The SCF-Anderson method for a Non-linear Eigenvalue Problem in Electronic Structure Computations

by
Peng Ni
A Project Report
Submitted to the Faculty
of WORCESTER POLYTECHNIC INSTITUTE in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
in
Mathematical Sciences
by

August 2007

APPROVED:

Dr. Homer Walker, Project Advisor

1 Introduction

1.1 Background introduction

In the field of nanomaterials and devices, people often need to identify unknown structures.

Any material has a unique "ground state" - that is, the minimum-energy level where the material's electrons remain unless the material is perturbed by external sources. If it is possible to determine a material's ground state, then it is possible to identify the material itself.

A current approach is to find out the charge density associated with the ground state, and this envolves setting up nonlinear eigenvalue problems in the process.

Dr. Chao Yang from Lawrence Berkeley National Laboratory is working on this nonlinear eigenvalue problem. He is interested in finding out the properties of a particular existing algorithm, improving the performance of it, and developing alternative approaches if possible.

I got this project topic from Dr. Yang, and worked under the instruction from him and my advisor Dr. Walker. Thanks to both of them.

1.2 Problem introduction

In most situations in chemistry, it is legitimate to consider the nuclei as classical objects and as point-like particles with charges $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ at positions $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$, while treating the electrons as quantum particles. This is the so-called Born-Oppenheimer approximation. In view of this approximation, the determination of the ground state (that is, the state of minimum energy) structure of a molecular system consisting of p nuclei and n electrons amounts to solving a minimization problem. See details in [3].

The specific mathematical problem under this background is to minimize the
total energy function:

$$
\begin{aligned}
& \min E_{\text {total }}(X) \\
& \text { s.t. } X^{\prime} X=I_{p}
\end{aligned}
$$

This problem is transformed into a nonlinear eigenvalue problem (the KohnSham equation from [7]):

$$
\begin{align*}
& H(X) X=X \Lambda_{p} \\
& X^{\prime} X=I_{p}, \tag{1}
\end{align*}
$$

where the columns of $X \in \mathbb{R}^{n \times p}(p<n)$ are approximate electron wave functions, $H \in \mathbb{R}^{n \times n}$ is the discrete Hamiltonian and is dependent on X, $\Lambda_{p} \in \mathbb{R}^{p \times p}$ is a diagonal matrix with the p smallest eigenvalues of H on the diagonal, and $I_{p} \in \mathbb{R}^{p \times p}$ is identity matrix. $\rho=\operatorname{diag}\left(X X^{\prime}\right)$ is called the charge density.

Current approaches to this problem include the Self-Consistent Field (SCF) method [7] and the SCF method accelerated by the Anderson Acceleration [1] (SCF-Anderson).

1.3 Algorithm introduction

In the following, some MATLAB notation is used. In particular, for $A \in$ $\mathbb{R}^{p \times p}$, $\operatorname{diag}(A)$ denotes the vector in \mathbb{R}^{p} the components of which are the diagonal entries of A, and [] denotes the "empty" matrix.

1.3.1 The SCF method

Use $X \in \mathbb{R}^{n \times p}$ from previous iteration to calculate $H(X) \in \mathbb{R}^{n \times n}$, and view it as a constant matrix in the current iteration. Find the p smallest eigenvalues of $H(X)$, and use the corresponding eigenvectors to form the columns of a new X for next iteration.

```
Algorithm 1 SCF Method
    Given \(X \in \mathbb{R}^{n \times p}\), and tol \(>0\), evaluate \(H(X) \in \mathbb{R}^{n \times n}\).
    for \(i\) ter \(=1\) to Max_iter do
        Find the \(p\) smallest eigenvalues \(d \in \mathbb{R}^{p \times 1}\) and corresponding eigenvectors
        for \(H(X)\) to form columns of \(X_{+} \in \mathbb{R}^{n \times p}\).
        Evaluate \(\Delta \rho=\operatorname{diag}\left(X_{+} X_{+}^{\prime}\right)-\operatorname{diag}\left(X X^{\prime}\right)\).
        Evaluate err \(=\|\Delta \rho\|\).
        Update \(X \longleftarrow X_{+}\).
        if \(e r r<t o l\) then
            Break.
        end if
        Update \(H(X) \longleftarrow H\left(X_{+}\right)\).
    end for
```

In practice, the SCF method is less effective than expected: the convergence is slow, and sometimes it even diverges. So for the following parts of this report, we will focus on the SCF-Anderson method outlined in §1.3.2, in which SCF is augmented with a certain procedure to improve convergence.

1.3.2 The SCF-Anderson method

Actually, in the formula for $H(X), X$ always appears in the form of $\operatorname{diag}\left(X X^{\prime}\right)$, which is the electron density ρ. Basically, what we need to determine $H(X)$ is only ρ, so for simplicity, we will just use $H(\rho)$ instead from now on.

Based on the SCF method, instead of directly letting $\rho_{+}=\operatorname{diag}\left(X_{+} X_{+}^{\prime}\right)$, choose ρ_{+}to be a linear combination of the previous values of ρ to strengthen self-consistency.

```
Algorithm 2 SCF-Anderson Method
    Given \(\rho \in \mathbb{R}^{n \times 1}\), tol \(>0\), and Mdim.
    Set \(R=[], D=[]\), and evaluate \(H(\rho) \in \mathbb{R}^{n \times n}\).
    for iter \(=1\) to Max_iter do
        Find the \(p\) smallest eigenvalues \(d \in \mathbb{R}^{p \times 1}\) and corresponding eigenvectors
        from \(H(\rho)\) to form columns of \(X_{+} \in \mathbb{R}^{n \times p}\).
        Evaluate \(X_{+}\); let \(\Delta \rho=\operatorname{diag}\left(X_{+} X_{+}^{\prime}\right)-\rho\)
        Evaluate err \(=\|\Delta \rho\|\).
        if \(\mathrm{err}<t o l\) then
            Update \(\rho \longleftarrow \operatorname{diag}\left(X_{+} X_{+}^{\prime}\right)\); break.
        end if
        Let \(k=\min \{\) iter, Mdim\(\}\).
        if \(k=\) Mdim then
            Delete the first columns of R and D .
        end if
        Update \(R \longleftarrow\left[R, \operatorname{diag}\left(X_{+} X_{+}^{\prime}\right)\right] \in \mathbb{R}^{n \times k}\).
        Update \(D \longleftarrow[D, \Delta \rho] \in \mathbb{R}^{n \times k}\).
        Find \(\alpha \in \mathbb{R}^{k \times 1}\) from
            \(\min _{\alpha}\|D \alpha\|\)
            s.t. \(\sum \alpha_{i}=1\)
        Evaluate \(\rho_{+}=R \alpha\).
        Update \(H(\rho) \longleftarrow H\left(\rho_{+}\right), \rho \longleftarrow \rho_{+}\).
    end for
```


1.4 Project overview

In this project, I tested the convergence of the existing algorithms, improved the approach to a certain subproblem in the SCF-Anderson method, and studied the effects of varying a parameter in the algorithm.

Section 2 gives a new view of the problem, and discusses several approaches to solving the subproblem; section 3 explains the convergence-related properties; section 4 draws a conclusion of the project and suggests the possible future work.

