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Abstract

Multi-robot systems are envisioned to assist humans in complex missions such

as interplanetary exploration, ocean restoration, underground mining, and forest

firefighting. In these missions, along with robot autonomy, human input is required to

supervise the operation of the robots, and assign and prioritize the tasks assigned to the

robots. By their very nature, multi-robot systems are complex systems composed of

many interacting entities. As such, these systems exceed the typical human attention

span, which several studies place between 7±2 entities in laboratory conditions.

A natural approach to improving human performance is to relieve the burden of

individual operators by conceiving supervisory control schemes in which multiple

humans cooperate.

However, with multiple human users in the system, additional challenges arise.

These challenges include unbalanced workload, inhomogeneous awareness, and

conflict among operators. This limits the performance of the operators, typically

measured in terms of workload, situational awareness, and trust in the system.

In my work, I show that the performance of human users can be improved with

mixed granularity of control, increased transparency, and human communication.

Mixed granularity of control enables an operator to control high-level task goals such

as modifying the environment, as well as lower-level goals such as interacting with

an individual robot or a group of robots. Increased transparency aids an operator to

understand other operators’ and robots’ actions. Operators communicate directly,

through verbal and non-verbal communication, and indirectly, through information

transparency, to understand other operators’ actions and intentions. The main tech-

nological outcomes of my work are a novel mixed-reality interface for proximal

interaction and a novel cloud-based interface for remote interaction. These interfaces

enable multiple operators to collaborate with multiple robots in local and remote

environments. The main scientific outcome of my work is investigating the effects of
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mixed granularity of control, information transparency, and human communication

on the operators’ performance. My experimental evaluation consists of 8 user studies

involving a total of 122 participants, in which I analyze operator workload, awareness,

trust, and performance.
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Chapter 1

Introduction

We have dreamt of creating a society with robots as a part of our daily life since Isaac

Asimov gifted the world a generation-defining sci-fi novel, I, Robot [8]. Asimov, with his

book, not only inspired robotics research, but also formalized guidelines of human-robot

interaction (HRI) [83]. The essence of these guidelines is that robots should assist humans

while ensuring the human’s safety. The collaboration of humans and robots opens the way

to technology that achieves daring, dangerous goals, while limiting, or even eliminating,

human harm. This includes accessing natural and man-made disaster zones and exploring

the depths of the universe [24, 55, 81, 87, 163, 175, 197]. Robots can enter a region affected

by an earthquake or a forest fire to assist the first responders, find survivors, and escort

them to safety. The COVID-19 pandemic is providing a compelling case for human-robot

collaboration, where the robots assist medical personnel to monitor the patients, administer

treatment, and sanitize the environment [247].

The first step towards this dream is to identify the appropriate robots. The robots

should be portable to transport, compact to store, and, most importantly, cheap, so we

can replace them if required. Humanoid robots and industrial manipulators, despite their

sophistication and high performance, are not necessarily the best choice due to their high

cost and complexity. On the other hand, small mobile robots are cheap, versatile, and

1
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easy to produce. For example, drones are routinely used to perform inspections in disaster

recovery [7]. For the same reason, 44 mobile robots have been used for mitigating the

effects of 37 disasters between 2001-2012 [165].

However, small mobile robots are typically not sufficiently capable to act in complete

autonomy. It took 20 years to get an iRobot’s Roomba from concept to commercializa-

tion [1]. It took iRobot 10 more years to make Roomba smart enough for use in most

households, which includes autonomous navigation, visual localization, and automated

dirt disposal. And that is the best we can get today in a safe, but unstructured environment

such as a home. Roomba still relies on human inputs to define regions to avoid and regions

to access. Similarly, with autonomous vehicles, we are years away from placing human

life at the perils of autonomy. Uber’s autonomous test vehicle was involved in 38 crashes

until 2018 [210]. In short, a human presence, local or remote, is essential to ensure that

robots operate safely and correctly.

A key problem is that, during challenging missions, a human operator might be

overburdened due to the amount of information coming from the robots. The robots

constantly send individual information about their position, task, and live updates on

the mission. An operator needs to understand all the relevant information and interact

with the robots. An operator may choose to interact with different granularity of control;

control an individual robot or multiple robots, or indirectly influence the robot behaviour

by indicating high-level goals, such as “move this obstacle out of the way”. An operator

may interact with an individual robot to indicate a region of interest without affecting the

rest of the robots. Alternatively, an operator may interact with all the robots as a single

entity to relocate them to a different region of interest. At a higher level of granularity,

an operator may interact with a virtual representation of the environment to assign the

robots task such as debris removal or transporting a disaster survivor to safety. Multi-robot

systems are complex, and their behavior will often exceed the span of apprehension of any
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individual operator. The span of apprehension is the number of entities a human can attend

to simultaneously. Miller [160] states that for any individual this span is limited to 7 ± 2

entities beyond which the operator’s performance is affected negatively.

A natural approach to improving human performance is to relieve the burden of individ-

ual operators by involving multiple operators. However, with multiple human operators in

the system, additional challenges arise, such as coping with task organization and operator

engagement [35,158], inhomogeneous awareness [130, 180, 193], and ineffective group

dynamics [4]. In a more general sense, these challenges exists in every system that involves

over one human present in-the-loop. These challenges are studied in various domains of

research, extending from literature on social psychology [12, 78] to the literature on super-

visory control of multi-agent systems [18, 76, 217]. The properties of multi-agent system

interrelates with the properties of multi-robot systems, yet lacks the physical aspects of a

robot that can influence and manipulate the physical environment. Hence, the studies of

these challenges are not directly applicable to a multi-robot system.

As a part of task organization involving a multi-robot system, an operator may control

a single robot, multiple robots, influence the environment, or adopt a mixed-granularity

approach to control all aspects of the robots. With separate task responsibilities, there

could be an imbalance in task load. For example, consider a case in which an operator is

responsible to coordinate debris removal, and another is responsible to coordinate safe

transport of victims. The first task might be time-consuming and detailed, and during its

execution the other operator might be idle waiting for its completion. Additionally, every

operator must be equally aware of the robots and the actions that other operators are taking

to collaborate and avoid contradicting or negating each other’s actions. This may happen

when both operators have control over the same group of robots. To avoid such issues, the

operators need to communicate their intentions while being aware of each other’s actions.

Operators can interact verbally to clarify their intentions and actions, but to interact
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with robots, the operators require an interface. This interface must be both computationally

powerful and easily accessible by the operators. A smart phone or a tablet fits these

requirements [241]. Average smart phones or tablets have sufficient hardware to integrate

virtual information with real-world objects such as robots and their obstacles. Particularly

for first responders, using a smart phone removes the need to physically carry an additional

sophisticated interface that can be heavy, may take additional time to set up, and waste

critical time. Operators with such interface may like to add virtual entities for robots to

interact with, creating a “mixed reality” [16]. With mixed-reality interfaces, operators

can create virtual walls and visualize the robot’s information, while interacting with both

virtual and real entities. Despite these capabilities, mixed reality limits an operator to local

interaction and cannot be used in a remote environment. Operators may wish to interact

with robots without being physically present in the same environment. This creates a

demand for an interface that operators can remotely access. A cloud-based interface serves

to this need [226]. With a cloud-based interface, an operator can remotely monitor the task,

interact with robots, and influence the outcome without putting human lives in danger. For

example, medical personnel can remotely monitor and treat COVID-19 patients without

risk of contagion.

In this thesis, I present the design of a mixed-reality interface and a cloud-based

interface to enable multiple human operators to interact with multiple robots. I study and

report my findings about the impact of mixed granularity of control, increased transparency,

and human communication on an operator’s performance while engaging in proximal and

remote interactions.

1.1 Thesis Structure and Research Contributions

This manuscript is structured as follows.
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In Chapter 2, I discuss the state-of-the-art in the design of interaction modalities for

multiple operators and multiple robots.

In Chapter 3, I present a mixed-reality interface for a single operator controlling

multiple robots that combines two modalities of interaction: environment-oriented and

robot-oriented. The environment-oriented modality allows the operator to modify a virtual

representation of the environment to indicate a high-level goal for the robots. The robot-

oriented modality makes it possible to select individual robots and assign them tasks to

increase performance or remedy failures. The work in this chapter was published in:

• J. Patel, Y. Xu, and C. Pinciroli, “Mixed-Granularity Human-Swarm Interaction,”

2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,

Canada, 2019, pp. 1059-1065, doi: 10.1109/ICRA.2019.8793261.

In Chapter 4, I study the impact of mixed granularity of control with multiple human

operators interacting with multiple robots. In particular, I focus on the challenge of an

operator going out-of-the-loop because of a lack of engagement in the task, awareness of

its state, and trust in the system and in the other operators. The work in this chapter was

published in:

• J. Patel and C. Pinciroli, “Improving Human Performance Using Mixed Granularity

of Control in Multi-Human Multi-Robot Interaction,” 2020 The IEEE International

Symposium on Robot and Human Interactive Communication (RO-MAN) , Naples,

Italy, 2020.

In Chapter 5, I explore the design space of user interfaces to investigate the impact of in-

formation transparency on multiple human operators’ performance, interaction, situational

awareness, workload, and trust. Transparency is a key factor in improving the performance

of human-robot interaction. When multi-robot systems are involved, transparency is an
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even greater challenge, due to the larger number of variables affecting the behavior of the

robots as a whole. The work in this chapter was submitted to:

• J. Patel, T. Ramaswamy, Z. Li, and C. Pinciroli, “Transparency in Multi-Human

Multi-Robot Interaction,” The IEEE Robotics and Automation Letters (RA-L).

In Chapter 6, I study the impact of different communication modes on operator’s

awareness, workload, trust, and usability in a multi-human multi-robot system. Communi-

cation is the key essence for an effective teamwork, be it between humans or be it between

humans and robots. Humans can either engage directly through verbal communication or

indirectly representing their actions and intentions by using technology or with a mix of

both. The work in this chapter was submitted to:

• J. Patel, T. Ramaswamy, Z. Li, and C. Pinciroli, “Direct and Indirect Human Com-

munication in Multi-Human Multi-Robot Interaction,” The IEEE Transactions on

Human-Machine Systems (THMS).

In Chapter 7, I present a cloud-based interface for multi-human multi-robot remote

interaction mimicking the features of the mixed-reality interface. This interface was used

to compare the impact of information transparency and human communication in proximal

and remote interaction. In addition to investigating the interface usability in an ideal

condition, I study the impact of information loss on the performance, situational awareness,

workload and trust of the operator in a multi-human multi-robot remote interaction. Infor-

mation loss in a remote interaction occurs due to limitations in the network’s bandwidth,

hardware limitations, and physical distance between the operators and the robots. The

work in this chapter was submitted to:

• J. Patel, P. Sonar, and C. Pinciroli, “On Multi-Human Multi-Robot Remote Interac-

tion: A Study of Transparency, Inter-Human Communication and Information Loss

in Remote Interaction,” Springer Journal of Swarm Intelligence.
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In Chapter 8, I conclude my thesis and discuss possible developments of this work for

further research.





Chapter 2

State of the Art

Humans have envisioned interacting with robots since Nikola Tesla demonstrated a radio-

controlled boat, laying a foundation to the field of human-robot interaction (HRI) [173].

Since then, HRI research has focused on identifying suitable human interfaces and investi-

gating methods to make these interfaces more usable.

According to Sholtz et al. [203], the role of a human can be categorized into five types;

supervisor, operator, teammate, mechanic or bystander. As a supervisor, a human monitors

the robots and the overall situation. The supervisor evaluates the situation and the goal of

the robots. This includes monitoring autonomous robots that do not rely on the human for

taking decisions, for e.g., a domestic robot vacuum. As an operator, unlike the supervisor,

the human controls the robot to meet the identified goals. This includes tele-operated

robotic arm for medical surgery. As a teammate, a human directly collaborates with the

robot on the task at hand. This includes co-bots, collaborative robots, where human and

robot share a common goal but have their individual responsibilities, for e.g., a human

and a robot team for industrial assembly. As a mechanic, a human troubleshoots and fixes

hardware or software issues in the robots. These issues may include battery faults, software

faults, or motor failures. As a bystander, a human does not interact with the robots, but is

just another entity in the environment for the robots to work around, e.g., pedestrians for

9
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autonomous vehicles.

These roles neither comprise the capability of a human to learn from a robot nor a

robot to learn from a human. For this reason, Goodrich et al. [83] added two more roles,

the role of a mentor and of an information user. As a mentor, a human can teach robot

a new behavior, which includes a robot learning from a human demonstration. As an

information user, a human can learn for the information collected by the robot, for e.g.,

military personnel using information collected by a robot responsible for reconnaissance

missions.

Although there are various roles a human can play in the interaction, the common

desire with each role is to enhance the performance of the system. We can measure human

performance in quantitative and subjective scales [164, 215]. Quantitative scales can

include success measured in time taken to complete a task and stress measured in heart rate

elevation [227]. Subjective scales can include questionnaires to quantify system usability

and reliability [13,201,224,236]. In both types of scales, human performance is influenced

by three factors: situational awareness, workload, and trust in the robots [35, 65, 100].

Situational awareness is “the perception of the elements in the environment within a

volume of time and space, the comprehension of their meaning, and the projection of

their status in the near future” [66, 111]. Situational awareness of a system with robots

may include a visual representation of the robots, their position, their current actions and

their future plans. Workload is “the intended demands of a task created by its objectives,

duration and structure and by the human and system resources provided” [89]. Trust is

“the attitude that an agent will help achieve an individual’s goal in a situation characterized

by uncertainty and vulnerability” [131].

These factors, individually or in combination, may affect the human performance based

on the role the human plays in the interaction. For example, for a mentor or a teammate,

the final outcome of the robot’s task is more significant for the human performance,
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influencing the human’s trust in the robots. Likewise, the performance of a supervisor or

an information user may be related to the information provided by the robots, affecting the

human’s workload and situational awareness. Similarly, for an operator or a mechanic, the

outcome depends on the human’s direct interaction with the robots while being aware of

the task demands, affecting the human’s trust, workload and situational awareness.

Typically, the operator is the most demanding role, especially when interacting with

multiple robots. The operator has to be actively aware of the situation, control and monitor

all the robots while planning their future actions. Endsley et al. [65] address this challenge

and indicates the granularity of control as a key aspect affecting the performance of the

operator. Granularity of control is the level of control with which a human operator can

interact with the robots. We can categorize the granularity of control into: robot-oriented,

multi-robot oriented, and environment oriented. Robot-oriented interaction is a level

of control in which an operator may interact with an individual robot from a group of

robots. This kind of interaction includes controlling a robot with continuous input or

specifying a desired position for the robot. Multi-robot-oriented interaction is a level of

control in which an operator may interact with multiple robots as a single entity. This kind

of interaction includes simultaneous navigation of all the robots to a region of interest.

Environment-oriented interaction is a level of control in which an operator may modify

the environment virtually or physically to influence the behaviour of the robots. This kind

of interaction includes adding virtual beacon-based influence and specifying a goal of an

object for the robot to transport.
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2.1 Robot-Oriented Interaction

In robot-oriented modality, the operator should be able to control a robot and manipulate

its position. The literature on this modality includes different interfaces that enable an

operator to use this modality. Setter et al. [208] propose to use a haptic interface to control

a leader robot. The operator, in this work, can manipulate the position of the leader and

expect other robots to follow. The operator experiences a haptic force corresponding to

the direction of the motion. Weaker haptic forces correspond to the directions in which

the robots can follow, while stronger haptic forces correspond to the direction that robots

should avoid. In this work, the leader attracts other robots and their behaviour compels

them to follow the leader, like fish in a school follow their leader. In contrast, Goodrich et

al. [82] demonstrate a haptic interface to control a predator that other robots will avoid,

inspired by how fish avoids a shark. Using this interface, an operator can control the

predator robot to avoid collisions with other robots. The concept of leader-based and

predator-based control definitely reduces the cognitive workload of an operator, but the

interface breaks if the leader or the predator encounter a failure. The interface cannot elect

or select a leader or a predator during such events.

To overcome this issue, Kapelmann-Zafra et al. [113] discuss a graphic user interface

(GUI) that allows an operator to select a robot at random. The operator can then manipulate

the randomly selected robot as needed. The operator can also request to switch access to

another robot. However, random selection, an operator may waste time waiting for the

selection of the robot they want to re-position to a region of interest. This might cause

an operator to experience frustration. Cacace et al. [25] offer a solution to this problem.

Instead of choosing a robot at random, they propose an algorithm to select a robot for the

operator to manipulate. This selected robot is in proximity of the region of interest and

would restrict an operator to cycle through the set of robots, saving the operator’s time and
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improving cognitive load.

Nagi et al. [168–170] explores computer vision-based interaction that enables an

operator to select robots. Using a colored glove, the operator can create hand-gestures to

send commands to the robots. In this work, the robots can detect the gesture information

from their point of view and collectively understand the intention of the operator. The

success of gesture detection depends on the point of view of the robots. To avoid this

issue, Alonso-Mora et al. [5] present a centralized gesture recognition platform based on

the Microsoft Kinect [88]. In this work, the operator can point and select a robot of their

choice. The operator then can manipulate the robots at their will. Similar to this work,

Lee et al. [134] propose a joystick-based interface that enables an operator to tele-operate

the robots. The operator can select a robot of their choice and pinpoint a location for the

robots to reach. This allows an operator to select a robot of their choice.

In these works of robot-oriented modality, the operator is limited to only one kind of

interface, thereby limiting the means to interact with the robots. Gromov et al. [85] reports

a multi-modal interface for an operator to use. This multi-modal interface is a fusion

of a bio-sensor (electromyography sensors), a natural language processor, and computer

vision techniques to enable an operator to control robots with an input of their choice.

The operator can control robots either by pointing at them, or instruct them with a vocal

command. The multi-modality feature enables an operator to choose a method of their

liking to interact with the robots.

A common issue in platforms that only offer robot-oriented interaction is that the

operator can control only one robot and the large of number of robots can cause an operator

to reach the limits of their cognitive capabilities [136, 140]. The operator will have to

identify the robot to select, understand that robot, control it and then transfer attention

to the next robot. The operator’s awareness will be limited to the interaction with an

individual robot and not the multi-robot system, affecting the performance of the operator.
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Hence, even though the robot-oriented modality enables an operator to control individual

robots, it is not be a suitable modality to interact with numerous robots.

2.2 Multi-Robot-Oriented Interaction

In contrast to the robot-oriented modality, the multi-robot-oriented modality allows an

operator to interact with all the robots as a common entity. This includes engaging in

collective manipulation and moving the robots as a single entity. Podevijn et al. [187]

devised an interaction interface in which the operator moves their body to control the

robots as a single entity. This interface also gives the operator the ability of splitting

robots into groups and merging them back. The operator, however, does not not have the

ability to select a subset of robots. Chen at al. [41] extends gesture control by enabling

the operator to manually select a group of robots and move them as a single entity. In this

work, the operator can draw a shape to select all the robots enclosed in that shape. This

feature grants the operator flexibility in selecting a subset of robots and maneuver them at

will. In these works, the accuracy of the navigation depends on the gesture recognition

system and lacks a feedback mechanism to improve the human performance. To tackle

this issue, Lee et al. [129] and Hong et al. [97] take advantage of haptic technology for

collective manipulation. The robots in these approaches navigate while maintaining a

formation. The operator is responsible for controlling the centroid of this formation to

manipulate the robots as a single entity. With haptic feedback, not only accuracy of

collective manipulation is improved but also positively impacts the usability of the system.

Despite of the benefits of collective manipulation, the operator has to constantly interact

with the robots and ensure that the robots do not collide with each other or with other

entities in the environment. This collision can cause damage to the robot’s hardware and

sensors, affecting the robot’s performance. The constant controlling and monitoring of
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the robots can negatively affect the operator’s cognitive workload. Hence, as a part of

multi-robot-oriented modality, the operator should be allowed to specify a final destination

or provide way-points for robots to follow to reach to the final destination. Ayanian et

al. [9] proposes one such method. In this work, the operator, using a touchscreen tablet,

can define bounding boxes as way-points for robots to navigate in a cluttered environment.

