part of the comparison, the time was measured during the
process of standardizing the ADR terms for each of the known rules using both methods.
A further experiment was conducted to measure the time taken to process the rules with
and without parallelization for each method, as seen in tbl. 4.1. Without parallelization,
the MetaMap-based method took 38 minutes to process the known rule database while
the SIDER-based method took 45 minutes. With parallelization, the MetaMap-based
method took 8.3 minutes to process the known rule database while the SIDER-based
method took 8.6 minutes. Overall, the team decided that the MetaMap-based approach
was a better match for the MARAS system because it not only provided for better

44

known rule matching but also outperformed the SIDER-based approach in terms of time
efficiency.

Figure 4.7.: Demonstrating that MetaMap resolves more matches than SIDER

Table 4.1.: Comparison of effectiveness and speed of ADR mapping methods.

MetaMap SIDER ADR Hierarchy

of distinct ADRs 7724 7657
of rules labeled as Known 56 13
Time to parse known rules ≈ 8.3 minutes ≈ 8.6 minutes
Time to parse before parallelization ≈ 38 minutes ≈ 45 minutes

Once MetaMap was chosen as the engine for adverse reaction mapping, we integrated
not just the calls to the Metamap API, but also the operations of the MetaMap server.
To successfully utilize the MetaMap API, MARAS uses three separate server instances:
the SKR/Medpost Tagger, the Word Sense Disambiguation (WSD) Server, and finally
the actual MetaMap server itself. Originally, this required manually starting these three
separate server instances in different windows or as background processes, and then
manually closing these instances when they are no longer needed. To improve simplicity
and usability, this process was instead integrated as part of the MARAS system itself.
The program starts the three separate server instances on its own, and closes them once
the analysis is completed. This reduces the overhead required by the user to start the
system, and makes the MARAS-DIVA integration simpler.

Finally, the MARAS system had to be deployed to our server, set up through WPI.
Because the server is run through a Linux system, and our testing up to this point was
performed on Windows systems, the first step required to integrate to the server was to
handle Linux support. This primarily involved refactoring to properly support the Linux
version of MetaMap; the MARAS system will detect which operating system is being
used and launch the proper MetaMap instances appropriately.

45

4.3. Drug Name Matching

When parsing the input data in order begin preprocessing it for mining in our MARAS
tool, we found that we had many similar drug names in our input fields, where a human
would often be able to recognize as belonging to the same drug. However, in these
situations the association-rule mining algorithms would end up treating them as different
drugs, as their names wouldn’t pass naïve equality checks. In order to accomplish this,
our algorithms must consider a ‘fuzzy’ notion of equality.

This notion is often used in name lookups for people—as it is easy to misspell someone’s
name, especially in international settings. In their master’s thesis, Du (2005), explored
the effectiveness of various algorithms for matching similar personal names. They found
that for language independent name matching, algorithms based on edit distance. gave
the most effective results.

Edit Distance Given two strings a and b on an alphabet Σ (for example, the set of
ASCII characters), the edit distance d(a, b) is the minimum-weight series of edit
operations that transforms a into b.

Less formally, edit distance is the number of simple edits required to transform
one string into another. The different operation classified as simple edits are the
substitution of a letter, deletion of a letter, insertion of a letter, and the transposition
of two adjacent letters (Du (2005) pp. 5).

The smaller the edit distance between two strings, the more similar each string is
to the other.

When using edit distance algorithms to correct misspellings of surnames across multiple
cultures, Du (2005) found that there was a tradeoff between speed and maximizing the
number of relevant matches. They found that using a Bloom Filter and reverse edit
distance would minimize the number of irrelevant matches while running faster, while
using edit distance with a trie data structure and constant first letter would maximize
the number of relevant matches at the expense of speed.

This sounds like it would work pretty well for our usage. While we are unlikely to
encounter misspellings, the data we get from FAERS can often contain extra information,
like the active ingredient in addition to the name, the dosage information, or even just a
repeat of the drug names themselves.

However, in order to have anything to match, we need to have a database of normalized
drug names—a set of drugs that we match everything back to. The main difficulty here is
developing a vocabulary of drugs that is sufficiently large and will almost always contain
the drug that was meant in the report. For this purpose, we are using RxNorm, a dataset
of all perscribable drugs managed by the National Library of Medicine (Liu et al. (2005)).

In order for accurate sorting of the imperfect names in the ADR reports we need to have
a dataset that includes almost all named drugs without having too many overlapping

46

names. Unfortunately, with RxNorm there were many overlapping names in even the
smallest dataset provided, as the dataset provides some mapping functionality between
different formats for each drug.

Thus, we had to further clean the dataset in order to make full use of it for drug name
matching. For the first iteration of dataset cleaning, we used a script to create a JSON
datafile that contained only drug names that didn’t have another dataset entry with a
name that was a substring of it’s name.

For example, if there was injectablediazepam as well as diazepam, we’d only want to
include diazepam. To accomplish this the following python loop was executed for every
new drug name read into the script.

Listing 4.1 Naive Vocabulary Building
flag = True

for drug_id in output_dict.keys():

drug = output_dict[drug_id]

if name in drug:

flag = False

break;

if drug in name:

output_dict.pop(drug_id)

if flag:

output_dict[nId] = name

This is just a naive check to see if our dictionary of drugs (and id’s) either contains
another drug whose name is fully contained within the current drug’s name—which
means we ignore this new drug—or if drugs we already added to the dictionary fully
contain the current drug name, whereupon we remove those drugs from the dictionary
and keep checking more drugs.

Of course, this makes parsing the dataset a very computationally expensive process,
being O(n2) and having to process more than 200,000 lines. In initial testing, this takes
almost an hour. Fortunately, once the dataset is satisfactorily cleaned, the drug list will
not have to be recalculated for quite a while.

Unfortunately, this didn’t do quite enough to remove redundancies in the dataset. This
algorithm left overly-specific entries such as the following:

Listing 4.2 Vocabulary Sample Showing Redundancy from Dosage Information
1003676: 'zerit15mgoralcapsule',

1003680: 'zerit20mgoralcapsule',

1003684: 'zerit30mgoralcapsule',

1003688: 'zerit40mgoralcapsule'

A human user would reduce such drugs to 'zerit', leaving off the dosage information,

47

but since there wasn’t necessarily an entry in the dataset merely saying 'zerit', the
entries were never shortened.

Thus, we worked on creating a dictionary of strings that could be (mostly) safely ignored
when parsing the drug names. This included words like oral, and injectable, but also
numbers, units, or body part descriptors such as vaginal, subcutaneous. Because we
aggressively removed matching character sequences from our potential drug names, we
had to be sure that the patterns we were using wouldn’t match unintended words. For
example, without special treatment, the pattern in would match the final two characters
in the word protein, which was undesirable. Thus, we made the pattern ' in ', which
would only match with whole words.

Additionally, drugs would often be of the form:

Listing 4.3 Vocabulary Sample Showing Redundancy from Alternate Forms

3858048: 'd4t30mgoralcapsule[zerit]',

3858049: 'dht30mgoralcapsule[zerit]',

3858259: 'd4t20mgoralcapsule[zerit]',

3858260: 'dht20mgoralcapsule[zerit]'

This is an easy special case, since we can just find the string inside the square brackets
and reduce our result to zerit, which is our goal.

Once we developed this vocabulary, we can run the edit distance on all members of the
vocabulary for a matchable drug name. Consider the following example vocabulary:

Listing 4.4 Sample Vocabulary for Edit Distance Example
vicodin

zamicet

ibuprofen

theophylline

If we are attempting to match IBUPROFEN 500mg, then the process would be to first
perform the same normalization step as we did with the strings in the dataset: re-
moving whitespace and converting to lowercase. Thus, IBUPROFEN 500mg becomes
ibuprofen500mg. Then we calculate the edit distance for each of the strings in our
vocabulary.

At first, we considered pure Levenschtein Distance, which is an edit distance involving
only the substitution, insertion or deletion of single letters. We modified the cost of
substitution to be the same as an insertion followed by a deletion, otherwise all words
of the same length and no overlapping letters would be just as far away as a word that
contains every letter in the source string, but is twice as long.

The evaluation methodoloy we used to test this distance was implemented in JAVA by
Lloyd (1999). For example if we run ibuprofen500mg, we get edit distances of:

48

• ibuprofen500mg -> vicodin: 15
• ibuprofen500mg -> zamicet: 17
• ibuprofen500mg -> ibuprofen: 5
• ibuprofen500mg -> theophylline: 22

We also considered a second distance metric, namely the Damerau-Levenschtein distance,
which adds the ability to swap adjacent characters. This operation needs to have a cost
of at least half the sum of the costs of addition and deletion for the algorithm we found,
implemented by Kevin Stern in 2014. We chose a cost of 1.2 as an initial test. For this
metric, we get edit distances of:

• ibuprofen500mg -> vicodin: 15
• ibuprofen500mg -> zamicet: 17
• ibuprofen500mg -> ibuprofen: 5
• ibuprofen500mg -> theophylline: 19.4

In our example vocabulary, both algorithms come up with ibuprofen as the best match
by far, which is good.

We ran this algorithm on the first 20,000 reports in our data set and tuned Damerau-
Levenschtein distance parameters to attempt to maximize the number of distinct drugs
mapped. We ended up with approximately 8500 distinct drugs matched in the first 20,000
reports using the following parameters:

• Add a character: 0.6
• Delete a character: 1.0
• Replace A character (add then delete): 2.0
• Swap two adjacent characters: 0.9

Once implemented and tuned, we needed to ensure that the behavior of our matching
method was reasonable and did not consistently match unrelated drugs. To this end, we
examined a random sample of the matched reports to document:

• The input name (e.g. ibuprofen500mg)
• The matched name (e.g. ibuprofen)
• The edit distance
• The number of times this mapping occurs

For example, a test sampling of 5 entries gave:

Table 4.2.: Table demonstrating evaluation sampling for Drug Name Matching

Mapping Number Input Name Matched Name Edit Distance Count

35498 inexium nexium 1.0 27
515084 carvedilol carvedilol 0.0 712
483937 metoject totect 3.6 87
322073 metamucil metamucil 0.0 45
397503 cyclosporine un cyclosporine 4.0 2

49

Mapping Number Input Name Matched Name Edit Distance Count

The sensibility of a specific drug mapping is, however, a very domain-specific problem. It,
for example, it doesn’t make much medical sense to map metoject to totect as they are
completely different drugs. Metoject is a cytotoxic antimetabolite used to treat severe
arthritis, while Totect is a drug used to protect a patient’s heart during chemotherapy
for breast cancer.

Alternatively, INexium and Nexium are very close matches and are, in fact, the same
drug. So this is a sensible match. For evaluation, we manually examined both sides of
the mapping to determine if the match is sensible or not. However, not all sensible (or
not sensible) mappings were created equal. It is more valuable that all 712 occurrences of
Carvedilol in the reports were mapped correctly than that 45 occurrences of Metamucil
were. Thus we weighted the value of each sensible or not sensible mapping based on how
often they occurred.

Since we didn’t want exceedingly common mappings like Carvedilol to completely eclipse
the more niche mappings we decided to compare the weights of the square roots of the
occurrences. This way the most common drugs are only somewhat more important than
those that happen just enough to contribute to the rule lists.

In the above table, the four sensible matches (Inexium, Carvedilol, Metamucil, and
Clyclosporine) contribute a weight of 40.0 to sensible matching, while Metoject contributes
a score of 9.3 to the not sensible matching.

Therefore this sample gets a score of 0.811. Without the square-root weighting, this
corresponds to 94% of drug instances being matched sensibly.

For a larger sample, consisting of 100 mapping instances, we got a score of 0.842,
corresponding to 86% of drug instances being matched sensibly.

We then tuned the weights of the algorithm to try to maximize the effectiveness of
our matching techniques. In the end, after 5 tuning passes, we were able to improve
our sensiblility metric to 0.855, which corresponded to 91% of all drug instances being
matched sensibly.

Our final tuning weights were:

• Add a character: 1.0
• Delete a character: 0.6
• Replace a character (add then delete): 2.0
• Swap two adjacent characters: 0.9

50

4.4. DIVA Interface Improvements

4.4.1. Improving Existing Features

We started by improving the design and functionalities of the DIVA website. Like DIVA,
the new website has four basic views: Screening Overview (previously called Overview),
Signal Triage View (Galaxy View), Signal Forensics View (Profile View) and Report
View. These views are complicated and contain a lot of logic. Therefore, for better
maintainability, we refactored them as a collection of React components which have
parent-child relationships instead of one single component. The parent component can
pass down the state to its child components as “props” and the child component can
modify its parent’s state by emitting some actions. Fig. 4.8 shows the layout of the
website’s main view.

Figure 4.8.: Screenshot of DIVA main view interface

At the initial load of the website, the force-layout graph in the Screening Overview pane
is displayed on the left. To render the force-layout network graph, we use the vis.js
library. The library is highly customizable. We can customize anything from colors of
nodes and edges to the duration of animation using a global “options” object which is
passed to the React graph component. Drugs are displayed as nodes. Meanwhile, an edge
represents the rule between two drugs with the highest score of all rules between those
two drugs. There are two kinds of edges: the solid lines show rules that are unknown
and the dashed lines show rules that are known. The colors of edges represent their
contrast scores. We used four colors to show four uniformly distributed ranges of scores,
labeled as: Low, Med. Low, Med. High, and High. In addition, by hovering over an
edge, a pop-up appears and shows the information about the rule such as drug names,
number of ADRs, highest scored ADR, score and status. By hovering over a node, the

51

corresponding drug name appears and all the edges containing that node are highlighted.

