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Abstract

A distance-two labeling of a graph G is a function f : V (G) → {0, 1, 2, . . . , k}
such that |f(u) − f(v)| ≥ 1 if d(u, v) = 2 and |f(u) − f(v)| ≥ 2 if d(u, v) = 1
for all u, v ∈ V (G). A labeling is optimal if k is the least possible integer such
that G admits a k-labeling. The λ2,1 number is the largest integer assigned to
some vertex in an optimally labeled network. In this paper, we examine the λ2,1

number for Möbius ladders, a class of graphs originally defined by Richard Guy
and Frank Harary [9]. We completely determine the λ2,1 number for Möbius
ladders of even order, and for a specific class of Möbius ladders with odd order.
A general upper bound for λ2,1(G) is known [6], and for the remaining cases
of Möbius ladders we improve this bound from 18 to 7. We also provide some
results for radio labelings and extensions to other labelings of these graphs.



Executive Summary

A graph is a pair G = (V,E), such that V (G) is the vertex set, and E(G) is
the set of edges. For simple graphs (i.e., undirected, loopless, and finite), the
concept of a radio labeling was first introduced in 1980 by Hale [8]. A radio
labeling is formally defined as a function:

f : V (G)→ {0, 1, 2, . . . , k}

such that
|f(u)− f(v)|+ d(u, v) ≥ diam(G) + 1

for all u, v in V (G). Here, d(u, v) denotes the length of the shortest uv-path,
and diam(G) is the diameter of G, i.e., the maximum distance among all vertex
pairs in G. This definition puts diam(G) constraints on the labeling assignment
of vertices. The radio number of G, denoted rn(G), is the smallest k such that
G can be radio labeled with k + 1 labels (including zero). Any radio labeling
that achieves this bound is said to be optimal.

Investigations of optimal radio labelings of graphs are better managed in
smaller cases and with labeling schemes that present fewer constraints. A nat-
ural starting point, then, is the L(2, 1) labeling problem, which only imposes
restrictions on vertices within a distance-two neighborhood of any vertex. For-
mally, adjacent vertices must receive labels that differ by at least two, and
vertices which are distance two may receive labels that differ by at least one.
Note that this problem is exactly that of radio labeling for graphs of diameter
two. An optimal L(2, 1) labeling uses λ2,1(G) + 1 labels (including zero).

An L′(2, 1) labeling has the same distance contraints as an L(2, 1) labeling,
with the additional imposition that the function must also be one-to-one. The
parameter λ′2,1(G) is the minimum value k such that G admits a k-labeling,
corresponding to the L′(2, 1) labeling constraints.

Our objective for this project is to determine the λ2,1 number for a previously
unresolved class of graphs called Möbius ladders. Möbius ladders, denoted Mn,
are formed by taking a cycle of vertices Cn and connecting all vertex pairs (u, v)
such that d(u, v) = diam(Cn). We refer to Mn as an even or odd Möbius ladder
depending on whether n is even or odd. Though the construction and some
basic properties of Möbius ladders are the same, the even and odd classes ex-
hibit several fundamentally different characteristics. For instance, even Möbius
ladders are regular of degree three, while odd ladders are regular of degree four.
We consider these cases separately due to the structural differences.

The main theorems of the paper are:

• λ2,1(Mn) = 6 for n even and n 6= 8.

• For n odd and n 6= 11, 17, λ2,1(Mn) is either 6 or 7.
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• λ′2,1(Mn) = n− 1 for all n.

• rn(Mn) ≥ 3n
2 − 2, for n ≥ 17 and n ∈ {11, 14, 15}.

In the cases where equality is proved, algorithms are presented which attain
the optimal value. There is also a discussion and an upperbound on the L(h, 1)
labelings of Möbius ladders which follows naturally from the L(2, 1) labeling
results presented. We conclude with some suggestions for future research and
possible extensions to the concept of the Möbius ladders.
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Chapter 1

Introduction

It is important to establish some basic graph theoretic concepts and their rel-
evance to the frequency labeling problem before we begin establishing results
on graphs. What follows are definitions and concepts that arise in examples,
results, and proofs throughout this paper.

Most basically, we must first provide a precise definition of a graph. A graph
G=(V,E) consists of a vertex set V (G) and an edge set E(G). When the refer-
enced graph is obvious, these shall be shortened to V and E. In this paper, we
will only consider simple, finite, undirected graphs.

A finite graph is a graph in which both the vertex and edge sets have a finite
number of elements. A simple graph is a graph that has no loops or multiple
edges. A loop is an edge which connects a vertex to itself. At most one edge
e = (u, v) may join two distinct vertices u, v ∈ V (G).

All labeling schemes rely heavily upon the concept of distance. The distance
between any two vertices u and v is the length of the shortest uv-path in G, and
is denoted d(u, v). The diameter of a graph, denoted diam(G), is the maximum
distance between vertices in G. In other words, diam(G) = maxu,v∈V d(u, v).

A labeling is a function which maps the vertex set of G to another set S. In
this paper, we only consider labelings that map the vertices to the nonnegative
integers,

f : V → S = Z+ ∪ {0}.

In some cases, it is only necessary to consider the neighborhood of a ver-
tex. The neighborhood about a vertex u is the set {v ∈ V | d(u, v) = 1}. The
distance-two neighborhood of a vertex u, denoted N2(u) is defined to be the set
of vertices {v ∈ V | 1 ≤ d(u, v) ≤ 2}. The closed neighborhood of u is the set
{u} ∪ N (u), and the closed distance-two neighborhood is defined analogously.
It is natural for frequency strength to dissipate the farther a signal is broadcast.
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This interpretation lends itself to the idea of neighborhoods. Another relevant
notion which plays an important role in our analysis is that of a dominating set.
A dominating set of a graph G is any set of vertices whose closed neighborhoods
contain every vertex in G.

For a specific labeling f , the span of f , denoted σ(f) is defined to be
max(f) − min(f). In the cases presented here, σ(f) = max(f), as these la-
belings begin at zero. This convention is widely used for L(h, k) labelings. The
span of a frequency network is better known as the bandwidth. Since bandwidth
is finite, it is important to reduce the span as much as possible to conserve it
while retaining sufficient signal propagation.
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Chapter 2

Background

2.1 Radio Channel Assignment Problem

An interesting problem that arises in application is radio channel frequency
assignment. The closer two towers are within a network of radio towers, the
further apart their frequencies must be in order to minimize interference. Tow-
ers that are far apart do not run the chance of frequency interference and may
broadcast on closer frequencies. The ability to broadcast on a closer range of
frequencies is especially helpful in conservation of bandwidth. Minimizing the
total span of frequencies subject to a configuration of radio towers is naturally
formulated as an optimization problem.

Given a graph G = (V,E), the radio transmitters can be represented as
the set of vertices V and the overall closeness between the transmitters de-
scribed by the edge set E. This optimization problem is thus reduced to one of
graph labeling. This simple model works under the assumptions that frequen-
cies are emitted in all directions equally without reverberation and regardless
of wavelength, allowing for relaxation of otherwise impeding restrictions such as
directedness [10].

To solve this problem, the graph labeling must reflect the physical con-
straints of frequency assignment. This manifests itself in distance-dependent
labeling schemes. Intuitively, vertices that are closer in the graph must receive
labels that are farther apart, and vertices that are farther apart may receive
labels that are closer. Perhaps the most natural of these labeling schemes is the
radio labeling.

Given a graph G = (V,E), a radio labeling is a labeling f , such that

|f(u)− f(v)| ≥ diam(G) + 1− d(u, v).

This constraint is referred to as the radio condition. This creates diam(G)
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separate constraints for each vertex. The radio number of a graph, denoted
rn(G), is the minimum span of any radio labeling on that graph. Formally,

rn(G) = min(σ(f)).

A radio labeling that achieves this bound is an optimal radio labeling.

Lemma 2.1.1. rn(G) ≥ |V | − 1.

Proof. Let G = (u, v) and u, v ∈ V . By the definition of a radio labeling,
|f(u)−f(v)| ≥ diam(G)+1−d(u, v). Because d(u, v) ≤ diam(G) by definition,
then |f(u) − f(v)| ≥ 1. So any two arbitrary vertices must receive different
labels. Therefore, the labeling must be one-to-one, and σ(f) ≥ |V | − 1. Since σ
is bounded below by |V | − 1, then rn(G) must be also.

2.1.1 Basic Results on Radio Labelings

Some known results are discussed on complete graphs, paths, and cycles. The
latter two results appeared in [13].