2 Implementation of the SCF and SCF-Anderson method

2.1 Fixed point iteration

As is mentioned in last section, what we are always updating is ρ, and we can view the SCF method iterates as follows:

$$
\begin{aligned}
\rho & \longrightarrow H(\rho) \\
H(\rho) & \longrightarrow \rho_{+}
\end{aligned}
$$

Based on the SCF method, we define a function S such that:

$$
\begin{equation*}
\rho_{+}=S(\rho) \tag{2}
\end{equation*}
$$

Now the nonlinear eigenvalue problem becomes a fixed-point problem: $\rho=$ $S(\rho)$. The SCF becomes fixed-point iteration:

```
Algorithm 3 SCF Method (with new notation)
    Given \(\rho \in \mathbb{R}^{n \times 1}\), and tol \(>0\), and evaluate \(H(\rho) \in \mathbb{R}^{n \times n}\).
    for iter \(=1\) to Max_iter do
        Let \(\rho_{+}=S(\rho)\), let \(\Delta \rho=S(\rho)-\rho\), evaluate \(\operatorname{err}=\|\Delta \rho\|\).
        Update \(\rho \longleftarrow \rho_{+}\).
        if \(\mathrm{err}<t o l\) then
            Break.
        end if
        Update \(H(\rho) \longleftarrow H\left(\rho_{+}\right)\).
    end for
```

The SCF-Anderson method is an acceleration to SCF:

```
Algorithm 4 SCF-Anderson Method (with new notation)
    Given \(\rho \in \mathbb{R}^{n \times 1}\), tol \(>0\), and Mdim.
    Set \(R=[], D=[]\), and evaluate \(H(\rho) \in \mathbb{R}^{n \times n}\).
    for iter \(=1\) to Max_iter do
        Evaluate \(S(\rho)\), let \(\Delta \rho=S(\rho)-\rho\), and evaluate \(\operatorname{err}=\|\Delta \rho\|\).
        if \(\mathrm{err}<t o l\) then
            Update \(\rho \longleftarrow S(\rho)\), break.
        end if
        Let \(k=\min \{\) iter, Mdim\(\}\).
        if \(k=\) Mdim then
            Delete the first columns of R and D .
        end if
        Update \(R \longleftarrow[R, S(\rho)] \in \mathbb{R}^{n \times k}, D \longleftarrow[D, \Delta \rho] \in \mathbb{R}^{n \times k}\).
            Find \(\alpha \in \mathbb{R}^{k \times 1}\) from \(\left\{\begin{array}{l}\min _{\alpha}\|D \alpha\| \\ \text { s.t. } \sum \alpha_{i}=1\end{array} \quad\right.\), evaluate \(\rho_{+}=R \alpha\).
        Update \(H(\rho) \longleftarrow H\left(\rho_{+}\right), \rho \longleftarrow \rho_{+}\).
    end for
```


2.2 Linearly constrained least squares problem

In the Anderson subroutine, there is a linearly constrained least-square problem:

$$
\begin{aligned}
& \min _{\alpha}\|D \alpha\| \\
& \text { s.t. } \sum \alpha_{i}=1
\end{aligned}
$$

where $D \in \mathbb{R}^{n \times k}, \alpha \in \mathbb{R}^{k \times 1}$.
There are several approaches to this problem. Four are outlined below. The first two deal directly with the constrained least squares problem and are likely to involve ill-conditioned matrices. The second two reduce the constrained problem on \mathbb{R}^{k} to an unconstrained problem on \mathbb{R}^{k-1}, thereby allowing solution approaches that involve much better conditioned matrices.

2.2.1 Lagrange multipliers

This method comes from [6], and treats the constrained least-squares problem using a Lagrange multipliers approach.

Set

$$
\begin{aligned}
\Phi(\alpha, \lambda) & =\frac{1}{2}|D \alpha|^{2}-\lambda\left(\sum \alpha_{i}-1\right) \\
& =\frac{1}{2} \alpha^{T} D^{T} D \alpha-\lambda\left(\sum \alpha_{i}-1\right)
\end{aligned}
$$

In order to minimize $\Phi(\alpha, \lambda)$, the gradient should equal zero:

$$
\begin{align*}
\nabla_{\alpha} \Phi(\alpha, \lambda) & =D^{T} D \alpha+\lambda\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=0 \tag{3}\\
\frac{\partial}{\partial \lambda} \Phi(\alpha, \lambda) & =-\left(\sum \alpha_{i}-1\right)=0 \tag{4}
\end{align*}
$$

Solve this equation for minimizer α :

$$
\left(\begin{array}{cc}
D^{T} D & -\overrightarrow{1} \tag{5}\\
-\overrightarrow{1}^{T} & 0
\end{array}\right)\binom{\alpha}{\lambda}=\binom{\overrightarrow{0}}{-1}
$$

where $\overrightarrow{1}=(1, \ldots, 1)^{T}, \overrightarrow{0}=(0, \ldots, 0)^{T}, \overrightarrow{1}, \overrightarrow{0} \in \mathbb{R}^{k \times 1}$.
This method involves the matrix $\left(\begin{array}{cc}D^{T} D & -\overrightarrow{1} \\ -\overrightarrow{1}^{T} & 0\end{array}\right)$. This may be ill-conditioned because of the term $D^{T} D$, which has condition number $\kappa\left(D^{T} D\right)=\kappa(D)^{2}$.

2.2.2 Matrix calculation

Set

$$
\begin{equation*}
f=\frac{1}{2}\|D \alpha\|^{2}=\frac{1}{2} \alpha^{T} D^{T} D \alpha \tag{6}
\end{equation*}
$$

The gradient of f should be orthogonal to the constraint hyperplane $\alpha^{T} \overrightarrow{1}=1$ at the local minimizer point:

$$
\begin{array}{ll}
& \nabla f=D^{T} D \alpha=\lambda \overrightarrow{1} \\
\Rightarrow \quad & \alpha=\left(D^{T} D\right)^{-1}(\lambda \overrightarrow{1}) \\
& 1=\overrightarrow{1}^{T} \alpha=\lambda \overrightarrow{1}^{T}\left(D^{T} D\right)^{-1} \overrightarrow{1} \\
\Rightarrow \quad & \alpha=\frac{\left(D^{T} D\right)^{-1} \overrightarrow{1}}{\overrightarrow{1^{T}}\left(D^{T} D\right)^{-1} \overrightarrow{1}} \tag{10}
\end{array}
$$

However, when solving linear systems with this method, we again may meet with high condition numbers, since $\kappa\left(D^{T} D\right)=\kappa(D)^{2}$.

2.2.3 Method of elimination

The general approach of the method of direct elimination is mentioned in the book "Numerical Methods for Least Squares Problems" [2]. The basic idea of the method is to use the constraint to express some of the variables in terms of others, and then to plug the expression into the function we want to minimize. Thus the constrained least-squares problem becomes an unconstrained problem in fewer variables.