The Signal Triage View is similar to that of the old DIVA system. Each pane shows the
interactions related to one specific drug, which is the blue node at the center of each
graph. We implemented various sorting methods for the Signal Triage View: sorting by
name of drugs, sorting by the latest drugs added to the view, sorting by the number of
edges containing that drug, and by the number of severe ADRs. Each pane also has the
ability to remove the drug from the Signal Triage View and show the drug’s profile in
the Signal Forensics View. One difference from the old system is that each pane’s header
is now colored to represent the severe ADR count associated with that pane’s drug of
interest. Previously, the border was colored to represent this information; however, in
the new system a colored border is used to indicate the selected drug, or the drug that is
currently being displayed in the Signal Forensics view and highlighted in the Screening
Overview.

The Signal Forensics View and the Report View work as in the old DIVA website.

4.4.2. Implementing New Features

In addition to these views that existed in the old system, we have added new features
to visually enhance the interface and assist users in leveraging the system to identify
MDARs. We added a help section, improved the filtering functionality, created a chip
system to help users track which drugs and reactions they wish to study the underlying
reports for, provided summary statistics for the number of drugs and ADRs visible in the
interface, and added a system for new FAERS data to be integrated into the analysis.

To begin with, a detailed help section was added. The help section features information
about each of the different views, including the significance of different colors and line
styles, as well as information about the different filters that can be used on each of the
views. A screenshot of the help view is shown in Fig. 4.9.

The help section also includes a button that allows users to take a tour of the site. The
interactive tour visits each view and each filter, offering the user the opportunity to try
clicking on nodes and viewing the reports behind visualizations.

As seen in Fig. 4.10, the tour asks users to interact with the interface in order to progress
on the tour, showing them the natural progession of tasks in the application while walking
the user through the features.

Our filtering improvement focused on improving the usability of the contrast score
filtering as well as filtering for specific drugs. Instead of filtering constrast score by
using a minimum allowed score, we modified the filtering system to allow users to choose
an upper and lower bound for the contrast scores of the ADRs they wished to see.
Additionally, a curve above the range slider shows the distribution of contrast scores
among all interactions. This information can help users to understand how they are

52

Figure 4.9.: Screenshot from Help Section

filtering the views and how much information they are filtering out. The new filtering
widget is shown in Fig. 4.11.

We also completely refactored the way that users could select specific drugs for further
study. We replaced the list-view of drug names with a search box that supports the
auto-completion of drug names so that the users need not remember or type the exact
drug name as in the old DIVA system. Once the user clicks or presses enter, all three
views will be re-rendered. The Screening Overview window zooms in to the searched
drug. The searched drug is also added to the Signal Triage View and its profile is shown
in the Signal Forensics View. A chip corresponding to the searched drug is also added
(see below). In Fig. 4.12, we have an example of the auto-completion function on the
search bar in action.

We added a Chip system to facilitate viewing reports. Whenever a user clicks on a node
or an edge in the Screening Overview tab, a corresponding chip is added to the top of the
screen. Chips are colored blue if they represent a single drug, or if the chip represents a
DDI, then the chip is colored according to that DDI’s score, just like the corresponding
link in the Overview. Clicking on the chip will allow the user to view all FAERS reports
that correspond to that drug or DDI. Note that to view reports for a drug, the user can
also go through the Signal Triage View, but to view reports for a DDI, the user must use
this chip system. In Fig. 4.13, we demonstrate the different colors that the chips can
take.

We added drug and interaction icons to the toolbar at the top of the screen, seen
in Fig. 4.14, to inform the user about the current number of drugs and interactions
in the visualization. These numbers are automatically updated to reflect the current
visualization when filters are applied.

53

(a) Tour Waiting for Action

(b) Tour After Interaction

Figure 4.10.: Screenshots of the tour

Figure 4.11.: Screenshot of Min/Max Score Filter

54

Figure 4.12.: Screenshot of Search Bar

Figure 4.13.: Screenshot of Chip System

Figure 4.14.: Drug and Interaction Counts

55

Another key difference from the previous version is the addition of MARAS analysis
status information and the ability to upload FAERS files and begin MARAS analysis
through the user interface. As seen in Fig. 4.15, the user can follow the link to download
zip files from the FDA’s website. Then the user can upload one or more of those files to
the system and start the MARAS analysis on those files. After the analysis is completed,
the status information is updated with the status of the MARAS execution (successful,
in progress, or exited with errors), a possible error message, a timestamp for the last
time the information was updated, and a listing of all the datasets currently used for
the visualization. Lastly, the MARAS system automatically updates the file used for the
visualization, so users can see the results of the newly added data.

Figure 4.15.: Upload FAERS Files

We moved the legends showing the significance of the colors in the visualization beneath
the view that they most correspond to. As seen in Fig. 4.16, there is also the option to
hide the legends to provide more space for the visualization.

Lastly, we created an About Us (Fig. 4.17) section providing a summary of the team that
developed DIVA, MARAS, and MIAP, as well as how to contact them.

56

(a) Legends Shown

(b) Legends Hidden

Figure 4.16.: Screenshots showing how the legends can be hidden.

57

Figure 4.17.: About Us

58

5. Evaluation and Testing

After completing our integration and improvement steps in creating MIAP, we needed to
ensure not only that it would run without bugs, but that it still was capable of providing
users with the tools to accomplish all of the tasks that they were able to in the previous
iterations of DIVA. This chapter, divided into our technical testing and user evaluation
sections, will outline our evaluation processes.

5.1. Technical Testing

Though we started the project with existing algorithms for ranking and visualizing the
drug interaction data, we redeveloped the systems from the ground up, so it was essential
that we conduct testing to show that we were able to reproduce the functionality of
the discreet tools we started with. To that end, we conducted several tests during our
development process, ensuring that, at each stage, we were able to mine and rank the
data correctly. Technical Requirement 1 formalizes our expectations for the technical
performance of our system.

Listing 5.1 MIAP Technical Requirement 1
Correctly intake, mine, and rank new FAERS data provided by a user with no

further human intervention

The first part of this testing was ensuring that the mining and ranking systems, once
implemented in early iterations of MIAP, matched the rule-generation results from the
tools developed by our graduate student mentors. We developed a testing function that
matched each section of the rule generation algorithm, itemsets generation, and rule
generation, to ensure that, for the same data, our code generated the same output as the
old system. In Sec. 3.2, we discuss the specifics of this methodology.

In Sec. ??, we added several new features, including adverse reaction mapping, known-rule
recognition, and drug name matching. When adding these features, we included tests to
ensure that we correctly recognized known rules and that our drug name matching was
sensible overall. The specific methodology of these testing procedures are discussed in
detail in Sec. 4.2 and Sec. 4.3.

Since we were comparing two different algorithms for use as our known-rule recognition
system, we were able to use the comparison metrics as our test for correctness. We

59

compared the number of rules recognized, trying to bring that number as high as possible
without any obvious inaccuracies.

With edit distance for drug name matching, we first tried to find the vocabulary that
had the most unique drug names without including a drug name that would be difficult
to match because of dosage information, included alternate names, or had otherwise
extraneous information in the drug name. The largest sensible vocabulary was the one
we chose to move forward with. After finding the most suitable vocabulary, we moved on
to testing the parameters for calculating the edit distance on each input drug name. Here
the goal was to have the smallest number of insensible matches. We examined both the
raw percentage of unique reports matched sensibly, as well as a metric that de-emphasized
the most common matches, so that they would not overshadow inaccuracies with more
obscure drugs.

5.2. Usability Evaluation

Following the development of MIAP, it was essential to confirm that the application is
still capable of meeting the design requirements outlined in cooperation with the FDA.
To this end, we decided to conduct a quantitative and qualitative user evaluation that
assesses how well MIAP meets the requirements and identifies areas for improvement
within the application. When constructing the user evaluation, we considered the
traditional user study that involves comparing the new application with the state of the
art. However, safety analysts at the FDA do not currently use any visualization tool for
identifying MDARs, so we could not take this approach. While we considered conducting
a comparison study between the previous DIVA interface and the new MIAP application,
we decided to focus instead on having users complete a number of tasks within the MIAP
application alone to focus more on its usability and less on the differences in visual appeal
between the two interfaces.

5.2.1. Experimental Design Methodology

Our usability evaluation was focused on determining how well the MIAP application
met the requirements from Kakar (2016), discussed in Sec. 2.2. During the development
process for MIAP, we decided to skip over Requirement 7 and leave it for future work to
focus on more pressing features.

Requirements 8 and 9 focused on usability and were general enough for us to consider
part of the overall requirement for the project, in that creating an application that is
usable is part of following good software engineering practices. Therefore, we omitted
those requirements from our final list of requirements for MIAP. Thus, the six following
requirements, adapted from Kakar (2016), informed the development of our usability
study.

60

Listing 5.2 MIAP Usability Requirement 1
Provide a view of all ranked hypothetical interactions at-a-glance.

As in the original DIVA platform, viewing all the hypothetical interactions at-a-glance
on the main screen is an essential requirement. Having designed the “Overview” view to
be the root of all user interactions with the interface—it is where drugs and interactions
are selected, filtered and searched for—we need to test how well the Overview provides
this feature.

Listing 5.3 MIAP Usability Requirement 2
Facilitate differentiation between unknown hypothetical interactions

and already researched known interactions.

The mined data is going to include many reports for known drug interactions, so it is
important to be able to tell them apart from the hypothetical interactions that need
further research to confirm. We need to test if the method we used to differentiate
them—solid lines for unknown, hypothetical, interactions, and dashed lines to represent
known reactions—is sufficient for users to easily tell the two states apart.

Listing 5.4 MIAP Usability Requirement 3
Allow focus on select interactions for further study.

The Galaxy View and Interaction Profile are parts of the visualization that are designed
to provide focus on a select set of interactions beyond what is available in the Overview.
We need to be able to see if they can provide the needed functionality, in that they get
rid of uninteresting or unimportant drugs and interactions and allow for users to be able
to keep track of them.

Listing 5.5 MIAP Usability Requirement 4
Facilitate the prioritization of focused interactions by various criteria.

Prioritization is the key to being able to analyze a set of drug interactions. Once a user
chooses or is assigned a group of drugs to examine, they need to be able to tell which is
the most interesting, and that can depend on a number of criteria: the contrast scores of
the interactions, the severity of the reactions, the number of reports for each interaction,
or others. Therefore, we need to be able to test how well MIAP is able to prioritize
interactions by different criteria.

Listing 5.6 MIAP Usability Requirement 5
Facilitate detection of severe ADRs.

As discussed in Sec. 2.2, we need to be able to see when an interaction involves a serious
reaction. Adverse reactions that threaten imminent death are going to be prioritized
higher than those which are less dangerous, so we want to be able to test how easy it is
to notice those severe reactions.

61

Listing 5.7 MIAP Usability Requirement 6
Provide access to the underlying FAERS reports.

The underlying FAERS reports are the backbone of the evaluation process for confirming
MDARs, and we need to test how easily available we have made those reports, as well as
how accessible they are for the user to consume.

From these requirements, we developed a list of tasks that, if easily completed, would
demonstrate that the MIAP platform had met those requirements. However, in its first
iteration, this list included tasks that were easy for us, the developers, to complete in
multiple views. We wanted our test to evaluate each view separately and show that the
DIVA views added value to the system, so we refined our tasks to focus on one each view.

5.2.2. Experiment Overview

There were two planned phases for our qualitative evaluation experiment. First, we
selected WPI students to interact with the interface in order to gain general insights
of the usability of the system. Additionally, this would allow us to determine whether
MIAP meets the requirements laid out in Sec. 5.2, which are based on those from Kakar
(2016). Second, we intended to meet with domain specialists from the FDA to evaluate
how well the tool meets their needs beyond the requirements they communicated with
Kakar. However, we did not have time to meet with specialists from the FDA, so this
part of the evaluation has been added to our recommendations for future work Sec. 7.2.4.

WPI Students To recruit WPI students for the study we sought volunteers vial email,
social media, and word of mouth, offering participants a chance to win one of a
small number of incentives.

After we had recruited participants, a member of our team met in person with each
participant separately to conduct the evaluation. To begin with, the participant
was given a brief outline of the methodology used to conduct the evaluation in order
to ensure that they were still okay with participating. If they agreed to continue
participating, then we asked for their email address to use in the case that they
won an incentive. They were then given a short overview (Sec. A) of the purpose
of the interface that we had developed along with some background knowledge
necessary for a rudimentary understanding of how to interact with the interface.

Afterwards, the participant was presented with a series of tasks to complete using a
set interactive version of the interface. While the participant was performing each
task, they were asked to verbally indicate what they were trying to do and whether
they were confused by anything. At the same time, the member of our team was
taking notes regarding the participant’s level of frustration/satisfaction, time taken
to complete the task, and any verbal comments that the participant made.