Complete Graphs A complete graph on n vertices, Kn, has an edge between
every two vertices. This implies that diam(G) = 1, and therefore, the radio
condition reduces to |f(u)− f(v)| ≥ 1. It is evident that rn(Kn) = n− 1.

Cycles A cycle on n vertices, denoted by Cn, is a connected, two-regular
graph.

rn(Cn) =

{
n−2

2 φ(n) + 1, if n ≡ 0, 2 (mod 4);
n−1

2 φ(n), if n ≡ 1, 3 (mod 4).

With n = 4k + r, (r ∈ Z4), and

φ(n) =

{
k + 1, if r = 1;

k + 2, else.

Paths The path on n vertices, referred to as Pn, is given by the vertex set V =
{v0, v1, . . . , vn−1}, and an edge e is in the edge set if and only if e = (vi−1, vi)
for i = 0, 1, . . . n. Liu and Zhu proved the following:

rn(Pn) =

{
2k2 + 2, if n = 2k + 1;

2k(k − 1) + 1, if n = 2k.

Refer to Figures 2.1 and 2.2 for optimal radio labelings of a cycle and a
complete graph, respectively.
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Figure 2.1: An optimal radio labeling for a cycle on 6 vertices. Observe that
6 ≡ 2 mod 4 so φ = 3.

Figure 2.2: An optimal radio labeling of K6 with maximum label n− 1.

2.1.2 L(2, 1) Labelings

A simple analog to the standard radio channel assignment problem is the L(2, 1)
labeling. If f is an L(2, 1) labeling, then:

|f(u)− f(v)| ≥

{
2, if u and v are adjacent;

1, if d(u,v)=2.

There are no restrictions on the labels of u and v for d(u,v) ≥ 3 as there
would be for a radio labeling. This labeling scheme was first introduced in [7].
For a given graph G, the minimum possible span of any L(2, 1) labeling, λ2,1(G),
is defined as follows.
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λ2,1(G) = min(σ(f))

If a graph can admit an L(2, 1) labeling of span k, then the graph is said to
be k-labelable. Note that G is k-labelable for all k ≥ λ2,1(G). It is important to
keep in mind that a k-labeling of G is not necessarily an optimal labeling.

Lemma 2.1.2. If diam(G) = 2, then λ2,1(G) = rn(G).

Proof. Recall the radio condition of a graph such that diam(G) = 2:

|f(u)− f(v)| ≥ 3− d(u, v).

If u and v are adjacent, then d(u, v) = 1 and |f(u) − f(v)| ≥ 2. If u and
v are distance two, then d(u, v) = 2 and |f(u) − f(v)| ≥ 1. These statements
plainly define the necessary constraints of an L(2, 1) labeling.

Previous results

We once again consider the classes of complete graphs, cycles and paths. De-
termining λ2,1(Kn), is a relatively simple feat. All vertices are adjacent to each
other and must therefore receive labels that differ by two. This leads to the
elementary property:

λ2,1(Kn) = 2(n− 1).

Paths Consider the first four paths: P1, P2, P3, and P4. It is not difficult to
determine that λ2,1(P1) = 0, λ2,1(P2) = 2 and λ2,1(P3) = λ2,1(P4) = 3. In [7],
it was shown that for n ≥ 5,

λ2,1(Pn) = 4.

The proof for this relies heavily on the following lemma.

Lemma 2.1.3. For a given graph G and a subgraph H of G, λ(G) ≥ λ(H).

Proof. Assume that there exists a graph G and a subgraph H such that λ(G) <
λ(H). Let λ(G) = k. Then there exists a proper k-labeling of G. Deleting any
vertices in G preserves the feasibility of this labeling. If we delete all the vertices
in (G ∩H)C , then what remains is a feasible k-labeling of H, contradicting the
initial assumption.

Note that this result holds regardless of which labeling scheme is used.

Cycles First observe that the cycle Cn has Pn as a subgraph, so as a conse-
quence of Lemma 2.1.3, λ2,1(Cn) ≥ 4. A construction that attains this bound
is presented in [7] and is given below:

Let V (Cn) = {v0, v1, . . . , vn−1}, and E = {(vi, vj)|j = i+ 1 (mod n)}.
If n ≡ 0 mod 3,

f(vi) =


0, if i ≡ 0 mod 3;

2, if i ≡ 1 mod 3;

4, if i ≡ 2 mod 3.
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If n ≡ 1 mod 3 then this same labeling scheme applies, with the exception
of vertices in the set {vn−4, vn−3, vn−2, vn−1}, which are redefined as follows

f(vi) =


0, if i = n− 3;

3, if i = n− 3;

1, if i = n− 2;

4, if i = n− 1.

If n ≡ 2 mod 3 then the only vertices that need new labels are vn−2 and
vn−1. Redefine these as follows:

f(vi) =

{
1, if i = n− 2;

3, if i = n− 1.

To see an example of this labeling scheme, refer to Figure 2.3 below.

Figure 2.3: An optimal L(2, 1) labeling of C8 with maximum label 4.

There are also results on many different families of graphs, some of which
are mentioned below [2].

• Wheels, Wn

• Infinite lattices with ∆ = 3, 4, 6, 8

• Cartesian products of paths, cycles, complete graphs

• Planar graphs

• K4-minor free graphs
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• Hypercubes

• Trees

Note that the L(2, 1) labeling problem is not completely solved for all the
above families of graphs. Likewise, there are many more specific families with
established results that are not on this list. The reader is referred to [2] for a
more complete list of results.

2.1.3 L(h, k) Labelings

A generalization of the L(2, 1) labeling problem is the L(h, k) labeling problem.
It is defined as follows:

|f(u)− f(v)| ≥

{
h, if u and v are adjacent;

k, if d(u,v)=2.

Likewise, the minimum span of an L(h, k) labeling is λh,k(G). For an exten-
sive overview on results regarding the L(h, k) labeling problem, refer to [2], the
highlights of which are presented here.

L(h, 0)

The L(1, 0) problem has been extensively studied, as this problem is analogous
to graph coloring. For a more rigorous definition of a coloring, refer to section
2.2.1. The only difference between coloring a graph and applying an L(1, 0)
labeling is that the minimum label in a coloring is one, whereas L(1, 0) labelings
permit zero as a label. For this reason, λ1,0(G) = χ(G)− 1, where χ(G) is the
chromatic number of G. In fact, λh,0(G) = h · χ(G) − 1, as this problem is
isomorphic to vertex coloring with a required difference of h between adjacent
vertices.

L(1, 1)

The square of a graph G, denoted G2, is formed by adding an edge e = (u, v)
between all vertices u and v if d(u, v) = 2. With this in mind, it is not hard to
see that λ1,1(G) = χ(G2)− 1.

2.1.4 L′(2, 1) Labelings

An L′(2, 1) labeling is an L(2, 1) labeling with the additional constraint that the
function must be one-to-one. Thus, λ′2,1(G) is the minimum one-to-one (2, 1)-
labeling admitted by G. Since the labeling begins at zero, we may say that
λ′2,1(G) ≥ n− 1. A graph that admits an L′(2, 1) labeling with σ(f) = n− 1 is
said to be perfectly labelable.
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2.2 Möbius Ladders

Originally introduced in 1966 by Richard Guy and Frank Harary [9], the Möbius
ladder on n vertices, denoted Mn, is constructed by connecting vertices u and
v in the cycle Cn if d(u, v) = diam(Cn). Vertices that satisfy this condition are
antipodal. Looking at the left representation of M16 in Figure 2.4, it is easy to
see why this family is called the Möbius ladders.

Figure 2.4: An example of the two representations of M16 with vertex labels
indicating the associated isomorphism.

Although the original paper by Guy and Harary defined Möbius Ladders for
all natural numbers n ≥ 5, many authors only consider n even [1, 12, 14]. The
two cases (n even or odd) change the structure of these graphs quite radically.
For this reason, the main result of the paper shall deal with them separately.
Unless otherwise stated, assume that the vertex set of Mn is labeled clockwise
about the outer cycle, as in Figure 2.4.

2.2.1 Basic Properties

As evidenced by the number of publications, there are many more established
results for even Möbius ladders than for odd. They are three-regular and Hamil-
tonian. Thus the edge set consists of a spanning cycle and a one-factor. Clearly,
for n even, |E(Mn)| = 3n

2 by the handshaking lemma. The ladder shape consists
of n

2 contiguous 4 cycles in a prism-like arrangement. In one of these 4-cycles,
a “twist” is introduced to create the topological Möbius strip.