The specific method comes from [5].
We want to solve α from:

$$
\begin{aligned}
& \min _{\alpha}\|D \alpha\| \\
& \text { s.t. } \sum \alpha_{i}=1,
\end{aligned}
$$

and then let $\rho_{m}=\sum_{i=1}^{k} \alpha_{i} S\left(\rho_{m-k-1+i}\right)$.
Now we change an expression:

$$
\begin{aligned}
D \alpha & =\sum_{i=1}^{k} \alpha_{i} d_{i} \\
& =\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{k} d_{k} \\
& =\bar{\alpha}_{1}\left(d_{2}-d_{1}\right)+\bar{\alpha}_{2}\left(d_{3}-d_{2}\right)+\cdots+\bar{\alpha}_{k-1}\left(d_{k}-d_{k-1}\right)+d_{k} \\
& =\bar{D} \bar{\alpha}+d_{k}
\end{aligned}
$$

where $\bar{D}=D W$,

$$
W=\left(\begin{array}{cccc}
-1 & & & \tag{11}\\
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -1 \\
& & & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\alpha_{1} \tag{12}\\
\alpha_{2} \\
\vdots \\
\alpha_{k-1} \\
\alpha_{k}-1
\end{array}\right)=\left(\begin{array}{cccc}
-1 & & & \\
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -1 \\
& & & 1
\end{array}\right)\left(\begin{array}{c}
\bar{\alpha}_{1} \\
\bar{\alpha}_{2} \\
\vdots \\
\bar{\alpha}_{k-1}
\end{array}\right)=W \bar{\alpha}
$$

Then the minimization problem will become an unconstrained one:

$$
\begin{equation*}
\min _{\bar{\alpha}}\left\|\bar{D} \bar{\alpha}+d_{k}\right\| \tag{13}
\end{equation*}
$$

One possibility is to solve the normal equation for $\bar{\alpha}$:

$$
\begin{equation*}
\bar{D}^{T} \bar{D} \bar{\alpha}=-\bar{D}^{T} d_{k} \tag{14}
\end{equation*}
$$

Then use equation (12) to calculate α from $\bar{\alpha}$. This involves $\kappa\left(\bar{D}^{T} \bar{D}\right)=$ $\kappa(\bar{D})^{2}$.

Fortunately, we can improve the condition number by doing QR decomposition to \bar{D}, i.e., $\bar{D}=Q R$, where $Q \in \mathbb{R}^{n \times(k-1)}$ is orthogonal ($Q^{T} Q=I_{k}$) and $R \in \mathbb{R}^{k \times k}$ is upper-triangular. Then

$$
\begin{array}{ll}
& (Q R)^{T}(Q R) \bar{\alpha}=-(Q R)^{T} d_{k} \\
\Rightarrow \quad & R^{T} Q^{T} Q R \bar{\alpha}=-R^{T} Q^{T} d_{k} \\
\Rightarrow \quad & R^{T} R \bar{\alpha}=-R^{T} Q^{T} d_{k} \\
\Rightarrow \quad & R \bar{\alpha}=-Q^{T} d_{k}
\end{array}
$$

Thus one can obtain $\bar{\alpha}$ by solving a linear system with R, which has condition number:

$$
\begin{equation*}
\kappa(R)=\kappa(Q R)=\kappa(\bar{D}) \leq \kappa(D) \kappa(W) \tag{15}
\end{equation*}
$$

and $\kappa(W) \approx 2 k / \pi$ for all but the smallest values of k.

2.2.4 Null-space method

The general approach of the null-space method is described in the book "Numerical methods for least squares problems" [2]. The basic idea of the method is to decompose the vector we want into a constant vector that satisfies the constraint and another vector in the null space of the constraint matrix. Thus the constrained problem becomes an unconstrained problem, which only involves solving for the vector in the null space.

We developed a new specific null-space approach with low condition number and some numerical advantages.

Denote $v=(0, \ldots, 0,1)^{T}, v \in \mathbb{R}^{k \times 1}$. Set $\alpha=v+\beta$, so we have:

$$
\begin{align*}
& 1=\sum \alpha_{i}=\overrightarrow{1}^{T} \alpha=\overrightarrow{1}^{T}(v+\beta)=1+\overrightarrow{1}^{T} \beta \\
\Rightarrow \quad & \overrightarrow{\mathrm{1}}^{T} \beta=0 \tag{16}
\end{align*}
$$

In order to satisfy (16), set $\beta=V \gamma$, where $V \in \mathbb{R}^{k \times(k-1)}$ is such that $\overrightarrow{1}^{T} V=0$ (i.e. the columns of V are an orthonormal basis ofthe orthogonal complement of $\overrightarrow{1})$, and $\gamma \in \mathbb{R}^{(k-1) \times 1}$. Then the minimization problem becomes:

$$
\begin{equation*}
\min _{\alpha}\|D \alpha\|=\min _{\gamma}\|D(v+V \gamma)\|=\min _{\gamma}\|D v+D V \gamma\| \tag{17}
\end{equation*}
$$

V is so chosen that $V=\left(v_{1}, \ldots, v_{k-1}\right)$, where

$$
\left.v_{j}=\left(\begin{array}{c}
-1 / \sqrt{j(j+1)} \tag{18}\\
\vdots \\
-1 / \sqrt{j(j+1)} \\
\sqrt{j /(j+1)} \\
0 \\
\vdots \\
0
\end{array}\right), \quad j \text { components } \quad \begin{array}{l}
\\
\end{array}\right)
$$

The normal equation of this minimization system is:

$$
\begin{equation*}
(D V)^{T}(D V) \gamma=-(D V)^{T} D v \tag{19}
\end{equation*}
$$

Do QR decomposition to $D V$, such that $D V=Q R$, and the normal equation becomes (note that $D v=d_{k}$):

$$
\begin{array}{ll}
& (Q R)^{T}(Q R) \gamma=-(Q R)^{T} D v \\
\Rightarrow \quad & R^{T} Q^{T} Q R \gamma=-R^{T} Q^{T} d_{k} \\
\Rightarrow \quad & R^{T} R \gamma=-R^{T} Q^{T} d_{k} \\
\Rightarrow \quad & R \gamma=-Q^{T} d_{k}
\end{array}
$$

In this way, we only have to solve one linear system, with condition number much smaller than the original approach:

$$
\begin{equation*}
\kappa(R)=\kappa(Q R)=\kappa(D V) \leq \kappa(D) \kappa(V)=\kappa(D) \tag{20}
\end{equation*}
$$

Since V is upper-Hessenberg, it will allow inexpensive ($O(n k)$ flops) updating of the QR decomposition of DV when columns are dropped from or added to D. Specifically, we store Q_{0}, R_{0}, where $Q_{0} R_{0}=D$, and update them at each iteration:

- When deleting the first column of D, we also delete the first column of R_{0}, such that we still have $Q_{0} R_{0}=D$. Now that R_{0} becomes upperHessenberg, we use Givens rotations (see details in [4, §5.1.8]) to get $R_{0}=G_{0} R_{0}^{\text {new }}$ (here G_{0} is orthogonal), and update $Q_{0}^{\text {new }}=Q_{0} G_{0}$.
- When adding a last column to D, we apply the Gram-Schmidt process on the last column and update Q_{0}, R_{0}.
- When evaluating Q, R, we apply Givens rotations on $R_{0} V$ since it is upper-Hessenberg. We get $R_{0} V=G R$ (here G is orthonormal), and update $Q=Q_{0} G$.

Also $D v$ is only the last column of D, which saves a lot of calculation.

2.2.5 Method comparison

Here is a table comparing the condition number of the linear systems each method meets with, and the number of operations (for convenience, denote $M=\operatorname{Mdim})$:

Methods	Cond. No.	No. of Operations
Lagrange Multipliers	$\approx \kappa(D)^{2}$	$O(n M)+O\left(M^{3}\right)$
Matrix Calculation	$\kappa(D)^{2}$	$O(n M)+O\left(M^{2}\right)$
Method of Elimination	$\kappa(D) \lesssim \frac{2 M}{\pi} \kappa(D)$	$O(n M)+O\left(M^{2}\right)$
Null-Space Method	$\kappa(D V) \leq \kappa(D)$	$O(n M)+O\left(M^{2}\right)$

The analysis of condition number and number of operations on the four methods indicates that the null-space method and the method of elimination will have better performance, but the difference between these two seems unlikely to be significant.