Following the completion of the tasks, the participant was asked a series of questions

62

regarding their interaction with the interface and anything that they thought
could be improved. The member of our team made notes as necessary. Then, the
participant had the opportunity to ask any questions they might have had regarding
our project. They were then notified that they would receive an email if they were
later found to have won one of the incentives.

After all the WPI students had participated in our evaluation, a drawing was held
to identify the winners of the incentives. Each student was assigned a unique
number from one to the number of WPI students who participated. For each
incentive, a random number generator was used to randomly select a WPI student
to win that incentive. If the same student was selected multiple times, we repeated
the aforementioned process until all incentives were assigned to different students.
Then, each winner of an incentive was notified via email, and a meeting was be
arranged for them to pick up their incentive.

FDA Domain Specialists Please note, we did not have time to meet with specialists from
the FDA, so this part of the evaluation has been added to our recommendations
for future work Sec. 7.2.4. However, in cooperation with PhD students Kakar and
Qin we designed the following approach. To recruit domain specialists from the
FDA, we would contact members of the CDER that have assisted the research of
Kakar and Qin.

After finding domain specialists willing to participate in our study, a member of our
team will meet in person with each specialist separately to conduct the evaluation.
To begin with, the specialist will be given a brief outline of the methodology used to
conduct the evaluation in order to ensure that they are still okay with participating.
Then, they will be given a short overview of the interface that we have developed.
Before seeing the interface itself, we will ask the specialist to try and imagine how
they might use this kind of tool.

Afterwards, the specialist will be invited to explore the interface directly. We will
guide them through the tasks that we set out for the WPI students, and ask them to
try and use the interface to accomplish the use cases they had mentioned previously,
as well as any other way they might intend to use it. While the specialist is working
they will be asked to verbally indicate what they are trying to do and whether
they are confused by anything. At the same time, the member of our team will
take notes regarding the specialist’s level of frustration/satisfaction and any verbal
comments that the specialist makes.

Following this, the specialist will be asked a series of questions regarding their
interaction with the interface, including whether they think the interface would
help them in identifying adverse drug-drug interactions and anything that they
think could be improved to help them better do their job. The member of our team
will make notes as necessary. Then, the specialist will have the opportunity to ask
any questions they might have regarding our project.

Both phases center around the requirements that we adapted from Kakar and Qin

63

(2017–2018), in the design process. The tasks we developed from those requirements each
focus on their own views in the application. We presented the tasks with relationships to
the views we wished the subject to focus on when accomplishing the tasks, so that we
could understand how well each specific view fulfilled the requirements set out for them.
Our tasks, organized by view, were as follows:

Overview (Req. 5.2)

• Task 1: Find 3 unknown drug-drug interactions (Req. 5.4, 5.5).
• Task 2: Find 3 drug-drug interactions with a score greater than 0.5 (Req.

5.4).

Galaxy View

• Task 3: Find and select drugs Trazodone, Metaxalone, and Tylenol. Of
these drugs, which drug has the highest number of ADRs (Req. 5.3, 5.6)?

• Task 4: For the drug Metaxolone, how many high scored, (score > 0.2),
and unknown interactions are there (Req. 5.4, 5.5, 5.6)?

Interaction Profile

• Task 5: Find which ADRs that occur between Diazepam and Trazodone
(Req. 5.3).

• Task 6: How many reports support the interaction between Diazepam and
Trazodone (Req. 5.7)?

• Task 7: Find all severe ADRs associated with Trazodone’s interactions (Req.
5.3, 5.6).

Report View (Req. 5.7)

• Task 8: Please open the reports for the interaction between drugs Zoloft and
Tylenol.

• Task 9: List the three most frequent drugs reported with the interacting drugs
Zoloft and Tylenol.

64

6. Evaluation and Testing Results

In this section we present the results of the technical and usability evaluations outlined
in Sec. 5. Overall, the technical results confirm that the system correctly mines drug-
drug interactions and show that the choices made for adverse reaction and drug name
standardization are logical. Meanwhile, the usability evaluation results indicate that
MIAP aligns well with the FDA’s requirements while highlighting areas for improvement,
some of which were promptly addressed.

6.1. Technical Results

6.1.1. Validation of MIAP Output

As seen in Sec. 3.2, after reimplementing the data mining part of the MARAS process in
Java, we tested to ensure that the rules and itemsets generated by both systems were the
same. Following testing with the same input data and parameters, we confirmed that
the same 33782 itemsets and the same 374550 rules were generated, while accounting for
an increased level of floating point precision.

6.1.2. Comparison of Techniques for ADR Standardization

Meanwhile, in Sec. 4.2 we compared the use of two methods for adverse reaction mapping
and standardization. The first method used a dictionary of term mappings, where any
term matching one of the keys in the dictionary would be changed to the value associated
with that key. This approach used the SIDER ADR hierarchy. On the other hand, we
tried using MetaMap, a tool provided by the NIH for recognizing medical concepts and
returning standardized names. As a result of this comparison, we decided to utilize
MetaMap to standardize adverse reaction names between FAERS data and our database
of known rules. This is because, while MetaMap appeared not to generalize as well as
the SIDER ADR hierarchy since it resulted in a higher number of distinct ADRs overall,
MetaMap did outperform the SIDER ADR hierarchy significantly in matching known
rules, finding 56 compared with the 13 found by the SIDER ADR hierarchy.

65

6.1.3. Quality of Drug Name Matching

As seen in Sec. 4.3, we conducted a series of 5 parameter-tuning passes to increase the
performance of our drug name matching. Drug name matching was assessed using a
random sample of 100 drug name mappings from each of the tuning passes. Once the
random samples associated with each set of parameters was retrieved, we manually
determined whether each mapping was “sensible” or not based on domain research
and human observation. Then, the sensibility metric, described in greater detail in
Sec. 4.3, was calculated for each sample, as well as the raw percent of mappings that
were sensible. Through this process, we achieved a maximum sensibility metric of 0.855,
which corresponded to 91% of the mappings being “sensible”.

6.1.4. Time Breakdown Analysis

Finally, we conducted a time breakdown analysis on the complete rule mining process
to pinpoint areas in need of improvement. Then, after optimizations such as caching,
we again conducted a time breakdown analysis for comparison, as seen in Fig. 6.1. The
time savings evident from this comparison are significant; whereas before the process
took over 4.5 hours to run, the optimized process ran in just over 40 minutes. With this
reduction in running time, we were able to more quickly debug future additions to the
process, as well as drastically reduce the time that a user must wait to visualize new
data once it is uploaded to MIAP.

6.2. Usability Evaluation Results

While there were originally two phases planned for the user evaluation, we chose to only
conduct the user evaluation with WPI students due to time constraints. For this reason,
this section focuses exclusively on the results from the evaluation with WPI students.
The following results are based on user evaluations with 18 WPI students. These students
varied in age from 18 to 22 years of age and all study Engineering. Of the 18 participants,
7 were female and 11 were male. These participants were acquaintances or volunteers.

The results from the user evaluation can be divided into user ratings and comments
about specific tasks, user ratings and comments about more general elements of the user
interface, and user ratings and comments about the visual appeal of the application.

6.2.1. Specific Tasks

After conducting the user evaluation, the results indicated that overall the application
performed well, meeting each of its usability requirements except for Requirement 5.7.
After each task, users rated the ease of use of the task on a scale of 1 (being very hard) to

66

Figure 6.1.: Time Analysis Before and After Optimizations

5 (being very easy). Of the nine tasks completed by participants, all but three received
an average rating of 4 or higher (see Fig. 6.2). Then, of these three, tasks 3 and 6 received
an average rating above 3.8. This leaves task 8 as the task with the lowest rating for
ease of use at 2.79.

Task 8 involved finding reports for interactions between two specific drugs. Users often
only completed the task by asking for help from the evaluator. This indicates that
although the tour explains the purpose of the Report Chip Container, users quickly forget
its purpose or that it is even related to reports. After the user evaluation, we added a
“Reports” label to the Report Chip Container to address this issue at the suggestion of
participants (see Fig. 6.4).

Another task of interest is task 3. Although it received an average ease of use rating of
3.85, this task confused some participants. Besides having the highest average time for
task completion (95 seconds), as seen in Fig. 6.3, many users indicated their confusion
about the term “severe ADR”. This term is explained in the help menu that all users
read before beginning tasks, as well as shown on the legends below the Galaxy View and
the Interaction Profile View. The intent of the task was to get users to sort the galaxy
view by severity and select the top drug. One possible source of this confusion could be
that the legends were often not visible without scrolling down on the webpage, so they
did not serve their purpose when users forgot they were there. To address this concern,
we made the website’s content dynamically resize to ensure that everything can be seen
without scrolling. Additionally, each of the legends was refactored to give them a clear

67

Figure 6.2.: Average Ease of Use for Each Task

Figure 6.3.: Average Time to Complete Each Task

68

title that indicates what the colors represent. These changes are shown in Fig. 6.4.

Lastly, task 6 revealed an ambiguity associated with the report count for interactions
between two drugs. Users received varying answers for this task based on their methodol-
ogy. One way users received the answer was by going to the Galaxy View for the first
drug and hovering over the edge representing the interaction with the second drug. The
tooltip displayed on hovering gave an answer of 28 reports. Meanwhile, some users went
to the Report View for the first drug and using the barchart received an answer of 52
reports. This discrepancy occurred because the report count given in the Galaxy View
only accounted for reports between the two drugs that also included the highest-scoring
ADR between those two drugs, which is represented by the edge in the Galaxy View.
Meanwhile, the barchart in the Reports View for a single drug shows the number of time
that a given drug appears in any report that also contains that single drug. As a result,
we decided to remove the report count from the tooltip over edges in the Overview and
Galaxy View and instead add the total number of ADRs to the tooltip and change the
label to say that the edge represents the highest-scored ADR (see fig. 6.4).

When asked, most participants indicated that the most difficult task was either task 3 or
task 8, that is the task finding the drug with the most severe ADRs or the task finding
the reports for interactions between two drugs.

6.2.2. General Performance

After completing all of the tasks, users were asked to rate the general performance of the
application in a variety of ways and then provide feedback in response to open-ended
questions. Users rated the overall ease of use of the Overview, the Galaxy View, and the
Interaction Profile View. In addition, they indicated how easy it was to remember or
decide which combination of operations to use to answer a question and how easy it was
to recover from errors. Of the three views, the Galaxy View was rated best for ease of
use (4.35), followed by the Interaction Profile (4.11), and then the Overview (3.76).

While rated highly, there was at least one major issue discovered with the Galaxy View.
When completing tasks, users often assumed that the metaphor of dashed and solid lines
(for known and unknown interactions) carried over from the Overview to the Galaxy
View. However, the Galaxy View currently uses node size as the method of distinguishing
between known and unknown interactions, with known interactions being represented by
significantly smaller nodes. Otherwise, many users found that tasks were “made simpler”
by going through the Galaxy View, as it filtered out a lot of the extra information
provided by the Overview and facilitated the retrieval of any information related to a
given drug.

Next, there were a few complaints about the Interaction Profile. For example, some users
experienced an issue where the ADRs were offscreen at the initial load of the Interaction
Profile, and for this reason they did not realize you could find information about ADRs
in the Interaction Profile View. Additionally, participants were confused when clicking

69

on a node caused parts of the tree shown in the Interaction Profile to collapse. Some
particpants also observed that when a drug interacts with many other drugs, it is difficult
to examine the view and locate the desired information. For this reason, they suggested
that “it might be better to represent the information in a table” so that the information
can be displayed in a more concise manner.

Finally, many participants were confused about why the Overview was necessary when the
same information can also be found in the Galaxy and Interaction Profile views. However,
this confusion is in part due to their lack of domain knowledge or experience, as the
Overview is primarily for identifying highly-scored, unknown drug-drug interactions that
require urgent attention. This cannot be done in the Galaxy or Interaction Profile views,
as they only show information for specific drugs and do not facilitate the comparison
between all interactions. Additional complaints about the Overview focused on how
crowded the view is, with many interconnecting nodes in close proximity. However, for
the purposes of initial screening by score and known/unknown status, this problem is
mitigated using the relevant filters, and if users are looking for a specific drug, they can
use the search bar.

The study showed that operation of the application takes some getting used to, as
evidenced by the users’ rating for ease of remembering combinations of operations (3.64).
For example, some participants had trouble remembering where to click, whether it be
on an edge or a node depending on the view, to achieve the desired effect. Along the
same lines, users often forgot that clicking on nodes or edges produces report “chips”
that can be used to find reports specific to the corresponding drugs or interactions.

Lastly, users indicated that it was fairly easy to recover from errors even if they began
approaching a problem with a methodology that would not lead them to the answer,
giving an average rating of 4. This is in part due to the quick response time of the
application and the lack of long chains of operations being required to perform tasks
within our application. If a user clicks on the wrong drug or interaction, they can simply
select or search for the correct one, and the Galaxy and Interaction Profile views are
updated accordingly. If a user goes to the report view and cannot find what they are
looking for, they can close the view and continue analyzing the data they were looking at
previously. Therefore, even if a user is still learning how to use the application, it is easy
for them to recover from their mistakes and continue in pursuit of their information need.