The robots then navigate through these way-points and manipulating around obstacles in

the environment. Diaz-Mercado et al. [57] extends this approach by specifying a shape as

a destination for robots. The operator, in this approach, can draw a shape on a touchscreen

tablet and the robots distribute themselves to form the shape. The key contribution of

this work is the density-based distribution algorithm using which the robots generate a

destination for each robot to form the operator specified shape. The advantage of these

works, i.e., multi-robot-oriented modality, is that a limited number of inputs are required

to manipulate numerous robots. However, the downside of this modality is the lack of fine-

grained control of robots. The operator is lacking the capability of performing corrective

maneuvers with a single robot and cannot address their individual failures.

2.3 Environment-Oriented Interaction

Finally, the environment-oriented modality enables an operator to influence the robots by

modifying the physical or the virtual environment. Jang et al. [104] reports an interface

that enables an operator to create virtual walls. The robots then interpret these virtual walls

as obstacles and regions to avoid while navigating in the environment. Bashyal et al. [14]

take this a step further. In their work, the operator can place beacons in the environment.

The operator defines whether these beacons act as attractors or repulsors. The robots treat

the attracting beacons as house flies interpret a light source. The repeller beacons represent

danger zones for the robots to avoid.
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Beyond adding elements to the environment, the operator should also be able to change

the positions of the objects in the environment to convey their intent of transporting an

object. The robots then should be able to move the object according to the operator’s

request. This high-level kind of interaction lowers the cognitive load experienced by the

operator. However, similar to the multi-robot-oriented modality, this modality lacks the

fine-grained control for the operator to perform corrective maneuvers with a single robot.

A possible solution to this issue, would be to allow an operator to have control over

robots using multiple control modalities. The operator can convey their intent using

environment-oriented interaction, simultaneously control all robots using multi-robot-

oriented interaction, and perform fine-grained control using robot-oriented interaction.

Kolling et al. [123] came closest to this approach of mixed granularity of control. The au-

thors compare robot-oriented modality and environment-oriented modality. The operators

were tasked with exploring the environment and could place attractor beacons or control

individual robots. However, in their approach, the operator was incapable of using two or

more modalities in the same task. The operator being capable of using multiple granulaties

could have influenced the results. Hence, in my thesis, I investigate the impact of multiple

control granularities on an operator’s performance.

2.4 Information Transparency

After control of multiple robots comes the problem of understanding them, i.e., making the

robots more transparent and legible. Transparency is a key property of any type of interac-

tion. In a transparent interaction, the operator is aware of the robots’ current states and

actions while being able to predict their future actions. Significant effort has been dedicated

to making the robots understandable and transparent. The concept of anthropomorphism is

a product of this research [13, 61]. A human can better understand an entity that they can
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physically relate to, including humanoid robots and industrial manipulators. However, the

challenge is different when it comes to mobile robots. The mobile robots lack human-like

characteristics for operators to relate to and understand. Knight et al. [121] attempts to

study this problem with a single robot moving in predetermined patterns. In their study,

the bystanders were asked about their understanding of the mobile robot’s movements.

They report that the bystanders were trying to make sense of the robot behaviour, but

could not identify, the rationale for the robot’s behavior. For example, in one task a robot

moved in a straight line for a few time steps and then moved in a sine wave pattern. The

bystanders reported the robot knew at first what it wanted to do, but then it faced an error

and started moving in random directions. This study, although limited to one robot’s

movement, proved that understanding a mobile robot is difficult and a research problem in

itself.

Capelli et al. [29] reports the results of a user study to investigate the challenge of

legibility with multiple robots. In this work, the authors test their approach with multiple

robots in a navigation task. These robots are color-coded and divided in three sets. Each

set of robots much navigate to their respective goals. The study reported that the motion

of multiple robots is legible and is significantly impacted by the trajectory taken while

navigating to the goal position. In contrast to this work, Ghiringhelli et al. [79] presents an

augment-reality based approach to graphically represent the robots’ states and actions. The

paper focuses on the technological aspect of the interface rather than on the usability aspect.

Chen et al. [40] and Mercado et al. [159] report user studies to report a positive impact

of robot transparency on an operator’s situational awareness, trust and workload. These

studies are performed with simulated point-mass models of the robots which lack physical

properties of mobile robots, creating a gap between results collected with simulated

environment and the results collected with physical environment: the reality gap [103].
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2.5 Multi-Human Interaction

The problem of controlling and understanding multiple robots is a significant challenge,

and the challenge further escalates when multiple operators wish to interact with the

robots. When multiple operators control the same robot, conflicts might arise. The

individual robot can either consider only the latest input and disregard all previous inputs,

or can use a shared-control mechanism to couple the inputs of two operators. Feth et

al. [71] demonstrate a haptic force-based shared-control approach for a tele-operated

robot. The haptic device creates a resistance depending on the operators’ inputs to avoid

conflicts of robot manipulation in opposite directions. However, this approach is specific

to manipulators and is not applicable to mobile robots.

With multiple operators interacting with multiple robots, Schauß et al. [202] reports a

coupling-based approach for two operators controlling two manipulators. In this work, the

operators are assigned their respective manipulator and cannot control the other manipula-

tor, making conflicts impossible. In the domain of multiple mobile robots, You et al. [245]

reports a user study with two operators controlling their respective robots for manually

pushing physical objects from one place to another. They divided the task environment into

two regions, with a operator-robot pair assigned to each region and limited the operator

from moving from one region to another. Due to this assumption, the study could not

comment on conflicts between operators. In contrast, Lee et al. [132] compares the perfor-

mance of operators while controlling robots from a shared pool of robots with an assigned

pool of robots. The operators can engage with robots using robot-oriented modality and can

manipulate one robot at a time. Their findings show that the performance of the operators

is better when they can manipulate robots from the assigned pool. Their performance

drops when they control robots from the shared pool. This indicates that the operators can

negate each other’s actions while sharing control of robots. Lewis et al. [139] extend this
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work to investigate the impact of team organization on the operators’ performance. The

authors compared three forms of team organization; joint control where both operators

had full authority over the robots, mixed control where one operator acts as an assistant to

another operator, and split control where both operators had their own sub-team to control.

Their study concludes the joint control strategy as the best form of team organization

while engaged in a search mission for simulated victims. Lewis et al. [137] furthers this

research to study the impact of situational awareness of an operator while controlling

individual robots. The authors compare the reported awareness of operators when the

robots are manually controlled with robots performing autonomous exploration. Their

study reports that operators have a better awareness when they are manually controlling the

robots as compared to when the robots are autonomously navigating in the environment.

This indicates that the operators are more in-the-loop and engaged in the task while using

robot-oriented modality.

These studies, however, are limited to robot-oriented modality and do not consider

the possibility of engaging multiple operators or improving their performance with mixed

granularity control of multiple robots.

Hence, in my thesis, I present my approach of allowing multiple operators to use

mixed granularity of control over multiple robots. The main technological outcomes of my

work are a novel mixed reality interface for proximal interaction and a novel cloud-based

interface for remote interaction. These interfaces enable multiple operators to collaborate

with multiple robots in local and remote environments. The main scientific outcome of my

work is investigating the effects of mixed granularity of control, information transparency,

and human communication on the operators’ performance. My experimental evaluation

consists of 8 user studies involving a total of 154 participants, in which I analyze operator

workload, awareness, trust, and performance.





Chapter 3

Mixed Granularity of Control

In multi-robot systems for humanitarian missions, robot autonomy covers only a part of

the picture. An equally important aspect of the technology is that the humans must be able

to interface with the robots to issue commands and affect the way these commands are

executed during the mission [123].

Despite the importance of the human factor, effective interfaces to interact with robots

are currently at their early stages. From a UI/UX standpoint, an interface is effective

when (i) it offers a coherent mental model of the system and its purpose and (ii) when the

available interactions match this mental model [174]. A classical example is the design of

windows-based point-and-click interfaces.

Problems (i) and (ii) constitute a considerable hurdle in the design of interfaces for

human multi-robot interaction. Analogously to the problem of designing multi-robot

algorithms, in human multi-robot interaction, a fundamental aspect is the way an operator

thinks a multi-robot system [123]. Broadly speaking, the three primary mental models

that have been employed are robot-oriented (i.e., the multi-robot system as a collection of

individual robots), multi-robot-oriented (i.e., the multi-robot system as a coherent unit),

and environment-oriented (i.e., modify the environment to specify a goal).

In this chapter, I argue that neither approach, alone, is adequate to engage with robots

21
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in an effective way when complex missions must be completed. I argue, instead, that the

correct abstraction level must be mixed, and include (at least) an environment-oriented

aspect and a robot-oriented aspect. Through environment-oriented primitives, the operator

can specify high-level goals without directly engaging with the robots. For example, in

a collective transport scenario, the operator should dictate where the objects should be

moved, rather than assigning tasks to the robots directly. However, at the same time,

I recognize that the ability to engage with individual robots can be critical to improve

performance. In case of robot failures, for example, a human operator with a global view

of the system could be more effective than the robots itself in reassigning healthy robots to

new tasks.

The main contribution of this chapter is the first human multi-robot interface that

enables operators to both specify high-level goals and to affect the behavior of individual

robots during the mission. For this chapter, I focused on an inherently collaborative task

composed of several phases: collective transport. Using a tablet-based reality application,

the operator can select the objects to transport and drag them to their intended destination.

The robots then autonomously allocates robots to the task and completes it. During

execution, the operator can also select individual robots to reassign them to new transport

tasks or to replace failed units.

The chapter is organized as follows. In Sec. 3.1 I discuss related work on human

multi-robot interfaces. In Sec. 3.2 I present the system and its design. In Sec. 3.3 I report

the experimental evaluation, which includes unit tests for the behaviors and a user study

on the usability of the application. The chapter is summarized in Sec. 3.4.
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3.1 Related Work on Granularity of Control

In reviewing relevant literature, two aspects are prominent: the level of granularity offered

by a specific human multi-robot interface, and the type of tasks the interface most naturally

enables. Regarding the level of granularity, I identify three possible alternatives: robot-

oriented, multi-robot-oriented, and environment-oriented.

Robot-oriented interactions occur when an operator must engage with individual robots,

e.g., to make them into leaders other robots must follow [208], to hand-pick robots for a

specific task [5, 30, 73, 85, 113, 169, 187], or to use a robot as tangible interface for gaming

and education [128, 178]. The main advantage of these interfaces is the simplicity of their

abstraction (the operator becomes part of the multi-robot system); however, with collective

behaviors in which the operator must interact with multiple robots, the downside of this

approach is the large amount of information an operator must provide to the robots (e.g.,

in the form of number of operator commands per task).

At the opposite side of the spectrum, multi-robot-oriented interactions occur when

an operator treats a robot in the multi-robot system as a unique entity [41, 96, 129]. This

modality of interaction has been demonstrated in navigation tasks, e.g., beacon-based [14],

population density-based [57], and waypoint-based [9]. The main advantage of swarm-

based interaction is that a small number of commands, e.g., the target position, is sufficient

to control a large robot swarm. The price to pay, however, is the lack of fine-grained

control on the robots. This makes it impossible to deal with suboptimal task assignment,

individual failures, and error cascades.

Finally, environment-oriented interactions occur when the operator does not interact

directly with the robots, but rather performs an environmental modification, either in

the real world or in a virtual environment, that the robots interprets as a new task to

perform. Possible examples of this type of interaction include object clustering and sorting,
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Figure 3.1: System overview with a single human operator.

construction, shape formation, and self-assembly of modular structures. The advantage of

this modality is that the mental model the operator must acquire is very intuitive (describe

what you want, rather than how to achieve it) and it is likely to produce concise sets

of commands. However, the main disadvantage of environment-oriented interactions is

lack of fine-grained control, analogously to what I discussed for multi-robot-oriented

interaction.

Kolling et al. [122] performed a study that is central to the topic of this chapter.

They compared two modalities of controlling a robot swarm, namely robot-oriented and

environment-oriented, in a task in which the robots had to diffuse in the environment while

avoiding connectivity loss. The robots performed a simple form of foraging, and could be
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controlled either by direct commands, or by placing attractive beacons in the environment.

The conclusions of this study are that environment-oriented interactions are not as effective

as robot-oriented interactions, especially when environments are cluttered and many robots

are involved.

In this chapter, I seek to investigate whether these conclusions depend on the nature of

the task (foraging vs. collective transport) and whether combining, rather than comparing,

environment-oriented and robot-oriented interactions can produce more effective interfaces.

3.2 Mixed Reality-Based Interaction Interface

The purpose of this chapter is to create an intuitive interface to allow an operator to

interact with a team of robots at two levels: the goal and the individual robots. Through

the interface, the operator should be able to create multi-robot-oriented goals, affect the

behavior of individual robots, and monitor the progress of the robots.

To highlight the collaborative aspect of the task that the robots must accomplish, I

opted to focus on a specific scenario - collective transport. Collective transport entails

several phases: assignment of robots to the task, approaching the object, navigating, and

performing correcting maneuvers when necessary. Hence, I consider it a suitable testbed

for a mixed granularity interface.

3.2.1 System Overview

The system (a diagram of which is reported in Fig. 3.1) comprises four components:

1. A mixed reality interface implemented as an app for a hand-held device;

2. A team of robots performing collective transport;
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Figure 3.2: Screenshot of the MR Interface running on an iPad. The overlaid black arrow
indicates the origin marker for initializing the coordinate frame of the interface.

3. A 10-camera VICON motion tracking system, which monitors the position of the

robots and of the objects being transported; and

4. ARGoS [186], a multi-robot simulator that I modified to act as a software glue for

the overall system.

The information flow starts at the hand-held device, when the operator defines a new

transport goal or designates a new position for a robot. The command is then transmitted to

ARGoS, which processes it and generates high-level motion goals for the robots. ARGoS

communicates the motion goals to the robots, and the latter execute the goals.

To make this information flow possible through ARGoS, I realized a series of exten-

sions. The most important is a new type of physics engine that, instead of calculating values
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from a numerical model, uses the positional information generated by the motion tracking

system. In this context, ARGoS ceases to be a simulator and it becomes a middleware.1

3.2.2 Mixed Reality Interface

Human Multi-Robot Interaction App. The interaction between the operator and the

robot happens through the reality (MR) application installed on an iOS 9+ hand-held device.

The application can recognize objects and robots. Once recognized, the app overlays a

physical entity (robot or object) with a virtual object. The operator can specify the desired

translation and rotation of the physical object by manipulating its virtual counterpart. A

virtual object is translated using a one-finger swipe and rotated using a two-finger twist

gesture. The manipulation of a virtual object happens in three touch phases; start, move,

and end. At the start of the touch phase, the app selects the virtual object intersecting with

the touch point. The move phase records the motion gestures input by the operator. In

the end phase, the app sends the final pose of the virtual object to ARGoS. Fig. 3.2 shows

the screenshot of the MR application. The top-left corner of the application displays the

desired goal position; the bottom-left corner displays the current reference frame based on

the location of the device with respect to the origin marker. The origin marker can be any

image, as long as the app can uniquely identify it.

Mixed Reality Engine. To realize the app I employed Vuforia [2], a well-known soft-

ware development kit for reality applications. Vuforia uses fiducial markers for recognition

and tracking of physical objects in real time. Vuforia provides simultaneous tracking of 5

image targets and 2 object targets. Vuforia can track a 0.2 m-wide target from a distance of

2 m, but the actual readings may vary based on light conditions, camera resolution, camera

focus, and features of the fiducial marker. To develop the app, I integrated Vuforia with

the Unity Game Engine, which natively supports several hand-held devices.

1A video demonstration of the system is available at https://youtu.be/kSkxtg5YOS4.

https://youtu.be/kSkxtg5YOS4
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(a) Object recognition (b) New goal defined

(c) Robots approach and push (d) Transport complete

Figure 3.3: Object goal manipulation by interacting with the virtual object through the
interface. The overlaid dotted black arrow indicates the one-finger swipe gesture used to
move the virtual object and the overlaid red dotted arrow indicates the two-finger rotation
gesture.

3.2.3 Control Granularity

Object Goal Manipulation. As explained, when the app recognizes an object, it overlays

a virtual object over it. This virtual object can be manipulated to generate the desired goal

pose for the physical object. Multiple objects can be manipulated through this gesture and

the respective robots can transport the objects in parallel. If all robots are busy transporting

other objects, the app queues the request and waits for the completion of ongoing tasks.

Fig. 3.3a shows a detected object overlaid with a virtual object. Fig. 3.3b illustrates the
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(a) Robot recognition (b) New robot position

(c) Robots re-positioned

Figure 3.4: Robot manipulation by interacting with the virtual robots through the interface.
The overlaid dotted black arrow indicates the one-finger swipe gesture to move the virtual
object and the arrowhead color indicates the moved virtual robots.

manipulation of the virtual object.

Robot Manipulation. When the app recognizes a robot, it overlays a virtual colored

marker over it. The color of the virtual marker resembles the color of the physical markers

glued to the corresponding robot. Once the operator gestures a new pose, other robots

belonging to the same robot-team as the selected robot freeze until the latter achieves its

new pose. During freeze time, multiple robots can be manipulated in parallel. Fig. 3.4a

shows the identified robots with virtual markers overlaid. Fig. 3.4b shows the manipulation

of a virtual marker that encodes the new robot pose.
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(a) Two object tasks (b) Team reassignment gesture

(c) Robots rearrange (d) Team reassigned

Figure 3.5: Team reassignment through the interface to complete the task of moving object.
The overlaid dotted black arrow indicates the one-finger swipe gesture to move the virtual
object and the red dotted arrow indicates the two-finger rotation gesture.

Team Reassignment. The virtual robots can be selected, moved, and overlapped with

the virtual objects to reassign them to a new transport task. This interface mode could

be useful when one task has insufficient robots, for instance, because the object to be

transported requires extra effort. Fig. 3.5 shows two team of robots performing collective

transport while the operator rearranges the robots and assigns them to an incomplete task.
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Figure 3.6: Collective transport state machine.

3.2.4 Collective Transport

The collective transport behavior is structured into a state machine, as shown in Fig. 3.6.

Since the focus of the chapter is on the operator interface, I kept the transport behavior

as simple as possible, but sufficiently effective to act as a meaningful use case for the

interface. Designing a more complex, or more decentralized transport behavior is beyond

the scope of this work. The states in the Finite State Machine (FSM) are described next.

ReachObject. The robots calculate the direction vector to the assigned object, and

then navigate while avoiding obstacles. Depending on the number of robots assigned to

an object, the deployment positions are generated in a circular fashion around the object,

resulting in a team of robots caging their assigned object. New deployment positions are
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generated every time a robot is removed from or added to a team. The state comes to an

end once all the robots reach their deployment positions.

ApproachObject. From the deployment positions, the robots move towards the cen-

troid of the object. The state ends when all the robots are in contact with the object.

PushObject. The robots rotate in place facing the direction of the goal and start

moving at the same speed towards the goal. In particular, the front robot adjusts its speed

while maintaining a specific distance from the object. This feature prevents the robots

from breaking formation while pushing the object. In case a robot loses the formation,

the robots re-deploys and re-approaches the object. The state ends successfully when the

object reaches the goal position.

RotateObject. All robots rotate in place facing outwards in a circular manner, and

move along a circle to rotate the object. In case a robot breaks the formation, the robots

re-deploys and re-approaches the object. The state ends successfully when the object’s

orientation is within an acceptable value with the respect to the goal orientation.

3.3 Experimental Analysis

In this section, I analyze the performance of the collective transport behavior and the

usability of the app interface assessed through an operator study.

3.3.1 Transport Behavior Analysis

As a preparatory step towards the operator study, I characterized the performance of the

transport behavior to ensure that the task completion rate was within acceptable bounds.

