

Object Manipulation and Control with
Robotic Hand

Major Qualifying Project Report

Submitted by:
Colin Buckley (ECE)

Bhon Bunnag (RBE/CS)
Apiwat Ditthapron (CS)

Rebecca Miles ​(RBE/ECE)

Project Advisor:
Prof. Zhi (Jane) Li
Prof. Stephen Bitar
Prof. Loris Fichera​

Submission Date:
April 20, 2019

Abstract
From industrial robots to nursing robots, object manipulation has become a growing area of robotics
research. This Major Qualifying Project explores methods of teleoperation through the use of a wireless
data glove able to detect multiple degrees of freedom. This project also explored methods for autonomous
control. A computer vision model was developed by integrating two state-of-the-art Mask Region
Convolutional Neural Networks (Mask-RCNN) models to create a final model for determining both
object location and grasp angle. This modeling allows the Baxter Robot to autonomously detect and reach
towards objects, as well as complete complex tasks. Using learning by demonstration, the robot learned
how to perform these tasks without any additional hard-coding.

1

Abstract 1

1. Introduction 4
1.1 Objectives 4
1.2 Background 5

1.2.1 Yale OpenHand Project 5
1.2.2 ReflexSF Hand 6
1.2.3 Previous MQP 6

2. Manual Control of Robot Hand 7
2.1 User Interface 7

3. Data Glove 9
3.1 Problem Statement 9
3.2 Design: Previous Work 10
3.3 Our Design 12
3.4 Data Transmission 18
3.5 Schematic 19
3.6 Power Consumption 21
3.7 Finished Product: Data Glove 22

4. Computer Vision 25
4.1 Object Detection 25

4.1.1 You Only Look Once (YOLO) 25
4.1.2 Mask Region-Based Convolutional Neural Network (Mask R-CNN) 26
4.1.3 Evaluation 27

4.2 Grasp-Angle 27
4.3 Calculating Location 28
4.4 Cameras 28

5. Autonomous Grasping 31
5.1 Inverse Kinematics 31

6. Teleoperation 32

7. Learning by Demonstration 34
7.1 Experiment 34
7.2 Probabilistic Motion Primitives (ProMP) 35

7.3 Dynamic Time Warping 36

8. Future Work 37
8.1 Further Modifying the Data Glove 37
8.2 Further Optimization in Computer Vision 37

2

8.3 Performing Complex Tasks using Learning by Demonstration 37

9. References 38

10. Appendix 39
A. Demonstrations 39
B. Code Base for Computer Vision and Teleoperation 39
C. Code Base for Robotic Hand Teleoperation (GUI) 39
D. Code Base for Data Glove Sensor and Communication 39

Integrated_Receiving_Module.ino 39
Whole_Glove.ino 42

3

1. Introduction
The Industrial Revolution laid the foundations of a new manufacturing process: delegating micro-tasks to
multiple entities for the sake of mass production of goods. However, these tasks were often not only
repetitive but also dangerous. The 20th century introduced the new invention of robotics. This
breakthrough was perhaps initiated by the advent​ ​of the first programmable robot invented by George
Devol and Joe Engleberger in 1954, and used effectively on assembly lines[1]. These robots were able to
mimic human’s ability to manipulate objects. In the present day, industrial robotics is led by what is
known as the ‘Big Four’, encompassing ‘ABB’ of Switzerland, ‘Kuka’ of Germany, and ‘Fanuc’ and
‘Yaskawa’ of Japan[2].

However, robotics is expanding from the industrial realm into other fields, including the medical and
nursing field. An example of this is Dinsow (ดินสอ), a robot designed for aiding the elderly in multiple
areas of their lives[3]. This robot has found much commercial success in Japan, whose rapidly aging
population requires greater assistance.

Object manipulation is a crucial component for modern robotics applications. From industrial robots to
prosthetic limbs, the desire for robots to be able to successfully and reliably grasp and utilize a variety of
objects is growing. There exist many different robotic manipulators in use today, each with their own
advantages and disadvantages.

1.1 Objectives

Figure 0:Outline of the Motivations and Objectives of the MQP

One of the objectives of this MQP is to perform grasping and object manipulation autonomously using
Learning by Demonstration with the TRINA nursing robot. We propose a novel system using
Probabilistic Motion Primitives (ProMP), and paired it with a light weight teleoperation interface for

4

demonstration data. This data was gathered and recorded in order to “teach” TRINA how to grab and drop
objects.

Our other objective is the Data Glove, a novel invention used to control a robot hand up to five degrees of
freedom. The Data Glove also played a crucial role in the aforementioned teleoperation interface. The
Data Glove was designed to be lightweight, inexpensive and wireless. Along with these requirements, the
glove needed to fulfill two primary tasks. Its first task consisted of providing an intuitive means of
teleoperation for the TRINA robot. Its other task involved using the skills learned in the first task, to
demonstrate the pertinent motions to TRINA and teach it to be able to perform simple tasks with the aid
of computer vision and learning by demonstration.

1.2 Background
The Tele-Robotic Intelligent Nursing Assistant (TRINA) was developed by Zhi Li, Kris Hauser et al. in
order to operate in potentially hazardous locations involving infectious diseases. TRINA’s primary
purpose is to perform simple repeatable tasks often done by nurses such as removing trays and retrieving
and removing blankets from patients[4]. Each arm of the TRINA robot has seven degrees of freedom and
requires inputs either from a terminal or game controller in order to follow commands.

Figure 1:Tele-Robotic Intelligent Nursing Assistant (TRINA)

The TRINA system is the main robot that this MQP revolves around. “It consists of a mobile manipulator
robot, a human operator console, and operator assistance algorithms”[5].

1.2.1 Yale OpenHand Project
The Yale OpenHand project was developed as a platform for ‘rapid prototyping techniques in order to
encourage more variation and innovation in mechanical hardware[6]. This objective is done through
providing open-source hand designs, which could be downloaded from the internet where the modular
components could be 3D-printed locally. Dr. Lael U. Odhner, a previous team member of the OpenHand
project, went on to found RightHand Robotics, a startup that uses the OpenHand as the foundation for
design.