6.2.3. Visual Appeal

The visual appeal of the application was consistently rated highly by participants (average
of 4.35 out of 5). One suggestion was to change the use of dashed and solid lines such that
known interactions are represented by solid lines and unknown interactions by dashed
lines. Another suggestion was to make the report window larger in order to see more
of the large amount of information available there. Additionally, participants suggested
removing the necessity for scrolling, changing the text color in the views to make it more

70

visible when edges and text are overlapping, and changing the colors used for scores
and severe ADR counts to make them “more distinct” and “less harsh”. The concern
about removing unnecessary scrolling was addressed by making the website’s content
dynamically resize to ensure that everything can be seen without scrolling. Furthermore,
while the colors themselves were not changed, more variability was added by distributing
the colors uniformly according to the score and severe ADR count distributions. As a
result, most of the edges in the Overview that were previously a dark red color are now a
milder yellow color. These changes can be seen in Fig. 6.4.

71

Figure 6.4.: Changes Made After the Evaluation

72

7. Conclusions

In this section, we summarize the accomplishments of this project and conclude by
proposing areas where this project can be expanded in the future.

7.1. Summary and Findings

In this project we accomplished a complete refactor of the existing MARAS and DIVA
systems into one streamlined application, MIAP. Furthermore, we enhanced both the rule-
mining and data visualization capabilities of the resultant system. By making organized
code repositories and extensively documenting the refactored code, we ensured that the
system would be maintainable and extensible in the future. To improve the rule-mining
system, we added drug matching and ADR standardization capabilities, that in turn
improved the automatic labeling of known rules. When refactoring the data visualization
system, we improved usability by adding features such as the score distribution coupled
with the range selector for filtering scores and the generation of report “chips” that allow
users to easily access reports for a specific drug or interaction. After a user evaluation,
participants’ feedback was incorporated by further enhancing the system to increase the
system’s usability. As a result of this project, users are now able to go through the entire
multiple drug interaction analysis process through the user interface, from uploading
FAERS files for analysis to identifying novel drug-drug interactions.

7.2. Future Work

Through the usability evaluation process, our own experience using the application, and
discussions with domain specialists at the FDA, we have developed a list of recommenda-
tions for improvements that can be made to MIAP in the future. Principal among these
are the integration of a database, user interface improvements for the Report View, the
ability to create custom datasets, and evaluation by domain specialists with the FDA.

7.2.1. Database

A database is necessary to make this application viable because the current method of
loading reports and rules takes an excessive amount of time. Currently, the reports file

73

is parsed each time a request for reports is made, and likewise the rules file is parsed
each time a request for rules is made. As more data is added, the times for each request
will only increase. By adding a database for reports and rules, waiting times could be
drastically reduced when querying by report ID or drug names.

7.2.2. Report View Improvements

As is, the Report View provides users with a wealth of information in a large table that
is hard to analyze. To improve the usability of this view, we suggest adding the ability
to search through reports, filter reports, and change the format of the information so
that it is easier to read and understand. Additionally, annotation functionality should be
added to satisfy Requirement 7, meaning that domain specialists should be able to leave
comments on specific reports or label rules as known, unknown, a co-occurrence, etc.

7.2.3. Visualization of Custom Datasets

In the MIAP system, users can see the datasets that have already been added and upload
FAERS data through the user interface. When a new dataset is uploaded, the data
analysis is ran on that dataset as well as all previously uploaded datasets to generate an
aggregated visualization file. However, some users may wish to look at some subset of
the datasets. For this reason we suggest adding functionality for the creation of custom
datasets and investigation into methods of optimizing collective data analysis to reduce
the time taken to produce a new visualization when new data is added or a custom
dataset is created.

7.2.4. FDA Evaluation

Lastly, we recommend having domain specialists with the FDA evaluate MIAP to ensure
that the application meets their needs and to receive any suggestions for making it
easier to use. A proposed methodology for this evaluation can be found in Sec. 5.2.
Specifically, we would also like to determine whether metaphors currently employed in
the visualization are intuitive, such as the use of dashed lines for known rules and solid
lines for unknown rules or the use of the term “edge” rather than “link”. In the case of
dashed and solid lines, many users that evaluated MIAP found it counterintuitive for
dashed lines to be known and solid lines to be unknown. However, we believe that given
the domain, this metaphor makes sense because unknown rules are more important to
FDA safety analysts and therefore are represented by solid lines.

Meanwhile, for the terminology used to describe the lines between two nodes, it is possible
that FDA personnel may not be familiar with the term edge, as this term is commonly
related to graph theory, a topic commonly studied in computer science but not in other
fields. Therefore, these evaluations will help establish how well the system meets the

74

FDA’s needs, as well as reveal what changes in metaphors and terminology would improve
the system’s usability.

75

8. References

“About the Center for Drug Evaluation and Research.” 2018. U.S. Food and Drug Adminis-
tration; Online. https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/
CDER/default.htm.

Aronson, Alan R, and François-Michel Lang. 2010. “An overview of MetaMap: historical
perspective and recent advances.” doi:10.1136/jamia.2009.002733.

“Chai Assertion Library.” n.d. Chai. http://www.chaijs.com/.

“Drug Interactions API.” 2017. Accessed December 12. https://rxnav.nlm.nih.gov/InteractionAPIs.html{\#}.

Du, Mengmeng. 2005. “Approximate Name Matching.” NADA, Numerisk Analys Och
Datalogi, KTH, Kungliga Tekniska Högskolan. Stockholm: Un, 3–15.

“Express - Node.js Web Application Framework.” 2017. Express - Node.js Web Application
Framework. https://expressjs.com/.

Fournier-Viger, Philippe, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei
Wu, and Vincent S Tseng. 2014. “SPMF: A Java Open-Source Pattern Mining Library.”
The Journal of Machine Learning Research 15 (1). JMLR. org: 3389–93.

“Get Typescript.” 2017. TypeScript - JavaScript That Scales. http://www.typescriptlang.
org/.

Gollapudi, Sunila. 2016. Practical Machine Learning. Packt Publishing.

Kakar, Tabassum. 2016. “MARAS: Multi-Drug Averse Reactions Analytic System.”
Master’s thesis, Worcester Polytechnic Institute.

Kakar, Tabassum, and Xiao Qin. 2017–2018. “In Submission to Vast 2018.” Worcester
Polytechnic Institute.

Kuhn, Michael, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. 2016. “The SIDER
database of drugs and side effects.” Nucleic Acids Research 44 (D1): D1075–D1079.
doi:10.1093/nar/gkv1075.

Li, Cong Rui Ji, and Zhi Hong Deng. 2007. “Mining frequent ordered patterns without
candidate generation.” Proceedings - Fourth International Conference on Fuzzy Systems
and Knowledge Discovery, FSKD 2007 1: 402–6. doi:10.1109/FSKD.2007.402.

Liu, Simon, Wei Ma, Robin Moore, Vikraman Ganesan, and Stuart Nelson. 2005.
“RxNorm: Prescription for Electronic Drug Information Exchange.” IT Professional 7

76

https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/default.htm
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/default.htm
https://doi.org/10.1136/jamia.2009.002733
http://www.chaijs.com/
https://rxnav.nlm.nih.gov/InteractionAPIs.html%7B/#%7D
https://expressjs.com/
http://www.typescriptlang.org/
http://www.typescriptlang.org/
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1109/FSKD.2007.402

(5). IEEE: 17–23.

Lloyd, Allison. 1999. “Dynamic Programming Algorithm (Dpa) for Edit-Distance.”
http://users.monash.edu/~lloyd/tildeAlgDS/Dynamic/Edit/.

“MedDRA Hierarchy - How to Use.” 2017. Accessed December 12. https://www.meddra.
org/how-to-use/basics/hierarchy.

Münch, Jürgen, Fabian Fagerholm, Patrik Johnson, Janne Pirttilahti, Juha Torkkel, and
Janne Jäarvinen. 2013. “Creating Minimum Viable Products in Industry-Academia
Collaborations.” In Lean Enterprise Software and Systems, edited by Brian Fitzgerald,
Kieran Conboy, Ken Power, Ricardo Valerdi, Lorraine Morgan, and Klaas-Jan Stol,
137–51. Berlin, Heidelberg: Springer Berlin Heidelberg.

“Npm.” n.d. Npm. https://www.npmjs.com/.

“Preventable Adverse Drug Reactions: A Focus on Drug Interactions.” 2016.
U.S. Food and Drug Administration; Online. https://www.fda.gov/drugs/
developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm110632.
htm.

“Questions and Answers on FDA’s Adverse Event Reporting System (FAERS).”
2017. Center for Drug Evaluation; Research. https://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/.

“Questions and Answers on Fda’s Adverse Event Reporting System (Faers).”
2017. U.S. Food and Drug Administration; Online. https://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.
htm.

Tatonetti, N. P., P. P. Ye, R. Daneshjou, and R. B. Altman. 2012. “Data-Driven
Prediction of Drug Effects and Interactions.” Science Translational Medicine 4 (125):
125ra31–125ra31. doi:10.1126/scitranslmed.3003377.

“The Fun, Simple, Flexible Javascript Test Framework.” 2018. Mocha. https://mochajs.
org/.

“Unified Medical Language System (UMLS).” 2017. U.S. National Library of Medicine.
Accessed December 12. https://www.nlm.nih.gov/research/umls/.

Wishart, David S, Craig Knox, An Chi Guo, Savita Shrivastava, Murtaza Hassanali,
Paul Stothard, Zhan Chang, and Jennifer Woolsey. 2006. “DrugBank: A Comprehensive
Resource for in Silico Drug Discovery and Exploration.” Nucleic Acids Research 34
(suppl_1). Oxford University Press: D668–D672.

2018. Node.js. https://nodejs.org/en/.

77

http://users.monash.edu/~lloyd/tildeAlgDS/Dynamic/Edit/
https://www.meddra.org/how-to-use/basics/hierarchy
https://www.meddra.org/how-to-use/basics/hierarchy
https://www.npmjs.com/
https://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm110632.htm
https://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm110632.htm
https://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm110632.htm
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
https://doi.org/10.1126/scitranslmed.3003377
https://mochajs.org/
https://mochajs.org/
https://www.nlm.nih.gov/research/umls/
https://nodejs.org/en/

A. Usability Evaluation Materials

A.1. Evaluation Script for WPI Student Surveys

• [Introduction: Who we are, what our project is, what is DIVA?]

– We are [names], and we are an MQP team working on the DIVA system. DIVA
is a web application that visualizes drug interaction data so safety evaluators
can more easily identify and investigate potential Adverse Drug Reactions, or
ADRs. ADRs are unwanted side effects that are caused by taking one or more
drugs; for example, taking Aspirin and Warfarin together can cause excessive
bleeding. It can be especially difficult to discover interactions between multiple
drugs in clinical trials, because it’s impossible to test every drug combination.

– Our system uses data mining with adverse reaction data collected by the FDA
to find likely ADRs caused by the interaction of multiple drugs. The DIVA
platform allows users to examine the results of that analysis in a variety of
ways. The potential ADRs found by the DIVA system are scored based on
how likely or significant the interaction is.

• Do you have any questions so far?

• [Interface: Introduce each View]

– Now we’re going to introduce you to the DIVA interface. Clicking on the
question mark in the top-right corner will bring up a help menu that will give
you a description of the system and walk you through the interface. Please
open that help menu and read the contents now.

– [Once they are done] Now we’re going to ask you to do a few tasks using the
interface. Take as long as you need to complete each task. As you are working,
tell us what you are thinking or feeling, what you’re confused by, and any
other comments you have. If, at any point, you feel that you are unable to
complete the task, just let us know and we can move on to the next one. Are
you ready to start?

• Data we will record during each task

– Time elapsed while a participant is completing the task

– Answer(s) given by participant in response to the task

78

– The methodology that the participant used to complete the task

– Level of guidance/assistance requested from the participant while com-
pleting the task

– Comments from participants that indicate confusion or provide feedback as
to the quality of the interface/system

• [Tasks] - after each task, the participant will be asked to rate that task’s difficulty
on a scale of 1 to 5, where 1 is very easy and 5 is very hard

– Overview [R1]

∗ Task 1 [R3, R4]: Find 3 unknown drug-drug interactions.

∗ Task 2 [R2]: Find 3 drug-drug interactions with a score higher than
[0.5]

– Galaxy View

∗ Task 3 [R2, R5]: Find and select drugs Trazodone, Metaxalone, and
Tylenol. Of these drugs, which drug has the highest number of severe
ADRs.

∗ Task 4 [R2, R3, R4]: For drug Metaxalone, how many high scored
[score > 0.2] and unknown interactions are there?

– Interaction Profile

∗ Task 5 [R2]: Please find what ADRs occur between drugs Trazodone
and Diazepam.

∗ Task 6 [R6]: How many reports support the above interaction?

∗ Task 7 [R2, R5]: Find all severe ADRs associated with Trazodone’s
interactions.

– Report View [R6]

∗ Task 8: Please open the reports for the interaction between drugs Zoloft
and Tylenol.

∗ Task 9: List the three most frequent drugs reported with the interacting
drugs Zoloft and Tylenol.

• Multiple Choice Questions

– On a scale of 1 to 5, how easy was it to:

∗ Question 1: Interpret the information contained in the overview

∗ Question 2: Interpret the information contained in the galaxy view

∗ Question 3: Interpret the information contained in the profile view

79

∗ Question 4: Remember/decide which combination of operations to use
to answer a question

∗ Question 5: Recover from errors once I realized a given approach would
not lead me to the information I needed.