When n is odd, Mn is four-regular and therefore two-factorable. The graph
is composed of n contiguous triangles rather than the contiguous 4-cycles used
to create the rungs of the even ladder. Likewise, there is one triangle that is
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“twisted”. An example of an odd order Möbius ladder is given in Figure 2.5. In
this figure, the twist is introduced at the bottom, between vertex 1 and vertex
17. By the handshaking lemma, |E(Mn)| = 2n for n odd.

Figure 2.5: The two main representations of an odd Möbius ladder, M17. The
vertex labels indicate an isomorphism from one to the other.

Crossing Number

The crossing number of a graph, denoted cr(G), is the minimum number of edge
crossings in any plane drawing of G. The main result of [9] is that

cr(Mn) = 1

for all n ≥ 5. In this sense, the Möbius ladders are minimally nonplanar. Guy
and Harary even considered these graphs as a possible extension to Kuratowski
Graphs, since K5 and K3,3 are isomorphic to M5 and M6, respectively.

Diameter and Distance

Radio labelings rely heavily on the notion of a graph’s diameter. If n = 2r then
diam(Mn)=d r2e. That is,

diam(Mn) =

{
r
2 , if r is even;
r+1

2 , if r is odd;

This same formula applies to the odd case, or for n = 2r + 1.
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Chromatic Number

A vertex coloring of a graph is a function which assigns colors to the vertices
such that no adjacent vertices receive the same color. In practice, the colors are
simply the integers {1, 2, . . . , k}. Any vertex coloring that uses k distinct colors
is also referred to as a k-coloring. Given a graph G, the chromatic number,
χ(G), is the minimum number of colors k such that G admits a k-coloring. In
order to determine the chromatic number of a Möbius ladder, we require the
following theorems:
Theorem (Brooks’): For a graph G with maximum degree ∆, χ(G) ≤ ∆,
unless G is an odd cycle or a complete graph.
Theorem: G is 2-colorable if and only if G contains no odd cycles.

With these preliminaries established we can now determine the chromatic
number for Möbius ladders.

For an even Möbius ladder, Mn (with n = 2r)

χ(Mn) =

{
2, if r is odd;

3, if r is even.

Proof. Consider the cycles in an even Möbius ladder. All the rungs create con-
tiguous 4-cycles, and the outside (Hamiltonian) cycle has size 2r. Note that the
construction of a Möbius ladder begins with an n-cycle (which is the Hamilto-
nian cycle that we just mentioned), and joins antipodal vertices with an edge.
This edge cuts the original Hamiltonian cycle in half, creating an interior cycle
of size n

2 + 1 = r + 1. Therefore, if r is odd, then there are no odd cycles, and
Mn is 2-colorable. However, if r is even then there is an odd cycle and a third
color must be introduced.

Note that it is possible to 3-color Mn as a result of Brook’s Theorem, and
thus, this coloring is optimal for r even.

When dealing with odd Möbius ladders, the chromatic number is slightly
higher.

χ(Mn) =

{
3, if n ≡ 3 mod 6;

4, otherwise.

Proof. Note that any odd Möbius Ladder can be 4-colored as a result of Brook’s
Theorem. It suffices to show that Mn can admit a 3-coloring only when n is
congruent to 3 modulo 6.

We begin by assuming that odd Möbius graphs are tripartite and show for
which classes this is true. Thus we assume that we may label the nodes of any
odd Möbius graph with three distinct labels.
By the structure of the odd Möbius ladder, it is clear that labeling any two
adjacent vertices determines the labels of the vertices that are within the same
3 cycle.

11



Figure 2.6: Arbitrary labeling of two vertices, A and B, which determine the
immediate neighbors of both A and B.

Without loss of generality, label the two left-most adjacent vertices and the
bottom right-most vertex of the ladder as in the following figure.

Figure 2.7: Determination of the arbitrary end vertices of a Möbius ladder which
influence the number of allowable intermediary vertices.

Now, because of the deterministic nature of the labeling forced by the struc-
ture of the ladder, the only way to maintain feasibility is by introducing 3h
vertices between the vertices which we initially labeled, where h is any nonneg-
ative integer. This brings our total number of vertices to 3 + 3h = 3(h+ 1).

Since we are working with odd ladders, we require that the above product
also be odd. That is, 3(h+ 1) must contain no even factors. Since 3 is odd, we
require that

h+ 1 = 2m+ 1 =⇒ h = 2m.

Looking back at our original equation for the number of vertices in this set,
we have 3 + 6m. In other words, we have obtained uniquely the class of odd
Möbius ladders with n = 3 mod 6.

Chromatic Polynomials

Consider the following question: Given a graph G, and k colors, how many
different ways are there to k-color G? This question can be answered by the
chromatic polynomial of G. Let pk be the number of ways to k-color G. Then
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the chromatic polynomial, PG(k) is defined to be the nth degree interpolating
polynomial of the points (k, pk), for k = 0, 1, . . . , n.

Note that if k < χ(G), then PG(k) = pk = 0.
For an even Möbius ladder, Biggs et al [1] showed that,

PMn
(k) = (k2 − 3k + 3)n + (k − 1)[(3− k)n + (1− k)n]− 1.

Circulant Matrices

For a graph of order n, the adjacency matrix A is an nxn matrix satisfying the
following:

aij =

{
1, if (vi, vj) ∈ E(G);

0, otherwise

A circulant matrix is a matrix such that aij = ai−1,j−1, where subtraction
is done modulo n. In this sense, a circulant matrix is entirely defined by its
first column. A circulant graph, is simply a graph where the adjacency matrix
is circulant. The Möbius ladders are circulant graphs. The first column will
always be given by the vector [b1, b2, . . . , bn]T , with

bi =


1, if i ∈ {2, n2 + 1, n} and n even;

1, if i ∈ {2, n+1
2 , n+3

2 , n} and n odd;

0, otherwise.

One important feature of circulant graphs, is their rotational symmetry. A
Möbius ladder can be drawn with vertices on a regular n-gon, and the symmetry
group of the n-gon also describes Mn.

13



Chapter 3

Results

As previously mentioned, the parity of n greatly affects the structure of Mn.
Thus, the even and odd cases must be dealt with separately.

3.1 Even Case

It has been shown that 3-regular, Hamiltonian graphs have a λ(2,1) labeling
between 5 and 9, inclusive [5, 11]. In the case of the Möbius ladders, these
bounds can be improved from above and below.

Lemma 3.1.1. The lower bound for an L(2, 1) labeling on any even Möbius
graph, Mn, is 6.

Proof. If it can be shown that a distance-two neighborhood about a given vertex
a of Mn has a minimal L(2, 1) labeling 6, then λ2,1(Mn) is at least 6, by Lemma
2.1.3.

Any given vertex in Mn has three vertices distance one away and four ver-
tices distance two away. For simplicity, label a zero. Note that we are referring
to our vertices in the same manner as described in Section 2.2, with the vertices
labeled clockwise about the outer cycle. This implies that vertex a will be ad-
jacent to vertices a+ 1, a− 1 and a+ n

2 .
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Figure 3.1: Closed distance-two neighborhood of an arbitrary vertex (labeled
zero) in an even Möbius ladder.

There cannot be four vertices with the same label among this set, as no four
labels are all distance three from each other. So suppose three of these vertices
acquire the same label. Then there must exist a one-to-one mapping from the
remaining vertices onto some four-element subset of the set {1,2,3,4,5}. It is
also true that each of these three points must be at least distance three from
each other. The only three points that satisfy this constraint are the vertices
a+ 2, a− 2, and a+ n

2 .

Figure 3.2: The only three vertices of the distance-two neighborhood in Lemma
3.1.1 which are all distance-three from each other.

This collection forms a dominating set of the deleted neighborhood about 0.
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Then there is at least one element of the set {1,2,3,4,5} not admitted by Mn.
In this case, λ(2,1)(Mn) ≥ 6.

Now suppose Mn admits one pair of vertices with a given label and another
distinct pair of vertices with a different label. The nine possible pairs of vertices
are {a+ n

2 +1, a−1}, {a+ n
2 +1, a−2}, {a−2, a+2}, {a−2, a+1}, {a−1, a+2},

{a+ n
2 , a− 2}, {a+ n

2 , a+ 2}, {a+ n
2 − 1, a+ 1}, and{a+ n

2 − 1, a+ 2}. Any two
pairs that together form a dominating set of the deleted neighborhood about 0
will result in the previous argument, forcing λ(Mn) ≥ 6. The only sets of pairs
that don’t form this dominating set are {a + n

2 , a− 2} and {a + n
2 + 1, a− 1},

{a+ n
2 −1, a+ 1} and {a+ n

2 , a−2}, and {a−1, a+ 2} and {a−2, a+ 1}. Since
{(a + n

2 , a − 2), (a + n
2 + 1, a − 1)} and {(a + n

2 − 1, a + 1), (a + n
2 , a − 2)} are

symmetrically equivalent, we need only consider one of these pairs.