I also evaluated the need for human intervention in completing the task when there are

insufficient robots in a team.
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Figure 3.7: The setup of Experiment 1. The overlaid red arrow and black point indicate
the direction and position of the object to be transported by the robots.

The aim of Experiment 1 was to transport one object to a predefined target pose using

a team of four robots. In Experiment 2, the robot team had to transport two objects to

a predefined goal pose using five robots. In Experiment 2 a human was present in case

robots had to be reassigned from a task to another.

Experiment 1: Setup. I performed 10 consecutive trials of collective transport of

an object with four robots (Fig. 3.7) to achieve a predefined pose (x = 0m, y = −1m,

θ = 152◦). The starting positions of the object and the robots remained the same for all

trials. To minimize the effect of spurious failures not related to my algorithm, I selected

the target pose according to (i) the coverage of the motion capture system across the arena

and (ii) the presence of floor irregularities.
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Figure 3.8: The setup of Experiment 2. The overlaid red arrows and black points indicate
the directions and positions of the objects to be transported by the robots.

Table 3.1: Statistics on data collected from Experiment 1

Data type (unit) Min Max Median Mean
Error on x (m) 0.0443 0.0635 0.0571 0.0563
Error on y (m) 0.0325 0.0538 0.0461 0.0450
Error on θ (◦) 0.0290 1.3250 1.1085 1.0098

Completion Time (s) 121.2 148.9 123.1 128.5

Experiment 1: Results. Statistics about the recorded final positions and orientations

across the 10 trials are reported in Table 3.1. The absolute position errors are in meters and

the absolute orientation error is in degrees. The data shows that the collective transport

behavior is very efficient in moving the object, as errors are on average in the order of cm

and faction of a degree. The average completion time, about 2 minutes, is also adequate

for tests involving untrained operators.
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Table 3.2: Statistics on data collected from Experiment 2, two object transport with human
operator’s presence.

Object ID Data type (unit) Min Max Median

Obj1

Error on x1 (m) 0.0193 0.0709 0.0477
Error on y1 (m) 0.0130 0.1022 0.0493
Error on θ1 (◦) 0.5170 1.2540 0.8905

Completion Time (s) 134.20 232.10 159.35

Obj2

Error on x2 (m) 0.0004 0.0507 0.0060
Error on y2 (m) 0.0435 0.1171 0.0862
Error on θ (◦) 0.3799 1.1758 0.8422

Completion Time (s) 295.9 402.1 363.3

Experiment 2: Setup. I performed 10 consecutive trials of collective transport of two

objects, Obj1 and Obj2, with five robots (Fig. 3.7) beginning from the same position for

all trials. Each object had to reach a predefined pose (x1 = 0.8m, y1 = 0m, θ1 = 128 ◦)

and (x2 = −1m, y2 = 0.5m, θ2 = 46◦) respectively. I performed all the trials with a

human-in-the-loop to reassign the robots to Obj2 upon completion of Obj1’s transport.

Experiment 2: Results. Table 3.2 shows the statistics of absolute position and orien-

tation errors collected at the end of 10 trials. As Obj2 had only one assigned robot, the task

stayed idle until Obj1 reached its goal pose and sufficient robots were reassigned by the

operator to Obj2. I kept track of the time at which the human interacts through the interface.

The median time I observed was 171.65 s, with a minimum of 143.9 s and a maximum of

244.5 s. These values are greater than the completion time of Obj1. This indicates that

Obj2 was usually transported after the human interacted with the system. Hence, Obj2

would not have been transported to the destination without human intervention.

3.3.2 Usability Analysis

Experimental Setup. I conducted an operator study of 10 participants from multiple

disciplines. The operators’ ages ranged between 20 and 29. The experiment in which

every operator was involved was divided into two halves, with one task to complete for
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Figure 3.9: User study experimental setup. The overlaid green arrow indicates the direction
of the object to be transported by the robots. The overlaid red region indicates the goal
region in which the object needs to be translated.

each half. After each half, the participants were asked to fill out a questionnaire based on

NASA TLX [89] subscales using a Likert Scale [143] for quantifying their response. All

the participants had no prior experience of interacting with the system.

Task Information. Both tasks involved transporting an object to the goal region

(Fig. 3.9) using the interface. The participants had to focus on only translation of the

object and not the orientation. The task ended when the object completely entered the

goal region. In Task1, the participants could only control up to four robots manually (a

purely robot-oriented interaction). In Task2, the participants could interact with the object

(environment-oriented) and with the robots (robot-oriented).

Results. To quantify the reactions of the participants during the experiments, I em-
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Figure 3.10: Percentage of raw scores using NASA TLX subscales on the Likert scale
from the questionnaire submitted by operators after the study.

ployed the NASA TLX scales on a Likert Scale and the results are shown in Fig. 3.10. The

percentage in the plot depicts the number of responses made for a particular scale index.

Fig. 3.11 reports the results of the comparative study, where the participants were asked to

indicate which task caused a more significant cognitive load. The comparative study shows

that Task2, in which both environment- and robot-oriented interactions were allowed, has a

lower cognitive load with respect to Task1, which only allowed robot-oriented interactions.

The results of Fig. 3.11 confirm the raw scores displayed in Fig. 3.10. Further evidence

supporting my claim that combining environment- and robot-oriented interactions is bene-

ficial is provided by the number of interactions recorded during the experiments. The data

is reported in Table 3.3, and it clearly shows that combining the two modalities entails a

lower number of operations than purely robot-oriented approaches.
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Figure 3.11: Comparative cognitive load.

Table 3.3: Statistics on number of interactions made with the interface by the operator in
both the task during the user study.

No. of Interactions
Task ID Min Max Median
Task 1 8 118 52
Task 2 1 8 1

3.4 Chapter Summary

In this chapter, I proposed a human multi-robot interface that combines environment-

oriented and robot-oriented modalities of interaction. I based the interface on an app for

a hand-held device, because of both the low cost of this solution and the intuitiveness

of touch-based graphical interfaces. The interface and the associated infrastructure are

designed to work with simulated as well as real robots, although in this chapter I focused the

analysis on real-robot experiments. I performed a user study to validate the effectiveness

of my interface. Results confirmed that, for a task such as collective transport, the ability

to mix environment-oriented commands and robot-oriented ones is beneficial, because it
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results in a lower number of required commands to achieve the goal.

In a broader perspective, this chapter suggests that the specifics of the task a robot must

complete plays an important role in the definition of human multi-robot interfaces. As

discussed in [122], environment-oriented interactions might not scale well for tasks that

involve diffusion of many robots in cluttered environments. However, for tasks such as

collective transport, in which the robots are tightly connected to the object to carry, the

ability to focus on the object makes the interaction more effective.





Chapter 4

Operator Engagement

Due to the potentially large number of units involved, the interaction with a multi-robot

system is likely to exceed the limits of the span of apprehension of any individual human

operator. In chapter 3, I studied how this issue can be tackled by interacting with the robots

in two modalities — environment-oriented and robot-oriented. In this chapter, I explore

how this modality of interaction affects the performance of multiple cooperating operators.

However, with multiple humans in the system, additional challenges arise, such as

coping with ineffective group dynamics [4], unbalanced workload [35, 158], and inhomo-

geneous awareness [130, 180, 193]. These challenges coalesce in a common, undesirable

phenomenon: the out-of-the-loop (OOTL) performance problem, caused by a lack of

engagement in the task, awareness of its state, and trust in the system and other opera-

tors [66, 84].

Little research exists on these topics in the context of multi-robot systems. Hence,

through a user study involving 28 human operators and 8 real robots, I study how the

concept of mixed granularity in multi-human multi-robot interaction affects operator en-

gagement, awareness, and trust while balancing the workload between multiple operators.

This chapter offers two main contributions:

41
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• From the technological point of view, I created the first mixed granularity interface

for multi-human-multi-robot interaction. Our interface is based on a networked

mixed reality application that allows the operators to visualize and modify the global

state of the system collaboratively on common tablets and smartphones.

• From the scientific point of view, I assessed the validity of my approach through a

user study of the interface in terms of workload, trust, and task performance. The

user study involved 14 teams of 2 operators each, controlling a team of 8 robots in a

collective construction scenario.

The chapter is organized as follows. In Sec. 4.1 I discuss related work on human-robot

interfaces. In Sec. 4.2 I present my system and its design. In Sec. 4.3 I detail the user study,

followed by a discussion of the results in Sec. 4.4. I summarize the chapter in Sec. 4.5.

4.1 Related Work on Operator Engagement

According to Endsley [65], granularity of control is a key aspect affecting the OOTL

performance problem. Low-level control includes robot selection and manipulation [5,

85, 113, 137, 139, 167, 169, 187, 244], while high-level control comprises of global goal

manipulation by defining navigation goals [9, 14, 57, 122], team organization [56, 107], or

allocating tasks [153]. Limiting control to one type of granularity creates a fundamental

tradeoff [65]. Low-level control offers more opportunity for interaction and sense of trust

in the system, but it causes higher workload and stress. Conversely, high-level control

limits the amount of workload, often leading to boredom and lower situational awareness,

which in turn results in the OOTL performance problem.

There exists little research on supervisory control in multi-human-multi-robot sys-

tems. Several papers study the case in which humans play the role of a bystanders in,

e.g., navigation of robots in a shared environment [10, 47, 92, 99, 222, 229] and human
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Figure 4.1: System overview with multiple human operators.

tracking [43, 101, 176, 176, 232, 248]. Other works focus on how to coordinate teams of

humans and robots [15, 74, 107, 108, 152, 221, 243]. In supervisory control, past work

focused on investigating the influence of autonomy and resource sharing on the task per-

formance [137, 139]. Researchers also investigated the effects of curiosity and training on

increasing task performance [244]. However, to the best of my knowledge, there has not

been any study on the out-of-the-loop performance problem in the context of multi-robot

systems.
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4.2 Multi-Human Multi-Robot Interaction Interface

4.2.1 System Overview

The system is an extension of the design discussed in Section 3.2.1 with a capability to

handle multiple human operators in the system. The extended system is comprised of four

components (see Fig. 4.1):

1. A distributed mixed reality interface implemented as an app for a hand-held device;

2. A team of robots pre-programmed with several autonomous behaviors, including a

basic “go-to-location” and a more advanced “collective transport”.

3. A Vicon motion tracking system for localizing the robots and dynamic objects in the

environment;

4. ARGoS [186], a multi-robot simulator acting as a middleware responsible for chan-

neling data to the robots.

The process starts when an operator specifies a new position for an object, the selected

team of robots, or an individual robot on a hand-held device. The hand-held device then

broadcasts this information over the Wi-Fi network for other active MR app operators

and ARGoS. The other MR apps process and display the broadcasted change in the local

augmented view. ARGoS generates and broadcasts the goals for the robots, which execute

the requested operations.1

4.2.2 Mixed Reality Interface

The interaction between operators and robots occurs through an mixed reality (MR)

application installed on handheld devices, such as smartphones or tablets. The app
1A video demonstration of the system is available at https://youtu.be/QGUYfBB9Ves.

https://youtu.be/QGUYfBB9Ves
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Figure 4.2: Screenshot of the MR Interface running on an iPad. The overlaid black arrow
indicates the origin marker for initializing the coordinate frame of the interface.

integrates Vuforia [2], a software development kit for MR applications, and the Unity

Game Engine [67]. The application can recognize the objects and the robots in real time

using fiducial markers. The operator can visualize and manipulate the identified objects

and robots by means of a virtual object overlayed on the real robot in the device screen.

The virtual object can be translated using a one-finger swipe and rotated using a two-finger

twist. The application also lets the operator select some or all of the robots with a one-finger

swipe. Fig. 4.2 shows the screenshot of the MR application. The top-left corner displays

the desired object position. The bottom-left corner depicts the current reference frame

based on the location of the operator and the unique origin marker. The top-right corner

offers the menu buttons for controlling additional functionality such as re-calibration,
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(a) Virtual object creation mode (b) New virtual objects created and moved

Figure 4.3: Virtual object creation and manipulation. The overlaid black arrow indicates
the point of virtual object creation.

toggling obstacle avoidance and toggling visibility and detection of objects and robots.

The bottom-right corner houses the button for creating virtual objects dynamically.

4.2.3 Control Granularity

This interface includes the interaction modes discussed in Section 3.2.3 and extends the

system by adding the following modes of interaction.

Virtual Object Creation, Manipulation and Deletion. The app allows an operator

to create virtual cuboids and virtual cylinders dynamically. The operator can reposition

and reorient these objects. During virtual object creation, the app shows a point on the

ground to signify the creation of virtual objects on that point (see Fig. 4.3a). The operator

can delete the created virtual object with a two-finger long-press gesture. This modality is

useful for creating virtual obstacles/walls and for defining a separate operating region for

multiple operator scenario. Fig. 4.3 shows the virtual objects arranged in the environment.

Robot Team Selection and Manipulation. With a one-finger swipe, the operator can

define an enclosed space for selecting all the robots physically present in that region. A

virtual layer overlays on the selected region and a virtual cube appears at the centroid of
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(a) Robot team selection (b) Robot team creation

(c) Robot team manipulation (d) Robot team re-positioned

Figure 4.4: Robot team creation and manipulation by interacting with the interface. The
overlaid dotted black arrow indicates the one-finger swipe gesture to move the virtual cube
for re-positioning the the team of robots.

this virtual layer. The operator can manipulate this cube to define a goal position for all

the robots in the region. The robots then reposition themselves similarly to the Robot

Manipulation modality. An operator can select only one team of robots at a time, and

every time a new team of robots is selected, the app clears the last selection. If two or

more operators have the same robot in their selected team, then the robot receives the

most recent goal position. Fig. 4.4a and Fig. 4.4b shows the selection of a group of robots.

Fig. 4.4c shows the manipulation of the virtual cube to define a new goal position for the

team of robots. Fig. 4.4d shows the robots navigating to the desired position.
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Figure 4.5: Collective transport state machine

4.2.4 Shared Awareness

The app broadcasts the modality changes performed by an operator. Other hand-held

devices receive these changes and reflect them in the augmented view, thus making all

the operators aware of the changes. The app shares this information in real time, showing

the virtual objects as they are manipulated by other operators. This feature is useful to

facilitate teamwork, to share information on what an operator is currently controlling, and

to avoid conflicting control of a specific virtual object.
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(a) Initial positions (b) Object transport phase

(c) Robot control phase (d) Desired structure

Figure 4.6: Experimental setup of the user study. The overlaid green region indicates the
transport region. The overlaid yellow region indicates the placement region.

4.2.5 Collective Transport

I employ the simple collective transport behavior based on the finite state machine (FSM)

shown in Fig. 4.5. This behavior is identical to the one presented in Section 3.2.4.
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4.3 User Study

4.3.1 Experimental Setup

I designed a user study scenario in which two operators (O1 and O2) had to supervise 8

robots in the construction of a simple structure. Because I focus on the potential benefits

of mixed granularity of control (MGOC), in our experiments I considered two scenarios:

one in which both operators used MGOC, and one in which the operators were forced to

use a single granularity of control (SGOC).

Phases. The construction scenario is composed of two phases. In Phase 1, the robots

must transport an object in the general vicinity of its target position. In Phase 2, the

object must be pushed into its target position as precisely as possible. For the task to be

completed, the robots must place two such objects. Fig. 4.6a shows the initial positions of

the robots and the objects in the field.

Scenarios. I considered two scenarios. In the MGOC scenario, the operators are given

the possibility to control the robots with the full capabilities of the app. In addition, the

operators are free to work in any way they desire: they can work sequentially, collaborating

on the first object and then on the second; or they can work in parallel, focusing on different

objects. In contrast, in the SGOC scenario, I established specific roles and modalities of

interaction for the operators. I divided the field into two regions: the transport region

(corresponding to Phase 1) and the placement region (corresponding to Phase 2). I assigned

a specific operator to each region, and prevented operators from working outside of their

region: operator O1 was assigned to Phase 1 (transport), and operator O2 was assigned

to Phase 2 (placement). Motivated by the results of Chapter 3, in the transport region I

allowed the operator to only use object manipulation. On the other hand, in the placement

region, I allowed the operator to only use robot control. Fig. 4.6b shows the collective

transport behavior in the transport region and Fig. 4.6c shows the robots controlled in the
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placement region. Fig. 4.6d shows the desired structure that the participants had to achieve

for completing the task. The dashed black line divides the field into the two regions.

4.3.2 Participant Sample

I recruited a total of 28 students with ages ranging from 21 to 30 years old (average =

24.04± 2.74). None of them had prior experience with the system.

4.3.3 Procedures

Each session of the study approximately took 75 minutes and involved two participants.

The participants first engaged in the two scenarios sequentially, and the order of the

scenarios was randomized to avoid any learning effects. At the beginning of each scenario,

we briefly explained to the participants the task they had to perform and gave them 5

minutes to explore the app. The participants answered a questionnaire after completing

each scenario.

4.3.4 Metrics

I recorded each participant’s task activity metrics. In addition, I collected the responses to

the post-scenario questionnaire. I evaluated the following metrics:

Workload. I employed the NASA TLX scale [89] for the participants to compare the

workload during each scenarios. The participants had to rank scenarios for each attribute

of the scale. I used a Borda count [20] to find a winner based on the ranks assigned by the

participants. I also recorded the number of operator interactions (e.g., number of touches

and gestures on the app).

OOTL phenomenon. I evaluated the OOTL performance problem by quantifying situ-

ational awareness, which is the main factor for its occurrence [65]. To quantify situational



52 CHAPTER 4. OPERATOR ENGAGEMENT

Table 4.1: Borda count results of comparison study for workload based on NASA TLX
scale attributes. The gray cell indicate the leading scenario for each attribute. The mark −

denotes negative scales. Lower ranking is better.

O1 O2
NASA TLX Attributes SGOC MGOC SGOC MGOC

Mental Load− 15 27 23 19
Physical Load− 18 24 21 21
Temporal Load− 17 25 19 23

Performance 21 21 19 23
Effort− 15 27 21 21
Stress− 20 22 21 21

awareness, we employed the Situational Awareness Rating Technique (SART) [205]. The

participants had to rank the scenarios for each attribute. I used a Borda count to determine

the leading scenario based on the ranks assigned. Additionally, I recorded the activity

period (AP) of the participants during the scenario to analyze the total duration of time

they were active. I measured AP as the percentage of time a participant was interacting

with the system.

Trust. I employed the group trust scale [4] to analyze the trust between human

teammates during a scenario, and the human-robot trust sub-scale [201] to analyze the

trust in the robots’ behavior. The participants had to rank the scenarios based on these

scales. I used a Borda count to determine the leading scenario.

Task Performance. To assess the overall performance of the system in completing

construction, I considered the time elapsed between the start of a scenario and the moment

in which the second object was placed in its final destination.

4.3.5 Results

Workload. Table 4.1 reports the results of the workload comparison study for operators

O1 and O2. In the MGOC scenario, both O1 and O2 could choose how to interact with

the system and what to work on. In the SGOC scenario, O1 had to perform transport with
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Table 4.2: Borda count results of comparison study for situational awareness based on
SART scale attributes. The gray cells indicate the leading scenario for each attribute.

O1 O2
SART Attributes SGOC MGOC SGOC MGOC

Complexity 16 26 20 22
Changeability 18 24 20 22

Variable 16 26 20 22
Arousal 18 24 21 21

Concentration 16 26 24 18
Mental Capacity 15 27 23 19
Information Gain 19 23 22 20

Familiarity 23 19 19 23

the object modality, while O2 was forced to perform placement with the robot modality.

The results show that, for O1, MGOC is much more demanding than SGOC, while for O2

the workload in both scenarios is approximately equal. These results are also confirmed

in Fig. 4.7, which reports the box plot for interactions made with the hand-held device.