– On a scale of 1 to 5, how visually appealing is the interface, where 1 is not
appealing at all and 5 is extremely appealing?

• [Open-ended Questions]

– Which task was the most difficult to complete? What made it so difficult?

– Which parts of the interface are the most difficult to understand? Why?

– Which parts of the interface are the most difficult to use? Why?

– Is there any way you could think of to make the interface easier to understand?

– Is there any way you could think of to make the interface faster to use?

– What would you change, if anything, to make the interface more visually
appealing?

A.2. Evaluation Script for FDA Researchers

• [Introduction: Who we are, what our project is, what DIVA is]

– We are [names], and we are an MQP team working on the DIVA system.
DIVA is a web application that visualizes drug interaction data so FDA drug
safety evaluators can more easily identify and investigate potential Adverse
Drug Reactions, or ADRs.

• [Preliminary Questions]

– What is your role at the FDA?

– How do you work with ADRs and FAERS data?

• [Introduction to DIVA platform]

– Our system uses data mining with data collected by FAERS to find likely ADRs
caused by the interaction of multiple drugs. The DIVA platform allows users to
examine the results of that analysis in a variety of ways. The potential ADRs
found by the DIVA system are ranked by their contrast score. This essentially
weighs how likely it is that a reaction is a result of taking multiple drugs in
combination versus taking one of the drugs individually.. For example, in the
case of Aspirin and Warfarin, when someone takes both of those drugs together,
there is a high chance that they will experience excessive bleeding; however,
when they take either drug on their own, the chance of them experiencing

80

that reaction is relatively low. This indicates that the interaction between
Aspirin and Warfarin likely causes excessive bleeding, and so that interaction
would have a high contrast score.

• [General Questions]

– How would you use a tool such as the one described above? What are the
main features you would look for in a similar tool?

• [Show them the Interface]

– Here is the DIVA Interface. Clicking on the question mark in the top-right
corner will give you a brief description of how to use the platform. Please
open the help menu and read it now.

– Do you have any questions about the interface?

– Thinking back to how you said you would use such a tool, try to use the
interface in each of those ways.

– On a scale of 1 to 10, how useful do you think this interface would be for your
day-to-day job, where 1 is not useful at all and 10 is invaluable?

– What feature or features do you think are most useful to you?

– What feature or features do you think would be least useful to you, if any?

– What changes or improvements would you make to this interface to make it
more useful to you as an FDA employee?

– On a scale of 1 to 10, how difficult is this interface to understand, where 1 is
not difficult at all and 10 is extremely difficult?

– Do you have any additional questions or comments for us?

A.3. Usability Evaluation Additional Results

81

Figure A.1.: Average Ease of Use for Each General Question

82

B. User Interface (React.js)
Documentation

resources\assets\js\components\App.jsx App This is the main component for the
application. It contains the Tour, GlobalFilterNavContainer, MainviewContainer,
and Footer components.

resources\assets\js\components\layouts\DndTreeContainer.jsx DndTreeCon-
tainer This component creates the windows for each of the current drugs displayed
in the Galaxy View.

Table B.1.: DndTreeContainer

Property Type Required Description

currentDrugs PropType array yes Array of drugs
currently in the
Galaxy View.

selectedDrug PropType string yes Name of the
currently selected
drug.

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

dmeRange PropType array yes Array of severe
ADR count
boundaries,
indicating how to
color galaxy view
headers.

filter PropType string Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

83

Property Type Required Description

minScore PropType number Minimum score
for filtering
interactions.

maxScore PropType number Maximum score
for filtering
interactions.

onClickNode PropType func Callback used
when a node is
clicked. Takes the
node as a
parameter.

onClickEdge PropType func Callback used
when a edge is
clicked. Takes the
edge as a
parameter.

onDeleteNode PropType func Callback used
when a drug is
removed from the
galaxy view.
Takes the drug
name as a
parameter.

onClearDrug PropType func Clears the
selectedDrug.

cols PropType number Number of
columns currently
being displayed in
Mainview (4 if all
views visible or 12
if one is
fullscreened).

handleOpen PropType func Used to open the
reports view.
Takes a report
object containing
information about
the drug for which
to retrieve reports.

84

Property Type Required Description

helpExample PropType bool Indicates whether
this is the version
found in the help
menu (defaults to
false).

resources\assets\js\components\layouts\GlobalFilterNav.jsx GlobalFilter-
Nav This component renders the navbar, combining the filters, upload button,
help button, and search bar.

Table B.2.: GlobalFilterNav

Property Type Required Description

rules PropType array yes Array of rules
representing all
interaction
between pairs of
drugs in the
visualization.

updating PropType bool yes Indicates whether
filters are
currently being
applied.

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

dmeRange PropType array yes Array of severe
ADR count
boundaries,
indicating how to
color galaxy view
headers.

minScore PropType number yes Minimum score
for filtering
interactions.

maxScore PropType number yes Maximum score
for filtering
interactions.

85

Property Type Required Description

filter PropType string yes Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

status PropType object yes Contains
information about
the status of the
last MARAS
analysis ran.

onClick PropType func yes Used to apply the
known/unknown
filter. Takes the
value of the
selected option
(‘all’, ‘known’, or
‘unknown’).

updateMinScore PropType func yes Used to set the
new minimum
score. Takes the
new minimum
score (a number)
as a paramter.

updateMaxScore PropType func yes Used to set the
new maximum
score. Takes the
new maximum
score (a number)
as a paramter.

isUpdating PropType func yes Used to indicate
that the
visualization is
updating as a new
filter has been
applied. Takes a
boolean indicating
whether updating
is in progress.

86

Property Type Required Description

getStatus PropType func yes A function that
can be called to
get the updated
analysis status.

resources\assets\js\components\layouts\MainView.jsx MainView This compo-
nent combines the ReportChipContainer, Overview, Galaxy View, Interaction
Profile and Report View.

Table B.3.: MainView

Property Type Required Description

isFetching PropType bool yes Indicates whether
the data is still
being fetched for
the nodes and
links.

links PropType array yes Array of links
representing all
interaction between
pairs of drugs in
the visualization.

nodes PropType array yes Array of nodes
representing all
drugs in the
visualization.

currentDrugs PropType array yes Array of drugs
currently in the
Galaxy View.

selectedDrug PropType string yes Name of the
currently selected
drug.

selectedRule PropType string yes Name of the
currently selected
rule (of format:
drug_1 —
drug_2).

87

Property Type Required Description

filter PropType string yes Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number yes Minimum score for
filtering
interactions.

maxScore PropType number yes Maximum score for
filtering
interactions.

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

dmeRange PropType array yes Array of severe
ADR count
boundaries,
indicating how to
color galaxy view
headers.

status PropType object yes Contains
information about
the status of the
last MARAS
analysis ran.

onClickNode PropType func yes Callback used
when a node is
clicked. Takes the
node as a
parameter.

onClickEdge PropType func yes Callback used
when an edge is
clicked. Takes the
edge as a
parameter.

88

Property Type Required Description

showDetailNode PropType func yes Callback used
when a node is
clicked (Galaxy
View). Takes the
node as a
parameter.

deleteNode PropType func yes Callback used
when a drug is
removed from the
galaxy view. Takes
the drug name as a
parameter.

isUpdating PropType func yes Used to indicate
that the
visualization is
updating as a new
filter has been
applied. Takes a
boolean indicating
whether updating
is in progress.

clearRule PropType func yes Remove the
currently selected
rule from the
Interaction Profile.

clearSearchTerm PropType func yes Remove the
currently selected
drug from the
Interaction Profile.

getStatus PropType func yes Used to get
updated
information about
the status of the
last MARAS
analysis ran.

resources\assets\js\components\modules\D3Tree.jsx D3Tree This component
renders the tree seen in the Profile View. This component should not be used
directly. Instead, use InteractionProfile.

89

Table B.4.: D3Tree

Property Type Required Description

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

treeData PropType array yes Information about
how to structure
the tree.

filter PropType string yes Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number yes Minimum score
for filtering
interactions.

maxScore PropType number yes Maximum score
for filtering
interactions.

width PropType number yes Width of the
parent node.

height PropType number yes Height of the
parent node.

resources\assets\js\components\modules\DistributionRangeSlider.jsx Dis-
tributionRangeSlider This component shows a distribution of the scores of all
links over a range slider used to filter by score.

Table B.5.: DistributionRangeSlider

Property Type Required Description

rules PropType array yes Array of rules
representing all
interaction
between pairs of
drugs in the
visualization.

90

Property Type Required Description

updateMinScore PropType func Used to set the
new minimum
score. Takes the
new minimum
score (a number)
as a paramter.

updateMaxScore PropType func Used to set the
new maximum
score. Takes the
new maximum
score (a number)
as a paramter.

isUpdating PropType func Used to indicate
that the
visualization is
updating as a new
filter has been
applied. Takes a
boolean indicating
whether updating
is in progress.

helpExample PropType bool Indicates whether
this is the version
found in the help
menu (defaults to
false).

resources\assets\js\components\modules\DndGraph.jsx DndGraph This compo-
nent renders the graph seen in the Overview.

Table B.6.: DndGraph

Property Type Required Description

nodes PropType array yes Array of nodes
representing all
drugs in the
visualization.

91

Property Type Required Description

links PropType array yes Array of links
representing all
interaction
between pairs of
drugs in the
visualization.

width PropType number yes Width of the
browser window.

height PropType number yes Height of the
browser window.

selectedDrug PropType string Name of the
currently selected
drug.

onClickNode PropType func Callback used
when a node is
clicked. Takes the
node as a
parameter.

onClickEdge PropType func Callback used
when an edge is
clicked. Takes the
edge as a
parameter.

isFetching PropType bool Indicates whether
the data is still
being fetched for
the nodes and
links.

filter PropType string Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number Minimum score
for filtering
interactions.

maxScore PropType number Maximum score
for filtering
interactions.

92

Property Type Required Description

isUpdating PropType func Used to indicate
that the
visualization is
updating as a new
filter has been
applied. Takes a
boolean indicating
whether updating
is in progress.

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

resources\assets\js\components\modules\DndTree.jsx DndTree This compo-
nent controls and renders a single galaxy view inside of a DndTreeContainer.

Table B.7.: DndTree

Property Type Required Description

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

helpExample PropType bool Indicates whether
this is the version
found in the help
menu (defaults to
false).

currentDrug PropType string yes Name of the
central drug.

data PropType object yes Contains
information such
as rules that allow
for rendering the
graph.

93

Property Type Required Description

filter PropType string Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number Minimum score
for filtering
interactions.

maxScore PropType number Maximum score
for filtering
interactions.

onClickEdge PropType func Callback used
when an edge is
clicked. Takes the
edge as a
parameter.

resources\assets\js\components\modules\Footer.jsx Footer This component de-
fines the footer shown fixed at the bottom of the page.

resources\assets\js\components\modules\GalaxyView.jsx GalaxyView This
component renders the Galaxy View.

Table B.8.: GalaxyView

Property Type Required Description

col PropType number yes Number of columns
currently being
displayed in
Mainview (4 if all
views visible or 12
if one is
fullscreened).

toggleFullscreenGalaxyPropType func yes Function that
fullscreens the
Galaxy View.

currentDrugs PropType array yes Array of drugs
currently in the
Galaxy View.

94

Property Type Required Description

filter PropType string yes Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number yes Minimum score for
filtering
interactions.

maxScore PropType number yes Maximum score for
filtering
interactions.

width PropType number yes Width of the
browser window.

height PropType number yes Height of the
browser window.

onClickNode PropType func yes Callback used
when a node is
clicked. Takes the
node as a
parameter.

onClickEdge PropType func yes Callback used
when a edge is
clicked. Takes the
edge as a
parameter.

onDeleteNode PropType func yes Callback used
when a drug is
removed from the
galaxy view. Takes
the drug name as a
parameter.

onClearDrug PropType func yes Clears the
selectedDrug.

handleOpen PropType func yes Used to open the
reports view.
Takes a report
object containing
information about
the drug for which
to retrieve reports.

95

Property Type Required Description

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

dmeRange PropType array yes Array of severe
ADR count
boundaries,
indicating how to
color galaxy view
headers.

isGalaxyFullscreen PropType bool yes Indicates whether
the Galaxy View is
currently
fullscreened.

selectedDrug PropType string yes Name of the
currently selected
drug.

resources\assets\js\components\modules\Help.jsx Help This component renders
and controls the help menu.

Table B.9.: Help

Property Type Required Description

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

dmeRange PropType array yes Array of severe
ADR count
boundaries,
indicating how to
color galaxy view
headers.

startTour PropType func yes Used to start the
tour.

rules PropType array yes Array of all rules
in the
visualization

96

resources\assets\js\components\modules\InteractionProfile.jsx Interac-
tionProfile This component is a wrapper for the D3Tree component. It controls
what nodes/links are passed to the D3Tree, applying all filters.

Table B.10.: InteractionProfile

Property Type Required Description

helpExample PropType bool Indicates whether
this is the version
found in the help
menu (defaults to
false).

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

mainDrug PropType string Name of the
currently selected
drug.

mainRule PropType string Name of the
currently selected
rule (of format:
drug_1 —
drug_2).

filter PropType string Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number Minimum score
for filtering
interactions.

maxScore PropType number Maximum score
for filtering
interactions.

resources\assets\js\components\modules\KnownUnknownDropDown.jsx Know-
nUnknownDropDown This component controls and renders the filter for
selecting all rules, only known rules, or only unknown rules.

