
Background Calibration of a 6-Bit 1Gsps

Split-Flash ADC

by

Anthony Crasso

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

January 2013

APPROVED:

Professor John McNeill, Major Advisor

Professor D. Richard Brown

Professor Stephen Bitar

Abstract

In this MS thesis, a redundant flash analog-to-digital converter (ADC) using a “Split-

ADC” calibration structure and lookup-table-based correction is presented. ADC input

capacitance is minimized through use of small, power efficient comparators; redundancy is

used to tolerate the resulting large offset voltages. Correction of errors and estimation of

calibration parameters are performed continuously in the background in the digital domain.

The proposed flash ADC has an effective-number-of-bits (ENOB) of 6-bits and is designed

for a target sampling rate of 1Gs/s in 180nm CMOS. The calibration algorithm described

has been simulated in MATLAB and an FPGA implementation has been investigated.

iii

Acknowledgements

I would like to take a section to thank everyone that supported this thesis. There are many

ways in which I was supported. These included financially, grammatically, emotionally and

ultimately academically.

First and for most I would like to thank Professor McNeill for his advice and teaching

throughout this design process. He was very understanding of my programming ability

and was very open to my creativity. Without his original idea of the split-ADC and his

guidance, none of this would be possible.

A few students that I would like to thank are first Robbie D’Angelo for introducing me

to my first independent study with professor McNeill and establishing this connection that

has made all this possible. My MQP partners Karen Anundson and K Thet for the amazing

experience of working with two of the smartest and hardest working people I know. Our

MQP report was great document and our project was even better. Without our report as

a starting point for this thesis, I’d be still writing this thesis a couple of years from now.

Lastly I would like to thank the students in my the NECAMSID lab Rabeeh Majidi and

Jianping Gong. These students supported my idea and are in the process of implementing a

flash ADC so that this calibration can be used in a real circuit. Rabeeh was also co-auther

of the ISCAS paper published on this calibration and again, without that work I’d still be

writing this thesis.

For funding I would like to thank the ECE department for allowing me to TA my favorite

analog courses and to Analog Devices for funding the lab. I don’t know what I’d do if I was

in more debt right now.

iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Background 3

2.1 Sampling . 4
2.1.1 Oversampling Converter . 5
2.1.2 Nyquist Converters . 5

2.2 Quantization . 6
2.3 Classification of ADCs . 7

2.3.1 Low Speed, High Accuracy . 8
2.3.2 Moderate Speed, Moderate Accuracy 8
2.3.3 High Speed . 11

2.4 Performance Metrics . 13
2.4.1 Effective Number of Bits (ENOB) 13
2.4.2 Figure of Merit (FOM) . 13
2.4.3 Differential Non-Linearity (DNL) . 14
2.4.4 Integral Non-Linearity (INL) . 15

2.5 Calibration . 15
2.5.1 Foreground Calibration . 16
2.5.2 Background Calibration . 17
2.5.3 Flash ADC Calibration . 24

3 System Level Design 26

3.1 Design Specifications . 26
3.2 System Block Diagram . 28

3.2.1 Detailed Block Diagram . 29

4 Correction 31

4.1 The Drive . 31
4.2 Derivation . 31
4.3 Look-up table correction . 32

v

4.3.1 Resolution of table . 32
4.3.2 Ideal calibration with Look-up table 33

5 Calibration 36

5.1 Redundant Flash ADC . 36
5.2 Split ADC Structure . 36
5.3 System Overview . 37

5.3.1 Digital Correction . 37
5.3.2 Calibration . 38
5.3.3 Analog Shift . 39
5.3.4 Error Estimation . 41

5.4 Simulation Results . 41
5.4.1 Shift Values . 44
5.4.2 Calibration With Different inputs . 46
5.4.3 LUT Truncation . 47

5.5 Calibration Simplification . 47
5.6 Resolution of the ADC . 49

6 Calibration Implementation 52

6.1 FPGA Implementation . 52
6.2 Synthesis . 53
6.3 No FPGA . 54

7 Circuit Implementation 55

7.1 Flash ADC . 55
7.2 Comparators . 55

7.2.1 Comparator Theory . 56
7.3 Inverter Comparator . 59
7.4 References . 60
7.5 Logic . 62
7.6 FPGA ADC . 63

8 Conclusions and Future Recommendations 65

8.1 Conclusions . 65
8.2 Future Recommendations . 66
8.3 Closing . 66

Appendix A MATLAB CODE 68

Appendix B UPGRADED MATLAB 83

Appendix C FPGA CODE 102

Bibliography 133

vi

List of Figures

2.1 Analog-to-Digital Converter . 3
2.2 Continuous Signal . 4
2.3 Discrete Time Sampled Signal . 4
2.4 Quantization Sample . 6
2.5 Quantization Error . 6
2.6 ADC Architecture Comparison [1] . 7
2.7 SAR Algorithm [5] . 9
2.8 SAR ADC Topology [1] . 10
2.9 Cyclic ADC Block Diagram[20] . 10
2.10 Ruler Flash Analogy [1] . 11
2.11 General Pipeline ADC Architecture[1] . 13
2.12 Pipeline Stage with MDAC [1] . 14
2.13 DNL . 15
2.14 INL . 16
2.15 Foreground Calibration Block Diagram . 16
2.16 Pick Best Comparator Correction . 19
2.17 Stochastic Flash . 20
2.18 Difference Between Two Residue Characteristics 21
2.19 Error correction algorithms by using PDF 22
2.20 Split-ADC utilized in a pipeline ADC . 22
2.21 Split ADC Architecture . 23
2.22 Split-ADC Comparision . 24
2.23 Flash ADC Calibration . 25

3.1 System Block Diagram . 28
3.2 Detailed Block Diagram . 30

4.1 Ideal LUT Results . 34
4.2 ENOB VS Sigma . 35

5.1 Analog Shift Circuit . 40
5.2 Calibration Block Diagram . 42
5.3 Calibrated and Uncalibrated DNL . 43

vii

5.4 Calibrated and Uncalibrated INL . 43
5.5 Calibration Convergence . 44
5.6 ENOB VS Shift Value . 46
5.7 Comparing Ideal Limiting . 47
5.8 Comparing Different Input Signals . 48
5.9 Truncated Signal . 49
5.10 Simplified Calibration . 50
5.11 6-bit Per Side Calibration . 51

6.1 FPGA Block Diagram . 53

7.1 Basic Flash ADC . 56
7.2 Ideal Comparator Characteristic . 57
7.3 Comparator Block Diagram . 58
7.4 Latch . 59
7.5 Inverter . 60
7.6 Inverter Simulation . 61
7.7 Evolution of the Self-Bias Differential Receiver[4] 62
7.8 Wallace Tree Adder [3] . 63

viii

List of Tables

2.1 Classification of ADCs [15] . 7

3.1 Flash ADC Specifications . 26

4.1 Look-Up table . 32

5.1 System Simulation Parameters . 45

1

Chapter 1

Introduction

Analog to digital converters are vital to many modern systems that require the inte-

gration of analog signals with digital systems. These applications can range from music

recording to communications applications to medical instrumentation. [7] These converters

are implemented using a variety of architectures, sizes and speeds. The demand for smaller,

faster, lower power converters has led to the investigation of alternative ADC design tech-

niques. As CMOS technologies improve and smaller process sizes lead to an increase in

the implementation of digital signal processing, the potential for digital correction and

calibration of ADCs has emerged. [14]

With the advance of CMOS technology, high speed and low power, analog-to-digital

converters with high effective number of bits (ENOBs) are in demand. Flash ADCs as fast

low resolution analog-to-digital converters are typically used in wireless receivers and high

density disk drives [13, 16]. In comparison to other types of analog-to-digital converters,

the simple analog structure of flash ADCs makes them useful in deep sub micron CMOS.

Working in a deep sub micron process has the advantage of high speed but at the price

of increased variation and device mismatch, decreasing the ADC effective number of bits

(ENOB). Especially in flash ADCs, device mismatch causes offset error in each comparator,

affecting differential and integral non-linearity (DNL and INL) of the ADC and degrading

ENOB performance. One method of recovering ENOB is to improve matching by increasing

device size. However this approach imposes area and power consumption costs. Several

2

methods have been proposed in the literature such as averaging and digitally controlled

trimming [16] to mitigate the effects of comparator offsets.

Redundancy has been shown to be an effective method of yield improvement in IC

designs [6]. Comparator redundancy has the advantage of tolerating the large comparator

offsets associated with small device sizes necessary to reduce input capacitance and provide

the high speed flash ADC with acceptable fan-in. Examples of redundant flash ADCs can

be seen in [6, 21, 16, 9]. Each of these have different way to use the information by creating

more trip points and this design is yet another.

In this paper digital background calibration of a redundant flash ADC is done using

the split ADC structure while all redundant comparators are used to raise the effective

number of bits. Since all the comparators are used, the difficulty associated with edge

effects is reduced. The assignment of raw comparators output to ADC codes is performed

using a look up table (LUT) which is updated continuously in the background to tolerate

comparator threshold variation due to effects such as temperature drift.

The scope of this work is included the design, simulation and implementation of the

calibration algorithm. The correction of an Flash ADC is first explored using a look-up

table. The rest of the paper focuses on implementing the calibration algorithm to produce

the values used in the look up table. Additional sections highlight possible implementations

of the flash ADC and a FPGA implementation of the algorithm.

3

Chapter 2

Background

Analog-to-digital converters (ADCs) provide a link between the analog signals of the

real world and the world of digital signal and data processing. Figure 2.1 shows the basic

concept of an analog to digital converter: a continuous analog signal input is converted to a

discrete digital signal at the output. This digital output can then be processed by a digital

system such as a processor or an FPGA.

Figure 2.1: Analog-to-Digital Converter

The rapid growth and improvement of digital processing systems has led to more pro-

cessing being implemented in the digital domain. Decreasing process sizes mean increased

numbers of logic gates in a given space. The computational power of a digital system in-

creases with the number of logic gates. Digital processing can often offer advantages in

design flexibility. An FPGA, for example, allows for digital hardware designs to be recon-

figured to suit changing system needs. In order to take advantage of these digital processing

systems, however, real world analog signals must be converted into digital signals. As its

4

name implies, an analog to digital converter fills this need.

ADCs can be designed with a variety of architectures depending on the requirements

for the device. Some of these architectures also include calibration methods to improve the

ADC’s performance. This section will introduce ADC concepts and architecture types and

calibration.

2.1 Sampling

One of the fundamental parts of an analog to digital converter is a sampling component.

In order for a continuous time analog signal to be converted to a discrete time signal,

the analog signal must be sampled in time. Figure 2.2 shows a signal vin being sampled

every time Ts. Equivalently, the signal is being sampled at a frequency fs. Ideally, the

sampled input will be a series of impulses, shown in Figure 2.3, with time spacing Ts and an

amplitude determined by the value of the input signal at time nTs, where n is an integer.

Figure 2.2: Continuous Signal
Figure 2.3: Discrete Time Sampled
Signal

Choosing a sampling frequency to ensure that the sampled signal contains sufficient in-

formation about the original signal and prevents aliasing can be done based on the Nyquist-

5

Shannon sampling theorem. That is, if the sampling frequency

fs > 2Bsignal (2.1)

then the signal can be fully recovered. This holds as long as the samples are not restricted

to discrete y values as they are in a digital signal. The discrete behavior of the y values

introduces errors due to quantization [8].

Analog-to-digital converters can be categorized into two major categories based on their

sampling frequencies: oversampling and Nyquist converters.

2.1.1 Oversampling Converter

Oversampling converters are characterized by a sampling frequency much higher than

the Nyquist rate. This high sampling rate causes larger spacing in the signal spectrum,

ideally preventing the overlap of samples in the spectrum that leads to aliasing effects.

These converters are typically used when high accuracy is required and a reduction in the

effects of aliasing is desired, such as in band limited signals like music. The design trade-off

for the accuracy is a lower throughput. These converters also require a large number of

samples to perform a single conversion. [7]

2.1.2 Nyquist Converters

Nyquist converters can process signals up to one half of the sampling frequency. This is

in accordance with the Nyquist theorem that the sampling frequency must be at least twice

the bandwidth of the signal in order to recover the information from the original signal.

That is

fs = 2 ∗Bandwidthinputsignal (2.2)

These converters have higher throughput than oversampling converters. The trade-off made

for this speed is a reduced accuracy. Some Nyquist converters are high speed with what is

considered to be low to medium accuracy, such as flash or pipeline ADCs. Other Nyquist

converters fall into the middle range for both speed and accuracy, such as successive ap-

proximation converters (SAR) and cyclic converters. These converters tend to be a good

6

compromise between slow oversampling converters and less accurate options such as flash

converters. [20]

2.2 Quantization

Quantization is also necessary for analog-to-digital converters. Quantization is the pro-

cess of assigning certain ranges of values from a continuous signal range to discrete values.

This assignment creates quantization errors. A quantization error is the difference between

the quantized value and the original signal. In Figure 2.4, the original signal vin is shown in

blue. If a sample of this signal is taken at time T1, it would be quantized to n2, as shown in

Figure 2.5. The difference between the sample of vin and its quantized value n2 is indicated

by the black bar.

Figure 2.4: Quantization Sample Figure 2.5: Quantization Error

Quantization errors are directly related to the resolution of the ADC. An ADC that

needs an accuracy within a very small margin of error is going to need more quantization

levels. More levels require a larger number of digital bits to encode all the information.

Higher resolution often comes at the cost of converter speed, so converters need to be

optimized for required speeds and resolutions. This optimization depends greatly on the

7

type of architecture chosen for the ADC design.

2.3 Classification of ADCs

Analog-to-digital converters are often divided into three major categories based on con-

verter speed and accuracy. Table 2.1 was adapted from [15]

Low Speed, High Accuracy Medium Speed, Medium Accuracy High Speed, Low Accuracy

Integrating Successive Approximation Flash

Oversampling Algorithmic Two-Step

Pipeline

Time-Interleaved

Table 2.1: Classification of ADCs [15]

A selection of ADC architecture types with their respective sampling rate and resolution

ranges can be seen in Figure 2.6.

Figure 2.6: ADC Architecture Comparison [1]

8

2.3.1 Low Speed, High Accuracy

Some converters that are characterized by low speed and high accuracy include the

integrating ADC and the sigma-delta oversampling ADC. Integrating converters are slow

and their conversion times are proportional to the input voltage. Integrating ADCs require,

in general, 2Nclock cycles for N bits of resolution. A higher resolution means a slower

conversion time [8].

2.3.2 Moderate Speed, Moderate Accuracy

Other converters can be categorized by moderate speed and moderate accuracy. Successive-

approximation register ADCs and cyclic ADCs are both included in this classification of

converters. [8]

SAR ADC

The SAR architecture algorithm is often described as being similar to a binary search

algorithm. One common analogy for a binary search is looking for specific information on

a page of a book. The searcher does not know the correct page and can only ask the book’s

owner “yes or no” questions. The search would begin by starting at the center of the book

and asking if the page being searched for is a higher number than the current page. If it is,

then divide the upper half of the book in half and ask the same question for the new halves

until there is only one page left. The decisions algorithm for a SAR converter is shown in

Figure 2.7.

The SAR ADC follows a similar algorithm that compares input voltages and reference

voltages to determine a digital output value. The main advantage that a SAR design offers

is the use of only a few analog components, particularly the use of only one comparator,

that results in a compact area and simpler design. The trade-off for this space is made

in the maximum sampling rate. A converter with a sampling rate fs would require the

comparator, DAC and SAR logic, shown in Figure 2.8, to operate at Nfs.

9

Figure 2.7: SAR Algorithm [5]

Cyclic ADC

Cyclic ADCs also fall into this middle category. A cyclic ADC (also known as an

algorithmic ADC) operates similarly to the SAR ADC. In a cyclic ADC, however, it is not

10

Figure 2.8: SAR ADC Topology [1]

the reference voltage that changes, but rather the residue is put through a gain stage and

amplified. In a cyclic converter, the input is sampled and compared to a threshold voltage.