5

1.2.2 ReflexSF Hand
Reflex SF hand is a research product from RightHand Labs. The hand comprises three sensor-free fingers
to perform grasping tasks. Each finger has one degree of freedom from its blending and another one
degree of freedom from coupled rotation of two fingers, resulting in a total of four degrees of freedom.
However, last year MQP group, named YaleHand, modified mechanism of the hand by adding an
additional Dynamixel motor to rotate a thumb, providing a half degree of freedom.

1.2.3 Previous MQP
This project is a continuation of work done by a previous MQP team which designed a sensor glove to
teleoperate the Reflex SF hand. Through the use of flex sensors located on the thumb, index, and middle
fingers the users finger movements could be detected. These movements were then transmitted to a
graphical user interface (GUI) which controlled the robotic hand to mirror the user’s movements. The
robotic hand was controlled using messages sent through the Robotics Operating System (ROS), which
transmits messages to different aspects of a complex system through a network of publishers and
subscribers. This process meant that the data collected from the fingers of the data glove could be
transmitted directly to the Reflex SF hand. As mentioned earlier, the previous MQP also modified the
Reflex SF hand to add another degree of freedom on the thumb.

6

2. Manual Control of Robot Hand
In order to accomplish manipulation of the TRINA robot and to instruct it for Learning by Demonstration,
we decided we would need some means of controlling and the movements of the robot. We identified
several different means of controlling the robot and improved the graphical user interface to improve
response time and readability for the user. In order to test the movement and feasibility we wanted a
means to manually control the robot for testing purposes.

2.1 User Interface
The Reflex SF hand can be controlled out of the box via terminal commands. This is inconvenient for
extended use and does not enable one to save a series of commands to be executed again in the future.
The previous MQP team developed a graphical user interface (GUI) to control the Reflex hand which can
be seen in Figure 2.

Figure 2: Original GUI

When we first started the project and were attempting to use this GUI for basic control, we found the
interface to be counterintuitive and inconsistent. On top of this, the layout of the GUI was difficult to use.
As can be seen, there were two checkboxes which supposedly enabled the user to control the Reflex SF
hand with a wearable sensor glove that could track the users hand movements. Only one of these boxes
appeared to work, however and even that was sporadic and unreliable. For these reasons, we concluded
that the GUI needed to be completely redesigned and reimplemented before any real work could be done
with the Reflex SF hand.

The final redesign can be seen in the following Figure 3. The reason for the previous GUI being
unreliable turned out to be primarily due to unorganized and hectic code. Therefore, after a full rewrite of
the GUI code, we were able to get comprehensive and reliable control of the robotic hand.

7

Figure 3a: Manual Control Interface

Figure 3b: Data Glove Control Interface

8

3. Data Glove
In order to effectively teach the robotic hand to grasp different objects, it was necessary to develop a
teleoperation method which could map the position of the hand. The team wanted something that was
intuitive and responsive. Rather than teaching the robot commands through a controller or terminal inputs,
something more responsive and easier to practice. Due to the complex nature of the hand and the task of
grasping objects, the best solution to teach the robot was through the use of a physical glove measuring
the movements of the wearer’s hand.

3.1 Problem Statement
The hand is a versatile appendage which can form a wide variety of shapes and move in numerous
different ways. Therefore, in order to get an accurate model of how the hand moves to grasp different
objects, it is important to be able to detect as many degrees of freedom of the hand as possible. There are
primarily two types of data gloves on the market currently: ones which use computer vision to track finger
movements, and ones which utilize sensors mounted directly inside the glove. Each of these options have
their own drawbacks. For instance, cameras are easily thwarted when the object being grasped blocks its
view of all of the fingers. It very quickly becomes a costly and limiting method of tracking the hands
movement as the user must also perform all actions within the camera’s field of view. Of the gloves
which utilize sensors directly, nearly all use exclusively flex sensors located along the length of the
fingers. This means that they are only able to measure finger flexion as depicted in Figure 5 and cannot
get an accurate depiction of the entire state of the hand including how spread the fingers are.

For our purposes, we needed a glove which could measure the complete positions of the fingers regardless
of obstructions. We first investigated the glove designed by the previous MQP team (Figure 7). It used an
Arduino Nano connected directly to the computer for both power and data. The nano was then connected
to three flex sensors placed inside a glove.These flex sensors did not fully extend the length of the fingers
and they were connected with inflexible wire to a soldered protoboard. We tested this glove following the
ReadMe file provided by the previous team and found the fingers to behave erratically when connected to
the glove. Additionally, the glove controlled merely three of the five degrees of freedom available to the
robotic hand. The glove controlled the flexing of the fingers, but the GUI was needed to control the
rotation of the thumb and the rotation of the two synchronized fingers. After reviewing the previous
MQP’s results and testing their own glove we concluded it was too unstable and inaccurate for our
mapping and controlling purposes.

Further research into existing data gloves similarly came up lacking. Since none of the gloves on the
market were able to suit all of our needs and typically costed around $250, we decided to design our own
data glove. The fundamental principle of a data glove is simple, detect the hand shape by taking direct
measurements of the users hand. As mentioned earlier, there are data gloves currently on the market that
are intended for Virtual Reality gaming. In fact, the original data glove that last years MQP used was

9

purchased though it was ultimately redesigned to increase the data rate and make it compatible with Linux
and the Robotics Operating System (ROS).

Figure 4: Finger Flexion

When grasping an object, it is essential to be able to measure the distance between a users fingers along
with the fingers flexion. This movement is referred to as finger adduction and abduction as illustrated in
the following Figure 5.

Figure 5: Finger Adduction and Abduction

3.2 Design: Previous Work
Virtual reality video games offer the highest demand for research into gloves designed to track the
movement of the human hand. The CaptoGlove, depicted in the following Figure 6, was one such glove
and was purchased by the previous MQP team to serve as a basis for the autonomous teleoperation of the
Reflex SF hand.