We first examine the vertex pairs {a + n
−1, a + 1} and {a + n

2 , a − 2} and
show that λ(2, 1) ≥ 6 if {a+ n

2 − 1, a+ 1} and {a+ n
2 , a− 2} receive the same

labels.

Figure 3.3: The vertex pairs a+ n
2 , a− 2 and a+ n

2 − 1, a+ 1 and neighboring
vertices. Dashed lines indicate edges incident to at least one of the vertices in
the vertex pairs. White nodes are the chosen vertex pairs.

We begin by looking at the relationship between the vertices a+ n
2 , a+ n

2 −1,
and a− 1.

|f(a+
n

2
)− 1− f(a+

n

2
)| ≥ 2;

|f(a+
n

2
− 1)− f(a− 1)| ≥ 2;

and because f(a+ n
2 + 1) = f(a− 1)),

|f(a+
n

2
)− f(a− 1)| ≥ 2.
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Thus, the difference between the greatest and least values of these vertices
is at least 4. Since f(a) = 0 and a is the only vertex to receive that label, it
must be true that the lowest possible value of any one of the remaining vertices
is 1, raising the lower bound here to 5. Since we require that this neighborhood
receive a labeling of no greater than 5, one of the vertices a + n

2 , a − 1, and
a + n

−1 must receive a label of 1. The only vertex that may receive this label
while maintaining a feasible labeling is a+ n

2 − 1. The remaining vertices a+ n
2

and a − 1 must receive labels 3 and 5. That leaves labels 2 and 4 to be split
among a+ 1 and a+ 2. Figure 3.4 illustrates the possible labelings.

Figure 3.4: Partial feasible labelings of a distance-two neighborhood of an arbi-
trary vertex of Mn.

Regardless of the label a+ 1 receives, a+ n
2 + 1 may not receive the label 3.

Thus, the labeling is determined as in Figure 3.5:
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Figure 3.5: Contradiction forced by the construction of the labeling.

The labeling produced on the original distance-two neighborhood of a is in-
feasible if vertices a − 2 and a + 2 are joined to form M8. Thus, we introduce
the vertex antipodal to a − 2 and see that the smallest possible label it may
receive is 6. Thus, this case does not admit a 5-labeling. As previously stated,
this precludes the symmetric case from being 5-labeled.

The only remaining case in which the distance-two neighborhood about a
may be 5-labeled is when the vertex pairs a− 1, a+ 2 and a− 2, a+ 1 are cho-
sen. First, note that the only possible vertices that may receive the label 1 are
a+ n

+1 and a+ n
−1. Without loss of generality, suppose f(a+ n

+1) = 1. Figure
3.6 depicts the labeling scheme determined by this choice of labels.

Figure 3.6: Optimal labeling of a distance-two neighborhood of a Möbius ladder.
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Figure 3.6 cannot be connected while maintaining a feasible labeling, so we
must introduce two more vertices and label them accordingly. It is important
to note that the vertex labeled (0, 1) may only receive the label 1. This is true
because we have thus far determined antipodal vertex labels. Put simply, the
label of the vertex opposite the vertex labeled 0 is 3, the label opposite 1 is 4,
and the label opposite 2 is 5. The following figure demonstrates the inclusion
of a single pair of vertices that retain feasibiity of the labeling. The objective is
to be able to connect the graph while never using a label above 5.

Figure 3.7: The extended neighborhood about a, where even labels must be on
the top, and odd labels on the bottom.

The restriction posed by the five labeling happens to fully determine the
labels of newly introduced vertices. A pattern develops after enough new vertices
have been added, and it is left to the reader to confirm that the top half of the
constructed graph contains only even labels, while the bottom contains only
odd. Note that no choice of new vertices has the potential to ever produce a
subgraph that may be connected while retaining feasibility.

Lemma 3.1.2. Given a Mobius ladder Mn, if n ≡ 4 mod 8 then λ(Mn) = 6.

Proof. Note that the lower bound of six was established in Lemma 3.1.1, so any
labeling that achieves this bound must be optimal. This can be done using the
following algorithm.
Starting at any vertex vi with f(vi) = 0, then label along the outer cycle such
that f(vi+1 ) = (f(vi)+2) mod 8. This recursive formula generates the sequence
(0,2,4,6).
If n ≡ 4 mod 8, then clearly, n = 4k for some k odd. Therefore, the sequence
(0,2,4,6) which consists of four elements, is repeated exactly k times. Because
k is odd, the adjacent vertices vi and vi+ n

2
which lie across from each other

on the cycle receive labels that always differ by four. An alternative way to
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see this, is given n ≡ 4 mod 8 then n
2 ≡ 2 mod 4. And since this scheme

essentially determines labels according to the vertex indices modulo 4, then
|f(v(i))− f(v(i+ n

2 )| = 4.
In order for this to be a proper L(2, 1) labeling, then both constraints must be
satisfied. Note that the adjacency constraint must be satisfied, as
|f(v(i))− f(v(i± 1))| = 2, and |f(v(i))− f(v(i+ n

2 ))| = 4.
For the distance two constraint, since the difference between all the labels is at
least two, it suffices to show that no vertices within distance two of v(i) receive
the same label f(v(i)). The four vertices that are distance two from v(i) are
v(i±2) and v(i+ n

2 ±1). It is clear to see that the two vertices v(i±2) receive the
values f(v(i))± 4 modulo 8. Further, because f(v(i+ n

2 )) = f(v(i)) + 4 mod 8,
then it implies that f(v(i+ n

2 ±1)) = f(v(i)) + 4±2 mod 8. Therefore, no label
that is distance two from v(i) receives the same label f(v(i)), so the distance
two constraint is also satisfied.

This construction leads to the following theorem.

Theorem 3.1.3. λ(Mn) = 6, for all even n 6= 8.

Proof. Given a Möbius ladder, Mn with n ≡ 4 mod 8, an L(2,1) labeling of six
or less is possible (as shown in the previous Lemma). This construction enables
us to insert a “rung” of the ladder, consisting of two new vertices, such that the
6-labeling is preserved.
Between each pair of adjacent vertices u, v such that f(u)=0 and f(v)=2, a
new vertex w can be inserted such that f(w)=5. Likewise, in between each pair
of vertices u’ and v’ such that f(u’ )=4 and f(v’ )=6, a new vertex w’ can be
inserted such that f(w’ )=1, and w’ is adjacent to w. For a concrete example,
refer to Figure 3.8.
There will be exactly n

4 such pairs of vertices that can be inserted, that preserve
the L(2,1) labeling. This follows from the fact that n is a multiple of four, and
there is exactly one “rung” that can be inserted in the ladder for every four
cycle of (0,2,6,4).
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Figure 3.8: M12 labeled by the algorithm in Lemma 3.1.2, and then the ad-
ditional rungs (dotted edges) which can be inserted to get to M14, M16, and
M18.

Therefore, because Mn with n ≡ 4 mod 8 has a proper L(2, 1) labeling equal
to six, so does Mn+ n

4
, and all even Möbius ladders in between. Note that this

does not cover the three smallest cases, as the first defined Möbius ladder with
n ≡ 4 mod 8 is M12. So it remains to be shown the 6-labelings exist for M6, and
M10. The reader is referred to Figure 3.9 to see an example of such a labeling.
Note that because diam(M8) = 2, it cannot be properly labeled with fewer than
n − 1 = 7 labels as a consequence of Lemmas 2.1.1 and 2.1.2. M8 is the only
even Möbius ladder that requires more than six labels. We later prove that M8

can be 7-labeled, as a consequence of Theorem 3.4.1. Therefore, λ(Mn) ≤ 6, for
all n 6= 8.

Figure 3.9: An optimal six labeling of M10
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3.2 Odd Case

3.2.1 Preliminaries

When trying to determine λ2,1(G), one potentially useful parameter is the total
number of vertices in G that may receive any single label in a proper L(2, 1)
labeling. This parameter will be denoted α(G), and is formally defined by:

α(G) = max|Sj |

Where Sj is a label set with cardinality maximized over all L(2, 1) labelings.

Theorem 3.2.1. For n odd, α(Mn) = bn5 c.