We also performed some preliminary experiments to support our analytical results with a modification of a code provided by C. Yang at Lawrence Berkeley National Laboratory. Our main interest was in observing the maximum condition numbers encountered by the methods with varying bounds on the maximum allowable value of vector storage Mdim. The following table shows typical results, which were obtained in the case of a water molecule. In the table, the first row indicates Mdim, and the second through fourth rows indicate the maximum condition numbers observed during the iterations.

Table 1: Maximum Observed Condition Numbers

Mixdim	5	10	15	20
Lagrange Multipliers	$1.44 \mathrm{e}+011$	$4.70 \mathrm{e}+014$	$2.61 \mathrm{e}+016$	$2.61 \mathrm{e}+016$
Matrix Calculation	$9.72 \mathrm{e}+007$	$1.56 \mathrm{e}+016$	$6.21 \mathrm{e}+017$	$6.21 \mathrm{e}+017$
Null-Space Method	$1.19 \mathrm{e}+003$	$2.04 \mathrm{e}+007$	$1.55 \mathrm{e}+008$	$1.55 \mathrm{e}+008$
Method of Elimination	$1.01 \mathrm{e}+003$	$1.51 \mathrm{e}+007$	$1.38 \mathrm{e}+008$	$1.38 \mathrm{e}+008$

From the table above, the maximum condition number comparison results are consistent with our previous analytical results. We also tracked the time expense of the four methods, which did not show significant difference. The main reason is that the Mdim's are much smaller than n 's in our experiments.

3 Empirical convergence studies

3.1 The test problems

We have ten test problems:
bh3: The Bcl-2 homology domain 3.
butyne: Ethylacetylene, an extremely flammable and reactive alkyne with chemical formula $C_{4} H_{6}$. It occurs as a colorless gas with a garlic odor.
c2h6: Ethane, with chemical formula $C_{2} H_{6}$, the only two-carbon alkane, that is, an aliphatic hydrocarbon. It is a colorless, odorless gas at standard temperature and pressure.
ch4: Methane, a chemical compound with the molecular formula CH_{4}. It is the simplest alkane, and the principal component of natural gas.
co2: Carbon dioxide.
h2co: Formaldehyde, a colorless, volatile liquid, resembling acetic or ethyl aldehyde, and chemically intermediate between methyl alcohol and formic acid.
h2o: Water.
hnco: Isocyanic acid, a strong organic acid with a pKa value of about 3.5.
hooh: Hydrogen peroxide, used as a disinfectant or mild bleach.
ketene: Ketene, an organic compound, that is colorless, has a sharp odor and causes such things as eye, nose, throat, and lung irritation if humans are exposed to concentrated levels.

They are all derived from certain chemical materials. Numerical examples of them are done in Appendix A.

3.2 Details of the SCF-Anderson implementations

The real algorithm applied in the Matlab sample code package is slightly different from, but essentially the same as our theoretical algorithm discussed previously. The real approach is considered to be more efficient by the user community, while the theoretical approach is more straightforward. Let's compare these two directly:

In each iteration of the real approach, we:

- Build H_{i} with given ρ_{i-1};
- Calculate the residual R_{i} from H_{i};
- Solve α by minimizing $\|D \alpha\|$ subject to $\sum \alpha_{i}=1$, where $D=\left(R_{i-k+1}, \ldots, R_{i}\right)$;
- Use α and H_{i-k+1}, \ldots, H_{i} to get $H_{i}^{\text {Anderson } ; ~}$
- Apply SCF to get ρ_{i} from $H_{i}^{\text {Anderson } ; ~}$
- Check the tolerance and go to the next iteration.

Here, the residual is a measure reflecting the size of the off-diagonal elements of $X_{i-1}^{\prime} H_{i} X_{i-1}$, since this should be diagonal at the solution.

In each iteration of the theoretical approach, we:

- Calculate H_{i} from given ρ_{i-1};
- Get $S\left(\rho_{i-1}\right)$ from H_{i};
- Evaluate $\Delta \rho_{i}$, which is some kind of residual;
- Solve for α by minimizing $\|D \alpha\|$ subject to $\sum \alpha_{i}=1$, where $D=$ $\left(\Delta \rho_{i-k+1}, \ldots, \Delta \rho_{i-k+1}\right)$;
- Update ρ_{i} from α and $S\left(\rho_{i-k}\right), \ldots, S\left(\rho_{i-1}\right)$;
- Check the tolerance and go to the next iteration.

We can see that the real approach is mixing the Hamiltonian H, i.e., applying the Anderson Acceleration to H; while the theoretical approach is mixing the charge density ρ. Now let's look at the three critical steps in both approaches:

In the real approach:

- Mix H;
- Update ρ;
- Update H.

In the theoretical approach:

- Mix ρ;
- Update H;
- Update ρ.

Since H depends linearly on ρ, then mixing ρ and updating H would be equivalent to mixing H, and the two sets of algorithms would be identical.

Also, since $\Delta \rho$ is getting smaller in norm as the iteration converges, the D matrix may become more ill-conditioned if the columns from later iterationsare significantly smaller than those from earlier iterations. One possible way to overcome this disadvantage is the strategy of dropping: to delete the first several columns of D as necessary, when ill conditioning occurs.

3.3 Effects of varying Mdim

There is one important variable in the Anderson Acceleration method, Mdim, which is the number of $S(\rho)$'s that are stored. There are four points relating to this variable:

The larger Mdim is,

- the more information is contained in D,
- the more expensive the storage and computation are,
- the less useful the beginning columns of D are,
- the more ill-conditioned D is.

Because of the four conflicting points, there exists an optimum value of Mdim. We performed our experiments of varying Mdim with three different methods on the least squares subproblem:

1. Lagrange multipliers
2. Method of elimination
3. Null space method

We found in our test problems that 6 is a good choice, here is a table of performance data:

```
prob =
bh3
\begin{tabular}{cccccccc} 
Mdim & Iter\#_1 & Max_Cond_1 & Iter\#_2 & Max_Cond_2 & Iter\#_3 & Max_Cond_3 \\
1 & 20 & \(2.618 \mathrm{e}+000\) & 20 & \(0.000 \mathrm{e}+000\) & 20 & \(1.000 \mathrm{e}+000\) \\
2 & 16 & \(8.252 \mathrm{e}+000\) & 16 & \(1.000 \mathrm{e}+000\) & 16 & \(3.090 \mathrm{e}+001\) \\
3 & 14 & \(3.960 \mathrm{e}+003\) & 14 & \(3.189 \mathrm{e}+001\) & 14 & \(3.494 \mathrm{e}+002\) \\
4 & 13 & \(7.477 \mathrm{e}+005\) & 13 & \(4.114 \mathrm{e}+002\) & 13 & \(7.119 \mathrm{e}+003\) \\
5 & 13 & \(1.651 \mathrm{e}+008\) & 13 & \(5.764 \mathrm{e}+003\) & 13 & \(5.631 \mathrm{e}+004\) \\
6 & 12 & \(4.347 \mathrm{e}+010\) & 12 & \(8.851 \mathrm{e}+004\) & 12 & \(2.001 \mathrm{e}+006\) \\
7 & 12 & \(5.768 \mathrm{e}+012\) & 12 & \(9.018 \mathrm{e}+005\) & 12 & \(2.178 \mathrm{e}+007\)
\end{tabular}
```

8	12	$1.468 \mathrm{e}+015$	12	$1.523 \mathrm{e}+007$	12	$3.690 \mathrm{e}+008$
9	12	$4.550 \mathrm{e}+016$	12	$6.752 \mathrm{e}+007$	12	$1.739 \mathrm{e}+009$
10	12	$1.466 \mathrm{e}+019$	12	$1.116 \mathrm{e}+009$	12	$1.787 \mathrm{e}+010$
11	12	$9.221 \mathrm{e}+017$	12	$1.609 \mathrm{e}+010$	12	$3.334 \mathrm{e}+011$
12	12	$2.158 \mathrm{e}+018$	12	$3.262 \mathrm{e}+011$	12	$5.049 \mathrm{e}+012$

Here, Iter\# is the number of iterations before convergence; the upper limit is set to be 300. Max_Cond is the maximum condition number of the linear systems we solve.

