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ABSTRACT 
The goal of this Interactive Qualifying Project (IQP) is to test whether a diverse system of                

automatic trading strategies can be profitable, ie., have a higher return than market indexes              

after costs. The second objective is to understand how a system of systems can improve return                

rates compared to a single system. In order to do this each member of the team has developed                  

their own trading strategy for a specific market (Stocks and Forex). Each set of strategies will                

have rules for entry, exit and position sizing according to its unique trading patterns.  
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CHAPTER 1: Introduction 
The goal of this IQP is to look at current answers that others have come up with to 

beating the market and expand on those ideas to create a few individual trading systems that 
could work together to beat the market. 

Investing in one's future is something that everyone needs to do in order to be 
successful. As online trading becomes more and more available for everyday people it is 
important for people to know how they can develop their own systems to handle their own 
finances. This IQP could help people develop automatic trading strategies in scientific way that 
would allow them to have control over their financial futures.  

The second trading system used an artificial neural network (ANN). There are three 
common ways to apply neural networks to trading systems; predicting an asset’s future price, 
predicting the direction of change in an asset’s future price, or predicting how/when to allocate 
assets within a portfolio. What this system did differently is that it predicted whether or not to 
simply buy or sell. Its output was a range from 1 (buy) to -1 (sell). So how does the model know 
when to buy/sell? An algorithm was developed to choose optimal buy/sell points on a historical 
time frame, meaning it could look forward in time. This algorithm produced the output to train 
the ANN to predict when to buy/sell based on technical indicators. When it came time to test 
the ANN, it did not need to look forward in time. It just used current and previous data as input. 

The third trading system utilized the idea of a gap strategy. This idea is used based on 
the idea that a stock opening and closing price changes over night and if it does so significantly 
than the agent would wait and look for the first 30 minutes to an hour for a sign to enter the 
market. Normally traders would trust news news overnight or early morning scanners from 
other resources to find the stocks that they should be looking at. This strategy was based on 
finding stocks that were likely to gap over night from statistical data and trusting that they were 
more likely to cover the gap based on more data.  

In the end the system of systems that was created was not successful. Not only did it 
not beat the market it also lost a fair amount of money along the way. This paper highlights the 
process that went into making the systems as well as some of the reasons as to why they did 
not work as well as they possibly could have.  

  

  



CHAPTER 2: Trading and Investing 

Trading vs Investing 

There are two types of methods when in comes to managing one's finances in any kind 
of market: investing and trading. Investing is when an individual decides to become part of the 
market for a long period of time, while trading involves more short term buying and selling of 
items in the market [Folger]. Both of these general strategies apply to the 4 types of markets 
already previously mentioned and both have their own advantages and disadvantages. 

Investors have a few advantages. Investing is generally safe and will lead to constant 
growth over a much longer period of time. For this section, the S&P 500 is a great index to look 
at to get a general idea of how a market changes over a long period of time. While taking 
inflation into account the S&P 500 has grown on average 10% every year since 1928. Inflation 
makes up roughly 3% of this growth, but 7% growth each year is very good [Maverick]. 
However, this is just an average, a good investor has to know when to enter the market and 
when to leave the market while the market is in a decline or not doing much. As an example 
from 1982 to 1999 there was only one year that the index had a negative return rate and had 
an average return rate of return of 15.54%, or in other words $100 would have become $1215 
in that time. A large part of this growth is from dividends given by companies. On the other end 
of the spectrum, if an investor decides to invest in january 1966 and stayed in the market until 
1978 the average rate of return was -.08% or $100 would have become $79. There were some 
good years from 66-78 like 1972 and 1975 but all and all it was a bad time to invest [Compound 
Annual Growth Rate]. This means that an investor also has the advantage of not having to keep 
super careful watch of the market day to day, but can look weekly or monthly and still probably 
remain safe.  

One of the larger drawbacks though for an investor is that because they are not looking 
at it day to day there will be many times where the market does very poorly on the day. A study 
conducted by Javier Estrada called Black Swans and Market Timing: How no to Generate Alpha 
looked at the dow jones from december 31st 1899 to december 31st 2006. If an investor 
invested $100 on that day in 1899 and just let it sit there would have made $25,646 with an 
average annual rate of return of 5.3%. The study then looked at would have happened had the 
investor took their money out on the markets 100 best days and the investor would have lost 
$17 in that time, but if the investor managed to miss the 100 days the investor would have 
made $11,198,634 instead [Radzicki, The Big Picture]. A true investor would not take their 
money out though for any 1 specific day especially over 100 years so one of the downsides is 
that investors will have to take those heavy hits when the market crashes on any given day.  

Traders have just about the inverse of the advantages and disadvantages an investor 
would have. A trader is someone that is going to be in and out of the market on a constant 
basis. The length that traders may hold onto a certain trade depends on the strategy and can 
range from a couple weeks all the way down to a few picoseconds. As just seen as above one of 



the disadvantages of being a trader is not being able to avoid the bad days. A trader has the 
ability to stay out of the market on days they think will be bad or possibly take advantage of 
them.  

There are many pitfalls that a trader has to be worried about than an investor does not. 
For one an investor is going to have pay an initial fee to buy into the market, but then there are 
no extra costs except for taking the money back out of the market; however, a trader because a 
trader is constantly buying in and out of the market they have to make sure that the money 
they make from the trade is greater than the cost it actually took to make the trade. A general 
commision now for most retail traders would be a $9 (both ends of the trade), so even if a 
trader has a strategy that wins 100% of the time but only makes $5 on average per trade they 
will on average lose $4 for every trade. As dividends are one the main ways to make profit for 
an investor they can be a major pain for traders. When traders short an equity they are 
technically borrowing the stock from someone else and selling it, so if a dividend is given out at 
that time they owe the person they borrowed the stock from that dividend as well.  

Beating the Market 

One benchmark that most retail traders look at is how an investment in the S&P 500 
would have done in the time that the they were trading. The 2017 SPIVA US Scorecard shows 
some significant numbers that most professional traders cannot beat the market over a long 
period of time. While over 50% of professional traders beat the market in 2017, only 5% were 
able to beat it over 15 years. So it is possible for retail traders to beat the market and make 
their own fortune, but it is a very difficult task to do. There is a large debate with some people 
having very strong opinions that a retail trader can’t beat the market so they should just be an 
investor and join the market while others believe it is very plausible for a retail trader to beat 
the market as long as they are careful. 

Basic Market Trends 

A very important part of being a trader or an investor is knowing when to enter the 
market, and knowing what to expect from the market after entering. Generally all markets and 
many other things like US unemployment, inflation, and GDP follow a similar trend which has a 
cycle of events. The first step is growth in the market or other area. This is the time that an 
investor would want to be in the market as all stocks are generally rising. The next step is either 
a general decline in the market or stagnation [Radzicki, Basic Macroeconomics]. An investor 
would not want to be in the market around this time, however for a trader as long as the 
market is moving up or down they are still in business. If the market does stagnate though a 
trader is going to be in for some rough times as well as they can’t make money anywhere. After 
this general decline though the market will pick up again and start the cycle all over again.  

An interesting part of this cycle however is the inverse relation between the private and 
public sector in the US. While one is on the rise the other is either on the decline or rising 
slowly. As long as the US has a net positive export the private sectors wealth will increase when 
the public sector runs a deficit. With this information a trader that is trading in multiple markets 



can get a lot of information. If the government is currently running a deficit than the stock 
market is likely going to be on the rise as private companies are more likely doing better. At the 
same time though the US dollar is going to inflate lowering its value compared to other nations, 
so someone who is trading currencies would want to be paying attention to this as well.  

It is the federal government's job to try and create a nice balance between the private 
and public sector. A government who has control over their currency has to choose from three 
factors to create this balance. The government can choose two of the factors as the other one 
will be changed by how the first two are changed. These three factors are controlling the flow 
of capital, having an independent monetary policy, and having a fixed exchange rate. It is the 
federal government's job to make policies that can directly affect two out of these 3 factors to 
keep a balance of inflation, unemployment, and GDP.  

The Four Asset Classes and Inter-Market Analysis 

While the federal government is taking care of the general economy traders and 
investors have to choose which areas they are going to want to participate in. The four Asset 
classes are Equities (stocks), currencies, bonds, and commodities [Frankenfield]. These asset 
groups are traded very differently from each other and each one has there advantages and 
drawbacks. The four asset groups tend to trend together though so a good trader should be 
paying attention to all of the markets to find when they should be investing [Corporate Finance 
Institute]. 

The basic trend in the US is that the dollar and commodity prices trend in opposite 
directions, commodity prices and bonds also trend in opposite directions, and stock prices and 
bonds trend in the same direction unless they decouple due do the fact the government is 
running a deficit. So as the value of the dollar goes up, commodity prices will go down, and 
bonds and equities will rise or as the value of the dollar goes up commodity prices and interest 
rates will go down and stock prices will go up [Radzicki, Inter-Market Analysis & Sector 
Rotation]. The systems used in this paper focus solely on equities and currencies this section 
will mostly focus on both of these asset classes. 

There are again different advantages and disadvantages of being either a trader or an 
investor in each one of these markets. An investor in the equity market is going to have as little 
liquid assets in their portfolio as possible as the belief is that they should be part of the market. 
So an investors money in the equity part of their portfolio should be completely invested, 
because if it’s not then the money cannot grow at all. A trader though is likely to have quite a 
bit of liquid assets because they are waiting for some indicator to enter the market and don’t 
want to miss it because all their money is already wrapped up in the market.  

Traders and investors can also buy equities on a margin. There are two margins that 
need to be followed, an initial margin requirement for entering the trade and also a 
maintenance margin requirement that has to be met during the trade. The initial margin 
requirement effects both traders and investors in about the same way while the maintenance 
margin requirement is much less likely to affect a trader as it is an investor. The initial margin 



requirement for equities is 50% [Firstrade Securities Inc]. This means that how ever much of a 
stock a trader or investor buys at least 50% of that investment has to be capital that they put up 
themselves. As an example if an investor buys $5000 worth of stock XYZ than $2500 of the 
$5000 has to be there own capitol. A maintenance margin requirement allows for a stock to 
fluctuate up and down without removing an investor from the trade, however if the value of 
the invest drops by over 30% the trader will be removed from the trade. So in the example 
above if the value of the holdings in XYZ drops below $3500 than the amount borrowed on the 
margin remains $2500, but your holdings will drop to $1000 and the investor will have to leave 
the trade.  

Taxes are a problem that everyone has to deal with and just how it affects people in 
different ways it also affects traders and investors differently. Investments that lasted for at 
least one year were taxed 15% less on average than trades that lasted for less than a year. For 
example someone who was in the 10% tax bracket would have to pay 10% on the total of short 
term trades and 0% in taxes on trades that lasted for over a year. The way the US tax code 
works it heavily favors those that are making long investments rather than those making 
smaller trades.  

Traders and investors also have different rules for who can do each one. An investor just 
needs the capitol for the trade and they will be allowed to make the trade they are looking to 
meet. A day trader trading on larger margins though needs to meet a couple of prerequisites 
first. The first one being that they have $25,000 at the start of the day. They are allowed to 
margin up to four times the maintenance margin excess in the account as of the close of 
business of the previous day; However, if they exceed the day-trading buying power limitation 
than the firm will issue a margin call [Day-Trading Margin Requirements: Know the Rules]. The 
trader needs to meet this call in the next 5 days and can only trade at the regular margin rate. If 
this call is not met they will be restricted to trading with only capital for the next 90 days. These 
are just some of the regulations that apply to day traders and there are others that apply to 
both investors and other types of traders. 

When considering the accounts and position sizes of traders and investors, there 
strategies tend to differ again. As was said above an investor is going to likely be investing all of 
their money they are putting into the stock market. So they have to use different strategies as 
to choose their stocks and then divide their money appropriately between all of the stocks as to 
maximize profit while reducing risk. Traders however have a different strategies as to how 
much they should invest in one trade. Sometimes these strategies will be based on the 
indicator they are using, and it may tell them it's a trade worth putting more into or it may be 
riskier so they shouldn’t put in as much. Other times though they may decide to invest based on 
the size of their portfolio so they may only lose some percentage of it with any given trade.  

Trading in the forex market is quite similar to how a trader in the equity market would 
trade. A trader in the forex market is going to want to have quite a bit of liquid assets at any 
given time as to not miss out on any trades, and is going to likely also have more strict rules on 
their position sizes based on what they see. However, There are many differences between the 
two when it comes to taxes, trading on a margin and legal issues.  



When it comes to taxes in trading with forex options they are traded at tax rate of 23%. 
The calculation for this is based on the a simple formula which is 60% long-term*15% max rate 
+ 40% short-term rate * max income rate. The IRS looks at at gains made by an individual as 
60% long term and the remaining 40% as short term [Hunt]. 

For trading on the margin it is very similar to trading on the margin in with equities. The 
trader must first set up an account with a broker and come to an agreement as to how much 
can be on the margin. The usual rate for these traders is that they will put up 1% or 2% of the 
money that will be traded in the account [Balasubramaniam]. So if the account has $10,000 in it 
they will only need to only contribute $100. While trading though if there is a loss equal to or 
greater than what the trader was initially trading a margin call can be made. When this happens 
the trader must either enter more money into the account to continue trading or exit all trades 
as to avoid further risk to the broker. If all the money borrowed from the broker is not returned 
by a certain date the broker can usually add interest to the what they borrowed or if there is a 
margin call made there can be interest incurred on how much money the trader lost of the 
brokers.  

Sector Rotation in the Equity Market 

The next part that is difficult for traders is knowing what market to be in in order to be 
making the most money possible. One way that traders in the equity market do this is by 
looking at interest rates set by the federal government, and the cycle that they tend to follow. 
Traders will likely want to invest in the market in the strongest industry groups in the current 
strongest sector while shorting the weakest stocks in the weakest industry groups in the 
weakest sector. The difficult part for traders is knowing which sectors are strong and weak at 
any given moment.  

The sectors tend to follow a cycle that follows current interest rates and that state of 
the US as a whole. There are 4 periods in the cycle which are a full recession,  early recovery, 
full recovery, and early recession. A full recession is when the market is at its worst and has 
bottomed out. An early recovery is when the market is starting to recover and is thus a bull 
market at the time and is then followed by a full recovery which is when the market is at its 
peak. An early recession is when the market is starting to go down and is a bear market.  

During a full recession a trader is going to want to focus on the cyclicals and technology 
sectors, because these are going to be the strongest markets. As the cycle begins to enter the 
early recovery stage the sector beings to rotate out of the cyclicals sector and into the industrial 
sector. Once the market is completely in an early recovery stage the sectors continue to rotate 
towards the basic industries and Energy, and at a full recovery the main sectors that a trader 
should be focused on for buying are staples and services. Lastly, once the economy enters an 
early recession the strongest markets become utilities and financials. This is just one of the 
ways that a trader knows what markets are currently strong and where they should be looking, 
but there are other signs as well. 