10

Figure 6: CaptoGlove

They found that since the glove was intended for gaming, it was designed to work with Microsoft
Windows and there were no alternatives that supported Linux. As it was necessary for the data collected
from the hand to be sent to the Reflex SF hand via ROS messages, it was most convenient to have the
data glove be compatible with Linux. For this reason along with the overall difficulties that the previous
MQP team had getting the CaptoGlove to work with the Reflex SF hand, the team decided it would
ultimately be easier to make their own data glove instead.
The design of the previous MQP’s data glove utilized the exterior of the original CaptoGlove to house 3
flex sensors located along the thumb, index and middle fingers. Figure 7 illustrates the sensors laid out
along their respective locations in the glove.

11

Figure 7: Redesigned CaptoGlove

The flexion of the fingers was measured with the illustrated flex sensors connected to an Arduino Nano
which transmitted the data via ROS messages through a MiniUSB connection.

3.3 Our Design
The primary issue with the previous years glove was that it could only measure finger flexion. As it is
crucial for our purposes to be able to measure finger adduction and abduction, the original glove was not
of much use to us. It should be noted that the previous MQP also needed to send the desired distance
between the fingers to the Reflex SF hand, yet as their glove was not designed to measure this metric,
they had to manually input a value using the GUI described earlier. When using the glove as a method of
teleoperation, there is an assumption that it will be able to control the entirety of the hand in all of the
desired dimensions (control finger flexion, adduction and abduction). Requiring the user to manually
input a value for finger adduction and abduction defeats the purpose of using the glove: if the user has to
input one parameter they could just as easily input all parameters.

12

Measuring the distance between fingers is a fundamentally difficult problem. There are no, or very few,
sensors currently on the market which are designed for this purpose. We investigated several different
types of premade sensors to measure the finger adduction and abduction but our parameters required the
sensor to be able to fit inside the finger of the glove. We investigated the use of Hall Effect sensors but
could not find one suitable for our project. Such sensors were either too large or too small to effectively
integrate. If the range of sensing was large enough the sensor itself would be too cumbersome to fit along
a finger, but if it was sufficiently small the data range would not be significant enough to measure to a
reasonable degree. Additionally, placing multiple sensors in the glove would cause them to interfere with
each other’s magnets and generate inaccurate readings. Therefore, we determined that in order to
accurately collect data on the users hand-shape, it was necessary to design custom sensors.

Ultimately, the design which we settled on utilized a 555 timer and a custom capacitor. A 555 timer is an
integrated circuit which produces a square wave with a frequency dependant on a capacitive input. The
capacitive input was 2 copper plates attached with velcro such that the copper surrounded the finger like a
ring and could be adjusted to fit different hand sizes. Such a setup created a capacitance approximately
varying between 0.05nF and 0.07nF depending on the position of the fingers. Having the copper plates be
rings enabled us to maximize the surface area of the sensor and have it continue working no matter the
position of the fingers. A total of three copper rings were installed in the glove on the index, middle and
ring fingers of the hand with the middle finger ring being a ground plate.

Figure 8: Glove Block Diagram

The block diagram in Figure 8 illustrates the main components within the glove. The whole system
consists of two Arduino Nanos and two nRF2401+ communication devices. The arduinos act as
microprocessors for the information that is gathered and communicated and work in between the sensors,
the nRFs and the computer. The transmitting arduino and its associated components are all located within
the physical glove and the data is sent to the receiving arduino.The arduino on the transmitter side takes
inputs into its ADC and digital pins from the different sensors, including flex sensors, capacitive sensors
and the custom wool sensor. The data is mapped and processed by the arduino and sent in an array via
the nRF2401+. It is powered by a 9V battery connected to the Vin pin of the Arduino Nano. The
receiving nRF decodes and processes the data and relays that information to the connected computer

13

running ROS via a USB cable. That computer then interfaces with the TRINA robot which mimics the
glove wearer’s movement

Figure 9 below demonstrates the capacitor circuit using the variable capacitance of the copper plates to
alter the output frequency.

Figure 9: 555 Capacitor Circuit Diagram

The Index-Middle Capacitor data in Figure 10 measures the distance between the index and middle
fingers using the capacitor sensor in between them. The mapped output value on the y axis of all
following graphs refers to the final scaled value that gets sent to the robotic hand to control it. The
capacitor sensors are scaled from 0-50 while the other sensors are scaled between 0-100. The blue
sinusoidal movement shows the mapped values of the sensor as the hand alternates between a closed fist
and an open hand. The minimum and maximum values for the sensor were taken separately. To eliminate
impulse noise, a 10 point median filter was used. As can be seen, there is a clear distinction between when
the fingers are spread out or “Open”, close together (“Closed”) and when they are moving apart and
together to create the sinusoidal signal observed. The resolution of the data is relatively low but this can
be attributed to the method in which the frequency was measured: through a pre-built library that was
specially designed to measure frequency on a specific pin (D5) on the arduino nano. To get better
resolution, a frequency to voltage converter could have been used and inputted into an analog pin on the
arduino which likely would have resulted in more accurate data overall.

14

Figure 10: Capacitive Sensor Data

As with other data gloves, we determined that the easiest and most reliable way of measuring finger
flexion was to use flex sensors located along the backs of the fingers. In order to get a complete depiction
of the hand we installed a 4.5 inch long flex sensor along each finger of the hand. Figure 10 demonstrates
the moving flex sensor data for each finger. In that experiment, the gloved hand alternated between an
open palm and a closed fist. This repeated gesture generated the sinusoidal pattern seen in the graph
below. The x-axis represents the number of samples taken. Samples were taken at a rate of 2 samples per
second. The y-axis represents the mapped value between 30 and 100 that the ADC registered. The slight
inconsistencies of the thumb value likely arise from the differing position the thumb reseted in, either over
the fingers, or held inside the fist.