Proof. Each vertex v ∈ V (Mn) has a closed neighborhood of size five. If
n ≡ 5 mod 10 then n = 5k. In this case, we can decompose Mn into sets
V1, V2, . . . , Vk such that

⋃k
j=1 Vj = V (Mn) and |Vj | = 5 for all j ∈ {1, 2, . . . , k}

and such that each set Vj can be expressed as the closed neighborhood of a
vertex vj . Note that each vj must be distance three from each other, because
their closed neighborhoods are all disjoint. Therefore, each vj may be assigned
the same label, and α(Mn) = k = bn5 c.
If there are additional vertices, (say n = 5k+r, with r < 5), we may decompose
Mn into k sets of five, and one set of r. The k sets of five may once again
be expressed as the closed neighborhoods of specific vertices within those sets.
However, the set containing r elements is not large enough to be a closed neigh-
borhood on its own, and therefore each vertex must be distance two from one
of the surrounding vj . Due to this proximity, no vertex in the r-set can receive
the label l. Therefore, α(Mn) = n−r

5 = bn5 c.

This concept is a useful tool for providing initial lower bounds. If no more
than α(G) vertices can receive a single label, then λ2,1(G) ≥ n

α(G) . In the case

of Möbius Ladders, we can construct this lower bound as follows:

α(Mn) = bn
5
c ≤ n

5

And thus,

λ2,1(Mn) ≥ n

(n5 )
= 5.

This bound is not very helpful, as [5] shows that an r-regular graph requires at
least r+2 labels for a proper L(2,1) labeling. The four-regularity of odd Möbius
Ladders implies that λ2,1(Mn) ≥ 6. As the following theorem demonstrates, this
bound is achievable.

Theorem 3.2.2. If n ≡ 7 mod 14, then λ(Mn) = 6.

Proof. It suffices to show that a six labeling exists. Consider the following
construction. The graph H on seven vertices, and it’s corresponding labeling is
given in Figure 3.10.
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Figure 3.10: The base graph H on 7 vertices which the construction in Theorem
3.2.2 is based upon.

Note that with the introduction of three edges [(0,5), (2,5), (0,3)], this would
become the Möbius ladder M7. Further, after the introduction of these edges
the L(2,1) labeling is still feasible. This implies that H can be catenated with
itself k times (where k is odd) to create a graph on 7k vertices. Also note that
the endpoints will be the same, and by introducting the same three edges, you
have a 6 labeling of M7k. Refer to Figure 3.11 to see how this construction
yields a 6 labeling of M21.

The aforementioned construction can be simply expressed as follows: Given
the standard clockwise labeling of the Möbius ladder’s vertices, V = {v1, v2, . . . , vn},
the label function is given by:

f(vi) =



0, if i ≡ 1 mod 7;

4, if i ≡ 2 mod 7;

1, if i ≡ 3 mod 7;

5, if i ≡ 4 mod 7;

2, if i ≡ 5 mod 7;

6, if i ≡ 6 mod 7;

3, if i ≡ 0 mod 7

This construction contains a nice property. In Section 2.2.1 it was noted
that odd Möbius ladders are 2-factorable. Looking at the construction of M21

in Figure 3.11, we notice that this graph can be decomposed into two disjoint
spanning cycles that reflect the two constraints of an L(2,1) labeling. That
is, along one cycle C1 the distance one constraint is held tight. For any two
adjacent vertices u and v, f(u) = (f(v) + 2) mod 7.
Along the other cycle C2, the distance two constraint is held tight. Any vertices
u and v that are distance two in this cycle receive labels such that
f(u) = (f(v) + 1) mod 7. For instance, a vertex with the label of 6 will always
be distance two from a vertex labeled 0. For a visual aid, refer to Figure 3.12.
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Figure 3.11: An optimal L(2,1) labeling of M21 according to the construction in
Theorem 3.2.2. The solid edges denote the 3 multiples of H. The dotted edges
are those that must be introduced to catenate.

Figure 3.12: The two spanning cycles of M21. C1 corresponds to the distance
one constraint and C2 to the distance two constraint.

3.2.2 Upper Bounds

The best established upper bound for a graph with maximum degree ∆ is given
by Gonçalves in [6]. That is, λ2,1(G) ≤ ∆2 +∆−2. For the odd Möbius ladders
this implies that λ2,1(Mn) ≤ 18. The intent of the following is to improve this
upper bound to seven.
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Lemma 3.2.3. The least upper bound for an L(2, 1) labeling on any Möbius
graph, Mn, for n odd and greater than or equal to 19, is 7.

Proof. We separate the graphs into three distinct classes, namely their order
modulo six. It is important to note that each case uses the same base labeling
of 7 vertices, which is given in Figure 3.10. The first case to be considered is
n ≡ 1 mod 6. The idea was to find a set of 6 vertices whose labeling may be
held constant and which, by indefinite appending to the base labeling, retains
feasibility for odd Möbius ladders. The following figure illustrates the suggested
labeling and how this set of six vertices may be affixed to the base set indefinitely.

Figure 3.13: The base labeling used to establish the 1 mod 6 case.

The second natural case is n ≡ 3 mod 6, and the approach is nearly identical.
It begins by introducing a slight modification of the same base labeling adjoined
to the first by a single vertex. The following figure illustrates this idea.

Figure 3.14: The base labeling used to establish the 3 mod 6 case.

The same set of 6 vertices established in the initial case is used in the same
manner here, thus establishing the upper bound for this case.

The final case is n ≡ 5 mod 6. The beginning base is increased to 23, and
the method of demonstration is identical to the second case.

25



Figure 3.15: The base labeling used to establish the 5 mod 6 case.

By broadening the base for each case, some smaller Möbius graphs are in-
evitably overlooked. These cases are n = 5, 9, 11, and 17. The arguments for
the optimal labelings of these graphs are laid out in the following section.

As a corollary of Lemma 3.2.3, λ(Mn) with n odd must either be six or
seven.

The only case we have found where an odd Möbius ladder can be six labeled,
is when n ≡ 7 mod 14. It is conjectured that for n odd, λ(Mn) = 6 if and only
if n ≡ 7 mod 14.

3.2.3 Remaining Cases

There are small cases that the proof of Lemma 3.2.3 does not resolve. These
are the three smallest cases when n ≡ 5 mod 6. Determining λ2,1(M5) is trivial,
as it is isomorphic to the complete graph K5.

Lemma 3.2.4. When n=11, λ(Mn) ≥ 8.

Proof. We proceed by contradiction. First, assume thatM11 admits a 7 labeling.
Namely, there exist 8 disjoint ‘label’ sets S0, S1, . . . ,S7 such that

⋃7
j=0 Sj =

V (M11).
It is clear that for any vertex vi, there exists uniquely (up to symmetry) a

vertex vī, such that d(vi, vī) = 3. That is to say, there is only one vertex (up to
symmetry) that can receive the same label as vi in M11.

Let N1 and N2 denote the closed neighborhoods of vertices vi and vī, respec-
tively. Note that N1 and N2 are disjoint sets with |N1| = |N2| = 5. So clearly,
the subgraph induced by the vertices V \(N1 ∪ N2) is the graph consisting of a
single vertex. In other terms, there is only one vertex that is distance 2 away
from both vi and vī. This implies that if Sj contains two vertices, then there
can be a maximum of one vertex in the union of the sets Sj+1 and Sj−1.

Now by the pigeonhole principle, if 8 labels are to be applied to 11 vertices,
there must be at least 3 sets that contain 2 vertices. This follows directly from
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the fact that α(M11) = b11/5c = 2, and thus any set can have at most 2 vertices,
by definition of α(Mn).

Let F be a valid 7 labeling of M11, in which exactly 3 label sets contain 2
vertices. It is clear to see that there must be at least one label set that is empty.
This occurs at either Sj+1 or Sj−1, where |Sj | = 2 and j 6= 0, 7. Because there
are 11 vertices and 8 sets, exactly 3 of which have cardinality 2, there cannot
be an empty set among the remaining five sets of cardinality one. Thus, the
labeling F is not valid, contradicting our initial assumption.

The only other possibility for a labeling is if exactly 4 sets have cardinality
2. This follows from a simple observation. Assume that |Sj | = 2 for some
j ∈ {1, . . . , 6}. Since |Sj−1 ∪ Sj+1| ≤ 1, Then clearly neither Sj−1 nor Sj+1 can
have cardinality 2. That is, there can be no consecutive sets both containing 2
vertices. Therefore, the maximum number of sets with cardinality 2 in M11 is
4.

Let G be a 7-labeling of M11 with exactly 4 label sets which contain 2 vertices
apiece. The reader may note that if |Sj | = |Sj+2| = 2, then Sj+1 = ∅. This is
due to the fact that Sj ∪ Sj+2 forms a dominating set, and therefore, no vertex
can feasibly obtain the label j+1.