We performed all the experiments without the strategy of dropping; complete data are in Appendix A.

3.4 Local and global convergence

In order to test the convergence properties of the SCF-Anderson method, experiments were performed in this way: We got an initial guess by perturbing the solution $\left(X_{*}\right)$ with random matrices,

$$
\begin{equation*}
X_{0}=X_{*}+\varepsilon \cdot \operatorname{randn}\left(\operatorname{size}\left(X_{*}\right)\right) \tag{21}
\end{equation*}
$$

where $\operatorname{randn}(n, k)$ is an $n \times k$ matrix with random entries normally distributed, and $\operatorname{size}(X)$ with $X \in \mathbb{R}^{n \times k}$ equals (n, k). If one of the initial guesses made from ε led to divergence, we reduce ε by half until we got convergence for 1000 trials with the same ε, and the last ε, which we denote by ε_{r}, will be the approximate radius of convergence.

Here is the experiment data:

Problem	bh3	butyne	c2h6	ch4	co2
ε_{r}	$1.0000 \mathrm{e}-04$	$6.2500 \mathrm{e}-06$	$2.5000 \mathrm{e}-05$	$2.5000 \mathrm{e}-05$	$5.0000 \mathrm{e}-05$
Problem	h2co	h2o	hnco	hooh	ketene
ε_{r}	$5.0000 \mathrm{e}-05$	$1.0000 \mathrm{e}-04$	$5.0000 \mathrm{e}-05$	$1.0000 \mathrm{e}-04$	$1.0000 \mathrm{e}-04$

In these experiments, the SCF-Anderson method was locally convergent but not globally convergent. Beyond the radius of convergence, as the perturbation gets bigger, convergence became less likely.

When the iterates converges, the convergence is linear, we use plots of iteration number versus log residual norm to illustrate this.

Here is an example of convergence under a "good" initial guess with $\varepsilon=\varepsilon_{r}=$ $1 e-4$ for the bh3 problem:

Figure 1: Convergence

Note that the convergence is approximately linear, see Apprendix A2 for additional examples.

Here is an example of divergence under a "bad" initial guess:

Figure 2: Divergence

4 Concluding summary

In this project, I:

- Learned the properties of SCF method and SCF-Anderson method, and found a new way to look at the problem.
- Studied several different approaches to the linearly constrained leastsquare subroutine.
- Studied the influence of the variable Mdim in the Anderson Acceleration method.
and I conclude that:
- For every Hamiltonian considered, there exists an optimal Mdim value.
- The Null-space method is better than the other three.
- The experiments suggest that the SCF-Anderson method could have local linear convergence.

For future work, I will:

- Find theoritical support for the Anderson Acceleration method, and improve the performance from it.
- Apply the Anderson Acceleration method as an acceleration algorithm to general fixed point problems.

Appendix

A1 Experiments with Mdim on sample problems

Here, Iter\# is the number of iterations before convergence; the upper limit is set to be 300, Max_Cond is the maximum condition number of the linear systems we solve.

We tested three methods:

1. Lagrange multipliers
2. Method of elimination
3. Null space method
prob $=$
bh3

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	20	$2.618 \mathrm{e}+000$	20	$0.000 \mathrm{e}+000$	20	$1.000 \mathrm{e}+000$
2	16	$8.252 \mathrm{e}+000$	16	$1.000 \mathrm{e}+000$	16	$3.090 \mathrm{e}+001$
3	14	$3.960 \mathrm{e}+003$	14	$3.189 \mathrm{e}+001$	14	$3.494 \mathrm{e}+002$
4	13	$7.477 \mathrm{e}+005$	13	$4.114 \mathrm{e}+002$	13	$7.119 \mathrm{e}+003$
5	13	$1.651 \mathrm{e}+008$	13	$5.764 \mathrm{e}+003$	13	$5.631 \mathrm{e}+004$
6	12	$4.347 \mathrm{e}+010$	12	$8.851 \mathrm{e}+004$	12	$2.001 \mathrm{e}+006$
7	12	$5.768 \mathrm{e}+012$	12	$9.018 \mathrm{e}+005$	12	$2.178 \mathrm{e}+007$
8	12	$1.468 \mathrm{e}+015$	12	$1.523 \mathrm{e}+007$	12	$3.690 \mathrm{e}+008$
9	12	$4.550 \mathrm{e}+016$	12	$6.752 \mathrm{e}+007$	12	$1.739 \mathrm{e}+009$
10	12	$1.466 \mathrm{e}+019$	12	$1.116 \mathrm{e}+009$	12	$1.787 \mathrm{e}+010$
11	12	$9.221 \mathrm{e}+017$	12	$1.609 \mathrm{e}+010$	12	$3.334 \mathrm{e}+011$
12	12	$2.158 \mathrm{e}+018$	12	$3.262 \mathrm{e}+011$	12	$5.049 \mathrm{e}+012$

prob $=$
butyne

Mdim	Iter\#_1 Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3	
1	300	$2.618 \mathrm{e}+000$	300	$0.000 \mathrm{e}+000$	300	$1.000 \mathrm{e}+000$
2	47	$1.727 \mathrm{e}+001$	47	$1.000 \mathrm{e}+000$	47	$2.434 \mathrm{e}+001$
3	43	$2.461 \mathrm{e}+002$	43	$1.230 \mathrm{e}+001$	43	$2.858 \mathrm{e}+001$
4	33	$2.772 \mathrm{e}+003$	33	$2.582 \mathrm{e}+001$	33	$7.643 \mathrm{e}+001$
5	31	$4.565 \mathrm{e}+004$	31	$9.483 \mathrm{e}+001$	31	$3.202 \mathrm{e}+002$
6	30	$4.245 \mathrm{e}+006$	30	$9.275 \mathrm{e}+002$	30	$4.459 \mathrm{e}+003$
7	31	$2.243 \mathrm{e}+007$	31	$1.887 \mathrm{e}+003$	31	$7.443 \mathrm{e}+003$
8	30	$4.003 \mathrm{e}+008$	30	$5.914 \mathrm{e}+003$	30	$5.300 \mathrm{e}+004$
9	30	$1.025 \mathrm{e}+011$	30	$1.222 \mathrm{e}+005$	30	$4.612 \mathrm{e}+005$
10	30	$1.878 \mathrm{e}+012$	30	$3.955 \mathrm{e}+005$	30	$2.502 \mathrm{e}+006$
11	29	$4.670 \mathrm{e}+013$	29	$1.706 \mathrm{e}+006$	29	$1.455 \mathrm{e}+007$
12	29	$5.076 \mathrm{e}+014$	29	$6.030 \mathrm{e}+006$	29	$5.499 \mathrm{e}+007$
13	29	$4.304 \mathrm{e}+015$	29	$2.022 \mathrm{e}+007$	29	$1.573 \mathrm{e}+008$
14	29	$2.325 \mathrm{e}+018$	29	$1.177 \mathrm{e}+008$	29	$8.703 \mathrm{e}+008$
15	29	$4.549 \mathrm{e}+017$	29	$2.453 \mathrm{e}+008$	29	$1.362 \mathrm{e}+009$
16	29	$9.578 \mathrm{e}+017$	29	$6.630 \mathrm{e}+008$	29	$4.389 \mathrm{e}+009$
17	29	$2.382 \mathrm{e}+018$	29	$2.590 \mathrm{e}+009$	29	$2.363 \mathrm{e}+010$
18	29	$1.448 \mathrm{e}+018$	29	$9.906 \mathrm{e}+009$	29	$5.870 \mathrm{e}+010$
19	29	$3.546 \mathrm{e}+018$	29	$4.091 \mathrm{e}+010$	29	$3.015 \mathrm{e}+011$
20	29	$3.891 \mathrm{e}+018$	29	$2.390 \mathrm{e}+011$	29	$1.797 \mathrm{e}+012$
prob $=$						