15

Figure 11: Flex Sensor Data

Measurement of the adduction and abduction of the thumb was the next issue addressed. While the fingers
consisting of three bones are only able to move approximately 1 cm from side to side, the thumb is
capable of moving several inches about a much more versatile field than the rest of the fingers. As a
result, the capacitive sensor which was used for the other fingers would be ineffective for the thumb
simply because the air gap which served as the dielectric in the capacitor would be too large and variable.
Therefore, we developed a resistive sensor that is constructed from a blend of wool and stainless steel
fibers.

The construction of the sensor is relatively straightforward. Wires are first soldered onto copper pads
which are placed atop a bundle of stainless steel fibers with the loose ends pushed to one side as shown in
Figure 12a the wool surrounding each copper pad is then needle felted into a firm felt leaving the
midsection relatively loose. The stainless steel fibers are then arranged such that there is not a direct
connection between the two copper pads, rather overlapping fingers which could easily touch if the sensor
is bent as seen in Figure 12b. Finally, the wool and interior stainless steel fingers are needle felted into a
small compact package shown in Figure 12c.

16

Figure 12: Construction of Resistive Wool Sensor

The wool sensor data in Figure 13 shows a clear demarcation between the minimum and maximum values
generated by that sensor. This sensor measures the lateral movement of the thumb towards the other
fingers. The maximum values were taken when the hand was held open and the minimum values were
taken when the hand was held closed in a fist. For this graph, a 15 point median filter was used to
eliminate impulse noise however as the data still appears to be rather noisy, a low-pass filter would be
able to clean it up further.

17

Figure 13: Wool Sensor Data

3.4 Data Transmission
Once data had been collected from the hand, it was wirelessly transmitted to a receiver. We originally
wanted to use bluetooth to transmit data from the hand to the computer but we eventually abandoned this
idea for several reasons. First, our glove was intended to eventually be capable of dual hand manipulation
which would require more than one glove to be connected to the computer at a time. While it is not
impossible to do this with bluetooth, it became more complicated than seemed reasonable given that our
focus was on getting reliable sensor data and not having a fancy way of transmitting the data wirelessly.
Secondly, the primary appeal to using bluetooth was the ability to avoid needing to plug in a USB
receiver into the computer yet the desktop in the lab which is used to control the TRINA robot did not
have bluetooth built in and therefore we would have had to purchase a USB bluetooth dongle anyways.
Another option which we discarded was to use UDP for wireless communication. As we were using an
arduino nano, it would technically have been possible to use UDP, however, it would have required an
ethernet shield and, in addition, would have required us to connect the arduino to the WPI wifi which
would have been an ordeal to say the least. We therefore discarded the idea and opted for the simple, well
tested NRF transmitter/receiver module shown in Figure 14. These low power modules transmit at
2.4GHz and seem to be the standard for arduino hobby projects using wireless communication between
multiple devices. This means there are significant resources available for their use.

18

Figure 14: NRF Transmitter/Receiver

3.5 Schematic
Figure 15 below represents the integrated components of the glove. We chose to use an Arduino Nano
microprocessor as the processor for our glove due to its compact size and shape as well as its low cost and
ease of use. The glove is designed to be wireless and untethered, so the glove will be powered through a 9
volt battery and distributed through the microprocessor. Analog to Digital converters are used to identify
the different degrees of strain for the three different flex sensors connected to the thumb, index finger, and
middle finger respectively, as well as the prototype wool sensor. Each of these sensors are connected to a
voltage divider to stabilize the values and yield the greatest range for the data.

The two identical circuits below the Arduino are the 555 timer circuits described previously. Each of the
circuits are connected to capacitive rings around different fingers which yields a variable capacitor value.
The change in capacitance alters the frequency of the square wave generated by the 555 timer. This
difference in frequency is measured by the arduino and mapped to appropriate values.

19

Figure 15: Glove Schematic

Connected to the Arduino’s 3.3 volt rail is an nRF2401 transceiver. This component sends the gathered
data as an array of integers to another nRF2401 which acts as a receiver. It transmits every 500
milliseconds across a frequency of 2.4 GHz. The receiver nRF is connected to another Arduino Nano
hooked up to a laptop running ROS, which then relays the data to the robotic hand.

20

3.6 Power Consumption
Because the glove is now unfettered by the power and information cables, it needs to be able to power
itself for extended periods of time. The table below contains the power concerns for the wireless glove.

 Part Quantity Power Consumption (A) Specifications

Arduino Nano Processor:
ATMEGA 328P

1 0.00036 active mode pins max specs:
current=40mA, voltage=5V

Voltage
Regulator

Board 1 0.019

Bluetooth Processor:
CC2541

1 0.009

Capacitive Sensors 555 timer 2 0.0005 *no load Max i, V=5

Flex Sensors flex sensor in
voltage divider

3 0.0001363636364 *110k ohm

Transmitter nRF2401 1 0.009

 Bluetooth

Total:
0.02863636364

 nRF Total 0.02863636364

Table 1: Power Consumption Calculations

Equation 1: 0.02863636364A /1000)/580mAh 20.25 hours(=

Both Bluetooth and nRF are listed above because the team wanted to test the power consumption in a side
by side comparison. While the power consumption came out approximately the same, the Bluetooth was
ultimately dropped due to compatibility issues and difficulty in integrating it with the arduino.

In addition to battery capacity, size and weight also needed to be considered. The power source could not
significantly weigh down the hand or occupy too much precious space on the glove. Based on the above
data and calculations, a 9 Volt battery with a life of 580 mAh could power the glove for approximately 20
hours at a time. Given the nature of the project, 20 hours for a single battery seemed like a reasonable
expectation for a glove that would not be used for extended periods of time.