97

Table B.11.: KnownUnknownDropDown

Property Type Required Description

isUpdating PropType func yes Used to indicate
that the
visualization is
updating as a
new filter has
been applied.
Takes a boolean
indicating
whether updating
is in progress.

onClick PropType func yes Used to apply the
known/unknown
filter. Takes the
value of the
selected option
(‘all’, ‘known’, or
‘unknown’).

resources\assets\js\components\modules\Overview.jsx Overview This compo-
nent controls and renders the Overview.

Table B.12.: Overview

Property Type Required Description

col PropType number yes Number of columns
currently being
displayed in
Mainview (4 if all
views visible or 12
if one is
fullscreened).

toggleFullscreenOverviewPropType func yes Function that
fullscreens the
Overview.

onClickNode PropType func yes Callback used
when a node is
clicked. Takes the
node as a
parameter.

98

Property Type Required Description

onClickEdge PropType func yes Callback used
when an edge is
clicked. Takes the
edge as a
parameter.

currentSelector PropType string yes Class name of the
component the
tour is currently
looking at.

nodes PropType array yes Array of nodes
representing all
drugs in the
visualization.

links PropType array yes Array of links
representing all
interaction between
pairs of drugs in
the visualization.

width PropType number yes Width of the
browser window.

height PropType number yes Height of the
browser window.

selectedDrug PropType string yes Name of the
currently selected
drug.

isFetching PropType bool yes Indicates whether
the data is still
being fetched for
the nodes and
links.

filter PropType string yes Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number yes Minimum score for
filtering
interactions.

99

Property Type Required Description

maxScore PropType number yes Maximum score for
filtering
interactions.

isUpdating PropType func yes Used to indicate
that the
visualization is
updating as a new
filter has been
applied. Takes a
boolean indicating
whether updating
is in progress.

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

nextTourStep PropType func yes Advances the tour
to the next step.

isOverviewFullscreen PropType bool yes Indicates whether
the Overview is
currently
fullscreened.

status PropType object yes Contains
information about
the status of the
last MARAS
analysis ran.

getStatus PropType func yes Used to get
updated
information about
the status of the
last MARAS
analysis ran.

resources\assets\js\components\modules\ProfileView.jsx ProfileView This
component is used to render the Interaction Profile View.

100

Table B.13.: ProfileView

Property Type Required Description

col PropType number yes Number of columns
currently being
displayed in
Mainview (4 if all
views visible or 12
if one is
fullscreened).

toggleFullscreenProfilePropType func yes Function that
fullscreens the
Profile View.

selectedDrug PropType string yes Name of the
currently selected
drug.

selectedRule PropType string yes Name of the
currently selected
rule (of format:
drug_1 —
drug_2).

scoreRange PropType array yes Array of score
boundaries,
indicating how to
color nodes/edges
based on score.

filter PropType string yes Can be ‘all’,
‘known’, or
‘unkown’.
Corresponds to
filtering
interactions by
known/unknown.

minScore PropType number yes Minimum score for
filtering
interactions.

maxScore PropType number yes Maximum score for
filtering
interactions.

isProfileFullscreen PropType bool yes Indicates whether
this view is
fullscreened or not.

101

Property Type Required Description

profileTitle PropType string yes Used as the title
for this view.

resources\assets\js\components\modules\Report.jsx Report This component
shows all reports for a given drug or interaction in a Dialog box.

Table B.14.: Report

Property Type Required Description

tableData PropType array yes Array of the
reports to
display.

drugs PropType array yes Array of the
drug (if there is
only one) or
drugs (if the
reports are for
a pair of drugs)
pertaining to
this report.

windowWidth PropType
number

yes Width of the
browser window
(used to make
components
responsive).

open PropType bool yes Indicates
whether the
report view
should be open
or not.

handleClose PropType func yes Called when
the report view
should be
closed.

tableTitle PropType
string

yes Title for the
report view.

resources\assets\js\components\modules\ReportChipContainer.jsx Re-
portChipContainer This component holds chips that link to the report view for
any drug or interaction that has been selected.

102

Table B.15.: ReportChipContainer

Property Type Required Description

currentDrugs PropType array yes Array of the
currently selected
drugs (i.e. the
drugs found in the
Galaxy View)

links PropType array yes Array of the links
between all drugs
that interact with
eachother.

selectedDrug PropType string yes Name of the
currently selected
drug.

selectedRule PropType string yes Name of the
currently selected
rule.

deleteNode PropType func yes Removes the drug
from the Galaxy
View.

clearSearchTerm PropType func yes Remove the
currently selected
drug from the
Interaction Profile.

clearRule PropType func yes Remove the
currently selected
rule from the
Interaction Profile.

scoreRange PropType array yes Distribution of
scores used to
generate color.

handleOpen PropType func yes Open reports for a
given drug or
interaction.

resources\assets\js\components\modules\SearchBarComponent.jsx Search-
BarComponent This component allows users to search for drugs in the context
of this application.

103

Table B.16.: SearchBarComponent

Property Type Required Description

drugs PropType array yes Array of all drug
names to be used
for AutoComplete.

handleSearchRequest PropType func yes Function to handle
the request for a
given drug when it
is searched. Takes
the selected drug
name as a
parameter.

resources\assets\js\components\modules\StatusInformation.jsx StatusIn-
formation This component shows status information about the last MARAS
analysis ran.

StatusInformationButton This component is an icon button that shows a
dialog with status information about the last MARAS run when pressed.

Table B.17.: StatusInformationButton

Property Type Required Description

status PropType
object

yes The status of
the last
analysis ran.

getStatus PropType func yes A function
that can be
called to get
the updated
analysis
status.

resources\assets\js\components\modules\Tour.jsx Tour This component con-
tains all of the tour steps and controls operation of the tour.

See https://github.com/gilbarbara/react-joyride

104

Table B.18.: Tour

Property Type Required Description

updateTourSelector PropType func yes Callback used
when the selector
the tour is pointing
to is changed.
Takes the
classname of the
currently selected
component as a
parameter.

stopTour PropType func yes Function that can
be called to stop
the tour.

tourRunning PropType bool yes Boolean indicating
whether the tour
should be running
or not.

resources\assets\js\components\modules\TreeViewFilter.jsx TreeViewFilter
This component is used to provide users with the option of sorting the drugs in the
galaxy view by various properties.

Table B.19.: TreeViewFilter

Property Type Required Description

onClickRadio PropType func yes Function that
can be called to
sort the drugs
in the Galaxy
View. Takes a
string
parameter
indicating what
to sort by.

resources\assets\js\components\modules\UploadFAERS.jsx UploadFAERS
This component is used to upload FAERS data zip files and show status
information about the last analysis ran.

105

Table B.20.: UploadFAERS

Property Type Required Description

status PropType
object

yes The status of
the last
analysis ran.

getStatus PropType func yes A function
that can be
called to get
the updated
analysis
status.

106

C. User Interface (JavaScript)
Documentation

C.1. Constants

loggerMiddleware Entry point of the React App

currentDrugs Fetch the drugs from the server and add to state object

Param Type

state
action *

selectDrug Select a drug or remove the selected drug

Param Type

state string
action

selectMaxScore Select the max score or set default to 2

Param Type

state number
action *

selectMinScore Select the min score or set default to 2

Param Type

state number
action *

selectRule Select a rule or remove the currently selected rule

107

Param Type

state string
action *

treeViewSorting Select the sorting method in the galaxy view

dmeColors Colors and labels associated with different ranges of severe ADR counts

scoreColors Colors and labels associated with different score ranges

scoreBorderColors Colors associated with node borders for different score ranges (used
in Interaction Profile)

baseNodeColor Color of base node in Interaction Profile (same as color of nodes in
Overview).

baseNodeBorderColor Border color of base node in Interaction Profile.

severeADRColor Color of severe ADRs in Interaction Profile.

regularADRColor Color of non-severe ADRs in Interaction Profile.

barColor Color of bars in barchart of Report View.

barSelectedColor Color of selected bar in barchart of Report View.

selectedColor Color used for bar indicating the selected tab.

primaryColor Primary color of the application (used as background of toolbar among
others).

secondaryColor Secondary color of the application (used by score distribution).

complementaryColor Color used for tabs, footer, etc.

wpiLogo WPI logo shown on left of toolbar.

teamPhoto Team picture found on About Us page.

medicines Drug count icon for toolbar.

connection Interaction count icon for toolbar.

overviewName Display name for the view on the left (previously Overview).

galaxyViewName Display name for the middle view (previously Galaxy View).

interactionProfileName Display name for the view on the right (previously Interaction
Profile).

generateColor Generate color based on score

108

Param Type

score number
scoreRange array

generateScoreBorderColor Border colors of interaction profile nodes based on score

Param Type

score number
scoreRange array

getStyleByDMECount Get the style of the background of galaxy panels based on number
of DMEs

Param Type

numDMEs number
dmeRange array

countDrugInteraction Count number of drugs and interactions after applying filter

Param Type

rules array
filter string
minScore number
maxScore number

C.2. Functions

visibilityFilter(state, action) Select the filtering method in overview

Param Type Default

state string “all”
action *

109

D. Server (TypeScript) Documentation

D.1. Index

D.1.1. External modules

• “server/App”
• “server/csv/CSVController”
• “server/csv/index”
• “server/csv/routes”
• “server/index”

D.2. External module: “server/App”

D.2.1. Index

D.2.1.1. Classes

• App

D.3. Class: App

Configure the server application.

D.3.1. Constructors

D.3.1.1. new App(): App

Defined in server/App.ts:12

Returns: App

110

D.3.2. Properties

D.3.2.1. express

• express: express.Application

Defined in server/App.ts:12

D.3.3. Methods

D.3.3.1. <<Private>> middleware

• middleware(): void

Defined in server/App.ts:28

Configure Express middleware.

Returns: void

D.3.3.2. <<Private>> routes

• routes(): void

Defined in server/App.ts:39

Configure API endpoints.

Returns: void

D.4. External module: “server/csv/CSVController”

D.4.1. Index

D.4.1.1. Classes

• CSVController

111

D.4.1.2. Variables

• exec

D.4.1.3. Functions

• csvToJson
• getDrugsFromRules

D.4.2. Variables

D.4.2.1. exec

• exec: any = require(‘child_process’).exec

Defined in server/csv/CSVController.ts:6

D.5. Class: CSVController

Controller class to handle different requests for this feature

D.5.1. Index

D.5.1.1. Methods

• getDMEs
• getReports
• getRules
• getStatus
• uploadReports

D.5.2. Methods

D.5.2.1. getDMEs

• getDMEs(req: Request, res: Response, next: NextFunction): Promise.<void>

112

Defined in server/csv/CSVController.ts:253

Retrieve array of severe ADR names.

Parameters:

Param Type Description

req Request -
res Response -
next NextFunction -

Returns: Promise.<void>

D.5.2.2. getReports

• getReports(req: Request, res: Response, next: NextFunction): Promise.<void>

Defined in server/csv/CSVController.ts:164

Retrieve array of reports for a given drug (req.query.drug) or interaction
(req.query.drug1 and req.query.drug2).

Parameters:

Param Type Description

req Request -
res Response -
next NextFunction -

Returns: Promise.<void>

D.5.2.3. getRules

• getRules(req: Request, res: Response, next: NextFunction): Promise.<void>

Defined in server/csv/CSVController.ts:51

Get rules, drugs, as well as score and severe ADR count distributions in json.

Parameters:

113

Param Type Description

req Request -
res Response -
next NextFunction -

Returns: Promise.<void>

D.5.2.4. getStatus

• getStatus(req: Request, res: Response, next: NextFunction): Promise.<void>

Defined in server/csv/CSVController.ts:237

Retrieve status information in json.

Parameters:

Param Type Description

req Request -
res Response -
next NextFunction -

Returns: Promise.<void>

D.5.2.5. uploadReports

• uploadReports(req: Request, res: Response, next: NextFunction):
Promise.<any>

Defined in server/csv/CSVController.ts:20

Used to upload FAERS files to the server. Files are passed in as req.files.

Parameters:

Param Type Description

req Request -
res Response -
next NextFunction -

114

Returns: Promise.<any>

D.6. External module: “server/csv/index”

D.6.1. Index

D.6.1.1. Functions

• init

D.6.2. Functions

D.6.2.1. init

• init(app: express.Application): void

Defined in server/csv/index.ts:10

Initialize the routes and other config in the future such as database configuration

Parameters:

Param Type Description

app express.Application -

Returns: void

D.7. External module: “server/csv/routes”

D.7.1. Index

D.7.1.1. Variables

• crypto

115

D.7.1.2. Functions

• default

D.7.2. Variables

D.7.2.1. <<Const>> crypto

• crypto: any = require(‘crypto’)

Defined in server/csv/routes.ts:4

D.7.3. Functions

D.7.3.1. default

• default(app: express.Application): void

Defined in server/csv/routes.ts:4

This is where we register the routes, route middlewares for this resource

Parameters:

Param Type Description

app express.Application -

Returns: void

D.8. External module: “server/index”

D.8.1. Index

D.8.1.1. Variables

• port
• server

116

D.8.1.2. Functions

• normalizePort
• onError
• onListening

D.8.2. Variables

D.8.2.1. <<Const>> port

• port: string | number | true | false = normalizePort(process.env.PORT || 3000)

Defined in server/index.ts:11

Set default port to 3000.

