
Predictive Analysis: Machine Learning Models
for URL Classification

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute in partial

fulfillment of the requirements for the

Degree in Bachelor of Science in

Computer Science

By

Robert A. Dwan Jr.

Alex M. Tavares

Date: 10/9/2019

Sponsoring Organization:

MIT Lincoln Laboratories

Project Advisor:

Professor George Heineman, Major Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree
requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more

information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

1

Table of Contents
Table	of	Contents	...	1	

Table	of	Figures	...	3	

Table	of	Tables	...	4	

Abstract	..	5	

Acknowledgements	...	6	

Executive	Summary	..	7	

1.	Introduction	..	10	

2.	Background	..	12	

2.1			Cyber	Attacks	Using	Malicious	URLs	...	12	

2.1.1			Social	Engineering	..	13	

2.1.2			Malware	Distribution	..	14	

2.1.3			Other	Types	of	Cyber	Attacks	..	15	

2.2			Non-Machine	Learning	Approaches	..	15	

2.3			Machine	Learning	..	16	

3.	Methodology	...	19	

3.1	Data	Gathering	...	19	

3.2	Algorithms	...	20	

3.2.1	Support	Vector	Machine	..	21	

3.2.2	Logistic	Regression	..	21	

3.2.3	Random	Forest	..	22	

2

3.3	Feature	Extraction	..	24	

3.3.1	Lexical	Features	...	25	

3.3.2	Host-Based	Features	...	25	

3.4	Development	...	26	

3.4.1	Tools	Used	...	26	

3.4.2	Training	...	27	

3.4.3	Testing	and	Evaluating	...	27	

3.4.4	Iterate	..	29	

4.	Results	..	32	

4.1	Iteration	One	...	32	

4.1.1	Features	..	32	

4.1.2	Algorithm	Performance	...	35	

4.2	Iteration	Two	..	41	

4.2.1	Features	..	41	

4.2.2	Algorithm	Performance	...	44	

5.	Discussion	..	50	

5.1	Limitations	..	51	

5.1.1	Data	...	51	

5.1.2	Features	..	51	

5.1.3	Algorithms	...	52	

5.2	Future	Work	..	52	

6.	Conclusion	...	54	

References	..	55	

3

Table of Figures

Figure 1. URL Structure [3] .. 13	

Figure 2. Overview of the Machine Learning Process ... 17	

Figure 3. Bagging Method Overview [29] .. 24	

Figure 4. Boosting Overview [29] .. 31	

Figure 5. Correlation Heat Map .. 34	

Figure 6. Accuracy with Varying Number of Decision Trees .. 36	

Figure 7. Accuracy with Varying Number of Iterations ... 37	

Figure 8. Accuracy with Varying Number of Iterations ... 38	

Figure 9. Accuracy with Varying Value for Gamma .. 39	

Figure 10. Accuracy with Different Training Ratio .. 40	

Figure 11. New Correlation Heat Map ... 43	

Figure 12. Tagging Accuracy Results ... 45	

Figure 13. False Positive/Negative Rates ... 45	

Figure 14. AdaBoost Optimization Heat Map .. 46	

Figure 15. AdaBoost Optimization Line Chart ... 47	

Figure 16. Extra Trees Optimization Heat Map .. 48	

Figure 17. Extra Trees Optimization Line Chart .. 48	

Figure 18. Ensemble Method Accuracies ... 49	

4

Table of Tables

Table 1. Malicious Data Gathered .. 20	

Table 2. Preliminary Feature List ... 25	

Table 3. Example of True Positives and Negatives, and False Positives and Negatives 28	

Table 4. Features Changed .. 29	

Table 5. Final Feature List .. 30	

Table 6. Chi-Squared Test Results .. 33	

Table 7. ANOVA F-Value Test .. 33	

Table 8. New Chi-Squared Test Results ... 41	

Table 9. New ANOVA F-value .. 42	

5

Abstract

The rise of cybercrime has motivated the need for improved early detection and prediction

mechanisms to prevent cyber-attacks from causing damage to unsuspecting victims. We

developed and analyzed various machine learning algorithms to tackle one approach for early

detection, URL classification. Unlike previous research, which focused on binary classification,

our approach focuses on classifying URLs to their likely attack category. Through testing and

evaluation, we found that ensemble methods perform the best with our optimal feature set,

producing accuracies as high as 95%.

6

Acknowledgements

Professor George Heineman (WPI) - Faculty advisor to the project, provided advice on
software structure and design.
	
Leslie Shing (MIT/LL) - Advisor and sponsor to project, provided advice on the direction of the
project. 	
	
Kimberly Holmgren (MIT/LL) - Advisor to project, provided resources for data sources and
machine learning.

7

Executive Summary

More people than ever before have access to the Internet. Of the billions of Internet users,

there are some who take advantage of and exploit others, known as cyber criminals. These

attackers are hard to track, and their attacks can be complex and sophisticated. One avenue of

attack is through the misuse of Uniform Resource Locators (URL).

The goal for this project is to develop sensors for publicly available data sources to detect

for indications of techniques or traces left behind by an attacker during their planning and/or

reconnaissance activities in order to predict for cyber-attacks that may be targeted against an

organization. More specifically, we developed one particular sensor to classify URLs to their

likely attack method type based on opensource data. We tested several machine learning

algorithms and ensemble methods in order to identify the optimal model, hyperparameters, and

feature set to classify the URLs.

Our development process included data gathering, feature extraction, and algorithm

implementation. We gathered data from several sources including: PhishTank, URLhaus, and

Alexa Top 1 Million. The selected features were based on previous research for URL

classification. We implemented the following algorithms using the Scikit-Learn Python library:

Random Forest, Logistic Regression, Support Vector Machine (SVM) with a linear kernel, and

SVM with a Radial Basis Function kernel. Random Forest is an ensemble method, while the

others are single classifiers. Ensemble methods use the decisions from several classifiers to

improve predictive performance.

After developing our code, we tested features. We implemented two types of features:

lexical and host-based. Lexical features were those gathered from the textual characteristics of

the URL, and host-based features were those gathered from the network information related to

8

the host domain. We evaluated the full lexical feature set but were unable to test the host-based

features due to time constraints and the fact that many URLs in our data set were no longer

active. Through tests for feature independence (Chi-Squared and ANOVA F-value), we found

the class labels to be dependent on all of the features in the lexical feature set. This tells us that

the value of the feature has an effect on the class label, therefore it can be an indicator of class

type. Features being independent show that the value of the feature has no effect on the class

label, therefore it cannot be used as an indicator of class type. Through our feature independence

testing, we determined the full lexical feature set to be the best choice.

We also analyzed the performance of the algorithms. Random Forest consistently had the

highest accuracy and the lowest false positive rate. Along with testing for accuracy, we

performed tests to optimize for the best parameter values for the various algorithms. Random

Forest performed best with a parameter value of 40 decision trees.