21

3.7 Finished Product: Data Glove
Once all of the components had been designed, they were attached to a spandex glove via velcro. The
arduino nano and PCB were placed into a 3D printed box shown in Figure 16a and b where 16a shows the
CAD for the box and 16b shows the PCB mounted inside the finished product. This was done both for
protection and so that velcro could be attached to the bottom to mount the box onto the rest of the glove.
Originally, it was intended for the PCB and battery to be mounted on the back of the hand, however
despite making the box as small as possible, it was just too big and clunky to reasonably place on the back
of the hand. As a result, we decided to move the box back to a cuff on the wrist. In order to prevent the
user from drawing the wires too taught and potentially breaking the solder connections to the sensor or the
PCB, we decided to physically sew the cuff onto the end of the glove to limit how taught it was possible
to make the wires. In order to make the wiring as neat as possible, wires for the sensors were passed
through a hole in the bottom of the PCB case and into a hole on the top of the wrist cuff. The wires then
threaded through the cuff and out the bottom as seen in Figure 17. This allowed the velcro attaching the
box to the cuff to be unobstructed by the wires.

Figure 16: PCB Box

22

Figure 17: Wiring of the PCB to the Glove

We chose to mount the sensors on a spandex glove as it would fit snugly on any size hand, enabling the
sensors to get the most accurate measurements of the fingers as there would be limited amounts of slack.
Once the sensors were mounted, a thin cotton glove was placed on top to protect the sensors and prevent
the copper rings from shorting. The final construction can be seen in Figure 18 which depicts the finished
glove with and without the cotton glove.

23

Figure 18: Finished Data Glove

24

4. Computer Vision
The second portion of our project is object detection via Computer Vision. We require a means of
detecting object in order for the robot to reach to it autonomously. We have two main objects: objection
detection/localising and orientation determination.

Figure 19: Workflow for Computer Vision

4.1 Object Detection
The first step required to accomplish this goal is to locate objects within an image. We examine two state
of the art models that can achieve this task: You Only Look Once (YOLO[7]) and the Region
Convolutional Neural Network (RCNN[8]). We found that although YOLO has a higher speed, RCNN
was able to detect objects with a greater accuracy.

4.1.1 You Only Look Once (YOLO)
YOLO is currently a state-of-the-art real time object detection and localization system. Unlike other
state-of-the-art neural network object detection algorithms that runs on every proposed region of interests
(ROIs), the YOLO proposed a method to compute class probability for all equally divided grids (5x5
grids in [7]) in a single neural network, separately from the ROIs proposing method. Specifically,
class-probabilities are predicted from the regression neural network, composed of 24 convolution layers
and 2 fully-connected layers. Simultaneously, ROIs are proposed separately and later classified by class
probabilities.

In this work, we used the YOLOv3 model, the current version of YOLO which improves small-object
detection by exploiting residual CNN blocks. To adapt the network to our grasping detection, we adopted

25

the Imagenet pre-trained model and re-trained it with affordance dataset ​[9]​. Only last three CNN blocks
were re-trained to match classes in the affordance dataset. The affordance dataset contains 105 RGB-D
images, each containing one object labeled as grasp, cut, scoop, contain, pound, support, or wrap-grasp.

Figure 20a: Demonstration of YOLO

4.1.2 Mask Region-Based Convolutional Neural Network (Mask R-CNN)

Mask R-CNN[9] is another state-of-the-art object detection, localization, and segmentation model. The
model was intuitively extended from Faster R-CNN[11] by adding capability of pixel-wise segmentation
which provide more information than only the bounding box implemented in Faster R-CNN. The Mask
R-CNN model comprises of two neural networks: feature extraction network and bounding box
recognition network. For feature extraction networks, various pre-trained state-of-the-art image
classification models were adapted by connecting bounding box recognition network prior to
classification layer of the feature extraction model.

For evaluation, we used a pre-trained RESNET-50 model as a feature extraction network instead of
RESNET-101 model in [10] because of limited available training data. The affordance dataset is used to
train the model.

26

Figure 20b: Demonstration of Mask-RCNN

4.1.3 Evaluation
We validated the models using 10% of the dataset that was not used in the training process and conducted
bootstrapping tests with a sample size of ten. To calculate mean and standard error of each metric, ten
bootstrapping tests were performed. We tested the models by three measurements: the error of
classification based on bounding box region, bounding box error in pixel and time used in a single
inference.

 YOLO Mask-RCNN

Error Comparison on classification error (± standard error) 34.2 ± 0.83 % 18.7 ± 0.23 %

Error Comparison on bounding box (± standard error) pixels 12.2 ± 0.176 11.5 ± 0.112

Runtime Comparison 0.051s/frame 0.42s/frame

Table 2: Comparison between YOLO and RCNN. Better performances are highlighted

From provisional experimentation, we have determined the relative effectiveness of the two models. As
seen in Table 2, the lower error rate yielded by the Mask-RCNN suggests that Mask-RCNN is the more
powerful classifier. However, Mask-RCNN is much slower than YOLO, by over 10x the speed.

After testing the Mask-RCNN trained with affordance dataset in the scene that had unclear background,
the model detected additional object in the background and failed to distinguish the objects. To solve it,
we trained the model with both affordance dataset and coco dataset, which has objects labeled out of the
background.

27

4.2 Grasp-Angle
Using the multi-object multi-grasp model [12], we were able to integrate grasp-angle into the system. This
allows us to determine the orientation required of the robot hand to pick up objects. The model is trained
on a convolution neural network.

Figure 21: Multi-Grasp Detection (left) vs. Single-Grasp Detection (right)

The grasping angle is determined by four variables. The width and height of the rectangle, the angle of
grasp, and the center of the rectangle. The model can be modified to detect an arbitrary number of
grasp-angles. We found that sticking with smaller numbers of grasp angles reduced the noise and error.

4.3 Calculating Location
After an object is detected in the camera by aforementioned algorithms, its location in reality could be
approximated relatively to the RGB-D camera using similar triangles. Given (​x,y​) is an object coordinate
detected in the image with (w,h) size, ​z​ is a depth at a certain coordinate, and ​fov​ is a constant camera
field-of-view.

F = h
2 tan()2

fov

 Z = zF
√x +y +F2 2 2

X = Z × x
F

Y = Z × y
F

Thus, the position of object is (X,Y,Z) relatively to the camera with the same unit to z.