Breath of the Market 

For a trader in the equity market they are going to be looking at the stock market. A 
stock exchange is a “place” that allows people to connect with companies to either buy or sell 
shares of that company. There are many stock exchanges all over the world. Some of the 
exchanges may host some of the same companies while some companies may only be found at 
certain exchanges. Some of the larger exchanges that exist are the New York Stock Exchange, 
NASDAQ, and the Japanese Stock Exchange. Once a trader knows what exchange they are going 
to be trading in they will want to know what is currently happening in the market. 

There are many different measures that traders use to see the direction of the market. 
One way that people measure this is with trend lines. For creating an uptrend line the line will 
start at the lowest low in the period of time being looked at and then some more points will be 
made to connect the line to. These additional points are at the highest minor low point 
proceeding the highest high. A down trend line is going to be made almost in the exact same 
way except it will be starting at the highest high and going the lowest minor high point 
preceding the lowest low [Radzicki, The Breadth of the Market]. These trend lines are an easy 
way to get a simple idea if a market is up trending, down trending, or is mostly stagnant over a 
period of time.  

These trend lines are generally applied to indices, but can also be applied to individual 
stocks. An indice a collection of stocks in one group. The big three indices looked at in the US 
that give a strong base line for how the market is doing in general are the S&P 500 (Standard 
and Poor’s 500), DIJA (Dow Jones Industrial Average), and the NASDAQ. The S&P 500 is thought 
of by many as “the market”. If the S&P 500 is doing good than the market as a whole is 
generally doing good. Following how these markets are doing is usually a good way of gauging 
where the market is whether it is a bull or bear market. 

After knowing the type of market that the trader is in they will want to be able to 
measure the breadth of the market. The market breadth is the amount of force and the level 
behind moves in the market. The main factors to consider when measuring the breadth of the 
market are volume, mew highs, new lows, advancing stocks, and declining stocks. From these 
pieces of data there are different type of charts that can be made to measure the breadth of 
the market. 

One of these measurements is called a bollinger band. The idea that there is an 
exponential moving average (EMA) of the market and two more lines that are created by 
looking at two standard deviations away from the average that was found. If most of the price 
bars for the indice or stock are between the middle and upper bound than the market is likely 
to be trending up. While if the market is between the middle and lower bound the market is 
likely declining.  

Another way people look for these measurements is by looking at two EMAs calculated 
over a different time frame and comparing the two. Two popular ones to compare are the 13 
week EMA with the 34 week EMA. If the 13 week EMA is greater than than the other than the 



market is likely to be a bull market and if the 34 week EMA is greater the market is likely to be a 
bear market. Another popular pair of EMAs is the 50 day and 200 day EMA. Every bull market 
that has started when the close of the S&P 500 was above the 200 day EMA, but just because 
any given close is above the EMA does not guarantee a bull market. When the 50 day EMA 
becomes greater than the 200 day EMA the market is likely heading to a bull market while if the 
50 day EMA crosses below the 200 day EMA the market is generally heading to a bear market. 
These are just a few of the indicators that a trader would use to determine if the market is 
either bearish or bullish. There are many more including the 100 and 400 day EMA , 
Advance-Decline Line, McClellan Oscillator, New 52 Week Highs and Lows, On Balance Volume, 
Arms Index, and a volatility Index. 

 
 

  



CHAPTER 3: Trading Systems 
A trading system is a collection of rules that determine what orders to place and when 

[Kuepper]. These orders can be for any one of the asset classes. The rules can be based on a 
variety of information about the asset being traded or the market in general. To be able to use 
a system in the actual market it must be developed using a trading platform. At its simplest, a 
trading platform is just a piece of software used to place orders through a broker [Chen]. Many 
platforms provide other features like data, charting, backtesting, and optimization. The two 
platforms used in this project are TradeStation and Backtrader. 

All trading system rules rely on some sort of financial data as input. The source or feed 
of that data is provided by a vendor sometimes through the trading platform. Depending on the 
data vendor the type of information and the rate at which it is available can differ. Some 
provide real-time data, while others only provide intraday values or historical data. The 
information in the feed usually has the standard asset OHLC prices and might include additional 
metrics and indicators. 

A broker is a financial firm acting as an intermediary between the trader and the 
market. They provide the ability to execute buy and sell orders that are generated by the 
trading system. For their services, they charge the customer a commision and possibly other 
fees [Kenton]. 

When developing a trading system, one of the first considerations to make is what time 
frame to trade on. The time frame is defined as the time between data points in the feed 
[Fundora]. It dictates the time scale of trends in the data. Time frames range from 
microseconds to days or months. In general, signal reliability is positively correlated with the 
time scale. In other words, on smaller time frames the data becomes noisier or harder to 
forecast. 

Closely related to time frames are trading styles. The four main styles are scalp trading, 
day trading, swing trading, and position trading [Folger]. Each is defined in terms of time frame 
and holding period. Scalp traders frequently buy and sell throughout the day holding positions 
for seconds or minutes. This style relies on a high win percentage since the profit from each 
trade is relatively small so it is considered the riskiest. A similar style, day trading refers to 
entering and exiting positions within the same day but holding them for minutes to hours. 
Neither scalp nor day traders hold positions overnight. Swing trading positions are held for 
periods of days or weeks. It does not require constant attention like the first two styles. Lastly, 
position trading is based on the longest time frame. Positions are usually held for months to 
years. This style ignores short-term price fluctuations. Deciding a trading style is based on 
factors related to the trader such as their risk tolerance, experience, dedication, and funds. 

Trading systems can be divided into two groups; manual and automatic. Manual 
systems rely on a person to submit the trade, while automatic does not. Generally, both employ 
the use of algorithms to find the right time to buy or sell. Who pulls the trigger on the order 



determines the grouping though. Critics of auto trading worry that algorithms can miss 
information obvious to an experienced trader, ultimately leading to losing trades and less 
profit. Auto trading proponents enjoy the benefit of not having to monitor the market as that 
job has been shifted to the computer. Another reason why some choose auto trading is the 
ability to remove emotions from decision making. The system will make trades regardless of 
how the user feels about them. 

As mentioned above, a system is a collection of rules based on financial data. This data 
tends to be broken down into two classes called fundamental and technical. Fundamentals are 
measurements of companies and economies that determine their intrinsic value [Kenton]. 
Examples can be quantitative like earnings, revenue, and growth or qualitative like news 
reports, management changes, and public sentiment. These kind of data are most often 
employed by manual traders. On the other side of the spectrum are technical indicators. These 
are defined as statistics of historical market data [Chen]. The goal of this approach is to uncover 
patterns and trends in the data to obtain a better forecast of the market. 

The logic of a trading system is formalized in its collection of rules. The logical strategy 
of a system is the exploitation of some pattern found in historical data. For a simple example, 
one might notice that prices bounce between support and resistance and devise a strategy to 
buy at support and sell at resistance. The rules are executable code for determining when the 
exploitable pattern exists. With regard to the last example, the rules would need to detect 
when a price hits support and resistance. These are considered entry rules which are just 
conditions that must apply to an asset in order for the system to place an order on it. Other 
important rules exist such as position sizing and exit rules. Position sizing rules simply 
determine how much capital to place on an individual order. Exit rules, as the name implies, 
determine when to exit any given trade. They can be based on technical indicators, profit, loss, 
or time. 
 

 

  



CHAPTER 4: Optimizing and Analyzing 
Trading Systems 
 
 Optimization “is the process of making a trading system more effective by adjusting the 
variables used for technical analysis” [Chen, Optimization]. Optimization provides several 
benefits for the effort needed to conduct it. The first is backtesting and historical fitting. 
Backtesting using historical data provides one with the closest possible scenario to what the 
system may see once it is deployed on the real market. While backtesting is powerful one must 
be careful of overfitting, where historical data is measured too closely, therefore relying on 
exact historical movements too much [Chen, Backtesting].  

 There are three types of data that are used in optimization; training, testing, and model 
selection. Training data is used to fit the system, the system is put through an optimization 
program with specific adjustable variables and this data and will produce the most profitable 
version of the system. Testing data is how the optimization is evaluated after the training. The 
model will not be adjusted off this data, it is only used to determine if the system is over or 
under fit. Finally, model selection data is used to determine which system is the most 
profitable. This data set is used to compare systems and provides the final judgement on which 
systems are the best according to the evaluator’s criteria [Shah, About Train, Validation and 
Test Sets in Machine Learning].  

 One type of system optimization is walk-forward analysis. Walk-forward analysis is an 
optimization strategy that aims to reduce the chance of overfitting, or having too few degrees 
of freedom [Ruggiero]. Walk-forward analysis does this by dividing the data into in-sample and 
out of-sample. In-sample data is “used for the initial parameter estimation and model section” 
while out-of-sample data is “used to evaluate forecasting performance” [Eurostat]. 
Walk-forward analysis is conducted by taking an In-sample of data and optimizing a strategy 
with that data. The parameters of the optimization are then recorded. A new sample of data is 
selected consisting approximately 80% of the previous set and 20% of new data, or 
out-of-sample data. The strategy is again optimized and the parameters recorded. A visual 
representation can be seen in figure 4.1. 

 

 



Figure 4.1 
 

Once all the testing data has been used then the entire set is tested together, using the 
different parameters recorded though the walk forward tests. Once all the parameter sets have 
been tested they can be ranked and a best set can be determined through a predetermined 
ranking system [Ruggiero]. 

 Those ranking systems can be a lot of different things, from average drawdown to 
number of trades per day. Three such ranking systems are expectancy, expectunity and system 
quality. Expectancy is the average amount the system win or loses on any given trade [Hind]. 
The formula is: 

Expectancy = (Win Rate * Average Win Value) – (Loss Rate * Average Loss Value) 

The win are loss rates are in decimal form, i.e. 70% = .70. The goal of expectancy is to 
determine if the system makes money on average [Hind]. Expectunity is how much a system is 
expected to make over a given length of time [Branscomb]. The formula is: 

Expectunity = Expectancy * (Number of trades/Years the system ran) 

System quality is “the representation of profit/loss per dollar risked relative to the total 
variability of the profit/loss per dollar risked” [Radzicki]. The formula is: 

System Quality = Expectancy / (STDEV(R) * SQRT(Number of Trades) 

R = (Profit or Loss) / Average Loss 

With these three metrics a system can be analyzed in term of its average trade value, the 
average return over time and how much is being risked to achieve the former two.  

 Once a system is optimized it has to be monitored. There are three general types of 
rules for monitoring a system. They are suspension rules, reactivation rules and retirement 
rules. Suspension rules aim to stop a system when it is becoming unprofitable. These rules are 
very sensitive as a too strict rule might suspend a system on only a slight downturn while too 
loose rules will allow a system to lose more money before being suspended. Reactivation rules 
have a similar but inverse problem. These rules reactivate the system when their conditions are 
met, if they are too lose a system will reactivate while still unprofitable while too tight and they 
will miss out on potential profits. Finally system retirement rules are those that tell when a 
system should be totally shut down. When these conditions are meet the system will not look 
to reactivate and will cease trade completely. 

 
  



CHAPTER 5: Literature Review 

10 O’clock Bulls in FOREX 
The 10 O’clock Bulls strategy is based around the opening minutes of the stock market. 

The theory behind it is that the opening 30 minutes, between 10:00 and 10:30, will determine 
the high and low of the market for the day. In this period the traders are reacting to news and 
analysis done between the close of the previous day and the opening of the current day 
(Bysshe). By trading within or above/below these limits, traders can use the 10 O’clock bulls 
strategy as a way to identify opportunity. 

FOREX trading is the foreign exchange market. In this market currencies are traded and 
speculated on. In the FOREX market currencies are traded in pairs. These pairs are each 
denoted by a pair of three letter abbreviations, such as EUR/USD to represent the Euro/Dollar 
pair. When a FOREX trade occurs one of these currencies is traded for the other. The FOREX 
market runs as one of the longest hours markets in the world. The week’s trading will start on 
Monday morning in the Asia-Pacific session and then close at the end of Friday in New York. 
This means the FOREX market is essentially 6 days a week and, because it is an international 
market, rarely closes for a holiday. Due to this market is split into 3 distinct sessions; the 
Asia-Pacific session, the European-London session and the North American session [Galant, 5].  

This system aims to adapt the 10:00 Bulls strategy to the FOREX market. It system aims 
to trade during the North American session and liquidate by the end.  

Artificial Neural Networks 
An artificial neural network is a computational model inspired by the human brain, 

hence the name. The basic idea is that an ANN is given inputs that are known to be associated 
with certain outputs. During the training phase, the network guesses the output based on the 
input and the model’s current parameters. Based on how close the network’s guessed output is 
to the known output, changes are made to the model’s parameters or weights. This process is 
iterated many thousands of times. Hopefully, in the end, the network is better at guessing the 
correct output for given inputs. 

The structure of an ANN is made up of connected nodes or neurons. Each node has 
weighted inputs and a single output. The inputs are weighted to give more importance to 
particular inputs over others. The node applies what is known as an activation function to the 
sum of the weighted inputs. The result of this function is the output for the node. This output is 
then fed as input to the next layer of nodes. An ANN can have many layers of nodes. The first 
layer takes input externally, from the training data for example. The output from the last layer 
is the “answer” to the input. Each layer in between the first and last are called hidden layers. 
Their inputs and outputs are connected to adjacent nodes. The real process of “learning” in this 



technique is the updating of input weights. The way this is done is through an algorithm called 
back propagation [Woodford]. It is complicated, but it suffices to say that the error between the 
guessed and actual output is accounted for by systematically changing the weights in the 
model. The whole process of training an ANN is analogous to learning from mistakes [Karn]. 

All traders look for an edge or some relatively unknown info that can aid there decision 
making. Some believe ANNs provide that edge. There are plenty of scholarly papers on just how 
ANNs have been used in the market and how effective they can be compared to more 
traditional methods [Voegt]. Let’s take a look at a few.  

In 1993, Kryzanowski, Galler, and Wright published their paper on using ANNs for 
investing. They tested the ability of neural networks using historical and current accounting and 
macroeconomic data to discriminate between stocks providing superior future returns and 
inferior returns. More precisely, the ANN would predict whether a stock would have positive, 
neutral, or negative returns for the next year. This is an example of a classification problem 
where there are distinct groups that the output could be. The input to the ANN was comprised 
of 88 pieces of data, including 5 yearly changes in 7 different macroeconomic factors, 2 trends 
of 14 financial ratios over 4 years, 4 years of 5 financial ratios compared to industry benchmarks 
and the volatility of these ratios over the time span. During their testing, they found the 
network correctly predicted the direction of stock returns 72% of the time. They didn’t apply 
their ANN to an actual trading strategy so backtesting couldn’t be performed. Nonetheless, this 
work was some of the first of its kind and gave much hope to utilizing AI in trading and 
investing. 