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	28	$2.618 \mathrm{e}+000$	28	$0.000 \mathrm{e}+000$	28	$1.000 \mathrm{e}+000$
2	22	$8.244 \mathrm{e}+000$	22	$1.000 \mathrm{e}+000$	22	$5.291 \mathrm{e}+001$
3	17	$1.183 \mathrm{e}+004$	17	$5.440 \mathrm{e}+001$	17	$3.763 \mathrm{e}+002$
4	17	$4.776 \mathrm{e}+005$	17	$3.309 \mathrm{e}+002$	17	$1.414 \mathrm{e}+003$

5	16	$1.926 \mathrm{e}+007$	16	$2.164 \mathrm{e}+003$	16	$1.228 \mathrm{e}+004$
6	15	$8.454 \mathrm{e}+008$	15	$1.126 \mathrm{e}+004$	15	$1.086 \mathrm{e}+005$
7	15	$8.942 \mathrm{e}+010$	15	$1.076 \mathrm{e}+005$	15	$1.778 \mathrm{e}+006$
8	15	$2.251 \mathrm{e}+013$	15	$1.848 \mathrm{e}+006$	15	$1.916 \mathrm{e}+007$
9	15	$2.052 \mathrm{e}+015$	15	$1.580 \mathrm{e}+007$	15	$1.433 \mathrm{e}+008$
10	15	$5.051 \mathrm{e}+016$	15	$1.060 \mathrm{e}+008$	15	$1.096 \mathrm{e}+009$
11	15	$7.850 \mathrm{e}+017$	15	$6.765 \mathrm{e}+008$	15	$7.900 \mathrm{e}+009$
12	15	$2.492 \mathrm{e}+018$	15	$5.020 \mathrm{e}+009$	15	$6.188 \mathrm{e}+010$
13	15	$5.898 \mathrm{e}+018$	15	$5.556 \mathrm{e}+010$	15	$8.937 \mathrm{e}+011$
14	15	$5.898 \mathrm{e}+018$	15	$9.268 \mathrm{e}+011$	15	$1.408 \mathrm{e}+013$
15	15	$5.898 \mathrm{e}+018$	15	$1.575 \mathrm{e}+012$	15	$1.678 \mathrm{e}+013$
prob $=$						
ch4						

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	23	$2.618 \mathrm{e}+000$	23	$0.000 \mathrm{e}+000$	23	$1.000 \mathrm{e}+000$
2	18	$9.050 \mathrm{e}+000$	18	$1.000 \mathrm{e}+000$	18	$8.724 \mathrm{e}+001$
3	16	$1.840 \mathrm{e}+003$	16	$2.241 \mathrm{e}+001$	16	$2.328 \mathrm{e}+002$
4	15	$3.897 \mathrm{e}+006$	14	$8.584 \mathrm{e}+002$	15	$5.637 \mathrm{e}+003$
5	14	$5.571 \mathrm{e}+008$	14	$1.023 \mathrm{e}+004$	14	$1.674 \mathrm{e}+005$
6	14	$3.892 \mathrm{e}+011$	14	$2.469 \mathrm{e}+005$	14	$3.128 \mathrm{e}+006$
7	14	$7.340 \mathrm{e}+013$	14	$3.589 \mathrm{e}+006$	14	$3.027 \mathrm{e}+007$
8	14	$4.809 \mathrm{e}+015$	14	$2.681 \mathrm{e}+007$	14	$2.662 \mathrm{e}+008$
9	14	$7.708 \mathrm{e}+016$	14	$1.163 \mathrm{e}+008$	14	$1.412 \mathrm{e}+009$
10	14	$3.726 \mathrm{e}+017$	14	$8.723 \mathrm{e}+008$	14	$8.447 \mathrm{e}+009$
11	14	$1.486 \mathrm{e}+018$	14	$8.631 \mathrm{e}+009$	14	$7.488 \mathrm{e}+010$
12	14	$3.821 \mathrm{e}+019$	14	$4.517 \mathrm{e}+010$	14	$4.959 \mathrm{e}+011$
13	14	$3.821 \mathrm{e}+019$	14	$9.116 \mathrm{e}+010$	14	$7.283 \mathrm{e}+011$
14	14	$3.821 \mathrm{e}+019$	14	$7.140 \mathrm{e}+011$	14	$6.754 \mathrm{e}+012$

prob $=$
co2

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	61	$2.618 \mathrm{e}+000$	61	$0.000 \mathrm{e}+000$	61	$1.000 \mathrm{e}+000$
2	24	$8.919 \mathrm{e}+000$	24	$1.000 \mathrm{e}+000$	24	$2.244 \mathrm{e}+001$
3	21	$1.687 \mathrm{e}+003$	21	$1.718 \mathrm{e}+001$	21	$9.381 \mathrm{e}+001$
4	19	$1.888 \mathrm{e}+005$	19	$2.185 \mathrm{e}+002$	19	$1.032 \mathrm{e}+003$
5	18	$1.003 \mathrm{e}+007$	18	$1.404 \mathrm{e}+003$	18	$8.396 \mathrm{e}+003$
6	17	$8.304 \mathrm{e}+008$	17	$1.131 \mathrm{e}+004$	17	$8.228 \mathrm{e}+004$
7	17	$7.700 \mathrm{e}+010$	17	$1.002 \mathrm{e}+005$	17	$7.596 \mathrm{e}+005$
8	17	$3.153 \mathrm{e}+012$	17	$7.267 \mathrm{e}+005$	17	$3.855 \mathrm{e}+006$
9	17	$1.235 \mathrm{e}+014$	17	$4.528 \mathrm{e}+006$	17	$2.902 \mathrm{e}+007$
10	17	$4.723 \mathrm{e}+015$	17	$2.443 \mathrm{e}+007$	17	$2.235 \mathrm{e}+008$
11	16	$8.054 \mathrm{e}+017$	16	$1.971 \mathrm{e}+008$	16	$1.075 \mathrm{e}+009$
12	17	$1.205 \mathrm{e}+020$	17	$1.240 \mathrm{e}+009$	17	$6.599 \mathrm{e}+009$
13	17	$1.762 \mathrm{e}+019$	17	$6.644 \mathrm{e}+009$	17	$6.010 \mathrm{e}+010$
14	17	$7.533 \mathrm{e}+018$	17	$6.380 \mathrm{e}+010$	17	$3.239 \mathrm{e}+011$
15	16	$7.085 \mathrm{e}+018$	16	$6.301 \mathrm{e}+010$	16	$4.778 \mathrm{e}+011$
16	16	$8.109 \mathrm{e}+018$	16	$1.580 \mathrm{e}+011$	16	$1.297 \mathrm{e}+012$