A 1-bit digital output is generated and the residue generated by subtracting the output of

the DAC from the original input is fed back into the sample and hold circuit. The cycle

repeats for the same number of cycles as desired bits. The high level block diagram of a

cyclic ADC is shown in Figure 2.9.

Figure 2.9: Cyclic ADC Block Diagram[20]

11

2.3.3 High Speed

Some converters that can be categorized as high speed and low accuracy converters are

two-step, time-interleaved and flash. Pipeline ADCs can be low, moderate or high accuracy.

Flash

A flash ADC can be compared to a ruler (Figure 2.10). A ruler maps an infinite precision

value length to finite precision value (e.g. 4mm). A flash ADC uses comparators to perform

a similar function.

Figure 2.10: Ruler Flash Analogy [1]

A flash converter compares input (infinite precision value) to a number of fixed refer-

ences to determine a binary output (finite precision value). The output of the comparators

is in thermometer code. In this example, if the input is higher than the reference, the ther-

12

mometer bit is one, otherwise it is zero. This thermometer code must then be translated

into the equivalent binary value. The number of reference levels can be expressed as:

Reflvls = 2N (2.3)

where N is the accuracy for the ADC. A flash ADC that has 16 comparison levels will

have an accuracy of 4 bits. From this relationship, it can be observed that the number

of comparators required will increase exponentially compared to the increase in desired

resolution. Because of this, flash ADCs are usually used in low resolution applications. The

main advantage that flash converters offer is speed. Flash comparators have the potential

for conversion to take only one clock cycle. Flash ADCs are often included in the design of

other ADC architectures such as a pipeline[1].

Pipeline

Pipeline ADCs are also high speed ADCs and can be capable of resolving medium to

high resolutions. [1] These ADCs work by converting a signal from analog to digital in

stages. Each stage converts a portion of the output resolution. The first stage converts

the most significant bits (MSB) and the subsequent stages convert less significant bits until

the least significant bits (LSB) are converted. The overall general architecture of a pipeline

ADC is shown in Figure 2.11. Each stage has a similar structure, shown exploded in Figure

2.11. Each block contains a sample and hold block to sample the analog signal. This feeds

into a small flash converter that resolves n-bits. This n-bit output is fed back through a

DAC and the binary value is subtracted from the original input signal to generate a residue

voltage.

Figure 2.12 shows a common implementation of a pipeline ADC stage. Typically, the

DAC, summer, gain stage and sample and hold are implemented together in one block

called a multiplying digital-to-analog converter (MDAC). The residue voltage is amplified

and input into the next stage of the pipeline until the desired number of bits have been

resolved.

13

Figure 2.11: General Pipeline ADC Architecture[1]

2.4 Performance Metrics

Performance metrics are needed in order to evaluate the performance of the ADC in this

work.

2.4.1 Effective Number of Bits (ENOB)

The effective number of bits of an ADC is one measure to compare different ADC designs.

The ENOB is characterized by the equation

ENOB =
SINAD − 1.76

6.02
(2.4)

where SINAD is the signal to noise and distortion ratio [1]. The 6.02 term converts decibels

to bits and the 1.76 is due to the quantization error in an ideal converter. The equation for

the SNDR is

SINAD = 20log10
Signal(volts, RMS)

Noise+Harmonics(V olts, RMS)
(2.5)

.

2.4.2 Figure of Merit (FOM)

A Figure of Merit (FOM) used to compare analog-to-digital converters is defined as

14

Figure 2.12: Pipeline Stage with MDAC [1]

FOM =
Power

(2ENOB)(fs)
(2.6)

The FOM takes into account the power consumption of the ADC, the ENOB, and the

sampling frequency fs. A lower FOM indicates better ADC performance based on these

parameters. Lower power consumption, higher ENOB and a higher sampling frequency all

contribute to a lower FOM. All three of these design characteristics require design tradeoffs

with one another. Increasing the sampling frequency fs will accommodate an increased sig-

nal bandwidth, relaxes filtering requirements and can sometimes relax resolution require-

ments; however, increasing the sampling speed results in increased power consumption.

Increasing resolution will accommodate an improved dynamic range and relax filtering re-

quirements, but can result in increased power consumption. If trying to optimize for power

consumption, compromises need to made in the design to sampling speed or resolution.

2.4.3 Differential Non-Linearity (DNL)

When the step size of an ADC’s output is not equal to the ideal step size, the ADC is

said to have differential nonlinearity. The DNL measurement for an ADC is classified based

on amount of least significant bit (LSB) values that the actual transfer function deviates

15

from the ideal transfer function. If the DNL is greater than 1 LSB, a non-monotonic transfer

function will cause missing codes. Figure 2.13 shows the deviation of a real transfer function

from the ideal.

Figure 2.13: DNL

2.4.4 Integral Non-Linearity (INL)

The transfer function of an ideal ADC can be represented by a best fit line, typically

either an endpoint fit or a least squares fit. An ADC that exhibits integral non-linearity

will have a transfer function that is not a perfect line. The maximum difference between

the actual and ideal transfer characteristic is the INL. This concept is illustrated in Figure

2.14.

2.5 Calibration

Non linearity in the gain stage is a common error in pipeline ADC designs. This error is

caused by capacitor mismatch and low DC operation amplifier gain, but the exact error is

typically not known by the designer. In order to compensate for this non linearity, various

calibration techniques are used.

16

Figure 2.14: INL

2.5.1 Foreground Calibration

In a foreground calibration scheme, the unknown errors are estimated by interrupting

the operation of the ADC and then injecting a known signal. The expected output is

compared to the actual output to measure the error [18]. Once the error is acquired, Least

Mean Square (LMS) algorithms can be used to correct for the error.

Figure 2.15: Foreground Calibration Block Diagram

As shown in Figure 2.15, analog input signal is fed into the actual ADC and a known

17

signal is fed into the ideal ADC. Since it is impossible to implement an ideal ADC, this

component is simulated digitally. Another digital component is used to calculate the error

between the actual output and the ideal output. This same digital component will then

correct the digital output for this calculated error. The main advantage of using fore-

ground calibration is that one can achieve the corrected digital output in a few clock cycles.

However, the operation of the ADC is interrupted during calibration. This interruption is

impractical in some applications.

2.5.2 Background Calibration

Background calibration technology can correct errors of ADC circuits without interrupt-

ing the operation of the ADC. Methods of background calibration can be analog or digital

and have a variety of implementations.

Bootstrapped Digital Calibration

The bootstrapped digital calibration scheme is one of the famous calibration methods as

it can reduce the calibration convergence time [24],[5]. In this case, the ADC is utilized to

calibrate the DAC and vice verse. Bootstrapped digital calibration includes analog circuits

in the part of the calibration process to more accurately track the voltage and current

samples. The addition of these analog circuits increases the overall power consumption of

the ADC.

An accurate, constant gain and signal dependent gain are required for bootstrapped

calibration [5]. These two gains are known, however, so an initial estimate of the gain values

is required. The estimation of the constant gain is then updated 1024 times depending on

the measured positive and negative thresholds of the residue characteristic curve. After

updating the constant gain estimate, we need to update the signal dependent gain. To

update the signal dependent gain, the linear and nonlinear ADC transfer characteristics are

used. The signal dependent gain is updated 256 times. The number of update times, 1024

and 256 are selected analytically, but they are only the minimum number of times required

for convergence [5]. As the two gain values are repeatedly fed into the ADC and DAC of

each stage, the gains are constantly being updated, and eventually these two values will

18

converge, resulting in successful calibration.

1.5-bit Stage ADC Architecture

A 1.5-bit stage architecture uses two approximately symmetrical analog voltage levels to

produce an implementation with increased bandwidth and redundancy between stages. The

1.5-bit stage pipeline ADC architecture achieves greater bandwidth by using a lower inter

stage gain [23]. Due to this low gain requirement, we can realize low cost production and

higher speed. Each stage generates an output of two bits in which the bits can only have

the value of 00, 01, and 10. The output is determined by comparators at two symmetrical

decision levels that make up a sub-ADC block of a pipeline architecture. Because of the

following gain of 2, these two levels must be within the range of ±VREF

2
, where ±VREF are

the maximum and minimum values of the signal. The choice of these reference value is

not highly critical in the design, but because they must lie within the range of ±VREF

2
the

decision values are often chosen to be ±
VREF

4
. These decision levels are designated as +1,

0, and -1 and are used in an implementation called a Redundant Signed Digit (RDS). The

redundancy comes from the 0.5 bit overlap between stages. When the stages are summed,

the carryover from the previous stage creates a redundancy and error correction.

Redundancy

Similar to the concept of 1.5-bit stages in pipeline ADCs, redundancy is used in flash

ADCs. Instead of having 2 to the N -1 comparators, 2 times this or more is used.

An example is in [16] where more comparators are used as a means to have a better

chance to have a more correct trip point. Reassignment is done to pick the best comparator

and only the best trip point it used and the other comparators are turned off. A graphic

showing how the redundancy is used is shown below in Figure 2.16. This is done with

foreground calibration. It has advantages in power savings from turning off the unused

comparators but in a sense wastes the die area because of that.

19

Figure 2.16: Pick Best Comparator Correction

Stochastic

Another way to make use of redundancy for calibration is to have a very large number

of trip points and no reference ladder. If not reference ladder is used to set trip points and

digital circuits at minimum size are used, trip points can be randomly distributed. To make

this work two groups of these comparators are used, each with a shift from zero, the sum

can create a largely linear region. Figure 2.17 illustrates this concept. A shift means instead

of using a inverter with a trip point in the middle of the two rails, use one slightly larger

than mid scale and one lower. This is a very interesting way of using all the information

20

from the redundancy used, with no digital calibration algorithm or analog changes. [21]

Figure 2.17: Stochastic Flash

Murmann’s residue gain error correction

Murmann’s residue gain error correction calibration method starts with adding a logic

block to the output of the sub ADC block in each stage of the pipeline ADC [10]. This

logic block provides two different residue characteristics that generate Figure 2.18.

The distance between one residue plot versus the other can show the linearity of the

ADC. In this case, h1 represents the ideal distance while h2 represents the nonlinear distance.

The goal is to apply an adaptive routine to correct the error between h1 and h2 such that

error will converge to zero.

First, the probability density function of the residue characteristic is calculated to esti-

mate h1 and h2 by using a random number generator. With the estimations of h1 and h2,

we can calculate the error. Then, the LMS algorithm is applied to force the error to zero.

21

Figure 2.18: Difference Between Two Residue Characteristics

Once this is achieved that one can adjust the parameters p1 and p2 to force the output of

Stage 1 and the backend stage to be linear. The main advantage of this technique is that

it can achieve low power consumption.

Split ADC Architecture

The split ADC architecture is known for being able to calibrate residue gain error over

a short period of time [2]. It can also digitally correct DAC errors in pipeline ADCs. In the

split ADC architecture, there are two ADCs with the same resolution. The only difference

between them is the residue transfer characteristic. Those two ADCs are placed in parallel

and are applied with the same input signal. The following diagram shows how the split

ADC architecture is used in a pipeline ADC.

As shown in the Figure 2.20, the same Vin is input into the two split ADCs, ADC A and

ADC B. However, the outputs of the two ADCs are different for every input due to their

different residue transfer functions. The difference between the outputs of those two ADCs

is the error of the residue amplifier. Using this difference, the adaptive error cancellation

22

Figure 2.19: Error correction algorithms by using PDF

Figure 2.20: Split-ADC utilized in a pipeline ADC

can be processed to correct the residue amplifier gain error. Then the outputs from each of

the adaptive error cancellation block are added to get the final output of the pipeline ADC.

In [2], to implement a 12-bit pipeline ADC, the authors incorporated two stages in each

of the split ADCs in their design. The first stage consists of a 4-bit pipeline stage and

23

the second stage consists of a single 10-bit flash ADC. In this work, only the first stage

is calibrated and the second stage does not need to be calibrated. Even though the goal

is to implement a 12-bit ADC, they included two extra bits to achieve more accuracy in

error correction. A different residue transfer characteristic in the two ADCs in the split

ADC architecture can be acquired by offsetting one residue transfer characteristic curve

with respect to the other [2]. Due to the residue amplifier gain errors, the slopes of back

end codes will not be similar. Therefore, the difference between the outputs of two ADCs is

not equal to zero. By using that difference we can adapt a corrective term to fix the residue

amplifier errors, which would also calibrate the DAC’s non linearity.

Another split pipeline ADC architecture is described in [14]. In this paper, similar to

the previous design, the ADC is split into two identical ADCs, processing the same input

but producing different outputs as shown in Figure 2.21.

Figure 2.21: Split ADC Architecture

The average of the two outputs becomes the output of the ADC. The difference between

the two outputs is used to calibrate the ADC. If the difference between two outputs is zero,

there is no error and the ADC is calibrated perfectly. If the difference is nonzero, that

24

difference is used to adapt the error corrective term and update the calibration parameters

in each ADC to achieve an error of zero. Finally, the advantage of the split architecture is

its fast calibration convergence. [14]

The paper [21] with the stochastic ADC is an example of a split flash ADC. If we look

at the figure below of the Split-ADC comparison chart, it can be seen that most of the

ADC using this architecture are in the moderate speed, moderate accuracy range. There is

a large gap in the high speed low resolution ADC.

10
4

10
5

10
6

10
7

10
8

10
9

10
10

4

6

8

10

12

14

16

18

Speed(Hz)

R
es

ol
ut

io
n

(N
um

be
r

of
 B

its
)

Figure 2.22: Split-ADC Comparision

2.5.3 Flash ADC Calibration

In flash ADCs, the importance of calibration can be shown by the following graph. It

shows how many effective number of bits are improved in 6-bit flash ADCs. This sets

25

performance goals for calibration designs

Figure 2.23: Flash ADC Calibration

26

Chapter 3

System Level Design

To perform a system level design we will define the specifications, provide a system block

diagram and take a closer look at the blocks that need to be designed to implement the

ADC and the calibration system.

3.1 Design Specifications

The analog to digital converter was designed to be part of a self-calibrating split-ADC.

The basic specifications for the design are outlined in Table 3.1.

Specifications

Circuit Type Integrated Circuit

Maximum Size 1mm2

Process Type 0.18um

Resolution 6 bits

Throughput 1 GS/s

Power 1mW

Other Specs Fully Differential: 1Vpp

Table 3.1: Flash ADC Specifications

This Flash ADC was designed for the 0.18um Jazz Semiconductor process. This process

27

allows for a 1.8V supply voltage. Because of the small amount of headroom allowed by

this supply voltage, the signal swing the ADC can handle is 1Vpp. This differential signal

reduces second order distortion in the sample and hold circuit and doubles the input range

from that possible in a single ended system.

The ADC will resolve up to 6-bit accuracy with a speed of 1GS/s. Since this is a flash

ADC, it will be able to achieve a very high conversion rate. This is because there is no

multiple stages and each result is obtained in a single set of comparators outputs. To

achieve 6-bits of resolution the flash ADC must have 2N−1 comparators. This means the

ADC needs 63 comparators. The output of these comparators then need to be summed to

obtain the digital results.

Several aspects of the design reduce power consumption. Large flash ADCs consume

high amounts of power since the number of comparators required roughly doubles for each

additional bit of resolution. Since this flash ADC is mainly comparators. A large effort

will put into minimizing the power of the comparator. The design of this flash ADC does

not require a high accuracy output, so the comparator can be simplified and use small

device sizes can be used, therefore minimizing the power consumed. Other options will be

considered to minimize the power consumption.

28

3.2 System Block Diagram

The overall system block diagram of the ADC is shown below in Figure 3.1.

Figure 3.1: System Block Diagram

This ADC was implemented for use in a split architecture that includes two separate

flash ADCs. Something needs to be added to create an intentional difference for calibration

purposes when both ADCs are incorrect. This is created by adding a shift at the input.

The output of each stage is connected to the digital calibration block. The calibration

algorithm feeds digital correction information back into the system based on the difference

between the outputs of the two ADCs. The scope of this project included the design of the

calibration system. Circuit designs will be proposed and briefly explored.

29

3.2.1 Detailed Block Diagram

The block diagram of the flash ADC is shown below in Figure 3.2.