Another study by Atlay and Satman in 2005 compared neural network performance to 
linear models of stock prices. The ANN inputs for a stock were daily closing price, quarterly 
book value, common shares outstanding, book to market value, and market capitalization. The 
output of the ANN was the stock price for the next time period. This kind of prediction is an 
example of regression where the output is a quantity selected from a continuous variable. 
Testing was executed on daily, weekly, and monthly time periods with three kinds of ANN 
models. Compared to three linear models, the ANNs all performed more accurately. 

The last example is of another regression system by Wanjawa and Muchemi in 2016. 
Similar to Atlay and Satman, their ANN predicted stock closing prices for the next day. The input 
to the network was just the last five closing prices. Using the MAPE metric to evaluate the 
accuracy, they found their model to predict within 0.77% of the actual prices. While the authors 
claimed this to be a success, it appeared from their graphs that their predictions always lagged 
behind the actual price trend. Using this model in a trading strategy would surely not lead to 
profits. 

Gap Strategy 
The trading system used the basic idea of a gap strategy. When markets open in the 

morning there are trades that happened over night that change the opening price from what 
the closing price was the day before. Normally a trader trading with this strategy would create a 



range for a stock that had a gap and then monitor it for the next hour. If the stock rose above 
the range that would signal the trader to buy the stock and if it fell below the range that would 
signal a short. 

There are four main types of gaps that traders normally look for. Full gaps up or down 
and partial gaps up or down. A full gap up occurs when the opening price of a stock is higher 
than the previous days high, and a full gap down is just the opposite. A partial gap up is when 
the opening price is higher than the closing price but not higher than previous days high and a 
partial gap down is the the exact opposite [stockcharts, Gap Trading Strategies]. Normally 
traders will build rules depending on this opening price and observe the market for the first 
hour to create their range for the day, and then they would have certain buy and sell rules that 
would tell them what to do if the price of the stock leaves that range.  

This system however works with a similar concept. It uses the idea of probability to find 
stocks that are likely to gap overnight and observe them immediately when the market opens. 
Instead of creating a range in the first hour the system enters a trade immediately if there is a 
large enough gap.  

 

 
  



CHAPTER 6: 10 O’Clock Bulls in FOREX 
 
 The 10 O’clock Bulls in FOREX strategy was a day trading system. This strategy 

attempted to predict reversals in the market by trading between the High and Low as 

determined by the 9:30-10:00 period. The EUR/USD pair was picked for this as it was a major 

pair and both markets were open for the majority of the trading hours. The system had only 

one entry condition, buy once the low for the day was crossed. Position sizing was determined 

by a formulas taking into account how much the equity the trader was willing to risk per trade, 

how much they were willing to lose per trade and the size of the lot that is being traded. Finally, 

the system checked if a simple moving average predicted that the pair would rise in value 

before buying, this was to catch the upswing of a pair instead of buying before it crashed.  

Following this several monitoring rules were setup to identify when to sell the pair. The 

first of these rules was to sell once the pair reached the day’s high determined by the initial 

9:30-10:00 period. The second monitoring rule was a preparation to close rule. As this system 

aims to be liquid by closing this rule would sell immediately if the trade had made a profit 

within two hours of closing. The third monitoring rule was a stoploss rule. This rule aimed to 

prevent catastrophic losses by selling as soon as the trade reached three standard deviations 

below the High/Low Average. Finally there was an end of the day rule. This rule sold at closing 

regardless of profit or loss. This was done to maintain the liquidity of the account and prepare 

for the next day.  

This system was tested using two tools called TradeStation and Market Systems 

Analyzer. The first is a trading platform that was used to backest with three months of historical 

data from June 1st the October 12th with $10,000 of capital. This provided a series of trades for 

the period. These trades were then input into Market System Analyzer to evaluate them. In the 

period 147 trades were conducted with 81 winning and 66 losing trades. The biggest win and 

loss were $1,286.00 and $1,735.00 respectively.  The maximum drawdown was $4002.70 and 

the average was $1,407.20. The Sharpe ratio of this system was -0.01830. The expectancy, 

expectunity and system quality were -10.07, -1487.10 and -0.0199 respectively. All these 

number show that in the long run this system will lose a significant amount of money and 

should not be traded. In figure 6.1 the Monte Carlo analysis is shown. This charts equity over 

the trades in the system. While most of the trades are in the outer bounds equity steadily 

declines as the number of trades increases. This shows that while this system may have lost of 

winning trades the smaller number of larger losing trades outweighs them heavily.  



Future work that may make this system more profitable is an increase in the monitoring 

of the system. Either a tightening of the stoploss rule or a more rigorous assessment before 

entering a position may decrease the frequency and size of losing trades.  

 

Figure 6.1 

  



CHAPTER 7: Artificial Neural Network 
This system is based on artificial intelligence. The intuition is that computers can find 

patterns in data where humans cannot. There are many techniques of applying AI. Probably the 
most popular today is the artificial neural network (ANN). This technique usually works best in 
situations with there is a lot of data for the ANN to find patterns in. Fortunately, trading 
markets are exactly this kind of situation. Vendors can have a variety of historical data for 
assets going back as far as 30 years.  

Using a neural network for trading is not a new idea. What differentiates this system 
from the rest is its signature or the type of input and output. The network is designed in such a 
way to predict whether to buy, sell, or hold an asset based on the raw technical data from that 
asset. The inputs are technical indicators. The output is a decimal ranging from -1 (sell) to 1 
(buy). It is up to the calling strategy to interpret whether values such as 0.5 mean buy or hold. 
This flexibility allows strategies to optimize such a parameter to achieve better results. 

Although the idea behind the system could be used in many trading scenarios, a specific 
area had to be chosen to do the development and testing. Stocks were favored as the asset 
class to trade simply due to the quantity of historical data that could be used for training. A 
time frame of one day was selected because of the reasons discussed earlier. Too small of a 
time frame causes noisy signals, but too large of a time frame would not allow enough trades to 
be generated for analysis. This kind of trading style would be classified as swing trading. 

It was decided early in development to build the system in Python as opposed to 
TradeStation. The primary reason for this choice was due to library support for machine 
learning. Python has established itself as one of the best languages in this area while 
TradeStation with its Easy Language has very little support. The second reason was due to 
familiarity. Knowing this would be a large development endeavor, using a new platform was 
considered a major drawback. Using Python had its own shortcomings though. It is not 
equipped with a free data feed or backtesting tool, so third party services and libraries had to 
make due. Data was sourced using the REST API from AlphaVantange, providing not only OHLCV 
but also plenty of useful indicators. Backtesting was written with the help of the Backtrader 
library. The neural network library was called Kur, a promising new player in the field built on 
top of Google’s TensorFlow with enhancements to usability and simplicity. 

One of the first challenges in building this neural network was calculating its expected 
output. Based on the ANN signature, the output is supposed to be a value indicating how 
certain the strategy should buy or sell. Obviously, the bottom of a graph should give a buy value 
and the top a sell value, but what about in between? An algorithm was developed to solve this 
problem of finding optimal trades. An example of its results are shown below. Green circles 
represent positive values or buys and red circles represent negative values or times to sell. The 
size of the circle is the certainty of the algorithm that the action should be taken. As expected 
the largest green circles appear at the bottom of cycles and red circles at the top. The code for 



this algorithm is given in the appendix under optimal.py. Some might think that this strategy is 
illegally looking ahead to future data. It is true that it looks ahead, but it should be noted that 
this algorithm is only run during the training phase of the ANN. When it comes time to backtest 
the strategy, only the most recent historical data per day is used as input to the ANN. 

 
The next phase of development was preprocessing the data for the network. This was 

comprised of turning a list of symbols, indicators, and a start and end date into six matrices; 
one input and one output matrix for the three phases of training, validation, and evaluation. 
First, the start and end dates were partitioned into three parts for each phase of ANN training. 
These phases are used to increase the validity and determine the accuracy of the ANN model. 
The following is repeated for each phase. For each symbol, the indicator data was downloaded 
or retrieved from local storage. Then optimal trades for each symbol were calculated in the 
time period. Depending on a parameter to the model, the ANN was given a certain number of 
prior days of data as input also. The matrices for each symbol were concatenated together to 
give the final input and output form to train the model with. An example of what this might 
look like is given below using n symbols, m indicators, p dates, and D prior days. There are n*p 
rows of data to train with. For each row, there are m*(D+1) inputs and a single output to the 
ANN. 

 

Symbols=S1-Sn, Indicators=I1-Im(s,t), Dates=T1-Tp, PriorDays=D, OptimalCertainty=Opt(s,t) 



Input Output 

I1(S1, T1) ... Im(S1, T1) I1(S1, T1-1) ... I1(S1, T1-D) ... Im(S1, T1-D) Opt(S1, T1) 

...  ... ...  ...  ... ... 

I1(S1, Tp) ... Im(S1, Tp) I1(S1, Tp-1) ... I1(S1, Tp-D) ... Im(S1, Tp-D) Opt(S1, Tp) 

...  ... ...  ...  ... ... 

I1(Sn, T1) ... Im(Sn, T1) I1(Sn, T1-1) ... I1(Sn, T1-D) ... Im(Sn, T1-D) Opt(Sn, T1) 

...  ... ...  ...  ... ... 

I1(Sn, Tp) ... Im(Sn, Tp) I1(Sn, Tp-1) ... I1(Sn, Tp-D) ... Im(Sn, Tp-D) Opt(Sn, Tp) 

 
After preprocessing the data into a suitable format for the ANN, the next step was to 

build and train the ANN model. Doing this relied on selecting reasonable parameters for the 
model. These parameters include the number of epochs to train for, number of hidden layers, 
number of nodes per layer, the type of activation function, and the type of loss function. The 
values for these parameters were chosen through an optimization process, in which a single 
parameter was changed at a time until the evaluation metric of the model was maximized. This 
resulted in the following values: epochs=200, hidden layers=1, nodes=64, activation=tanh, 
loss=mean squared error. An AI researcher with more experience could have justified values for 
these parameters instead of using a simple optimization technique done by hand. The 
architectural design of the ANN is the main source for how the overall strategy performs. 
Therefore, it is also the best place for experimentation in an attempt to improve its results. The 
file neural.py contains this part of development. 

The last step of building this system was to use the ANN to place trades in backtesting. 
This section of the code utilized the Strategy module of the python library Backtrader. A 
strategy was given a trained ANN, a symbol to trade, a time period to trade in, and a buy/sell 
threshold for optimization. This threshold determined whether the output from the neural 
network was significant enough to place an order. An example threshold might be 0.8, meaning 
that if the ANN output was above 0.8 or below -0.8 the strategy would buy or sell respectively. 
To use the ANN properly, the same type of inputs used in training had to be supplied. This 
meant retrieving specific indicator data for the symbol in question and formatting it 
appropriately. Once that was done, the backtesting could begin. For each day in the trading 
period, the symbol data on that day was fed as input into the ANN and a value between -1 and 
1 was returned. If the output passed the threshold parameter a trade was placed. The 
exception to this was if there was already a position in the market. The strategy only took one 
short or long position at a time. Position sizing was not factored into the ANN so it was fixed at 
10 shares per trade. Besides trades the ANN triggered, there was not an exit strategy to get out 
of a bad trade. The purpose of this was to test whether just the ANN alone was enough to make 
a system profitable. The code for this part is shown in strategy.py. 



Once the system was developed, it was able to be tested. A portfolio of 10 stocks to 
trade was selected from Yahoo’s screener for undervalued growth stocks. The neural network 
was trained for these stocks with 12 technical indicators: daily price, SMA, EMA, MACD, 
stochastic oscillator, RSI, ADX, CCI, Aroon, Bollinger bands, Chaikin A/D, and volume. Training 
was performed with data from 2007 to 2017 with a week of past data added to each row of the 
training matrix. The time period tested was the same as what was used for the other two 
systems, June 1st to October 12th. The code for this setup can be found in example.py. The 
results were not good. The system lost $626 from an initial pool of $10,000. Only 18 out of the 
85 total trades were profitable. With a Sharpe ratio of -1.951 and a monthly return of -1.284%, 
it is safe to say that this system should not be traded. The max drawdown was basically the 
whole entire trading period since the system never reached a peak after the first 6 days. The 
max number of consecutive losses was 13 trades. For a trading system to make money in the 
long run, there are three important metrics that need to be positive - expectancy, expectunity, 
and system quality. For this trading system, these three metrics were -0.64, -151, and -8.55 
respectively. Below is the monte carlo analysis showing that even in the top 5% of trade 
scenarios the equity steadily declines. Looking at just about any measure of performance would 
lead to the same conclusion that this system was a failure and should not be traded. 

 

  



CHAPTER 8: Gap Strategy 
The next strategy used was a type of gap strategy. The strategy was a day trading 

system that traded on equities. The first part of the strategy was to find stocks that would fit 
the strategy well. Instead of scanning the pre-markets or looking in the news to try and find 
some stocks that looked as if they were going to gap the next day, a scanner was used to find 
certain stocks that were statistically likely to gap and cover the gap as well. The scanner that 
was used to look for 4 distinct characteristics of an equity.  

● Percentage of days the equity had a gap of at least 1%. 

○ To find stocks that were likely to gap on that day. 

○ To reduce the number of stocks in the portfolio to make it more manageable. 

● Percentage of time the equity covered the 1% gap. 

○ Looking for stocks that will cover the gap more often than not. 

● The number of days the equity had a gap of 1% recently. 

○ Looking to make the other percentages statistically significant so that the sample 
is not based on 5 days of data but at least 60 days. 

● The percentage of times that the gap was extended by a certain amount. 

○ Looking to reduce the amount of possible drawdown on a trade. 

○ Looking to reduce the possible amount of money lost on a trade in a day 

The idea with these criteria was to select a small portfolio of stocks that were proven to 
cover the gap a statistically significant amount of time.  

This strategy looks for gaps in the closing and opening price of at least 1% and assumes 
that this gap is going to be covered at some point in the day. At the end of the day all open 
trades are closed and the system will take its loss for the day and start the next day on a blank 
slate. 

This trading system was an auto trading system as it would be too difficult to manage 
multiple equities at the same time. As stated earlier the entry rule for the system is that there is 
at least a 1% difference between the opening and closing price. This difference can be positive 
or negative and a short or long position would be made accordingly. At the time the strategy 
was made there was no position sizing. It was a constant amount that would later be a 
parameter that would be used for optimizing the strategy. The exit rules were very simple for 
the strategy. The trade was ended when the gap was covered or at the end of the day. A stop 



loss was tried for a little, but in the end just resulted in less profit because a significant number 
possible winning trades were being cut short. 