The results from running these algorithms revealed phishing and malware URLs were

often mislabeled as the other. Random Forest had the most success differentiating these two

classes, while the complicated boundaries between the class types limited the success of the

single classifiers. Therefore, we implemented 2 more ensemble methods using Scikit-Learn.

We implemented the Extra Trees and AdaBoost algorithms. They performed well, with

accuracy scores comparable to Random Forest. In addition to testing for accuracy, we ran tests to

optimize for the ensemble method parameters. The ideal parameters for the Extra Trees

algorithm were a minimum sample split of 6 and the number of estimators equal to 91. The ideal

parameters for the AdaBoost algorithm were a learning rate of 1 and the number of estimators

equal to 66. We found that all of these methods produced accuracies above 90%.

9

To build on this research we recommend delving deeper into semi-supervised algorithms,

to test their performance. There is substantially more unlabeled URL data than labeled URL data

and semi-supervised algorithms can take advantage of that. These algorithms would be able to

train on massive datasets and generate models that can better handle real world internet traffic.

We also recommend expanding the variety of features beyond lexical and host-based. Due to the

risk of compromising our systems, we were unable to use content-based features. One final

recommendation is to look into modifying existing supervised machine learning algorithms to

develop a stronger algorithm for URL classification.

10

1. Introduction

Advancements in technology have led society to shift towards a greater online presence.

With more people and businesses online, it is difficult to protect the private information that is

stored on the internet and our computers. Technology is constantly evolving and changing, so

security measures must also adapt to continue to protect users. Cybersecurity is a field in

computer science with the goal of creating secure systems and securing existing systems from

cyber-attacks.

Cybercrime is the fastest growing crime, with an estimated $6 trillion annual cost to

individuals and organizations by 2021. This cost includes, but is not limited to, damage to

infrastructure and data, theft, fraud, and lost productivity [1]. With 1.9 billion websites and more

than 4 billion Internet users it is becoming increasingly difficult to monitor this criminal activity.

This has led to an increase in cybersecurity spending as many companies and individuals try to

protect themselves [1].

Cyber-attacks are defined as “any attempt to expose, alter, disable, destroy, steal or gain

unauthorized access to or make unauthorized use of an asset” [2]. An asset is something of worth

to an organization or individual. As new software is developed there is the potential for new

vulnerabilities that can be exploited. Combating this issue and preventing attacks requires better

monitoring of systems and networks. This has led to research into preventing potential attacks by

monitoring publicly available data to find traces of cyber-criminal activity.

There are many different publicly available data sources available that require

monitoring. Our project focused on developing one of the sensors to detect for indications of

techniques or traces left behind by an attacker. The resulting data will be used as part of a larger

11

analysis pipeline to build an improved awareness of the existing Internet threats. This paper aims

to look at one of those threats: malicious Uniform Resource Locators (URL).

Malicious URLs exist in all facets of the Internet and any user can come across them.

URL links are embedded in emails, appear on web sites, and are posted on social media sites,

among other areas of the Internet. It is challenging for the average user to distinguish between

legitimate and illegitimate URLs. This paper focuses specifically on classifying URLs to their

likely cyber-attack category. We will research the characteristics of malicious URLs which

distinguish them from normal ones. We will then develop a program that will learn from these

characteristics to classify URLs, using machine learning.

12

2. Background

Malicious URLs make up one third of all publicly accessible URLs [3]. With the vast

quantity and increased sophistication of malicious URLs online, it is becoming increasingly

difficult to distinguish between legitimate and illegitimate URLs. Artificial intelligence, more

specifically machine learning, is a field of study that has yielded highly accurate classifiers to

address this issue [4,5, 6]. Past research has explored a variety of algorithms and feature sets to

determine effective machine learning models to classify URLs as malicious or benign and have

produced binary classifiers with over 90% accuracy [4,5,6]. There is still much work to be done

with URL classification and many researchers aim to improve the accuracy of existing

classifiers.

2.1 Cyber Attacks Using Malicious URLs

A URL is an address that corresponds with a web page. The structure of a normal URL

can be seen in Figure 1. Malicious URLs are illegitimate Internet addresses used by cyber

criminals to take advantage of users who visit the page [5]. Cyber criminals trick unsuspecting

users to click these URLs to retrieve personal information, for financial gain, or to download

malware. Common cyber-attack categories include social engineering and malware distribution

[7].

13

Figure 1. URL Structure [3]

2.1.1 Social Engineering

Social engineering encompasses a variety of techniques, where the attacker imitates

legitimate sites and email addresses to retrieve private or personal information. The most

notorious and well-known attacks in this category are phishing attacks [8]. Phishing methods

mimic legitimate URLs or websites to coerce users into unknowingly divulging their personal

information. Attackers stimulate their victim’s emotions such as curiosity and fear, which tricks

the user into clicking the URL [9].

Phishing attacks are not limited to gaining one individual's data, they can also be used to gain

access to an entire organization’s data. For example, Presbyterian Healthcare in New Mexico

was the victim of a phishing attack on May 9, 2018. Employees from the company fell victim to

a phishing email that gave the attackers access to their accounts. The attackers were able to

gather healthcare plan data from 183,370 patients including patient names, dates of birth, and

social security numbers. The company did not know that they had been a victim of an attack until

June 26, 2018, over one month later [10]. This example shows how cybercrimes can affect a

large number of people. Had the emails been filtered for malicious URLs the attack could have

been prevented.

14

2.1.2 Malware Distribution

The term malware comes from the combination of the words malicious and software.

Malware is a general term used to describe any software developed for the purpose of damaging,

disrupting, or gaining access to another user’s system. Popular examples of malware include:

• Ransomware – The victim is locked out of their system until a ransom is paid to the

attacker.

• Spyware – Software that allows the attacker to see what the victim is doing on their

computer [11].

Ransomware is increasing in frequency and can cost companies and the government a significant

amount of money to resolve. In 2016, there was an estimated ransomware attack every 40

seconds. With this frequency and the cost per attack, global ransomware is predicted to cost

$11.5 billion in 2019 [1].

In August of 2019, there was a significant ransomware attack on a hospital in Aberdeen,

Washington. Grays Harbor Community Hospital and the Grays Harbor Medical Group,

consisting of eight clinics, were attacked and patient information was locked. The cyber

criminals held 85,000 patient records hostage for the Bitcoin equivalent of $1 million. While this

attack was ongoing, the clinics involved were forced to keep records on paper which resulted in

delays for appointments. It is thought that this attack started with a phishing email which

triggered the malware download. This could have been prevented if the URL was detected earlier

[12]. Because of the risks associated with malware it is important to be able to identify malicious

URLs to prevent attacks and keep users’ information safe.