Because G has exactly four label sets with cardinality 2, then there must be
at least 2 label sets which are empty. Out of 8 sets of vertices, exactly 4 have
cardinality 2, and 2 have cardinality 0. This implies that 1 of the 2 remaining
sets must have 2 vertices, thus arriving at our contradiction.

Therefore, it is not possible to 7 label M11.

Refer to Figure 3.16 for a proper 8-labeling of M11, implying λ2,1(M11) = 8.

Figure 3.16: An optimal 8-labeling of M11.

The aforementioned construction also neglects the case when n=17, which
leads us to the following claim:
Claim: λ2,1(M17) ≥ 8

Before proving this, some simple observations must be made about the struc-
ture of this graph.
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Lemma 3.2.5. In M17, if |Sj | = 3, then |Sj−1 ∪ Sj+1| ≤ 2, where j+1 and j-1
are defined.

Proof. Consider any three vertices u, v, and w in the vertex set of M17 that can
receive the same label j. Let N (u) denote the closed neighborhood of u (defined
analogously for v and w). Each of these sets contain five vertices, and since u,
v, and w are all at least distance three from each other, then N (u), N (v), and
N (w) are all disjoint.
Observe that the subgraph induced by V \(N (u)∪N (v)∪N (w)) contains only
two vertices. These are the only two vertices in the graph that are distance two
from every vertex with label j. Therefore, these are the only two vertices that
can receive consecutive labels j+1 or j-1.

Lemma 3.2.6. In M17, if |Sj | = 3, and |Sj+1| = 2, then |Sj+2| ≤ 1.

Proof. Let u, v, w be defined as in Lemma 3.2.5. Now consider all the possibil-
ities of where these three vertices can be placed in M17. To start, let v be any
vertex (note that this graph is vertex transitive, so without loss of generality we
shall refer to the v labeled in Figure 3.17).
The only other vertices that can receive the same label as v are those labeled

Figure 3.17: An example of M17 with v and vertices 1-8 which are eligible to
receive the same label as v.

one through eight in Figure 3.17. Two of these vertices must be designated as
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u and w. To take a better look at the possibilities, refer to Figure 3.18.

Figure 3.18: The subgraph H induced by vertices 1 through 8 in M17

Clearly, the vertices labeled 2 and 6 cannot be considered, because they are
not distance three from any other vertex in this subgraph H. There are six
possibilities for choosing two vertices in H that can receive the same label, and
these six possibilities can be sorted into two cases, due to the rotational sym-
metry of Möbius Ladders.
Case 1: The vertices (1,5), (5,8), or (1,4) are chosen to be u and w. This case
entails three vertices that are each distance three from each other in M17. The
subgraph induced by V \(N (u)∪N (v)∪N (w)) leaves two vertices that are dis-
tance three from each other, and can thus receive the same label.
Case 2: The vertices (7,4), (3,8), or (4,8) are chosen for u and w. This case
entails one vertex that is distance three to both the others, and the remaining
two are distance four. In this case, the subgraph induced by
V \(N (u) ∪ N (v) ∪ N (w)) leaves two vertices that are adjacent, and therefore
must receive different labels.
It is obvious that the only event when |Sj+1| can equal 2 occurs in the first of
the previous cases. Refer to Figure 3.19 for an example of this.

Figure 3.19: An example where |Sj | = 3 and |Sj+1| = 2 in M17.
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Let the two vertices that receive label j + 1 be denoted by x and y. The
only vertices in the graph that are available to receive the label j+2 are those
that are not in the closed neighborhoods of x or y, and also those which are not
previously labeled. Therefore, we can look at the subgraph induced by

V \(N (x) ∪N (y) ∪ {u, v, w}),

which excludes all the aforementioned vertices (See Figure 3.20). This subgraph
has diameter two, and therefore at most one vertex in this subgraph can receive
the label j + 2.

It is clear that this principle also holds for subtraction instead of addition.
That is,

|Sj | = 3, and |Sj−1| = 2 =⇒ |Sj−2| ≤ 1.

The proof for this is identical, and therefore omitted.

Figure 3.20: The subgraph of M17 which can receive label j + 2, assuming
|Sj | = 3 and |Sj+1| = 2.

Lemma 3.2.7. In M17,
(i:) If |Sj | = |Sj+2| = 3, for some label j, then |Sj+1| ≤ 1.
(ii:) Further, if |Sj+1| = 1, then M17 does not admit a 7-labeling.

Proof. Let Sj = {u1, u2, u3}, and Sj+2 = {v1, v2, v3}. Let vertex a receive the
label of j + 1. Note that a cannot be adjacent to any element of Sj ∪ Sj+2. So
N (a) ∩ Sj = N (a) ∩ Sj+2 = ∅, where N (a) denotes the closed neighborhood
of a. If this neighborhood is removed from M17, we are left with a triangular
ladder on twelve vertices. We refer to this subgraph as T . T must contain three
vertices with label j, and three vertices with label j + 2. Note that the only
possible arrangement such that there is distance three between all elements of
Sj and Sj−2 is given in Figure 3.21.

Observe that either set Sj or Sj+2 dominates the unlabeled vertices in T .
Therefore, no vertex in T can be labeled j+1 or j+3. This concludes the proof
of part (i).

Now note that the vertices in T that are yet to be labeled form two disjoint
3 cycles.

Recall that λ2,1(C3) = 4, so λ2,1(T ) ≥ 4 by Lemma 2.1.3. This implies that
T will need an additional five labels labels (because ‘0’ is included in an optimal
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Figure 3.21: The subgraph T , and the only possible assignment of Sj and Sj+2.

labeling of C3) to properly label one of these 3 cycles. However, we have already
introduced four labels, which belong to the set {j, j + 1, j + 2, j + 3}. If five
additional labels are required to feasibly label T , this brings the total number of
labels to nine. Which implies that it is impossible to label 7-label M17, provided
|Sj+1| = 1.

With these preliminaries established, we are ready to prove the initial claim
that λ2,1(M17) ≥ 8.

Theorem 3.2.8. M17 does not admit a 7 labeling.

Proof. As was the case with M11, we proceed by contradiction. Assume that
M17 admits a 7-labeling. That is to say, the vertices can be partitioned into
eight disjoint sets S0, S1, . . . , S7, where the vertices in set Sj receive the label j.

The key observation to be made is that

|Sj−1 ∪ Sj ∪ Sj+1| ≤ 6 for j ∈ {1, 2, . . . , 6}.

This is a direct consequence of the three previously established lemmas. If
|Sj−1| = 3, then |Sj | ≤ 2, by Lemma 3.2.5. Further, if this inequality is tight,
then |Sj+1| ≤ 1 by Lemma 3.2.6.

Because we assume that M17 admits a 7-labeling, the contrapositive of
Lemma 3.2.7 (ii) implies that if |Sj | = |Sj+2| = 3, then Sj+1 = ∅. In any
case, the sum |Sj−1| + |Sj | + |Sj+1| ≤ 6. This will be referred to as the 3 set
condition for M17.

By the pigeonhole principle, the set with maximum cardinality must have
at least d 17

8 e = 3 vertices.
There can also be at most three vertices designated to the same label, because

α(M17) = b 17
5 c = 3.

With this information, it is possible to categorize all possibilities for the la-
beling of M17. The four cases are analyzed below.

Case I: There is exactly one set that has cardinality three. It is easy to
see that the other seven sets must all have cardinality two.
However, this directly violates the 3 set condition, as there would be three con-
secutive label sets with cardinality that sums to seven.
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Case II: There are exactly two sets with cardinality three. This leaves
eleven vertices and only six sets in which to put them, implying that there are
five sets with cardinality two, and one set with cardinality one. Let Sa = Sb = 3,
for a, b ∈ {0, 1, . . . , 7}. Observe that there are no label sets which are empty,
and thus at least one of Sa or Sb must be in a sequence of 3 consecutive sets
which sum to 7, thereby violating the 3 set condition.

Case III: There are exactly three sets with cardinality three. This possi-
bility leads to two cases in which the remaining eight vertices are partitioned
differently. Observe that there must exist ĵ ∈ {1, 2, . . . , 6} such that |Sĵ | = 3.

III(a): 3 sets of 3, 4 sets of 2, and 1 set which is empty. Consider Sĵ .
Either Sĵ−1 or Sĵ+1 must be empty in order to satisfy Lemma 3.2.5, because

there are no sets of cardinality one. Assume Sĵ−1 is empty. If ĵ ∈ {1, 2, . . . , 5},
then |Sĵ ∪ Sĵ+1 ∪ Sĵ+2| ≥ 7, because the remaining six sets all have at least

two elements. This violates the 3 set condition. If ĵ = 6 then S7 must have
cardinality two, in order to satisfy the 3 set condition. This leaves the remaining
five sets S0, . . . , S4 two of which have cardinality three, and three of which have
cardinality two. It is impossible for this to remain feasible with respect to the
three set condition.