Each flash ADC is made up of three parts as shown above; resistive ladder, comparators

and a digital adder. The signal can be sampled by using a clocked comparator or clocking

the digital adder. The resistor ladder creates a reference that is compared to the input

signal. The ladder should create as as many references as there are comparators. This is

done with 2N number of resistors. After the values are compared to the input, the outputs

of the comparators are counted by the adder. The output is then sent to digital correction

block and the calibration block.

Not shown in the block diagram above are a few key blocks that are fundamental to

circuit operation. These blocks are the bias circuitry for the comparator, the output drivers

for each of the digital decisions and from the comparator to the digital, and a timing block

to control the timing of the switches.

30

Figure 3.2: Detailed Block Diagram

31

Chapter 4

Correction

Analog to digital converters tend to need some sort of calibration in order to achieve a

high number of effective bits and reduce it’s errors. Calibration needs some way to correct

the detected imperfections of the ADC. Depending on the calibration, different types of

correction is used. This section will detail how correction can be done and how it will be

done in this split flash ADC.

4.1 The Drive

As process sizes decreases, the need for calibration increases and therefore ways to correct

the ADCs does too. One major topology to correct non-linearity in ADCs is redundancy.

Just by adding twice the amount of comparators and averaging the two results can create

better ADC performance. Just this concept validates the use of the split calibration since

this averages two ADCs at the output. This will be verified in the calibration section.

4.2 Derivation

From looking at the ways other than averaging to use the redundant information, it was

concluded to attempt to use a combination of the approaches. Our correction will use a 4X

redundancy. This is the same as [16] but instead of only picking the best comparators, we

will use the information from all of them to obtain a corrected output. Also similar to [21]

32

Raw (n) Corrected(xA)

1 x0

2 x1

2 x2

. .

. .

. .

127 x126

Table 4.1: Look-Up table

we will use an intentional difference between the adcs. Instead of using this as a means to

make the sum zero, we will use it as a reference for the calibration.

4.3 Look-up table correction

The topology that will be used to correct the output of our ADC is a look-up table. The

look-up table will be used to match the raw output codes to corrected values determined by

calibration. The calibration to determine the values will be discussed in the next chapter.

The raw codes are mapped to the corrected one by collecting information about each

code and then using that code to index a table. The table has stored in it the value that

should be used instead of the raw code. The implementation of this is similar to memory.

Where the address is based on the raw output of the ADC and the corrected value is the

number stored in memory.

4.3.1 Resolution of table

One major design challenge when using a look-up table is determining the size and

resolution of the number used in the table. Some of it is decided in regards to the calibration

type and the rest is a fight for area. If the flash ADC is small and there is room for a large

resolution LUT. In the end there will be a trade of between size and accuracy.

33

There are ways to keep the resolution of the look-up table small. If you only update

the table when an integer value should be changed you can keep the resolution of the table

entries as big as the ADC itself. Determining when you should make a integer value change

can be done with a simple counter. But if this counter needs to count to a large value and

you need to make 2N of these counters, it can take up a lot of space. A way to minimize

that space and number of counters is by having one larger resolution counter and another

look-up table that is storing the last number in the count. This should be considered for

the system if space is a problem.

In previous split calibration designs a look-up table resolution was found optimal at 28.

This was not verified but can be reviewed in a preview thesis based on a cyclic ADC. [22]

4.3.2 Ideal calibration with Look-up table

In order to look at the behavior of the LUT in terms of a flash ADC, an ideal calibration

is implemented. This calibration is a simulated foreground calibration. It essentially inputs

a ramp signal to detect where all the randomly distributed trip points are. The raw codes

are then centered with the ideal code and the look up table is populated with that ideal

code. This is difficult to even implement even in MATLAB. To do the centering we counted

how many times this code was sampled and then found the middle. So if there was a count

of 5 we would say the center was 2.5 and the number would be rounded up or down.

If we look at the results in Figure 4.1 the ideally calibrated flash ADC, we see that the

DNL and INL are minimized. The goal of this work is try to approach this type of result

without the use of MATLAB or a foreground approach such as a ramped input.

In order to see how well the LUT can correct even the worst flash ADC, a graph of the

sigma deviation of a normal distribution vs the overall achieved effective number of bits.

Figure 4.2 shows that even after a ten LSB of deviation on the simulated flash ADC, a 6.5

bits of ENOB can be achieved and 5.7bits truncated to 6bits. The simulation is of an 8-bit

converter which is the same number of trip points as if you implement this calibration with

7-bits per side as planned. This is with a maximum resolution LUT and an ideal calibration.

The calibration used will most likely not be able to come close to this. However it does say

that even if the raw flash adc is very bad, a look-up table will be able to make it a much

34

Figure 4.1: Ideal LUT Results

better converter.

35

Figure 4.2: ENOB VS Sigma

36

Chapter 5

Calibration

5.1 Redundant Flash ADC

Figure 3.2 in the System level design showed a block diagram of the flash ADC designed

for this work. Each of the “A” and “B” ADCs is composed of 127 comparators, for a

redundancy factor [16, 9] of R = 2 compared with the 26 − 1 comparators required for a 6b

ADC with no redundancy. To tolerate non monotonic comparator outputs caused by large

threshold variation, the raw digital output n is simply the number of comparators with a

logic “high” output. Each of the nA, nB is realized with a Wallace tree decoder. To correct

the DNL and INL errors due to threshold variation, the raw code n is used as the index

to a LUT which provides the corrected output code x. In the ideal case, each entry xi in

the look-up table corresponds to the best fit code for the range of analog input voltages

corresponding to each raw code ni. Note that the digital precision of the xi can be greater

than the number of bits in ni to avoid quantization effects in correction and calibration.

5.2 Split ADC Structure

Figure 3.1 shows the split ADC concept [11, 12] applied to the design of this flash ADC.

The ADC from Figure 3.2 is used for each of the “A” and “B” ADCs in Figure 3.1, for an

overall redundancy factor of R = 4. The overall ADC output code xOUT is the average of

the individual output codes xA and xB . To enable background calibration, a small pseudo

37

random voltage shift ±∆V is introduced in the analog buffer at each ADC input. The ±∆V

shift is derived from the ADC reference voltage, and for an ideal converter would cause a

known shift in output code of ±∆C. Since the ±∆V is equal in magnitude but opposite

in sign for the two channels, the shift cancels in the averaging process and the output code

xOUT is unaffected.

As shown in Figure 3.1, the difference ∆x between the xA and xB outputs provides

information for the background calibration process. If both ADC look-up tables were cali-

brated correctly, the ∆x would be equal to ±2∆C LSB corresponding to the (known) shift

∆V which was introduced in each analog input. Any difference in ∆x from the expected

±2∆C LSB value provides information needed to update the xA and xB values in the LUTs

corresponding to each of the nA and nB raw codes. As the input exercises the ADC inputs

over their signal range, information is accumulated to calibrate the LUTs for all entries

used. The advantage of using the split ADC is in the differencing operation, which removes

the unknown input from the background calibration signal path [11, 12]. The following

section describes the correction and calibration process in more detail.

5.3 System Overview

5.3.1 Digital Correction

To model the errors that need to be corrected and calibrated in this system, consider

an example in which an input voltage is applied with a −∆V shift in the A path and a

+∆V shift in B. Raw codes niA and njB from the A and B ADCs are mapped through the

respective LUTs to produce corrected codes xiA and xjB:

niA
LUT“A”
−−−−−→ xiA = x−∆C + ǫiA

njB
LUT“B”
−−−−−→ xjB = x+∆C + ǫjB (5.1)

In (1), we model each of the xiA and xjB outputs as being composed of the ideal output

x corresponding to the original unshifted analog input, the ±∆C code shift, and errors εiA

38

and εjB in the ith and jth locations of the A and B LUTs respectively. For the ADC output

xOUT , averaging the individual outputs in (1) gives

xOUT =
xiA + xjB

2
= x+

1

2
(εiA + εjB) (5.2)

As indicated earlier, the shift cancels and we are left with the ideal correct output x and

an error component due to the errors in the LUTs. The calibration process to be described

in the following section is an iterative procedure that drives the LUT errors εiA and εjB to

zero, thereby ensuring accuracy of the digital output code xOUT .

5.3.2 Calibration

There are several possible methods for obtaining the LUT used for correction. One

possibility is to use a foreground approach of applying a known signal, using a ramp or DAC,

and determining a best fit LUT for the outputs observed. As quality of the calibration signal

is increased, the accuracy of the LUT can be made as precise as necessary. Disadvantages

of this approach include the need to generate the calibration signal, as well as taking the

ADC offline whenever calibration is required.

A novel aspect of this work is the background approach in which the errors are estimated

iteratively. The background calibration accommodates any variations in comparator thresh-

olds that may occur over time or temperature. The algorithm estimates the LUT errors

based on the information provided by the difference of the outputs. Taking the difference

of the outputs in (1) gives

∆x = xjB − xiA = εjB − εiA + 2∆C (5.3)

From (3) we see that the (unknown) input signal is canceled from the calibration path,

leaving only the known shift and the errors εiA and εjB we need to determine. To the

extent that ∆x differs from the target value of ±2∆C, we know there is a nonzero error in

either or both of εiA and εjB. The purpose of the pseudo random analog shift is to provide

additional information over multiple conversions that allows unambiguous determination of

errors in the LUT. Without the shift, in the case of a DC input, there would be no way to

39

assign the error from the observed ∆x to εiA or εjB. We can keep track of all errors in the

A and B LUTs with 127-element vectors εiA and εjBB; with this notation we can write (3)

as

∆x =

ASSIGNMENT Ŵ
︷ ︸︸ ︷

[

“A”LUT
︷ ︸︸ ︷

0 ... 0 − 1 ... 0
...

“B”LUT
︷ ︸︸ ︷

0 ... 0 + 1 ... 0]

ê
︷ ︸︸ ︷



















ε0A
...

εiA

−

ε0B
...

εjB





















+ 2∆C (5.4)

The assignment vector has a -1 entry corresponding to the ith location in the A LUT, and

a +1 entry for the jth location in the B LUT. Over many conversions, we can accumulate

a matrix of information relating the ∆x values to codes in the LUTs:

d̂
︷ ︸︸ ︷







...

∆x
...







=

Ŵ
︷ ︸︸ ︷










0 ... − 1 ... 0
...0 ... + 1 ... 0

0 − 1 0 ... 0
...0 ... 0 + 1 0

...
...

0 ... − 1 ... 0
...0 ... + 1 ... 0












ê
︷ ︸︸ ︷



















ε0A
...

εiA

−

ε0B
...

εjB





















+

ŝ
︷ ︸︸ ︷







...

2∆C
...








(5.5)

Rather than solve the matrix equation in (5) exactly, the iterative technique in [7] is

used.

5.3.3 Analog Shift

The analog shift is implemented as shown in Figure 5.1 using a source follower structure

biased by current sources. The ∆IS current which is added to one of the branches of the

source follower provides the appropriate voltage shift. The shift need not be instantaneous

40

s� s s

B���

P��

��

s

Figure 5.1: Analog Shift Circuit

as long as it is symmetric; samples from the transition region when ∆V has not reached its

full value are discarded from the calibration data. The size of the ∆V shift is subject to

an optimization tradeoff: too large a shift consumes excessive signal range, while too small

a shift does not provide sufficient information for calibration. Numerical simulations show

acceptable performance with a shift corresponding to a ∆C of 2-4 LSBs.

Another way to implement the shift is to change the voltage rails on the reference

ladder. This is seen the the following paper [19]. This paper was found after completion

of our algorithm but provides great motivation for a few improvements to our design. To

implement the rail voltages changing, one possible way is to make two different rails. That

way you can switch each ADC to a different rail creating that difference between them. At

all times only both rails would be in use and there would not be a time where one rail would

have to handle the load of two flash ADCs. The switching in the rail may cause some noise

41

on the reference and might cause a comparator to switch when it is not intended to.

5.3.4 Error Estimation

The mathematical development proceeds as in [12]. Formally, beginning with d = We+s

in (5), we subtract s from each side and premultiply by the transpose of W to obtain

Ŵ T (d̂− ŝ) = Ŵ T Ŵ ê (5.6)

Since W is a very sparse matrix filled with only ±1 for nonzero values, the product of

Ŵ T Ŵ results in a diagonally dominant square matrix. If the matrix were purely diagonal,

then its inverse would be easy to compute exactly as the inverse of the diagonal elements.

Since, as in [12], we only need an approximate solution for the iterative least mean squares

(LMS) procedure, we multiply by a factor µ to obtain estimates of the LUT errors:

ê = µŴ T (d̂− ŝ) (5.7)

The LMS factor µ is chosen to be a power of 2 so (7) can be easily computed as a shift in

the digital hardware. The choice of µ also affects the dynamics of the iteration convergence;

for stable convergence µ should be chosen smaller than the inverse of the largest diagonal

element of Ŵ T Ŵ . The Ŵ T (d̂− ŝ) data can be accumulated on a conversion-by-conversion

basis and requires the same number of memory locations as the vector. A block diagram

of the calibration algorithm is shown in Figure 5.2. The calibration portion on the left side

is performed after the system collects a set of data over a large number (of order 1000s) of

conversion cycles.

5.4 Simulation Results

The full split ADC system was simulated behaviorally using MATLAB with the system

parameters shown in Table 5.1. All results are reported at the 6b level. The comparator

threshold variation value σ was estimated from circuit-level simulation and process specifi-

cations.

42

Figure 5.2: Calibration Block Diagram

Figures 5.4 and 5.3 show ADC differential non linearity (DNL) and integral non linearity

(INL) of the system before and after calibration. DNL improves from +1.53/ − 1.00 to

+.85/− .90 LSB; INL improves from 2.56 to 1.52 LSB pk-pk. The adaptation transient of

the ADC for different µ values is shown in Figure 5.5. So that the detailed performance of

the calibration algorithm can be seen, corrected code outputs are reported in 12b precision

rather than truncated to 6 bits. For the µ = 2−21 case, convergence to ENOB > 6 is seen

within 2E+9 conversions. At 1GSps, this corresponds to less than 2 seconds to converge

to what would be quantization-limited accuracy. As is typical of LMS systems, faster

convergence is seen for smaller µ, subject to stability and accuracy tradeoffs.

To find the ENOB numbers shown in the graphs above, the signal to noise and distortion

ratio (SINAD) was calculated. The SINAD was calculated by taking the FFT of a signal

out of the corrected ADC and taking the ratio of the value of the signal to the noise and

43

0 10 20 30 40 50 60
!1

0

1

2

OUTPUT CODE

D
N

L
[L

S
B

]

Uncalibrated

Calibrated

Figure 5.3: Calibrated and Uncalibrated DNL

0 10 20 30 40 50 60
−2

−1

0

1

OUTPUT CODE

IN
L[

LS
B

]

Uncalibrated
Calibrated

Figure 5.4: Calibrated and Uncalibrated INL

distortion.

44

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

Conversions

E
N

O
B

µ=2−20

µ=2−21

µ=2−22

Figure 5.5: Calibration Convergence

5.4.1 Shift Values

The intentional difference created at the input of our calibration is a critical variable for

design. This value determines how many bits apart the two inputs should be. If we have

shift value very high, we can obtain more information about the ADC at DC or with a slow

changing input. With a small shift you will have less information at DC and in general.

During simulation of this calibration, it was seen that a larger value also had disadvantages.

This is because at really large or really small input values, you will end up saturated the

output to the LSB or the MSB. This will make some of your information useless and can

corrupt you LSB and MSB of your ADC. There is also some dependency on your ADC

error when picking your shift value. Larger shift values tend to work better with a larger

distribution of trip points.

Figure 5.6 above shows different calibration convergence with different shift values.

There is clearly an optimum solution show at 1.5 LSB. The lower shift value takes much

longer to change the look-up table but at least never seems to start degrading the corrected

45

Table 5.1: System Simulation Parameters

PARAMETER VALUE

LMS Parameter µ 2−21

Analog shift value ∆V 3.5 LSBs

Intial Error Estimate ε 0

Threshold variation standard deviation σ 5 LSBs

Total Number of Comparators 254

Effective Number of Bits (ENOB) 6.1

INL(after calibration) 1.52 LSB pk-pk

DNL(after calibration) +.85/− .90 LSB

values. The larger shifts do end up decreasing. This is most likely due to the over and un-

der MSB/LSB threshold values. One interesting thing is that there seem so be some speed

increase in calibration with a larger shift. This is due to the more information obtained per

calibration cycle.