Because the samples of the number of interactions in MGOC and SGOC are paired and

non-parametric in nature, I use a Friedman test [75] for statistical analysis. Setting a p-

value of 0.01 to establish statistical significance, I concluded that the difference in number

of interactions is significant (Friedman test: p = 0.0001, χ2 = 14.000) between operators

in SGOC, while the difference in number of interactions is not significant (Friedman test:

p = 0.109, χ2 = 2.571) in MGOC. These results indicate an imbalance in workload

between operators in SGOC, leaving O1 out of the loop.

OOTL performance problem. Table 4.2 reports the results of the situational aware-

ness comparison study for O1 and O2. For O1, the SGOC scenario demands little attention;

when compared with MGOC, the data indicates that the latter results in a much higher

engagement of the operator in the task, while with SGOC the operators feel more out of

the loop. In contrast, O2’s levels of engagement and awareness are comparable across the

two scenarios. This interpretation is compatible with the data shown in Fig. 4.2, which
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Table 4.3: Borda count results of comparison study for trust based [4] and [201]. The gray
cells indicate the leading scenario for each attribute. The mark − denotes negative scales.
Lower ranking is better.

O1 O2
H-H Trust Attributes SGOC MGOC SGOC MGOC

Honest 17 25 19 23
Trustworthy 18 24 20 22

Alert 18 24 20 22
Help 20 22 16 26

Will to Help 17 25 16 26
Acceptance 19 23 17 25

H-R Trust Attributes SGOC MGOC SGOC MGOC
Function Success 21 21 21 21

Dependable 18 24 20 22
Reliable 19 23 20 22

Predictable 21 21 20 22
Consistence 20 22 18 24

Feedback 19 23 20 22
Meet the Needs 19 23 20 22

Provide Information 22 20 19 23
Communication 19 23 20 22

Performance 19 23 20 22
Follow Directions 20 22 19 23

Unresponsive− 20 22 22 20
Errors− 21 21 23 19

Malfunction− 21 21 23 19

reports the percentage of the active period of both operators in each scenario. Because the

samples of the activity period data are paired and non-parametric in nature, I again used

a Friedman test for statistical analysis. Setting a p-value of 0.01 to establish statistical

significance, I concluded that the difference in activity period is statistically significant

between operators in SGOC (Friedman test: p = 0.0001, χ2 = 14.000), while in MGOC

the difference in activity period is not (Friedman test: p = 0.248, χ2 = 1.333).

Trust. Table 4.3 reports the results of the trust comparison study for O1 and O2. Both

O1 and O2 reported higher trust in MGOC than in SGOC.

Task Performance. Fig. 4.9 shows a box plot of task performance for SGOC and
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Figure 4.7: Number of interactions made with the hand-held device for both tasks by
operators O1 and O2

MGOC. Because the samples of the performance data are paired and non-parametric in

nature, I again used a Friedman test for statistical analysis. Setting a p-value of 0.05

to establish statistical significance, I concluded that the difference in activity period

is not statistically significant between SGOC and MGOC (Friedman test: p = 0.109,

χ2 = 2.571). The median completion times I observed were 10.63 min and 7.93 min for

SGOC and MGOC, respectively. The median suggests that MGOC outperforms SGOC in

terms of completion time.
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Figure 4.8: Activity Period in percentage of time for O1 and O2 during each scenario.

4.4 Analysis and Discussion

The results of the user study allow us to draw a number of interesting conclusions about

the nature of multi-human multi-robot interaction.

First, the case in which the operators are given an equal role (MGOC scenario) corre-

sponded with the best system performance. While I never suggested to the operators how

to structure their work, all the operators pairs quickly settled on working in parallel on

both phases. Often, one operator completed her task faster than the other—in this case,

the faster operator switched to help the slower one. This resulted in both operators being

constantly engaged in the task and also in a better sense of mutual trust and teamwork.

In contrast, when I forcefully assigned specific roles and modalities of interaction, I
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Figure 4.9: Performance recorded in terms of time taken to complete each task.

found that the operator with a lower workload became easily distracted from the task. It

is important to notice that, in Phase 1, the most efficient option to complete the task is

object manipulation, while in Phase 2 it is robot manipulation. These modalities were also

preferred in the MGOC scenarios when the operators acted in parallel. Therefore the only

significant difference between SGOC and MGOC was in the forced role assignment.

Our results are consistent with [65] and suggest that, when distributing control respon-

sibility across operators, the OOTL problem affects the system performance. The operators

prefer to reach their limit of apprehension and remain engaged in the system, rather than

having long periods of inactivity followed by sudden moment of high load. In addition,

the latter scenario might prove stressful because of the difficulty of catching up quickly

when a system composed of many parts presents itself in an unknown state that demands

attention.
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As a consequence, specialization across operators (the SGOC scenario) is not nec-

essarily the best option. In designing the roles of the operators of a multi-robot system,

special attention must be paid to balancing the workload, keeping engagement high, and

allowing for a healthy level of overlap across operators, to foster the kind of teamwork

I observed in the MGOC case. In our user study, 25 out of 28 participants reported that

they prefer the MGOC scenario over the SGOC one. Different tasks, robot behaviors,

and applications might reveal more complex phenomena. More research is required to

understand the connection between these issues and the challenge of increasing human

performance in an automated system.

4.5 Chapter Summary

In this chapter, I study the role of the out-of-the-loop (OOTL) phenomenon in the context

of multi-human multi-robot interaction. The chapter offers two main contributions.

The technological contribution of this chapter is the first collaborative mixed reality

app that allows for mixed granularity control—including environment-oriented, team-

oriented, and robot-oriented control modalities. Using this app, we conducted a user study

involving 28 participants and 8 real robots to study how aspects such as role assignment

and modalities of interaction affect the engagement of the operators and, ultimately, the

performance of the overall system.

The scientific contribution of this chapter consists in the insight that, when establishing

the responsibilities of multiple operators, specialization might not be the most desirable

option. This is because a certain degree of responsibility overlap across the operators

might offer flexibility, resulting in an increased sense of mutual trust among operators. In

addition, a more balanced workload across operators prevents the insurgence of OOTL

phenomena and improve the system performance.



Chapter 5

Information Transparency

Humans and robots are envisioned to collaborate as a team [22] in complex missions,

including humanitarian missions [87, 163], interplanetary exploration [81], ecosystem

restoration [24, 55], mining [197], bridge inspection [175] and medical surgeries [213].

The criticality of these missions depend on an effective and efficient interaction between

humans and robots. We can achieve an effective interaction with robots by making the

system more transparent [196], i.e., legible and interpretable, for the human operators.

Transparency is a key property of any interface. In a transparent interface, the robots

convey their state and their intentions in a way that is easy for the operators to understand

and modify. Transparent interfaces offer high usability and foster increased situational

awareness for the operators [17, 33, 40, 196, 223, 235]. Transparent interfaces limit or

remove ambiguity, improve trust, and enhance decision-making transparency [6,32,98,112].

Lyon’s models of transparency [148] and the situational awareness-based transparency

(SAT) [38] model provide guidelines for an effective interaction between a human operator

and the system. However, these models are designed and tested with a single operator

in mind. The problem of designing a transparent interface intensifies when there are

multiple human operators or multiple human-multi-robot teams. This is because the

interactions among the operators become an important factor that affects the behavior

59
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and the performance of the entire system. This results in an increase of the information a

human operator must process and use, affecting mental load [138, 160].

To decrease mental load, a possible approach is to limit the amount and the type of

information presented to the operator. To study the effect of this idea on mental load,

we consider four types of interfaces, each presenting a different amount and type of

information, and each corresponding to a type of transparency.

I base these interfaces on the regions of a human eye’s field of view. The field of view

is the observable area a human can see through their eyes. The field of view is categorized

into two regions based on its distance from the point of fixation, central and peripheral.

The point of fixation is the center point of our vision. Central field of view is the part of

view closest from the point of fixation and peripheral field of view is the remaining part of

the view (shown in Fig. 5.1).

• No Transparency (NT): no information is available to the operator

• Central Transparency (CT): information is available in the operator’s field of view

• Peripheral Transparency (PT): information is available in the boundaries of the field

of view

• Mixed Transparency (MT): combination of central and peripheral transparency

In this chapter, I investigate the effects of these modes of transparency on human

operator performance, awareness, task load, and trust in the system. The chapter offers

two main contributions:

• I create the first mixed reality (MR) based interface for multi-human multi-robot

interaction with all the mentioned modes of transparency. This interface is an

extension of the mixed reality mixed granularity control interfaces presented in

Sec. 3.2.1 and 4.2.2.
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Figure 5.1: Central and peripheral regions of the field of view. The overlaid green region
indicates the central field of view. The overlaid yellow region indicates the peripheral field
of view.

• I propose the first study of the effects of transparency at the operator-level and

robot-level in multi-human multi-robot interaction. The user study involved 18

participants in teams of 2, controlling 9 robots in an object transport scenario.

I organized the chapter as follows. In Sec. 5.1, I discuss related work on transparency.

In Sec. 5.2, I present my system with the additional transparency features. In Sec. 5.3, I

report the user study procedures and results followed by analysis in Sec. 5.4 and summarize

the chapter in Sec. 5.5.
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5.1 Related Work on Transparent Robot Systems

Transparency is one of the most prominent research topic in human-machine and human-

robot interaction. Yet, we have only scratched the surface of the problem of making

interfaces transparent. Several work exist on the relationship between humans and

robots [69, 125, 219]. According to [196], transparency directly affects usability [28,

46,177,179,206,240,249], performance [36,42,126,159,216], trust [86,156,198,207] and

explainability [49,50,79,118,144,188,195,237]. The effect of these factors increases with

the level of information provided to the operator [238, 239]. Low levels of information can

negatively affect decision time, trust, situational awareness, and performance, while very

high levels of information can cause a higher cognitive workload.

Ghiringhelli et al. [79] presents one such approach to graphically represent the actions

of the robots using augmented reality. The paper report the interface design and focuses

on the technological aspects of the interface. In contrast, Chen et al. [40] and Mercado

et al. [159] report studies to test the impact of transparency on the situational awareness,

trust, and workload of an operator. In their work, the studies include simulated point-

mass models of the robots, lacking physical properties of mobile robots and creating a

gap between results collected with simulated environment and the results collected with

physical environment: the reality gap [103].

These works concern the scenario in which a single operator is involved as an operator

of the entire system. With multiple humans interacting with multiple robots, an additional

problem arises: the need for operators to share information and achieve a new form of

transparency, called operator-level transparency. To the best of my knowledge, there is

no study on operator-level transparency with multi-robot system, and especially none in

the context of mixed granularity of control. The presented work is the first to conduct an

investigation of how mixed granularity of control affects operator-level transparency.
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5.2 Transparent Multi-Human Multi-Robot Interface

The multi-robot system and the interface are same as those presented in Sec. 4.2.2. I

employ the simple collective transport behavior based on the finite state machine (FSM)

shown in Fig. 5.3. This behavior is identical to the one presented in Sec. 3.2.4.

5.2.1 User Interface

The mixed reality interface integrates a mixed reality software development kit, Vuforia [2],

and the Unity [67] game engine. The interface detects robots and movable objects by their

unique fiducial markers. The robots and objects recognized by the interface are overlaid by

virtual objects. The operator can manipulate the virtual objects to send commands to the

robots. For example, the operator can translate a virtual object with a one-finger swipe and

rotate it with a two-finger twist. It is also possible to select a team of robots by drawing

a closed contour with a continuous one-finger swipe. Fig. 5.2 shows a screenshot of the

default view of the application. The top-right corner shows the menu buttons to toggle the

visibility of the transparency modes. The bottom-left corner shows the real-time global

coordinate frame.

5.2.2 Transparency Modes

I present different modes of transparency based on the visual fields of the human eye. The

interface provides a facility to switch between these transparency modes.

No Transparency (NT). The interface will block all the operator-level and robot-

level information. Operators can send control commands but without access to any other

feedback information.

Central Transparency (CT). The interface overlays a virtual direction pointer and

a text to indicate the current task of the recognized robots (see Fig. 5.4). The direction
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Figure 5.2: Screenshot of the MR interface running on an iPad. The overlaid black arrow
indicates the origin marker for initializing the coordinate frame of the interface

pointer indicates the heading of the robot. The color of the pointers resembles the color

of the unique marker to differentiate between multiple pointers when the robots are very

close to each other. The interface updates the robot status every iteration and represents

the current operation being performed by the robot. The displayed states are: Idle, Reach,

and Error. Additionally, the interface reflects the modality changes performed by other

operators making it possible to achieve a form of shared awareness. These changes in the

interface are in real time, showing virtual objects being manipulated by other operators.

Shared awareness helps to avoid conflicting control of the same virtual object. These

features are only visible if the operator is focusing the camera on a specific recognizable

robot or object, hence in the central region of the camera’s field of view.
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Figure 5.3: Collective transport state machine.

Peripheral Transparency (PT). The interface displays a robot panel, a text-based log,

and an object panel at the edges of the screen (see Fig. 5.5). The robot panel shows all the

robots present in the field. The interface highlights the icons in the panel corresponding to

the robots that are moving or performing operator-defined actions. The interface shows

an error, in the shape of a blinking red exclamation point, if the robot gets stuck on the

ground or shows incorrect behaviour. The text-based reports displays the control actions

taken by other operators. The log stores the last three actions and discards the rest. The

object panel shows all the objects present in the field. The interface highlights icons in

the panel that corresponds to an object manipulated by the robots. The interface gives the

option of selecting an object icon to lock it for future use. The interface highlights the lock
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Figure 5.4: Central Transparency showing on-robot status and directional indicator.

icon next to the object icon with a blue color on selection. The operator can convey their

object control intentions with this feature. The interface of other operators highlights the

lock with a red icon. An operator can lock only one object at a time and the interface will

remove the highlighting of the past selections.

Mixed Transparency (MT). This transparency mode is a combination of central and

peripheral transparency.
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Figure 5.5: Peripheral Transparency mode showing text-based lock, object panel, and
robot panel (clockwise from top-left).

5.3 User Study

5.3.1 Hypotheses

The primary purpose of this chapter is to investigate the use and effects of different trans-

parency modes on human operator’s awareness, workload, trust, the quality of interaction,

and performance in a multi-human multi-robot interaction system. Hence, I based the

experiments on three hypotheses:

• HT1: Mixed transparency (MT) has the best outcome as compared to other modes,

in terms of situational awareness, trust, interaction score, and task load.

• HT2: Operators prefer mixed transparency (MT) to the other modes.
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Figure 5.6: User Study experiment setup. The overlaid red region indicated the goal region.

• HT3: Operators prefer central transparency (CT) over peripheral transparency (PT).

5.3.2 Experimental Setup

Using the interface and the hypotheses, I designed a game scenario with object transporta-

tion tasks. In this scenario, two participants had to move 6 objects (2 big and 4 small

objects) from their initial position to the goal region. Big objects were worth 2 points

each, and small objects were worth 1 point each. The operators had to work as a team

to gain most points out of 8 in a fixed duration of 8 minutes. The operators can move

the big objects using the collective transport behavior or using the robot or robot-team

manipulation modality. While small objects can only be manipulated with the robot and

robot-team modalities. The operators were given 9 robots to complete the game. Fig. 5.6
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shows the initial positions of the robots and the objects and the goal region. All the

participants performed the task 4 times with a different transparency mode (NT, CT, PT,

and MT) each time.

5.3.3 Participant Sample

I recruited 18 university students (10 female, 8 male) with ages ranging from 19 to 41

years old (23.78 ± 5.08). All participants had no prior experience interacting with the

system.

5.3.4 Procedures

Each session of the study had two participants and approximately took 105 minutes. After

signing the consent form, I explained the task scenario and gave the participants 10 minutes

to play with the system. I randomized the order of the tasks to reduce the influence of the

learning curve. After each task, the participants had to answer a questionnaire.

5.3.5 Metrics

I recorded subjective and objective measures for each participant for each task. I used the

following measures:

Situational Awareness. I used the Situational Awareness Rating Technique (SART) [218]

on a 10-point Likert scale [143] to assess the awareness of the situation after each task.

Task Workload. I used the NASA TLX [90] scale on a 4-point Likert scale to compare

the perceived workload in each task.

Trust. I used the trust questionnaire [224] on a 10-point Likert scale to compare the

trust in the interface affected by each transparency mode.
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Interaction. I used a custom questionnaire on a 5-point Likert scale to assess the

operator-level and robot-level interaction. The interaction questionnaire had the following

questions:

- Did you understand your teammate’s intentions? Were you able to understand why

your teammate was taking a certain action?

- Could you understand your teammate’s actions? Could you understand what your

teammate was doing at any particular time?

- Could you follow the progress of the task? While performing the tasks, were you

able to gauge how much of it was pending?

- Did you understand what the robots were doing? At all times were you sure how

and why the robots were behaving the way they did?

- Was the information provided by the interface clear to understand for accomplishing

the task?

Performance. I used the points earned for each task as a metric to scale the perfor-

mance achieved for each transparency mode.

Usability. I asked participants to select the features (Log, Robot Panel, Object Panel,

and On-Robot Status) they used during the study. Additionally, I asked them to rank the

transparency modes from 1 to 4, 1 being the highest rank.

5.3.6 Results

Table 5.1 shows the summarized results for all the subjective scales and the objective

performance. I used the Friedman test [75] to analyze the data and to assess the significance

among different tasks. I formed ranking based on the mean ranks for all the attributes that

showed statistical significance (p < 0.05) or marginal significance (p < 0.10).
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Table 5.1: Results with relationships between transparency modes. The relationship are
based on mean ranks obtained through Friedman Test. The symbol ∗ denotes significant
difference (p < 0.05) and the symbol ∗∗ denotes marginally significant difference (p <
0.10). The symbol − denotes negative scales and lower ranking is a good ranking.

Attributes Relationship χ2(3) p-value
SART SUBJECTIVE SCALE

Instability of Situation− not significant 4.192 0.241
Complexity of Situation− NT>MT>PT>CT∗∗ 6.435 0.092
Variability of Situation− not significant 4.192 0.241

Arousal NT>MT>PT>CT∗∗ 7.093 0.069
Concentration of Attention not significant 4.664 0.198

Spare Mental Capacity not significant 3.526 0.317
Information Quantity MT>CT=PT>NT∗ 16.160 0.001
Information Quality MT>CT>PT>NT∗ 11.351 0.010

Familiarity with Situation not significant 1.911 0.591

NASA TLX SUBJECTIVE SCALE
Mental Demand− not significant 6.169 0.104

Physical Demand− not significant 3.526 0.317
Temporal Demand− not significant 0.564 0.903

Performance not significant 4.573 0.206
Effort− NT>PT>CT>MT∗ 9.203 0.027

Frustration− NT>CT>MT>PT∗ 9.205 0.027

TRUST SUBJECTIVE SCALE
Competence not significant 3.703 0.295
Predictability PT>CT>MT>NT∗∗ 6.359 0.095

Reliability not significant 4.338 0.227
Faith not significant 1.891 0.595

Overall Trust PT>MT>CT=NT∗ 12.607 0.005
Accuracy PT>MT=CT>NT∗ 12.214 0.007

INTERACTION SUBJECTIVE SCALE
Teammate’s Intent MT>PT>CT>NT∗ 23.976 < 0.001
Teammate’s Action MT>PT=CT>NT∗ 22.511 < 0.001

Task Progress MT>CT>PT>NT∗ 25.619 < 0.001
Robot Status CT>PT>MT>NT∗ 13.608 0.003

Information Clarity CT>PT>MT>NT∗ 12.078 0.007

PERFORMANCE OBJECTIVE SCALE
Points Scored not significant 5.554 0.135
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Figure 5.7: Feature Usability.

Table 5.2: Ranking scores based on the Borda count. The gray cells indicate the leading
scenario for each type of ranking.

Borda Count NT CT PT MT

Based on Collected Data Ranking (Table 5.1) 17.5 40 39 43.5

Based on Preference Data Ranking (Fig. 5.8) 18 46 45 72

Fig. 5.7 shows the percentage of operators using a particular feature. Fig. 5.8 shows

the percentage of people ranking task based on their choice.