prob $=$
h2co

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	300	$2.618 \mathrm{e}+000$	300	$0.000 \mathrm{e}+000$	300	$1.000 \mathrm{e}+000$
2	30	$2.697 \mathrm{e}+001$	30	$1.000 \mathrm{e}+000$	30	$9.621 \mathrm{e}+001$
3	22	$1.802 \mathrm{e}+003$	22	$2.218 \mathrm{e}+001$	22	$1.009 \mathrm{e}+002$
4	21	$3.285 \mathrm{e}+004$	21	$9.785 \mathrm{e}+001$	21	$6.636 \mathrm{e}+002$
5	20	$2.434 \mathrm{e}+006$	20	$6.303 \mathrm{e}+002$	20	$3.934 \mathrm{e}+003$
6	18	$4.514 \mathrm{e}+008$	18	$8.158 \mathrm{e}+003$	18	$5.055 \mathrm{e}+004$
7	18	$2.810 \mathrm{e}+010$	18	$6.343 \mathrm{e}+004$	18	$5.014 \mathrm{e}+005$
8	18	$2.249 \mathrm{e}+012$	18	$5.272 \mathrm{e}+005$	18	$3.151 \mathrm{e}+006$
9	17	$1.769 \mathrm{e}+014$	17	$4.936 \mathrm{e}+006$	17	$4.808 \mathrm{e}+007$
10	17	$9.441 \mathrm{e}+015$	17	$3.485 \mathrm{e}+007$	17	$3.519 \mathrm{e}+008$
11	17	$1.695 \mathrm{e}+017$	17	$1.383 \mathrm{e}+008$	17	$1.556 \mathrm{e}+009$
12	17	$1.503 \mathrm{e}+017$	17	$3.308 \mathrm{e}+008$	17	$2.030 \mathrm{e}+009$
13	17	$7.979 \mathrm{e}+018$	17	$1.158 \mathrm{e}+009$	17	$9.621 \mathrm{e}+009$
14	17	$4.299 \mathrm{e}+019$	17	$5.316 \mathrm{e}+009$	17	$3.904 \mathrm{e}+010$

15	17	$5.932 \mathrm{e}+018$	17	$2.275 \mathrm{e}+010$	17	$2.740 \mathrm{e}+011$
16	17	$1.663 \mathrm{e}+019$	17	$2.645 \mathrm{e}+011$	17	$2.268 \mathrm{e}+012$
17	17	$1.663 \mathrm{e}+019$	17	$4.065 \mathrm{e}+011$	17	$2.270 \mathrm{e}+012$

prob $=$
h2o

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	49	$2.618 \mathrm{e}+000$	49	$0.000 \mathrm{e}+000$	49	$1.000 \mathrm{e}+000$
2	26	$1.062 \mathrm{e}+001$	26	$1.000 \mathrm{e}+000$	26	$1.838 \mathrm{e}+001$
3	20	$4.105 \mathrm{e}+003$	20	$3.750 \mathrm{e}+001$	20	$2.469 \mathrm{e}+002$
4	20	$9.722 \mathrm{e}+004$	20	$1.386 \mathrm{e}+002$	20	$9.818 \mathrm{e}+002$
5	18	$7.298 \mathrm{e}+006$	18	$1.015 \mathrm{e}+003$	18	$6.684 \mathrm{e}+003$
6	17	$1.331 \mathrm{e}+009$	17	$1.546 \mathrm{e}+004$	17	$1.356 \mathrm{e}+005$
7	17	$4.830 \mathrm{e}+011$	17	$2.796 \mathrm{e}+005$	17	$2.783 \mathrm{e}+006$
8	16	$2.688 \mathrm{e}+012$	16	$5.123 \mathrm{e}+005$	16	$1.264 \mathrm{e}+007$
9	17	$6.057 \mathrm{e}+014$	17	$8.096 \mathrm{e}+006$	17	$8.439 \mathrm{e}+007$
10	16	$2.390 \mathrm{e}+016$	16	$6.027 \mathrm{e}+007$	16	$7.847 \mathrm{e}+008$
11	17	$4.032 \mathrm{e}+017$	17	$9.211 \mathrm{e}+008$	17	$9.747 \mathrm{e}+009$
12	17	$2.990 \mathrm{e}+018$	17	$7.369 \mathrm{e}+009$	17	$9.511 \mathrm{e}+010$
13	17	$1.221 \mathrm{e}+018$	17	$2.551 \mathrm{e}+010$	17	$4.267 \mathrm{e}+011$
14	17	$2.290 \mathrm{e}+019$	17	$1.878 \mathrm{e}+011$	17	$2.044 \mathrm{e}+012$
15	17	$9.437 \mathrm{e}+019$	17	$8.985 \mathrm{e}+011$	17	$1.281 \mathrm{e}+013$
16	17	$7.450 \mathrm{e}+020$	17	$1.465 \mathrm{e}+012$	17	$1.383 \mathrm{e}+013$
17	17	$1.214 \mathrm{e}+018$	17	$2.817 \mathrm{e}+012$	17	$3.543 \mathrm{e}+013$

prob $=$
hnco

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	300	$2.618 \mathrm{e}+000$	300	$0.000 \mathrm{e}+000$	300	$1.000 \mathrm{e}+000$
2	41	$1.539 \mathrm{e}+001$	41	$1.000 \mathrm{e}+000$	41	$2.667 \mathrm{e}+001$
3	35	$7.285 \mathrm{e}+002$	35	$1.359 \mathrm{e}+001$	35	$3.918 \mathrm{e}+001$
4	31	$9.958 \mathrm{e}+003$	31	$6.137 \mathrm{e}+001$	31	$1.973 \mathrm{e}+002$

5	26	$8.583 \mathrm{e}+004$	26	$1.337 \mathrm{e}+002$	26	$4.182 \mathrm{e}+002$
6	26	$1.382 \mathrm{e}+006$	26	$6.032 \mathrm{e}+002$	26	$2.696 \mathrm{e}+003$
7	24	$6.935 \mathrm{e}+007$	24	$2.852 \mathrm{e}+003$	24	$9.660 \mathrm{e}+003$
8	24	$5.586 \mathrm{e}+008$	24	$7.593 \mathrm{e}+003$	24	$3.391 \mathrm{e}+004$
9	23	$1.191 \mathrm{e}+010$	23	$3.188 \mathrm{e}+004$	23	$1.514 \mathrm{e}+005$
10	23	$2.182 \mathrm{e}+011$	23	$1.660 \mathrm{e}+005$	23	$7.035 \mathrm{e}+005$
11	23	$5.896 \mathrm{e}+012$	23	$8.097 \mathrm{e}+005$	23	$2.441 \mathrm{e}+006$
12	23	$5.814 \mathrm{e}+013$	23	$2.408 \mathrm{e}+006$	23	$7.643 \mathrm{e}+006$
13	22	$3.954 \mathrm{e}+014$	22	$6.047 \mathrm{e}+006$	22	$2.304 \mathrm{e}+007$
14	22	$4.611 \mathrm{e}+015$	22	$2.100 \mathrm{e}+007$	22	$9.425 \mathrm{e}+007$
15	22	$6.326 \mathrm{e}+016$	22	$8.848 \mathrm{e}+007$	22	$3.444 \mathrm{e}+008$
16	22	$7.275 \mathrm{e}+017$	22	$3.334 \mathrm{e}+008$	22	$1.511 \mathrm{e}+009$
17	22	$2.729 \mathrm{e}+018$	22	$1.602 \mathrm{e}+009$	22	$4.844 \mathrm{e}+009$
18	22	$8.779 \mathrm{e}+018$	22	$5.307 \mathrm{e}+009$	22	$1.835 \mathrm{e}+010$
19	22	$4.732 \mathrm{e}+018$	22	$1.807 \mathrm{e}+010$	22	$6.928 \mathrm{e}+010$
20	22	$3.499 \mathrm{e}+018$	22	$6.258 \mathrm{e}+010$	22	$2.759 \mathrm{e}+011$