In order to reduce the effects of the saturated outputs, there was consideration of im-

plementing some intelligence into the calibration. This was to try to determine when the

converters output is not valid information. To do this, you could see if two samples resolved

the same input but was not two times the shift value at the output, you can discard the

information. Also you can set limits to the look-up-table and say that nothing can be above

the MSB and nothing can be lower than the LSB. This is easily implemented and will be

included in the calibration. Trying to determine when the converter was shifting to an out

of ranged value, proved to be difficult without know the input. To see if it is worth pursuing

this addition intelligence to the background calibration, a simulation was done to compare

the limiting. The results of that are shown in Figure 5.7. If a small enough value of a shift

is use, this detection is not needed but if a larger shift is desired, this would have to be

done. One thing to consider, is that sense a larger shift makes the calibration go faster the

simulation with the larger shift are starting to decrease the ENOB faster.

46

0 1 2 3 4 5 6 7 8 9 10

x 10
6

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

Conversions

E
N

O
B

Varying Shift

0.5 LSB
1.5 LSB
2.5 LSB
3.5 LSB
4.5 LSB

Figure 5.6: ENOB VS Shift Value

5.4.2 Calibration With Different inputs

A concern with the design of all calibrations is how well it does with different input

signals. Though application can provide approximate input signal guidelines, a good cal-

ibration should handle all types. To verify this quality of the calibration, the calibration

was done with three different inputs, random, sine and ramp input. Initial prediction of

the results would be that the ramp would create the best look-up table because all values

would be covered if the ramp was slow enough. It is also expect that a random input would

take longer due to the fact that it may take time for all values to occur often enough to give

calibration information. The expected results are verified in the plot in Figure 5.8. The

plot shows that sine is in the middle of the two and that all depends on the frequency of

the sine wave relative to the sampling frequency.

47

10
0

10
1

−3

−2

−1

0

1

2

3

4

5

6

7

Shift(LSB)

E
N

O
B

Compare Input Limiting

No Limiting

Limited

Figure 5.7: Comparing Ideal Limiting

5.4.3 LUT Truncation

Since most of the simulation for this calibration was done in MATLAB, floating point

math was used. Though you can implement this in a digital system, the space you need is

very large. Not to mention that the output of your ADC will be integer numbers. To avoid

the floating point complications a simplification of the algorithm was thought of, and to see

the effect of the integer number output, a simple rounding was done in MATLAB. Figure

5.9 shows a full precision output and a truncated output. There is about a 0.3 ENOB

difference. So if the system can take in more than 6 bits, more information about the input

can be found.

5.5 Calibration Simplification

The calibration outlined so far is developed in MATLAB using mathematical theory.

In order to make the calibration more suited for an FPGA, a simplification needs to be

48

0 1 2 3 4 5 6 7 8 9 10

x 10
7

5.65

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1
ENOB vs Input Type

E
N

O
B

Conversions

Rand
Sine
Ramp

Figure 5.8: Comparing Different Input Signals

thought of and considered.

If we evaluate what is actually being done in this calibration we can determine a simpli-

fication. The easiest way of looking at the calibration is just collecting errors and applying

a small fraction of them to the Look-up table. The matrix solution is just one way of col-

lecting the information and really only adds additional computation that has to be done.

If we just create a second table that just stores the sum of the errors for each raw code, we

can take a small fraction of that table and apply it to the real look-up table. The block

diagram of this simplification is show below in Figure 5.10. The summation block is where

you’d accumulate the delta x data each conversion.

A way to keep the math fixed point integer math, you can accumulate the differences

by incrementing a counter to a number proportional to the mu term. Once this counter

reaches a curtain value, that location in the look up table is corrected. This may have some

advantage because you wouldn’t be doing your next conversions math based on the last

conversions change to the LUT, which the matrix solution already does. Since the value of

49

0 1 2 3 4 5 6 7 8

x 10
8

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

Conversions

E
N

O
B

Full Precision
Truncated

Figure 5.9: Truncated Signal

mu is very small, this is advantage hasn’t been seen.

The results of the calibration are the same. The MATLAB code is simplified and porting

the simplification to an FPGA is greatly simplified. So is the size of the circuitry needed

to implement the calibration. The LUT will still be large but not changing the LUT for

every error term used can also reduce the resolution of the LUT. The LUT is reduced by

having a lower resolution but the counters may just be an even trade off. Since the FPGA

generally is not that big this optimization may not be needed. But if a non FPGA version

was to be implemented the counting idea could be used.

5.6 Resolution of the ADC

The goal of our design was to achieve a high resolution with small inaccurate circuits

and a calibration algorithm to improve it. Since the simulation was not done with circuit

simulation or silicon results, a random distribution of trip points were used. The calibration

was done assuming a very high sigma variation and also was based off of prior art where

50

Figure 5.10: Simplified Calibration

4x redundancy was used. The question was posed, if our design is not that bad since we

moved from a 45nm process to 180nm, can we get away with only 6-bits per side.

The simulation was recoded with this question in mind and the following results were

obtained in Figure 5.11. It can be seen that the algorithm achieves 5.2 number of effective

bits, where as with 7-bits we got 6.1bits. Obviously more comparators mean more trip

points and more information to calibrate with. There are two interesting things to note on

in Figure 5.11. First is the large improvement from averaging the two ADCs. If we predict

what the outcome of the averaged ADC, you may think there should be an improvement of

one ENOB. One important thing to consider is that, though there are enough comparators

to make a 1 ENOB improvement, not all comparators will create additional useful trip

points. Two 6-bit flashes with ENOB of 4.6 averages out to 5.2 ENOB. The total resolution

51

0 1 2 3 4 5 6 7 8 9 10

x 10
9

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Conversions

E
N

O
B

Averaged
ADC A
ADC B

Figure 5.11: 6-bit Per Side Calibration

improvement is 0.9 ENOB, with two thirds of this coming from redundancy. The second

thing to notice how ADC A does not converge. This means that there are improvements that

can be made to this calibration setup for the simulation and might also mean corrections

need to be made to calibration technique. This can also explain the need for the out of range

limiting. Even more interesting about this plot is that even though the ADC A is decreasing

and ADC B is not, overall the averaged output is not decreasing. So even thought ADC A

is getting worse, it may still be helping to improve the overall ADC.

52

Chapter 6

Calibration Implementation

The simplification of the calibration was proven in MATLAB, and the algorithm was

attempted in a FPGA. This portion of the project required a refresh on FPGA programming

in VHDL/Verilog. It was important to research this in order to determine if it was possible

to include this algorithm on chip and fully background. The more thought that was put

into it, better, less FPGA required solutions were thought of. The code discussed here was

not completely verified, but this serves as a starting point for a possible completely separate

thesis project or as a starting point for someone to finish their investigation of the flash

circuit implementation.

6.1 FPGA Implementation

The design of FPGA implementation was separated into a few parts not too dissimilar

to how this thesis is presented. First there is the main section that declares variables, sets

up clocks and instantiates the other parts of the code. The other blocks are calibration, cor-

rection, and RAM. The RAM is where the look-up table is stored. The calibration is where

the difference, accumulation, and LMS operations are done. The correction block serves as

the connection between the two, correcting the RAM values based on the calibration data.

The block diagram in Figure 6.1 illustrates the flow of the FPGA code and another

way of looking at the simple approach to this calibration. Also included in the code in

53

Figure 6.1: FPGA Block Diagram

the appendix is an attempt to use the FPGA input buffers as comparators. This will be

discussed in the next chapter.

6.2 Synthesis

The FPGA code that was written does compile and synthesized. Test benches should

be written to test the calibration and compare it to the MATLAB simulation, but going

beyond the point of determining the feasibility of the calibration in a FPGA is beyond the

scope of this thesis.

The number of four input LUTs used in this design was 335. There were 175 flip flops

54

used. This turned out to be a lot smaller than was originally predicted. It would have been

interesting to synthesis this to the gate level and approximate the area that this calibration

would consume on an IC.

6.3 No FPGA

After some thought about the complexity of the FPGA code written and the simplifica-

tion discussed in the last section, more investigation was done to determine if the calibration

could be done without an FPGA.

One portion of the circuit that is impossible to removed is the look-up table used for

correction. The information has to be stored somewhere, but it may be possible to only

store the difference between the raw answer and the corrected answer.

The idea behind having no FPGA is to take the raw output and find the difference of

the two outputs and detect which is positive. If we add one to a counter for the channel

that is larger, and subtract one from the counter that is negative we can accumulate the

difference in a scaled fashion. One the things that is not every efficient or practical about

the calibration is the resolution of the look up table to do the math accurately. This enables

us to never depend on large resolution number which can make the FPGA size very big. One

other difference in this new idea is that I would only be changing the look-up table when

a major change is done do the channel and not just after a certain number of conversions.

This has some advantages. This new method is explored in MATLAB to see the difference

in results. There ideally should have no difference at the output.

To do this without an FPGA, there are a few circuits that will be needed. First we need

an up/down counter. This counter will have to be big in order to simulate the mu value

picked. But this technique might make not go slow enough to get good calibration results.

This counter will count to a large number, once this value is reached it will send a bit high to

another counter. This counter will be then what is used to input into an adder/subtractor

with the raw codes. For doing the differencing we will need a digital comparator or big

subtractor.

55

Chapter 7

Circuit Implementation

The design of the circuit for this ADC was not the focus of this masters thesis. This

was covered in other student’s in the labs Ph.D thesis and could be something I complete

in the future. Compiled here are design considerations and possible designs that could be

used.

7.1 Flash ADC

A typical flash ADC has a resistor ladder to set a reference for a comparator to determine

if the input is larger than it or not. This leads to major parts, a references creator or control

and device to compare the into to that reference. The typical implementation of a flash

ADC is shown below in Figure 7.1.

7.2 Comparators

The comparator in our ADC does not need to be very accurate do to the calibration

algorithm presented. Because of this, you can think of it’s requirements as completely

relaxed in terms of accuracy. This means that the speed and power can be optimized. The

goal for this circuit is 1Gs/s so speed is a big consideration. Since the calibration algorithm

can use additional comparators to achieve an great ENOB, power is something that should

be minimized.

56

Figure 7.1: Basic Flash ADC

7.2.1 Comparator Theory

The most basic ideal comparator, shown in Figure 7.2a, compares two voltage signals

and the output indicates whether V1 is greater than V2. The input-output characteristic of

an ideal comparator can be seen in Figure 7.2b.

The comparator is comprised of a preamplifier and an analog latch as shown in Figure

57

Figure 7.2: Ideal Comparator Characteristic

7.3.

Analog Latch

The analog latch drives its output to one rail or the other depending on the input it

receives from the preamplifier. The basic latch is two connected inverters as shown in Figure

7.4a. This configuration will have the input output characteristic shown in Figure 7.4b. The

points of stability and metastability occur at the intersection of the input-output curves of

the two inverters. Figure 7.4b shows two stable points, one high (VH) and one low (VL), and

a metastable point in the middle VMeta. The difference between stability and metastability

in a latch can be visualized like a ball balanced at the peak of a hill versus a ball at the

foot of a hill. The ball at the foot of the hill needs to be moved up the hill to reach another

point of stability or metastability, while the ball balanced on the peak requires only a small

push to fall to a stable point. Likewise, to move from VLto VH or vice verse, a significant

58

Figure 7.3: Comparator Block Diagram

change must be applied, however, only a small voltage variation is required to cause the

metastable point to “fall” to one stable point or another. If VAand VB are shorted together

with a switch as shown in Figure 7.4c, then the two voltages will both be pulled to the

metastable point. Input switches are used to apply voltages that create an imbalance that

will push the latch into one of its stable states. Once this imbalance is established, the

switch shorting the latch into its metastable state is released and the latch output is driven

either high or low.

Comparators are implemented a number of ways. The topology described above can

be used as a model for most comparators. For this design we may want to use something

simple that could be implemented easily in a small amount of space. A trend in very small

processes is to use inverters as amplifiers, in this case as the preamplifier. Interesting enough,

an inverter can also be thought of as comparator. The comparator should be clocked and

differential so a basic inverter might need to be expanded to meet those needs.

59

Figure 7.4: Latch

7.3 Inverter Comparator

The concept of a simple inverter as a comparator is interesting. Using sizing alone you

can distribute the trip points for the flash ADC. A simple inverter is only single ended.

Figure 7.5 shows the simple inverter with increased gain by having active loads supplied by

a bias voltage. The simulation results in Figure 7.6 show how changing the device size and

the bias voltages can change the trip point of the inverter over a large range.

Figure 7.7 shows the evolution of a differential version of the using the inverter as a

comparator, starting with a basic differential pair and combining the complimentary invert

as the input. This is a self bias differential receiver.[4] This tackled the problem of making

60

Figure 7.5: Inverter

the inverter differential and last we need to find out how to clock this design. One option

is to just reset the inputs after the latch is clocked using a transmission gate to short the

inputs to each other.

The variation in capacitance of the inputs to the comparator could be a problem, but

the fact that the resistance seen at each input is also changing, you just need to design

for the worst case scenario. The ultimate biggest resistance and biggest capacitance would

create the slowest comparator decision.

7.4 References

References are as stated before normally made from a resistive ladder. The resistive

ladder ends up constantly drawing current and can be wasteful due to that aspect. It could

also be done using a MOS divider or capacitor divider for lower power consumption. The

61

Figure 7.6: Inverter Simulation

problem with the last two is that the input capacitance would be come even larger and

possibly limit the speed of the circuit. Also capacitors tend to be larger than resistors in

terms of area and you have to consider the divider created with the input to the comparator.

The best way to change the threshold may be by changing the sizes of devices like

explained in the comparator theory section. For example you can change the thresholds

of an inverter by make the PMOS or the NMOS bigger. For this topology you are limited

by the resolution of the process on how many different sizes and combinations you have to

create different thresholds. Another disadvantage is having to layout many different sized

blocks and limiting the amount of copy and paste that can be done in layout. But if thats

the cost for extreme reduction of area and power for the reference ladder, this approach

62

Figure 7.7: Evolution of the Self-Bias Differential Receiver[4]

might be worth investigating more. Another disadvantage of this approach is that each

input can be a different capacitance if we distribute based on sizing. This means that each

comparator may take longer to make a decision, but you would again design for your worst

case and set the limit on your sizing based on speed.

7.5 Logic

The last block of the Flash ADC is the logic that samples the comparator output and puts

the stream of 1s into a format readable by an FPGA or micro processor. A typical flash ADC

designed for linearity and accurate output without calibration might have thermometer code

to binary converter. This will convert the raw outputs into a binary number. This design

is normally assuming no bubble codes and all trip points designed in a row. Bubble codes

are codes in the thermometer string that should be 1 but are zero due to comparator offset.

This ADC will most likely be bubble codes and other errors in our output, we will use an

adder to count the ones. The adder that will be used will be a Wallace tree adder. Unlike

typical Flash ADC encoders, this technique will offer the error correction and suppression

without the use of addition NAND gates handle the bubble codes[3]. This design may be

slow and need pipe-lining to improve it’s performance. Figure 7.8 shows a circuit diagram

63

of a Wallace tree adder.

Figure 7.8: Wallace Tree Adder [3]

7.6 FPGA ADC

The easiest way to implement that logic for our ADC would be by using an internal

FPGA. This way we could have the raw output of the ADC feed directly to the FPGA

which then can add the signal, perform the algorithm, output the corrected and calibrated

code without having to go to an external FPGA. Since we are limited by the small die area

that we have, this will not happen soon. But if future funding was given and more chips

could be fabricated after our first test chip, this is the way to go.

After reading the paper about the fully digital stochastic flash ADC[21], an attempt

was made at implementing this design all in an FPGA. One interesting thing is that many

FPGAs use input buffers that are similar to the differential inverter design discussed in the

section about comparators. It was observed that the variation of trip points, without being

able to size the devices and depending only on process variation, was too small to make a

64

converter that was very useful. Initially it was thought to be hard to implement the shift,

but if we have a constant shift and the FPGA could allow multiple rails, the shift can be

done similar to how it was implemented in [21].