D.8.2.2. <<Const>> server

• server: Server = http.createServer(App)

Defined in server/index.ts:17

Configure server.

D.8.3. Functions

D.8.3.1. normalizePort

• normalizePort(val: number | string): number | string | boolean

Defined in server/index.ts:27

Make sure port number is valid.

Parameters:

Param Type Description

val number string

Returns: number | string | boolean

117

D.8.3.2. onError

• onError(error: ErrnoException): void

Defined in server/index.ts:43

Log error output.

Parameters:

Param Type Description

error ErrnoException -

Returns: void

D.8.3.3. onListening

• onListening(): void

Defined in server/index.ts:63

Print the port that the server is listening on.

Returns: void

118

E. DIVA Web Application Documentation

E.1. Install dependencies for client and server application

Open your favorite Terminal and run the following command. Make sure you have
the latest npm and node version. In the root directory of the application, run these
commands to get started. js static $ npm install $ npm install -g gulp $ npm

install -g nodemon

E.2. How to ensure the server keeps running after your session

ends

Before running the server or building the front-end react app, use the following command
to create a new terminal instance that will remain after you terminate your session: js

static $ screen

E.3. How to build the front-end React app

The following commands build and bundle react app into plain js (choose one of the
following). The compiled javascript file will be in public/ directory

When quickly compiling locally run this: js static $ npm run fdev When working
locally, run this to continually update saved changes: js static $ npm run fwatch

When deploying and NOT DEBUGGING, build it as production app as this will minify
and otherwise optimize the app: js static $ npm run fproduction

E.4. How to run the server

To build typescript files into javascript files use js static $ npm run build

To watch the changes of typescript files in server directory use js static $ npm run

tsc-watch

119

To start the server and watch changes made to javascript files run js static $ npm

run watch You normally want to run those two commands above at the same time. One
is to watch and compile typescript files and the other is to watch if there are any changes
to compiled javascript files, rerun the server.

E.5. How to generate documentation

To watch for changes and dynamically build interactive react documentation js static

$ npm run styleguide

To build a static version of the interactive react documentation js static $ npm run

styleguide:build

To build a markdown version of the react documentation js static $ npm run

react-docs

To build a markdown version of the JavaScript documentation js static $ npm run

js-docs

To build a markdown version of the TypeScript documentation js static $ npm run

ts-docs

To build markdown versions of all documentation (Note: they can be found in the
/documentation/ directory) js static $ npm run docs

120

F. MARAS Documentation

This repository (https://bitbucket.org/divamqp/diva-maras) contains the code for the
Multi-Drug Adverse Reaction Analytics Strategy (MARAS) system.

The MARAS directory contains the java code for the MARAS system, including pre-
processing, drug and reaction parsing, data mining, and output for visualization (see
https://bitbucket.org/divamqp/diva-node-web).

The diva-docs repository contains the markdown files for our report.

F.1. How to run

The MARAS system is used with the DIVA platform. The analysis runs when a FAERS
data file is uploaded, and the visualization is updated accordingly.

The MARAS system can be manually run using the java code, running App.java. Com-
mand line arguments are as follows:

-f: FAERS .zip file to analyze

-d: Path to the Drug map file to be used (should usually point to the test2.json file
contained in the data directory)

-r: Path to the Standardized Known Rules file to be used (should usually point to the
knownRules_standardized.csv file contained in the data directory)

-m: Path to the MetaMap installation directory

-s: Minimum support for rules to be considered

-c: Minimum confidence for rules to be considered

-o: Output Path

-p: Path to the reports file to add on to (for the Visualization)

-t: Path to the status file (for the Visualization)

MetaMap processes should be running separately when the system is started.

To best emulate the process used by the DIVA system, use the maras.sh wrapper script
contained in the DIVA repository, which handles launching MetaMap automatically.

121

https://bitbucket.org/divamqp/diva-node-web

F.2. Output

The MARAS system outputs multiple files.

rules.csv: This is the rule data that is used by DIVA to visualize the results. In the
DIVA-MARAS workflow it is output to the storage directory, which is where the DIVA
system looks for this data.

closed_results.txt: This file gives a detailed view of all of the rules mined, sorted from
highest score to the lowest. Each rule displays the drugs and the associated ADR, along
with the contrast score and the rule’s support and confidence. In addition, it shows the
support and confidence of each contained drug mapped to the ADR, to represent the
Context Associated Cluster (CAC).

_rules_drug_adr_matching.txt: This shows the same rule data in rules.csv in a different
format. _rules_drug_adr_matching_long_names.txt shows the same data, but with
the original drug names rather than the matched ones.

F.3. Data

The data directory contains much of the information used by the system. Reports.txt is
a file containing all report information, used by the DIVA platform in order to maintain
relevent report data and have it available for FDA evaluators. The ZipFiles directory
contains two sample FAERS data sets: the 2013Q1 and 2017Q2 data. The raw directory
is where the underlying text files from the FAERS data sets are extracted; if there are
duplicates here, the system will end the process, recognizing that the data has already
been analyzed.

For each data set, the report information is converted to a more brief and compact format,
and written to a text file with a name corresponding to the data set; for example the
2013 Q1 report data will be exported to 2013Q1Reports.txt. This is so when additional
data is added, there is no need to repeat FAERS data extraction and analysis.

If you would like to run analysis on a set of data by itself, simply remove the as-
sociated Reports files from the raw directory, and remove the truncated report file
(e.g. 2013Q1Reports.txt) for any data you do not want included. Otherwise, the included
data set will be used in combination with the previously analyzed data. MARAS (Java)
Documentation =======================================

F.4. public class App

Main Application class for the MARAS system. This class handles arguments, input
data parsing, and output formatting.

122

• Author: Brian

F.4.1. public static void main(String[] args)

Main function to handle parameters

• Parameters: args — The arguments passed

F.4.2. public void run()

Begin MARAS execution

F.4.3. public static void handleException(Exception e)

Static function to handle an exception and gracefully exit the execution. This function
updates the status file to properly include the error message. It also prints out the error
details to Standard Output to ensure it is properly written to the log.txt file. This
function should be called any time an Exception is caught that should kill the program.

• Parameters: e — The Exception thrown

F.4.4. private File parseFaersFiles(List<File> files, File

outputDir) throws IOException

Parse a list of FAERS data files, returning an output file organizing each report

• Parameters: files — The FAERS data files (DRUG, REAC, and DEMO)
• Returns: The output file
• Exceptions: IOException —

F.5. public class Dataset

The class defining the Dataset structure. A Dataset is a collection of {Report}s where
each report is generated from a single Adverse Reaction FARAS report.

• Author: Andrew Schade

123

F.5.1. public Dataset(List<File> reportFiles, int

maxTransactionLength, double minSupport, double

minConfidence, File reportOutput) throws

FileNotFoundException, UnsupportedEncodingException

Reads in a dataset from a file.

• Parameters:
• drugFiles —
• path — The location of the file containing the dataset data.
• Exceptions:
• FileNotFoundException —
• UnsupportedEncodingException —

F.5.2. public InteractionSets getInteractions()

Generates itemsets after checking if the itemsets are already generated, if they are it will
return the generated itemests.

• Returns: The {InteractionSets} mined with {FPGrowth}.

F.5.3. public RuleSets getAssociationRules()

Generates rulesets after checking to see if the rulesets are already generated. If they are,
it will return the generated rulesets. Also will generate itemsets if those are not already
generated.

• Returns: The {RuleSets} mined with {Agrawal}.

F.5.4. public int getDatasetSize()

Gets the number of reports in the database.

• Returns: The size of the database defined by the number of reports.

F.6. public class Drug extends Item

Class representing a Drug This class maintains a static list of all drugs used in the system

• Author: Andrew Schade

124

F.6.1. protected Drug(int ID, String shortName, String fullName)

Private Constructor, just initializes drug list.

F.6.2. public static void readDrugs(String path) throws

JsonIOException, JsonSyntaxException, FileNotFoundException

Read drugs from the drug map file to initialize drugs with their IDs

• Parameters: path — The path to the drug file
• Exceptions:
• JsonIOException —
• JsonSyntaxException —
• FileNotFoundException —

F.6.3. private static String process(String name)

Process a drug name to remove any key phrases or words contained in the wordsToRemove
list

• Parameters: name — The drug name
• Returns: The processed drug name

F.6.4. public static Drug match(String name)

Matches a drug name to a pre-existing drug object

• Parameters: name — The name of the drug
• Returns: The drug object

F.7. public class Group implements Comparable<Group>

A Group contains a complete ADR rule and its singleton component associations.

F.7.1. public Group(Rule comb)

Creates a group from a combined rule. Populates the bins for singletons, but does not
find them. Does not calculate the group score.

• Parameters: comb — The rule to use as a basis for the group.

125

F.7.2. public void setKLDs(double[] klds)

Set the kl divergences to a new array.

• Parameters: klds — A list of KL divergence values.

F.7.3. public double[] getKLDs()

• Returns: the array of kl divergences.

F.7.4. public void calcScore()

The algorithm for calculating the score. Updates the score in the group but not the
composite rule.

score = ((overall_confidence - average_confidence) * (1 - (conf_std_dev / avg))) /
number_of_comb

F.7.5. public double getScore()

• Returns: The group score.

F.7.6. public void setScore(double score)

Set the score of a group. Used for testing to ensure that the groups generated match
those from another file.

F.7.7. public Rule getCompositeRule()

• Returns: The composite rule for the group.

F.7.8. public ArrayList<HashSet<Rule>> getSingletonRules()

• Returns: An arraylist of the Hashset for singleton rules.

F.7.9. @Override public int compareTo(Group g)

Comparator for descending sorting of groups. This comparator behaves opposite to
convention.

126

F.7.10. public void addSingle(Rule rule)

Adds a singleton to the appropriate bin.

• Parameters: rule — The singleton rule to add.

F.8. public class Groupset extends ArrayList<Group>

This class contains a set of groups developed from a closed ruleset. It provides an interface
for creating output files in formats useful for DIVA visualization and human consumption.

• Author: Andrew Schade

F.8.1. public String getResultString()

Get a string representing the results of analysis

• Returns: The string

F.8.2. public String getResultString(int top)

Get a string representing the results of analysis

• Parameters: top — Max number of results to consider
• Returns: The String

F.8.3. public String getVizString()

• Returns: The visualization string

F.8.4. public String getVizString(int top)

Get the string used by the visualization to represent the data

• Parameters: top — The max number of results
• Returns: The visualization string

F.8.5. public String getVizLabelString()

Visualization data file generation

• Returns: The string

127

F.8.6. public String getVizLabelString(int top)

Visualization Data file Generation.

• Parameters: top — The max number of results to consider
• Returns: The string

F.8.7. List<String> matchingReportIDs = new ArrayList<String>()

To find a list of supporting reports, we check to find the list of Report IDs that are
similar across all of the Items

F.8.8. public void outputDIVARules(BufferedWriter outfile) throws

IOException

Write the DIVA rules

• Parameters: outfile — The output file to write to
• Exceptions: IOException —

F.8.9. private String getDIVARuleString()

Get the DIVA rule string

• Returns: The rule string

F.8.10. private String getDIVARuleString(int top)

Get the DIVA rule string

• Parameters: top — The max number of results to consider
• Returns: The rule string

F.8.11. private String getHeaderRow()

Get the header string for the output

• Returns: The header string

128

F.8.12. public void outputGroups(BufferedWriter outfile) throws

IOException

Write the results to file

• Parameters: outfile — The file to write to
• Exceptions: IOException —

F.8.13. public void outputViz(BufferedWriter labels, BufferedWriter

info) throws IOException

Write the visualization strings to file

• Parameters:
• labels — The label file to write to
• info — The info file to write to
• Exceptions: IOException —

F.8.14. public void outputViz(BufferedWriter outfile) throws

IOException

Write the visualization string to file

• Parameters: outfile — The file to write to
• Exceptions: IOException —

F.9. public class Interaction extends Itemset

This class represents a set of items and a support count. This implementation is based
on the SPMF Itemset data type by Philippe Fournier-Viger.

• Author: Brian McCarthy

F.9.1. public void addItem(Item item)

Add an item to the list

• Parameters: item — The item to add

129

F.9.2. public Interaction cloneMinusOne(Item item)

Get an interaction with the list of items excluding the given one

• Parameters: item — The item to exclude
• Returns: The cloned interaction

F.9.3. public Interaction cloneMinusInteraction(Interaction

interaction)

Get an Interaction with all of the items NOT contained in the given interaction

• Parameters: interaction — The interaction to exclude items from
• Returns: The cloned interaction

F.10. public class InteractionSets extends Itemsets

This class represents a set of Interactions, where an Interaction is a set of items with an
associated support count. Interactions are ordered by size. For example, interactionSet 1
is a set of interactions of size 1 (contains 1 item).

Based on SPMF Itemsets data type by Philippe Fournier-Viger

• Author:

• Brian McCarthy

• Andrew Schade

F.10.1. public InteractionSets getClosures()

This method finds all the interactions within this collection where for all k greater than
the level of a given interaction, the interaction is a member of the closure if and only if
the interaction is not a subset of any interaction with a level of k.