28

4.4 Cameras
We first developed object positioning algorithm using the ASUS Xtion PRO LIVE camera, which has an
integrated depth field alongside the regular RGB camera. We used the OpenNI library to integrate
real-time camera detection capabilities to our system.

Figure 22: The ASUS Xtion PRO LIVE camera

However, the ASUS Xtion PRO LIVE is difficult to mount on the TRINA Robot. Hence, we explored
two suitable cameras: Kinect V2 and Realsense d435. From the experiment, Readsense d435 has a noisy
in depth channel, comparing to Kinect V2 and ASUS Xtion PRO LIVE. Kinect was chosen as an input
source to Deep Learning models. Also, Kinect has a Skeleton Joint detection feature which is useful in
teleoperation.

29

Figure 23: The Kinect camera.

Feature Kinect V2

Color camera 1920x1080, 30 fps

Depth camera 512x424

Depth distance(min,max) (0.5m,4.5m)

Skeleton Joints 26

Table 3: Kinect V2 camera and its specification

30

5. Autonomous Grasping
We now explore the implementation of autonomous grasping. The Kinect V2 is mounted on Trina, as
shown in Figure 21. It then proceeds to send RGB-D frames to the computer vision model. The Computer
Vision model allows us to detect objects and calculate their position.

Figure 24: The Kinect is mounted on the Baxter’s upper ‘chest’.

5.1 Inverse Kinematics
The calculated position in cartesian space allows us to use Inverse Kinematics to calculate the joint angles
of the arms necessary to move the arm out to reach the object using Baxter API to avoid any collision.
With grasping angle from the deep learning model, the Trina Robot is able to successfully perform
grasping and pick the object up in different reachable position and object orientation.

31

6. Teleoperation
In order to successfully perform learning from demonstration, we utilized the data glove developed earlier
in this report to train the robot to perform reach to grasp motions. The successful grasping of objects relies
on Trina being able to perform grasping naturally, in the same way as a human. To accomplish this, we
mapped the skeleton joints of the human arm, returned from the Kinect, to the Trina arm which has seven
joints. However, Kinect is unable to detect any joints pertaining to the wrist, and hence the grasp angle.
Hence, we integrated our developed data glove to detect fingers movement for grasping an object in
addition to the Kinect API. By combining the data glove with the Kinect, we were able to accurately map
the movements of the operators arm and hand movements.

Figure 25: Teleoperation using Kinect and Glove.

In comparison with other teleoperation methods, such as the full-body mapping with Vicon, our system
has a significantly lower cost. The Kinect+Glove system is a mere $300 total, where as Vicon can cost up
to $10,000. Furthermore, this system is light-weight; it does not require a substantial setup area to operate.
However, the main drawback of this system is from the Kinect device itself which is a low precision in
the depth field, resulting in degrading of grasping accuracy.

32

Figure 26: Kinect Body Tracking.

The demonstrations we performed using a combination of Kinect and the glove have 10 degrees of
freedom in total: 7 from single Trina joints and 3 from thumb index and middle fingers. The objective of
the training is the object position in which we obtain with the same method in autonomous grasping. We
adopted a deterministic learning method, called probabilistic movement primitives(ProMP) [13], to mimic
the movement of the human arm.

33

7. Learning by Demonstration
One of the goal for this project is to develop a ‘teaching interface’, in which we are able to teach TRINA
to perform complex task autonomously without coding required. The standard approach is to pursue a
reinforcement learning algorithm to achieve this. However, reinforcement learning requires a large
amount of data and time to train, which for many demonstrations is not feasible. Instead, we use a
different technique known as ‘Learning By Demonstration’, another machine learning algorithm that can
teach the robot to do complex tasks with reduced data requirements.

Figure 27: Framework for the different aspects of the project that add up to the Learning By

Demonstration

Each individual component described above serves as the foundation for a Learning By Demonstration
interface. Figure 27 summarizes the workflow of this MQP. Using the Teleoperation Interface introduced
previously, we can record the movement of the human-controlled robot. This data can be used to train the
robot to ‘mimic’ complex tasks.

7.1 Experiment
As a proof of concept, we conduct the simple task of moving a bottle into a box. We show that the robot
is able to detect the object in a novel position, and execute this task with only a few demonstrations. This
is achieved without the need of any hard-coding.

34

Figure 28: Teaching robot to put bottle in the bin

7.2 Probabilistic Motion Primitives (ProMP)

Figure 29: Illustration of the ProMP framework [14]

ProMP is a Gaussian probabilistic learning framework based that learns the mean and standard deviation
from a set of training time series data and makes inferences by generalizing this data based on the number
of standard deviations below or above of the given objectives. This algorithm can be used to teach the
robot to perform complex tasks

35

7.3 Dynamic Time Warping

Figure 30: Dynamic time warping over Trina Joints. Left- Before time warping. Right- After time warping

A challenge we faced with the dataset is the inconsistency between actions throughout demonstrations.
For example, the time interval between grabbing the bottle and putting it into a box differs in both
absolute and relative time intervals. This causes unwanted variation in the joint-space data, and has led to
inaccuracies when testing the ProMP model. To solve this, we introduce Dynamic Time Warping (DTW),
an algorithm, an algorithm used to measure and plot the similarities between two time series. This allows
us to align the data of the motion of the robot joints.

36

8. Future Work
While this project made many improvements to the prior MQP there were areas where we encountered
different challenges. There were tasks that we either did not have time to fully address or noted that they
were beyond the scope of our MQP. We have collected some suggestions for improvements on these
particular tasks as well as areas that we recognized could become problematic in the future.

8.1 Further Modifying the Data Glove
Future work which would benefit this project includes utilizing a frequency counter or frequency to
voltage converter to measure the readings of the capacitive sensor in the data glove more accurately. This
addition would also enable the ring finger capacitor to be more accurately read as well since the method
which we used to measure the frequency only worked on a single pin on the arduino and therefore could
not be used to measure both capacitors at once.