To evaluate the system backtesting is what was used. The software used for trading was 
a software package called Trade Station. Trade Station has a lot of useful tools for trading, such 
as the scanner that was used to select the portfolio of stocks. They also have tool called 
portfolio maestro which is very useful for running back tests, optimizing, and running other 
experiments on a portfolio. For back testing purposes the software looked at 3 months of data 
from June first to October twelth with $10,000 of initial capital. Through back testing the 
scanner changed from what it was originally was and the strategy lost only a little money. In the 
beginning the scanner did not look for the 4th criteria of minimizing times the stock dropped 
3% on a trade, but after this was added and the portfolio was changed the system did not lose 
nearly as much money. After the portfolio was selected, the strategy was optimized to look for 
the best position size possible for all the trades. However, because it was just the position size 
changing it recommended a very large position size when it was making money. The final 
decision on position sizing was 50% of the initial portfolio size. This minimized the cost of 
commissions as it allowed bigger wins to win more 

All trades in this system were done using back testing however the system was not 
modified at all for the months that it that the results are based on so it can be assumed that 
those trades were live trades. 

The final result of the system was not optimal by looking at almost every performance 
measure. In the end the system lost $2,256 of the original $10,000 from June 1st to October 23. 
Out of 2470 trades only 48.87% were profitable and as seen by the amount lost the losing 
trades were usually bigger than the winning trades.The system had a sharp ratio of -0.2977 and 
an average daily, weekly, and monthly return rate of 1.7%, -8.94%, and 25.13% with standard 
deviations of 21.57%, 65.41%, and 83.83% respectively. This goes to show that the system is 
wildly inconsistent and any thing could happen month to month or even day to day. The 
expectancy, expectunity and system quality for this system were -0.01, -53.28, and -3.24 
respectively. The maximum drawdown from all of the trades was $1,379. The portfolio peeked 
on July 23rd at a liquid value of $18,260. The worst day the portfolio had was on August 15th 
when it lost $8,133, so just missing this one day would have had the portfolio making $4,201 
instead. For a more general sense of how the trading went look at figure 8.1 below. There were 
also some monte carlo tests that were run on these trades. In only the bottom 15% of run 
throughs would the system not be profitable for average returns. Figure 8.1 also shows some 
confidence lines on how the system would do. You can see that the trades from the system 
went out of these bounds which shows that the system is very volatile and not what a system 
should look like. One thing to note which was interesting was that for every trade both entering 
and leaving there was a $4.50 commision fee. So after the 2470 trades there was a total 
commision fee of $22,279. Through all of these results which are basic measures of the quality 
of a system, and the fact that commissions are a part of every traders life the conclusion is the 
system is not reliable and should not be traded until modifications can be made.  

Future work could go into the system to know more about what was happening to each 
symbol in recent days to better predict if it would cover or not. Also because a lot of the 



symbols are in the same area of real world trade paying more attention to the news in which 
these symbols are based on could help prevent massive losses. 

 

Figure 8.1 

 
 

  



CHAPTER 9: System of Systems 
As stated in the problem statement, one of the goals of this project is to understand the 

benefits of a diversified system. While an individual system can diversify by choosing varied 
stocks, another approach is to create a system of systems. The idea is that by using many 
systems in harmony, funds can be dynamically allocated to each system based on their 
performance and return rates become more stable. However, for this technique to work the 
individual trading systems should take advantage of increased funds. Both the neural network 
system and the gap strategy system did not alter its trading tendencies based on how much 
capital it had at its disposal. Because of this, diversification of the systems presented here will 
see less benefit than those that change trading behavior based on capital. 

There are a few methods for aggregating multiple systems. The first is to just collect the 
data from each system and analyze it together. To achieve this method of aggregation, each of 
the three systems were given an initial fund of $10,000. The systems were backtested in the 
same conditions as outlined in earlier chapters. This produced identical individual results but 
the goal is to analyze them collectively. As a result, this naively aggregated system of systems 
lost $4,337 and produced an expectancy of -$1.10, a yearly expectunity of $8,135, and a system 
quality of -36. Given that each system individually lost money, it makes sense that each of these 
performance metrics are worse off when the systems are combined. The Monte Carlo analysis 
below shows a similar story. Only in the top 5% of runs and stopping before going negative, 
would the system make money. 

 
 



The second method of producing a system of systems is to reward the better systems 
with more money. To do this, the system quality metric can be used to compare the 
performance of each system. In the order they were presented, the systems scored ---, -8.55, 
-3.24. Based on these values, it makes sense to give the largest portion of the funding to the 
last system and the smallest portion to the second. Unfortunately, due to how the systems 
were developed, allocating more or less money to any one system would not actually change 
the results. Ideally, a system would alter entry, exit, and sizing logic relative to its available 
equity. Another technique for improving a group of systems is to develop rules for activating, 
suspending, and retiring systems based on their performance.  

  



CHAPTER 10: Summary and Conclusions 
The results of the systems were not promising. None of the systems that were created 

were profitable in the long run.  

The largest barrier in this project was the lack of familiarity the group had with trading 
and analysis software. No one in the group had previously used TradeStation or System Market 
Analyzer. There was a lot of extra time spent learning how to use the software rather than 
being able to utilize the software immediately. 

Seeing that all the systems that were created were not profitable some more research 
could be done for all of the systems. For the gap strategy the lack of position sizing likely hurt 
the system. Running more tests as to whether or not there are indicators as to how large the 
trade should be would help the system. Also a more thorough scan of stocks from the screener 
to avoid stocks that are likely to be correlated with each other would reduce the risk for the 
system as a whole.  

Possibly the one bright side to the neural network development is the number of 

possibilities to improve it. Some simple enhancements could be the addition of an exit strategy 

or position sizing rules. This would limit the size of losses and potentially increase the size of 

winning trades. Other ways to tune the system might be changing the method of evaluating 

ANN models or changing the calculation of ANN output for training. These two changes would 

have a large effect on the overall outcome since it is the core logic of how trades are 

determined. There could be a lot of experimentation with these factors. Lastly, what the ANN 

models lacked in this trading system were features or measurable characteristics. Instead of 

having the network turn a list of 20 indicators into a single number representing whether or not 

to trade, it would have been better to first have the ANN pick out features from the indicators 

such as trends. It would then turn a list of features into a single number. This process is called 

feature engineering and is considered one of the hardest yet most important aspects of 

developing a successful model [Brownlee]. 
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APPENDIX B: 10 O’Clock Bulls in FOREX 
Code 
 
 
Inputs: startTime (0930), endTime (1000), accountSize(100000), riskPercentage(.01), 
stopLoss(100), 
alotSize(10000), AverageLength(7); 
vars: storedLow(5), storedHigh(0), lotSize(0), HighDate(0), HighTime(0), LowDate(0), 
LowTime(0), 
SMA(0), SMAsum(0), counter(0), CurrentBarAve(0), SD(0), Middle(0), Leave(0), positionSize(0), 
pipMovement(0); 
 
 
Switch (Time) 
    Begin  
  Default: 
  storedLow = 5; 
  storedHigh = 0; 
  Case 0930 to 1701: 
  If L <= storedLow and T <= 1000 and T >= 0930 then 
  Begin 
  storedLow = L; 
  LowTime = T; 
  LowDate = D; 
  End; 
  If H >= storedHigh and T <= 1000 and T >= 0930 then 
  Begin 
  storedHigh = H; 
  HighDate = D; 
  HighTime = T; 
  End; 
   
    {This function takes the stored highs and lows in order to create trendlines 
    for a visual representation of what is being recorded} 
 

 If Currentbar > 1 then 
 begin 

  Value1 = Tl_new (HighDate, HighTime, storedHigh, D, T, storedHigh); 
  Value2 = Tl_new (LowDate, LowTime, storedLow, D, T, storedLow); 



  end; 
  
    {This is the buy portion. It takes the stored low and if it is crossed then 
    buys the next bar at market} 
    If Low crosses below storedLow and time < 1600 then 

 Begin 
    {This portion determines if there is support using the Simple Moving Average} 
  

 For counter = 0 to AverageLength - 1 
  Begin 
  {This sums the average price of each bar } 
  SMAsum = SMAsum + ((High + Low + Close)/3)[counter]; 
  end; 
 
  {This function divides the sum by length to get the SMA} 
  If AverageLength <> 0 then 
  SMA = SMAsum / AverageLength; 
   
  {This function checks if there is support for the reversal with the SMA} 
  If SMA > Low then 
 
  {If support is determined to exist then the buy order is executed} 
  {This is the buy order and posiiton sizing rules. The position size is determied through 
  the maximum risk the trader wishes to have for their account.} 
  {Risk Percentage is the decimal form of the percentage of an account that the trader is 
willing 
  to risk. ex: 1% = .01} 
  {stopLoss is how many pips does the trader wish to risk.} 
  {pipMovement is how much each pip movement is worth. Microlot = .1, Minilot = 1, 
Standardlot = 10} 
  If alotSize = 100000 then 
  Begin 
  pipMovement = 10; 
  end; 
  If alotSize = 10000 then 
  Begin 
  pipMovement = 1; 
  end; 
  If alotSize = 1000 then 
  Begin 
  pipMovement = .1; 
  end; 



  positionSize = ((accountSize * riskPercentage)/(stopLoss*pipMovement))* 
alotSize; 
  Buy ("Entry") positionSize contracts next bar at market; 
  end; 
  
    {This is the ideal sell funciton. When the pair reaches the stored high the position is 
reversed.} 
    If High crosses over storedHigh then 
  Begin 
  
  For counter = 0 to AverageLength - 1 
  Begin 
  SMAsum = SMAsum + ((High + Low + Close)/3)[counter]; 
  end; 
  
  If AverageLength <> 0 then 
  SMA = SMAsum / AverageLength; 
   
  If SMA > High then 
  Sellshort ("Exit") next bar at market; 
  End; 
    {This is the preparation for the end of the day function. If a position has been held for more 
than 
    2 hours and it is after 3pm then the position will sell if the postion is profitable.} 
    If time > 1600 and Barssinceentry > 24 then 
  Begin 
  If Entryprice < Close then 
  Begin 
  Sell ("Preping for Close") next bar at market; 
  End; 
  end; 
    {This is the stoploss function. It checks whenever the Low goes below the stored low and 
sells} 
    If Low < storedLow then 
  Begin 
  CurrentBarAve = (H + L + C)/3; 
  SD = (storedHigh - storedLow)/2; 
  Middle = storedLow + SD; 
  Leave = Middle - (3 * SD); 
  If CurrentBarAve < Leave then 
  Sell next bar at market; 
  end; 
    {This is the end of the day function. If it is past 5pm then the position will be sold to close out 



    the day.} 
    If Time > 1700 then 
  Begin  
  Sell ("Timeout") next bar at market; 
  end; 
 
    End; 
 
 
 

  



APPENDIX C: Artificial Neural Network 
Code 

analysis.py 
import numpy as np 
 
def get_accuracy(output, tolerance=0.5): 
    if output: 
        diff = np.abs(output['truth']['out'] - output['result']['out']) < tolerance 
        correct = diff.sum() 
        total = len(diff) 
        return correct / total 
 
 
def get_average_distance(output): 
    if output: 
        diff = np.abs(output['truth']['out'] - output['result']['out']) 
        total_diff = diff.sum() 
        total = len(diff) 
        return total_diff / total 

data.py 
from utility import * 
import traceback 
import os 
 
 
class DataException(Exception): 
    pass 
 
 
class Data: 
 
    def __init__(self, **params): 
        self.params = params 
        self.path = None 
        self.data = None 



        self.get_path() 
        self.make_path() 
        self.write_params() 
        self.data = self.get_data() 
 
    def data_error_msg(self): 
        return 'Failed to get data for ' + str(self.params) 
 
    def get_data(self): 
        try: 
            if self.data is None: 
                self.data = self.read_data() 
                if self.data is None: 
                    self.data = self.get_new_data() 
                    if self.data is None: 
                        raise DataException(self.data_error_msg()) 
                    self.write_data() 
            return self.data 
        except Exception: 
            raise DataException(traceback.format_exc() + '\n' + self.data_error_msg()) 
 
    def get_base_path(self): 
        if not self.path: 
            file_name = shorten_path(encrypt_dict(self.params)) 
            cwd = os.getcwd() 
            self.path = os.path.join(cwd, PARAMS['data_folder'], self.get_folder(), file_name) 
        return self.path 
 
    def get_path(self, *paths): 
        return os.path.join(self.get_base_path(), *paths) 
 
    def make_path(self): 
        make_path(self.get_params_path()) 
 
    def get_params_path(self): 
        return self.get_path('params.pkl') 
 
    def write_params(self): 
        write_pickle(self.get_params_path(), self.params) 
 
    @classmethod 
    def load(cls, path): 
        params = read_pickle(os.path.join(path, 'params.pkl')) 



        return cls(**params) 
 
    def get_new_data(self): 
        raise NotImplementedError() 
 
    def get_folder(self): 
        raise NotImplementedError() 
 
    def read_data(self): 
        raise NotImplementedError() 
 
    def write_data(self): 
        raise NotImplementedError() 
 

example.py 
from symbol import get_options_list 
from strategy import Strategy 
from neural import NeuralNetwork 
from preprocess import stratify_parts 
from graph import * 
import csv 
 
# yahoo screener stocks top 10 
 
undervalued_growth_stocks = ['F', 'MU', 'NFX', 'CMCSA', 'MDR', 'KGC', 'VALE', 

'XOM', 'FLEX', 'ON'] 
 
 
# dates 
 
start = '2007-01-01' 
end = '2018-01-01' 
 
# indicators 
 
indicators = ['daily', 'daily_adjusted', 'sma', 'ema', 'macd', 'stoch', 'rsi', 

'adx', 'cci', 'aroon', 'bbands', 'ad', 'obv'] 
 
# additional params 
 
days = 7 



 
tolerance = 0.05 
 
epochs = 200 
 
threshold = 0.9 
 
# ANNs 
 
 
neural1 = NeuralNetwork(**stratify_parts(undervalued_growth_stocks, [0.25]*3, start, 
            end), options_list=get_options_list(indicators), 
            days=days, tolerance=tolerance, epochs=epochs) 
 
 
# strategies 
 
strat_start = '2018-06-01' 
strat_end = '2018-10-12' 
 
strategies = [] 
for symbol in undervalued_growth_stocks: 

strategies.append(Strategy(neural=neural1, start=strat_start, end=strat_end, 
symbol=symbol, threshold=threshold)) 

 
# save trades 
 
trades = [ { 'date': d['date'], 'price': d['price'], 'size': d['size'], 

'symbol': s.symbol } for s in strategies for d in s.get_data() ] 
 
with open('trades.csv', 'w') as fh: 

f = csv.writer(fh) 
f.writerow(list(trades[0].keys())) 
for trade in trades: 

f.writerow(list(trade.values())) 
 

graph.py 
import optimal 
import symbol 
import matplotlib.pyplot as plt 
from matplotlib.ticker import LinearLocator 



import neural 
from data import Data 
from optimal import OptimalTrades 
from symbol import SymbolData, SymbolCloseData 
from utility import * 
 