I used the Borda count [20] method for calculating the overall ranking of the collected

data and transparency mode usability data. I inverted the ranking of the negative scales

when calculating the Borda count scores. Table 5.2 shows the results of the Borda count

for each category.
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Figure 5.8: Task Preference.

5.4 Analysis and Discussion

Table 5.2 shows mixed transparency (MT) as the overall winner and people’s choice winner,

in accordance with hypotheses HT1 and HT2. The data suggests that central transparency

is better than peripheral transparency, confirming my hypothesis HT3.

Mixed Transparency. This mode is the overall best choice for operators. The data

suggests that this mode has the best information quality and quantity. The operators could

choose between the information they wanted to use from the central transparency (CT) and

peripheral transparency (PT) modes. However, operators experienced more complexity

and arousal due to the increased availability of information. The usability test suggested

this mode as the best for obtaining teammates information; intent and action. This justifies

the fact that mixed transparency is the first choice.
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Central Transparency. This mode has the least complexity and arousal, as operators

got information at the center of the screen and they could focus on the information. The

operators preferred to use on-robot status as compared to the robot panel. Thus they

experienced better information quality and clarity as compared to peripheral transparency

(PT). This mode is the best for understanding the status and behavior of the robots. 10

operators preferred this mode over peripheral transparency, making it the second choice

overall.

Peripheral Transparency. The operators found the information displayed at the

border of the interface screen hard to parse and access. This led to increased effort,

complexity, and arousal when compared with the central transparency interface. However,

as the information was available on-demand and not constantly displayed in the field of

view, the perceived frustration was the least. In this mode, operators preferred the visual

panels over the text-based log. Additionally, the operators preferred this mode over central

transparency to stay aware of the teammate’s intention.

The experiments did not report a substantial difference in performance across trans-

parency modes. We hypothesize that this lack of difference is due to a learning effect

across the four runs each team had to perform. We could not avoid this learning effect

through randomization of the transparency modes. Fig. 5.9 shows the performance in

each task and Fig. 5.10 shows the increase in performance in order of the performed task

(learning effect). However, the task performance dropped or stayed same for groups who

used no transparency mode after using other transparency modes.

5.5 Chapter Summary

In this chapter, I studied the effects of different transparency modes in a multi-human

multi-robot interaction. I classified the transparency based on the region of the field of
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Figure 5.9: Task performance for each transparency mode.

Figure 5.10: Learning effect in the user study.

view (central and peripheral transparency) and a combination of them. I demonstrated the

design of the first mixed reality interface that supports different modes of transparency and
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provides both operator-level and robot-level information.

I performed a user study with 18 operators to test and validate the effects of these modes

of transparency on an operator’s awareness, workload, trust, and interaction. I predicted

mixed transparency to outperform other modes in terms of overall effect and usability. The

results of the study suggested the same and operators chose mixed transparency as the best

mode to use. I also compared central transparency with peripheral transparency. Although

there was a close contest, more operators preferred central transparency (55.55%) over

peripheral transparency (45.45%).



Chapter 6

Cooperation among Operators

Communication between humans and robots has been a field of key interest since the

conceptualization of Asimov’s three laws of robotics [8]. Ever since, humans have been

expanding the boundaries of robotics towards the vision of a shared work space [22, 77].

The next step of this vision is to include more than one human in the system, adding a layer

of inter-human communication. Although inter-human communication has been studied

extensively [220], it has sparsely been investigated with robots involved in the chain of

communication.

Communication between humans can be direct, indirect, or a mix of both. Direct

communication is an explicit form of information exchange such as verbal communi-

cation or communication through gestures. Indirect communication is an implicit form

of information exchange encoded through mechanisms such as social cues and body

language [95].

However, the specific communication mechanisms are likely to be different from purely

inter-human communication when robots become part of the system [157, 200].

Direct communication can be a mix of verbal communication and gesture (non-verbal

pointing, nodding and/or facial expressions) communication. Through direct communica-

tion, operators can explicitly declare their actions and intentions and expect an explicit

77
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acknowledgement. Operators can also guide each other or request help from others in case

of system failures.

Indirect communication occurs by making the operator-level activities transparent [17,

23, 38, 148, 196, 235]. An operator can monitor other operators’ actions to understand their

intentions and predict future actions. The operator help others by observing their actions

and robots to predict the chance of failure based on their current actions.

There has been little attention in research with the context on inter-human commu-

nication in a multi-human multi-robot interaction. In this chapter, I explore the effects

of different types of communication on operator-level interaction, task awareness, trust,

and workload in a collaborative task. I categorize communication as: no communication

(NC), direct communication (DC), indirect communication (IC) and mixed communication

(MC). The operators verbally communicate as a form of direct communication and use

the transparent interface to engage in indirect communication. Mixed communication is

an combination of direct and indirect communication. I investigate the effects of types of

communication through a study with 18 operators, in teams of 2, and 9 robots involved in

an object transport scenario.

The chapter is organized as follows. In Sec. 6.1 I discuss background literature

on human-robot communication. In Sec. 6.2 I present the design of my interface with

transparency features. In Sec. 6.3 I detail the user study, with a discussion of the results in

Sec. 6.4. I summarize the chapter in Sec. 6.5.

6.1 Related Work on Human Communication

Communication is an exchange of information, either direct or indirect, between the

constituents of the interaction. There has been a substantial development in verbal and

non-verbal communication between humans and robots [157, 200]. Humans can verbally
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communicate with robots using natural language [19] to explicitly convey their intention.

Humans can non-verbally communicate through social cues [199], facial expressions [146]

and eye gaze [3, 23] to implicitly convey their intentions. In addition to communication

between a human and a robot, humans can also communicate with multiple robots at

once, using body and hand gestures [5, 167, 169], tactile interfaces [128, 178], hand-held

devices [57, 182] and haptic devices [208].

Lakhmani et al. [126] presented a method for direct communication between an opera-

tor and a robot. The authors classified the communication in directional and bidirectional.

In directional communication only the robot can send information to the operator. In

bidirectional communication, both operator and robot can send information to each other.

The authors reported that the operator performed better with directional communication

as compared to bidirectional communication. This work, however, is limited to direct

communication between a human and a robot, and does not consider indirect forms of

communication.

Che et al. [34], compare the effects of direct and indirect communication between a

human and a robot in a navigation task. In this work, the human acts as a bystander and

the robot has to navigate around the human. The robot can either indirectly predict the

human’s direction of movement and navigate around, or can directly notify the human

about its intentions of moving in a direction. The authors reported that the combination of

indirect and direct communication positively impacts the humans performance and trust.

The study, however, is limited to a human bystander sharing an environment with a robot,

and is not applicable to a human operator responsible for interacting with the robot.

To the best of my knowledge, there is no work that studies communication between

human operators in a multi-human multi-robot interaction and its effects on the interaction

between human operators.
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Figure 6.1: Collective transport state machine.

6.2 Transparent Multi-Human Multi-Robot Interface

The multi-robot system and the interface are same as those presented in Sec. 4.2.2. I

use the finite state machine based collective transport behaviour. Fig. 6.1 shows the state

machine with state transition conditions. This behavior is identical to the one presented in

Sec. 3.2.4.

6.2.1 Transparency

I use the transparency features of the interface, a combination of central transparency

and peripheral transparency (explained in Chapter 5), to provide indirect communication
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Figure 6.2: Transparency features in the mixed reality interface. The overlaid black arrow
indicate the text-based log. The overlaid red arrow indicates the Robot Panel. The overlaid
green arrow indicates the on-robot status. The overlaid orange arrow indicates the object
panel.

between operators. Through these features, an operator can monitor other operators’

actions, intentions, and system failures. The interface reflects the operators’ actions

through a text-based log, shared awareness, the robot panel , the robot status, and the

object panel (shown in Fig. 6.2).

Text-based Log. The text-based log reports the actions taken by other operators. The

interface updates the log every time other operators manipulate any virtual container. The

log stores the last three actions and discards the rest.

Shared Awareness. The interface synchronously changes the positions of the virtual

containers in the mixed reality view every time an operator manipulates them, hence
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sharing awareness. This includes object manipulation, robot manipulation, and robot-team

selection and manipulation.

Robot Panel and On-Robot Status. The interface highlights the robot icons and

changes on-robot state corresponding to the robots that are moving or performing operator-

defined actions. This feature helps other operators observe and avoid the use of robots that

are performing a certain operation. The panel displays a blinking red exclamation point

and on-robot status displays an error if a robot is stuck or behaves incorrectly. This feature

allows operators to instruct or help others in case of system failures.

Object Panel. The interface highlights the object icon corresponding to the object

being moved by the robots. Additionally, the interface offers the option of selecting an

object icon to lock it for future use. An operator can lock the object by tapping the lock

icon. This will change the color of the lock to blue, signifying the selection. An operator

can select only one object at a time, and the interface will remove the past highlights. The

interface of the other operators highlights the lock with a red icon. This reflects the locking

of other operators by highlighting the lock with a red color.

6.3 User Study

6.3.1 Hypotheses

This study investigates the effects of direct and indirect communication on multi-human

multi-robot interaction. Hence, I base the experiments on three hypotheses:

• HC1: Mixed communication (MC) has the best outcome as compared to the other

modes, in terms of situational awareness, trust, interaction score and task load.

• HC2: Operators prefer mixed communication (MC) to the other modes.
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Figure 6.3: User study experiment setup.

• HC3: Operators prefer direct communication (DC) over indirect communication

(IC).

6.3.2 Experimental Setup

I designed a game scenario with object transportation tasks for 6 objects (2 big objects

and 4 small objects). The operators receive points, associated with each object, upon

completing the transportation of an object. The big objects were worth 2 points each and

small objects were 1 point each, thus 8 points in total. The operators, in teams of 2, had

to interact with robots for transporting these objects from their initial position to a goal

region in a duration of maximum 8 minutes. Operators can manipulate big objects with

either object control, robot control, or robot-team control modality, while small objects
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can only be manipulated with the robot and robot-team modalities. The operators were

given 9 robots to complete the game. Fig. 6.3 shows the initial positions of the objects and

the robots. All the participants had to perform the task 4 times with a different mode of

communication. The communication modes are explained as follows:

No Communication (NC): Operators cannot communicate directly or indirectly while

performing the task.

Direct Communication (DC): Operators can communicate verbally and non-verbally

while performing the task. They can directly ask for help or provide help through direct

communication.

Indirect Communication (IC): Operators can communicate indirectly through the

transparency features of the interface. Operators can understand the intentions and actions

of the teammate through the transparent features in the mixed reality interface.

Mixed Communication (MC): Operators can communicate directly and indirectly

while performing the task.

6.3.3 Participant Sample

I recruited 18 students from the university (11 male, 7 females) with age ranging from

20 to 30 years old (M = 24.17, SD = 2.68). No participant had any prior experience of

interacting with the interface.

6.3.4 Procedures

Each study session had two participants and took 105 minutes approximately. I explained

the study to the participants after signing a consent form and gave 10 minutes to play with

the interface. I randomized the order of the tasks to reduce the influence of the learning

effect.
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6.3.5 Metrics

I recorded subjective measures from the operators and objective measures from the task

for each trial. I used the following scales as metrics:

Situational Awareness. I measured situational awareness using the Situational Aware-

ness Rating Technique (SART) [218] on a 4-point Likert scale [143] to compare the

awareness of the situation after each task.

Task Workload. I used the NASA TLX [90] scale on a 4-point Likert scale to compare

the perceived workload in each task.

Trust. I employed the trust questionnaire [224] on a 4-point Likert scale to compare

the trust in the interface affected by each transparency mode.

Interaction. I used a custom questionnaire on a 5-point Likert scale to assess the

effects of communication. The interaction questionnaire had the following questions:

- Did you understand your teammate’s intentions? Were you able to understand why

your teammate was taking a certain action?

- Could you understand your teammate’s actions? Could you understand what your

teammate was doing at any particular time?

- Could you follow the progress of the task? While performing the tasks, were you

able to gauge how much of it was pending?

- Did you understand what the robots were doing? At all times, were you sure how

and why the robots were behaving the way they did?

- Was the information provided by the interface clear to understand?

Performance. I measured the performance achieved for each communication task by

using the points earned for each task as a metric to quantify .
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Usability. I asked participants to select the features (Log, Robot Panel, Object Panel,

and On-Robot Status) they used during the study. Additionally, I asked them to rank

communication modes from 1 to 4, 1 being the highest rank.

6.3.6 Results

I analyzed data using the Friedman test [75] and summarized the results based on the

significance and the mean ranks. Table 6.1 shows the summarized results along with

relationship ranking between the communication modes. I formed the rankings for each

scale using the mean ranks of the Friedman test. I categorized the relationship with a

significance of p < 0.05 and a marginal significance of p < 0.10.

Fig. 6.4 shows the usability results, i.e., the percentage of operators that used a particular

feature for completing a specific task. Fig. 6.5 shows the communication mode choice

ranking, i.e., the percentage of operators and the priority of their preference.

I used the Borda count [20] to quantify all the derived rankings based on data and

preference to find an overall winner. I inverted the ranking of the negative scales when

calculating the Borda count. Table 6.2 shows the Borda count results.

6.4 Analysis and Discussion

Table 6.1 shows that mixed communication (MC) has the best information quality and

quantity, leading to the best awareness and trust. However, with more information, the

operators experienced greater instability of situation and variability of situation (see SART

Subjective Scale section of Table 6.1). Operators found mixed communication as the best

choice through both data and preference (see Table 6.2), hence conforming the hypotheses

HC1 and HC2.
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Table 6.1: Results with relationships between communication modes. The relationship are
based on mean ranks obtained through Friedman Test. The symbol ∗ denotes significant
difference (p < 0.05) and the symbol ∗∗ denotes marginally significant difference (p <
0.10). The symbol − denotes negative scales and lower ranking is a good ranking.

Attributes Relationship χ2(3) p-value
SART SUBJECTIVE SCALE

Instability of Situation− NC>IC>DC>MC∗ 9.000 0.029
Complexity of Situation− not significant 2.324 0.508
Variability of Situation− IC>NC>MC>DC∗ 9.303 0.026

Arousal IC>NC>MC>DC∗ 6.371 0.095
Concentration of Attention IC>NC>DC>MC∗ 17.149 0.001

Spare Mental Capacity not significant 5.858 0.119
Information Quantity MC>DC>IC>NC∗ 15.075 0.002
Information Quality MC>DC>IC>NC∗ 15.005 0.002

Familiarity with Situation not significant 6.468 0.101

NASA TLX SUBJECTIVE SCALE
Mental Demand− not significant 2.226 0.527

Physical Demand− not significant 2.165 0.539
Temporal Demand− not significant 3.432 0.330

Performance not significant 0.412 0.938
Effort− not significant 1.450 0.694

Frustration− not significant 4.454 0.216

TRUST SUBJECTIVE SCALE
Competence not significant 4.740 0.192
Predictability MC>IC>DC>NC∗ 10.626 0.014

Reliability MC>IC>DC>NC∗ 8.443 0.038
Faith MC>IC>DC>NC∗ 9.451 0.024

Overall Trust MC>IC>DC>NC∗∗ 6.633 0.085
Accuracy not significant 1.891 0.595

INTERACTION SUBJECTIVE SCALE
Teammate’s Intent DC>MC>IC>NC∗ 19.610 0.000
Teammate’s Action MC>DC>IC>NC∗ 13.810 0.003

Task Progress MC>DC>IC>NC∗ 9.686 0.021
Robot Status not significant 0.811 0.847

Information Clarity not significant 5.625 0.131

PERFORMANCE OBJECTIVE SCALE
Points Scored not significant 0.808 0.848
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Figure 6.4: Feature Usability.

Table 6.2: Ranking scores based on the Borda count. The gray cells indicate the leading
scenario for each type of ranking.

Borda Count NC DC IC MC
Based on Collected Data Ranking (Table 6.1) 18 34 33 45
Based on Preference Data Ranking (Fig. 6.5) 18 49 41 72

Direct communication (DC), compared to indirect communication (IC), had better

information quality and quantity, leading to a better awareness. However, similar to

the mixed communication, the operators experienced greater instability of situation and

variability of situation. Although trust is higher in indirect communication, operators

prefer direct communication. The Borda count for preference data shows the precedence

of direct communication over indirect communication, supporting the hypothesis HC3.

However, in the absence of direct communication, the operators concentrated more on
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Figure 6.5: Task Preference.

the task, leading to a higher level of arousal and better trust (see Trust Subjective Scale

section of Table 6.1). Although indirect communication provides more diverse and more

visually augmented information, operators relied on direct communication when working

as a team. I also observed operators directly communicating either at the start of the

task, to define a strategy, or nearing the end of the task, coordinate the last part of the

task. One reason can be the familiarity of information. Humans are more familiar with

direct communication. The operators were new to the transparency-based information

and were unable to use it as effectively as that from direct communication. This raises

another research question and a potential future study to compare the effects of mixed

communication on novice operators and on expert operators.

The experiments did not report a substantial difference in performance across communi-
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Figure 6.6: Task performance for each communication mode.

cation modes. However, I hypothesize that this lack of difference is because of the learning

effect across the trials each team had to perform. Fig. 6.6 represent the points earned

for each communication mode and Fig. 6.7 shows the learning effects as the increase in

objective performance in order of the performed task.

6.5 Chapter Summary

In this work, I studied different communication methods between human operators in

a multi-human multi-robot interaction. I characterized communication as either direct,

indirect, or a mix of both. Operators could engage in direct communication by verbal

exchange of information about themselves, the robots, or the task. Operators could engage

in indirect communication by using transparency-based information exchange. Through
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Figure 6.7: Learning effect in the user study.

transparency, operators could broadcast their intentions, and actions while monitoring their

teammates.

I performed a user study to determine the effects of different communication modes

on an operator’s awareness, trust, workload, and usability. The results indicated mixed

communication as the best in terms of subjective metrics and usability. The results also

showed the precedence of direct communication over indirect communication. Operators

preferred verbally communicated information over transparency-based information for

effective teamwork.





Chapter 7

Remote Interaction

Multi-robot systems promise solutions for missions in which direct human involvement

is either impossible or undesirable, such as search-and-rescue, firefighting, planetary

exploration, and ocean restoration [162]. When multiple robots are deployed to perform

complex missions, autonomy is only part of the picture. Along with autonomy, it is equally

important for human operators to monitor and affect the behavior of the robots. This

creates the issue of designing effective solutions for remote interaction between humans

and multiple robots.

While a significant body of work exists in remote interaction involving single humans

and one or more robots, the scenario in which multiple humans interact with multiple

robots has received little attention. In this chapter, we argue that it will be common for

multiple humans to cooperate in the supervision of multiple robots. First, the amount of

information generated by the robots is likely to exceed the span of apprehension of any

individual operator [160], even when considering highly skilled ones such as video gamers.

Cooperation among human operators would make monitoring more efficient. Second, the

involvement of multiple humans allows for improved flexibility in robot control and task

assignment, an important advantage in complex operations.

However, the involvement of multiple humans comes with old and new challenges.

93
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Among the old, we highlight the need for information transparency, which is the ability

of the interface-robot system to convey useful data for the operators to understand and

modify the status of the robots [17, 33, 40, 196, 223, 235]. Multiple operators also create

the new challenge of conveying intentions and actions to other operators, i.e., effective

inter-human communication, for better cooperation and conflict mitigation [220]. Inter-

human communication can be either direct or indirect. Direct communication includes

verbal and non-verbal communication (e.g., gestures) [95]. Indirect communication is

mediated through the remote interface (e.g., a graphical user interface on a laptop or tablet).

Effective indirect communication requires inter-operator transparency, which pushes for

interface designs that make it simple for operators far away from each other to exchange

information on their intentions and plans [17, 23, 38, 148, 196, 235].