65

Chapter 8

Conclusions and Future

Recommendations

8.1 Conclusions

This paper has presented all digital background calibration of a redundant flash ADC

suitable for for aggressively scaled CMOS technologies. Implementation using the split-

ADC calibration technique minimizes analog complexity and enables purely background

calibration. Four times redundant comparators are used and correction is realized using a

look-up table which is continuously calibrated in the background using a split calibration

architecture. Simulation results show the proposed algorithm has the ability to reach per-

formance comparable to previous work without requiring additional silicon area, a precise

signal source, or offline calibration.

Presented in the thesis was a calibration algorithm using the concept of a split-ADC

with a flash analog to digital converter. The idea of the split-ADC was first published in

[11]. This novel idea has been applied to many converters and now can be applied to a

Flash ADC. Each ADC needs its own version of this calibration due to the fact that each

have their own shortcomings and each need to collect the information provided about those

shortcomings in a different way.

The major results of the calibration have been presented here and also in the published

66

paper based on this calibration [17]. The results presented are based on redundancy and

therefore have 4 times the number of comparators than a normal 6-bit ADC. This calibration

can be implemented with whatever number of comparators that are needed based on the

desired effective number of bits. It can also use with any type of flash ADC architecture as

long as there is some version of a ones counted output to allow for the maximum amount

of information to be collected from the ADC and the calibration scheme to work correctly.

8.2 Future Recommendations

For this project, an implementation of the flash ADC was not completed but ideas are

presented here to encourage continued work on this project in the direction of a very fast and

inaccurate ADC. This can create an overall Flash ADC with true background calibration at

over a giga sample per second and minimize the area and power by allowing a less accurate

architecture and comparator.

I would also recommend looking more into the calibration in terms of limiting bad

corrections. A few ideas concerning this are as follows: a dynamic least mean square term,

full scale limiting, and other means in which to control the calibration. Currently the

the approach is simple and effective. I do believe with some additional complexity in the

calibration there may be a way to reach the full potential of the look-up table correction

by controlling the calibration more. This may add cost in terms of FPGA complexity and

size but in the end might minimize the amount of comparators needed to reach closer to a

full 6-bit accuracy. The last thing that should be considered is interleaving the flash ADC

and calibrating interleaving errors and possibly making use of the additional information

created by the increased redundancy.

8.3 Closing

Before working on this project, my appreciation for digital was minimal and my focus

was on all analog design. From the project I learned a lot in terms of programming in

FPGAs and MATLAB, and ultimately learned the extreme usefulness that digital circuits

67

and code can provide to a complex and inaccurate analog system.

68

Appendix A

MATLAB CODE

%% Inverse Operation to find errors

%% MS THESIS

%% Calibration keys

points = 1024; %% points per calibration cycle

5 calibpoints = 10000000; %% How many times to do calibration loop

Vref = 2; %% +/− 0.7V

numbits = 6; %% Per ADC on each side

tempsig =1.5; %% Sigma Variation in terms of LSB

shift = 1.5; %% Shift +/− to input

10 LMSN = 26 ; %% LMS mu value 1/2^LMSN

numtrips = 2^ numbits -1; %% Number of trip points to generate

LSB = Vref/numtrips; %% the least sig bit

69

fs = 10000;

freq = 10000*(13/ points);

15 T = 1/fs;

time =0:1/ fs:(points -1)/(fs);

input =Vref*rand(1,points)-Vref /2; %% RANDOM input UNI

inputsine = (Vref /2)* s in (2*pi*time*freq); %% SINE

inputramp =(0: Vref/(points -1): Vref)-Vref /2; %% RAMP

20 calib = repmat(tempsig ,1, calibpoints); %% Vector f Sigma

SINADLUTAv = zeros (calibpoints ,1); %% Collecting SINAD

ENOBLUTAv = zeros (calibpoints ,1); %% Collecting ENOB

SINADLUTB = zeros (calibpoints ,1); %% Collecting SINAD

ENOBLUTB = zeros (calibpoints ,1); %% Collecting ENOB

25 SINADLUTC = zeros (calibpoints ,1); %% Collecting SINAD

ENOBLUTC = zeros (calibpoints ,1); %% Collecting ENOB

Timee = zeros (calibpoints ,1);

%LUT = zeros(128, calibpoints);

%% Declare original LUTs

30 LUT_changingA = (0:1: numtrips)’; %% Look up table A

LUT_changingB = (0:1: numtrips)’; %% Look up table B

sigma = LSB*tempsig; %% Sigma value V

sig = 1;

%% Generate Errors and trips

35 errorsA = LSB + sigma .*randn(numtrips ,1); %% Error vector A

errorsB = LSB + sigma .*randn(numtrips ,1); %% Error vector B

70

REF_trips = (-Vref /2+ LSB /2: LSB:Vref/2-LSB/2)’; %% Ideal trips

tripsA =REF_trips + errorsA; %% Error trip A

tripsB = REF_trips + errorsB; %% Error trip A

40

%% Implement Flash ADCs with different inputs, A/B

%% flash ADC A/B RANDOM

outsA = repmat(input ,numtrips ,1)> repmat(tripsA ,1,points);

%% sum # of ones, divide by # of comparators, mult by voltage ref

45 outputA = ((sum (outsA ,1))/ numtrips)*Vref -Vref /2;

%% sum only

outputsumA = sum(outsA ,1);

outsB = repmat(input ,numtrips ,1)> repmat(tripsB ,1,points);

outputB = ((sum (outsB ,1))/ numtrips)*Vref -Vref /2;

50 outputsumB = sum(outsB ,1);

%% flash ADC for cal with ramp A/B

outsrampA = repmat(inputramp ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumrampA = sum(outsrampA ,1);

55 outputrampA = ((sum (outsrampA ,1))/ numtrips)*Vref -Vref /2;

outsrampB = repmat(inputramp ,numtrips ,1)> repmat(tripsB ,1,points);

outputsumrampB = sum(outsrampB ,1);

outputrampB = ((sum (outsrampB ,1))/ numtrips)*Vref -Vref /2;

60 %% flash ADC for cal with sine A/B

71

outssineA = repmat(inputsine ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumsineA = sum(outssineA ,1);

outputsineA = ((sum (outssineA ,1))/ numtrips)*Vref -Vref /2;

outssineB = repmat(inputsine ,numtrips ,1)> repmat(tripsB ,1,points);

65 outputsumsineB = sum(outssineB ,1);

outputsineB = ((sum (outssineB ,1))/ numtrips)*Vref -Vref /2;

outrawavg = (outputsumsineA +outputsumsineB);

outrawavge = (outrawavg/numtrips)*Vref -Vref /2;

70 %% Ideal flash ADC with ramp

outsideal = repmat(inputramp , numtrips ,1)> repmat(REF_trips ,1,points);

outidealsum = sum(outsideal ,1);

outideal = (sum(outsideal ,1)/ numtrips)*Vref -Vref /2;

%% Ideal flash ADC with sine

75 outsidealsine = repmat(input , numtrips ,1)> repmat(REF_trips ,1,points);

outidealsumsine = sum(outsidealsine ,1);

outidealsine = (sum(outsidealsine ,1)/ numtrips)*Vref;

%% Vectors for vectorizing

80 even = 2:2: points;

odd = 1:2: points;

f u l l = 1: points;

%% Create shift input using sine input

inputshift = input;

72

85 inputshiftm = input;

inputshifta = input;

inputshift(even)= inputshifta(even)+ shift*LSB;

inputshiftm(even)= inputshifta(even)-shift*LSB;

inputshift(odd)= inputshifta(odd)-shift*LSB;

90 inputshiftm(odd)= inputshifta(odd)+ shift*LSB;

%% Shifted output values

outsshiftA = repmat(inputshiftm ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumshiftA = sum(outsshiftA ,1);

95 outputshiftA = ((sum (outsshiftA ,1))/ numtrips)*Vref -Vref /2;

outsshiftB = repmat(inputshift ,numtrips ,1)> repmat(tripsB ,1,points);

outputsumshiftB = sum(outsshiftB ,1);

outputshiftB = ((sum (outsshiftB ,1))/ numtrips)*Vref -Vref /2;

100 t i c

%% OVERALL calibration loop

for test = calib ,

%%%

105 %%%

%%%%CALIBRATION%%

differenceshift= zeros (points ,1);

invforerrshift = zeros (points ,(numtrips +1)*2);

73

110 %% Take even differences from LUT value and add back known shift

differenceshift(even)= LUT_changingB(outputsumshiftB(even)+1)

-LUT_changingA(outputsumshiftA(even)+1)- shift *2;

differenceshift(odd)= LUT_changingB(outputsumshiftB(odd)+1)

-LUT_changingA(outputsumshiftA(odd)+1)+ shift *2;

115

%% Build weighted matrix with +1 for B −1 for A

% invforerrshift(full,outputsumshiftB(full)+129)=1;

% invforerrshift(full,outputsumshiftA(full)+1)=−1;

%% Trying to vectorize

120 % for i= 1:points,

% invforerrshift(i,outputsumshiftB(i)+129)=1;

% invforerrshift(i,outputsumshiftA(i)+1)=−1;

% end

125 %%%%TRAVIS HELP%%%%%

%% Vector Version

B=[];

A=[];

Bp=[];

130 Ap=[];

column =128;

invforerrshift2 = zeros (1 ,128* points);

74

Bp=65: column:points*column;

Ap=1: column:points*column;

135

B=Bp +(outputsumshiftB);

A=Ap +(outputsumshiftA);

%invforerrshift2 =zeros(points,256);

invforerrshift2(B) = 1;

140 invforerrshift2(A) = -1;

invforerrshift = reshape(invforerrshift2 ,128, points)’;

%invforerrshift2 =zeros(points,256);

%invforerrshift2[B]=1;

%invforerrshift2(1:points,B) = 1;

145

%invforerrshift2=reshape(array,points,256);

%% Take transpose of invforerr

transforerr = invforerrshift ’;

150

%% Multiply the differences by the transposed weight matrix

atransdiffer = transforerr*differenceshift;

%% Multiply the LMS factor mu by the difference and weighted

155 %% This creates a small fraction of the estimated errors

errortrans = (1/(2^ LMSN))* atransdiffer;

75

ErrortransA= (errortrans (1:(numtrips +1)));

ErrortransB= (errortrans ((numtrips +2):(numtrips +1)*2));

160 %% Each loop subtract erros from the look up tables

LUT_changingA = LUT_changingA -ErrortransA;

LUT_changingB = LUT_changingB -ErrortransB;

%% Corrected Outputs

165 OUTLUTshiftA = (LUT_changingA(outputsumrampA +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftB = (LUT_changingB(outputsumrampB +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftsineA = (LUT_changingA(outputsumsineA +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftsineB = (LUT_changingB(outputsumsineB +1)/ numtrips)*Vref -Vref /2;

170 %% Averaged outputs

AVG = (LUT_changingA(outputsumsineA +1)+ LUT_changingB(outputsumsineB +1)); %%outputsumsineA

AVG2 = (LUT_changingA(outputsumsineA +1)+ LUT_changingB(outputsumsineB +1))/2;

ONEA = LUT_changingA(outputsumsineA +1);

ONEB = LUT_changingB(outputsumsineB +1);

175 AVGr = round(AVG);

AVGr2 = round(AVG2);

OUTLUTavg = (AVG/(numtrips *2))*Vref -Vref /2;

OUTONEA = (ONEA/(numtrips))*Vref -Vref /2;

OUTONEB = (ONEB/(numtrips))*Vref -Vref /2;

180 OUTLUTavgmax = (AVG/max(AVGr))*Vref -Vref /2;

76

OUTLUTavgr = (AVGr/(numtrips *2))*Vref -Vref /2;

AVG6 = bitshift(AVGr ,-1);

numtrips6 = bitshift(numtrips ,-1);

OUTLUTavg6 = (AVG6/numtrips6)*Vref -Vref /2;

185 AVGramp = (LUT_changingA(outputsumrampA +1)+ LUT_changingB(outputsumrampB +1))/2;

AVGramp = round(AVGramp);

OUTLUTavgramp = (AVGramp/numtrips)*Vref -Vref /2;

190 %%

%% FFT Work%%

%% FFT OUTavg

sAv = f f t (OUTLUTavg); %%OUTLUTlmssineA

SAv = 20* log10(abs(sAv));

195 aAv = SAv (1: length(OUTLUTavg)/2);

dfAv = fs/(length(SAv));

f1Av = 0:dfAv:dfAv*(length(aAv)-1);

%% Determine power spectrum

200 spectPv =(abs(sAv)).*(abs(sAv));

Pdcv = sum(spectPv (1)); %% dont need, differential

Psv = max(spectPv (1: points /2));

Pallv = sum(spectPv (1: points /2));

Pnv = Pallv -Psv -Pdcv;

77

205 SINADLUTAv(sig)=10* log10(Psv/Pnv);

ENOBLUTAv(sig) = (SINADLUTAv(sig) - 1.76)/6.02;

sB = f f t (OUTONEA); %%OUTLUTlmssineA

SB = 20* log10(abs(sB));

210 aB = SB(1: length(OUTONEA)/2);

dfB = fs/(length(SB));

f1B = 0:dfB:dfB*(length(aB)-1);

%% Determine power spectrum

215 spectPB =(abs(sB)).*(abs(sB));

PdcB = sum(spectPB (1)); %% dont need, differential

PsB = max(spectPB (1: points /2));

PallB = sum(spectPB (1: points /2));

PnB = PallB -PsB -PdcB;

220 SINADLUTB(sig)=10* log10(PsB/PnB);

ENOBLUTB(sig) = (SINADLUTB(sig) - 1.76)/6.02;

%sig = sig +1;

%LUT(1:128,sig) = LUT_changingA(1:128);

Timee(sig) = toc;

225

sC = f f t (OUTONEB); %%OUTLUTlmssineA

SC = 20* log10(abs(sC));

aC = SC(1: length(OUTONEB)/2);

78

dfC = fs/(length(SC));

230 f1C = 0:dfC:dfC*(length(aC)-1);

%% Determine power spectrum

spectPC =(abs(sC)).*(abs(sC));

PdcC = sum(spectPC (1)); %% dont need, differential

235 PsC = max(spectPC (1: points /2));

PallC = sum(spectPC (1: points /2));

PnC = PallC -PsC -PdcC;

SINADLUTC(sig)=10* log10(PsC/PnC);

ENOBLUTC(sig) = (SINADLUTC(sig) - 1.76)/6.02;

240 sig = sig +1;

%LUT(1:128,sig) = LUT_changingA(1:128);

%Timeee(sig) =toc;

end

245 %% PlotEnob vs converions

conversion = (1: points:points*calibpoints)’;

f igure (1)

plot (conversion ,ENOBLUTAv , conversion , ENOBLUTB , conversion , ENOBLUTC)

250

%DNL_INL_SIN

% dnl and inl ADC output

79

% input y contains the ADC output

% vector obtained from quantizing a

255 % sinusoid

% Boris Murmann, Aug 2002

% Bernhard Boser, Sept 2002

% histogram boundaries

AVGrr = bitshift(AVGr ,-1);

260 y=AVGr;

minbin=min(y);

maxbin=max(y);

% histogram

h = hist (y, minbin:maxbin);

265 % cumulative histogram

ch = cumsum(h);

% transition levels found by:

T = -cos(pi*ch/sum(h));

% linearized histogram

270 hlin = T(2:end) - T(1:end-1);

% truncate at least first and last

% bin, more if input did not clip ADC

trunc =2;

hlin_trunc = hlin (1+ trunc:end-trunc);

275 % calculate lsb size and dnl

lsb= sum(hlin_trunc) / (length(hlin_trunc));

80

dnlcal= [0 hlin_trunc/lsb -1];

misscodes = length(f ind (dnlcal < -0.99));

% calculate inl

280 inlcal= cumsum(dnlcal);

codes6bitcal = (0:1:(length(hlin_trunc)));

% figure(6)

% plot(codes6bit,inlcal)

% xlabel(’OUTPUT CODE’)