15

2.1.3 Other Types of Cyber Attacks

Another category of malicious URLs are botnet command and control (C&C) server

URLs. These servers are the command centers for botnets. Botnets are a network of systems that

have been infected with malware distributed from the C&C server. The C&C servers are able to

communicate with these systems, steal information, and control the computers to use to achieve

their objectives [13]. Botnets can be used for different types of cyber-attacks. They can be used

to steal information, hold the victim for ransom, and execute Distributed Denial of Service

(DDoS) attacks. A DDoS attack is used to flood the target with Internet traffic causing the target

to lose availability of their system [13, 14]. Detecting URLs related to existing and potential

botnets can prevent future DDoS and other attacks by shutting down or preventing

communication between the systems and server.

2.2 Non-Machine Learning Approaches

 A frequently used method for malicious URL detection is blacklisting. Blacklists are lists

of known malicious URLs that can be used to check if a URL is already known to be malicious.

Blacklists need to be constantly updated as new sites are discovered; they cannot protect against

unknown URLs. Previous research has looked into creating a predictive blacklist specific for

users on a network. This algorithm uses user-defined data and determines the likelihood that a

specific network or user would be attacked in the future. Using this information, a final blacklist

specific for each user is produced. This algorithm produced high attacker hit-rates, good “new

attacker” predictions, and stability for the future [15].

 There are existing commercial products on the market that focus on the problem of

malicious URLs. For example, WebAdvisor from McAfee is a browser plugin that attempts to

16

protect users from malware and phishing attacks as the user browses the Internet [16]. Another

example of a commercial product is the SafeLink feature on Microsoft Outlook. This feature

checks to see if any links or emails contain phishing attacks, malware, or viruses. If links or

emails are deemed suspicious or malicious then the users are unable to click on the link [17].

These products rely on existing blacklists, user feedback, and proprietary research done by the

companies. This reactive approach cannot keep up with the volume of new attacks being

generated, therefore a more proactive solution, such as machine learning, is required.

2.3 Machine Learning

Artificial intelligence (AI) is the study of intelligent machines that are able to perceive

the world around them and make decisions based on that input. Machine learning is one of the

many subfields of artificial intelligence that exist today. In a famous quote by Arthur Samuel, an

early pioneer in the field, he said machine learning gives “computers the ability to learn without

being explicitly programmed” [18]. The foundations of machine learning can be traced back to

1950, when Alan Turning developed a test to determine if a computer had real intelligence called

the “Turing Test”. To pass the test the computer must deceive a human into thinking it is also

human. In 1952, Arthur Samuel wrote the first computer learning program. The program played

checkers and it improved after every game it played [19]. More than 50 years since the field first

emerged, we have seen huge advancements in machine learning and AI. In March 2017, the

company OpenAI reported that the AI agents they created, developed a new language to achieve

their goals more efficiently. Also, soon after that, Facebook reported that AI agents they

developed were able to negotiate and lie [20].

17

Machine learning gives computers the ability to learn on their own. These programs are

not developed to perform specific tasks but to learn about data and the patterns that exist in the

data. An overview of the machine learning process can be found in Figure 2. Machine learning

can be broken down into three main categories: supervised, semi-supervised, and unsupervised.

Figure 2. Overview of the Machine Learning Process

Supervised machine learning models are trained on labeled data, where the model knows

the input and desired output. Using this data, the model develops a function to describe the

relationship between the input and output data. This function can then be used with new inputs to

predict the desired output. A popular use for supervised learning is classification problems.

Classification is a machine learning approach where the model learns from input data to classify

and categorize new data. An example of a classification problem is image recognition, such as

classifying an image as containing a car or not containing a car [22, 23].

Unsupervised machine learning models take input data with no output data. These

methods detect patterns within the data, which can be useful when experts do not know what

they are looking for or where output data is unavailable. This type of learning is used mainly for

clustering and association. An example of a clustering problem is customer segmentation. In this

problem, an organization would discover clusters of customers within their customer base that

18

may not have been obvious to them previously. This gives the organization more information

about their customers, aiding in advertising and sales. An example of an association problem is

market basket analysis. An organization would analyze the contents of customers’ shopping cart

to determine associations between products. This can be used to discover the correlation between

products, which can aid in designing the layout of stores, sales, and marketing [22, 23].

Semi-supervised learning sits between the previous two. It is particularly useful in

scenarios where labeled data is hard to get. The labeled data is used to help the algorithm find

patterns rather than model relationships. This learning type is mainly used for classification and

clustering, as described above [22, 23].

Our problem focuses on classification of data, URLs, with known outputs, attack

category; therefore, we will research and test existing classification algorithms. There are several

classification algorithms that have been used for malicious URL classification such as Random

Forest, Support Vector Machine (SVM), and Logistic Regression [4,5,6].

All machine learning models use features—properties or attributes of the data—extracted

from the input data sets to create their models. In the context of URL classification, there are

three feature types: host-based, lexical, and content-based. Host-based features are those that

define the identity, location, and other network information about the host. Lexical features are

textual properties obtained from the URL itself. Lastly, content-based features come from the

web pages linked to the URLs themselves. Content-based features require a more in-depth

analysis of the content and are more computationally expensive. They also present an inherent

risk as our systems could become compromised during exploration of the web pages related to

the URLs we are trying to classify [3,5]. The content-based feature set falls outside the scope of

our research, due to the associated risks and greater time requirement.

19

3. Methodology

The necessary steps to construct an accurate URL classifier began with gathering a

representative data set for training and testing the models. Next, we developed supervised

machine learning models using several algorithms. Once the models were implemented, we

trained and tested them using different feature sets. We then evaluated these models and feature

sets to find areas for improvement. Finally, using the performance evaluations of our feature sets

and models, we iterated over our tests to develop more accurate classifiers.

3.1 Data Gathering

The first step to acquire a representative data set was to gather data. To collect this data set,

we used several open-source databases and sites. The data comes from 5 different attack

categories: normal, phishing, malware, ransomware, and botnet. We required representative data

from each of the 5 categories.

Our normal data came from two sources: Canadian Institute for Cybersecurity (CICS) and

research done by Frantisek Strasak [17, 18]. The CICS obtained data by passing URLs from

Alexa Top websites into a Heritrix web crawler to extract the URLs. Once the URLs were

extracted and duplicates were removed, the data set was left with 35,300 URLs classified as

normal [17]. Frantisek Strasak recorded his web traffic for 3 days while accessing secure sites in

the Alexa Top 1000. He created several packet capture files from this web traffic. He was able to

verify that the sites visited in the capture files were normal after scanning his computer for

malware [18]. We used his capture files to extract all the URLs. We then removed duplicates and

added them to our data set. The malicious URLs came from four different sources; each is a

20

blacklist for the specific threat type. Table 1 shows the source and date retrieved for the data

gathered.