Additionally, adding an IMU to the glove to enable tracking of the hand in 3D space would be a major
improvement to the data glove as a kinect camera was still required to track the teleoperators arm
movements. Work could also be done on the data glove to use a different wireless transmitter, such as
bluetooth to give added security and more reliable data transmission.

8.2 Further Optimization in Computer Vision
In this work, two computer vision models were used in order: Mask-RCNN to detect and propose the
region of interest, which is sent to the Multi-Grasp detector model for angle detection. It is possible to
combine these two models into a single model with some GPU optimization, decreasing the inference
time.

Object localization depends on the precision of the depth values, which are interpolated(or extrapolated)
from point cloud by Kinect, leading to an artifact.

8.3 Performing Complex Tasks using Learning by Demonstration
We have designed a foundation for Learning by Demonstration using the ProMP model, trained by data
recorded by the teleoperation interface. There is potential to teach the robot to perform a various number
of complex tasks, and this system a systematic analysis of this system should be conducted to determine
its strengths and limitations.

37

9. References
[1] Robotic Industries Association, "About Joseph Engelberger - Father of Robotics."

https://www.robotics.org/joseph-engelberger/about.cfm. Accessed 9 Oct. 2018
[2] Eugene Demaitre, "Meet the 2017 RBR50: Top 50 Robotics Companies."

https://www.roboticsbusinessreview.com/wp-content/uploads/2017/03/RBR50_Whitepaper_v
FF.pdf. Accessed 11 Oct. 2018.

[3] T. Maneewarn, "Survey of social robots in Thailand," 2014 International Electrical Engineering
Congress (iEECON), Chonburi, 2014, pp. 1-4. doi: 10.1109/iEECON.2014.7088527

[4] Zhi Li, Peter Moran, et al., “Development of a Tele-Nursing Mobile Manipulator for Remote
Care-giving in Quarantine Areas” May 2017
http://motion.pratt.duke.edu/papers/ICRA2017-Li-TeleNursing.pdf . Accessed 5 Apr. 2019

[5] Jane Li, "Human-Inspired Robotics Lab - WPI." 28 Jun. 2017,
http://users.wpi.edu/~zli11/mqp_PPU.html. Accessed 5 Apr. 2019.

[6] Walter G. Bircher, "Yale OpenHand Project - Yale University."
https://www.eng.yale.edu/grablab/openhand/. Accessed 9 Oct. 2018.

[7] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016.

[8] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic
segmentation." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2014.

[9] Myers, Austin, et al. "Affordance detection of tool parts from geometric features." 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2015.

[10] He, Kaiming, et al. "Mask R-CNN." Proceedings of the IEEE international conference on computer
vision. 2017.

[11] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision.
2015.

[12] Chu, Fu-Jen, Ruinian Xu, and Patricio A. Vela. "Real-world multiobject, multigrasp detection."
IEEE Robotics and Automation Letters 3.4 (2018): 3355-3362.

[13] Paraschos, Alexandros, et al. "Probabilistic movement primitives." Advances in neural information
processing systems. 2013.

[14] ​Maeda, Guilherme J., et al. "Probabilistic movement primitives for coordination of multiple
human–robot collaborative tasks." ​Autonomous Robots​ 41.3 (2017): 593-612.

38

10. Appendix

A. Demonstrations
Demonstration videos of various tasks can be found here:
https://www.youtube.com/playlist?list=PLduj4asdOQD7emX9YTNQ8XCj_Zjehdbr0

B. Code Base for Computer Vision and Teleoperation
The Computer Vision and Teleoperation Interface code can be found at
https://github.com/aditthapron/Mask-RCNN_Grasp-detector_models​. Please note that you may need
permission to access this code repository.

C. Code Base for Robotic Hand Teleoperation (GUI)
The code for and instructions to operate the Reflex SF robotic hand used in this MQP can be found at
https://github.com/Remiles45/golden_claw_mqp​ . This is a GUI which we designed in order to make
interfacing with and becoming familiar with the robotic hand easier.

D. Code Base for Data Glove Sensor and Communication

Integrated_Receiving_Module.ino
/*The below program is designed to work with the Whole_Glove program

and relay messages

 * received from the transmitting Arduino Nano to the robotic hand

via ros packages.

 *

 */

#include <SPI.h> //nRF communication

#include <nRF24L01.h> //nRF communication

#include <RF24.h> //nRF communication

#include <ros.h> //ros library

#include <std_msgs/Int16MultiArray.h> //ros library

#include <std_msgs/MultiArrayLayout.h>

#include<std_msgs/MultiArrayDimension.h>

39

https://www.youtube.com/playlist?list=PLduj4asdOQD7emX9YTNQ8XCj_Zjehdbr0
https://github.com/aditthapron/Mask-RCNN_Grasp-detector_models
https://github.com/Remiles45/golden_claw_mqp

RF24 radio(9, 10); // CE, CSN Identifying which

pins to communicate with

const byte address[6] = "00001"; //address to receive the data from

//Ros Stuff

ros::NodeHandle nh;

std_msgs::Int16MultiArray glove_status_msg;

ros::Publisher glove_data("glove_data", &glove_status_msg);

bool newData = false;

int ReceivedData[5]; //Received Data

int NumSensors = 5; // Number of Sensors

void setup() {

 //Set up baud rate and open up reading pipe to receive message

 Serial.begin(9600);

 radio.begin();

 radio.openReadingPipe(0, address);

 radio.setPALevel(RF24_PA_MIN);

 radio.startListening();

//***Ok, so I'm not entirely sure what's going on here ***

 nh.initNode();

 nh.advertise(glove_data);

 glove_status_msg.layout.dim = (std_msgs::MultiArrayDimension *)

 malloc(sizeof(std_msgs::MultiArrayDimension)*2);

 glove_status_msg.layout.dim[0].label = "Glove Data";

 glove_status_msg.layout.dim[0].size = NumSensors;

 glove_status_msg.layout.dim[0].stride = 1;

 glove_status_msg.layout.data_offset = 0;

 glove_status_msg.data = (int *)malloc(sizeof(int)*8);

 glove_status_msg.data_length = NumSensors;

 glove_data.publish(&glove_status_msg); //Attempt to setup

publisher in setup not waiting for loop.