285 % ylabel(’INL[LSB]’)

% figure(7)

% plot(codes6bit,dnlcal)

% xlabel(’OUTPUT CODE’)

% ylabel(’DNL[LSB]’)

290

outrawavg =round(outputsumsineB);

%outrawavg = bitshift(outrawavg,−1);

yx = outrawavg;

%DNL_INL_SIN

295 % dnl and inl ADC output

% input y contains the ADC output

% vector obtained from quantizing a

% sinusoid

% Boris Murmann, Aug 2002

300 % Bernhard Boser, Sept 2002

81

% histogram boundaries

minbin=min(yx);

maxbin=max(yx);

% histogram

305 h = hist (yx, minbin:maxbin);

% cumulative histogram

ch = cumsum(h);

% transition levels found by:

T = -cos(pi*ch/sum(h));

310 % linearized histogram

hlin = T(2:end) - T(1:end-1);

% truncate at least first and last

% bin, more if input did not clip ADC

trunc =2;

315 hlin_trunc = hlin (1+ trunc:end-trunc);

% calculate lsb size and dnl

lsb= sum(hlin_trunc) / (length(hlin_trunc));

dnl= [0 hlin_trunc/lsb -1];

misscodes = length(f ind (dnl < -0.99));

320 % calculate inl

inl= cumsum(dnl);

codes6bit = (0:1:(length(hlin_trunc)));

f igure (6)

plot (codes6bit ,inl ,codes6bitcal ,inlcal ,’LineWidth ’,2,’LineStyle ’,’:’,’Color’ ,[0 0 0]);

82

325 xlabel (’OUTPUT CODE’)

ylabel (’INL[LSB]’)

f igure (7)

plot (codes6bit ,dnl ,codes6bitcal ,dnlcal ,’LineWidth ’,2,’LineStyle ’,’:’,’Color’ ,[0 0 0]);

xlabel (’OUTPUT CODE’)

330 ylabel (’DNL[LSB]’)

f igure (8)

plot (inputramp , outputrampA , inputramp ,outputrampB ,

inputramp ,outideal ,inputramp ,OUTLUTavgramp)

335 xlabel (’Input’)

ylabel (’Output ’)

t i t l e (’Ideal ,Best ,Avg Input/Ouputs ’);

axis ([-1 1 -1 1]);

340

%%%% 7 bits per side

f igure (9)

plot (conversion ,ENOBLUTAv)

83

Appendix B

UPGRADED MATLAB

%% Inverse Operation to find errors

%% MS THESIS

%% Calibration keys

points = 1024; %% points per calibration cycle

5 calibpoints = 50000; %% How many times to do calibration loop

Vref = 2; %% +/− 0.7V

numbits = 7; %% Per ADC on each side

tempsig =2.6; %% Sigma Variation in terms of LSB

shift = 4; %% Shift +/− to input

10 LMSNF = 20; %% LMS mu value 1/2^LMSN

LMSN = 20;

LMSND = 22;

84

numtrips = 2^ numbits -1; %% Number of trip points to generate

LSB = Vref/numtrips; %% the least sig bit

15 fs = 10000;

freq = 10000*(13/ points);

T = 1/fs;

time =0:1/ fs:(points -1)/(fs);

%input =(Vref+.1)∗rand(1,points)−(Vref+.1)/2; %% RANDOM input UNI

20 input =(Vref)*rand(1,points)-(Vref)/2; %% RANDOM input UNI

inputsine = (Vref /2)* s in (2*pi*time*freq); %% SINE

inputramp =(0: Vref/(points -1): Vref)-Vref /2; %% RAMP

calib = repmat(tempsig ,1, calibpoints); %% Vector f Sigma

SINADLUTAv = zeros (calibpoints ,1); %% Collecting SINAD

25 ENOBLUTAv = zeros (calibpoints ,1); %% Collecting ENOB

SINADLUTB = zeros (calibpoints ,1); %% Collecting SINAD

ENOBLUTB = zeros (calibpoints ,1); %% Collecting ENOB

rmserror = zeros (calibpoints ,1);

Timee = zeros (calibpoints ,1);

30 LUT = zeros (128, calibpoints);

%% Declare original LUTs

LUT_changingA = (0:1: numtrips)’; %% Look up table A

LUT_changingB = (0:1: numtrips)’; %% Look up table B

LUT_changedA = (0:1: numtrips)’; %% Look up table A

35 LUT_changedB = (0:1: numtrips)’; %% Look up table B

LUT_changedAD = (0:1: numtrips)’; %% Look up table A

85

LUT_changedBD = (0:1: numtrips)’; %% Look up table B

LUT_sumA = zeros (numtrips +1,1); %% Look up table A

LUT_sumB = zeros (numtrips +1,1); %% Look up table B

40 LUT_changedAF = int32(LUT_changedA); %% Look up table A

LUT_changedBF = int32(LUT_changedB); %% Look up table B

LUT_changedAF = bitsll(LUT_changedAF ,26); %% Look up table A

LUT_changedBF = bitsll(LUT_changedBF ,26);

LUT_sumAF = int32(LUT_sumA); %% Look up table A

45 LUT_sumBF = int32(LUT_sumB); %% Look up table B

sigma = LSB*tempsig; %% Sigma value V

sig = 1;

%% Generate Errors and trips

errorsA = LSB + sigma .*randn(numtrips ,1); %% Error vector A

50 errorsB = LSB + sigma .*randn(numtrips ,1); %% Error vector B

REF_trips = (-Vref /2+ LSB /2: LSB:Vref/2-LSB/2)’; %% Ideal trips

%tripsA =REF_trips + errorsA; %% Error trip A

%tripsB = REF_trips + errorsB; %% Error trip A

55 %% Implement Flash ADCs with different inputs, A/B

%% flash ADC A/B RANDOM

outsA = repmat(input ,numtrips ,1)> repmat(tripsA ,1,points);

%% sum # of ones, divide by # of comparators, mult by voltage ref

outputA = ((sum (outsA ,1))/ numtrips)*Vref -Vref /2;

60 %% sum only

86

outputsumA = sum(outsA ,1);

outsB = repmat(input ,numtrips ,1)> repmat(tripsB ,1,points);

outputB = ((sum (outsB ,1))/ numtrips)*Vref -Vref /2;

outputsumB = sum(outsB ,1);

65

%% flash ADC for cal with ramp A/B

outsrampA = repmat(inputramp ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumrampA = sum(outsrampA ,1);

outputrampA = ((sum (outsrampA ,1))/ numtrips)*Vref -Vref /2;

70 outsrampB = repmat(inputramp ,numtrips ,1)> repmat(tripsB ,1,points);

outputsumrampB = sum(outsrampB ,1);

outputrampB = ((sum (outsrampB ,1))/ numtrips)*Vref -Vref /2;

%% flash ADC for cal with sine A/B

75 outssineA = repmat(inputsine ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumsineA = sum(outssineA ,1);

outputsineA = ((sum (outssineA ,1))/ numtrips)*Vref -Vref /2;

outssineB = repmat(inputsine ,numtrips ,1)> repmat(tripsB ,1,points);

outputsumsineB = sum(outssineB ,1);

80 outputsineB = ((sum (outssineB ,1))/ numtrips)*Vref -Vref /2;

outrawavg = (outputsumsineA +outputsumsineB);

outrawavge = (outrawavg /(numtrips *2))*Vref -Vref /2;

%% Ideal flash ADC with ramp

87

85 outsideal = repmat(inputramp , numtrips ,1)> repmat(REF_trips ,1,points);

outidealsum = sum(outsideal ,1);

outideal = (sum(outsideal ,1)/ numtrips)*Vref -Vref /2;

%% Ideal flash ADC with sine

outsidealsine = repmat(inputsine , numtrips ,1)> repmat(REF_trips ,1,points);

90 outidealsumsine = sum(outsidealsine ,1);

outidealsine = (sum(outsidealsine ,1)/ numtrips)*Vref -Vref /2;

%% Vectors for vectorizing

even = 2:2: points;

95 odd = 1:2: points;

f u l l = 1: points;

%% Create shift input using sine input

inputshift = input;%sine;

inputshiftm = input;%sine;

100 inputshifta = input;%sine;

inputshift(even)= inputshifta(even)+ shift*LSB;

inputshiftm(even)= inputshifta(even)-shift*LSB;

inputshift(odd)= inputshifta(odd)-shift*LSB;

inputshiftm(odd)= inputshifta(odd)+ shift*LSB;

105

%% Shifted output values

outsshiftA = repmat(inputshiftm ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumshiftA = sum(outsshiftA ,1);

88

outputshiftA = ((sum (outsshiftA ,1))/ numtrips)*Vref -Vref /2;

110 outsshiftB = repmat(inputshift ,numtrips ,1)> repmat(tripsB ,1,points);

outputsumshiftB = sum(outsshiftB ,1);

outputshiftB = ((sum (outsshiftB ,1))/ numtrips)*Vref -Vref /2;

t i c

115 %% OVERALL calibration loop

for test = calib ,

input =(Vref)*rand(1,points)-(Vref)/2; %% RANDOM input UNI

inputshift = input;%sine;

120 inputshiftm = input;%sine;

inputshifta = input;%sine;

inputshift(even)= inputshifta(even)+ shift*LSB;

inputshiftm(even)= inputshifta(even)-shift*LSB;

inputshift(odd)= inputshifta(odd)-shift*LSB;

125 inputshiftm(odd)= inputshifta(odd)+ shift*LSB;

%% Shifted output values

outsshiftA = repmat(inputshiftm ,numtrips ,1)> repmat(tripsA ,1,points);

outputsumshiftA = sum(outsshiftA ,1);

130 outputshiftA = ((sum (outsshiftA ,1))/ numtrips)*Vref -Vref /2;

outsshiftB = repmat(inputshift ,numtrips ,1)> repmat(tripsB ,1,points);

outputsumshiftB = sum(outsshiftB ,1);

89

outputshiftB = ((sum (outsshiftB ,1))/ numtrips)*Vref -Vref /2;

135 %% FPGA stuff

differenceagain = zeros (points ,1);

differenceagainF = int32(differenceagain);

differenceagainF = bitsll(differenceagainF ,26); %% not needed

shiftshift = bitsll(shift ,26) ;

140 LUT_sumA = zeros (numtrips +1,1); %% Look up table A

LUT_sumB = zeros (numtrips +1,1); %% Look up table B

LUT_sumAa = zeros (numtrips +1,1); %% Look up table A

LUT_sumBa = zeros (numtrips +1,1);

145 LUT_sumAaD = zeros (numtrips +1,1); %% Look up table A

LUT_sumBaD = zeros (numtrips +1,1);

LUT_sumAF = int32(LUT_sumA); %% Look up table A

LUT_sumBF = int32(LUT_sumB); %% Look up table B

LUT_sumAaF = int32(LUT_sumAa); %% Look up table A

150 LUT_sumBaF = int32(LUT_sumBa);

LUT_sumAD = zeros (numtrips +1,1); %% Look up table A

LUT_sumBD = zeros (numtrips +1,1); %% Look up table B

%%%

155 %%%

%%%%CALIBRATION%%

90

differenceshift= zeros (points ,1);

invforerrshift = zeros (points ,(numtrips +1)*2);

160 %% Take even differences from LUT value and add back known shift

differenceshift(even)= LUT_changingB(outputsumshiftB(even)+1)

-LUT_changingA(outputsumshiftA(even)+1)- shift *2;

differenceshift(odd)= LUT_changingB(outputsumshiftB(odd)+1)

-LUT_changingA(outputsumshiftA(odd)+1)+ shift *2;

165 differenceagain(even)= LUT_changedB(outputsumshiftB(even)+1)

-LUT_changedA(outputsumshiftA(even)+1)- shift *2;

differenceagain(odd)= LUT_changedB(outputsumshiftB(odd)+1)

-LUT_changedA(outputsumshiftA(odd)+1)+ shift *2;

differenceagainF (even)= LUT_changedBF(outputsumshiftB(even)+1)

170 -LUT_changedAF(outputsumshiftA(even)+1)- shiftshift *2;

differenceagainF (odd)= LUT_changedBF(outputsumshiftB(odd)+1)

-LUT_changedAF(outputsumshiftA(odd)+1)+ shiftshift *2;

%%% might need to fix this line

%% what I really want to do it sum the difference for each output sum

175 for i=1: points

LUT_sumAa(outputsumshiftA(i)+1) =

LUT_sumAa(outputsumshiftA(i)+1) - differenceagain(i);

LUT_sumBa(outputsumshiftB(i)+1) =

LUT_sumBa(outputsumshiftB(i)+1) + differenceagain(i);

180 LUT_sumAaF(outputsumshiftA(i)+1) =

91

LUT_sumAaF(outputsumshiftA(i)+1) - differenceagainF (i);

LUT_sumBaF(outputsumshiftB(i)+1) =

LUT_sumBaF(outputsumshiftB(i)+1) + differenceagainF (i);

185 %% need to make changes to more than just one entry of the LUT

%% should detect if even or odd to know if I should add up to end

%% or add down to the begining

i f mod(i,2) ==0, %% odd

LUT_sumAD (1: outputsumshiftA(i)+1) =

190 LUT_sumAD (1: outputsumshiftA(i)+1) - differenceagain(i);

LUT_sumBD(outputsumshiftB(i)+1:end) =

LUT_sumBD(outputsumshiftB(i)+1:end) + differenceagain(i);

e l se %% even

LUT_sumAD(outputsumshiftA(i)+1:end) =

195 LUT_sumAD(outputsumshiftA(i)+1:end) - differenceagain(i);

LUT_sumBD (1: outputsumshiftB(i)+1) =

LUT_sumBD (1: outputsumshiftB(i)+1) + differenceagain(i);

end

200 end

LUT_sumA = (1/(2^ LMSNF))* LUT_sumAa;

LUT_sumB = (1/(2^ LMSNF))* LUT_sumBa;

LUT_changedA = LUT_changedA -LUT_sumA;

LUT_changedB = LUT_changedB -LUT_sumB;

92

205

LUT_sumAaD = (1/(2^ LMSND))* LUT_sumAD;

LUT_sumBaD = (1/(2^ LMSND))* LUT_sumBD;

LUT_changedAD = LUT_changedAD -LUT_sumAaD;

LUT_changedBD = LUT_changedBD -LUT_sumBaD;

210

LUT_sumAF = (1/(2^ LMSNF))* LUT_sumAaF;

LUT_sumBF = (1/(2^ LMSNF))* LUT_sumBaF;

LUT_changedAF = LUT_changedAF -LUT_sumAF;

LUT_changedBF = LUT_changedBF -LUT_sumBF;

215 LUT_FIXEDA = bitsra(LUT_changedAF ,26);

LUT_FIXEDB = bitsra(LUT_changedBF ,26);

%% Build weighted matrix with +1 for B −1 for A

% invforerrshift(full,outputsumshiftB(full)+129)=1;

220 % invforerrshift(full,outputsumshiftA(full)+1)=−1;

%% Trying to vectorize

% for i= 1:points,

% invforerrshift(i,outputsumshiftB(i)+129)=1;

% invforerrshift(i,outputsumshiftA(i)+1)=−1;

225 % end

%%%%TRAVIS HELP%%%%%

%% Vector Version

93

B=[];

230 A=[];

Bp=[];

Ap=[];

column =(numtrips +1)*2;

invforerrshift2 = zeros (1,(numtrips +1)*2* points);

235 Bp=17: column:points*column;

Ap=1: column:points*column;

B=Bp +(outputsumshiftB);

A=Ap +(outputsumshiftA);

240 %invforerrshift2 =zeros(points,256);

invforerrshift2(B) = 1;

invforerrshift2(A) = -1;

invforerrshift = reshape(invforerrshift2 ,(numtrips +1)*2, points)’;

%invforerrshift2 =zeros(points,256);

245 %invforerrshift2[B]=1;

%invforerrshift2(1:points,B) = 1;

%invforerrshift2=reshape(array,points,256);

250 %% Take transpose of invforerr

transforerr = invforerrshift ’;

94

%% Multiply the differences by the transposed weight matrix

atransdiffer = transforerr*differenceshift;