Class Source Count Date Retrieved Description

Phishing PhishTank [19] 21,979 July 30, 2019 - August
20, 2019

A blacklist containing
phishing URLs

Malware Abuse.ch, URLhaus
[20]

217,818 May 22, 2019 - August
20, 2019

A blacklist containing
malware URLs

Ransomware Abuse.ch,
Ransomware Tracker
[21]

1,903 May 16, 2019 - August
20, 2019

A blacklist containing
ransomware URLs

BotnetC&C CyberCrime [22] 16,292 August 20, 2019 A blacklist containing
botnet URLs

Table 1. Malicious Data Gathered

Our data gathering effort produced significantly more malicious data than normal data. As a

result, the training and testing sets were created by varying ratios of normal to malicious URLs

to allow for a more realistic distribution. Even with this measure in place, there is still a

possibility that our training and testing data set is skewed and does not represent realistic traffic.

The normal data gathered from CICS and Frantisek Strasak is assumed to be composed of

completely normal data, with no malicious URLs, and consist of a representative sample of the

normal URL population.

3.2 Algorithms

We identified several supervised machine learning algorithms in our background research

that performed well in URL classification. Much of this previous research was on binary URL

21

classification, but we worked towards creating a multiclass URL classifier. A binary classifier

categorizes data into two separate classes, in this case classifying URLs as normal or malicious.

A multiclass classifier categorizes data into three or more classes, we aim to classify URLs as

normal, phishing, malware, ransomware, and botnet. The benefits of a multiclass classifier are it

provides more context about the URL and potential attacks. This can be greatly beneficial for

planning for and preventing attacks detected over public data sources. The algorithms we

implemented were: Support Vector Machine (SVM), Logistic Regression, and Random Forest.

3.2.1 Support Vector Machine

A support vector machine is a discriminative classifier that, given labeled training data,

produces an optimal hyperplane to classify new data. SVMs use kernels which are functions that

transform data into a higher dimensionality space. This is essential for classification in complex,

non-linear data sets, such as the data generated from URL feature extraction. This allows the

model to generate a mapping function that separates the data points into their respective classes.

We tested two different kernels in our models: the linear kernel and the Radial Basis Function

(RBF) kernel. The value of gamma defines the distance between the boundary data points and

the separation line; this parameter was tuned to increase the accuracy of the model. A

consideration when tuning this parameter is that a high gamma value can lead to a more

complicated decision boundary and over-fitting [4, 23, 24].

3.2.2 Logistic Regression

Logistic regression determines the likelihood an input belongs to a specific class. This is

done by using the logit function. The logit function is defined as:

22

𝑙𝑜𝑔𝑖𝑡(𝑝) 	= 	𝑙𝑜𝑔(
𝑝

1 − 𝑝), 𝑤ℎ𝑒𝑟𝑒	𝑝	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

This gives a value between 0 and 1, representing the probability that an inputted data point

belongs to a class. The closer the value is to one, the more likely an input belongs to a class. This

probability is then used to fit a line used for predicting new data. The model learns by altering

coefficients representing the line to fit the data. As the model learns, the coefficients change to

produce the maximum likelihood of predicting the correct category [25, 26].

After training, the model uses the final coefficients to predict new data. The predictions use a

classification threshold to determine which category the data point belongs to. For example, if

the threshold for a binary classifier is set at 0.5, any value 0.5 or greater will be classified as

normal, and any value below 0.5 will be classified as non-normal. Logistic regression is

traditionally a binary classifier and we are implementing a multiclass classifier; therefore we

used the multinomial version of the algorithm. This method works similarly to the binary

version, except it uses multiple one-vs-all binary classifiers. The one-vs-all method compares

one class type against the rest; for example, normal vs not normal would classify the data as

either normal or not [25, 26]. Another example would be, phishing vs not phishing. The

algorithm would then combine the binary classifiers generated from each type into one model.

When the model is run, each binary classifier is run on the input and the class with the highest

probability is the selected classification.

3.2.3 Random Forest

The Random Forest algorithm is a classification algorithm. That works as follows:

23

1. The data set is randomly divided into ‘L’ subsets with ‘k’ entries each. This is done with

replacement, meaning subsets can contain the same entries. This method of data sampling

is called bootstrapping.

2. Each subset is then used to train a decision tree. A decision tree works by having several

splits where the data is separated based on a feature. The feature is randomly selected

from all the features of the data. The value of the feature dictates which direction down

the tree it will travel.

3. After training the trees, new inputs go through all of the trees to get a prediction. For

classification, the final prediction is based on a majority vote from all of the trees.

This algorithm improves on a single decision tree and creates robustness of the model as it

prevents overfitting the data and is able to make splits on randomly chosen features, as opposed

to using only the best features to split the data [27, 28]. Random Forest is a bagging type

ensemble method. Ensemble methods combine the decisions from other algorithms to give a less

biased, more accurate prediction [29]. In particular, bagging methods run several algorithms in

parallel and aggregate their results to create a prediction. An overview of bagging can be found

in Figure 3.

24

Figure 3. Bagging Method Overview [29]

3.3 Feature Extraction

Our background research provided us with a wealth of features and feature sets to test. The

features we focused on for our implementation were lexical and host-based. Previous research

shows that these features are sufficient to create an accurate classifier. Content-based features

may provide value but present risk to the integrity of our systems due to potentially malicious

web page content related to the URLs; therefore they were not evaluated. We implemented 32

features in total, 29 of them being lexical. The features can be found in Table 2.

25

3.3.1 Lexical Features

The lexical features are text-based characteristics of the URL. We split the URL into its

protocol, host name and path. From there we analyzed the textual features in each. We used the

Python libraries tldextract and urllib to parse the URLs and extract features. The lexical features

we implemented were based on features described in previous research [2, 4, 30, 31].

3.3.2 Host-Based Features

Host-based features are composed of the network information about the URL host. We used

a combination of features identified from our background research. The extracted features

Table 2. Preliminary Feature List

26

include: the IP address location, the registered country of the host, and the amount of time the

host has been registered. We used the Python package ipwhois and socket to get the host

information [2, 4]. The full feature list can be found in Table 2. The last three features in the list

are the three host-based features. These features are useful because they can identify URLs with

hosts located in suspicious areas and identify inconsistencies between the hosts and where they

are registered. Also, malicious URLs tend to be registered more recently, therefore the length of

time for domain registration can be a good indicator for detecting malicious URLs [2,4].

3.4 Development

We first determined the set of existing tools and libraries appropriate for our use case. Then,

we implemented and trained several models using a training data set. After the models were

trained, they were tested with a test data set to determine the models’ performance. Finally, we

optimized the parameters and train/test data set ratios to maximize the accuracy of the models.