In this chapter, I explore the design space of remote interfaces for multi-human multi-

robot interaction. I study the role of direct and indirect communication among operators,

and investigate how to achieve high levels of information and inter-operator transparency

through several variants of my interface. The result of this work is a set of recommendations

on which design elements contribute to making a remote interface effective. This part of the

study builds upon Chapters 5 and 6 in which I investigated transparency and inter-human

communication on the performance of human operators in proximal interaction. Proximal

interaction occurs when humans and robots share the same environment.

Remote interaction allows us to study another important aspect—the role of information

loss. In this chapter, I consider information loss as a decrease in the frequency of the visual

information presented to the operators. I measure information loss as the time interval,

measured in seconds, between the delivery of consecutive video frames (the inverse of

frames per second). Packet loss, bandwidth limitations, and geographical distance between

the locations of the operators and the robots act as causal factors for information loss.

Information loss leads to degraded operator performance, lack of awareness and trust, and
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increase in cognitive workload [62].

The last factor I consider in my study is that, in presence of non-ideal communication,

it is also likely that the operators experience heterogeneous levels of information loss,

causing a disparity in workload and situational awareness across operators.

The main contributions of this chapter can be summarized as follows:

• I provide an extensive investigation of the design space of remote interfaces for

multi-human multi-robot interaction. I consider factors such as direct and indirect

communication, information and inter-operator transparency, and homogeneous and

heterogeneous information loss.

• I compile a set of design recommendations validated through a user study that

included 48 participants. I implemented a highly configurable remote interface that

incorporates these recommendations and enables future studies of this kind.

This chapter is organized as follows. I discuss related literature on remote human-robot

interaction in Sec. 7.1. In Sec. 7.2, I discuss the design of my configurable remote interface.

I report the results of the user study in ideal conditions in Sec. 7.3. I then introduce different

types of information loss and report the results of a dedicated user study in Sec. 7.4. I

summarize the contributions and outline directions for future work in Sec. 7.5.

7.1 Related Work on Remote Interaction

Remote robot control and manipulations has been a field of interest since Goertz and

Thompson laid the foundation of modern tele-operation [80]. The field has mostly focused

manipulators [94, 109, 141, 142, 225] rather than on mobile robots. This body of research

has contributed advancements in tele-presence [58, 70, 119, 120], tele-robotics [171, 189],

tele-operation [96, 105, 149, 154, 202], and tele-surgery [52, 184, 209]. This research



96 CHAPTER 7. REMOTE INTERACTION

has focused on identifying suitable interfaces and improving their usability [68, 104,

124, 147, 166, 191, 194, 234], as well as proposing novel control architectures for these

interfaces [45, 59, 129, 134]. Chen et al. [39] categorize existing research according to

the factors that affect remote control of robots. These factors are field of view, system

orientation, camera viewpoints, depth perception, degraded video quality, time delay, and

camera motion. Building upon this work, Feth et al. [71] and Kim et al. [116, 117] present

a shared control framework to allow multiple operators to interact with manipulators. Lee

et al. [60] extend these shared control frameworks to study the impact of information

delay on the performance of human operators. In their work, the authors incorporate

a passivity-based controller to counteract the negative effects of information delay on

operator’s performance. These works are limited to interface design for remote interaction

with industrial manipulators, and their findings may not be applicable to remote interface

for manipulating numerous mobile robots. To the best of my knowledge, the study is the

first study that investigates the impact of transparency and inter-human communication on

a multi-human multi-robot interaction.

Loss of information has been recognized as a key factor in the performance and

engagement of human operators [37, 39, 53, 62, 127, 150, 155, 190, 212, 231]. Research

suggests that the effect of information loss and the ability to handle the loss may vary

according to the tasks and the interface to interact with the system. To overcome the

degradation in performance, there are three methods to mitigate the effects of loss on the

performance of human operators. These methods are adopting passivity-based control

methods [45, 94, 109, 135, 225], predictive displays [11, 27, 48, 51, 114, 115, 172, 192, 211]

and higher granularity of control [9, 122, 182]. However, these studies are limited to the

scenario in which a single operator interacts with one of more robots. The study furthers

this line of research by providing an extensive investigation of the factors that affect

the design of remote interfaces for multi-human multi-robot interaction in presence of
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information loss.

7.2 System Design

In this section, I present the main features of the remote interface and the behavior of

the robots. At its essence, the interface is a web-based client-server architecture. The

server runs ARGoS [186], a fast multi-robot simulator, on a node offered by Amazon

Web Services1. The server is implemented as a visualization plugin that accepts multiple

connections from the clients. The client side is a web application implemented with

Node.js2 and WebGL3 which offers similar features with respect to the original graphical

visualization of ARGoS. A diagram of the client-server architecture is reported in Fig. 7.1

and a screenshot of the web interface is shown in Fig. 7.2. The source code of the system

is available online as open source software.4

The process starts when a user performs a command on the client. The web interface

allows the user to operate at multiple levels of granularity. In Chapter 3, I found that

mixed granularity of control offers superior usability in complex missions that require both

navigation and environment modification. Similarly to [183], in this chapter I focus on a

collective transport scenario due to the compositional nature that this kind of task presents

— collective transport combines navigation, task allocation, and object manipulation. The

interface is therefore designed for this scenario and it mirrors many of the features I

presented in [183]. It is important to highlight, however, that the remote interface presented

here is a completely new artifact based on a different technology: in fact, the work in [183]

studied proximal interactions with a touch-based interface.

1https://aws.amazon.com/
2https://nodejs.org/
3https://get.webgl.org/
4https://github.com/NESTLab/argos3-webviz

https://aws.amazon.com/
https://nodejs.org/
https://get.webgl.org/
https://github.com/NESTLab/argos3-webviz
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Figure 7.1: System overview.

7.2.1 Collective Transport

I employ a collective transport behavior based on the finite state machine shown in Fig. 7.3.

The behavior is identical to the one discussed in Chapter 3.

7.2.2 User Interface

Object Manipulation. Object manipulation is triggered when an operator selects an

object with a left click. The goal position always requires a right click, and the interface
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Figure 7.2: Screenshot of the interface running on an internet browser.

overlays the selected object with a transparent bounding box. The operator can also define

the goal position for multiple objects. In this case, the robots autonomously distributed

across the objects and transport them using the collective transport behavior. If two or

more operators manipulate the same object, the interface keeps the position specified by

the last operator. Fig. 7.4a shows a selected object overlaid with a bounding box. Fig. 7.4b

illustrates how the goal position is visualized. The desired position and orientation of the

object is conveyed by the interface as shown in Fig. 7.4c and 7.4d.

Robot Manipulation. Robot manipulation starts with an operator selecting a robot

with a left click. The goal position is assigned using a right click. The interface overlays

the selected robot with a transparent bounding box convey the current selection. The

operator can define the goal position for multiple robots at once. If the robot is performing

the collective transport behavior during this request, other robots in the collective transport
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Figure 7.3: Collective transport state machine.

team pause their operation until the selected robot reaches the desired position. In case

the robot is a part of an operator-defined team, the selected robot navigates to the newly

specified position and other robots continue their respective operations. When two or

more operators want to manipulate the same robot, the interface processes the position

specified by the last operator. Fig. 7.5a shows a selected robot overlaid with a bounding

box to visualize the current selection. Fig. 7.5b shows the goal position determined by the

operator and visualized as a colored representation of the selected robot. The color of the

goal position matches the color of the fiducial markers to differentiate between the goal

positions of different robots. Fig. 7.5c shows the selected robot navigating to the specified

goal position.

Robot Team Selection and Manipulation. In addition to manipulating a single robot,

the operator can select a team of robots by pressing control key and clicking the left mouse
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(a) Object recognition (b) New Goal Defined

(c) Robots push the object (d) Robots rotate the object

Figure 7.4: Object manipulation by interaction with the object through the interface.

button. The goal position is still assigned with a right click. The interface overlays a

transparent bounding box over all the selected robots to identify the current selection. If

two or more operators have the same robot in their team, then the common robot navigates

to the position specified by the last operator without affecting other robots in other teams.

Fig. 7.6a shows a screenshot in which the selected robots are overlaid with a bounding box.

Fig. 7.6b shows the goal position visualized as colored virtual objects, one for each of the

selected robots. The color of the virtual objects matches the color of the fiducial markers

on the body of the robots. Fig. 7.6c shows the robots navigating to the goal position.
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(a) Robot selection (b) New robot position

(c) Robot navigating to new position

Figure 7.5: Robot manipulation by interacting with the robots through the interface.

7.2.3 Transparency Modes

To investigate the role of various elements of the user interface, I endowed the client with

the possibility to provide information to the user in several modalities. The main insight

in my work is to consider the natural field of view of the human eye (see Fig. 7.7). I

implemented the client to allow for both central transparency, i.e., displaying elements

in the center of the screen or directly above robots and objects (green region in Fig. 7.7);

and peripheral transparency, i.e., relegating interface elements to the borders of the

screen (yellow region in Fig. 7.7). The key difference between central and peripheral

transparency is the type and quantity of information displayed. With central transparency,

the information is contextual and limited to the robots effectively visible on the screen



7.2. SYSTEM DESIGN 103

(a) Robot team selection (b) New robot positions

(c) Robots navigating to new position

Figure 7.6: Robot team creation and manipulation by interacting with the interface.

(which changes as the operator modifies the camera pose). Peripheral transparency, on the

other hand, always displays summary information on all the robots and the progress of

each task.

The interface can be configured to show or hide every element. For the purposes of my

work, I identified four essential “transparency modes”:

• No Transparency (NT). The interface hides all the information originated by the

robots or other operators. The operator can still interact with robots and objects

using all the control modalities.

• Central Transparency (CT). The interface overlays a direction pointer and text
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Figure 7.7: Central and peripheral regions of the field of view. The overlaid green region
indicates the central field of view. The overlaid yellow region indicates the peripheral field
of view.

to indicate the heading and current task of each robot (as shown in Fig. 7.8). The

color of the pointer resembles the color of the fiducial markers on each robot

to differentiate between multiple pointers. The robot status displays the current

operation executed by the robot corresponding to the states of the collective transport

finite state machine (see Fig. 7.3). Additionally, the interface indicates the commands

of other operators, to foster shared awareness across operators. This information is

available only for entities in the operator’s field-of-view. The operator can move

around in the environment to view information of other robots and objects that are

not in the current field-of-view.
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Figure 7.8: Central transparency showing on-robot status and directional indicator.

• Peripheral Transparency (PT). The interface offers a robot panel, an object panel,

and a log window containing global information on the system and its constituents

(see Fig. 7.9). The robot panel contains one icon for each robot. The panel highlights

the icon corresponding to the robots that are moving or performing operator-defined

actions. The panel also displays a warning, through a blinking exclamation point, to

notify the operators of any fault conditions. These include getting stuck due to an

obstacle, and software or hardware failures. The object panel shows all the objects

in the environment. The interface highlights the objects currently manipulated by

the robots. The panel also provides a functionality to select an object by clicking

on the lock icon. An operator can convey their intention of manipulating an object

by selecting the lock in the object panel. The interface highlights the lock with a

blue icon to signify own selection and a red icon to indicate the selection of another
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Figure 7.9: Peripheral transparency mode showing robot panel, object panel and a log (left
to right).

operator. An operator can lock only one object at a time and cannot overwrite the

selection of other operators.

• Mixed Transparency (MT). The interface also allows one to enable both central

and peripheral transparency. In this case, the displayed information is a combination

of the two transparency modes.

7.2.4 Communication Modes

Analogously to transparency modes, the interface also defines different modes for inter-

human communication. I classify inter-human communication into direct, indirect, and a

combination of both. The communication modes are described as follows.
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• No Communication (NC). In this mode, the operators are completely unable to

communicate with each other. The interface hides all the information originating

from other operators, such as which robots are being used and which objects are

being manipulated.

• Direct Communication (DC). In this mode, the operators can communicate ver-

bally while performing the task. I established a verbal communication channel using

Zoom5, a video-conferencing application. The operators are allowed to ask for help

and strategize at will towards the completion of the task.

• Indirect Communication (IC). In contrast to direct communication, in this mode

the operators cannot verbally communicate their intentions and actions, but they can

use the presented transparency modes to communicate indirectly. In this chapter, the

choice of which transparency mode is active was determined by us at experiment

time for the purposes of my study. In a realistic setting, however, each operator is

allowed to choose the most appropriate mode.

• Mixed Communication (MC). In this mode, the operators can communicate both

directly and indirectly throughout the duration of the experiment.

7.3 User Study under Ideal Conditions

7.3.1 Preliminaries

The main purpose of this first set of experiments is to validate the usability of the various

transparency (T ) and communication (C) modes under ideal conditions in remote interac-

tion (R), i.e., with negligible loss of information. I base the experiments on the following

main hypotheses.
5www.zoom.us

www.zoom.us
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Hypotheses on the impact of different transparency modes:

• HR
T 1: Mixed transparency (MT) has the best outcome with respect to other modes.

• HR
T 2: Operators prefer mixed transparency (MT) over other modes.

• HR
T 3: Operators prefer central transparency (CT) over peripheral transparency (PT).

Hypotheses on the impact of different communication modes:

• HR
C1: Mixed communication (MC) has the best outcome with respect to other modes.

• HR
C2: Operators prefer mixed communication (MC) over other modes.

• HR
C3: Operators prefer direct communication (DC) over indirect communication

(IC).

Experimental Setup. I designed a game scenario (shown in Fig. 7.10) where the

operators were given 9 robots to transport 6 objects (2 big and 4 small) to a goal region.

Big objects were worth 2 points each, and small objects were worth 1 point each. The

operators had to work as a team to score as many points as possible, over a maximum

of 8, in experiments lasting 8 minutes. The operators could move the big objects using

the collective transport behavior, or directly use individual robots or team manipulation

commands to push the objects.

Participant Sample. For this user study, I recruited 28 university students. 14 of them

(5 female, 9 male), with ages ranging from 19 to 37 years old (23.28± 4.38), performed

the task four times with a different transparency mode (NT, CT, PT and MT) each time.

The other 14 participants (4 female, 10 male), with ages ranging from 18 to 48 years

old (23.64± 7.87), performed the task four times with a different communication mode

(NC, DC, IC and MC) each time. I chosen the teams and the assignments at random. No

participant had prior experience with the remote interface.
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Figure 7.10: Remote study experiment setup.

Procedures. Each session of the study had two participants and approximately took

a total of 105 minutes. After signing the consent form, I explained the task and gave

each participant 10 minutes to familiarize with the system. I randomized the order of the

tasks and the modalities to reduce the influence of learning effects. After each task, the

participants had to answer a subjective questionnaire.

Metrics. I recorded subjective and objective measures for each participant and each

task. I used the following common measures:

• Situational Awareness. I used the Situational Awareness Rating Technique (SART) [218]

on a 4-point Likert scale [143] to assess the awareness of the situation after each

task.

• Task Workload. I used the NASA TLX [90] scale on a 4-point Likert scale to
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- Did you understand your teammate’s intentions? Were you able to understand why
your teammate was taking a certain action?

- Could you understand your teammate’s actions? Could you understand what your
teammate was doing at any particular time?

- Could you follow the progress of the task? While performing the tasks, were you
able to gauge how much of it was pending?

- Did you understand what the robots were doing? At all times, were you sure how
and why the robots were behaving the way they did?

- Was the information provided by the interface clear to understand?

Figure 7.11: The subjective questionnaire employed in the user study to assess the quality
of interaction of an operator with the interface.

compare the perceived workload in each task.

• Trust. I used the trust questionnaire [224] on a 4-point Likert scale to compare the

trust in the interface affected by each transparency mode.

• Quality of Interaction. I used a custom questionnaire on a 5-point Likert scale to

assess the team-level and robot-level interaction. The interaction questionnaire is

reported in Fig. 7.11.

• Performance. I used the points earned for each task as a metric to scale the perfor-

mance achieved for each transparency mode.

• Usability. I asked participants to select the features (log, robot panel, object panel,

and on-robot status) they used during the study. Additionally, I asked them to rank

the transparency modes from 1 to 4, 1 being the highest rank.
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Table 7.1: Results with relationships between transparency modes. The relationships are
based on mean ranks obtained through a Friedman Test. The symbol ∗ denotes significant
difference (p < 0.05) and the symbol ∗∗ denotes marginally significant difference (p <
0.10). The symbol − denotes negative scales where lower ranking is better.

Attributes Relationship χ2(3) p-value
SART SUBJECTIVE SCALE

Instability of Situation− NT>PT>CT>MT∗∗ 9.554 0.023
Complexity of Situation− NT>PT>CT>MT∗∗ 16.950 0.001
Variability of Situation− not significant 2.452 0.484

Arousal MT>CT>PT>NT∗∗ 8.550 0.036
Concentration of Attention MT>CT>PT>NT∗∗ 11.898 0.008

Spare Mental Capacity not significant 2.209 0.530
Information Quantity MT>CT>PT>NT∗∗ 12.288 0.006
Information Quality MT>CT>PT>NT∗∗ 28.758 < 0.001

Familiarity with Situation CT>MT>PT>NT∗ 6.276 0.099

NASA TLX SUBJECTIVE SCALE
Mental Demand− NT>PT>CT=MT∗∗ 10.800 0.013

Physical Demand− not significant 5.634 0.131
Temporal Demand− not significant 1.760 0.624

Performance not significant 6.169 0.104
Effort− PT>NT>MT>CT∗∗ 6.630 0.085

Frustration− not significant 0.667 0.881

TRUST SUBJECTIVE SCALE
Competence MT>CT>PT>NT∗∗ 10.663 0.014
Predictability MT>CT>PT>NT∗∗ 19.469 < 0.001

Reliability MT>CT>PT>NT∗ 7.478 0.058
Faith MT>CT>PT>NT∗∗ 15.138 0.002

Overall Trust MT>CT>PT>NT∗∗ 18.210 < 0.001
Accuracy MT>CT>PT>NT∗∗ 10.590 0.014

INTERACTION SUBJECTIVE SCALE
Teammate’s Intent MT>CT>PT>NT∗∗ 9.923 0.019
Teammate’s Action MT>CT>NT>PT∗∗ 8.040 0.045

Task Progress MT>CT>PT>NT∗ 6.532 0.088
Robot Status MT>CT>PT>NT∗∗ 15.593 0.001

Information Clarity CT>MT>PT>NT∗∗ 8.414 0.038

PERFORMANCE OBJECTIVE SCALE
Points Scored not significant 3.444 0.328
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Figure 7.12: Feature usability in the transparency user study.

Table 7.2: Ranking scores, in the transparency user study, based on the Borda count. The
gray cells indicate the leading scenario for each type of ranking.

Borda Count NT CT PT MT
Based on Collected Data Ranking (Table 7.1) 22 63.5 38 76.5
Based on Preference Data Ranking (Fig. 7.13) 16 40 29 55

7.3.2 Analysis and Discussion

Collected Data

Transparency Data. Table 7.1 shows the summarized results for all the subjective scales

and the objective performance. I used the Friedman test [75] to analyze the data and assess

the significance between different modes of transparency. I derived a ranking based on the

mean ranks for all the attributes that showed statistical significance (p < 0.05) or marginal



7.3. USER STUDY UNDER IDEAL CONDITIONS 113

Figure 7.13: Task preference in the transparency user study.

significance (p < 0.10). Fig. 7.12 shows the percentage of operators using a particular

feature. Fig. 7.13 shows the percentage of people ranking a task based on their choice.

I used the Borda count [20] method for calculating the overall ranking of the collected

data and transparency mode usability data. I inverted the ranking of the negative scales for

calculating the Borda count scores. Table 7.2 shows the results of the Borda count for each

category.