PT_SIZE = 20 
 
class Graph(Data): 
 
    def get_folder(self): 
        return 'graph' 
 
    def get_fig_path(self): 
        return self.get_path('graph.pkl') 
 
    def get_pic_path(self): 
        return self.get_path('graph.png') 
 
    def read_data(self): 
        return read_pickle(self.get_fig_path()) 
 
    def write_data(self): 
        fig = self.get_data() 
        fig.savefig(self.get_pic_path()) 
        write_pickle(self.get_fig_path(), fig) 
 
    def get_figure(self): 
        return self.get_data() 
 
    def get_new_data(self): 
        return self.make_figure() 
 
    def show(self): 
        plt.show() 
 
    def make_figure(self): 
        raise NotImplementedError() 
 
 
class SymbolDataGraph(Graph): 
 
    def __init__(self, **params): 



        self.symbol = params['symbol'] 
        self.options_list = params['options_list'] 
        self.start = params.get('start', None) 
        self.end = params.get('end', None) 
        super().__init__(**params) 
 
    def make_figure(self): 
        log('Making new symbol data graph...') 
        return graph_symbol_data(self.symbol, self.options_list, self.start, self.end) 
 
 
class OptimalTradesGraph(Graph): 
 
    def __init__(self, **params): 
        self.symbol = params['symbol'] 
        self.tolerance = params.get('tolerance', 0.01) 
        self.start = params.get('start', None) 
        self.end = params.get('end', None) 
        super().__init__(**params) 
 
    def make_figure(self): 
        log('Making new optimal trades graph...') 
        return graph_optimal_trades(self.symbol, self.start, self.end, self.tolerance) 
 
 
class StrategyTradesGraph(Graph): 
 
    def __init__(self, strategy=None): 
        self.strategy = strategy 
        super().__init__(strategy=self.strategy.params) 
 
    def make_figure(self): 
        log('Making new strategy trades graph...') 
        return graph_strategy_trades(self.strategy) 
 
 
def graph_symbol_data(symbol, options_list, start, end): 
    data = SymbolData(symbol=symbol, options_list=options_list, start=start, 
end=end).get_data() 
    columns = get_columns(data) 
    data_list = [extract_column(col, data) for col in columns] 
 
    xys = dicts_to_xys(data_list) 



 
    fig = plt.figure() 
    for x, y in xys: 
        plt.plot(x, y) 
 
    plt.title('Symbol Data (%s)' % symbol) 
    plt.ylabel('Indicator Value') 
    plt.xlabel('Date') 
 
    add_dates(sorted(data.keys())) 
    plt.gca().get_yaxis().set_major_locator(LinearLocator(numticks=10)) 
 
    return fig 
 
 
def graph_optimal_trades(symbol, start, end, tolerance): 
    prices = SymbolCloseData(symbol=symbol, start=start, end=end).get_data() 
    trades = OptimalTrades(symbol=symbol, start=start, end=end, 
                            tolerance=tolerance).get_data() 
 
    buy_sizes = {k: PT_SIZE * v for k, v in trades.items() if v > 0} 
    buy_prices = {k: prices[k] for k in buy_sizes} 
    sell_sizes = {k: -PT_SIZE * v for k, v in trades.items() if v < 0} 
    sell_prices = {k: prices[k] for k in sell_sizes} 
 
    (xp, yp), (xb, ybp), (_, ybs), (xs, ysp), (_, yss) = dicts_to_xys([ 
        prices, buy_prices, buy_sizes, sell_prices, sell_sizes 
    ]) 
 
    fig = plt.figure() 
    plt.plot(xp, yp) 
    plt.scatter(xb, ybp, s=ybs, c='g') 
    plt.scatter(xs, ysp, s=yss, c='r') 
 
    plt.title('Optimal Trades (%s)' % symbol) 
    plt.ylabel('Price') 
    plt.xlabel('Date') 
    add_dates(sorted(prices.keys())) 
 
    return fig 
 
 
def graph_strategy_trades(strategy): 



    prices = SymbolCloseData(symbol=strategy.symbol, start=strategy.start, 
                            end=strategy.end).get_data() 
    trades = strategy.get_data() 
 
    buy_prices = { t['date']: t['price'] for t in trades if t['buy'] } 
    sell_prices = { t['date']: t['price'] for t in trades if not t['buy'] } 
 
    (xp, yp), (xb, ybp), (xs, ysp) = dicts_to_xys([ 
        prices, buy_prices, sell_prices 
    ]) 
 
    fig = plt.figure() 
    plt.plot(xp, yp) 
    plt.scatter(xb, ybp, c='g') 
    plt.scatter(xs, ysp, c='r') 
 
    plt.title('Strategy Trades (%s)' % strategy.symbol) 
    plt.ylabel('Price') 
    plt.xlabel('Date') 
    add_dates(sorted(prices.keys())) 
 
    return fig 
 
 
def get_symbol_data_graphs(symbols, options_list, start, end): 
    graphs = {} 
    log(end) 
    for symbol in symbols: 
        graphs[symbol] = SymbolDataGraph(symbol=symbol, options_list=options_list, 
                                         start=start, end=end).get_figure() 
    return graphs 
 
 
def get_optimal_trades_graphs(symbols, start, end, tolerance): 
    graphs = {} 
    for symbol in symbols: 
        graphs[symbol] = OptimalTradesGraph(symbol=symbol, tolerance=tolerance, 
                                            start=start, end=end).get_figure() 
    return graphs 
 
 
def add_dates(dates): 
    num_locs = 4 



    locs = [ i for i in range(0, len(dates), len(dates) // num_locs) ] 
    labels = [ dates[i] for i in locs ] 
    plt.xticks(locs, labels, rotation=20) 
 
 
def add_args(parser): 
    parser.add_argument('data', type=str, help='data to graph', 
                        choices=['data', 'optimal', 'neural', 'strategy']) 
    neural.add_args(parser) 
 
 
def handle_args(args, parser): 
    if args.data == 'neural': 
        neural.handle_args(args, parser) 
    elif args.data == 'optimal': 
        optimal.handle_args(args, parser) 
    elif args.data == 'data': 
        symbol.handle_args(args, parser) 
 
 
def get_neural_network_graph(): 
    print('neural network graph not implemented') 
 
 
def get_strategy_graph(): 
    print('strategy graph not implemented') 
 
 
def main(): 
    args = parse_args('Load a graph.', add_args, handle_args) 
    data = [] 
    if args.data == 'data': 
        data += get_symbol_data_graphs(args.symbols, args.options_list, args.start, args.end) 
    if args.data == 'optimal': 
        data += get_optimal_trades_graphs(args.symbols, args.start, args.end, args.tolerance) 
    if args.data == 'neural': 
        data += get_neural_network_graph() 
    if args.data == 'strategy': 
        data += get_strategy_graph() 
    if args.print or PARAMS['verbose']: 
        plt.show() 
    if args.path: 
        [log(d.get_path(), force=args.print) for d in data] 



 
 
if __name__ == '__main__': 
    main() 
 

indicators.py 
def daily(): 
    return { 
        'function': 'TIME_SERIES_DAILY', 
        'columns': ['open', 'high', 'low', 'close', 'volume'], 
        'outputsize': 'full' 
    } 
 
 
def daily_adjusted(): 
    return { 
        'function': 'TIME_SERIES_DAILY_ADJUSTED', 
        'columns': ['adjusted close', 'dividend amount', 'split coefficient'], 
        'outputsize': 'full' 
    } 
 
 
def sma(period=30): 
    return { 
        'function': 'SMA', 
        'columns': ['SMA'], 
        'interval': 'daily', 
        'time_period': period, 
        'series_type': 'close' 
    } 
 
 
def ema(period=20): 
    return { 
        'function': 'EMA', 
        'columns': ['EMA'], 
        'interval': 'daily', 
        'time_period': period, 
        'series_type': 'close' 
    } 
 



 
def macd(fast=12, slow=26, signal=9): 
    return { 
        'function': 'MACD', 
        'columns': ['MACD_Signal', 'MACD_Hist', 'MACD'], 
        'interval': 'daily', 
        'series_type': 'close', 
        'fastperiod': fast, 
        'slowperiod': slow, 
        'signalperiod': signal, 
    } 
 
 
def stoch(fastk=5, slowk=3, slowd=3, kma=0, dma=0): 
    return { 
        'function': 'STOCH', 
        'columns': ['SlowD', 'SlowK'], 
        'interval': 'daily', 
        'series_type': 'close', 
        'fastkperiod': fastk, 
        'slowkperiod': slowk, 
        'slowdperiod': slowd, 
        'slowkmatype': kma, 
        'slowdmatype': dma 
    } 
 
 
def rsi(period=14): 
    return { 
        'function': 'RSI', 
        'columns': ['RSI'], 
        'interval': 'daily', 
        'series_type': 'close', 
        'time_period': period 
    } 
 
 
def adx(period=14): 
    return { 
        'function': 'ADX', 
        'columns': ['ADX'], 
        'interval': 'daily', 
        'series_type': 'close', 



        'time_period': period 
    } 
 
 
def cci(period=14): 
    return { 
        'function': 'CCI', 
        'columns': ['CCI'], 
        'interval': 'daily', 
        'series_type': 'close', 
        'time_period': period 
    } 
 
 
def aroon(period=14): 
    return { 
        'function': 'AROON', 
        'columns': ['Aroon Up', 'Aroon Down'], 
        'interval': 'daily', 
        'time_period': period 
    } 
 
 
def bbands(period=14, ndev=2, ma=0): 
    return { 
        'function': 'BBANDS', 
        'columns': ['Real Middle Band', 'Real Upper Band', 'Real Lower Band'], 
        'interval': 'daily', 
        'time_period': period, 
        'series_type': 'close', 
        'nbdevup': ndev, 
        'nbdevdn': ndev, 
        'matype': ma 
    } 
 
 
def ad(): 
    return { 
        'function': 'AD', 
        'columns': ['Chaikin A/D'], 
        'interval': 'daily', 
    } 
 



 
def obv(): 
    return { 
        'function': 'OBV', 
        'columns': ['OBV'], 
        'interval': 'daily', 
    } 

model.yml 
model: 
  - input: 
      shape: (SHAPE,) 
    name: in 
  - dense: NODES 
  - activation: ACTIVATION 
  - dense: 1 
  - activation: ACTIVATION 
    name: out 
 
train: 
  data: 
    - pickle: TRAINING 
  epochs: EPOCHS 
  weights: WEIGHTS 
  log: LOG 
 
validate: 
  data: 
    - pickle: VALIDATION 
  weights: WEIGHTS 
 
evaluate: 
  data: 
    - pickle: EVALUATION 
  weights: WEIGHTS 
  destination: OUTPUT 
 
loss: 
  - target: out 
    name: LOSS 
 
 



neural.py 
import logging 
from subprocess import call 
from kur.loggers import BinaryLogger 
from kur import Kurfile 
from kur.engine import JinjaEngine 
from kur.utils import DisableLogging 
from sys import stdout 
import preprocess 
from analysis import get_accuracy, get_average_distance 
from utility import * 
from data import Data 
 
 
class NeuralNetwork(Data): 
 
    def __init__(self, **params): 
        self.training = params['training'] 
        self.validation = params['validation'] 
        self.evaluation = params['evaluation'] 
        self.options_list = params['options_list'] 
        self.days = params.get('days', 0) 
        self.tolerance = params.get('tolerance', 0.01) 
        self.epochs = params.get('epochs', 50) 
        self.nodes = params.get('nodes', 64) 
        self.activation = params.get('activation', 'tanh') 
        self.loss = params.get('loss', 'mean_squared_error') 
        self.part_data = None 
        super().__init__(**params) 
 
    def get_folder(self): 
        return 'neural' 
 
    def read_data(self): 
        return read_pickle(self.get_data_path()) 
 
    def write_data(self): 
        write_pickle(self.get_data_path(), self.get_data()) 
 
    def get_data_path(self): 
        return self.get_path('data.pkl') 



 
    def get_model_path(self): 
        return self.get_path('model.yml') 
 
    def get_new_data(self): 
        log('Training neural network...') 
        self.make_model() 
        return train_neural_network(self.get_path()) 
 
    def make_model(self): 
        make_path(self.get_model_path()) 
        with open(self.get_model_path(), 'w') as fh: 
            fh.write(self.get_model()) 
 
    def get_part_data(self): 
        if not self.part_data: 
            self.part_data = preprocess.NeuralNetworkData(training=self.training, 
                validation=self.validation, evaluation=self.evaluation, 
                options_list=self.options_list, days=self.days, tolerance=self.tolerance) 
        return self.part_data 
 
    def get_model(self): 
        folder = self.get_path() 
        part_data = self.get_part_data() 
        training = part_data.get_part_path('training') 
        validation = part_data.get_part_path('validation') 
        evaluation = part_data.get_part_path('evaluation') 
        return make_model(training, validation, evaluation, folder, self.epochs, 
                          self.nodes, self.activation, self.loss, part_data.get_shape()) 
 
    def predict(self, data): 
        kurfile = Kurfile(self.get_model_path(), JinjaEngine()) 
        kurfile.parse() 
        model = kurfile.get_model() 
        with DisableLogging(logging.WARNING): 
            model.backend.compile(model) 
        model.restore(self.get_path('weights')) 
        pdf, metrics = model.backend.evaluate(model, data={'in': np.array([data])}) 
        prediction = pdf['out'][0][0] 
        return prediction 
 
 
def make_model(training, validation, evaluation, folder, epochs, nodes, activation, loss, shape): 



    with open('model.yml', 'r') as fh: 
        model = fh.read() 
        model = model.replace('TRAINING', training) 
        model = model.replace('VALIDATION', validation) 
        model = model.replace('EVALUATION', evaluation) 
        model = model.replace('WEIGHTS', os.path.join(folder, 'weights')) 
        model = model.replace('LOG', os.path.join(folder, 'log')) 
        model = model.replace('OUTPUT', os.path.join(folder, 'output.pkl')) 
        model = model.replace('EPOCHS', str(epochs)) 
        model = model.replace('NODES', str(nodes)) 
        model = model.replace('ACTIVATION', activation) 
        model = model.replace('LOSS', loss) 
        model = model.replace('SHAPE', str(shape)) 
        return model 
 
 
def train_neural_network(folder): 
    model_path = os.path.join(folder, 'model.yml') 
    log_path = os.path.join(folder, 'log') 
    output_path = os.path.join(folder, 'output.pkl') 
    std_out = None if PARAMS['verbose'] else 'out' 
    call(['kur', 'train', model_path], stdout=stdout) 
    call(['kur', 'evaluate', model_path], stdout=stdout) 
    output = read_pickle(output_path) 
    return { 
        'training_loss': get_loss(log_path, 'training_loss_total'), 
        'validation_loss': get_loss(log_path, 'validation_loss_total'), 
        'output': output, 
        'accuracy': get_accuracy(output), 
        'average_distance': get_average_distance(output) 
    } 
 
 
def get_loss(log_path, path): 
    return BinaryLogger.load_column(log_path, path) 
 
 
def add_args(parser): 
    preprocess.add_args(parser) 
    parser.add_argument('-e', '--epochs', type=int, default=50, 
                        help='number of epochs to train for') 
    parser.add_argument('-n', '--nodes', type=int, default=64, 
                        help='number of nodes per layer') 



    parser.add_argument('-a', '--activation', type=str, default='tanh', choices=['tanh'], 
                        help='type of activation layer') 
    parser.add_argument('--loss', type=str, default='mean_squared_error', 
                        help='type of loss function', choices=['mean_squared_error']) 
 
 
def handle_args(args, parser): 
    preprocess.handle_args(args, parser) 
 
 
def main(): 
    args = parse_args('Create a neural network.', add_args, handle_args) 
    data = NeuralNetwork(**args.parts, options_list=args.options_list, days=args.days, 
                         tolerance=args.tolerance, epochs=args.epochs, nodes=args.nodes, 
                         activation=args.activation, loss=args.loss) 
    log(data.get_data(), force=args.print) 
    if args.path: 
        log(data.get_path(), force=args.print) 
 
 
if __name__ == '__main__': 
    main() 
 

optimal.py 
from __future__ import (absolute_import, division, print_function, unicode_literals) 
from data import Data 
from utility import * 
from symbol import SymbolCloseData, add_symbol_args, handle_symbol_args, 
handle_date_args 
 