3.4.1 Tools Used

We decided to use Python as our coding language because it is useful for processing large

amounts of data and has readily available open source machine learning libraries. We assessed

and selected a suitable machine learning library.

The three main Python libraries for machine learning are: PyTorch, TensorFlow, and Scikit-

Learn. Scikit-Learn is an easy to use Python library that comes with out-of-the-box algorithm

implementations. Scikit-Learn is more of a general-purpose machine learning library that

includes implementations of many classic algorithms. TensorFlow and PyTorch are deep

learning frameworks. They are more flexible and allow for the integration of custom code. We

27

decided to use Scikit-Learn for the beginning implementations of our models because it

contained models for all the aforementioned algorithms. TensorFlow and PyTorch are excellent

alternative libraries to Scikit-Learn, but due to our algorithms of choice and the ease of use we

selected Scikit-Learn. Nonetheless, it is possible to replicate what we have implemented using

models from TensorFlow and PyTorch.

We also needed a way to extract the features we discussed previously. Thus, we created our

own tool. Our tool takes a URL as input and returns a numerical array containing values for the

features previously mentioned

3.4.2 Training

We split the training data into normal and malicious URLs and varied the split ratios of these

two categories. We trained using a 50/50, 60/40, 70/30, and 80/20 normal/malicious splits. We

trained the model on each of these split ratios in order to find the optimal training split between

normal and malicious data that would produce the best performing model given a real scenario.

3.4.3 Testing and Evaluating

We used several methods to test and evaluate the models. We evaluated the performance of

the features, along with an evaluation of the models’ performance. We used built-in Scikit-Learn

functions as well as some other mathematical tools to test the effectiveness of our features. We

used two methods to test the relationship between the feature variables and classes: a chi-square

test and ANOVA F-Value test.

The chi-square test is used to test for independence of categorical features. A chi-squared

value is calculated for each categorical feature. If the chi-score is greater than or equal to the

threshold value, then the feature affects the URL class. Otherwise, if the chi-score is less than the

28

threshold, the feature is most likely not useful. The ANOVA F-Value test is similar to the chi-

square test in that it is a test for independence, except it is used for numerical values. Similarly, if

the F-Value is greater than or equal to the threshold value, then the feature affects the URL class,

and vice versa. We also used a heatmap plot from the Python library, Seaborn, to visualize the

correlation between features. The heatmap plot required a correlation matrix which was

generated using the Python library, Pandas. These techniques reduced the complexity of the

data, which led to faster and more accurate classification.

To analyze the performance of our models we examined several metrics. We first looked at

the overall accuracy of the model. The accuracy is a percent-value based on the number of true

positives over the total number of predictions. A true positive is a correctly classified URL.

Table 3 describes true positives in the case of a ‘Normal’ URL.

 Predicted Class Actual Class

True Positive Normal Normal

True Negative Not Normal (e.g. phishing, malware) Not Normal (e.g. phishing, malware)

False Positive Normal Not Normal (e.g. phishing, malware)

False Negative Not Normal (e.g. phishing, malware) Normal
Table 3. Example of True Positives and Negatives, and False Positives and Negatives

We also examined the confusion matrices to calculate the number of false positives and the

number of false negatives for specific classifications, also defined in Table 3. This information

gave insight into how well the model can classify new data, based on the training data. We also

looked at the time it took to train and test the models. Although our focus was on creating more

accurate models, the speed of training is an additional factor to consider.

29

Once we determined the accuracy of the model, we began improving upon it. We used three

methods to improve the model: modifying the tuning parameter, changing the dataset volume,

and changing the ratio in the training dataset. The specific tuning parameter differed for each

algorithm. For example, in the Random Forest algorithm we varied the number of decision trees

produced, and in the SVM algorithm we varied the value of gamma. Lastly, we tested the models

using various ratios of malicious to normal URL data in order to determine the optimal ratio of

training data that would produce the most accurate model.

3.4.4 Iterate

Upon evaluation of our preliminary results, we found that the algorithms had difficulty

discerning between phishing and malware URLs. This led us to explore additional features as

well as additional algorithms.

After looking at the results of our feature evaluation and results of the features used in

previous research, we added 2 features and changed 4 features. The two features we added were:

‘Number ~ in URL’ and ‘Number # in URL’. The features we changed can be found in Table 4.

We made the changes to these features to increase the amount of textual information they

provide about a URL. In addition, we made changes to the names of many features to add more

consistency to the feature names. In total we implemented 34 features, 31 lexical and 3 host-

based. The final list of features can be found in Table 5.

Table 4. Features Changed

30

We observed that many of the URLs belonged to multiple classes; this was the case for many

of the malware and phishing URLs. Thus we implemented a tagging method, which tagged the

URL with class labels above a certain threshold. This allowed URLs to have multiple

classifications. Also, we implemented several ensemble methods based on the success of the

previous algorithms and the complicated decision boundaries presented by the data.

For the tagging algorithm, we used the functions already built into the models to return class

probabilities instead of a single class prediction. Using these probabilities, the URLs were tagged

as belonging to a particular class if the class probability for the URL is above a configurable

threshold. This allowed URLs to have multiple classifications. The output of the tagging was

then output to a file for visual verification. A correct prediction was one that contained the true

Table 5. Final Feature List

31

label in the list of tags. We also calculated the false positive and false negative rates of each run.

A false positive is any normal URL that was given a malicious tag. A false negative is any

malicious URL that was given a normal tag. The tagging method was tested on the 4 training

ratios previously mentioned.

We implemented a boosting and an additional bagging ensemble method. Boosting methods

run algorithms sequentially, with each model learning from the previous one. An overview of

boosting can be found in Figure 4. The bagging algorithm we implemented is called the Extra

Trees classifier and it uses a decision tree model as its underlying classifier. The boosting

algorithm we implemented is the AdaBoost classifier and it uses an Extra Trees model as its

underlying classifier. Both algorithms were optimized for accuracy and tested on the 4 training

ratios previously used. The AdaBoost algorithm was optimized for the following parameters:

n_estimators and learning_rate. The Extra Trees algorithm was optimized for the following

parameters: n_estimators and min_samples_split.

Figure 4. Boosting Overview [29]

32

4. Results

4.1 Iteration One

4.1.1 Features

From the preliminary list of 32 features, we analyzed the 29 lexical features implemented

using three methods: a chi-squared test for categorical features, a calculation of ANOVA F-

values for numerical features, and a correlation heatmap. The results of the chi-squared test can

be found in Table 6, the computed ANOVA F-values can be found in Table 7, and the

correlations between the features can be found in Figure 5. Due to many of the malicious URLs

in our dataset being inactive and time constraints with this project, we were unable to run an

analysis on the 3 host-based features implemented.