III(b): 3 sets of 3, 3 sets of 2, and 2 sets of 1. This case is simple,
because there are no empty label sets, then none of the sets of cardinality three
can be within two of each other. More formally, there cannot exist a j such
that two of {Sj−1, Sj , Sj+1} have cardinality three. The only case when this
happens, is if |S0| = |S7| = |S3| (note that the last set can also be S4, but
we may assume it is S3 without loss of generality). In order to satisfy Lemma
3.2.5, then S2 and S4 must both have cardinality one. However, this implies
that |S5| = |S6| = 2, which violates the three set condition.

Case IV: There are exactly four sets with cardinality three. There are
an additional two cases in which the remaining five vertices are partitioned
differently.

IV(a): 4 sets of 3, 2 sets of 2, 1 set of 1, and 1 set which is empty.
If four of the eight sets are full, then there are at least two sets which must
lie directly between two full sets. So by Lemma 3.2.7, these two sets must be
empty. However, this labeling only admits one empty set, and is thus infeasible.

IV(b): 4 sets of 3, 1 set of 2, 3 sets of 1.
The same argument that applied to case IV(a) applies here. There must be at
least two empty sets for this to be feasible, and there are none. So this labeling
is not a valid L(2, 1) labeling.

Note that it is impossible for M17, to have five sets with cardinality three.
This follows directly from Lemma 3.2.6.
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3.3 Extension to L(h, 1) Labelings

In [6], Gonçalves provides the upperbound of λh,1(G) = ∆2 + (h − 1)∆ − 2,
for any graph G. We present a labeling scheme which improves this bound for
Möbius ladders. This construction is the direct extension of Theorems 3.1.2,
and 3.2.3.

For an even Möbius ladder, λh,1(Mn) ≤ 3h. Note that this is an improvement
from the general upper bound of 3h+4. Beginning with the case of n ≡ 4 mod 8,
we label the vertices

f(vi) =


0; if i ≡ 0 mod 4;

h; if i ≡ 1 mod 4;

2h; if i ≡ 2 mod 4;

3h; otherwise.

This will create n
4 4-cycles which are labeled (0, h, 3h, 2h). A ‘rung’ can be

inserted into each of these 4-cycles with vertices labeled 2h + 1 and 1. To see
this labeling scheme, refer to Figure 3.22. Because this construction is directly
derived from the construction in Theorem 3.1.2, it also does not cover the small
cases of n = 8, 10.

Figure 3.22: The addition of rungs on M12, corresponding to an L(h, 1) labeling
scheme. The dotted edges can be added to feasibly obtain M14, M16, and M18.

When dealing with odd Möbius ladders, the upper bound of 3h has only been
found when n ≡ 7 mod 14. This is achieved by catenating the base set of seven
vertices given in Figure 3.23. Note that this base set becomes a feasible Möbius
ladder with the addition of three edges: (0, 2h+ 1), (0, h+ 1), and (h, 2h+ 1).
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This graph can be indefinitely appended to itself in order to obtain a feasible
L(h, 1) labeling of Mn, where n ≡ 7 mod 14.

The odd Möbius ladders are split into three cases in order to prove the
more basic bound of 3h+ 1. These are the odd integers modulo six. The same
construction presented in Theorem 3.2.3 can be extended analogously. This
does not cover the smaller cases of n = 17, 11, 5.

Figure 3.23: L(h, 1) labeling scheme for the Möbius ladder on 7 vertices.

3.4 L′(2, 1) Labelings

Recall that any L′(2, 1) labeling requires at least n−1 labels. A graph that can
achieve this lower bound is said to be perfectly labelable.

Theorem 3.4.1. All Möbius Ladders of order n ≥ 6 are perfectly labelable.
That is, λ′2,1(Mn) = n− 1.

Proof. Note that M5 is a complete graph with diameter one. Thus, it requires
10 labels, as shown in Section 2.1.2.

We present a labeling algorithm that adequately labels Möbius graphs. It
is important to note that this scheme is not the only such scheme, but it is a
simple and convenient mechanism to describe.

Since an L′(2, 1) labeling is one-to-one by definition, all vertices must receive
different labels, thus satisfying the distance-two constraint. By then imposing
the restriction that no two adjacent vertices be labeled consecutively, we receive
an optimal labeling of n− 1.

Mn exhibits cyclic properties that may be described by the group Zn. The
binary operation for Zn is addition modulo n. An element x ∈ Zn is a generator
of Zn if and only if

gcd(x, n) = 1.

Thus, by starting at an intial vertex, v(0) and assigning it label 0, and
proceeding clockwise around the perimeter of Mn in successive steps of length
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x, every vertex will be labeled in exactly n− 1 steps. So,

f(v(i+ x)) = f(v(i)) + 1,

where the addition of (i + x) is performed modulo n. Further, x must satisfy
gcd(n, x) = 1, in order to ensure that each vertex is labeled exactly once. For
even Möbius ladders, the distance one constraint suggests that x may not be an
element of {1, n2 , n− 1}.

In the case of odd Möbius ladders, the same labeling scheme holds. How-
ever, in order to verify that this construction does not violate the distance-one
constraint, x may not be in the set {1, n+1

2 , n−1
2 , n− 1}.

3.5 Radio Labelings

3.5.1 Even Case

We begin with a discussion on the distances between particular vertices in even
Möbius ladders. For n

2 odd, Mn has precisely two distinct vertices which are
distance diam(Mn) from any given vertex v as demonstrated in Figure 3.24.

Figure 3.24: An example on M10 for which n
2 is odd. The white nodes represent

those which are diam(M10) from v(0).

Without loss of generality, call v(0) the initial vertex. Traveling clockwise
around the outer cycle of the Möbius ladder gives the two vertices of interest as
v(n+2

4 ) and v( 3n−2
4 ). It remains to be seen exactly how far apart these vertices

are from each other. The length of the path along the outer cycle, beginning on
vertex v(n+2

4 ) to vertex v( 3n−2
4 ), is exactly 2n−4

4 . This is because

3n− 2

4
− n+ 2

4
=

2n− 4

4
.

On the other hand, the same vertex may be reached by taking the path
beginning with edge (v(n+2

4 ), v( 3n+2
4 )), and then continuing along the outside
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cycle until v( 3n−2
4 ) is reached. Note that this secondary path, (excluding the

edge which crosses to antipodal partner) has length

n+ 2

4
+
n

2
− 3n− 2

4
= 1.

With the initial edge included, this path has length two. Since the distance
between two vertices is determined by the shortest path between them,

d(v(
n+ 2

4
), v(

3n− 2

4
)) = min{2n− 4

4
; 2}.

The only time 2n−4
4 is chosen is when

2n− 4

4
< 2,

which is only true when n < 4. Observe that there is no Möbius ladder on
less than 4 vertices. So for this case to be nontrivial, d(v(n+2

4 ), v( 3n−2
4 )) = 2.

For n
2 even, Mn has precisely four distinct vertices which are distance diam(Mn)

from any given vertex v(0). Since exactly two of them are to be examined at
any given time, there are

(
4
2

)
= 6 possible vertex pairs to be studied. The four

vertices of interest are v(n4 ), v(n+4
4 ), v( 3n−4

4 ), and v( 3n
4 ). Again, the distances

between these vertices must be considered.

Beginning with the vertex v(n4 ), d(v(n4 ), v(n+4
4 )) = d(v(n4 ), v( 3n

4 )) = 1. Now

d(v(
n

4
), v(

3n− 4

4
)) = min{2, 2n− 4

4
}.

Once again, we may conclude that d(v(n4 ), v( 3n−4
4 )) = 2, as no Möbius ladders

are defined for n < 4.
For vertex v(n+4

4 ),

d(v(
n+ 4

4
), v(

3n− 4

4
)) = min{n− 4

2
; 3}.

The only case in which n−4
2 < 3 is when n < 10. The following figures

demonstrate optimal labelings for M6 and M8.

Otherwise, it may be inferred that d(v(n+4
4 ), v( 3n−4

4 )) = 3.

d(v(
n+ 4

4
), v(

3n

4
)) = min{n− 2

2
; 2}

A similar analysis on the traversal of the perimeter for d(v(n+4
4 ), v( 3n

4 ))
reveals that d(v(n+4

4 ), v( 3n
4 )) = 2 is nontrivial.