Communication Data. Table 7.3 shows the summarized results of the communication

user study. I analyzed the data using the Friedman test [75] to assess the significant

relationships among different modes of communication. I used statistical significance

(p < 0.05) and marginal significance (p < 0.10) to derive a ranking based on their mean

ranks. Fig. 7.14 shows the percentage of operators using a particular feature. Fig. 7.15

shows the percentage of people ranking task based on their choice. Using the Borda count
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Table 7.3: Results with relationships between communication modes. The relationship are
based on mean ranks obtained through Friedman Test. The symbol ∗ denotes significant
difference (p < 0.05) and the symbol ∗∗ denotes marginally significant difference (p <
0.10). The symbol − denotes negative scales and lower ranking is a good ranking.

Attributes Relationship χ2(3) p-value
SART SUBJECTIVE SCALE

Instability of Situation− NC>DC>IC>MC∗∗ 29.105 < 0.001
Complexity of Situation− NC>IC>DC>MC∗∗ 14.921 0.002
Variability of Situation− NC>DC>IC>MC∗∗ 9.280 0.026

Arousal MC>DC>IC>NC∗∗ 28.240 < 0.001
Concentration of Attention MC>DC>IC>NC∗∗ 24.570 < 0.001

Spare Mental Capacity MC>DC>IC>NC∗∗ 23.579 < 0.001
Information Quantity not significant 3.286 0.350
Information Quality not significant 4.168 0.244

Familiarity with Situation MC>DC>IC>NC∗∗ 12.282 0.006

NASA TLX SUBJECTIVE SCALE
Mental Demand− NC>IC>DC>MC∗∗ 21.023 < 0.001

Physical Demand− NC>IC>DC>MC∗∗ 14.870 0.002
Temporal Demand− NC>IC>DC>MC∗∗ 17.433 0.001

Performance MC>DC>IC>NC∗∗ 12.429 0.006
Effort− NC>IC>DC>MC∗∗ 25.093 < 0.001

Frustration− NC>IC>DC>MC∗∗ 9.961 0.019

TRUST SUBJECTIVE SCALE
Competence MC>DC>IC>NC∗∗ 23.195 < 0.001
Predictability MC>IC>DC>NC∗∗ 16.059 0.001

Reliability MC>IC>DC>NC∗ 6.861 0.076
Faith MC>DC>IC>NC∗∗ 13.425 0.004

Overall Trust MC>DC>IC>NC∗∗ 17.396 0.001
Accuracy MC>DC>IC>NC∗∗ 16.171 0.001

INTERACTION SUBJECTIVE SCALE
Teammate’s Intent MC>DC>IC>NC∗∗ 19.848 < 0.001
Teammate’s Action MC>DC>IC>NC∗∗ 21.258 < 0.001

Task Progress MC>DC>IC>NC∗∗ 13.176 0.004
Robot Status MC>IC>DC>NC∗∗ 13.991 0.003

Information Clarity MC>IC>DC>NC∗∗ 25.160 < 0.001

PERFORMANCE OBJECTIVE SCALE
Points Scored not significant 3.444 0.328
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Figure 7.14: Feature usability in the communication user study.

Table 7.4: Ranking scores, in the communication user study, based on the Borda count.
The gray cells indicate the leading scenario for each type of ranking.

Borda Count NC DC IC MC
Based on Collected Data Ranking (Table 7.3) 24 67 53 96
Based on Preference Data Ranking (Fig. 7.15) 16 38 30 56

method, I derived an overall ranking based on the collected data and the user preference

data (shown in Table 7.4).I inverted the ranking of the negative scales for the Borda count

scores.

Transparency Modes

Table 7.2 shows that mixed transparency (MT) is the best transparency mode in terms of

usability, supporting hypotheses HR
T 1 and HR

T 2. From the results, central transparency
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Figure 7.15: Task preference in the communication user study.

(CT) dominates peripheral transparency (PT), supporting hypothesis HR
T 3. In addition to

this, I also analyzed the modes of transparency based on the sub-scales of the subjective

data and further analysed for each mode as follows.

Mixed Transparency. This mode is the overall best choice for the operators. The

results suggest that this mode provides the operators with the best situational awareness,

measured in terms of least instability of situation, complexity of situation, best information

arousal, level of concentration, information quality, and information quantity. Through this

transparency mode, the operators had the most information about actions and intentions of

teammates and robots, as well as of the task progress. This led the operators to report the

highest trust across all trust sub-scales.

Central Transparency. This mode is the second best choice after mixed transparency.

The operators had the best familiarity and clarity in terms of information provided by the
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interface. The operators experienced the lowest mental load and reported the least effort

in performing the task. Fig. 7.12 supports these findings as 92% (13 out of 14 operators)

indicated the on-robot status as the most useful feature.

Peripheral Transparency. The operators reported peripheral transparency as the

most cumbersome mode. The operators experienced the lowest awareness, which caused

degraded trust. The operators reported that the mode was merely better than no transparency

(NT), because the presence of some information is still better than no information.

Comparison with Proximal Interaction. Overall, the conclusions of this study are in

line those I reported for proximal interaction (see Chapter 5). However, the results in this

chapter are more substantial compared to what I observed for proximal interaction. Unlike

proximal interaction, mixed transparency in remote interaction was the clear winner, both

from the collected data ranking and the preference data ranking (see Table. 7.2). Central

transparency not only outperformed peripheral transparency in remote interaction, but

dominated the results when compared to the findings of the study with proximal interaction.

I speculate that this difference is due to the fact that, in proximal interaction, the operators

had to devote effort to avoid bumping into robots and other operators while walking. This

made the operators alert and anxious, affecting their focus on the information offered by

the interface and the transparency modes. In remote interaction, as there was no need to

physically move, the operators could focus on the displayed information more effectively.

Our experiments did not reveal a substantial difference in performance across trans-

parency modes. I hypothesize that this lack of difference is due to the learning effect across

the four runs that each team had to perform. Fig. 7.16 shows the performance in each task

and Fig. 7.17 reports the increase in performance due to the task order (learning effect). As

most of the teams were able to complete the task in less than 8 minutes, Fig. 7.18 shows

the decrease in time taken to complete the task in order of the performed task, indicating

the impact of the learning effect.
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Figure 7.16: Task performance for each transparency mode.

Modes of Communication

Table 7.4 suggests that mixed communication (MC) is the best mode of communication,

both in terms of usability preference and in terms of the data collected during the user

study, supporting hypotheses HR
C1 and HR

C2. In addition, direct communication (DC)

outperformed indirect communication (IC), confirming hypothesis HR
C3. I also analysed

the modes of communication based on the sub-scales of the subjective data and further

analysed for each mode.

Mixed Communication. Mixed communication was recognized as the best mode, not

only based on the Borda count but also looking at the results of the subjective data. This

mode had the best situational awareness, trust in the system, and interaction with the robots

and the operator, while having the lowest task load.

Direct Communication. This mode was the second best. It outperformed indirect
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Figure 7.17: Learning effect in the transparency user study based on points scored.

communication in terms of information awareness and communication with the other

operator (operator-level information), resulting in better trust in the system and lower

workload with respect to indirect communication.

Indirect Communication. This mode was the third best choice. This mode proved

to be better in conveying robot-level information, thus allowing the operator to better

understand and predict robot actions, when compared to direct communication. This made

the operators trust this mode more in terms of predictability and reliability, but at the

cost of experiencing higher workload in comparison to mixed communication and direct

communication.

Comparison with Proximal Interaction. Analogously to what I said about trans-

parency, these observations are in line with the results of the proximal interaction study.

However, the results of this study were more decisive with respect to the proximal interac-
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Figure 7.18: Learning effect in the transparency user study based on time taken to complete
the task.

tion study. Also in this case, I observed that the proximal interaction made the operators

alert and anxious about robots and the other operator. Also, as the operators had to physi-

cally walk around other robots, the interaction felt at times cumbersome. This observation

is supported by workload results of the proximal interaction studies in Chapter 6, indicating

high workload experienced in all modes of communication. In contrast, the results of

workload in remote interaction showed significant difference between communication

modes.

Our experiments did not reveal a significant difference in performance across com-

munication modes. Similarly to what I discussed for transparency, I hypothesize that this

lack of difference is due to the learning effect across the four runs that each team had to

perform. Fig. 7.19 indicates the points earned by the operators in each task and Fig. 7.20

shows the learning effect as the increase in points earned in order of the performed task. As
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Figure 7.19: Task performance for each communication mode.

most of the operator teams were able to complete the task earlier than 8 minutes, Fig. 7.21

shows the decrease in time taken to complete the task in order of the performed task as a

clear indicator of the learning effect.

7.4 User Study with Information Loss

The study presented so far was based on the assumption that the information flow was fast

and continuous for every operator. This was possible because all the users involved in

the experimental evaluation had fast, stable Internet connections that showed no issues.

However, in remote operations, fast and stable connectivity cannot be taken for granted.

For this reason, I investigate the role that intermittent information flow plays in the

efficiency of remote multi-human multi-robot interaction. In the rest of chapter, I measure

information loss as the time elapsed between two updates of the graphical user interface.
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Figure 7.20: Learning effect in the communication user study.

In other words, I define information loss as the inverse of the frame rate. With operators

and robots in separate environments, it is likely for the operators to experience different

levels of information loss. When this happens, I speak of heterogeneous information loss.

For the purposes of the study, I categorize information loss in two ranges of usability.

The high usability range (UH) corresponds to levels of information loss that cause negli-

gible discomfort in the operators that experience it. Conversely, we are in low usability

range (UL) when the level of information loss is such that an operator cannot ignore its

presence, experiencing some sort of discomfort.

In general, the exact extent of these ranges changes with the operators. I thus split

the study in two parts. In the pilot study (Sec. 7.4.1), I investigate the extent of the

usability ranges in experiments that involve a single operator. Next, in the main study (see

Sec. 7.4.2), I turn to multiple operators and assess the effect of heterogeneous information

loss, using the homogeneous case as a baseline reference.
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Figure 7.21: Learning effect in the communication user study.

7.4.1 Information Loss Pilot Study

Experimental Setup. For the pilot study with a single operator I used the game scenario

presented in Sec. 7.3 (see Fig. 7.10). The operator was tasked with performing half of the

game: moving 1 big object and 2 small objects. In contrast to the previous game, I set no

time limit to complete the task, instead declaring completion when the required objects

reached the goal region. Every participant had to perform the task 6 times with different

levels of information loss each time. The levels spanned from 0 s to 2.5 s in increments of

0.5 s. To compensate for possible learning effects or other confusing factors, I determined

different level orderings:

• Increasing order: information loss increases with every task.

• Decreasing order: the information loss decreases with every task.
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• Random 1: information loss is in the order {0, 2.5, 0.5, 2, 1, 1.5} s.

• Random 2: the reverse order with respect to Random 1.

Participant Sample. I recruited 20 university students (7 females, 13 males) with ages

ranging from 18 to 31 years old (22.75± 3.57). All participants were randomly assigned

one task ordering. Each participant performed the 6 tasks in the determined order. No

participant had prior experience with the remote interface.

Pilot Study Procedure. Each session of the study took approximately 90 minutes.

After signing the consent form, I explained the task setup and gave the participant 12

minutes to familiarize with the system. After each task, the participant had to answer a

subjective questionnaire.

Metrics. I recorded the subjective and objective measures for each participant for each

task. The performance of the operator was measured as time taken to complete a task.

I used the NASA TLX [90] scale on a 10-point Likert scale to compare the perceived

workload in each task. In addition to the workload questionnaire, the participants were

requested to report the experienced discomfort on a 10-point Likert Scale, followed by a

comment box for free-form description of the type of discomfort experienced.

Results. For each item in the NASA TLX scale, I report a significance matrix based

on the Friedman test to identify the two ranges of usability. The results are shown in

Tables 7.5-7.12. The green cells in these tables indicate the high usability range and the

red cells indicate the low usability range. I also superimposed the usability ranges in

Table 7.13. From the data, I estimate the high usability range between 0 s and 0.5 s, and

the low usability range between 2 s and 2.5 s. For the upcoming main study on information

loss (Sec. 7.4.2), I took the midpoints of these ranges (0.25 s and 2.25 s). Figures 7.22-7.29

report the box plots of the recorded readings for the respective metrics.
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Table 7.5: Significance matrix for differences in performance between levels of information
loss. The shaded regions indicate the two ranges of usability. The cell entries are the
p-values based on the Friedman test. The empty cells represent a comparison with no
significant difference.

Performance 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.007 0.007 <0.001 0.002

0.5s 0.025 0.025
1s 0.007 0.025 0.025

1.5s 0.007
2s <0.001 0.025 0.025

2.5s 0.002 0.025 0.025

Table 7.6: Significance matrix for differences in mental load between levels of information
loss. The shaded regions indicate the two ranges of usability. The cell entries are the
p-values based on the Friedman test. The empty cells represent a comparison with no
significant difference.

ML 0s 0.5s 1s 1.5s 2s 2.5s
0s <0.001 0.008 <0.001 <0.001

0.5s 0.008 0.012 0.003
1s <0.001 0.008 0.018

1.5s 0.008 0.033 0.005
2s <0.001 0.012 0.033 0.002

2.5s <0.001 0.003 0.018 0.005 0.002

Table 7.7: Significance matrix for differences in physical load between levels of information
loss. The shaded regions indicate the two ranges of usability. The cell entries are the
p-values based on the Friedman test. The empty cells represent a comparison with no
significant difference.

PL 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.007 0.004 0.002 <0.001 <0.001

0.5s 0.007 0.008 0.004 0.02 0.033
1s 0.004 0.008

1.5s 0.002 0.004
2s <0.001 0.02

2.5s <0.001 0.033
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Table 7.8: Significance matrix for differences in temporal load between levels of infor-
mation loss. The shaded regions indicate the two ranges of usability. The cell entries are
the p-values based on the Friedman test. The empty cells represent a comparison with no
significant difference.

TL 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.013

0.5s 0.046
1s

1.5s 0.013 0.046
2s

2.5s

Table 7.9: Significance matrix for differences in perceived performance between levels of
information loss. The shaded regions indicate the two ranges of usability. The cell entries
are the p-values based on the Friedman test. The empty cells represent a comparison with
no significant difference.

PP 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.021 0.002

0.5s 0.034 0.02 0.033 0.033
1s 0.034

1.5s 0.021 0.02
2s 0.002 0.033

2.5s 0.033

Table 7.10: Significance matrix for differences in effort between levels of information loss.
The shaded regions indicate the two ranges of usability. The cell entries are the p-values
based on the Friedman test. The empty cells represent a comparison with no significant
difference.

E 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.005 0.018 0.039

0.5s 0.029 0.013 0.046
1s 0.005 0.029

1.5s
2s 0.018 0.013

2.5s 0.039 0.046
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Table 7.11: Significance matrix for differences in frustration between levels of information
loss. The shaded regions indicate the two ranges of usability. The cell entries are the
p-values based on the Friedman test. The empty cells represent a comparison with no
significant difference.

F 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.012 0.002 <0.001 <0.001

0.5s 0.012 <0.001 0.02 <0.001 0.001
1s 0.002 <0.001 0.018

1.5s 0.001 0.02 0.029 0.005
2s <0.001 <0.001 0.029

2.5s <0.001 0.001 0.018 0.005

Table 7.12: Significance matrix for differences in visual discomfort between levels of
information loss. The shaded regions indicate the two ranges of usability. The cell entries
are the p-values based on the Friedman test. The empty cells represent a comparison with
no significant difference.

VD 0s 0.5s 1s 1.5s 2s 2.5s
0s 0.035 0.001 0.013

0.5s 0.004 0.021
1s

1.5s 0.035
2s 0.001 0.004

2.5s 0.013 0.021

Table 7.13: Overlaid significance matrices for determining the range of operability.

VD 0s 0.5s 1s 1.5s 2s 2.5s
0s

0.5s
1s

1.5s
2s

2.5s

7.4.2 Information Loss Main Study

Experimental Setup. The final study I performed concerns the role of information loss

in remote interaction between multiple humans and multiple robots. A particular aspect I
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Figure 7.22: Box plot for performance, in time taken to complete the task. Lower is better.

Figure 7.23: Box plot for reported mental load. Lower is better.

intend to explore is the role of heterogeneous information loss across operators. To this

aim, I consider also the homogeneous case as a baseline. From the results of the pilot study
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Figure 7.24: Box plot for reported physical load. Lower is better.

Figure 7.25: Box plot for reported temporal load. Lower is better.
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Figure 7.26: Box plot for reported perceived performance. Higher is better.

Figure 7.27: Box plot for reported effort. Lower is better.
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Figure 7.28: Box plot for reported frustration. Lower is better.

Figure 7.29: Box plot for reported visual discomfort. Lower is better.



132 CHAPTER 7. REMOTE INTERACTION

in Sec. 7.4.1, I identified two levels of information loss: a low level, corresponding to high

usability (0.25 s), and a high level, corresponding to low usability (2.25 s). I again used the

collective transport game scenario and asked every participant to perform four experiments,

one for each combination of levels of information loss for the operators. Once more, I

randomized the order of the tasks to mitigate learning effects and other artifacts. In the

following figures and tables, I use the following symbols to denote the four cases:

• HoLL: low homogeneous information loss;

• HoHH : high homogeneous information loss;

• HeLH : heterogeneous information loss in which operator 1 has low loss and operator

2 has high loss;

• HeHL: heterogeneous information loss in which the operators are reversed with

respect to HeLH .

Hypotheses. I seek to validate the following working hypotheses:

• HIL1: The case of low homogeneous information loss is the best overall with respect

to the other cases in terms of measured metrics.

• HIL2: The operators prefer low homogeneous information loss to the other cases.

• HIL3: In the heterogeneous information loss case, operators prefer to be the ones

with low information loss.

• HIL4: Operators prefer to experience high information loss in the heterogeneous

case to being in the high homogeneous loss case.

Participant Sample. I randomly paired the participants of the pilot study, forming 10

teams. Each team went through the four aforementioned cases.
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Figure 7.30: Operator preferences in information loss.

Procedures. Each session took approximately 105 minutes. Each session began with

a training period, followed by 12 minutes of independent exploration of the system by the

participants. After each session, each participant had to answer a subjective questionnaire.

Metrics. I recorded subjective objective metrics for each participant and for each

case. I used the same metrics presented in Sec. 7.3. In addition, I recorded the number of

interactions the participants made with the interface, as well as the time interval between

those interactions. This allowed us to analyze the difference in workload between operators

of the same team.

Results. Tables 7.14 and 7.15 show the summarized results for the subjective scales

and the objective metrics. I used the Friedman test to establish significance between

different cases. I formed rankings based on the mean ranks for all the attributes that

showed statistical significance (p < 0.05) or marginal significance (p < 0.10). Tables 7.17

and 7.18 report an imbalance in awareness, workload, trust and interaction quality between

operators of the same team in tasks with heterogeneous information loss. Fig. 7.30 shows
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Table 7.14: Results of subjective scales with relationships between levels of information
loss. The relationships are based on mean ranks obtained through Friedman tests. The
symbol ∗ denotes a significant difference (p < 0.05) and the symbol ∗∗ denotes a marginally
significant difference (p < 0.10). The symbol − denotes negative scales where lower
ranking is better.