4.1.1.1 Chi-squared test

The null hypothesis for the chi-squared test is that the features are independent of the class

labels. With a significance level of 95%, any feature that had a p-value below 0.05 could reject

the null hypothesis. Rejecting the null hypothesis means that the class labels are dependent on

that feature. Our analysis of the lexical features revealed that all but one categorical feature

rejected the null hypothesis, which means that the value of the feature had an effect on the class

label. The feature “Check TLD” (TLD = Top Level Domain) had a chi-score value below the

threshold and p-value below 0.05, which means it could not reject the null hypothesis; therefore

we cannot say whether or not the value of that feature affects the class label.

33

Table 6. Chi-Squared Test Results

4.1.1.2 ANOVA F-Values

We looked at the results of the ANOVA F-test with the same hypothesis and a 95%

confidence level. All of the numerical features we implemented had a p-value below 0.05.

Therefore, with 95% confidence we can say the class labels are dependent on all the numerical

features, which means the value of the feature affected the class label.

Table 7. ANOVA F-Value Test

34

4.1.1.3 Correlation Heat map

The correlation heatmap in Figure 5 shows us how heavily correlated features are to one

another. This tells us which features are redundant and add unnecessary complexity to the feature

set. There are a few features such as number of ‘.’ in URL and number of ‘.’ in hostname, as well

as the count of ‘/’ in path and the length of the path. These features are highly correlated, which

means they may be expressing some of the same information about the URL. The other features

are not highly correlated meaning these features are providing helpful information to the model.

Figure 5. Correlation Heat Map

35

4.1.2 Algorithm Performance

4.1.2.1 Model Parameter Optimization

With the best feature set identified as the full lexical feature set, we began to tune certain

parameters for each algorithm to find the highest accuracy. The parameters tuned were the

number of decision trees in the Random Forest, the maximum number of training iterations for

both Logistic Regression and SVM linear, and the value of gamma for SVM-RBF. All tuning

tests were run on a training set with 50% normal URLs and 50% malicious URLs and a testing

set containing 70% normal URLs and 30% malicious URLs.

For Random Forest, we started with 20 decision trees and stopped at 70, with increments of 5

each step. After running these tests, the run with 40 decision trees had the highest accuracy with

94.6% accuracy. Figure 6 shows how the other number of trees performed. All runs with more

than 40 decision trees stayed around the same accuracy, with no improvement. We determined

40 trees to be the optimal amount to maximize accuracy and performance.

36

Figure 6. Accuracy with Varying Number of Decision Trees

For logistic regression, we started with 1,000 as the maximum number of iterations and

increased the number to 20,000 with increments of 1,000. After running these tests, 10,000

iterations produced the highest accuracy of 88.33%. Figure 7 shows how the other number of

iterations performed. All runs with more than 10,000 iterations stayed at the same accuracy, with

no improvement. We determined 10,000 iterations to be the ideal number of iterations. With

greater than 10,000 iterations, the algorithm was prone to overfitting, leading to lower accuracy.

37

Figure 7. Accuracy with Varying Number of Iterations

For SVM linear, we started with 1,000 as the maximum number of iterations and increased

the number to 20,000, with iterations of 1,000. We followed the same numbers as logistic

regression to start. This led to all iterations having the same accuracy. We then shifted the

starting value to 100 and the maximum value to 1,000, stepping by 100. This again produced the

same accuracy for all results. We then shifted one more time to a minimum of 10 and a

maximum of 100, stepping by 10. After running this test, 30 iterations produced the highest

accuracy of 87.80%. Figure 8 shows how the other number of iterations performed. The model

converged at 30 iterations, and every additional iteration after that produced the same results. We

determined 30 to be the best number of iterations.

38

Figure 8. Accuracy with Varying Number of Iterations

Finally, for the SVM-RBF model we varied the gamma value. We tested with gamma values

that ranged from 1-10 and 0-1. For values between 1 and 10 we incremented gamma by 1 for

each run. This did not yield high accuracies as most were in the 10-20% range. The test for

values between 0 and 1, stepping by 0.1, showed significantly higher accuracies. The best value

was 0.9 and recorded an accuracy of 69.8%. Figure 9 shows the values for the other values

between 0 and 1.

39

Figure 9. Accuracy with Varying Value for Gamma

4.1.2.2 Training Ratios

Next, we determined the ideal ratio of malicious to benign URL samples required in our

training data. We created 4 data sets which we used to train the models: one with 50% normal

and 50% malicious, one with 60% normal and 40% malicious, one with 70% normal and 30%

malicious, and finally one with 80% normal and 20% malicious. After training our models with

each of these data set ratios, all models were tested against the same data set used for testing the

different parameters.

Our results showed that the ratio of 60% normal to 40% malicious was the best training set

ratio as it produced the highest accuracy for each algorithm. The results from the testing are

depicted in Figure 10.

40

Figure 10. Accuracy with Different Training Ratio

Random Forest produced the highest accuracies across all training ratios, with accuracies all

above 93%. The lowest accuracy for the Random Forest algorithm was obtained using the 80/20

split training method, while the lowest accuracy for the Logistic Regression algorithm was

obtained when the 50/50 training method was used. The 80/20 training method also yielded the

lowest accuracy for the SVM-L algorithm, however the lowest accuracy for the SVM-RBF was

obtained using the 50/50 split training method. These results indicate that while the 60/40

training method yields the highest accuracies in malicious URL identification, the 80/20 and the

50/50 training methods yielded the lowest accuracies.

41

4.2 Iteration Two

For iteration two we looked more into ensemble algorithms as well a method for tagging. We

also added features to our feature list and evaluated them. Our goal for iteration two was to

improve upon the accuracies from iteration one test new methods.

4.2.1 Features

The new feature set contained 31 lexical and 3 host-based features. We ran a chi-squared test

on the 11 categorical-lexical features in the set and calculated ANOVA F-values for the 20

numerical-lexical features in the set. The results of the chi-squared test can be found in Table 8

and the results of the ANOVA-F-Value test can be found in Table 9. The correlation heat map

between all the features in the list can be found in Figure 11.

4.2.1.1 Chi-Squared Test

In the previous chi-squared test, the feature ‘Username/Password in URL’ was considered

significant and could reject the null hypothesis at a 95% confidence level. This is not the case for

the feature ‘Username/Password in URL’ in the second test. The other 10 features have very low

p-values and can reject the null hypothesis. The p-value of the ‘Username/Password in URL’

Table 8. New Chi-Squared Test Results

42

feature is still low enough to reject the null hypothesis at the 90% confidence level, so we did not

take it out of our feature set.

4.2.1.2 ANOVA F-values

The results of the ANOVA F-value test indicate with 95% confidence that the class labels are

dependent on all the numerical features. All of the numerical features have very low p-values,

which also indicates they are strong features.