BUY = 1 
SELL = -1 
 
 
class OptimalTrades(Data): 
 
    def __init__(self, **params): 
        self.symbol = params['symbol'] 
        self.start = params.get('start', None) 
        self.end = params.get('end', None) 
        self.tolerance = params.get('tolerance', 0.01) 



        super().__init__(**params) 
 
    def get_new_data(self): 
        log('Calculating optimal trades...') 
        trades = get_optimal_trades(self.symbol, self.start, self.end, self.tolerance) 
        if trades == {}: 
            raise Exception('Could not calculate optimal trades. Try increasing the period or 
decreasing the tolerance.') 
        return trades 
 
    def get_folder(self): 
        return 'optimal' 
 
    def get_data_path(self): 
        return self.get_path('data.pkl') 
 
    def read_data(self): 
        return read_pickle(self.get_data_path()) 
 
    def write_data(self): 
        write_pickle(self.get_data_path(), self.get_data()) 
 
 
def get_optimal_trades(symbol, start, end, tolerance): 
    data = SymbolCloseData(symbol=symbol, start=start, end=end).get_data() 
    return calc_trades(data, tolerance=tolerance) 
 
 
def calc_trades(data, tolerance): 
    dates = sorted(data) 
    prices = [data[date] for date in dates] 
    trades = optimize_trades(prices, tolerance) 
    trades = smooth_trades(trades, prices) 
    trade_data = {dates[key]: val for key, val in trades.items()} 
    return trade_data 
 
 
def smooth_trades(trades, prices): 
    if len(trades) < 2: 
        return trades 
 
    ordered_trades = sorted(trades.items()) 
 



    for i, (date, trade) in enumerate(ordered_trades[1:]): 
        last_date = ordered_trades[i][0] 
        if trade == BUY: 
            buy_price = prices[date] 
            sell_price = prices[last_date] 
        else: 
            buy_price = prices[last_date] 
            sell_price = prices[date] 
        for j, price in enumerate(prices[last_date + 1:date]): 
            trades[last_date + 1 + j] = smooth_trade(price, buy_price, sell_price) 
 
    return trades 
 
 
def smooth_trade(price, buy_price, sell_price): 
    return 1 - 2 * (price - buy_price) / (sell_price - buy_price) 
 
 
def optimize_trades(prices, tolerance): 
    if len(prices) < 2: 
        return {} 
 
    # determine whether to buy or sell first 
    buying = should_buy_first(prices, tolerance) 
 
    delay = 0 
    trades = {} 
 
    # determine when to buy and sell 
    for index, price in enumerate(prices[1:]): 
        index -= delay  # index is behind by one = index - 1 
        price_diff = (price - prices[index]) / prices[index] 
 
        if buying:  # looking to buy 
            if 0 <= price_diff <= tolerance: 
                delay += 1 
            else: 
                delay = 0 
                if price_diff > 0: 
                    trades[index] = BUY 
                    buying = False 
        else:  # looking to sell 
            if -tolerance <= price_diff <= 0: 



                delay += 1 
            else: 
                delay = 0 
                if price_diff < 0: 
                    trades[index] = SELL 
                    buying = True 
 
    return trades 
 
 
def should_buy_first(prices, tolerance): 
    delay = 0 
 
    for index, price in enumerate(prices[1:]): 
        index -= delay  # index is behind by one = index - 1 
        price_diff = (price - prices[index]) / prices[index] 
 
        if 0 <= price_diff <= tolerance: 
            delay += 1 
        else: 
            delay = 0 
            if price_diff > 0: 
                return True 
        if -tolerance <= price_diff < 0: 
            delay += 1 
        else: 
            delay = 0 
            if price_diff < 0: 
                return False 
 
 
def get_optimal_trades_dict(symbols, start, end, tolerance): 
    trades = {} 
    for symbol in symbols: 
        trades[symbol] = OptimalTrades(symbol=symbol, start=start, end=end, 
tolerance=tolerance) 
    return trades 
 
 
def add_args(parser): 
    add_symbol_args(parser) 
    parser.add_argument('-t', '--tolerance', type=float, default=0.01, 
                        help='tolerance to use in algorithm') 



 
 
def handle_args(args, parser): 
    handle_symbol_args(args, parser) 
    handle_date_args(args, parser) 
 
 
def main(): 
    args = parse_args('Load optimal trades.', add_args, handle_args) 
    data = get_optimal_trades_dict(args.symbols, args.start, args.end, args.tolerance) 
    [log(k, v.get_data(), force=args.print) for k, v in data.items()] 
    if args.path: 
        [log(k, v.get_path(), force=args.print) for k, v in data.items()] 
 
 
if __name__ == '__main__': 
    main() 
 

params.py 
import os 
from dotenv import load_dotenv, find_dotenv 
load_dotenv(find_dotenv()) 
from indicators import * 
 
 
ALPHAVANTAGE = 'alphavantage_key' 
INTRINIO_USERNAME = 'intrinio_username' 
INTRINIO_PASSWORD = 'intrinio_password' 
DATA_FOLDER = 'data' 
 
 
def check_credentials(): 
    for var in [ALPHAVANTAGE, INTRINIO_USERNAME, INTRINIO_PASSWORD]: 
        if not os.environ.get(var): 
            not_found(var) 
 
 
def not_found(var): 
    raise Exception(var + ' not found in environment') 
 
 



check_credentials() 
 
 
PARAMS = { 
 
    'verbose': os.environ.get('verbose', False), 
 
    'credentials': { 
        'alphavantage': os.environ.get(ALPHAVANTAGE), 
        'intrinio': { 
            'username': os.environ.get(INTRINIO_USERNAME), 
            'password': os.environ.get(INTRINIO_PASSWORD) 
        } 
    }, 
 
    'data_folder': os.environ.get('data_folder', DATA_FOLDER), 
 
    'screeners': { 
        'yahoo': [ 
            'undervalued_growth_stocks', 
            'day_gainers', 
            'day_losers', 
            'most_actives', 
            'growth_technology_stocks', 
            'undervalued_large_caps', 
            'aggressive_small_caps', 
            'portfolio_anchors', 
            'solid_large_growth_funds' 
        ], 
        'intrinio': { 
            'undervalued': { 
                'conditions': [ 
                    ['pricetoearnings', '<=', 20], 
                    ['pricetoearnings', '>', 0] 
                ] 
            } 
        } 
    }, 
 
    'data_options': { 
        'daily': daily, 
        'daily_adjusted': daily_adjusted, 
        'sma': sma, 



        'ema': ema, 
        'macd': macd, 
        'stoch': stoch, 
        'rsi': rsi, 
        'adx': adx, 
        'cci': cci, 
        'aroon': aroon, 
        'bbands': bbands, 
        'ad': ad, 
        'obv': obv 
    } 
 
} 
 

preprocess.py 
from argparse import Action 
from data import Data, DataException 
from symbol import SymbolData, handle_options_args 
import symbol 
from optimal import OptimalTrades 
from utility import * 
from screener import get_symbols 
 
DATA_PARTS = ['training', 'validation', 'evaluation'] 
NUM_PARTS = len(DATA_PARTS) 
 
 
class NeuralNetworkData(Data): 
 
    def __init__(self, **params): 
        self.training = params['training'] 
        self.validation = params['validation'] 
        self.evaluation = params['evaluation'] 
        self.options_list = params['options_list'] 
        self.days = params.get('days', 0) 
        self.tolerance = params.get('tolerance', 0.01) 
        validate_parts([params[p] for p in DATA_PARTS]) 
        super().__init__(**params) 
 
    def get_folder(self): 
        return 'preprocess' 



 
    def get_part_path(self, part): 
        return self.get_path(part + '.pkl') 
 
    def read_data(self): 
        return read_preprocess(self.get_path()) 
 
    def write_data(self): 
        write_preprocess(self.get_path(), self.get_data()) 
 
    def get_new_data(self): 
        log('Preprocessing neural network data...') 
        return {p: self.get_new_data_part(self.params[p]) for p in DATA_PARTS} 
 
    def get_new_data_part(self, part): 
        return get_data_part(part['symbols'], self.options_list, part['start'], 
                             part['end'], self.days, self.tolerance) 
 
    def get_shape(self): 
        return self.get_data()[DATA_PARTS[0]][0].shape[1] 
 
 
def read_preprocess_part(path): 
    data = read_pickle(path) 
    if data: 
        return data['in'], data['out'] 
 
 
def read_preprocess(folder): 
    data = {k: read_preprocess_part(os.path.join(folder, k + '.pkl')) for k in DATA_PARTS} 
    if None not in data.values(): 
        return data 
 
 
def write_data_part(folder, data, part): 
    path = os.path.join(folder, part + '.pkl') 
    make_path(path) 
    matrix_in, matrix_out = data[part] 
    write_pickle(path, {'in': matrix_in, 'out': matrix_out}) 
 
 
def write_preprocess(folder, data): 
    [write_data_part(folder, data, p) for p in DATA_PARTS] 



 
 
def get_symbol_part(symbol, options_list, start, end, days, tolerance): 
    symbol_data = SymbolData(symbol=symbol, options_list=options_list).get_data() 
    trades = OptimalTrades(symbol=symbol, start=start, end=end, 
tolerance=tolerance).get_data() 
    data_in, data_out = filter_matching(symbol_data, trades) 
    data_in = add_prior_days(data_in, days, symbol_data) 
    new_in = json_to_matrix(data_in) 
    new_out = json_to_matrix(data_out) 
    return new_in, new_out 
 
 
def get_data_part(symbols, options_list, start, end, days, tolerance): 
    matrix_in = None 
    matrix_out = None 
    for symbol in symbols: 
        new_in, new_out = get_symbol_part(symbol, options_list, start, end, days, tolerance) 
        if matrix_in is None: 
            matrix_in = new_in 
            matrix_out = new_out 
        else: 
            matrix_in = np.concatenate((matrix_in, new_in)) 
            matrix_out = np.concatenate((matrix_out, new_out)) 
    return matrix_in, matrix_out 
 
 
# add data from prior days to the data for the current date 
def add_prior_days(data, days, full_data): 
    if not data: 
        return data 
    new_data = {} 
    date_list = list(enumerate(sorted(data))) 
    full_data_sorted = sorted(full_data) 
    full_date_list = list(enumerate(full_data_sorted)) 
    start_date = full_data_sorted.index(date_list[0][1]) 
    end_date = full_data_sorted.index(date_list[-1][1]) 
    for current, date in full_date_list[start_date:end_date + 1]: 
        new_data[date] = {} 
        for prior in range(days + 1): 
            prior_data = full_data[full_date_list[current - prior][1]] 
            for col in list(prior_data): 
                new_data[date][str(col) + str(prior)] = prior_data[col] 



    return new_data 
 
 
def validate_parts(parts): 
    [validate_part(p) for p in parts] 
    if False in [len(parts[0]['symbols']) == len(p['symbols']) for p in parts[1:]]: 
        raise Exception('A neural network must be trained, validated, ' 
                        'and evaluated on the same number of symbols') 
 
 
def validate_part(part): 
    if type(part['symbols']) is not list: 
        raise Exception('symbols must be a list') 
    if part['start'] is not None and type(part['start']) is not str: 
        raise Exception('start must be a date string') 
    if part['end'] is not None and type(part['end']) is not str: 
        raise Exception('end must be a date string') 
 
 
def get_part_order(args): 
    order = [] 
    for s in args.symbol_order: 
        if s.find('training') > -1: 
            order += ['training'] 
        if s.find('validation') > -1: 
            order += ['validation'] 
        if s.find('evaluation') > -1: 
            order += ['evaluation'] 
    return remove_duplicates(order) 
 
 
def make_parts(training_symbols, validation_symbols, evaluation_symbols, start, end): 
    return { 
        'training': { 
            'symbols': training_symbols, 
            'start': start[0], 
            'end': end[0] 
        }, 
        'validation': { 
            'symbols': validation_symbols, 
            'start': start[1], 
            'end': end[1] 
        }, 



        'evaluation': { 
            'symbols': evaluation_symbols, 
            'start': start[2], 
            'end': end[2] 
        } 
    } 
 
 
def get_parts(part_order, args): 
    start = get_order_specific(args.start, part_order) 
    end = get_order_specific(args.end, part_order) 
    return make_parts(args.training_symbols, args.validation_symbols, 
                      args.evaluation_symbols, start, end) 
 
 
def get_order_specific(l, order): 
    if not len(l): 
        return [None] * NUM_PARTS 
    elif len(l) == 1: 
        return [l[0]] * NUM_PARTS 
    elif len(l) == NUM_PARTS: 
        return (l[order.index('training')], 
                l[order.index('validation')], 
                l[order.index('evaluation')]) 
    else: 
        raise Exception 
 
 
def stratify_parts(symbols, percentages, start, end): 
    start = to_date(start or '2002-01-01') 
    end = to_date(end or Date.today().strftime('%Y-%m-%d')) 
    duration = end - start 
    starts = [None] * NUM_PARTS 
    ends = [None] * NUM_PARTS 
    starts[0] = start 
    starts[1] = starts[0] + duration * percentages[0] 
    starts[2] = starts[1] + duration * percentages[1] 
    ends[0] = starts[1] 
    ends[1] = starts[2] 
    ends[2] = end 
    starts = [d.strftime('%Y-%m-%d') for d in starts] 
    ends = [d.strftime('%Y-%m-%d') for d in ends] 
    return make_parts(symbols, symbols, symbols, starts, ends) 