It only remains to check d(v( 3n−4
4 ), v( 3n

4 )). d(v( 3n−4
4 ), v( 3n

4 )) = 1.
Now an analysis can begin on consecutive labelings of vertices in a radio

labeling of a Möbius ladder.
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Theorem 3.5.1. An optimal radio labeling for an even Möbius ladder Mn ad-
mits no three consecutive labels for {n ≥ 18} ∪ {14}.

Proof. Suppose u and v are arbitrary vertices of Mn and that |f(u)−f(v)| = 1.
Then

|f(u)− f(v)| = 1 ≥ diam(Mn) + 1− d(u, v),

where d(u, v) ≥ diam(Mn).
But by definition of the diameter of a graph, the distance between any two

points of Mn may not exceed diam(Mn). Thus,

d(u, v) = diam(Mn).

Now suppose that there exists a third vertex x in V (Mn) such that f(x) =
f(v) + 1 = f(u) + 2. Then

|f(x)− f(v)| = 1 ≥ diam(Mn) + 1− d(x, v)

d(x, v) ≥ diam(Mn)

and

|f(x)− f(u)| = 2 ≥ diam(Mn) + 1− d(x, u)

d(x, u) ≥ diam(Mn)− 1.

From these previous equations, it can be seen that there must exist two
different vertices each diam(Mn) away from v. Incorporating results from the
above analysis on the classification of these points, n

2 odd and n
2 even must be

treated separately.
Suppose n

2 is odd. Then for the nontrivial case, d(u, x) = 2. Then

diam(Mn) =
n+ 2

4
≤ 3 =⇒ n ≤ 10

Thus, the only even Möbius graphs which may receive three consecutive
labels on n vertices with n

2 odd are M6 and M10.
Now suppose n

2 is even. For the nontrivial cases, d(u, v) = 1, 2, or 3.
Suppose d(u, v) = 1. Then

diam(Mn) =
n

4
≤ 2 =⇒ n ≤ 8.

For d(u, v) = 2,

diam(Mn) =
n

4
≤ 3 =⇒ n ≤ 12.

Finally, consider d(u, v) = 3. Then
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diam(Mn) =
n

4
≤ 4 =⇒ n ≤ 16.

Thus, the only Möbius ladders with n
2 even that admit three consecutive

labels are M4,M8, M12, and M16. Concisely, Mn admits no three consecutive
labels for {n ≥ 18} ∪ {14}.

3.5.2 Odd Case

Theorem 3.5.2. An optimal radio labeling for an odd Möbius ladder, Mn ad-
mits no three consecutive labels for {n ≥ 15} ∪ {11}.

Proof. Let v(0) be any vertex in Mn. First, consider the case when r is odd.
This implies that the diameter is r+1

2 . The two vertices which are distance
diam(Mn) from v(0) are r+1

2 and 3r+1
2 . By the cyclic nature of our labeling

scheme v(i) is adjacent to v(i + r) and v(i + r + 1), where addition is done
modulo n. This implies that vertices v( r+1

2 ) and v( 3r+1
2 ) must be adjacent. In

other words, d(v( r+1
2 ), v( 3r+1

2 )) = 1.
If v(0), v( r+1

2 ), and v( 3r+1
2 ) are to receive consecutive labels i.e.

f(v(0)) = f(v(
r + 1

2
)) + 1 = f(v(

3r + 1

2
)− 1,

then

|f(v(0))− f(v(
r + 1

2
))| = |f(v(0))− f(v(

3r + 1

2
))| = 1,

and

|f(v(
r + 1

2
))− f(v(

3r + 1

2
))| = 2.

However, by the radio condition, this implies

2 ≥ diam(Mn) + 1− 1 = diam(Mn),

substituting in the expression for a Möbius ladder’s diameter (with r odd):

r + 1

2
≤ 2 =⇒ r ≤ 3.

It is clear to see that this labeling can only hold for n ≤ 7.
Now consider the case when r is even. Let v(0) be any initial vertex

in V (Mn). Once again, there are exactly four vertices which are distance
diam(Mn) away from v(0). This implies that there are

(
4
2

)
= 6 pairs of vertices

to consider. However, odd Möbius ladders are 4-regular, and this makes the
cases simpler. The four vertices which are diam(Mn) away from v(0) are: v( r2 ),
v( r+2

2 ), v( 3r
2 ), and v( 3r+2

2 ). Observe that these vertices form the same subgraph
shown in Figure 3.20, which has diameter two. In fact, the only two vertices
which are not adjacent to each other are v( r+2

2 ) and v( 3r
2 ).
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It is not hard to see that d(v( r+2
2 ), v( 3r+2

2 ) = 2. This knowledge allows us to
solve explicitly the values of n for which Mn may admit 3 consecutive labelings.
If v(0), v( r2 ) and v( 3r+2

2 ) are to admit three consecutive labels, then

|f(v(
r + 2

2
))− f(v(

3r

2
))| = 2.

By the definition of a radio labeling:

2 ≥ diam(Mn) + 1− 2 = diam(Mn)− 1,

which reduces to
r

2
≤ 3 =⇒ r ≤ 6.

Thus, n must be less than or equal to 13 in order for Mn to admit 3 consecutive
labels.

As a corollary to these theorems, a lower bound is established for the radio
number of Möbius ladders. If Mn admits no three consecutive labels, then the
sequence of n labels which contains the smallest span is given by the (ordered)
set: {0, 1, 3, 4, 6, . . . , 3n

2 − 2}. Which provides the lower bound:

rn(Mn) ≥ 3n

2
− 2.

This inequality holds for all {n ≥ 17} ∪ {11, 14, 15}. No labelings have been
found that achieve this bound.
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Chapter 4

Suggestions for Future
Work

4.1 L(2, 1) Labelings of Odd Möbius Ladders

This paper presents a range of two values for optimally labeling an odd Möbius
ladder. That is, for n odd:

6 ≤ λ2,1(Mn) ≤ 7.

The only case we have discovered that achieves this bound is when n is congruent
to 7 modulo 14, covered in section 3.2.2. For this reason, we put forth the
following conjecture: For odd Möbius ladders, λ2,1(Mn) = 6 if and only if
n ≡ 7 mod 14.

This may be related to the structure of the 7 mod 14 case. A 6-labeling of
any graph requires 7 labels, and it is easy to see that this is the only case when
all 7 labels appear with the same multiplicity. However, this is not known to be
a sufficient condition for optimal labelings on Möbius ladders.

4.2 Radio Numbers of Möbius Ladders

A working lower bound of 3n
2 − 2 has been established for rn(Mn), with n even.

We believe that no labeling can achieve this bound, but that has yet to be
proven. One might also devote time to establishing an upperbound for rn(Mn).

4.3 Generalizations of Möbius Ladders

One possible generalization of a Möbius ladder, is the Möbius lattice. Mn is
constructed by taking the ladder graph on n vertices, and connecting the edges
with a ‘twist’. This same construction may be applied to a grid graph.
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The grid graph Gm,n is the cartesian product Pm�Pn of paths on m and n
vertices. This graph has order m · n. Note that the ladder graph on n vertices
is a subclass of grid graphs, Gn

2 ,2
. One possible construction for a generalized

Möbius ladder, denoted Mm,n, is introducing a twist, and connecting the ends
of the grid graph Gm,n.

Let A = {a1, a2, . . . , an} be a subset of V (Gm,n) such that (ai, ai−1) ∈
E(Gm,n) for all 2 ≤ i ≤ n. Further, let deg(ai) = 3 for i = 2, . . . , n − 1, and
deg(a1) = deg(an) = 2. This clearly describes one of the paths of length n
which compose an ‘edge’ of the grid graph. Let B = {b1, b2, . . . , bn} be defined
the same way.

With these sets A and B, we can formally describe the twist in the Möbius
ladder Mm,n. Add an edge between each pair of vertices (ai, bn+1−i) for i =
1, . . . , n. Observe that trying to ’untwist’ the ladder will simply introduce the
same twist in an adjacent set of rungs, preserving the topological Möbius strip.
Refer to Figure 4.1 for a depiction of M10,3.

Figure 4.1: An example of a generalized Möbius ladder, M10,3.

4.4 L(h, k) Labelings

An upperbound for the λh,1 number of Möbius ladders was provided. In the case
of h = 2, this provides a good bound, and equality in half the cases. However,
for the general L(h, 1) labeling problem, not as many general results have been
established, and there is not a decent lower bound for λh,1(Mn). It remains to
be seen if the upper bound established is tight.

A more general L(h, k) labeling, with k > 1 was not looked at, and is sure
to be a fruitful topic of investigation.
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