255

%% Multiply the LMS factor mu by the difference and weighted

%% This creates a small fraction of the estimated errors

errortrans = (1/(2^ LMSN))* atransdiffer;

ErrortransA= (errortrans (1:(numtrips +1)));

260 ErrortransB= (errortrans ((numtrips +2):(numtrips +1)*2));

%% Each loop subtract erros from the look up tables

LUT_changingA = LUT_changingA -ErrortransA;

LUT_changingB = LUT_changingB -ErrortransB;

265

%% Corrected Outputs

OUTLUTshiftA = (LUT_changingA(outputsumrampA +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftB = (LUT_changingB(outputsumrampB +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftsineA = (LUT_changingA(outputsumsineA +1)/ numtrips)*Vref -Vref /2;

270 OUTLUTshiftsineB = (LUT_changingB(outputsumsineB +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftAF = (LUT_changedA(outputsumrampA +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftBF = (LUT_changedB(outputsumrampB +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftsineAF = (LUT_changedA(outputsumsineA +1)/ numtrips)*Vref -Vref /2;

OUTLUTshiftsineBF = (LUT_changedB(outputsumsineB +1)/ numtrips)*Vref -Vref /2;

275

%% Averaged outputs

95

AVG = (LUT_changingA(outputsumsineA +1)+ LUT_changingB(outputsumsineB +1))/2;

AVGF = (LUT_changedAD(outputsumsineA +1)+ LUT_changedBD(outputsumsineB +1))/2;

%%outputsumsineA

280 AVGr = round(AVG);

OUTLUTavg = (AVG/(numtrips))*Vref -Vref /2;

OUTLUTavgF = (AVGF/(numtrips))*Vref -Vref /2;

OUTLUTavgr = (AVGr/(numtrips))*Vref -Vref /2;

%%AVG6 = bitshift(AVGr,1);

285 %%numtrips6 = bitshift(numtrips,−2);

%OUTLUTavg6 = (AVG6/numtrips6)∗Vref−Vref/2;

AVGramp = (LUT_changingA(outputsumrampA +1)+ LUT_changingB(outputsumrampB +1))/2;

AVGramp = round(AVGramp);

OUTLUTavgramp = (AVGramp/numtrips)*Vref -Vref /2;

290

AVGrampD = (LUT_changedAD(outputsumrampA +1)+ LUT_changedBD(outputsumrampB +1))/2;

AVGrampD = round(AVGrampD);

OUTLUTavgrampD = (AVGrampD/numtrips)*Vref -Vref /2;

295 % AVGramp = (LUT_changingA(outputsumrampA+1)+LUT_changingB(outputsumrampB+1))/2;

% AVGramp = round(AVGramp);

% OUTLUTavgramp = (AVGramp/numtrips)∗Vref−Vref/2;

%%

%% FFT Work%%

300 %% FFT OUTavg

96

sAv = f f t (OUTLUTavg); %%OUTLUTlmssineA

SAv = 20* log10(abs(sAv));

aAv = SAv (1: length(OUTLUTavg)/2);

dfAv = fs/(length(SAv));

305 f1Av = 0:dfAv:dfAv*(length(aAv)-1);

%% Determine power spectrum

spectPv =(abs(sAv)).*(abs(sAv));

Pdcv = sum(spectPv (1)); %% dont need, differential

310 Psv = max(spectPv (1: points /2));

Pallv = sum(spectPv (1: points /2));

Pnv = Pallv -Psv -Pdcv;

SINADLUTAv(sig)=10* log10(Psv/Pnv);

ENOBLUTAv(sig) = (SINADLUTAv(sig) - 1.76)/6.02;

315

sB = f f t (OUTLUTavgF); %%OUTLUTlmssineA

SB = 20* log10(abs(sB));

aB = SAv (1: length(OUTLUTavgF)/2);

dfB = fs/(length(SAv));

320 f1B = 0:dfB:dfB*(length(aB)-1);

%% Determine power spectrum

spectPB =(abs(sB)).*(abs(sB));

PdcB = sum(spectPB (1)); %% dont need, differential

97

325 PsB = max(spectPB (1: points /2));

PallB = sum(spectPB (1: points /2));

PnB = PallB -PsB -PdcB;

SINADLUTB(sig)=10* log10(PsB/PnB);

ENOBLUTB(sig) = (SINADLUTB(sig) - 1.76)/6.02;

330 rmserror(sig) = 20* log (abs(std(inputsine (1:1000) - OUTLUTavg (1:1000) ’)));

sig = sig +1;

%% LUT(1:128,sig) = LUT_changingA(1:128);

Timee(sig) = toc;

end

335

%% PlotEnob vs converions

conversion = (1: points:points*calibpoints)’;

f igure (1)

plot (conversion ,ENOBLUTAv , conversion , ENOBLUTB)

340

% %DNL_INL_SIN

% % dnl and inl ADC output

% % input y contains the ADC output

345 % % vector obtained from quantizing a

% % sinusoid

% % Boris Murmann, Aug 2002

% % Bernhard Boser, Sept 2002

98

% % histogram boundaries

350 % AVGr = bitshift(AVGr,−2);

% y=AVGr;

% minbin=min(y);

% maxbin=max(y);

% % histogram

355 % h = hist(y, minbin:maxbin);

% % cumulative histogram

% ch = cumsum(h);

% % transition levels found by:

% T = −cos(pi∗ch/sum(h));

360 % % linearized histogram

% hlin = T(2:end) − T(1:end−1);

% % truncate at least first and last

% % bin, more if input did not clip ADC

% trunc=2;

365 % hlin_trunc = hlin(1+trunc:end−trunc);

% % calculate lsb size and dnl

% lsb= sum(hlin_trunc) / (length(hlin_trunc));

% dnlcal= [0 hlin_trunc/lsb−1];

% misscodes = length(find(dnlcal<−0.99));

370 % % calculate inl

% inlcal= cumsum(dnlcal);

% codes6bitcal = (0:1:(length(hlin_trunc)));

99

% % figure(6)

% % plot(codes6bit,inlcal)

375 % % xlabel(’OUTPUT CODE’)

% % ylabel(’INL[LSB]’)

% % figure(7)

% % plot(codes6bit,dnlcal)

% % xlabel(’OUTPUT CODE’)

380 % % ylabel(’DNL[LSB]’)

%

% outrawavg =round(outrawavg);

% outrawavg = bitshift(outrawavg,−2);

% yx = outrawavg;

385 % %DNL_INL_SIN

% % dnl and inl ADC output

% % input y contains the ADC output

% % vector obtained from quantizing a

% % sinusoid

390 % % Boris Murmann, Aug 2002

% % Bernhard Boser, Sept 2002

% % histogram boundaries

% minbin=min(yx);

% maxbin=max(yx);

395 % % histogram

% h = hist(yx, minbin:maxbin);

100

% % cumulative histogram

% ch = cumsum(h);

% % transition levels found by:

400 % T = −cos(pi∗ch/sum(h));

% % linearized histogram

% hlin = T(2:end) − T(1:end−1);

% % truncate at least first and last

% % bin, more if input did not clip ADC

405 % trunc=2;

% hlin_trunc = hlin(1+trunc:end−trunc);

% % calculate lsb size and dnl

% lsb= sum(hlin_trunc) / (length(hlin_trunc));

% dnl= [0 hlin_trunc/lsb−1];

410 % misscodes = length(find(dnl<−0.99));

% % calculate inl

% inl= cumsum(dnl);

% codes6bit = (0:1:(length(hlin_trunc)));

% figure(6)

415 % plot(codes6bit,inl,codes6bitcal,inlcal,’LineWidth’,2,’LineStyle’,’:’,’Color’,[0 0 0]);

% xlabel(’OUTPUT CODE’)

% ylabel(’INL[LSB]’)

% figure(7)

% plot(codes6bit,dnl,codes6bitcal,dnlcal,’LineWidth’,2,’LineStyle’,’:’,’Color’,[0 0 0]);

420 % xlabel(’OUTPUT CODE’)

101

% ylabel(’DNL[LSB]’)

f igure (8)

plot (inputramp , outputrampA , inputramp ,outputrampB ,inputramp ,

425 outideal ,inputramp ,OUTLUTavgramp , inputramp , OUTLUTavgrampD)

xlabel (’Input’)

ylabel (’Output ’)

t i t l e (’Ideal ,Best ,Avg Input/Ouputs ’);

axis ([-1 1 -1 1]);

430

rmserror (1:1000) = 20* log (abs(inputsine (1:1000) - OUTLUTavg (1:1000) ’));

rmserror (1:1000) = 20* log (abs(inputsine (1:1000) - outrawavge (1:1000)));

102

Appendix C

FPGA CODE

‘timescale 1ns / 1ps

//

// Company:

// Engineer:

5 //

// Create Date: 10:24:28 10/25/2011

// Design Name:

// Module Name: inverter

// Project Name:

10 // Target Devices:

// Tool versions:

// Description:

103

//

// Dependencies:

15 //

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

20 //

module inverter(

input [15:0] inputs1 ,

input [15:0] inputs2 ,

output [3:0] outputcount1 ,

25 output [3:0] outputcount2 ,

output [15:0] output1 ,

output [15:0] output2 ,

output [6:0] seven_seg ,

output [3:0] anode ,

30 input clk ,

input rst ,

output flash_ce ,

output sram_oe ,

output sram_we ,

35 output sram_ub ,

output sram_lb ,

104

output sram_ce ,

output [22:0] sram_addr ,

output [7:0] sram_data

40

);

// intialize array

reg clk_250HZ;

reg clk_25M;

45 reg clk_25000;

parameter MEM_SIZE = 1024;

reg [3:0] mem1 [0: MEM_SIZE -1];

reg [3:0] mem2 [0: MEM_SIZE -1];

integer k;

50 reg [3:0] T1;

reg [3:0] T2;

reg [4:0] Tall;

reg [15:0] outputs2;

reg [20:0] counter_250;

55 reg [20:0] counter_25000;

reg [22:0] addr;

reg [4*100 -1:0] collectT1;

reg [4*100 -1:0] collectT2;

wire start;

60 wire rw;

105

// wire [15:0] inv1;

// wire [15:0] inv2;

// wire [15:0] invv1;

// wire [15:0] invv2;

65 wire [15:0] value;

wire [7:0] datain1;

wire [7:0] dataout1;

wire [128:0] LUTT1;

wire [128:0] LUTT2;

70 integer i;

integer conv;

initial

75 begin

T1 =4’b0;

T2 =4’b0;

counter_250 = 21’d0;

counter_25000 = 21’d0;

80 addr = 23’ b00000000000000000000000;

// start =1’b0;

//rw =1’b0;

end

106

85

always @ (posedge clk , posedge rst)

begin

i f (rst)

begin

90 clk_250HZ <= 0;

counter_250 <=21’d0;

end

e l se i f (counter_250 ==21’ d100000)

begin

95 clk_250HZ <= ~clk_250HZ;

counter_250 <=21’d0;

end

e l se

counter_250 <= counter_250 +1;

100 end

always @ (posedge clk , posedge rst)

begin

i f (rst)

105 begin

clk_25000 <= 0;

counter_25000 <=21’d0;

end

107

e l se i f (counter_25000 ==21’ d1000)

110 begin

clk_25000 <= ~clk_25000;

counter_25000 <=21’d0;

end

e l se

115 counter_25000 <= counter_25000 +1;

end

always @(posedge rst , posedge clk)

begin

120 i f (rst)

clk_25M <=0;

e l se

clk_25M <= ~clk_25M;

end

125

// instantiate disp

displayv2 disp1 (

.value(value),

.seven_seg(seven_seg),

130 .mux_clk(clk_250HZ),

.anode(anode));

108

// entity sram is

// Port (sram_oe : out std_logic;

135 // sram_we : out std_logic;

// sram_ub : out std_logic;

// sram_lb : out std_logic;

// sram_ce : out std_logic;

//

140 // sram_addr : out std_logic_vector (22 downto 0);

// sram_data : inout std_logic_vector (7 downto 0);

//

// clock : in std_logic; --

// reset : in std_logic; --aborts last operation

145 // ready : out std_logic; --ready to start operation when high

// start : in std_logic; --starts operation i f high

// rw : in std_logic; --read/write control. i f ’1’ read e l se write

// addr : in std_logic_vector (22 downto 0);

// datain : in std_logic_vector (7 downto 0); --data to be written

150 // dataout : out std_logic_vector (7 downto 0)); --data to be read

//end sram;

// instantiate sram cntrl

sram sram (

155 .sram_oe(sram_oe),

.sram_we(sram_we),

109

.sram_ub(sram_ub),

.sram_lb(sram_lb),

.sram_ce(sram_ce),

160

.sram_addr(sram_addr),

.sram_data(sram_data),

. clock(clk),

165 . reset (rst),

.ready(ready),

.start(start),

.rw(rw),

.addr(addr),

170 .datain(datain1),

.dataout(dataout1));

/* initial

175 begin

for (k = 0; k < MEM_SIZE - 1; k = k + 1)

begin

mem[k][3:0] = 0;

end

180 end*/

110

// assign anode = anpwnd;

// assign inv1 = ~inputs1;

185 // assign output1 = inv1;

// assign inv2 = inputs2;

// assign output2= inv2;

190 always @(posedge clk)

begin

T1= 4’b0;

T2= 4’b0;

Tall = 5’b00000;

195 for (i =0; i<16; i =i+1) begin

T1 = T1+inputs1[i];

T2 = T2+inputs2[i];

Tall = Tall +inputs1[i] + inputs2[i];

end

200 end

// might need to make batch correction too. for cal ...

// instantiate Correction

correction correction (

111

205 .T1(T1),

.T2(T2),

.clk(clk),

.LUTT1(LUTT1),

.LUTT2(LUTT1),

210 .OUT1(outputcount1),

.OUT2(outputcount2)

);

/// instantiate Calibration

215 calibration calibration(

.T1(T1),

.T2(T2),

.clk(clk),

.clk_25000(clk_25000),

220 .LUTT1(LUTT1),

.LUTT2(LUTT2),

.OUT1(OUT2),

.OUT2(OUT2),

.OUTavg(OUTavg)

225);

// assign outputcount2 = T2;

112

// assign outputcount1 = T1;

230 assign value [15:0] = {8’b0 ,outputcount1 ,outputcount2 };

assign datain1 [7:0] = {3’b0 ,Tall [4:0]};

// assign dataout1 [7:0]= {T1 ,T2};

assign flash_ce =1’b1;

235

// start <= ’1’ WHEN (read0 = ’1’ OR write0 = ’1’) AND ready = ’1’ e l se ’0’;

//rw <= ’1’ WHEN read0 = ’1’ e l se ’0’ WHEN write0 = ’1’ e l se ’Z’;

assign start = ready ? 1:0;

240 assign rw = 0;

always @(posedge clk_250HZ)

begin

245 addr= addr+1’b1;

end

250

// always @ (inputs2)

// begin

113

// outputs2 <= inputs2;

// end

255

// always @ (posedge clk)

// begin

// outputs2 <= inputs2;

// end

260 //

/* assign invv1 = output1;

assign invv2 = output2 ;*/

265

//

// assign outputcount1 [3:0] = T1;

//

// always @(outputcount1)

270 // for (conv=0; conv<MEM_SIZE -1; conv=conv+1)

// begin

// mem1[conv] <= outputcount1;

// end

//

275 // assign inv2 = ~inputs2;

// assign output2 = inv2;

114

//

// always @(inv2)

// for (i =0; i<16; i =i+1) begin

280 // T2 = T2+inv2[i];

// end

//

// assign outputcount2 [3:0] = T2;

//

285 // always @(outputcount2)

// for (conv=0; conv<MEM_SIZE -1; conv=conv+1)

// begin

// mem2[conv] <= outputcount2;

// end

290

endmodule

295 library IEEE;

use IEEE.STD_LOGIC_1164 .ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

300 entity sram is

115

Port (sram_oe : out std_logic;

sram_we : out std_logic;

sram_ub : out std_logic;

sram_lb : out std_logic;

305 sram_ce : out std_logic;

sram_addr : out std_logic_vector (22 downto 0);

sram_data : inout std_logic_vector (7 downto 0);