4.2.1.3 Correlation Heat Map

The heat map shows fewer highly correlated features than previous results. One exception is

the high correlation between ‘Fragments in URL’ and ‘Number of # in URL’. These two features

could be indicative of the same information since fragments often begin with the ‘#’ symbol. We

remove ‘Number of # in URL’ as they both indicated the same information about the fragment.

Table 9. New ANOVA F-value

43

There are a few similar cases in the heatmap but most of the other features do not show a high

correlation with one another.

Figure 11. New Correlation Heat Map

44

4.2.2 Algorithm Performance

4.2.2.1 Tagging

We tested the tagging method using the Random Forest algorithm, since it had the highest

accuracy among the algorithms in our previous results. We used a 60% Normal / 40% Malicious

split and 4 different threshold values. The results of this test and the threshold values used can be

found in Figure 12 and Figure 13. In Figure 13, a false positive refers to a ‘Normal’ URL that

was given a malicious tag (e.g. ‘malware’, ‘phish’, etc.). A false negative is a malicious URL

that was given a ‘Normal’ tag. The false positive rates were calculated by counting the number

of false positives and dividing by the number of URLs. The false negative rate was calculated in

the same way but using a count of false negatives. The tagging algorithm produced very high

accuracies. With lower threshold values producing higher accuracies. The higher accuracies

came with a trade-off as lower thresholds led to higher false positive and negative rates.

45

Figure 12. Tagging Accuracy Results

Figure 13. False Positive/Negative Rates

0.60

0.50

0.37

0.31

0.56

0.47

0.36

0.31

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

0.25

0.30

0.35

0.40

Rate	(%)

Th
re
sh
ol
d	
Va
lu
e

False	Positive/Negative	Rates

False	Negatives	Rate False	Positives	Rate

46

4.2.2.2 Algorithms Parameters

We performed a 2-dimensional optimization for the Extra Trees and AdaBoost algorithms on

a 50% Normal / 50% Malicious split. The results of the AdaBoost optimization can be found in

Figure 14 and Figure 15. In Figure 14, darker blue represents a higher accuracy. For this test, we

varied the number of estimators from 40 to 80, stepping by 10. We varied the learning rate from

1 to 2, stepping by 1. Based on this result we chose to look at the number of estimators in more

detail. In Figure 15, using a learning rate of 1, we varied the number of estimators from 65 to 75

and stepped by 1. These results showed the ideal parameters for the AdaBoost algorithm which

were a learning rate of 1 and the number of estimators equal to 66.

Figure 14. AdaBoost Optimization Heat Map

47

Figure 15. AdaBoost Optimization Line Chart

Next we optimized the Extra Trees algorithm. In Figure 16, we varied the number of

estimators from 40 to 90, stepping by 5. We varied the number of minimum sample splits from 2

to 11, stepping by 1. Based on these results, we decided to look at the number of estimators in

more detail. In Figure 17, we used a minimum sample split of 6 and varied the number of

estimators from 70 to 100, stepping by 1. These results showed that the ideal parameters for the

Extra Trees algorithm were a minimum sample split of 6 and the number of estimators equal to

91.

48

Figure 16. Extra Trees Optimization Heat Map

Figure 17. Extra Trees Optimization Line Chart

4.2.2.3 Training Ratios

Next, we tested the algorithms against the 4 different training ratios we used previously. The

results of this test can be found in Figure 18. Similar to our previous results, the 60/40 split

yielded the highest accuracies. The Extra Trees classifier had the highest accuracy of 95.10%.

The 80/20 split had the lowest accuracies for Random Forest and Extra Trees. The 50/50 split

49

had the lowest accuracy for AdaBoost. These results indicate that the 60/40 training method

yields the highest accuracies in malicious URL identification.

Figure 18. Ensemble Method Accuracies

50

5. Discussion

The major goals of the project were to identify the optimal feature set to use for URL

classification, as well as test and evaluate the performance of multiple algorithms. We did this

through an iterative process. In our first iteration, we implemented 29 lexical features and the

best performing algorithms identified in previous research. The preliminary results from this first

iteration showed that Random Forest was the best performing algorithm. It also showed that the

full lexical feature set performed the best. In the second iteration, with the success of Random

Forest, we implemented several other ensemble methods (i.e. bagging, boosting). These other

ensemble methods performed similarly to Random Forest. Our findings showed that ensemble

methods performed the best for this classification problem and that our full feature set gave the

best performance.

Our findings showed that ensemble algorithms achieve a high accuracy using our full feature

set. The ensemble algorithms performed with higher accuracy because they are better suited for

multi-classification problems. Other algorithms tested, such as SVM linear and Logistic

Regression, are more useful for binary classification. Another benefit of the ensemble algorithms

is that they are less prone to overfitting and bias. Instead of relying on one algorithm to produce

the best fit for the data, ensemble methods use multiple algorithms and the average of their

results to generate predictions. Due to the nature of the data, we found that there was a lot of

overlap between the classes of URLs. This leads to a more complex decision boundary which

can be difficult to produce using one algorithm. We suggest that future research pursue ensemble

type algorithms for similar multi-class problems.

51

5.1 Limitations

There were several limitations in our research process. One limitation was the short amount

of time for the development and analysis of algorithms (i.e. 8 weeks). There were also limitations

throughout our development process. We describe those limitations in the following sections.

5.1.1 Data

Although we were thorough in our data gathering and creating our testing and training sets,

there are several limitations with our data. One limitation is that URLs labeled as normal may

potentially not be normal. We assume that the normal URLs identified as normal by others’

publications is correct. There is also the potential that URLs once labeled as normal have since

been compromised. Another limitation is that our data may not be representative of all the

categories. For each malicious URL category, data was collected from a single source, which

may not be representative of all types of URLs in that particular category. Due to limited

literature about ratios of malicious URLs in real web traffic, our training and testing data sets

may not reflect real web traffic. This means our results may vary when applied to real world

traffic. These limitations may have caused variance of our results and findings.

5.1.2 Features

Our results are entirely based on lexical features. Although we implemented and tested three

host-based features, we were unable to evaluate them due to the fact that many of the URLs in

our data set were no longer active. With our training data sets consisting of more than 50,000

URLs and the limited time we had to complete the project, the timeout was a huge problem.

Whenever the feature extractor came across a URL that was no longer active it would take 25

52

seconds for the function to timeout. This issue can be fixed in future research with the gathering

of more recent URLs that are still active.

5.1.3 Algorithms

Algorithmic limitations include the tools used to generate the models and the data used to

train and test the models. We used the libraries from Scikit-Learn for the implementation of our

algorithms. Since we did not develop or test our own implementations, we trust the developers at

Scikit-Learn to develop well tested and reliable code. Also, the limitations mentioned for the data

sets apply to the algorithm performance. Although the algorithms performed well in our tests,

applying these models to real world web traffic may yield different results.

5.2 Future Work

Many of the limitations described in the previous section can be improved in future research.