Attributes Relationship χ2(3) p-value
SART SUBJECTIVE SCALE

Instability of Situation− HoHH >HeHL >HeLH >HoLL 21.924 < 0.001
Complexity of Situation− HoHH >HeHL >HeLH >HoLL 26.024 < 0.001
Variability of Situation− HoHH >HeHL >HeLH >HoLL 27.862 < 0.001

Arousal HoLL >HeLH >HoHH >HeHL 18.850 < 0.001
Concentration of Attention HoLL >HeLH >HeHL >HoHH 16.088 < 0.001

Spare Mental Capacity HoLL >HeLH >HoHH >HeHL 10.112 0.018
Information Quantity HoLL >HeLH >HoHH >HeHL 7.014 0.071
Information Quality HoLL >HeLH >HeHL >HoHH 11.464 0.009

Familiarity with Situation HoLL >HeLH >HoHH >HeHL 6.949 0.074

NASA TLX SUBJECTIVE SCALE
Mental Demand− HoHH >HeHL >HeLH >HoLL 15.112 0.02

Physical Demand− HoHH=HeHL >HeLH >HoLL 9.089 0.028
Temporal Demand− not significant 5.447 0.142

Performance HoLL >HeLH >HeHL >HoHH 37.893 < 0.001
Effort− HoHH >HeHL >HeLH >HoLL 23.053 < 0.001

Frustration− HoHH >HeHL >HeLH >HoLL 21.124 < 0.001

TRUST SUBJECTIVE SCALE
Competence HoLL >HeLH >HeHL >HoHH 31.461 < 0.001
Predictability HoLL >HeLH >HeHL >HoHH 31.644 < 0.001

Reliability HoLL >HeLH >HeHL >HoHH 33.737 < 0.001
Faith HoLL >HeLH >HeHL >HoHH 31.210 < 0.001

Overall Trust HoLL >HeLH >HeHL >HoHH 35.083 < 0.001
Accuracy HoLL >HeLH >HeHL >HoHH 29.254 < 0.001

INTERACTION SUBJECTIVE SCALE
Teammate’s Intent not significant 5.880 0.118
Teammate’s Action HoLL >HoHH >HeHL >HeLH 7.718 0.052

Task Progress HoLL >HeLH >HoHH >HeHL 18.854 < 0.001
Robot Status HoLL >HeLH >HoHH >HeHL 34.420 < 0.001

Information Clarity HoLL >HoHH >HeLH >HeHL 6.703 0.082

which information loss cases were preferred by each operator. I used the Borda count [20]

to calculate the overall ranking. Table 7.16 shows the results of the Borda count for each
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Table 7.15: Results of objective metrics with relationships between levels of information
loss. The relationships are based on mean ranks obtained through Friedman tests. The
symbol ∗ denotes a significant difference (p < 0.05) and the symbol ∗∗ denotes a marginally
significant difference (p < 0.10). The symbol − denotes negative scales where lower
ranking is better.

Attributes Relationship χ2(3) p-value
PERFORMANCE OBJECTIVE SCALE

Time Taken for the task HoHH >HeHL=HeLH >HoLL 11.803 0.008
Number of Interactions HeLH >HoHH >HoLL >HeHL 17.258 0.008

Time gap between interactions HoHH >HeHL >HeLH >HoLL 11.220 0.011

Table 7.16: Ranking scores based on the Borda count. The gray cells indicate the best case
for each type of ranking.

Borda Count HoLL HoHH HeLH HeHL

Based on Collected Data Ranking (Tables 7.14 & 7.15) 104 36.5 74.5 45
Based on Preference Data Ranking (Fig. 7.30) 77 29 52 42

category.

Pilot and Main Study: Comparative Analysis

Pilot Study Data Analysis. Tables 7.5-7.29 and Figures 7.22-7.28 indicate that, with the

increase in information loss, the workload experienced by the operator increases while

performance degrades. I compared the number of interactions made with each level of

information loss, and found no significant difference. I also recorded the time interval

between interactions. The box plot of the median values (shown in Fig. 7.31) indicates

a significant increase (χ2(1) = 30.486, p < 0.001) in time waited between interactions,

according to the well-known waiting strategy observed in user studies with traditional

tele-operation and remote interaction systems [62].

Pilot Study Behavioral Analysis. I observed the behaviour of the operators during

and after each session. Two operators (out of 20) chose to stop their session with 2 s

and 2.5 s of information loss. They reported that they had reached their ability to handle
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Table 7.17: Results of subjective scales with attribute comparison between operators of the
same team. The comparisons are based on mean ranks obtained through the Friedman test.
The grey cells represent significant differences between operators in the same team.

Attributes
Homogeneous IL Heterogeneous

ILHoLL HoHH

χ2 p-value χ2 p-value χ2 p-value
SART SUBJECTIVE SCALE

Instability of Situation 0 1 0 1 0.6 0.439
Complexity of Situation 3 0.083 0 1 0.529 0.467
Variability of Situation 2.667 0.102 1.286 0.257 1.143 0.285

Arousal 0.5 0.480 0.667 0.414 7.143 0.008
Concentration of Attention 2.667 0.102 0.667 0.414 2.778 0.096

Spare Mental Capacity 0.2 0.655 1.286 0.257 5.444 0.02
Information Quantity 0.5 0.480 0.5 0.480 1.667 0.197
Information Quality 0.5 0.480 0.143 0.750 5.444 0.02

Familiarity with Situation 0.2 0.655 0 1 0.057 0.796
NASA TLX SUBJECTIVE SCALE

Mental Demand 0 1 0.5 0.48 3.257 0.071
Physical Demand 0.333 0.564 0.111 0.739 1.143 0.285
Temporal Demand 1 0.317 0.143 0.705 0.077 0.782

Performance 2 0.157 0.111 0.739 7.143 0.008
Effort 0 1 0.2 0.655 5.444 0.02

Frustration 0.333 0.564 0 1 3.267 0.071
TRUST SUBJECTIVE SCALE

Competence 0 1 1.8 0.180 9.308 0.002
Predictability 2 0.157 0 1 6.231 0.013

Reliability 0.333 0.564 2.667 0.102 6.231 0.013
Faith 0.333 0.564 0.667 0.414 3.769 0.052

Overall Trust 0 1 0.2 0.655 6.231 0.013
Accuracy 0 1 0.2 0.655 5.444 0.02

INTERACTION SUBJECTIVE SCALE
Teammate’s Intent 0.667 0.414 0 1 0.057 0.795
Teammate’s Action 1.8 0.180 0.143 0.705 0 1

Task Progress 0.333 0.564 2.667 0.102 2.579 0.108
Robot Status 0.667 0.414 0.4 0.527 5.333 0.021

Information Clarity 0.143 0.705 0.5 0.480 0.286 0.593

the high information loss. Eleven operators reported that they had reached their limit

of frustration at 2.5 s, but nevertheless chose to continue because of their never give up
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Table 7.18: Results of quantitative scales with attribute comparison between operators of
the same team. The comparisons are based on mean ranks obtained through the Friedman
test. The grey cells represent significant differences between operators in the same team.

Attributes
Homogeneous IL Heterogeneous

ILHoLL HoHH

χ2 p-value χ2 p-value χ2 p-value
PERFORMANCE OBJECTIVE SCALE

Number of Interactions 0.111 0.739 1 0.317 0 1
Time gap between interactions 0.4 0.527 1.6 0.206 0 1

Figure 7.31: Box plot of the recorded time gap between each interaction for each operator.

attitude and their willingness to help my research. Seven operators reported that they could

have handled higher than 2.5 s of loss because of their past experience with laggy systems

and internet. As for the discomfort experienced by the operators, three operators started

experiencing discomfort with 1 s of information loss; four operators with values over

1.5 s; three operators with information loss over 2 s; and six operators with information

loss over 2.5 s. The reported discomfort included a slight headache and fatigue in their
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eyes. As a part of the exit interview for the pilot study, I asked the participants if the

task order assigned to them impacted their performance in the study. The participants

in the increasing order of information loss reported that the increase in loss made them

ready for the next task and they expected the loss to increase. They reported that, with

each task, the familiarity with experiencing loss was increasing, causing them to be better

trained at handling it. All the participants in this category reported that they would have

been more frustrated if the task ordering was reversed and they would be most frustrated

if they had to experience the maximum information loss in the first task. However, the

participants in the decreasing order of information loss reported that they would have been

more frustrated if the information loss were increasing in each task. All the participants in

this cohort reported that, as the loss was decreasing, they knew the worst was over and the

tasks will only get easier from there on. I call this the count one’s blessing phenomenon:

the participants preferred and defended their task order, assuming that the reverse order

would only harm their performance and interaction quality.

Main Study Data Analysis. Table 7.16 shows that HoLL is the best information loss

case both in terms of usability preference and according to the data collected during the user

study. This supports my hypotheses HIL1 and HIL2 that low homogeneous information

loss is the best overall case. The HeLH case is the next best choice for the participants,

indicating preference for low personal information loss. This supports hypothesis, HIL3.

The HeHL case is the third choice, showing that either operator experiencing low loss is still

better than both operators experiencing high information loss. This supports hypothesis

HIL4.

Main Study Behavioral Analysis. I also observed the behaviour of the operators

during and after the sessions. Based on the preference shown in Fig. 7.30, I could

categorize the participants in four typologies. (a) The Egocentrics: ten participants gave

higher preference to the tasks with low information loss, and lower preference to the tasks
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with high information loss. However, when they had to rank their preference between the

options of choosing low and high information loss for themselves and give the other to

their teammate, the participants opted for low information loss even though that meant that

their teammate might get more frustrated by experiencing higher loss. (b) The Altruists:

five participants preferred to handle high information loss so that their teammate might

face lower levels of frustration while interacting with a low information loss. These

participants, the altruists, reported that they were confident in their ability to handle

high information loss, and with their teammate experiencing low information loss their

chances of completing the task might increase. (c) The Egalitarians: four participants

preferred homogeneous loss over heterogeneous loss, even if that means that both operators

would have to experience a high information loss. These participants reported that, with

homogeneous information loss, they could actively interact with their teammate and handle

equal workload, which they did not experience in tasks with heterogeneous information

loss. (d) The Thinker: one participant preferred high information loss over low information

loss. This participant reported that high information loss provided more time to think

before making the next step and could interact more with the fellow teammate while doing

so.

On the Out-of-the-Loop Performance Problem. Tables 7.17 and 7.18 show that the

participants experienced unbalanced awareness, workload, trust and interaction quality,

while engaging in the tasks with heterogeneous information loss. This imbalance indi-

cates that the operator experiencing high information loss will go out of the loop [66, 84].

However, the interaction quality scales show that the significant difference in informa-

tion awareness is observed only for the robot-level information and not on operator-level

information. I conclude this as there was no loss or delay experienced in the commu-

nication channel for this user study; future work could investigate the impact of loss of

communication between the operators.
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7.5 Chapter Summary

In this chapter, I studied the effects of transparency, inter-human communication, and

information loss on multi-human multi-robot interaction. I first performed a study of the

most effective interface elements to support information transparency and inter-operator

transparency. I analyzed the usability of my interface through a user study with 14

operators measuring awareness, workload, trust, and interaction efficiency. The findings

of the user study indicated mixed transparency as the best transparency mode and mixed

communication as the best communication mode.

I then studied the effects of information loss on the performance of the operators.

I performed two user studies. The first, a pilot study, aimed to identify the amount of

information loss that can be considered noticeable but bearable for the average operator,

and which amount of information loss is unbearable. Using the result of this study,

I performed a thorough exploration of the role of information loss in multi-operator

scenarios, comparing heterogeneous and homogeneous cases. I derived a set of behavioral

typologies of users, revealing that remote interaction must consider personal preferences

and individual attitude when forming groups of operators.



Chapter 8

Conclusion and Future Work

The future of humanity is filled with mobile robots. We envision mobile robots to aid

human operators in complex humanitarian missions, including exploring underwater caves

and the depths of the universe. Many researchers made successful contributions towards

this dream by investigating methods for controlling, understanding, and communicating

with the robots. The research in this domain extends from applications to teleoperation

systems, disaster management systems, and social robotic systems. The research scope

is widening, and multi-robot systems are taking a central place. Multi-robot systems are

inherently complex in nature because of the potentially large number of units involved.

The interaction with a multi-robot system is likely to exceed the limits of the span of

apprehension of any individual human operator. A solution to this problem is to include

more than one operator in the interaction.

However, with multiple human operators, additional challenges arise. These include

granularity of control, operator engagement, operator-level information transparency and

inter-human coordination. Beyond human-robot interaction [21, 233], these challenges

exists in domains where more than one human is in the loop, including human-computer

systems [91, 214, 246], human-machine systems [93, 106, 228], supervisory control sys-

tems [26, 151], and social interaction systems [12, 145, 181].

141
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The ideas that I propose have been investigated also in these domains and my research

confirms the benefits I discussed in the discipline of multi-human multi-robot interaction.

One such methods includes identifying the correct granularity of control. Granularity of

control is a major paradigm that improves operator engagement [65] and employing higher

granularity of control leads to lower workload experienced by the human operator [63, 72].

However, while interacting with multiple robots, using only high granularity of control

is not sufficient as it lacks the capability of fine-grained control to perform corrective

maneuvers. A mixed granularity of control can enable an operator to control both the

global goal and the local goals of multiple robots, improving the performance of the

operator while experiencing lower workload.

Depending on the workload, the operator will experience mind wavering [84] and

lower engagement [31, 185]. The negative impact on the engagement of the operator and

lack of awareness can cause the operator to go out-of-the-loop [27, 110]. Endsley [65]

suggests that the operators prefer to be constantly engaged with the tasks, rather than

switching from inactivity to a sudden moment of high load. The user studies in my work

confirm the benefit of keeping operator engaged.

Lack of awareness occurs due to lack of information [54, 161, 204] and lack of coordi-

nation [44, 102, 230] between human operators. The information transparency provides

awareness about the situation, positively impacting the performance of the operator [64].

Lee [133] proposes that the operators are exposed to information only when they request it

instead of information be constantly present on the interface. These results are applicable to

systems with multiple operators interacting with multiple robots. With limited information

available, the operators better focus on the task at hand, reducing the complexity of the sit-

uation. Similarly for operator coordination, operators prefer to verbally communicate their

general intentions in comparison to conveying each actions, simplifying the information

exchange between the operators [54].
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Besides the literature on the classical human-human systems, little attention has been

given to studies involving multiple human operators interacting with multiple mobile robots.

Hence, extending the state-of-the-art, this thesis provides scientific and technological

insight concerning these challenges and their impact on the performance of the operators,

measured in terms of awareness, workload, trust, and the quality of interaction.

The first contribution of this work was a novel mixed-reality interface with mixed

granularity of control. This interface enables an operator to control the high-level and

low-level goals of the robots. With environment- or team-oriented control, the operators

can indicate high-level goals, such as moving an object, and the robots autonomously carry

out the task. The operators can also manipulate individual robots or perform corrective

maneuvers using low-level robot control. Through a user study with 10 participants, I

showed the effectiveness of mixed granularity of control over a single granularity of control.

Using mixed granularity of control, the performance of the operators improved, while their

workload diminished.

The first study involved a single operator interacting with multiple robots. With multiple

operators interacting with multiple robots, the operators experience unbalanced workload

and inhomogeneous awareness causing them to go out-of-the-loop. I hypothesized that

with mixed granularity of control the operators share the workload and become equally

aware. I investigated the impact of mixed granularity of control on multiple operators’

engagement. Through a user study involving 28 participants, I demonstrated the use of

mixed granularity of control over a single granularity of control, i.e., generalized control

of the task over the specialized control of the task. With mixed granularity of control, the

operators reported to be actively interacting and did not feel out-of-the-loop, while bearing

balanced workload, awareness and trust in the system.

In addition to methods to control robots, the operators should also be able to understand

the robots. Transparency is a key property of an interface and directly affects the perfor-
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mance of the operator. I introduced transparency features to enable human operators to

understand robot-level and operator-level information. I categorized the transparency fea-

tures, based on the interface field of view, as peripheral transparency, central transparency,

and mixed transparency. In peripheral transparency, the operator access information in

the interface’s periphery; in central transparency, the operator access information in the

central region of the interface. In mixed transparency, the operator access features of

both peripheral and central transparency. With a user study involving 18 participants, the

participants reported mixed transparency as the best mode, in terms of reported metrics

and preference data, followed by central transparency as second choice.

Another aspect of transparency between operators is inter-human communication.

Communication is key for effective teamwork, be it between humans or between humans

and robots. Humans communicate directly through verbal communication or indirectly

representing their actions and intentions using the interface, or with a mix of both. I

compared the impact of indirect communication with direct communication and mixed

communication. Through a user study with 18 participants, I found mixed communication

to be the best mode to allow users to effectively exchange operator-level information and

robot-level information.

Besides proximal interaction, operators should also be able to remotely interact with

robots. I designed a cloud-based interface to allow multiple operators to remotely interact

with multiple robots. I investigated the effects of the transparency modes and commu-

nication modes on the performance of the operator and compared the results of remote

interaction with those of proximal interactions. With a user study including 28 users, I

noted that the results of remote interaction were in line with that of proximal interaction

with mixed transparency and mixed communication as the preferred modes of interaction.

However, the studies of remote interaction were limited to ideal conditions and in

practical remote interaction systems information loss is inevitable. Information loss persists
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because of packet loss, bandwidth limitations, or distance between the geographical

locations of the operators and the robots. I studied the impact of information loss on the

performance of operators remotely interacting with multiple mobile robots. I categorized

information loss into homogeneous and heterogeneous to study its impact on the operators.

I split the user study in two parts, the pilot study and the main study. In the pilot study, I

analyzed the impact of information loss on a single operator. In the main study, I assessed

the impact of homogeneous and heterogeneous information loss on multiple operators’

performance. Through a user study with 20 participants, I reported homogeneous low loss

as the most favorable, although practically not always feasible. I also reported a significant

difference in the awareness, workload, trust, and interaction quality among the operators of

the same team due to heterogeneous information loss, causing the operator with relatively

higher information loss to go out-of-the-loop.

The results of my work allow me to compile a list of guidelines that will positively

affect the performance of the human operator in multi-human multi-robot interaction. I list

the guidelines as follows.

1. The operators should be able to have a mixed granularity of control over the robots.

An operator should be able to interact with an individual robot, a subset of robots,

and influence the environment. With mixed granularity of control, all the operators

should be equally engaged in the task while sharing equal awareness and workload

with other operators.

2. The interface should provide robot-level and operator-level transparency to all the

operators. Operators prefer to access information in the central field-of-view of the

interface over the peripheral field-of-view.

3. Operators should be able to directly and indirectly engage in interaction. Operators

prefer direct communication to exchange operator-level information and have better
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trust on robots with indirect communication. In absence of direct communication,

the operators should be able to indirectly understand the intent and actions of other

operators through the information transparency.

4. With different information loss in remote interaction between operators, the opera-

tors generally prefer experiencing low information loss even if that means a high

information loss for their counter part. Different operators have different preference

in remote interaction and their preference should be considered while teaming with

other operators.

8.1 Future Work

Future work is possible in several directions. One direction is to identify an association of

the role a human play in the system with an interface, i.e., to investigate the appropriate

interface that would suit the role of the human. These roles can be classified as supervisor,

operator, teammate, mechanic, and bystander as discussed by Yanco and Dury [242]. The

interface, in my work, was tested with participants interacting as an operator, however a

combination of interfaces present in the system may enable operators to assume a particular

role or share the roles. A possible extension to the problem statement may include a human

present in the same environment and another human remotely interacts with the system. In

this test case, the human sharing the environment with the robots may assume the role of

an operator, while the human remotely interacting may behave as a supervisor.

Another direction for future work may include bringing heterogeneity in the testing

conditions. In user studies for transparency and communication in proximal and remote

interaction, I assumed both operators would possess the same ability of understanding

the robots and other operators. However, an interesting problem would be to study the

behaviour of the operators having different interface capabilities. An operator may be
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equipped with mixed transparency, while another operator has no information transparency.

Such instances may occur in complex missions when an operator experiences system

failures and has to rely on their teammate for robot-level information. I presume a similar

outcome to that of the operator engagement user study, i.e., inequality in transparency and

communication capability, may cause an operator to go out-of-the-loop.

A third direction for future work may include adding machine learning to the interaction.

With machine learning, the interface can learn to automatically remove features that are

not being used by the operator and reduce the information clutter, positively impacting

the cognitive workload of the operator. By learning the human inputs, the interface can

recommend actions to the operator and help achieve better performance, causing the

operators to trust the interface more. Machine learning can also help create predictive

features to cope with information loss. The interface could also monitor and diagnose

system faults, making operators better aware of possible failure modes of the robots and

act accordingly.
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