 
 
class SymbolAction(Action): 
    def __call__(self, parser, args, values, option_string=None): 
        args.symbol_order = getattr(args, 'symbol_order', []) + [self.dest] 
        setattr(args, self.dest, values) 
 
 
def add_args(parser): 
    symbol.add_args(parser) 
    parser.add_argument('--percentages', type=float, nargs='+', default=[0.5, 0.25, 0.25], 
                        help='relative size of each data part') 
    parser.add_argument('--training_symbols', type=str, nargs='+', action=SymbolAction, 
                        help='symbol(s) to train with') 
    parser.add_argument('--training_screener', type=str, action=SymbolAction, 
                        help='name of Yahoo screener to train with') 
    parser.add_argument('--validation_symbols', type=str, nargs='+', 
                        help='symbol(s) to validate with', action=SymbolAction) 
    parser.add_argument('--validation_screener', type=str, action=SymbolAction, 
                        help='name of Yahoo screener to validate with') 
    parser.add_argument('--evaluation_symbols', type=str, nargs='+', action=SymbolAction, 
                        help='symbol(s) to evaluate with') 
    parser.add_argument('--evaluation_screener', type=str, action=SymbolAction, 
                        help='name of Yahoo screener to evaluate with') 
    parser.add_argument('-t', '--tolerance', type=float, default=0.01, 
                        help='tolerance to use in optimal trades algorithm') 
    parser.add_argument('-d', '--days', type=int, default=0, 
                        help='number of prior days of data to use as input per day') 
 
 
def handle_symbols(args, parser): 
    if not ((args.symbols or args.screener) 
            or ((args.training_symbols or args.training_screener) 
                and (args.validation_symbols or args.validation_screener) 
                and (args.evaluation_symbols or args.evaluation_screener))): 
        parser.error('(-s/--symbols or -y/--screener) or ' 
                     '((--training_symbols or --training_screener) and ' 
                     '(--validation_symbols or --validation_screener) and ' 
                     '(--evaluation_symbols or --evaluation_screener)) is required') 
    if args.symbols or args.screener: 
        if len(args.percentages) != NUM_PARTS: 
            parser.error('Exactly %s --percentages required' % NUM_PARTS) 
        elif not (0.9999 < sum(args.percentages) < 1.0001): 



            parser.error('--percentages must sum to 1') 
        else: 
            args.symbols = get_symbols(args.symbols, args.screener, args.limit) 
            if len(args.start): 
                args.start = args.start[0] 
                args.end = args.end[0] 
            else: 
                args.start = None 
                args.end = None 
            args.parts = stratify_parts(args.symbols, args.percentages, args.start, args.end) 
 
 
def handle_dates(args, parser): 
    if len(args.start) != len(args.end): 
        parser.error('number of --start and --end must match') 
 
 
def handle_parts(args, parser): 
    if not args.symbols: 
        args.training_symbols = get_symbols(args.training_symbols, args.training_screener, 
args.limit) 
        args.validation_symbols = get_symbols(args.validation_symbols, args.validation_screener, 
args.limit) 
        args.evaluation_symbols = get_symbols(args.evaluation_symbols, 
args.evaluation_screener, args.limit) 
        part_order = get_part_order(args) 
        try: 
            args.parts = get_parts(part_order, args) 
        except: 
            parser.error('Either 0, 1, or %s --start and --end is required' % NUM_PARTS) 
 
 
def handle_args(args, parser): 
    handle_dates(args, parser) 
    handle_symbols(args, parser) 
    handle_parts(args, parser) 
    handle_options_args(args, parser) 
    log(';', args.start, args.end) 
 
 
def main(): 
    args = parse_args('Preprocess neural network data.', add_args, handle_args) 
    data = NeuralNetworkData(**args.parts, options_list=args.options_list, days=args.days, 



                             tolerance=args.tolerance) 
    log(data.get_data(), force=args.print) 
    if args.path: 
        log(data.get_path(), force=args.print) 
 
 
if __name__ == '__main__': 
    main() 
 

screener.py 
from __future__ import (absolute_import, division, print_function, unicode_literals) 
 
from argparse import ArgumentParser 
from urllib.parse import quote_plus 
import requests 
from base64 import b64encode 
from pyquery import PyQuery as pq 
from utility import * 
 
 
# get data from Yahoo predefined screeners 
def yahoo(screener): 
    d = pq(url='https://finance.yahoo.com/screener/predefined/%s' % screener) 
    elements = d("td.Va\\(m\\) > a.Fw\\(b\\)") 
    return [a.text for a in elements] 
 
 
def get_symbols(symbols, screener, limit): 
    symbols = symbols or [] 
    if screener: 
        symbols += yahoo(screener) 
    return symbols[:limit] 
 
 
# AAII screener 'table > tbody > tr:nth-child(2n+1) > td:nth-child(2) > a' 
# needs authentication 
 
 
USERNAME = PARAMS['credentials']['intrinio']['username'] 
PASSWORD = PARAMS['credentials']['intrinio']['password'] 
 



 
# get data from Intrinio custom screeners 
def request(conditions): 
    params = encode_conditions(conditions) 
    url = 'https://api.intrinio.com/securities/search?conditions=%s' % quote_plus(params) 
    auth = 'Basic %s' % b64encode(('%s:%s' % (USERNAME, PASSWORD)).encode()).decode() 
    headers = { 
        'Authorization': auth 
    } 
    return requests.get(url, headers=headers).json() 
 
 
def encode_element(element): 
    if element == '>': 
        return 'gt' 
    elif element == '>=': 
        return 'gte' 
    elif element == '<': 
        return 'lt' 
    elif element == '<=': 
        return 'lte' 
    elif element == '=': 
        return 'eq' 
    else: 
        return str(element) 
 
 
def encode_condition(condition): 
    return "~".join(map(encode_element, condition)) 
 
 
def encode_conditions(conditions): 
    return ",".join(map(encode_condition, conditions)) 
 
 
def add_args(parser): 
    parser.add_argument('screener', type=str, help='name of Yahoo screener') 
    parser.add_argument('-l', '--limit', type=int, help='take the first l symbols') 
 
 
def handle_args(args, parser): 
    pass 
 



 
def main(): 
    args = parse_args('Screen for symbols.', add_args, handle_args) 
    data = ' '.join(get_symbols(None, args.screener, args.limit)) 
    log(data, force=args.print) 
 
 
if __name__ == '__main__': 
    main() 
 

strategy.py 
import datetime  
import os.path  
import sys  
import backtrader as bt 
from data import Data 
from symbol import SymbolData, SymbolCloseData 
from preprocess import add_prior_days 
from utility import * 
 
COMMISION = 0.001 
SLIPPAGE = 0.01 
INITIAL_FUNDS = 10000 
STAKE = 10 
 
class Strategy(Data): 
  
    def __init__(self, **params): 
        self.neural = params['neural'] 
        self.start = params['start'] 
        self.end = params['end'] 
        self.symbol = params['symbol'] 
        self.threshold = params.get('threshold', 0.8) 
        self.options_list = self.neural.options_list 
        self.days = self.neural.days 
        super().__init__(neural=self.neural.params, start=self.start, 
                end=self.end, symbol=self.symbol, threshold=self.threshold) 
 
    def get_folder(self): 
        return 'strategy' 
 



    def get_data_path(self): 
        return self.get_path('data.pkl') 
 
    def read_data(self): 
        return read_pickle(self.get_data_path()) 
 
    def write_data(self): 
        write_pickle(self.get_data_path(), self.get_data()) 
 
    def get_new_data(self): 
        log('Backtesting strategy...') 
        self.setup_input_data() 
        strategy = self.backtest() 
        return strategy.get_results() 
 
    def setup_input_data(self): 
        # download OHLCV and specified indicators 
        # OHLCV is used for backtesting stats, not as input to ANN 
        SymbolData(symbol=self.symbol, options_list=[DAILY_OPTIONS],  
                start=self.start, end=self.end) 
        symbol_data = SymbolData(symbol=self.symbol, options_list=self.options_list, 
                start=self.start, end=self.end) 
        # get the path to the data 
        self.symbol_path = symbol_data.get_symbol_path() 
        symbol_data = symbol_data.get_data() 
        # format data for input to neural network 
        self.input_data = add_prior_days(symbol_data, self.days, symbol_data) 
 
    # remove dates from feed that don't have any data 
    def data_filter(self): 
        def filter(data_feed): 
            date = from_date(data_feed.datetime.date()) 
            if date not in self.input_data: 
                data_feed.backwards() 
                return True 
            return False 
        return filter 
 
    def get_data_feed(self): 
        # get OHLCV column indices in CSV 
        headers = get_csv_headers(self.symbol_path) 
        daily_indices = {} 
        daily_crypt = get_daily_crypt() 



        for key in daily_crypt: 
            daily_indices[key] = headers.index(daily_crypt[key]) 
        # create BT data feed from saved symbol data in CSV 
        data_feed = bt.feeds.GenericCSVData( 
            dataname=self.symbol_path, 
            fromdate=to_date(self.start), 
            todate=to_date(self.end), 
            dtformat=('%Y-%m-%d'), 
            openinterest=-1, 
            **daily_indices) 
        # remove dates without data 
        data_feed.addfilter(self.data_filter()) 
        return data_feed 
 
    def get_cerebro(self): 
        cerebro = bt.Cerebro() 
        # add strategy based on given neural network 
        cerebro.addstrategy(BTStrategy, symbol_data=self.input_data, 
                    neural=self.neural, threshold=self.threshold) 
        data_feed = self.get_data_feed() 
        cerebro.adddata(data_feed) 
        # add drawdown observer 
        cerebro.addobserver(bt.observers.DrawDown) 
        # set funds, commision, slippage, and position sizer 
        cerebro.broker.setcash(INITIAL_FUNDS) 
        cerebro.broker.setcommission(commission=COMMISION) 
        cerebro.broker.set_slippage_perc(SLIPPAGE) 
        cerebro.addsizer(bt.sizers.FixedSize, stake=STAKE) 
        return cerebro 
 
    def backtest(self): 
        cerebro = self.get_cerebro() 
        # log(cerebro.broker.getvalue()) 
        strategy = cerebro.run()[0] 
        # log(cerebro.broker.getvalue()) 
        return strategy 
 
 
class BTStrategy(bt.Strategy): 
 
    params = ( 
        ('symbol_data', None), 
        ('neural', None), 



        ('threshold', None)  
    ) 
 
    def __init__(self): 
        self.symbol_data = self.params.symbol_data 
        self.neural = self.params.neural 
        self.threshold = self.params.threshold 
        if not self.symbol_data: 
            raise Exception('A Backtrader strategy expects a symbol_data parameter') 
        if not self.neural: 
            raise Exception('A Backtrader strategy expects a neural parameter') 
        if not self.threshold: 
            raise Exception('A Backtrader strategy expects a threshold parameter') 
        # keep track of pending orders 
        self.order = None 
        # keep track of trades 
        self.trades = [] 
 
    def get_close(self): 
        return self.datas[0].close[0] 
 
    def get_date(self): 
        return from_date(self.datas[0].datetime.date()) 
 
    # def notify_trade(self, trade): 
    #     if not trade.isclosed: 
    #         return 
 
    #     log(self.get_date(), 'OPERATION PROFIT, GROSS %.2f, NET %.2f' % 
    #              (trade.pnl, trade.pnlcomm)) 
 
    def notify_order(self, order): 
        # reset order status if order finished 
        if order.status not in [order.Submitted, order.Accepted]: 
            self.order = None 
            if order.status == order.Completed: 
                self.trades.append({ 
                    'date': self.get_date(), 
                    'buy': order.isbuy(), 
                    'price': order.executed.price, 
                    'value': order.executed.value, 
                    'commission': order.executed.comm, 
                    'size': order.executed.size 



                }) 
  
 
    def is_in_market(self): 
        return len(self.trades) % 2 > 0 
 
    def is_long(self): 
        return self.is_in_market() and self.trades[-1]['buy'] 
 
    def is_short(self): 
        return self.is_in_market() and not self.trades[-1]['buy'] 
 
    def next(self): 
        # check for pending order 
        if self.order: 
            return 
        # format input data for neural network 
        input_data = json_to_matrix(self.symbol_data[self.get_date()]) 
        # use neural network 
        prediction = self.neural.predict(input_data) 
        # buy/sell based on neural network prediction and position in market 
        if not self.is_long() and prediction > self.threshold: 
            self.order = self.buy() 
            # log(self.get_date(), 'buy', self.get_close()) 
        elif not self.is_short() and prediction < -self.threshold: 
            self.order = self.sell() 
            # log(self.get_date(), 'sell', self.get_close()) 
 
    def get_results(self): 
        return self.trades 
 

symbol.py 
from __future__ import (absolute_import, division, print_function, unicode_literals) 
from urllib.parse import urlencode 
import requests 
import csv 
from time import sleep 
from data import Data 
from utility import * 
from screener import get_symbols 
 



 
class SymbolData(Data): 
 
    def __init__(self, **params): 
        self.symbol = params['symbol'] 
        self.options_list = params['options_list'] 
        self.start = params.get('start', None) 
        self.end = params.get('end', None) 
        self.all_data = {} 
        super().__init__(symbol=self.symbol) 
        self.params = params 
        self.write_params() 
 
    def get_folder(self): 
        return 'symbol' 
 
    def get_symbol_path(self): 
        return self.get_path(self.symbol + '.csv') 
 
    def write_data(self): 
        write_symbol_data(self.get_all_data(), self.get_symbol_path()) 
 
    def get_all_data(self): 
        if not self.all_data: 
            self.get_data() 
        return self.all_data 
 
    def read_data(self): 
        self.all_data = self.read_all_data() 
        self.refresh_data() 
        if self.all_data: 
            data = self.filter_data(self.all_data) 
            return data 
 
    def filter_data(self, data): 
        return filter_data(data, self.options_list, self.start, self.end) 
 
    def read_all_data(self): 
        return read_symbol_data(self.get_symbol_path()) 
 
    def get_new_data(self): 
        data = download_symbol_data(self.symbol, self.options_list) 
        dict_merge(self.all_data, data) 



        return self.filter_data(data) 
 
    def refresh_data(self, update_old=False): 
        missing_columns = get_missing_columns(self.all_data, self.options_list) 
        if update_old: 
            missing_columns += get_old_columns(self.all_data) 
        missing_options = columns_to_options(missing_columns) 
        if missing_options: 
            new_data = download_symbol_data(self.symbol, missing_options) 
            dict_merge(self.all_data, new_data) 
            self.write_data() 
 
 
class SymbolCloseData(SymbolData): 
 
    def __init__(self, **params): 
        self.data = None 
        super().__init__(options_list=[DAILY_OPTIONS], **params) 
 