Labeled data sets of URLs are crucial, but difficult to find. Further testing of algorithms using

more realistic web traffic and a broader sample of URLs could lead to improved models.

There is more research that can be done with features. Host-based and content-based features

may provide more context when classifying a URL. There is a substantial risk that comes with

generating content-based features because the process involves downloading the contents of

websites which could contain malicious software. If this risk is managed correctly, the

information gathered using these types of features could greatly improve model performance.

Another major area for improvement in future research is the models used. We focused our

research on popular algorithms found in the Scikit-Learn library—mainly supervised algorithms.

Future work could look into semi-supervised classification algorithms and how neural-networks

53

could be used to better classify URLs. Also, future research in this field could focus on

researching and developing new supervised algorithms and ensemble methods to tackle this type

of problem.

54

6. Conclusion

Cybercrime is on the rise as society shifts to a more online presence. Thus there is a need to

detect cyber-attacks early to prevent damage to unsuspecting victims. We developed and

analyzed machine learning algorithms to tackle one approach for early detection—URL

classification. We gathered data from 5 different categories: normal, phishing, malware,

ransomware, and botnet C&C. Using characteristics identified in previous research, we

developed a comprehensive feature set made up of 31 lexical and 3 host-based features. Though

we were limited to evaluating the lexical features, we found that all of our lexical features were

relevant. Through development and testing of several algorithms, we discovered that ensemble

algorithm methods performed the best with our set of lexical features. In particular, the

algorithms Extra Trees and Random forest performed exceptionally well with accuracy. This

work is one step in the right direction by allowing URLs to be accurately classified enabling

early detection and prevention of cyber-attacks.	

55

References

[1] Morgan, S. (2019). 2019 official annual cybercrime report Herjavec Group.

[2] Sahoo, D., Liu, C., & Hoi, S. C. H. (2017). Malicious URL detection using machine learning:

A survey Retrieved from

https://www.openaire.eu/search/publication?articleId=od________18::28e41a0b8b48aee382

4dfa74f6fbcf9d

[3] Ma, J., Saul, L., Savage, S., & Voelker, G. (Jun 14, 2009). Identifying suspicious URLs.

Paper presented at the 681-688. doi:10.1145/1553374.1553462 Retrieved from

http://dl.acm.org/citation.cfm?id=1553462

[4] Ma, J., Saul, L., Savage, S., & Voelker, G. (Jun 28, 2009). Beyond blacklists. Paper presented

at the 1245-1254. doi:10.1145/1557019.1557153 Retrieved from

http://dl.acm.org/citation.cfm?id=1557153

[5] Patgiri, R., Katari, H., Kumar, R., & Sharma, D. (2019). Empirical study on malicious URL

detection using machine learning. Paper presented at the International Conference on

Distributed Computing and Internet Technology, , 11319 Retrieved from

https://doi.org/10.1007/978-3-030-05366-6_31

[6] Paganini, P. (2019). The most common social engineering attacks. Retrieved from

https://resources.infosecinstitute.com/common-social-engineering-attacks/#gref

[7] What is phishing? Retrieved from https://www.phishing.org/what-is-phishing

[8] Davis, J.183,000 patients impacted by presbyterian health phishing attack. Retrieved from

https://healthitsecurity.com/news/183000-patients-impacted-by-presbyterian-health-phishing-

attack

56

[9] What is malware? malware defined, explained, and explored. Retrieved from

https://www.forcepoint.com/cyber-edu/malware

[10] Barker, D. (2019, Aug 13,). Records of 85,000 involved in hospital attack. The Daily World

Retrieved from https://www.thedailyworld.com/news/records-of-85000-involved-in-hospital-

hack/

[11] Zhang, J., Porras, P., & Ullrich, J. (2008). Highly predictive blacklisting. Usenix, Retrieved

from https://www.usenix.org/legacy/events/sec08/tech/full_papers/zhang/zhang.pdf

[12] McAfee.McAfee WebAdvisor. Retrieved from https://www.mcafee.com/consumer/en-

us/store/m0/catalog/mwad_528/mcafee-web-advisor.html

[13] Peswani, S. (2018). Safelinks protection outlook - can you and should you disable it?

Retrieved from https://www.thewindowsclub.com/safelinks-protection-outlook

[14] Bhatnagar, N. (2017). Getting started - machine learning. Retrieved from

http://www.shanklab.com/machine-learning-getting-started/

[15] Fumo, D. (2017). Types of machine learning algorithms you should know. Retrieved from

https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-

953a08248861

[16] Brownlee, J. (2015). Basic concepts in machine learning. Retrieved from

https://machinelearningmastery.com/basic-concepts-in-machine-learning/

[17] Canadian Institute for Cybersecurity. (2016). URL dataset (ISCX-URL-2016). Retrieved

from https://www.unb.ca/cic/datasets/url-2016.html

[18] Strasak, F.Normal datasets. Retrieved from https://www.stratosphereips.org/datasets-normal

[19] PhishTank.PhishTank. Retrieved from http://phishtank.org/

[20] URLhaus.URLhaus database. Retrieved from https://urlhaus.abuse.ch/browse/

57

[21] Ransomware Tracker.Blocklist. Retrieved from

https://ransomwaretracker.abuse.ch/blocklist/

[22] CyberCrime.CyberCrime. Retrieved from http://cybercrime-tracker.net/

[23] Bhattacharyya, S. (2018). Support vector machine: Kernel trick; mercer’s theorem

. Retrieved from https://towardsdatascience.com/understanding-support-vector-machine-part-2-

kernel-trick-mercers-theorem-e1e6848c6c4d

[24] Patel, S. (2017). Chapter 2 : SVM (support vector machine) — theory. Retrieved from

https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-

f0812effc72

[25] Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression

John Wiley & Sons.

[26] Agrawal, A. (2017, March 31,). Logistic regression. simplified. Retrieved from

https://medium.com/data-science-group-iitr/logistic-regression-simplified-9b4efe801389

[27] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:1010933404324

[28] Liaw, A., & Wiener, M. (2001). Classification and regression by RandomForest. Retrieved

from

https://www.researchgate.net/profile/Andy_Liaw/publication/228451484_Classification_and

_Regression_by_RandomForest/links/53fb24cc0cf20a45497047ab/Classification-and-

Regression-by-RandomForest.pdf

[29] Rocca, J. (2019). Ensemble methods: Bagging, boosting and stacking. Retrieved from

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-

c9214a10a205

58

[30] Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing

detection from URLs. Expert Systems with Applications, 117, 345-357.

doi:10.1016/j.eswa.2018.09.029

[31] Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S. C., & Tiong, W. K. (2019). A new hybrid

ensemble feature selection framework for machine learning-based phishing detection system.

Information Sciences, 484, 153-166. doi:10.1016/j.ins.2019.01.064