• Returns: The K-interactionsets with only closed interaction contained inside.

F.11. public class Item implements Comparable<Item>

A class defining the Item structure. It also contains a map for associating Items with
their unique IDs.

• Author: Andrew Schade

130

F.11.1. public static void restartMetaMap()

Method to relaunch the MetaMap API

F.11.2. public static Item fromInt(int i)

Finds the Item defined by the specified unique ID.

• Parameters: i — The unique ID query to find an Item.

• Returns: The item matching the unique ID query. If the ID is not matched a

NoSuchElementException will be thrown.

F.11.3. public static Item fromIntKnown(int i)

Finds the Item defined by the specified unique ID. Doesn’t have a lock because no new
data is being added, only look-ups are happening.

• Parameters: i — The unique ID query to find an Item.

• Returns: The item matching the unique ID query. If the ID is not matched a

NoSuchElementException will be thrown.

F.11.4. public static int itemID(String name, boolean isDrug,

boolean standardized)

Gets the item ID for a specified string.

• Parameters: name — the string name of the item. Will be matched ignoring case.

• Returns: The integer ID matched for the string. If multiple items have the

same name, the lowest ID match will be returned. A

NoSuchElementException will be thrown if there is no matched string.

F.11.5. public static int itemIDKnown(String name, boolean isDrug,

boolean standardized)

Gets the item ID for a specified string. Doesn’t have a lock because no new data is being
added, only look-ups are happening.

• Parameters: name — the string name of the item. Will be matched ignoring case.

131

• Returns: The integer ID matched for the string. If multiple items have the

same name, the lowest ID match will be returned. A

NoSuchElementException will be thrown if there is no matched string.

F.11.6. public static Item makeItem(String name, boolean isDrug,

boolean standardized)

This is the public constructor for creating an Item. It loads an item in from a name.
This can be updated in the future to ensure ID consistency. If a name already maps to
an item, then it doesn’t create a new one.

• Parameters: name — The name of the drug or reaction, etc.

• Returns: A new item created, which is added to the data structure tracking all

items.

F.11.7. public static Item checkADRName(String name, boolean

createNew)

Checks to see if an adr corresponds to an alternate name for a known adr. If so, returns
the preferred name for the adr.

• Parameters:

• name — The unformatted name of an ADR

• createNew — Boolean flag indicating whether a new ADR item should be created
if it does not already exist. If false,

a NoSuchElementException is thrown.

• Returns: Preferred name for adr

F.11.8. public static int getNumDrugs()

Gets the number of distinct items that are drugs.

• Returns: The number of distinct items that are drugs.

F.11.9. public static int getNumReactions()

Gets the number of distinct items that are adr’s.

• Returns: The number of distinct items that are adr’s.

132

F.11.10. @Override public String toString()

Gets the standardized version of the item’s name. I.e. all spaces are removed and all
letters are lower case.

return Standardized version of the item’s name.

F.11.11. protected Item(String name, String longName, int ID,

boolean isDrug)

The private constructor for Item. This is pretty straightforward. It contains the name of
the item and its unique ID.

• Parameters:
• name — The name of the drug or reaction.
• ID — The unique ID referring to the Item.

F.11.12. public boolean isDrug()

A getter object to determine if this item is a drug or a reaction.

• Returns: true if drug, false if reaction

F.11.13. public int getiD()

A getter object to receive the unique ID of the Item.

• Returns: the Item’s unique ID.

F.11.14. public String getShortName()

A getter object to receive the short name of the Item

• Returns: the Item’s name.

F.11.15. public String getLongName()

A getter object to receive the long name of the Item

• Returns: the Item’s name.

133

F.11.16. @Override public int compareTo(Item arg0)

Used to determine if two items are the same by comparing their IDs.

• Parameters: arg0 — The item being compared with this item.
• Returns: Integer indicating that this item’s ID comes before (-1), after (1), or is

the same as (0) the other item’s ID.

F.12. public class MarasStatus

Function representing the status of the system This class is used to simplify the JSON
management

• Author: Brian

F.13. public class Report implements

Comparable<Report>, Iterable<Item>

A report maps to a single entry in the FARAS data recovered for use.

• Author: Andrew Schade

F.13.1. @Override public int compareTo(Report other)

This function compares two reports to each other, allowing sorting by ascending transac-
tion length. In cases where the transaction length is the same, the ordering will use the
ordering determined by the drugs and reactions in the reports, starting with the first.

F.14. public class Rule extends AssocRule implements

Comparable<Rule>

This class represent a MARAS association rule. A rule can be used to find a group (a
rule and all singleton association rules that can be derived from that rule).

This class is an extension of the AssocRule class from the SPMF library put together by
Philippe Fournier-Viger.

• See also:
• AssocRule
• Item
• Group

134

• RuleSets
• Author: Brian Zylich

F.14.1. private static Map<Rule, Boolean> knownRules = new

HashMap<Rule, Boolean>()

Used to hold all known drug-drug interactions

F.14.2. public static void

parseStandardizedKnownRulesThreading(String fileName)

Reads in a set of known rules that have already been converted to standardized forms.
This function uses threading to accomplish this goal.

• Parameters: fileName — The path of the file containing the standardized known
rules.

F.14.3. public static void standardizeAllKnownRulesThreading(String

fileName)

Reads in a set of known rules that have not already been converted to standardized forms.
Then, the standardized known rules are written to a file. This function uses threading
to accomplish this goal. This function should only be run once or whenever the known
rules file changes and a new standardized known rules file must be generated.

• Parameters: fileName — The path of the file containing the known rules.

F.14.4. private static void addKnownRule(List<Item> antecedent,

List<Item> consequent)

Adds a new rule, created from the given antecedent and consequent, to the map of known
rules. This function is protected by a lock to allow for multithreading.

• Parameters:
• antecedent — A list of items corresponding to the drugs involved in the rule.
• consequent — A list of items corresponding to the reactions involved in the rule.

F.14.5. private List<Integer> reportIds

Used to track which FAERS reports support this rule

135

F.14.6. private final List<Item> antecedent

List of Item objects forming the antecedent

F.14.7. private final List<Item> consequent

List of Item objects forming the consequent

F.14.8. private boolean known = false

Boolean indicating if the rule corresponds to a known drug-drug interaction

F.14.9. public Rule(List<Item> itemset1, List<Item> itemset2, int

supportAntecedent, int transactionCount, double confidence,

double lift)

Constructor

• Parameters:
• itemset1 — the antecedent of the rule (an itemset)
• itemset2 — the consequent of the rule (an itemset)
• supportAntecedent — the coverage of the rule (support of the antecedent)
• transactionCount — the absolute support of the rule (integer)
• confidence — the confidence of the rule
• lift — the lift of the rule

F.14.10. private Rule(List<Item> itemset1, List<Item> itemset2)

Constructor - only to be used for known DDRs (don’t care about their support, confidence,
etc)

• Parameters:
• itemset1 — the antecedent of the rule (an itemset)
• itemset2 — the consequent of the rule (an itemset)

F.14.11. private static int[] getItemIds(List<Item> itemList)

Helper function used to turn a list of Items into an array of integers representing those
items.

• Returns: the array of integer IDs.

136

F.14.12. public List<Item> getAnte()

Returns the list of item objects representing the antecedent of the rule.

• Returns: the list of item objects.

F.14.13. public List<Item> getCons()

Returns the list of item objects representing the consequent of the rule.

• Returns: the list of item objects.

F.14.14. public Group getGroup(RuleSets rules)

Creates a Group from this Rule that includes this Rule and all subrules that can be
derived from this Rule.

• Returns: the Group created from this Rule.

F.14.15. public Interaction getInteraction()

Used to find the interaction corresponding to this rule.

• Returns: InteractionSet containing all items from the antecedent and the conse-
quent of the rule.

F.14.16. public List<Integer> getReports()

Used to find which FAERS reports support this association rule.

• Returns: list of report ids.

F.14.17. public void checkKnown()

Used to check whether a rule is known or unknown, modifying the ‘known’ variable
within the Rule object. This function should be run after loading all known rules.

F.14.18. public boolean isKnown()

Used to determine if this rule corresponds to a known drug-drug interaction

• Returns: boolean indicating if rule is known

137

F.14.19. private Rule getSimpleRule()

Used to compare a newly generated rule against known rules by simplifying the rule for
hashing.

• Returns: Simplified version of the rule containing only the antecedent and conse-
quent

F.14.20. public boolean sameRule(Rule other)

Check whether two rules have the same items in their antecedent and consequent

• Parameters: other — The other rule to compare to
• Returns: boolean indicating whether the antecedents and consequents match

F.14.21. @Override public boolean equals(Object other)

Check whether two rules have the same items in their antecedent and consequent, as well
as the same support and confidence values.

• Parameters: other — The other rule to compare to
• Returns: boolean indicating whether the rules are the same

F.14.22. @Override public String toString()

Get a string representation of the rule, including the rule’s antecedent, consequent,
support, and confidence.

• Returns: string representation of the rule

F.14.23. @Override public int compareTo(Rule r)

Comparator used to sort rules in groups for hashing and to facilitate testing.

F.15. public class RuleSets extends AssocRules

This class represent a set of MARAS association rules. RuleSets can be used to find
closures (filters rules to ensure that the itemset crated by the rules is a closure).

This class is an extension of the AssocRules class from the SPMF library put together by
Philippe Fournier-Viger.

• See also:

138

• AssocRules
• InteractionSets
• Rule
• Author: Brian Zylich

F.15.1. public RuleSets(String name)

Constructor

• Parameters: name — a name for this list of association rules (string)

F.15.2. public RuleSets(String name, AssocRules rules)

Constructor

• Parameters:
• name — a name for this list of association rules (string)
• rules — rules generated by the association rule mining algorithm

F.15.3. public RuleSets findClosures(InteractionSets closures)

Filters the rules to ensure that the itemset created by the rules is a closure.

• Parameters: closures — The InteractionSets object containing all closed Inter-
actionSet’s.

• Returns: RuleSets object containing all of the closed rules.

F.15.4. public RuleSets filterRules()

Filters the rules to ensure that the antecedent only contains drugs and the consequent
only contains reactions.

• Returns: RuleSets object containing all of the filtered rules.

F.15.5. public RuleSets filterNoSingletonRules()

Filters rules to remove rules with <2 drugs

• Returns: RuleSets object without any rules that have less than 2 drugs

139

F.15.6. public RuleSets filterNoComplexRules()

Filters rules to remove rules with >2 drugs or >1 ADR

• Returns: RuleSets object without any rules that have more than 2 drugs or more
than 1 adr

F.16. public class Agrawal extends AlgoAgrawalFaster94

This class extends the AlgoAgrawalFaster94 class from the SPMF library put together
by Philippe Fournier-Viger. The extension of this association rule mining algorithm is
used to run the algorithm using InteractionSets and producing RuleSets.

• See also:
• AlgoAgrawalFaster94
• InteractionSets
• RuleSets
• Author: Brian Zylich

F.16.1. public Agrawal()

Constructor

F.16.2. public RuleSets runAlgorithm(InteractionSets interactions,

int databaseSize, double minconf)

Run the algorithm

• Parameters:
• interactions — a set of frequent itemsets
• databaseSize — the number of transactions in the database
• minconf — the minconf threshold
• Returns: the set of association rules

140

	Abstract
	Acknowledgements
	Executive Summary
	Introduction
	Motivation
	Previous Research
	Contributions

	Background
	MARAS
	DIVA Methodology
	Minimum Viable Product

	MARAS/DIVA System Review and Creating MIAP
	Analysis of Existing MARAS and DIVA Systems
	JAVA Refactoring
	Client-Server Setup

	Improving the MIAP Platform
	SQL Refactoring and Collective Data Mining
	Adverse Reaction Mapping
	Drug Name Matching
	DIVA Interface Improvements

	Evaluation and Testing
	Technical Testing
	Usability Evaluation

	Evaluation and Testing Results
	Technical Results
	Usability Evaluation Results

	Conclusions
	Summary and Findings
	Future Work

	References
	Usability Evaluation Materials
	Evaluation Script for WPI Student Surveys
	Evaluation Script for FDA Researchers
	Usability Evaluation Additional Results

	User Interface (React.js) Documentation
	User Interface (JavaScript) Documentation
	Constants
	Functions

	Server (TypeScript) Documentation
	Index
	External module: server/App
	Class: App
	External module: server/csv/CSVController
	Class: CSVController
	External module: server/csv/index
	External module: server/csv/routes
	External module: server/index

	DIVA Web Application Documentation
	Install dependencies for client and server application
	How to ensure the server keeps running after your session ends
	How to build the front-end React app
	How to run the server
	How to generate documentation

	MARAS Documentation
	How to run
	Output
	Data
	public class App
	public class Dataset
	public class Drug extends Item
	public class Group implements Comparable<Group>
	public class Groupset extends ArrayList<Group>
	public class Interaction extends Itemset
	public class InteractionSets extends Itemsets
	public class Item implements Comparable<Item>
	public class MarasStatus
	public class Report implements Comparable<Report>, Iterable<Item>
	public class Rule extends AssocRule implements Comparable<Rule>
	public class RuleSets extends AssocRules
	public class Agrawal extends AlgoAgrawalFaster94