310 clock : in std_logic; --

reset : in std_logic; --aborts last operation

ready : out std_logic; --ready to start operation when high

start : in std_logic; --starts operation i f high

rw : in std_logic; --read/write control. i f ’1’ read e l se write

315 addr : in std_logic_vector (22 downto 0);

datain : in std_logic_vector (7 downto 0); --data to be written

dataout : out std_logic_vector (7 downto 0)); --data to be read

end sram;

320 architecture Behavioral of sram is

TYPE state_type IS(sREADY , sSTART , sWRITE1 , sWRITE2 ,

sWRITE3 , sREAD1 , sREAD2 , sREAD3 , sREAD4 , sREAD5 , sREAD6);

signal current_state , next_state : state_type;

signal dataout_temp : std_logic_vector (7 downto 0);

116

325

begin

state_memory: process (clock , reset)

begin

330 i f reset = ’1’ then

current_state <= sREADY;

elsif clock ’ EVENT and clock = ’1’ then

current_state <= next_state;

end i f ;

335 end process state_memory;

next_state_logic : process(current_state , start , rw)

begin

CASE current_state IS

340 WHEN sREADY =>

i f start = ’1’ then

next_state <= sSTART;

e l se

next_state <= sREADY;

345 end i f ;

WHEN sSTART =>

i f rw = ’1’ then

next_state <= sREAD1;

117

e l se

350 next_state <= sWRITE1;

end i f ;

WHEN sWRITE1 =>

next_state <= sWRITE2;

WHEN sWRITE2 =>

355 next_state <= sWRITE3;

WHEN sWRITE3 =>

next_state <= sREADY;

WHEN sREAD1 =>

360 next_state <= sREAD2;

WHEN sREAD2 =>

next_state <= sREAD3;

WHEN sREAD3 =>

next_state <= sREAD4;

365 WHEN sREAD4 =>

next_state <= sREAD5;

WHEN sREAD5 =>

next_state <= sREAD6;

WHEN sREAD6 =>

370 next_state <= sREADY;

118

END CASE;

end process next_state_logic ;

375

sram_addr <= "ZZZZZZZZZZZZZZZZZZZZZZZ " when current_state = sREADY e l se addr;

ready <= ’1’ when current_state = sREADY e l se ’0’;

sram_ce <= ’1’ when current_state = sREADY e l se ’0’;

380

sram_oe <= ’1’ when current_state = sREAD1 e l se

’1’ when current_state = sREAD2 e l se

’1’ when current_state = sSTART e l se

’1’ when current_state = sREAD3 e l se ’0’;

385

sram_we <= ’0’ when current_state = sWRITE2 e l se

’0’ when current_state = sWRITE3 e l se ’1’;

sram_ub <= ’1’;

390 sram_lb <= ’0’;

sram_data <= datain WHEN current_state = SWRITE2 e l se

datain WHEN current_state = SWRITE3 e l se

"ZZZZZZZZ ";

395

119

dataout_temp <= sram_data WHEN current_state = sREAD5 e l se

sram_data WHEN current_state = sREAD4 e l se

400 dataout_temp WHEN rw = ’1’ e l se

"ZZZZZZZZ ";

405 dataout <= dataout_temp;

end Behavioral;

410

--

-- Company: WPI

-- Engineer: Anthony Crasso

415 -- Box: 30

-- Create Date: 12:46:29 03/21/2011

-- Design Name: display decoder generic

-- Module Name: display - Behavioral

-- Description: 16 bit input to 4 seven segment displays

420 --

120

--

--

library IEEE;

use IEEE.STD_LOGIC_1164 .ALL;

425

-- Uncomment the following library declaration i f using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

430 -- Uncomment the following library declaration i f instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents. a l l ;

435 entity displayv2 is

Port (value : in STD_LOGIC_VECTOR (15 downto 0);

seven_seg : out STD_LOGIC_VECTOR (6 downto 0);

mux_clk : in STD_LOGIC;

anode : out STD_LOGIC_VECTOR (3 downto 0)

440);

end displayv2;

architecture Behavioral of displayv2 is

121

445

constant zero : std_logic_vector (6 downto 0) := "1000000";

constant one : std_logic_vector (6 downto 0) := "1111001";

constant two : std_logic_vector (6 downto 0) := "0100100";

constant three : std_logic_vector (6 downto 0) := "0110000";

450 constant four : std_logic_vector (6 downto 0) := "0011001";

constant five : std_logic_vector (6 downto 0) := "0010010";

constant six : std_logic_vector (6 downto 0) := "0000010";

constant seven : std_logic_vector (6 downto 0) := "1111000";

constant eight : std_logic_vector (6 downto 0) := "0000000";

455 constant nine : std_logic_vector (6 downto 0) := "0010000";

constant A : std_logic_vector (6 downto 0) := "0001000";

constant B : std_logic_vector (6 downto 0) := "0000011";

constant C : std_logic_vector (6 downto 0) := "1000110";

constant D : std_logic_vector (6 downto 0) := "0100001";

460 constant E : std_logic_vector (6 downto 0) := "0000110";

constant F : std_logic_vector (6 downto 0) := "0001110";

signal disp : std_logic_vector (3 downto 0) := "0000";

alias disp0 : std_logic_vector (3 downto 0) IS value (15 downto 12);

465 alias disp1 : std_logic_vector (3 downto 0) IS value (11 downto 8);

alias disp2 : std_logic_vector (3 downto 0) IS value (7 downto 4);

alias disp3 : std_logic_vector (3 downto 0) IS value (3 downto 0);

122

begin

470 --display the count value on the seven segments

seven_segment_decoder_process : process(disp)

begin

case disp is

when "0000" => seven_seg <= zero;

475 when "0001" => seven_seg <= one;

when "0010" => seven_seg <= two;

when "0011" => seven_seg <= three;

when "0100" => seven_seg <= four;

when "0101" => seven_seg <= five;

480 when "0110" => seven_seg <= six;

when "0111" => seven_seg <= seven;

when "1000" => seven_seg <= eight;

when "1001" => seven_seg <= nine;

when "1010" => seven_seg <= A;

485 when "1011" => seven_seg <= B;

when "1100" => seven_seg <= C;

when "1101" => seven_seg <= D;

when "1110" => seven_seg <= E;

when "1111" => seven_seg <= F;

490 when others => seven_seg <= zero;

end case;

end process seven_segment_decoder_process ;

123

--count anodes

495 anode_count_process : process(mux_clk ,disp0 ,disp1 ,disp2 ,disp3 ,disp)

variable anode_count : integer range 0 to 3;

begin

i f rising_edge(mux_clk) then

i f anode_count = 3 then

500 anode_count := 0;

disp <= disp3;

anode <= "1110";

elsif anode_count = 2 then

anode_count := anode_count + 1;

505 disp <= disp2;

anode <= "1101";

elsif anode_count = 1 then

anode_count := anode_count + 1;

disp <= disp1;

510 anode <= "1011";

e l se

anode_count := anode_count + 1;

disp <= disp0;

anode <= "0111";

515 end i f ;

end i f ;

124

end process anode_count_process ;

end Behavioral;

520

‘timescale 1ns / 1ps

//

// Company:

525 // Engineer:

//

// Create Date: 11:30:47 12/19/2011

// Design Name:

// Module Name: correction

530 // Project Name:

// Target Devices:

// Tool versions:

// Description:

//

535 // Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

540 //

125

//

module correction(

input [3:0] T1 ,

input [3:0] T2 ,

545 input clk ,

input [128:0] LUTT1 ,

input [128:0] LUTT2 ,

output [3:0] OUT1 ,

output [3:0] OUT2 ,

550 output [3:0] OUTavg

);

reg [7:0] temp1;

555 reg [7:0] temp2;

reg [7:0] LUTun1 [15:0];

reg [7:0] LUTun2 [15:0];

integer i;

integer b,a;

560

// make 4 bit portions out of flattened LUT

// this might be sloww

126

565 always @(posedge clk)

begin

for (i =0; i<15; i =i+1) begin

temp1 = LUTT1 [(i*8+7)+:8];

570 temp2 = LUTT2 [(i*8+7)+:8];

LUTun1[i] = temp1;

LUTun2[i] = temp2;

end

end

575

// Correct the value by indexing the look up table

assign OUT1 = LUTun1[T1]/16;

assign OUT2 = LUTun2[T2]/16;

580 assign OUTavg = (OUT1 + OUT2)>>1;

endmodule

585

‘timescale 1ns / 1ps

127

//

590 // Company:

// Engineer:

//

// Create Date: 10:06:04 12/20/2011

// Design Name:

595 // Module Name: calibration

// Project Name:

// Target Devices:

// Tool versions:

// Description:

600 //

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

605 // Additional Comments:

//

//

module calibration(

input [3:0] T1 ,

610 input [3:0] T2 ,

input clk ,

input clk_25000 ,

128

output [128:0] LUTT1 ,

output [128:0] LUTT2 ,

615 input [3:0] OUT1 ,

input [3:0] OUT2 ,

input [3:0] OUTavg

);

620

reg [7:0] d i f f ;

reg [7:0] LUTun1 [15:0];

reg [7:0] LUTun2 [15:0];

reg [128:0] LUTTT1;

625 reg [128:0] LUTTT2;

reg [7:0] temp1;

reg [7:0] temp2;

reg [7:0] OUTbig1;

reg [7:0] OUTbig2;

630 reg [7:0] shift;

reg odd;

integer i;

integer k;

635 initial

begin

129

odd = 1;

shift =8’ b00000010;

// for (i =0; i<16; i =i+1) begin

640

//end

end

// every clock cycle store the difference

645 // and acumulate differnce in LUT

always @ (posedge clk)

begin

OUTbig1 = OUT1 <<4;

OUTbig2 = OUT2 <<4;

650 i f (odd ==1)

d i f f = OUTbig2 -OUTbig1+shift;

e l se

d i f f = OUTbig2 -OUTbig1 -shift ;// add in shift value and also maybe do shift of value here

// EVEN AND ODD shifts (COUNT WITH IF STATEMENT)

655 // d i f f = di f f >>4;

LUTun1[T1] = LUTun1[T1] + d i f f ; // should put in temp

LUTun2[T2] = LUTun2[T2] - d i f f ;

odd =~odd;

//Dont shift till f u l l output

660 end

130

// NOW DO SHIFT OF LUT

//do flatten every cal cycle.

665 // flatten LUTun

// make 4 bit portions out of flattened LUT

// this might be sloww

always @(posedge clk_25000)

begin

670

for (i =0; i<16; i =i+1) begin

temp1 = LUTun1[i];

temp2 = LUTun2[i];

675 LUTTT1 [(i*4+3)+:4] = temp1;

LUTTT2 [(i*4+3)+:4] = temp2;

end

end

680 assign LUTT1 = LUTTT1;

assign LUTT2 = LUTTT2;

// /////////////// first try

// initial

131

685 // begin

// for (i=0; i <100; i=i+1)

// begin

// W[i] = 0;

// Wt[i] = 0;

690 // end

// end

//

//

// always @(posedge clk)

695 // begin

// i f (k <100) begin

// collectT1[k] = T1;

// collectT2[k] = T2;

// need to f igure out how to synronize with using it in the calibration part

700 // collectDIFF[k] = OUT2 -OUT1;

// k = k+1;

// end

// e l se begin

// k=0;

705 // end

// end

//

//

132

//

710 // // Generate W matrix

// always @(posedge clk)

// begin

// for (i=0; i <100; i=i+1)

// begin

715 // //W[i][collectT1[i]]=-1;

// //W[i][collectT2[i]+16]=1;

// Wt[collectT1[i]][i] = -1;

// Wt[collectT1[i]][i] = 1; // Cheap inverses

// end

720 // end

//

//

// // Then multiply Differences

// // Then shift to do division

725 // // Subtract from LUT

endmodule

133

Bibliography

[1] Imran Ahmed, Pipelined adc design and enhancement technique, 2010.

[2] Imran Ahmed and David A. Johns, Dac nonlinearity and residue gain error correc-

tion in a pipelined adc using a split-adc architecture, Research in Microelectronics and

Electronics 2006, Ph. D. (2006).

[3] Syed Masood Ali, Rabin Raut, and Mohamad Sawan, Digital encoders for high speed

flash-adcs: Modeling and comparison, Circuits and Systems, 2006 IEEE North-East

Workshop on, june 2006, pp. 69 –72.

[4] M. Bazes, Two novel fully complementary self-biased cmos differential amplifiers, Solid-

State Circuits, IEEE Journal of 26 (1991), no. 2, 165 –168.

[5] Paul J. Hurst Carl R. Grace and Stephen H. Lewis, A 12-bit 80-msample/s pipelined adc

with bootstrapped digital calibration, IEEE Journal of Solid-State Circuits 40 (2005),

no. 5, 1038–1046.

[6] D. C. Daly and A. P. Chandrakasan, A 6-bit, 0.2 v to 0.9 v highly digital flash adc with

comparator redundancy, IEEE J.Solid-State Circuits 44 (2009), no. 11, 3030–3038.

[7] Analog Devices, Analog-digital conversion handbook, third ed., 1985.

[8] Charles Gammal Devin Auclair and Fitzgerald Huang, 12b 100msps pipeline adc with

open-loop reisdue amplifier, 2008.

[9] C. Donovan and M. Flynn, ‘a ‘digital’ 6-bit adc im0.25µm cmos, Custom Integrated

Circuits ConC (2001).

134

[10] Echere Iroaga and Boris Murmann, A 12-bit 75-ms/s pipelined adc using incomplete

settling, IEEE Journal of Solid-State Circuits 42 (2007), no. 4.

[11] M. Coln J. McNeill and B. Larivee, ‘split-adc’ architecture fordeterministic digital back-

ground calibration of a 16b 1ms/s adc, IEEE J.Solid-State Circuits 40 (2005), no. 12,

2437–2445.

[12] , ‘split adc’ calibration for all-digital correction of time-interleaved adc errors,

IEEE Trans. Circuits Syst. II 56 (2009), no. 5, 344–348.

[13] J.-O. Plouchart J. Proesel, G. Keskin and L. Pileggi, ‘an 8-bit 1.5 gs/s flash adc using

post-manufacturing statistcal selection, IEEE Custom Integrated Circuits Conf. (2010),

1–4.

[14] Sanjeev Goluguri John A. McNeill and Abhilash Nair, ”split-adc” digital background

correction of open-loop residue amplifier nonlinearity errors in a 14b pipeline adc,

(2007).

[15] David A. Johns and Ken Martin, Analog integrated circuit design, 1997.

[16] C. Donovan M. Flynn and L. Sattler, Digital calibration incorporating redundancy of

flash adcs, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process 50 (2003), no. 5,

205–213.

[17] Rabeeh Majidi, Anthony Crasso, and John A. McNeill, Digital background calibration

of redundant split-flash adc in 45nm cmos, Circuits and Systems (ISCAS), 2012 IEEE

International Symposium on, may 2012, pp. 1271 –1274.

[18] Boris Murmann and Bernhard E. Boser, Digitally assisted pipeline adcs, theory and

implementation, Boston, Massachusetts, 2004.

[19] Y. Nakajima, A. Sakaguchi, T. Ohkido, N. Kato, T. Matsumoto, and M. Yotsuyanagi,

A background self-calibrated 6b 2.7 gs/s adc with cascade-calibrated folding-interpolating

architecture, Solid-State Circuits, IEEE Journal of 45 (2010), no. 4, 707 –718.

135

[20] Shant Orchanian, Split non-linear cyclic analog-to-digital converter, Master’s thesis,

Worcester Polytechnic Institute, 2010.

[21] D. Knierim S. Weaver, B. Hershberg and U.-K. Moon, “a 6b stochastic flash analog-

to-digital converter without calibration or reference ladder, IEEE Asian Solid-State

Circuits Conf. (2008).

[22] Hattie Spetla, Split cyclic analog to digital converter using a nonlinear gain stage,

Master’s thesis, Worcester Polytechnic Institute, 2009.

[23] Dave Treleaven, 1.5-bit stages in pipelined adc, May 2006.

[24] Li Zhang, The calibration technique for pipelined adc, 2008 International Conference

on MultiMedia and Information Technology (2008).