prob $=$
hooh

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	59	$2.618 \mathrm{e}+000$	59	$0.000 \mathrm{e}+000$	59	$1.000 \mathrm{e}+000$
2	47	$2.284 \mathrm{e}+001$	47	$1.000 \mathrm{e}+000$	47	$9.985 \mathrm{e}+000$
3	28	$8.450 \mathrm{e}+002$	28	$1.486 \mathrm{e}+001$	28	$4.892 \mathrm{e}+001$
4	26	$1.800 \mathrm{e}+004$	26	$7.597 \mathrm{e}+001$	26	$2.336 \mathrm{e}+002$
5	21	$9.884 \mathrm{e}+005$	21	$4.470 \mathrm{e}+002$	21	$1.419 \mathrm{e}+003$
6	22	$1.425 \mathrm{e}+007$	22	$1.382 \mathrm{e}+003$	22	$4.346 \mathrm{e}+003$
7	21	$9.749 \mathrm{e}+007$	21	$3.480 \mathrm{e}+003$	21	$1.580 \mathrm{e}+004$
8	21	$1.598 \mathrm{e}+009$	21	$1.255 \mathrm{e}+004$	21	$6.132 \mathrm{e}+004$
9	21	$3.461 \mathrm{e}+010$	21	$6.247 \mathrm{e}+004$	21	$4.011 \mathrm{e}+005$
10	21	$1.588 \mathrm{e}+012$	21	$4.155 \mathrm{e}+005$	21	$5.539 \mathrm{e}+006$
11	20	$4.408 \mathrm{e}+013$	20	$1.982 \mathrm{e}+006$	20	$1.978 \mathrm{e}+007$
12	20	$3.658 \mathrm{e}+015$	20	$1.792 \mathrm{e}+007$	20	$1.248 \mathrm{e}+008$
13	20	$5.268 \mathrm{e}+016$	20	$7.694 \mathrm{e}+007$	20	$7.710 \mathrm{e}+008$
14	19	$2.966 \mathrm{e}+017$	19	$9.018 \mathrm{e}+007$	19	$1.062 \mathrm{e}+009$
15	19	$1.843 \mathrm{e}+018$	19	$3.227 \mathrm{e}+008$	19	$2.113 \mathrm{e}+009$

16	20	$1.990 \mathrm{e}+018$	20	$1.716 \mathrm{e}+009$	20	$1.793 \mathrm{e}+010$
17	20	$2.339 \mathrm{e}+018$	20	$1.325 \mathrm{e}+010$	20	$1.179 \mathrm{e}+011$
18	20	$1.315 \mathrm{e}+019$	20	$4.736 \mathrm{e}+010$	20	$3.457 \mathrm{e}+011$
19	20	$1.315 \mathrm{e}+019$	20	$3.407 \mathrm{e}+011$	20	$3.054 \mathrm{e}+012$
20	20	$1.315 \mathrm{e}+019$	20	$6.071 \mathrm{e}+011$	20	$3.798 \mathrm{e}+012$

ketene

Mdim	Iter\#_1	Max_Cond_1	Iter\#_2	Max_Cond_2	Iter\#_3	Max_Cond_3
1	300	$2.618 \mathrm{e}+000$	300	$0.000 \mathrm{e}+000$	300	$1.000 \mathrm{e}+000$
2	52	$1.843 \mathrm{e}+005$	52	$1.000 \mathrm{e}+000$	52	$4.061 \mathrm{e}+002$
3	37	$7.978 \mathrm{e}+004$	37	$3.079 \mathrm{e}+001$	37	$9.144 \mathrm{e}+002$
4	29	$1.070 \mathrm{e}+006$	29	$3.119 \mathrm{e}+002$	29	$9.179 \mathrm{e}+002$
5	26	$2.325 \mathrm{e}+006$	26	$5.756 \mathrm{e}+002$	26	$2.870 \mathrm{e}+003$
6	26	$1.182 \mathrm{e}+008$	26	$5.099 \mathrm{e}+003$	26	$2.020 \mathrm{e}+004$
7	25	$1.492 \mathrm{e}+008$	25	$5.146 \mathrm{e}+003$	25	$3.539 \mathrm{e}+004$
8	24	$1.760 \mathrm{e}+010$	24	$5.356 \mathrm{e}+004$	24	$3.415 \mathrm{e}+005$
9	24	$3.180 \mathrm{e}+012$	24	$7.822 \mathrm{e}+005$	24	$3.108 \mathrm{e}+006$
10	24	$3.825 \mathrm{e}+013$	24	$2.196 \mathrm{e}+006$	24	$1.506 \mathrm{e}+007$
11	24	$5.413 \mathrm{e}+014$	24	$6.580 \mathrm{e}+006$	24	$4.604 \mathrm{e}+007$
12	23	$1.210 \mathrm{e}+016$	23	$3.826 \mathrm{e}+007$	23	$2.635 \mathrm{e}+008$
13	23	$3.725 \mathrm{e}+017$	23	$1.782 \mathrm{e}+008$	23	$1.354 \mathrm{e}+009$
14	23	$5.336 \mathrm{e}+017$	23	$4.882 \mathrm{e}+008$	23	$4.346 \mathrm{e}+009$
15	23	$6.295 \mathrm{e}+018$	23	$1.558 \mathrm{e}+009$	23	$7.138 \mathrm{e}+009$
16	23	$6.480 \mathrm{e}+018$	23	$5.510 \mathrm{e}+009$	23	$2.866 \mathrm{e}+010$
17	23	$7.872 \mathrm{e}+018$	23	$2.552 \mathrm{e}+010$	23	$1.566 \mathrm{e}+011$
18	23	$6.101 \mathrm{e}+018$	23	$9.034 \mathrm{e}+010$	23	$6.537 \mathrm{e}+011$
19	23	$5.391 \mathrm{e}+018$	23	$1.340 \mathrm{e}+011$	23	$7.622 \mathrm{e}+011$
20	23	$1.444 \mathrm{e}+020$	23	$7.638 \mathrm{e}+011$	23	$4.785 \mathrm{e}+012$

A2 Experiments with initial guess of sample problems

Plots of \log residual norm of experiments on sample problems are as following:

References

[1] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach., 12:547-560, 1965.
[2] Åke Björck. Numerical methods for least squares problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
[3] Claude Le Bris. Computational chemistry from the perspective of numerical analysis. Acta Numerica, 14:363-444, 2005.
[4] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
[5] Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6:15-50, 1996.
[6] Peter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration. Chem. Phys. Letters, 73(2):393-398, 1980.
[7] Chao Yang, Juan C. Meza, and Lin-Wang Wang. A trust region direct constrained minimization algorithm for the Kohn-Sham equation. SIAM J. Sci. Comput., 29(5):1854-1875 (electronic), 2007.