    def get_data(self): 
        if not self.data: 
            data = super().get_data() 
            self.data = filter_close(data) 
        return self.data 
 
 
def download_symbol_datum(symbol, options): 
    options = { 
        key: value for key, value in options.items() if value is not 'columns' 
    } 
    log('Downloading %s data for %s...' % (options['function'], symbol)) 
    data = request({**{ 
        'symbol': symbol, 
        'apikey': API_KEY 
    }, **options}) 
    if type(data) is str: 
        # raise Exception(data) 
        print('sleeping 10s...') 
        sleep(10) 
        print('trying again') 
        return download_symbol_datum(symbol, options) 
    data = sanitize_data(data) 
    data = convert_data(data, options) 



    return data 
 
 
def download_symbol_data(symbol, options_list): 
    data = {} 
    for options in options_list: 
        new_data = download_symbol_datum(symbol, options) 
        dict_merge(data, new_data) 
    return data 
 
 
def request(options): 
    url = 'https://www.alphavantage.co/query?%s' % urlencode(options) 
    data = requests.get(url).json() 
    if 'Error Message' in data: 
        raise Exception(data['Error Message']) 
    data = next(data[key] for key in data.keys() if key != 'Meta Data') 
    return data 
 
 
def sanitize_data(data): 
    return {date[:DATE_LENGTH]: sanitize_datum(data[date]) for date in data} 
 
 
def sanitize_datum(datum): 
    return {(key[3:] if key[1:3] == ". " else key): val for key, val in datum.items()} 
 
 
def convert_data(data, options): 
    columns = encrypt_options(options) 
    return { 
        date: { 
            column_hash: data[date][column] 
            for column, column_hash in columns if column in data[date] 
        } for date in data.keys() 
    } 
 
 
def json_to_csv(data, date, headers): 
    return [date] + list(map(lambda col: data[date].get(col, ""), headers[1:])) 
 
 
def csv_to_json(datum): 



    date = datum['Date'] 
    del datum['Date'] 
    return {date: datum} 
 
 
def columns_to_options(columns): 
    options_list = [decrypt_dict(column) for column in columns] 
    for options in options_list: 
        del options['column'] 
    return remove_duplicates(options_list) 
 
 
def get_old_columns(data): 
    dates = sorted(data, reverse=True) 
    if len(dates) == 0: 
        return [] 
    # check latest data against date 
    if dates[0] != get_latest_weekday(): 
        return get_columns(data) 
    # check missing data 
    columns = set() 
    for date in dates: 
        old_columns = [k for k, v in data[date].items() if v == ''] 
        if len(old_columns) > 0: 
            columns.update(old_columns) 
        else: 
            break 
    return list(columns) 
 
 
def get_missing_columns(data, options_list): 
    present_columns = get_columns(data) 
    columns = list(map(lambda c: c[1], encrypt_options_list(options_list))) 
    missing_columns = list_subtract(columns, present_columns) 
    return missing_columns 
 
 
def get_portfolio_data(symbols, options_list, start, end, refresh): 
    data = {} 
    for symbol in symbols: 
        data[symbol] = SymbolData(symbol=symbol, options_list=options_list, start=start, 
end=end) 
        data[symbol].refresh_data(update_old=refresh) 



    return data 
 
 
def write_symbol_data(data, path): 
    with open(path, 'w') as outfile: 
        csv_file = csv.writer(outfile) 
        columns = ['Date'] + get_columns(data) 
        csv_file.writerow(columns) 
        for date in sorted(data): 
            csv_file.writerow(json_to_csv(data, date, columns)) 
 
 
def read_symbol_data(path): 
    try: 
        with open(path, 'r') as csv_file: 
            reader = csv.DictReader(csv_file) 
            data = {} 
            for row in reader: 
                new_data = csv_to_json(row) 
                dict_merge(data, new_data) 
            return data 
    except FileNotFoundError: 
        return {} 
 
 
def filter_data(data, options_list, start, end): 
    columns = list(map(lambda c: c[1], encrypt_options_list(options_list))) 
    data = filter_columns(columns, data) 
    if start and end: 
        data = filter_dates(data, start, end) 
    data = filter_incomplete(data) 
    return data 
 
 
def add_symbol_args(parser): 
    parser.add_argument('-s', '--symbols', type=str, nargs='+', help='symbol(s)') 
    parser.add_argument('-y', '--screener', type=str, help='name of Yahoo screener') 
    parser.add_argument('-l', '--limit', type=int, 
                        help='take the first l symbols') 
    parser.add_argument('--start', type=str, action='append', default=[], 
                        help='start date of data') 
    parser.add_argument('--end', type=str, action='append', default=[], 
                        help='end date of data') 



 
 
def add_args(parser): 
    add_symbol_args(parser) 
    parser.add_argument('-o', '--options', type=str, nargs='+', 
                        help='indices of data_options in params.py') 
    parser.add_argument('-r', '--refresh', action='store_true', help='refresh the data') 
 
 
def handle_symbol_args(args, parser): 
    if not args.symbols and not args.screener: 
        parser.error('At least one of -s/--symbols or -y/--screener is required') 
    args.symbols = get_symbols(args.symbols, args.screener, args.limit) 
 
 
def handle_options_args(args, parser): 
    args.options_list = get_options_list(args.options) 
 
 
def handle_date_args(args, parser): 
        args.start = first(args.start) 
        args.end = first(args.end) 
 
 
def handle_args(args, parser): 
    handle_symbol_args(args, parser) 
    handle_options_args(args, parser) 
    handle_date_args(args, parser) 
 
 
def main(): 
    args = parse_args('Load symbol data.', add_args, handle_args) 
    data = get_portfolio_data(args.symbols, args.options_list, args.start, args.end, args.refresh) 
    log({k: v.get_data() for k, v in data.items()}, force=args.print) 
    if args.path: 
        [log(k, v.get_path(), force=args.print) for k, v in data.items()] 
 
 
if __name__ == '__main__': 
    main() 
 



utility.py 
import pickle 
from argparse import ArgumentParser 
from hashlib import sha1 
from collections import Mapping 
from itertools import filterfalse 
import json 
from datetime import datetime, timedelta, date as Date 
import numpy as np 
from binascii import hexlify, unhexlify 
import os 
import csv 
from Crypto.Cipher import AES 
from params import PARAMS 
 
DATE_LENGTH = 10 
DT_FORMAT = '%Y-%m-%d' 
CRYPT_KEY = '1234567890123456' 
API_KEY = PARAMS['credentials']['alphavantage'] 
DAILY_OPTIONS = PARAMS['data_options']['daily']() 
 
 
def log(*args, force=False, **kwargs): 
    if PARAMS['verbose'] or force: 
        args = list(args) 
        for i, arg in enumerate(args): 
            if type(arg) is dict: 
                try: 
                    args[i] = json.dumps(arg, indent=4, sort_keys=True) 
                except: 
                    pass 
        print(*args, **kwargs) 
 
 
def set_verbosity(verbose): 
    PARAMS['verbose'] = verbose or PARAMS['verbose'] 
 
 
def shorten_path(path): 
    return str(sha1(path.encode('utf-8')).hexdigest()) 
 



 
def make_path(path): 
    dir_name = os.path.dirname(path) 
    if not os.path.exists(dir_name): 
        os.makedirs(dir_name) 
 
 
def write_pickle(path, data): 
    with open(path, 'wb') as fh: 
        fh.write(pickle.dumps(data)) 
 
 
def read_pickle(path): 
    try: 
        with open(path, 'rb') as fh: 
            return pickle.loads(fh.read()) 
    except (FileNotFoundError, EOFError): 
        return 
 
 
def parse_args(description, add_args, handle_args): 
    parser = ArgumentParser(description=description) 
    add_args(parser) 
    parser.add_argument('-p', '--print', action='store_true', help='print the data') 
    parser.add_argument('-v', '--verbose', action='store_true', help='enable logging') 
    parser.add_argument('--path', action='store_true', help='print the data path') 
    args = parser.parse_args() 
    set_verbosity(args.verbose) 
    handle_args(args, parser) 
    return args 
 
 
def filter_incomplete(d): 
    return {k: v for k, v in d.items() if complete(v)} 
 
 
def filter_matching(d1, d2): 
    d1 = filter_incomplete(d1) 
    d2 = filter_incomplete(d2) 
    d1 = {k: v for k, v in d1.items() if k in d2} 
    d2 = {k: v for k, v in d2.items() if k in d1} 
    return d1, d2 
 



 
def complete(datum): 
    if type(datum) is dict: 
        for _, v in datum.items(): 
            if v is None or v == '': 
                return False 
    return True 
 
 
def json_to_matrix(data): 
    if type(data) is dict: 
        return np.array([json_to_matrix(data[k]) for k in sorted(data)]) 
    return float(data) 
 
 
def encrypt_dict(d): 
    e = AES.new(CRYPT_KEY, AES.MODE_CFB, CRYPT_KEY) 
    s = json.dumps(d, sort_keys=True) 
    return hexlify(e.encrypt(s)).decode('utf-8') 
 
 
def decrypt_dict(crypt): 
    e = AES.new(CRYPT_KEY, AES.MODE_CFB, CRYPT_KEY) 
    s = e.decrypt(unhexlify(crypt)) 
    return json.loads(s.decode('utf-8')) 
 
 
def dict_merge(dct, merge_dct): 
    for k, v in merge_dct.items(): 
        if (k in dct and isinstance(dct[k], dict) 
                and isinstance(merge_dct[k], Mapping)): 
            dict_merge(dct[k], merge_dct[k]) 
        else: 
            dct[k] = merge_dct[k] 
 
 
def merge_data(datum_list): 
    data = {} 
    for datum in datum_list: 
        dict_merge(data, datum) 
    return data 
 
 



def list_subtract(l1, l2): 
    return list(filterfalse(lambda x: x in l2, l1)) 
 
 
def remove_duplicates(l): 
    return [i for n, i in enumerate(l) if i not in l[:n]] 
 
 
def encrypt_options(options): 
    return [(column, encrypt_dict({**options, **{'column': column}})) 
            for column in options['columns']] 
 
 
def encrypt_options_list(options_list): 
    return [column for options in options_list for column in encrypt_options(options)] 
 
 
def get_daily_crypt(): 
    return dict(encrypt_options(PARAMS['data_options']['daily']())) 
 
 
def get_close_crypt(): 
    return get_daily_crypt()['close'] 
 
 
def filter_columns(keep, data): 
    return { 
        date: { 
            column: val 
            for column, val in columns.items() if column in keep 
        } for date, columns in data.items() 
    } 
 
 
def extract_column(column, data): 
    return {date: columns[column] for date, columns in data.items()} 
 
 
def get_latest_weekday(): 
    today = Date.today() 
    latest_day = today - timedelta(max(4, today.weekday()) - 4) 
    return from_date(latest_day) 
 



 
def to_date(date): 
    return datetime.strptime(date, DT_FORMAT) 
 
 
def from_date(date): 
    return date.strftime(DT_FORMAT) 
 
 
# inclusive 
def date_between(date, start, end): 
    date = to_date(date) 
    start = to_date(start) 
    end = to_date(end) 
    return start <= date <= end 
 
 
def filter_dates(data, start, end): 
    return { 
        date: val for date, val in data.items() if date_between(date, start, end) 
    } 
 
 
def filter_close(data): 
    close_hash = get_close_crypt() 
    return {date: float(columns[close_hash]) for date, columns in data.items()} 
 
 
def get_columns(data): 
    cols = set() 
    for date in data.keys(): 
        if len(date) == DATE_LENGTH: 
            cols.update(data[date].keys()) 
    return list(cols) 
 
 
def get_csv_headers(path): 
    try: 
        with open(path, 'r') as csv_file: 
            reader = csv.reader(csv_file) 
            headers = next(reader) 
            return headers 
    except FileNotFoundError: 



        return [] 
 
def dicts_to_xys(dicts): 
    keys = set() 
    for d in dicts: 
        keys.update(d.keys()) 
    keys = list(enumerate(sorted(keys))) 
    xys = [] 
    for d in dicts: 
        x = [] 
        y = [] 
        for i, v in keys: 
            if v in d: 
                x.append(i) 
                y.append(d[v]) 
        xys.append((x, y)) 
    return xys 
 
 
def get_options(options_str): 
    paren = options_str.find('(') 
    if paren == -1: 
        return PARAMS['data_options'][options_str]() 
    name = options_str[:paren] 
    args = options_str[paren + 1:-1].split(',') 
    return PARAMS['data_options'][name](*args) 
 
 
def get_options_list(options_strs): 
    return [get_options(options_str) for options_str in options_strs] 
 
 
def first(l): 
    return l[0] if len(l) else None 
 
 
  



APPENDIX D: Gap Strategy Code 
 
  
{ Helpful instructions on the use of EasyLanguage, such as this, appear below and are  
  contained within French curly braces {}.  There is no need to erase these  
  instructions when using EasyLanguage in order for it to function properly, because  
  this text will be ignored. } 
 
{ STEP 1 OF 2: Replace <CRITERIA> with the criteria that will trigger a Buy at the open  
  of the next bar using a market order. } 
  
Inputs: 
GapSize(.01), 
FudgeFactor(10000); 
 
Variables: 

BullMarket(false), 
BearMarket(false), 
NewDay(true), 
NumShares(1), 
isGap(false); 
 

If (Date <> Date[1]) then begin 
NewDay = True; 

End; 
 
NumShares = FudgeFactor / open; 
BullMarket = Open < closeD(1); {going to be buying} 
BearMarket = Open > closeD(1); {going to be shorting} 
 
isGap = AbsValue(openD(0) - closeD(1)) > closeD(1)*GapSize; 
 
 
Condition1 = isGap and BullMarket; 
Condition2 = isGap and BearMarket; 
 
{ STEP 2 OF 2: Replace "Entry Name" (leaving the quotes) with a short name for the  
  entry.  The entry name will appear on the chart above/below the trade arrows and in  
  the trade by trade performance report. } 
 



If NewDay then begin 
If condition1 or condition2 then begin 

if Condition1 then Begin 
Buy ( "found long Gap" ) NumShares shares on the next bar at market ; 

End; 
 

If Condition2 then Begin 
Sell Short ( "foudn short Gap") NumShares shares on the next bar at 

market; 
End; 
 
NewDay = false; 

 
End; 

End; 
 
If BullMarket  then Begin 

If highest(High, 1) > (Open +closeD(1)*GapSize) then Begin 
Sell this bar; 

End; 
end;  
 
If BearMarket then Begin 

If lowest(Low, 1) < (Open -closeD(1)*GapSize) then Begin 
Buytocover this bar; 

end; 
end; 
 
If t = 1555 then Begin 

If BullMarket  then Begin 
Sell this bar; 

end;  
 
If BearMarket then Begin 

Buytocover this bar; 
end; 

End; 
 
 