 nh.spinOnce(); //^^

40

}

void loop() {

 getData();

 showData();

 //delay(500);

}

//Below is a function that checks if there is data avaiable from the

recently opened pipe

//and if there is data, it saves the data to int_arr_msg and changes

the newData boolean to true.

void getData() {

 if (radio.available()) {

 radio.read(&ReceivedData, sizeof(ReceivedData));

 newData = true;

 }

}

//If the newData is true then the function showData runs, displaying

each part of the received data

//array.

void showData() {

 if (newData == true) {

 //Publish the Received Data and send ROS package to computer

 glove_status_msg.data[0] = ReceivedData[0]; //Thumb

 glove_status_msg.data[1] = ReceivedData[1]; //Index

 glove_status_msg.data[2] = ReceivedData[2]; //Middle

 glove_status_msg.data[3] = ReceivedData[3]; //Index-Middle

Capacitor Sensor

 glove_status_msg.data[4] = ReceivedData[4]; //Wool Sensor

 glove_data.publish(&glove_status_msg);

 nh.spinOnce();

 delay(200);

 // Comments below display the received data on the Serial

Monitor for testinga and

 // observational purposes.

41

 Serial.print("Index: ");

 Serial.println(ReceivedData[0]);

 Serial.print("Middle ");

 Serial.println(ReceivedData[1]);

 Serial.print("Thumb ");

 Serial.println(ReceivedData[2]);

 Serial.print("Cap Sensor");

 Serial.println(ReceivedData[3]);

 Serial.print("Wool Sensor ");

 Serial.println(ReceivedData[4]);

 newData = false;

 }

 //If there is no new data then the following message is displayed

on the serial monitor

 //Change to display error message in ROS too?

 Serial.println("No message");

 // The below code may publish to ros that no message was received.

Needed testing. For now, commented.

 // std_msgs::String msg;

 // std::stringstream ss;

 // ss << "No message" << count;

 // msg.data = ss.str();

}

Whole_Glove.ino
/*The below program is designed to work with the Whole_Glove program

and relay messages

 * received from the transmitting Arduino Nano to the robotic hand

via ros packages.

 *

 */

#include <SPI.h> //nRF communication

#include <nRF24L01.h> //nRF communication

#include <RF24.h> //nRF communication

#include <ros.h> //ros library

42

#include <std_msgs/Int16MultiArray.h> //ros library

#include <std_msgs/MultiArrayLayout.h>

#include<std_msgs/MultiArrayDimension.h>

RF24 radio(9, 10); // CE, CSN Identifying which

pins to communicate with

const byte address[6] = "00001"; //address to receive the data from

//Ros Stuff

ros::NodeHandle nh;

std_msgs::Int16MultiArray glove_status_msg;

ros::Publisher glove_data("glove_data", &glove_status_msg);

bool newData = false;

int ReceivedData[5]; //Received Data

int NumSensors = 5; // Number of Sensors

void setup() {

 //Set up baud rate and open up reading pipe to receive message

 Serial.begin(9600);

 radio.begin();

 radio.openReadingPipe(0, address);

 radio.setPALevel(RF24_PA_MIN);

 radio.startListening();

//***Ok, so I'm not entirely sure what's going on here ***

 nh.initNode();

 nh.advertise(glove_data);

 glove_status_msg.layout.dim = (std_msgs::MultiArrayDimension *)

 malloc(sizeof(std_msgs::MultiArrayDimension)*2);

 glove_status_msg.layout.dim[0].label = "Glove Data";

 glove_status_msg.layout.dim[0].size = NumSensors;

 glove_status_msg.layout.dim[0].stride = 1;

 glove_status_msg.layout.data_offset = 0;

 glove_status_msg.data = (int *)malloc(sizeof(int)*8);

 glove_status_msg.data_length = NumSensors;

43

 glove_data.publish(&glove_status_msg); //Attempt to setup

publisher in setup not waiting for loop.

 nh.spinOnce(); //^^

}

void loop() {

 getData();

 showData();

 //delay(500);

}

//Below is a function that checks if there is data avaiable from the

recently opened pipe

//and if there is data, it saves the data to int_arr_msg and changes

the newData boolean to true.

void getData() {

 if (radio.available()) {

 radio.read(&ReceivedData, sizeof(ReceivedData));

 newData = true;

 }

}

//If the newData is true then the function showData runs, displaying

each part of the received data

//array.

void showData() {

 if (newData == true) {

 //Publish the Received Data and send ROS package to computer

 glove_status_msg.data[0] = ReceivedData[0]; //Thumb

 glove_status_msg.data[1] = ReceivedData[1]; //Index

 glove_status_msg.data[2] = ReceivedData[2]; //Middle

 glove_status_msg.data[3] = ReceivedData[3]; //Index-Middle

Capacitor Sensor

 glove_status_msg.data[4] = ReceivedData[4]; //Wool Sensor

 glove_data.publish(&glove_status_msg);

 nh.spinOnce();

 delay(200);

44

 // Comments below display the received data on the Serial

Monitor for testinga and

 // observational purposes.

 Serial.print("Index: ");

 Serial.println(ReceivedData[0]);

 Serial.print("Middle ");

 Serial.println(ReceivedData[1]);

 Serial.print("Thumb ");

 Serial.println(ReceivedData[2]);

 Serial.print("Cap Sensor");

 Serial.println(ReceivedData[3]);

 Serial.print("Wool Sensor ");

 Serial.println(ReceivedData[4]);

 newData = false;

 }

 //If there is no new data then the following message is displayed

on the serial monitor

 //Change to display error message in ROS too?

 Serial.println("No message");

 // The below code may publish to ros that no message was received.

Needed testing. For now, commented.

 // std_msgs::String msg;

 // std::stringstream ss;

 // ss << "No message" << count;

 // msg.data = ss.str();

}

45

